• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
4  *
5  *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
6  *
7  *  Interactivity improvements by Mike Galbraith
8  *  (C) 2007 Mike Galbraith <efault@gmx.de>
9  *
10  *  Various enhancements by Dmitry Adamushko.
11  *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
12  *
13  *  Group scheduling enhancements by Srivatsa Vaddagiri
14  *  Copyright IBM Corporation, 2007
15  *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
16  *
17  *  Scaled math optimizations by Thomas Gleixner
18  *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
19  *
20  *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21  *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
22  */
23 #include "sched.h"
24 #include "walt.h"
25 #include "rtg/rtg.h"
26 
27 #ifdef CONFIG_SCHED_WALT
28 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p,
29 					u16 updated_demand_scaled);
30 #endif
31 
32 #if defined(CONFIG_SCHED_WALT) && defined(CONFIG_CFS_BANDWIDTH)
33 static void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq);
34 static void walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq,
35 				  struct task_struct *p);
36 static void walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq,
37 				  struct task_struct *p);
38 static void walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
39 					    struct cfs_rq *cfs_rq);
40 static void walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
41 					    struct cfs_rq *cfs_rq);
42 #else
walt_init_cfs_rq_stats(struct cfs_rq * cfs_rq)43 static inline void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq) {}
44 static inline void
walt_inc_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)45 walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p) {}
46 static inline void
walt_dec_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)47 walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p) {}
48 
49 #define walt_inc_throttled_cfs_rq_stats(...)
50 #define walt_dec_throttled_cfs_rq_stats(...)
51 
52 #endif
53 
54 /*
55  * Targeted preemption latency for CPU-bound tasks:
56  *
57  * NOTE: this latency value is not the same as the concept of
58  * 'timeslice length' - timeslices in CFS are of variable length
59  * and have no persistent notion like in traditional, time-slice
60  * based scheduling concepts.
61  *
62  * (to see the precise effective timeslice length of your workload,
63  *  run vmstat and monitor the context-switches (cs) field)
64  *
65  * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
66  */
67 unsigned int sysctl_sched_latency			= 6000000ULL;
68 static unsigned int normalized_sysctl_sched_latency	= 6000000ULL;
69 
70 /*
71  * The initial- and re-scaling of tunables is configurable
72  *
73  * Options are:
74  *
75  *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
76  *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
77  *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
78  *
79  * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
80  */
81 enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
82 
83 /*
84  * Minimal preemption granularity for CPU-bound tasks:
85  *
86  * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
87  */
88 unsigned int sysctl_sched_min_granularity			= 750000ULL;
89 static unsigned int normalized_sysctl_sched_min_granularity	= 750000ULL;
90 
91 /*
92  * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
93  */
94 static unsigned int sched_nr_latency = 8;
95 
96 /*
97  * After fork, child runs first. If set to 0 (default) then
98  * parent will (try to) run first.
99  */
100 unsigned int sysctl_sched_child_runs_first __read_mostly;
101 
102 /*
103  * SCHED_OTHER wake-up granularity.
104  *
105  * This option delays the preemption effects of decoupled workloads
106  * and reduces their over-scheduling. Synchronous workloads will still
107  * have immediate wakeup/sleep latencies.
108  *
109  * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
110  */
111 unsigned int sysctl_sched_wakeup_granularity			= 1000000UL;
112 static unsigned int normalized_sysctl_sched_wakeup_granularity	= 1000000UL;
113 
114 const_debug unsigned int sysctl_sched_migration_cost	= 500000UL;
115 
116 int sched_thermal_decay_shift;
setup_sched_thermal_decay_shift(char * str)117 static int __init setup_sched_thermal_decay_shift(char *str)
118 {
119 	int _shift = 0;
120 
121 	if (kstrtoint(str, 0, &_shift))
122 		pr_warn("Unable to set scheduler thermal pressure decay shift parameter\n");
123 
124 	sched_thermal_decay_shift = clamp(_shift, 0, 10);
125 	return 1;
126 }
127 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
128 
129 #ifdef CONFIG_SMP
130 /*
131  * For asym packing, by default the lower numbered CPU has higher priority.
132  */
arch_asym_cpu_priority(int cpu)133 int __weak arch_asym_cpu_priority(int cpu)
134 {
135 	return -cpu;
136 }
137 
138 /*
139  * The margin used when comparing utilization with CPU capacity.
140  *
141  * (default: ~20%)
142  */
143 #define fits_capacity(cap, max)	((cap) * 1280 < (max) * 1024)
144 
145 #endif
146 
147 #ifdef CONFIG_CFS_BANDWIDTH
148 /*
149  * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
150  * each time a cfs_rq requests quota.
151  *
152  * Note: in the case that the slice exceeds the runtime remaining (either due
153  * to consumption or the quota being specified to be smaller than the slice)
154  * we will always only issue the remaining available time.
155  *
156  * (default: 5 msec, units: microseconds)
157  */
158 unsigned int sysctl_sched_cfs_bandwidth_slice		= 5000UL;
159 #endif
160 
update_load_add(struct load_weight * lw,unsigned long inc)161 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
162 {
163 	lw->weight += inc;
164 	lw->inv_weight = 0;
165 }
166 
update_load_sub(struct load_weight * lw,unsigned long dec)167 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
168 {
169 	lw->weight -= dec;
170 	lw->inv_weight = 0;
171 }
172 
update_load_set(struct load_weight * lw,unsigned long w)173 static inline void update_load_set(struct load_weight *lw, unsigned long w)
174 {
175 	lw->weight = w;
176 	lw->inv_weight = 0;
177 }
178 
179 /*
180  * Increase the granularity value when there are more CPUs,
181  * because with more CPUs the 'effective latency' as visible
182  * to users decreases. But the relationship is not linear,
183  * so pick a second-best guess by going with the log2 of the
184  * number of CPUs.
185  *
186  * This idea comes from the SD scheduler of Con Kolivas:
187  */
get_update_sysctl_factor(void)188 static unsigned int get_update_sysctl_factor(void)
189 {
190 	unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
191 	unsigned int factor;
192 
193 	switch (sysctl_sched_tunable_scaling) {
194 	case SCHED_TUNABLESCALING_NONE:
195 		factor = 1;
196 		break;
197 	case SCHED_TUNABLESCALING_LINEAR:
198 		factor = cpus;
199 		break;
200 	case SCHED_TUNABLESCALING_LOG:
201 	default:
202 		factor = 1 + ilog2(cpus);
203 		break;
204 	}
205 
206 	return factor;
207 }
208 
update_sysctl(void)209 static void update_sysctl(void)
210 {
211 	unsigned int factor = get_update_sysctl_factor();
212 
213 #define SET_SYSCTL(name) \
214 	(sysctl_##name = (factor) * normalized_sysctl_##name)
215 	SET_SYSCTL(sched_min_granularity);
216 	SET_SYSCTL(sched_latency);
217 	SET_SYSCTL(sched_wakeup_granularity);
218 #undef SET_SYSCTL
219 }
220 
sched_init_granularity(void)221 void __init sched_init_granularity(void)
222 {
223 	update_sysctl();
224 }
225 
226 #define WMULT_CONST	(~0U)
227 #define WMULT_SHIFT	32
228 
__update_inv_weight(struct load_weight * lw)229 static void __update_inv_weight(struct load_weight *lw)
230 {
231 	unsigned long w;
232 
233 	if (likely(lw->inv_weight))
234 		return;
235 
236 	w = scale_load_down(lw->weight);
237 
238 	if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
239 		lw->inv_weight = 1;
240 	else if (unlikely(!w))
241 		lw->inv_weight = WMULT_CONST;
242 	else
243 		lw->inv_weight = WMULT_CONST / w;
244 }
245 
246 /*
247  * delta_exec * weight / lw.weight
248  *   OR
249  * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
250  *
251  * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
252  * we're guaranteed shift stays positive because inv_weight is guaranteed to
253  * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
254  *
255  * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
256  * weight/lw.weight <= 1, and therefore our shift will also be positive.
257  */
__calc_delta(u64 delta_exec,unsigned long weight,struct load_weight * lw)258 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
259 {
260 	u64 fact = scale_load_down(weight);
261 	int shift = WMULT_SHIFT;
262 
263 	__update_inv_weight(lw);
264 
265 	if (unlikely(fact >> 32)) {
266 		while (fact >> 32) {
267 			fact >>= 1;
268 			shift--;
269 		}
270 	}
271 
272 	fact = mul_u32_u32(fact, lw->inv_weight);
273 
274 	while (fact >> 32) {
275 		fact >>= 1;
276 		shift--;
277 	}
278 
279 	return mul_u64_u32_shr(delta_exec, fact, shift);
280 }
281 
282 
283 const struct sched_class fair_sched_class;
284 
285 /**************************************************************
286  * CFS operations on generic schedulable entities:
287  */
288 
289 #ifdef CONFIG_FAIR_GROUP_SCHED
task_of(struct sched_entity * se)290 static inline struct task_struct *task_of(struct sched_entity *se)
291 {
292 	SCHED_WARN_ON(!entity_is_task(se));
293 	return container_of(se, struct task_struct, se);
294 }
295 
296 /* Walk up scheduling entities hierarchy */
297 #define for_each_sched_entity(se) \
298 		for (; se; se = se->parent)
299 
task_cfs_rq(struct task_struct * p)300 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
301 {
302 	return p->se.cfs_rq;
303 }
304 
305 /* runqueue on which this entity is (to be) queued */
cfs_rq_of(struct sched_entity * se)306 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
307 {
308 	return se->cfs_rq;
309 }
310 
311 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)312 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
313 {
314 	return grp->my_q;
315 }
316 
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)317 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
318 {
319 	if (!path)
320 		return;
321 
322 	if (cfs_rq && task_group_is_autogroup(cfs_rq->tg))
323 		autogroup_path(cfs_rq->tg, path, len);
324 	else if (cfs_rq && cfs_rq->tg->css.cgroup)
325 		cgroup_path(cfs_rq->tg->css.cgroup, path, len);
326 	else
327 		strlcpy(path, "(null)", len);
328 }
329 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)330 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
331 {
332 	struct rq *rq = rq_of(cfs_rq);
333 	int cpu = cpu_of(rq);
334 
335 	if (cfs_rq->on_list)
336 		return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
337 
338 	cfs_rq->on_list = 1;
339 
340 	/*
341 	 * Ensure we either appear before our parent (if already
342 	 * enqueued) or force our parent to appear after us when it is
343 	 * enqueued. The fact that we always enqueue bottom-up
344 	 * reduces this to two cases and a special case for the root
345 	 * cfs_rq. Furthermore, it also means that we will always reset
346 	 * tmp_alone_branch either when the branch is connected
347 	 * to a tree or when we reach the top of the tree
348 	 */
349 	if (cfs_rq->tg->parent &&
350 	    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
351 		/*
352 		 * If parent is already on the list, we add the child
353 		 * just before. Thanks to circular linked property of
354 		 * the list, this means to put the child at the tail
355 		 * of the list that starts by parent.
356 		 */
357 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
358 			&(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
359 		/*
360 		 * The branch is now connected to its tree so we can
361 		 * reset tmp_alone_branch to the beginning of the
362 		 * list.
363 		 */
364 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
365 		return true;
366 	}
367 
368 	if (!cfs_rq->tg->parent) {
369 		/*
370 		 * cfs rq without parent should be put
371 		 * at the tail of the list.
372 		 */
373 		list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
374 			&rq->leaf_cfs_rq_list);
375 		/*
376 		 * We have reach the top of a tree so we can reset
377 		 * tmp_alone_branch to the beginning of the list.
378 		 */
379 		rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
380 		return true;
381 	}
382 
383 	/*
384 	 * The parent has not already been added so we want to
385 	 * make sure that it will be put after us.
386 	 * tmp_alone_branch points to the begin of the branch
387 	 * where we will add parent.
388 	 */
389 	list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
390 	/*
391 	 * update tmp_alone_branch to points to the new begin
392 	 * of the branch
393 	 */
394 	rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
395 	return false;
396 }
397 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)398 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
399 {
400 	if (cfs_rq->on_list) {
401 		struct rq *rq = rq_of(cfs_rq);
402 
403 		/*
404 		 * With cfs_rq being unthrottled/throttled during an enqueue,
405 		 * it can happen the tmp_alone_branch points the a leaf that
406 		 * we finally want to del. In this case, tmp_alone_branch moves
407 		 * to the prev element but it will point to rq->leaf_cfs_rq_list
408 		 * at the end of the enqueue.
409 		 */
410 		if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
411 			rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
412 
413 		list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
414 		cfs_rq->on_list = 0;
415 	}
416 }
417 
assert_list_leaf_cfs_rq(struct rq * rq)418 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
419 {
420 	SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
421 }
422 
423 /* Iterate thr' all leaf cfs_rq's on a runqueue */
424 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)			\
425 	list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,	\
426 				 leaf_cfs_rq_list)
427 
428 /* Do the two (enqueued) entities belong to the same group ? */
429 static inline struct cfs_rq *
is_same_group(struct sched_entity * se,struct sched_entity * pse)430 is_same_group(struct sched_entity *se, struct sched_entity *pse)
431 {
432 	if (se->cfs_rq == pse->cfs_rq)
433 		return se->cfs_rq;
434 
435 	return NULL;
436 }
437 
parent_entity(struct sched_entity * se)438 static inline struct sched_entity *parent_entity(struct sched_entity *se)
439 {
440 	return se->parent;
441 }
442 
443 static void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)444 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
445 {
446 	int se_depth, pse_depth;
447 
448 	/*
449 	 * preemption test can be made between sibling entities who are in the
450 	 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
451 	 * both tasks until we find their ancestors who are siblings of common
452 	 * parent.
453 	 */
454 
455 	/* First walk up until both entities are at same depth */
456 	se_depth = (*se)->depth;
457 	pse_depth = (*pse)->depth;
458 
459 	while (se_depth > pse_depth) {
460 		se_depth--;
461 		*se = parent_entity(*se);
462 	}
463 
464 	while (pse_depth > se_depth) {
465 		pse_depth--;
466 		*pse = parent_entity(*pse);
467 	}
468 
469 	while (!is_same_group(*se, *pse)) {
470 		*se = parent_entity(*se);
471 		*pse = parent_entity(*pse);
472 	}
473 }
474 
475 #else	/* !CONFIG_FAIR_GROUP_SCHED */
476 
task_of(struct sched_entity * se)477 static inline struct task_struct *task_of(struct sched_entity *se)
478 {
479 	return container_of(se, struct task_struct, se);
480 }
481 
482 #define for_each_sched_entity(se) \
483 		for (; se; se = NULL)
484 
task_cfs_rq(struct task_struct * p)485 static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
486 {
487 	return &task_rq(p)->cfs;
488 }
489 
cfs_rq_of(struct sched_entity * se)490 static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
491 {
492 	struct task_struct *p = task_of(se);
493 	struct rq *rq = task_rq(p);
494 
495 	return &rq->cfs;
496 }
497 
498 /* runqueue "owned" by this group */
group_cfs_rq(struct sched_entity * grp)499 static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
500 {
501 	return NULL;
502 }
503 
cfs_rq_tg_path(struct cfs_rq * cfs_rq,char * path,int len)504 static inline void cfs_rq_tg_path(struct cfs_rq *cfs_rq, char *path, int len)
505 {
506 	if (path)
507 		strlcpy(path, "(null)", len);
508 }
509 
list_add_leaf_cfs_rq(struct cfs_rq * cfs_rq)510 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
511 {
512 	return true;
513 }
514 
list_del_leaf_cfs_rq(struct cfs_rq * cfs_rq)515 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
516 {
517 }
518 
assert_list_leaf_cfs_rq(struct rq * rq)519 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
520 {
521 }
522 
523 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)	\
524 		for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
525 
parent_entity(struct sched_entity * se)526 static inline struct sched_entity *parent_entity(struct sched_entity *se)
527 {
528 	return NULL;
529 }
530 
531 static inline void
find_matching_se(struct sched_entity ** se,struct sched_entity ** pse)532 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
533 {
534 }
535 
536 #endif	/* CONFIG_FAIR_GROUP_SCHED */
537 
538 static __always_inline
539 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
540 
541 /**************************************************************
542  * Scheduling class tree data structure manipulation methods:
543  */
544 
max_vruntime(u64 max_vruntime,u64 vruntime)545 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
546 {
547 	s64 delta = (s64)(vruntime - max_vruntime);
548 	if (delta > 0)
549 		max_vruntime = vruntime;
550 
551 	return max_vruntime;
552 }
553 
min_vruntime(u64 min_vruntime,u64 vruntime)554 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
555 {
556 	s64 delta = (s64)(vruntime - min_vruntime);
557 	if (delta < 0)
558 		min_vruntime = vruntime;
559 
560 	return min_vruntime;
561 }
562 
entity_before(struct sched_entity * a,struct sched_entity * b)563 static inline int entity_before(struct sched_entity *a,
564 				struct sched_entity *b)
565 {
566 	return (s64)(a->vruntime - b->vruntime) < 0;
567 }
568 
update_min_vruntime(struct cfs_rq * cfs_rq)569 static void update_min_vruntime(struct cfs_rq *cfs_rq)
570 {
571 	struct sched_entity *curr = cfs_rq->curr;
572 	struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
573 
574 	u64 vruntime = cfs_rq->min_vruntime;
575 
576 	if (curr) {
577 		if (curr->on_rq)
578 			vruntime = curr->vruntime;
579 		else
580 			curr = NULL;
581 	}
582 
583 	if (leftmost) { /* non-empty tree */
584 		struct sched_entity *se;
585 		se = rb_entry(leftmost, struct sched_entity, run_node);
586 
587 		if (!curr)
588 			vruntime = se->vruntime;
589 		else
590 			vruntime = min_vruntime(vruntime, se->vruntime);
591 	}
592 
593 	/* ensure we never gain time by being placed backwards. */
594 	cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
595 #ifndef CONFIG_64BIT
596 	smp_wmb();
597 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
598 #endif
599 }
600 
601 /*
602  * Enqueue an entity into the rb-tree:
603  */
__enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)604 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
605 {
606 	struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
607 	struct rb_node *parent = NULL;
608 	struct sched_entity *entry;
609 	bool leftmost = true;
610 
611 	/*
612 	 * Find the right place in the rbtree:
613 	 */
614 	while (*link) {
615 		parent = *link;
616 		entry = rb_entry(parent, struct sched_entity, run_node);
617 		/*
618 		 * We dont care about collisions. Nodes with
619 		 * the same key stay together.
620 		 */
621 		if (entity_before(se, entry)) {
622 			link = &parent->rb_left;
623 		} else {
624 			link = &parent->rb_right;
625 			leftmost = false;
626 		}
627 	}
628 
629 	rb_link_node(&se->run_node, parent, link);
630 	rb_insert_color_cached(&se->run_node,
631 			       &cfs_rq->tasks_timeline, leftmost);
632 }
633 
__dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)634 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
635 {
636 	rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
637 }
638 
__pick_first_entity(struct cfs_rq * cfs_rq)639 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
640 {
641 	struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
642 
643 	if (!left)
644 		return NULL;
645 
646 	return rb_entry(left, struct sched_entity, run_node);
647 }
648 
__pick_next_entity(struct sched_entity * se)649 static struct sched_entity *__pick_next_entity(struct sched_entity *se)
650 {
651 	struct rb_node *next = rb_next(&se->run_node);
652 
653 	if (!next)
654 		return NULL;
655 
656 	return rb_entry(next, struct sched_entity, run_node);
657 }
658 
659 #ifdef CONFIG_SCHED_DEBUG
__pick_last_entity(struct cfs_rq * cfs_rq)660 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
661 {
662 	struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
663 
664 	if (!last)
665 		return NULL;
666 
667 	return rb_entry(last, struct sched_entity, run_node);
668 }
669 
670 /**************************************************************
671  * Scheduling class statistics methods:
672  */
673 
sched_proc_update_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)674 int sched_proc_update_handler(struct ctl_table *table, int write,
675 		void *buffer, size_t *lenp, loff_t *ppos)
676 {
677 	int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
678 	unsigned int factor = get_update_sysctl_factor();
679 
680 	if (ret || !write)
681 		return ret;
682 
683 	sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
684 					sysctl_sched_min_granularity);
685 
686 #define WRT_SYSCTL(name) \
687 	(normalized_sysctl_##name = sysctl_##name / (factor))
688 	WRT_SYSCTL(sched_min_granularity);
689 	WRT_SYSCTL(sched_latency);
690 	WRT_SYSCTL(sched_wakeup_granularity);
691 #undef WRT_SYSCTL
692 
693 	return 0;
694 }
695 #endif
696 
697 /*
698  * delta /= w
699  */
calc_delta_fair(u64 delta,struct sched_entity * se)700 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
701 {
702 	if (unlikely(se->load.weight != NICE_0_LOAD))
703 		delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
704 
705 	return delta;
706 }
707 
708 /*
709  * The idea is to set a period in which each task runs once.
710  *
711  * When there are too many tasks (sched_nr_latency) we have to stretch
712  * this period because otherwise the slices get too small.
713  *
714  * p = (nr <= nl) ? l : l*nr/nl
715  */
__sched_period(unsigned long nr_running)716 static u64 __sched_period(unsigned long nr_running)
717 {
718 	if (unlikely(nr_running > sched_nr_latency))
719 		return nr_running * sysctl_sched_min_granularity;
720 	else
721 		return sysctl_sched_latency;
722 }
723 
724 /*
725  * We calculate the wall-time slice from the period by taking a part
726  * proportional to the weight.
727  *
728  * s = p*P[w/rw]
729  */
sched_slice(struct cfs_rq * cfs_rq,struct sched_entity * se)730 static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
731 {
732 	unsigned int nr_running = cfs_rq->nr_running;
733 	u64 slice;
734 
735 	if (sched_feat(ALT_PERIOD))
736 		nr_running = rq_of(cfs_rq)->cfs.h_nr_running;
737 
738 	slice = __sched_period(nr_running + !se->on_rq);
739 
740 	for_each_sched_entity(se) {
741 		struct load_weight *load;
742 		struct load_weight lw;
743 
744 		cfs_rq = cfs_rq_of(se);
745 		load = &cfs_rq->load;
746 
747 		if (unlikely(!se->on_rq)) {
748 			lw = cfs_rq->load;
749 
750 			update_load_add(&lw, se->load.weight);
751 			load = &lw;
752 		}
753 		slice = __calc_delta(slice, se->load.weight, load);
754 	}
755 
756 	if (sched_feat(BASE_SLICE))
757 		slice = max(slice, (u64)sysctl_sched_min_granularity);
758 
759 	return slice;
760 }
761 
762 /*
763  * We calculate the vruntime slice of a to-be-inserted task.
764  *
765  * vs = s/w
766  */
sched_vslice(struct cfs_rq * cfs_rq,struct sched_entity * se)767 static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
768 {
769 	return calc_delta_fair(sched_slice(cfs_rq, se), se);
770 }
771 
772 #include "pelt.h"
773 #ifdef CONFIG_SMP
774 
775 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
776 static unsigned long task_h_load(struct task_struct *p);
777 
778 /* Give new sched_entity start runnable values to heavy its load in infant time */
init_entity_runnable_average(struct sched_entity * se)779 void init_entity_runnable_average(struct sched_entity *se)
780 {
781 	struct sched_avg *sa = &se->avg;
782 
783 	memset(sa, 0, sizeof(*sa));
784 
785 	/*
786 	 * Tasks are initialized with full load to be seen as heavy tasks until
787 	 * they get a chance to stabilize to their real load level.
788 	 * Group entities are initialized with zero load to reflect the fact that
789 	 * nothing has been attached to the task group yet.
790 	 */
791 	if (entity_is_task(se))
792 		sa->load_avg = scale_load_down(se->load.weight);
793 
794 	/* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
795 }
796 
797 static void attach_entity_cfs_rq(struct sched_entity *se);
798 
799 /*
800  * With new tasks being created, their initial util_avgs are extrapolated
801  * based on the cfs_rq's current util_avg:
802  *
803  *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
804  *
805  * However, in many cases, the above util_avg does not give a desired
806  * value. Moreover, the sum of the util_avgs may be divergent, such
807  * as when the series is a harmonic series.
808  *
809  * To solve this problem, we also cap the util_avg of successive tasks to
810  * only 1/2 of the left utilization budget:
811  *
812  *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
813  *
814  * where n denotes the nth task and cpu_scale the CPU capacity.
815  *
816  * For example, for a CPU with 1024 of capacity, a simplest series from
817  * the beginning would be like:
818  *
819  *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
820  * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
821  *
822  * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
823  * if util_avg > util_avg_cap.
824  */
post_init_entity_util_avg(struct task_struct * p)825 void post_init_entity_util_avg(struct task_struct *p)
826 {
827 	struct sched_entity *se = &p->se;
828 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
829 	struct sched_avg *sa = &se->avg;
830 	long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
831 	long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
832 
833 	if (cap > 0) {
834 		if (cfs_rq->avg.util_avg != 0) {
835 			sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
836 			sa->util_avg /= (cfs_rq->avg.load_avg + 1);
837 
838 			if (sa->util_avg > cap)
839 				sa->util_avg = cap;
840 		} else {
841 			sa->util_avg = cap;
842 		}
843 	}
844 
845 	sa->runnable_avg = sa->util_avg;
846 
847 	if (p->sched_class != &fair_sched_class) {
848 		/*
849 		 * For !fair tasks do:
850 		 *
851 		update_cfs_rq_load_avg(now, cfs_rq);
852 		attach_entity_load_avg(cfs_rq, se);
853 		switched_from_fair(rq, p);
854 		 *
855 		 * such that the next switched_to_fair() has the
856 		 * expected state.
857 		 */
858 		se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
859 		return;
860 	}
861 
862 	attach_entity_cfs_rq(se);
863 }
864 
865 #else /* !CONFIG_SMP */
init_entity_runnable_average(struct sched_entity * se)866 void init_entity_runnable_average(struct sched_entity *se)
867 {
868 }
post_init_entity_util_avg(struct task_struct * p)869 void post_init_entity_util_avg(struct task_struct *p)
870 {
871 }
update_tg_load_avg(struct cfs_rq * cfs_rq)872 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
873 {
874 }
875 #endif /* CONFIG_SMP */
876 
877 /*
878  * Update the current task's runtime statistics.
879  */
update_curr(struct cfs_rq * cfs_rq)880 static void update_curr(struct cfs_rq *cfs_rq)
881 {
882 	struct sched_entity *curr = cfs_rq->curr;
883 	u64 now = rq_clock_task(rq_of(cfs_rq));
884 	u64 delta_exec;
885 
886 	if (unlikely(!curr))
887 		return;
888 
889 	delta_exec = now - curr->exec_start;
890 	if (unlikely((s64)delta_exec <= 0))
891 		return;
892 
893 	curr->exec_start = now;
894 
895 	schedstat_set(curr->statistics.exec_max,
896 		      max(delta_exec, curr->statistics.exec_max));
897 
898 	curr->sum_exec_runtime += delta_exec;
899 	schedstat_add(cfs_rq->exec_clock, delta_exec);
900 
901 	curr->vruntime += calc_delta_fair(delta_exec, curr);
902 	update_min_vruntime(cfs_rq);
903 
904 	if (entity_is_task(curr)) {
905 		struct task_struct *curtask = task_of(curr);
906 
907 		trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
908 		cgroup_account_cputime(curtask, delta_exec);
909 		account_group_exec_runtime(curtask, delta_exec);
910 	}
911 
912 	account_cfs_rq_runtime(cfs_rq, delta_exec);
913 }
914 
update_curr_fair(struct rq * rq)915 static void update_curr_fair(struct rq *rq)
916 {
917 	update_curr(cfs_rq_of(&rq->curr->se));
918 }
919 
920 static inline void
update_stats_wait_start(struct cfs_rq * cfs_rq,struct sched_entity * se)921 update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
922 {
923 	u64 wait_start, prev_wait_start;
924 
925 	if (!schedstat_enabled())
926 		return;
927 
928 	wait_start = rq_clock(rq_of(cfs_rq));
929 	prev_wait_start = schedstat_val(se->statistics.wait_start);
930 
931 	if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
932 	    likely(wait_start > prev_wait_start))
933 		wait_start -= prev_wait_start;
934 
935 	__schedstat_set(se->statistics.wait_start, wait_start);
936 }
937 
938 static inline void
update_stats_wait_end(struct cfs_rq * cfs_rq,struct sched_entity * se)939 update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
940 {
941 	struct task_struct *p;
942 	u64 delta;
943 
944 	if (!schedstat_enabled())
945 		return;
946 
947 	delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
948 
949 	if (entity_is_task(se)) {
950 		p = task_of(se);
951 		if (task_on_rq_migrating(p)) {
952 			/*
953 			 * Preserve migrating task's wait time so wait_start
954 			 * time stamp can be adjusted to accumulate wait time
955 			 * prior to migration.
956 			 */
957 			__schedstat_set(se->statistics.wait_start, delta);
958 			return;
959 		}
960 		trace_sched_stat_wait(p, delta);
961 	}
962 
963 	__schedstat_set(se->statistics.wait_max,
964 		      max(schedstat_val(se->statistics.wait_max), delta));
965 	__schedstat_inc(se->statistics.wait_count);
966 	__schedstat_add(se->statistics.wait_sum, delta);
967 	__schedstat_set(se->statistics.wait_start, 0);
968 }
969 
970 static inline void
update_stats_enqueue_sleeper(struct cfs_rq * cfs_rq,struct sched_entity * se)971 update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
972 {
973 	struct task_struct *tsk = NULL;
974 	u64 sleep_start, block_start;
975 
976 	if (!schedstat_enabled())
977 		return;
978 
979 	sleep_start = schedstat_val(se->statistics.sleep_start);
980 	block_start = schedstat_val(se->statistics.block_start);
981 
982 	if (entity_is_task(se))
983 		tsk = task_of(se);
984 
985 	if (sleep_start) {
986 		u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
987 
988 		if ((s64)delta < 0)
989 			delta = 0;
990 
991 		if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
992 			__schedstat_set(se->statistics.sleep_max, delta);
993 
994 		__schedstat_set(se->statistics.sleep_start, 0);
995 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
996 
997 		if (tsk) {
998 			account_scheduler_latency(tsk, delta >> 10, 1);
999 			trace_sched_stat_sleep(tsk, delta);
1000 		}
1001 	}
1002 	if (block_start) {
1003 		u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1004 
1005 		if ((s64)delta < 0)
1006 			delta = 0;
1007 
1008 		if (unlikely(delta > schedstat_val(se->statistics.block_max)))
1009 			__schedstat_set(se->statistics.block_max, delta);
1010 
1011 		__schedstat_set(se->statistics.block_start, 0);
1012 		__schedstat_add(se->statistics.sum_sleep_runtime, delta);
1013 
1014 		if (tsk) {
1015 			if (tsk->in_iowait) {
1016 				__schedstat_add(se->statistics.iowait_sum, delta);
1017 				__schedstat_inc(se->statistics.iowait_count);
1018 				trace_sched_stat_iowait(tsk, delta);
1019 			}
1020 
1021 			trace_sched_stat_blocked(tsk, delta);
1022 
1023 			/*
1024 			 * Blocking time is in units of nanosecs, so shift by
1025 			 * 20 to get a milliseconds-range estimation of the
1026 			 * amount of time that the task spent sleeping:
1027 			 */
1028 			if (unlikely(prof_on == SLEEP_PROFILING)) {
1029 				profile_hits(SLEEP_PROFILING,
1030 						(void *)get_wchan(tsk),
1031 						delta >> 20);
1032 			}
1033 			account_scheduler_latency(tsk, delta >> 10, 0);
1034 		}
1035 	}
1036 }
1037 
1038 /*
1039  * Task is being enqueued - update stats:
1040  */
1041 static inline void
update_stats_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1042 update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1043 {
1044 	if (!schedstat_enabled())
1045 		return;
1046 
1047 	/*
1048 	 * Are we enqueueing a waiting task? (for current tasks
1049 	 * a dequeue/enqueue event is a NOP)
1050 	 */
1051 	if (se != cfs_rq->curr)
1052 		update_stats_wait_start(cfs_rq, se);
1053 
1054 	if (flags & ENQUEUE_WAKEUP)
1055 		update_stats_enqueue_sleeper(cfs_rq, se);
1056 }
1057 
1058 static inline void
update_stats_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)1059 update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1060 {
1061 
1062 	if (!schedstat_enabled())
1063 		return;
1064 
1065 	/*
1066 	 * Mark the end of the wait period if dequeueing a
1067 	 * waiting task:
1068 	 */
1069 	if (se != cfs_rq->curr)
1070 		update_stats_wait_end(cfs_rq, se);
1071 
1072 	if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1073 		struct task_struct *tsk = task_of(se);
1074 
1075 		if (tsk->state & TASK_INTERRUPTIBLE)
1076 			__schedstat_set(se->statistics.sleep_start,
1077 				      rq_clock(rq_of(cfs_rq)));
1078 		if (tsk->state & TASK_UNINTERRUPTIBLE)
1079 			__schedstat_set(se->statistics.block_start,
1080 				      rq_clock(rq_of(cfs_rq)));
1081 	}
1082 }
1083 
1084 /*
1085  * We are picking a new current task - update its stats:
1086  */
1087 static inline void
update_stats_curr_start(struct cfs_rq * cfs_rq,struct sched_entity * se)1088 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1089 {
1090 	/*
1091 	 * We are starting a new run period:
1092 	 */
1093 	se->exec_start = rq_clock_task(rq_of(cfs_rq));
1094 }
1095 
1096 /**************************************************
1097  * Scheduling class queueing methods:
1098  */
1099 
1100 #ifdef CONFIG_NUMA_BALANCING
1101 /*
1102  * Approximate time to scan a full NUMA task in ms. The task scan period is
1103  * calculated based on the tasks virtual memory size and
1104  * numa_balancing_scan_size.
1105  */
1106 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1107 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1108 
1109 /* Portion of address space to scan in MB */
1110 unsigned int sysctl_numa_balancing_scan_size = 256;
1111 
1112 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1113 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1114 
1115 struct numa_group {
1116 	refcount_t refcount;
1117 
1118 	spinlock_t lock; /* nr_tasks, tasks */
1119 	int nr_tasks;
1120 	pid_t gid;
1121 	int active_nodes;
1122 
1123 	struct rcu_head rcu;
1124 	unsigned long total_faults;
1125 	unsigned long max_faults_cpu;
1126 	/*
1127 	 * Faults_cpu is used to decide whether memory should move
1128 	 * towards the CPU. As a consequence, these stats are weighted
1129 	 * more by CPU use than by memory faults.
1130 	 */
1131 	unsigned long *faults_cpu;
1132 	unsigned long faults[];
1133 };
1134 
1135 /*
1136  * For functions that can be called in multiple contexts that permit reading
1137  * ->numa_group (see struct task_struct for locking rules).
1138  */
deref_task_numa_group(struct task_struct * p)1139 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1140 {
1141 	return rcu_dereference_check(p->numa_group, p == current ||
1142 		(lockdep_is_held(&task_rq(p)->lock) && !READ_ONCE(p->on_cpu)));
1143 }
1144 
deref_curr_numa_group(struct task_struct * p)1145 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1146 {
1147 	return rcu_dereference_protected(p->numa_group, p == current);
1148 }
1149 
1150 static inline unsigned long group_faults_priv(struct numa_group *ng);
1151 static inline unsigned long group_faults_shared(struct numa_group *ng);
1152 
task_nr_scan_windows(struct task_struct * p)1153 static unsigned int task_nr_scan_windows(struct task_struct *p)
1154 {
1155 	unsigned long rss = 0;
1156 	unsigned long nr_scan_pages;
1157 
1158 	/*
1159 	 * Calculations based on RSS as non-present and empty pages are skipped
1160 	 * by the PTE scanner and NUMA hinting faults should be trapped based
1161 	 * on resident pages
1162 	 */
1163 	nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1164 	rss = get_mm_rss(p->mm);
1165 	if (!rss)
1166 		rss = nr_scan_pages;
1167 
1168 	rss = round_up(rss, nr_scan_pages);
1169 	return rss / nr_scan_pages;
1170 }
1171 
1172 /* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1173 #define MAX_SCAN_WINDOW 2560
1174 
task_scan_min(struct task_struct * p)1175 static unsigned int task_scan_min(struct task_struct *p)
1176 {
1177 	unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1178 	unsigned int scan, floor;
1179 	unsigned int windows = 1;
1180 
1181 	if (scan_size < MAX_SCAN_WINDOW)
1182 		windows = MAX_SCAN_WINDOW / scan_size;
1183 	floor = 1000 / windows;
1184 
1185 	scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1186 	return max_t(unsigned int, floor, scan);
1187 }
1188 
task_scan_start(struct task_struct * p)1189 static unsigned int task_scan_start(struct task_struct *p)
1190 {
1191 	unsigned long smin = task_scan_min(p);
1192 	unsigned long period = smin;
1193 	struct numa_group *ng;
1194 
1195 	/* Scale the maximum scan period with the amount of shared memory. */
1196 	rcu_read_lock();
1197 	ng = rcu_dereference(p->numa_group);
1198 	if (ng) {
1199 		unsigned long shared = group_faults_shared(ng);
1200 		unsigned long private = group_faults_priv(ng);
1201 
1202 		period *= refcount_read(&ng->refcount);
1203 		period *= shared + 1;
1204 		period /= private + shared + 1;
1205 	}
1206 	rcu_read_unlock();
1207 
1208 	return max(smin, period);
1209 }
1210 
task_scan_max(struct task_struct * p)1211 static unsigned int task_scan_max(struct task_struct *p)
1212 {
1213 	unsigned long smin = task_scan_min(p);
1214 	unsigned long smax;
1215 	struct numa_group *ng;
1216 
1217 	/* Watch for min being lower than max due to floor calculations */
1218 	smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1219 
1220 	/* Scale the maximum scan period with the amount of shared memory. */
1221 	ng = deref_curr_numa_group(p);
1222 	if (ng) {
1223 		unsigned long shared = group_faults_shared(ng);
1224 		unsigned long private = group_faults_priv(ng);
1225 		unsigned long period = smax;
1226 
1227 		period *= refcount_read(&ng->refcount);
1228 		period *= shared + 1;
1229 		period /= private + shared + 1;
1230 
1231 		smax = max(smax, period);
1232 	}
1233 
1234 	return max(smin, smax);
1235 }
1236 
account_numa_enqueue(struct rq * rq,struct task_struct * p)1237 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1238 {
1239 	rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1240 	rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1241 }
1242 
account_numa_dequeue(struct rq * rq,struct task_struct * p)1243 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1244 {
1245 	rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1246 	rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1247 }
1248 
1249 /* Shared or private faults. */
1250 #define NR_NUMA_HINT_FAULT_TYPES 2
1251 
1252 /* Memory and CPU locality */
1253 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1254 
1255 /* Averaged statistics, and temporary buffers. */
1256 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1257 
task_numa_group_id(struct task_struct * p)1258 pid_t task_numa_group_id(struct task_struct *p)
1259 {
1260 	struct numa_group *ng;
1261 	pid_t gid = 0;
1262 
1263 	rcu_read_lock();
1264 	ng = rcu_dereference(p->numa_group);
1265 	if (ng)
1266 		gid = ng->gid;
1267 	rcu_read_unlock();
1268 
1269 	return gid;
1270 }
1271 
1272 /*
1273  * The averaged statistics, shared & private, memory & CPU,
1274  * occupy the first half of the array. The second half of the
1275  * array is for current counters, which are averaged into the
1276  * first set by task_numa_placement.
1277  */
task_faults_idx(enum numa_faults_stats s,int nid,int priv)1278 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1279 {
1280 	return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1281 }
1282 
task_faults(struct task_struct * p,int nid)1283 static inline unsigned long task_faults(struct task_struct *p, int nid)
1284 {
1285 	if (!p->numa_faults)
1286 		return 0;
1287 
1288 	return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1289 		p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1290 }
1291 
group_faults(struct task_struct * p,int nid)1292 static inline unsigned long group_faults(struct task_struct *p, int nid)
1293 {
1294 	struct numa_group *ng = deref_task_numa_group(p);
1295 
1296 	if (!ng)
1297 		return 0;
1298 
1299 	return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1300 		ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1301 }
1302 
group_faults_cpu(struct numa_group * group,int nid)1303 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1304 {
1305 	return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1306 		group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1307 }
1308 
group_faults_priv(struct numa_group * ng)1309 static inline unsigned long group_faults_priv(struct numa_group *ng)
1310 {
1311 	unsigned long faults = 0;
1312 	int node;
1313 
1314 	for_each_online_node(node) {
1315 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1316 	}
1317 
1318 	return faults;
1319 }
1320 
group_faults_shared(struct numa_group * ng)1321 static inline unsigned long group_faults_shared(struct numa_group *ng)
1322 {
1323 	unsigned long faults = 0;
1324 	int node;
1325 
1326 	for_each_online_node(node) {
1327 		faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1328 	}
1329 
1330 	return faults;
1331 }
1332 
1333 /*
1334  * A node triggering more than 1/3 as many NUMA faults as the maximum is
1335  * considered part of a numa group's pseudo-interleaving set. Migrations
1336  * between these nodes are slowed down, to allow things to settle down.
1337  */
1338 #define ACTIVE_NODE_FRACTION 3
1339 
numa_is_active_node(int nid,struct numa_group * ng)1340 static bool numa_is_active_node(int nid, struct numa_group *ng)
1341 {
1342 	return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1343 }
1344 
1345 /* Handle placement on systems where not all nodes are directly connected. */
score_nearby_nodes(struct task_struct * p,int nid,int maxdist,bool task)1346 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1347 					int maxdist, bool task)
1348 {
1349 	unsigned long score = 0;
1350 	int node;
1351 
1352 	/*
1353 	 * All nodes are directly connected, and the same distance
1354 	 * from each other. No need for fancy placement algorithms.
1355 	 */
1356 	if (sched_numa_topology_type == NUMA_DIRECT)
1357 		return 0;
1358 
1359 	/*
1360 	 * This code is called for each node, introducing N^2 complexity,
1361 	 * which should be ok given the number of nodes rarely exceeds 8.
1362 	 */
1363 	for_each_online_node(node) {
1364 		unsigned long faults;
1365 		int dist = node_distance(nid, node);
1366 
1367 		/*
1368 		 * The furthest away nodes in the system are not interesting
1369 		 * for placement; nid was already counted.
1370 		 */
1371 		if (dist == sched_max_numa_distance || node == nid)
1372 			continue;
1373 
1374 		/*
1375 		 * On systems with a backplane NUMA topology, compare groups
1376 		 * of nodes, and move tasks towards the group with the most
1377 		 * memory accesses. When comparing two nodes at distance
1378 		 * "hoplimit", only nodes closer by than "hoplimit" are part
1379 		 * of each group. Skip other nodes.
1380 		 */
1381 		if (sched_numa_topology_type == NUMA_BACKPLANE &&
1382 					dist >= maxdist)
1383 			continue;
1384 
1385 		/* Add up the faults from nearby nodes. */
1386 		if (task)
1387 			faults = task_faults(p, node);
1388 		else
1389 			faults = group_faults(p, node);
1390 
1391 		/*
1392 		 * On systems with a glueless mesh NUMA topology, there are
1393 		 * no fixed "groups of nodes". Instead, nodes that are not
1394 		 * directly connected bounce traffic through intermediate
1395 		 * nodes; a numa_group can occupy any set of nodes.
1396 		 * The further away a node is, the less the faults count.
1397 		 * This seems to result in good task placement.
1398 		 */
1399 		if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1400 			faults *= (sched_max_numa_distance - dist);
1401 			faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1402 		}
1403 
1404 		score += faults;
1405 	}
1406 
1407 	return score;
1408 }
1409 
1410 /*
1411  * These return the fraction of accesses done by a particular task, or
1412  * task group, on a particular numa node.  The group weight is given a
1413  * larger multiplier, in order to group tasks together that are almost
1414  * evenly spread out between numa nodes.
1415  */
task_weight(struct task_struct * p,int nid,int dist)1416 static inline unsigned long task_weight(struct task_struct *p, int nid,
1417 					int dist)
1418 {
1419 	unsigned long faults, total_faults;
1420 
1421 	if (!p->numa_faults)
1422 		return 0;
1423 
1424 	total_faults = p->total_numa_faults;
1425 
1426 	if (!total_faults)
1427 		return 0;
1428 
1429 	faults = task_faults(p, nid);
1430 	faults += score_nearby_nodes(p, nid, dist, true);
1431 
1432 	return 1000 * faults / total_faults;
1433 }
1434 
group_weight(struct task_struct * p,int nid,int dist)1435 static inline unsigned long group_weight(struct task_struct *p, int nid,
1436 					 int dist)
1437 {
1438 	struct numa_group *ng = deref_task_numa_group(p);
1439 	unsigned long faults, total_faults;
1440 
1441 	if (!ng)
1442 		return 0;
1443 
1444 	total_faults = ng->total_faults;
1445 
1446 	if (!total_faults)
1447 		return 0;
1448 
1449 	faults = group_faults(p, nid);
1450 	faults += score_nearby_nodes(p, nid, dist, false);
1451 
1452 	return 1000 * faults / total_faults;
1453 }
1454 
should_numa_migrate_memory(struct task_struct * p,struct page * page,int src_nid,int dst_cpu)1455 bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1456 				int src_nid, int dst_cpu)
1457 {
1458 	struct numa_group *ng = deref_curr_numa_group(p);
1459 	int dst_nid = cpu_to_node(dst_cpu);
1460 	int last_cpupid, this_cpupid;
1461 
1462 	this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1463 	last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1464 
1465 	/*
1466 	 * Allow first faults or private faults to migrate immediately early in
1467 	 * the lifetime of a task. The magic number 4 is based on waiting for
1468 	 * two full passes of the "multi-stage node selection" test that is
1469 	 * executed below.
1470 	 */
1471 	if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1472 	    (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1473 		return true;
1474 
1475 	/*
1476 	 * Multi-stage node selection is used in conjunction with a periodic
1477 	 * migration fault to build a temporal task<->page relation. By using
1478 	 * a two-stage filter we remove short/unlikely relations.
1479 	 *
1480 	 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1481 	 * a task's usage of a particular page (n_p) per total usage of this
1482 	 * page (n_t) (in a given time-span) to a probability.
1483 	 *
1484 	 * Our periodic faults will sample this probability and getting the
1485 	 * same result twice in a row, given these samples are fully
1486 	 * independent, is then given by P(n)^2, provided our sample period
1487 	 * is sufficiently short compared to the usage pattern.
1488 	 *
1489 	 * This quadric squishes small probabilities, making it less likely we
1490 	 * act on an unlikely task<->page relation.
1491 	 */
1492 	if (!cpupid_pid_unset(last_cpupid) &&
1493 				cpupid_to_nid(last_cpupid) != dst_nid)
1494 		return false;
1495 
1496 	/* Always allow migrate on private faults */
1497 	if (cpupid_match_pid(p, last_cpupid))
1498 		return true;
1499 
1500 	/* A shared fault, but p->numa_group has not been set up yet. */
1501 	if (!ng)
1502 		return true;
1503 
1504 	/*
1505 	 * Destination node is much more heavily used than the source
1506 	 * node? Allow migration.
1507 	 */
1508 	if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1509 					ACTIVE_NODE_FRACTION)
1510 		return true;
1511 
1512 	/*
1513 	 * Distribute memory according to CPU & memory use on each node,
1514 	 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1515 	 *
1516 	 * faults_cpu(dst)   3   faults_cpu(src)
1517 	 * --------------- * - > ---------------
1518 	 * faults_mem(dst)   4   faults_mem(src)
1519 	 */
1520 	return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1521 	       group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1522 }
1523 
1524 /*
1525  * 'numa_type' describes the node at the moment of load balancing.
1526  */
1527 enum numa_type {
1528 	/* The node has spare capacity that can be used to run more tasks.  */
1529 	node_has_spare = 0,
1530 	/*
1531 	 * The node is fully used and the tasks don't compete for more CPU
1532 	 * cycles. Nevertheless, some tasks might wait before running.
1533 	 */
1534 	node_fully_busy,
1535 	/*
1536 	 * The node is overloaded and can't provide expected CPU cycles to all
1537 	 * tasks.
1538 	 */
1539 	node_overloaded
1540 };
1541 
1542 /* Cached statistics for all CPUs within a node */
1543 struct numa_stats {
1544 	unsigned long load;
1545 	unsigned long runnable;
1546 	unsigned long util;
1547 	/* Total compute capacity of CPUs on a node */
1548 	unsigned long compute_capacity;
1549 	unsigned int nr_running;
1550 	unsigned int weight;
1551 	enum numa_type node_type;
1552 	int idle_cpu;
1553 };
1554 
is_core_idle(int cpu)1555 static inline bool is_core_idle(int cpu)
1556 {
1557 #ifdef CONFIG_SCHED_SMT
1558 	int sibling;
1559 
1560 	for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1561 		if (cpu == sibling)
1562 			continue;
1563 
1564 		if (!idle_cpu(sibling))
1565 			return false;
1566 	}
1567 #endif
1568 
1569 	return true;
1570 }
1571 
1572 struct task_numa_env {
1573 	struct task_struct *p;
1574 
1575 	int src_cpu, src_nid;
1576 	int dst_cpu, dst_nid;
1577 
1578 	struct numa_stats src_stats, dst_stats;
1579 
1580 	int imbalance_pct;
1581 	int dist;
1582 
1583 	struct task_struct *best_task;
1584 	long best_imp;
1585 	int best_cpu;
1586 };
1587 
1588 static unsigned long cpu_load(struct rq *rq);
1589 static unsigned long cpu_runnable(struct rq *rq);
1590 static inline long adjust_numa_imbalance(int imbalance, int nr_running);
1591 
1592 static inline enum
numa_classify(unsigned int imbalance_pct,struct numa_stats * ns)1593 numa_type numa_classify(unsigned int imbalance_pct,
1594 			 struct numa_stats *ns)
1595 {
1596 	if ((ns->nr_running > ns->weight) &&
1597 	    (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
1598 	     ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
1599 		return node_overloaded;
1600 
1601 	if ((ns->nr_running < ns->weight) ||
1602 	    (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
1603 	     ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
1604 		return node_has_spare;
1605 
1606 	return node_fully_busy;
1607 }
1608 
1609 #ifdef CONFIG_SCHED_SMT
1610 /* Forward declarations of select_idle_sibling helpers */
1611 static inline bool test_idle_cores(int cpu, bool def);
numa_idle_core(int idle_core,int cpu)1612 static inline int numa_idle_core(int idle_core, int cpu)
1613 {
1614 	if (!static_branch_likely(&sched_smt_present) ||
1615 	    idle_core >= 0 || !test_idle_cores(cpu, false))
1616 		return idle_core;
1617 
1618 	/*
1619 	 * Prefer cores instead of packing HT siblings
1620 	 * and triggering future load balancing.
1621 	 */
1622 	if (is_core_idle(cpu))
1623 		idle_core = cpu;
1624 
1625 	return idle_core;
1626 }
1627 #else
numa_idle_core(int idle_core,int cpu)1628 static inline int numa_idle_core(int idle_core, int cpu)
1629 {
1630 	return idle_core;
1631 }
1632 #endif
1633 
1634 /*
1635  * Gather all necessary information to make NUMA balancing placement
1636  * decisions that are compatible with standard load balancer. This
1637  * borrows code and logic from update_sg_lb_stats but sharing a
1638  * common implementation is impractical.
1639  */
update_numa_stats(struct task_numa_env * env,struct numa_stats * ns,int nid,bool find_idle)1640 static void update_numa_stats(struct task_numa_env *env,
1641 			      struct numa_stats *ns, int nid,
1642 			      bool find_idle)
1643 {
1644 	int cpu, idle_core = -1;
1645 
1646 	memset(ns, 0, sizeof(*ns));
1647 	ns->idle_cpu = -1;
1648 
1649 	rcu_read_lock();
1650 	for_each_cpu(cpu, cpumask_of_node(nid)) {
1651 		struct rq *rq = cpu_rq(cpu);
1652 
1653 		ns->load += cpu_load(rq);
1654 		ns->runnable += cpu_runnable(rq);
1655 		ns->util += cpu_util(cpu);
1656 		ns->nr_running += rq->cfs.h_nr_running;
1657 		ns->compute_capacity += capacity_of(cpu);
1658 
1659 		if (find_idle && !rq->nr_running && idle_cpu(cpu)) {
1660 			if (READ_ONCE(rq->numa_migrate_on) ||
1661 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr))
1662 				continue;
1663 
1664 			if (ns->idle_cpu == -1)
1665 				ns->idle_cpu = cpu;
1666 
1667 			idle_core = numa_idle_core(idle_core, cpu);
1668 		}
1669 	}
1670 	rcu_read_unlock();
1671 
1672 	ns->weight = cpumask_weight(cpumask_of_node(nid));
1673 
1674 	ns->node_type = numa_classify(env->imbalance_pct, ns);
1675 
1676 	if (idle_core >= 0)
1677 		ns->idle_cpu = idle_core;
1678 }
1679 
task_numa_assign(struct task_numa_env * env,struct task_struct * p,long imp)1680 static void task_numa_assign(struct task_numa_env *env,
1681 			     struct task_struct *p, long imp)
1682 {
1683 	struct rq *rq = cpu_rq(env->dst_cpu);
1684 
1685 	/* Check if run-queue part of active NUMA balance. */
1686 	if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
1687 		int cpu;
1688 		int start = env->dst_cpu;
1689 
1690 		/* Find alternative idle CPU. */
1691 		for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start) {
1692 			if (cpu == env->best_cpu || !idle_cpu(cpu) ||
1693 			    !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
1694 				continue;
1695 			}
1696 
1697 			env->dst_cpu = cpu;
1698 			rq = cpu_rq(env->dst_cpu);
1699 			if (!xchg(&rq->numa_migrate_on, 1))
1700 				goto assign;
1701 		}
1702 
1703 		/* Failed to find an alternative idle CPU */
1704 		return;
1705 	}
1706 
1707 assign:
1708 	/*
1709 	 * Clear previous best_cpu/rq numa-migrate flag, since task now
1710 	 * found a better CPU to move/swap.
1711 	 */
1712 	if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
1713 		rq = cpu_rq(env->best_cpu);
1714 		WRITE_ONCE(rq->numa_migrate_on, 0);
1715 	}
1716 
1717 	if (env->best_task)
1718 		put_task_struct(env->best_task);
1719 	if (p)
1720 		get_task_struct(p);
1721 
1722 	env->best_task = p;
1723 	env->best_imp = imp;
1724 	env->best_cpu = env->dst_cpu;
1725 }
1726 
load_too_imbalanced(long src_load,long dst_load,struct task_numa_env * env)1727 static bool load_too_imbalanced(long src_load, long dst_load,
1728 				struct task_numa_env *env)
1729 {
1730 	long imb, old_imb;
1731 	long orig_src_load, orig_dst_load;
1732 	long src_capacity, dst_capacity;
1733 
1734 	/*
1735 	 * The load is corrected for the CPU capacity available on each node.
1736 	 *
1737 	 * src_load        dst_load
1738 	 * ------------ vs ---------
1739 	 * src_capacity    dst_capacity
1740 	 */
1741 	src_capacity = env->src_stats.compute_capacity;
1742 	dst_capacity = env->dst_stats.compute_capacity;
1743 
1744 	imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1745 
1746 	orig_src_load = env->src_stats.load;
1747 	orig_dst_load = env->dst_stats.load;
1748 
1749 	old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1750 
1751 	/* Would this change make things worse? */
1752 	return (imb > old_imb);
1753 }
1754 
1755 /*
1756  * Maximum NUMA importance can be 1998 (2*999);
1757  * SMALLIMP @ 30 would be close to 1998/64.
1758  * Used to deter task migration.
1759  */
1760 #define SMALLIMP	30
1761 
1762 /*
1763  * This checks if the overall compute and NUMA accesses of the system would
1764  * be improved if the source tasks was migrated to the target dst_cpu taking
1765  * into account that it might be best if task running on the dst_cpu should
1766  * be exchanged with the source task
1767  */
task_numa_compare(struct task_numa_env * env,long taskimp,long groupimp,bool maymove)1768 static bool task_numa_compare(struct task_numa_env *env,
1769 			      long taskimp, long groupimp, bool maymove)
1770 {
1771 	struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
1772 	struct rq *dst_rq = cpu_rq(env->dst_cpu);
1773 	long imp = p_ng ? groupimp : taskimp;
1774 	struct task_struct *cur;
1775 	long src_load, dst_load;
1776 	int dist = env->dist;
1777 	long moveimp = imp;
1778 	long load;
1779 	bool stopsearch = false;
1780 
1781 	if (READ_ONCE(dst_rq->numa_migrate_on))
1782 		return false;
1783 
1784 	rcu_read_lock();
1785 	cur = rcu_dereference(dst_rq->curr);
1786 	if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1787 		cur = NULL;
1788 
1789 	/*
1790 	 * Because we have preemption enabled we can get migrated around and
1791 	 * end try selecting ourselves (current == env->p) as a swap candidate.
1792 	 */
1793 	if (cur == env->p) {
1794 		stopsearch = true;
1795 		goto unlock;
1796 	}
1797 
1798 	if (!cur) {
1799 		if (maymove && moveimp >= env->best_imp)
1800 			goto assign;
1801 		else
1802 			goto unlock;
1803 	}
1804 
1805 	/* Skip this swap candidate if cannot move to the source cpu. */
1806 	if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
1807 		goto unlock;
1808 
1809 	/*
1810 	 * Skip this swap candidate if it is not moving to its preferred
1811 	 * node and the best task is.
1812 	 */
1813 	if (env->best_task &&
1814 	    env->best_task->numa_preferred_nid == env->src_nid &&
1815 	    cur->numa_preferred_nid != env->src_nid) {
1816 		goto unlock;
1817 	}
1818 
1819 	/*
1820 	 * "imp" is the fault differential for the source task between the
1821 	 * source and destination node. Calculate the total differential for
1822 	 * the source task and potential destination task. The more negative
1823 	 * the value is, the more remote accesses that would be expected to
1824 	 * be incurred if the tasks were swapped.
1825 	 *
1826 	 * If dst and source tasks are in the same NUMA group, or not
1827 	 * in any group then look only at task weights.
1828 	 */
1829 	cur_ng = rcu_dereference(cur->numa_group);
1830 	if (cur_ng == p_ng) {
1831 		imp = taskimp + task_weight(cur, env->src_nid, dist) -
1832 		      task_weight(cur, env->dst_nid, dist);
1833 		/*
1834 		 * Add some hysteresis to prevent swapping the
1835 		 * tasks within a group over tiny differences.
1836 		 */
1837 		if (cur_ng)
1838 			imp -= imp / 16;
1839 	} else {
1840 		/*
1841 		 * Compare the group weights. If a task is all by itself
1842 		 * (not part of a group), use the task weight instead.
1843 		 */
1844 		if (cur_ng && p_ng)
1845 			imp += group_weight(cur, env->src_nid, dist) -
1846 			       group_weight(cur, env->dst_nid, dist);
1847 		else
1848 			imp += task_weight(cur, env->src_nid, dist) -
1849 			       task_weight(cur, env->dst_nid, dist);
1850 	}
1851 
1852 	/* Discourage picking a task already on its preferred node */
1853 	if (cur->numa_preferred_nid == env->dst_nid)
1854 		imp -= imp / 16;
1855 
1856 	/*
1857 	 * Encourage picking a task that moves to its preferred node.
1858 	 * This potentially makes imp larger than it's maximum of
1859 	 * 1998 (see SMALLIMP and task_weight for why) but in this
1860 	 * case, it does not matter.
1861 	 */
1862 	if (cur->numa_preferred_nid == env->src_nid)
1863 		imp += imp / 8;
1864 
1865 	if (maymove && moveimp > imp && moveimp > env->best_imp) {
1866 		imp = moveimp;
1867 		cur = NULL;
1868 		goto assign;
1869 	}
1870 
1871 	/*
1872 	 * Prefer swapping with a task moving to its preferred node over a
1873 	 * task that is not.
1874 	 */
1875 	if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
1876 	    env->best_task->numa_preferred_nid != env->src_nid) {
1877 		goto assign;
1878 	}
1879 
1880 	/*
1881 	 * If the NUMA importance is less than SMALLIMP,
1882 	 * task migration might only result in ping pong
1883 	 * of tasks and also hurt performance due to cache
1884 	 * misses.
1885 	 */
1886 	if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1887 		goto unlock;
1888 
1889 	/*
1890 	 * In the overloaded case, try and keep the load balanced.
1891 	 */
1892 	load = task_h_load(env->p) - task_h_load(cur);
1893 	if (!load)
1894 		goto assign;
1895 
1896 	dst_load = env->dst_stats.load + load;
1897 	src_load = env->src_stats.load - load;
1898 
1899 	if (load_too_imbalanced(src_load, dst_load, env))
1900 		goto unlock;
1901 
1902 assign:
1903 	/* Evaluate an idle CPU for a task numa move. */
1904 	if (!cur) {
1905 		int cpu = env->dst_stats.idle_cpu;
1906 
1907 		/* Nothing cached so current CPU went idle since the search. */
1908 		if (cpu < 0)
1909 			cpu = env->dst_cpu;
1910 
1911 		/*
1912 		 * If the CPU is no longer truly idle and the previous best CPU
1913 		 * is, keep using it.
1914 		 */
1915 		if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
1916 		    idle_cpu(env->best_cpu)) {
1917 			cpu = env->best_cpu;
1918 		}
1919 
1920 		env->dst_cpu = cpu;
1921 	}
1922 
1923 	task_numa_assign(env, cur, imp);
1924 
1925 	/*
1926 	 * If a move to idle is allowed because there is capacity or load
1927 	 * balance improves then stop the search. While a better swap
1928 	 * candidate may exist, a search is not free.
1929 	 */
1930 	if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
1931 		stopsearch = true;
1932 
1933 	/*
1934 	 * If a swap candidate must be identified and the current best task
1935 	 * moves its preferred node then stop the search.
1936 	 */
1937 	if (!maymove && env->best_task &&
1938 	    env->best_task->numa_preferred_nid == env->src_nid) {
1939 		stopsearch = true;
1940 	}
1941 unlock:
1942 	rcu_read_unlock();
1943 
1944 	return stopsearch;
1945 }
1946 
task_numa_find_cpu(struct task_numa_env * env,long taskimp,long groupimp)1947 static void task_numa_find_cpu(struct task_numa_env *env,
1948 				long taskimp, long groupimp)
1949 {
1950 	bool maymove = false;
1951 	int cpu;
1952 
1953 	/*
1954 	 * If dst node has spare capacity, then check if there is an
1955 	 * imbalance that would be overruled by the load balancer.
1956 	 */
1957 	if (env->dst_stats.node_type == node_has_spare) {
1958 		unsigned int imbalance;
1959 		int src_running, dst_running;
1960 
1961 		/*
1962 		 * Would movement cause an imbalance? Note that if src has
1963 		 * more running tasks that the imbalance is ignored as the
1964 		 * move improves the imbalance from the perspective of the
1965 		 * CPU load balancer.
1966 		 * */
1967 		src_running = env->src_stats.nr_running - 1;
1968 		dst_running = env->dst_stats.nr_running + 1;
1969 		imbalance = max(0, dst_running - src_running);
1970 		imbalance = adjust_numa_imbalance(imbalance, dst_running);
1971 
1972 		/* Use idle CPU if there is no imbalance */
1973 		if (!imbalance) {
1974 			maymove = true;
1975 			if (env->dst_stats.idle_cpu >= 0) {
1976 				env->dst_cpu = env->dst_stats.idle_cpu;
1977 				task_numa_assign(env, NULL, 0);
1978 				return;
1979 			}
1980 		}
1981 	} else {
1982 		long src_load, dst_load, load;
1983 		/*
1984 		 * If the improvement from just moving env->p direction is better
1985 		 * than swapping tasks around, check if a move is possible.
1986 		 */
1987 		load = task_h_load(env->p);
1988 		dst_load = env->dst_stats.load + load;
1989 		src_load = env->src_stats.load - load;
1990 		maymove = !load_too_imbalanced(src_load, dst_load, env);
1991 	}
1992 
1993 	for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1994 		/* Skip this CPU if the source task cannot migrate */
1995 		if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
1996 			continue;
1997 
1998 		env->dst_cpu = cpu;
1999 		if (task_numa_compare(env, taskimp, groupimp, maymove))
2000 			break;
2001 	}
2002 }
2003 
task_numa_migrate(struct task_struct * p)2004 static int task_numa_migrate(struct task_struct *p)
2005 {
2006 	struct task_numa_env env = {
2007 		.p = p,
2008 
2009 		.src_cpu = task_cpu(p),
2010 		.src_nid = task_node(p),
2011 
2012 		.imbalance_pct = 112,
2013 
2014 		.best_task = NULL,
2015 		.best_imp = 0,
2016 		.best_cpu = -1,
2017 	};
2018 	unsigned long taskweight, groupweight;
2019 	struct sched_domain *sd;
2020 	long taskimp, groupimp;
2021 	struct numa_group *ng;
2022 	struct rq *best_rq;
2023 	int nid, ret, dist;
2024 
2025 	/*
2026 	 * Pick the lowest SD_NUMA domain, as that would have the smallest
2027 	 * imbalance and would be the first to start moving tasks about.
2028 	 *
2029 	 * And we want to avoid any moving of tasks about, as that would create
2030 	 * random movement of tasks -- counter the numa conditions we're trying
2031 	 * to satisfy here.
2032 	 */
2033 	rcu_read_lock();
2034 	sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2035 	if (sd)
2036 		env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2037 	rcu_read_unlock();
2038 
2039 	/*
2040 	 * Cpusets can break the scheduler domain tree into smaller
2041 	 * balance domains, some of which do not cross NUMA boundaries.
2042 	 * Tasks that are "trapped" in such domains cannot be migrated
2043 	 * elsewhere, so there is no point in (re)trying.
2044 	 */
2045 	if (unlikely(!sd)) {
2046 		sched_setnuma(p, task_node(p));
2047 		return -EINVAL;
2048 	}
2049 
2050 	env.dst_nid = p->numa_preferred_nid;
2051 	dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2052 	taskweight = task_weight(p, env.src_nid, dist);
2053 	groupweight = group_weight(p, env.src_nid, dist);
2054 	update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2055 	taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2056 	groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2057 	update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2058 
2059 	/* Try to find a spot on the preferred nid. */
2060 	task_numa_find_cpu(&env, taskimp, groupimp);
2061 
2062 	/*
2063 	 * Look at other nodes in these cases:
2064 	 * - there is no space available on the preferred_nid
2065 	 * - the task is part of a numa_group that is interleaved across
2066 	 *   multiple NUMA nodes; in order to better consolidate the group,
2067 	 *   we need to check other locations.
2068 	 */
2069 	ng = deref_curr_numa_group(p);
2070 	if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2071 		for_each_online_node(nid) {
2072 			if (nid == env.src_nid || nid == p->numa_preferred_nid)
2073 				continue;
2074 
2075 			dist = node_distance(env.src_nid, env.dst_nid);
2076 			if (sched_numa_topology_type == NUMA_BACKPLANE &&
2077 						dist != env.dist) {
2078 				taskweight = task_weight(p, env.src_nid, dist);
2079 				groupweight = group_weight(p, env.src_nid, dist);
2080 			}
2081 
2082 			/* Only consider nodes where both task and groups benefit */
2083 			taskimp = task_weight(p, nid, dist) - taskweight;
2084 			groupimp = group_weight(p, nid, dist) - groupweight;
2085 			if (taskimp < 0 && groupimp < 0)
2086 				continue;
2087 
2088 			env.dist = dist;
2089 			env.dst_nid = nid;
2090 			update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2091 			task_numa_find_cpu(&env, taskimp, groupimp);
2092 		}
2093 	}
2094 
2095 	/*
2096 	 * If the task is part of a workload that spans multiple NUMA nodes,
2097 	 * and is migrating into one of the workload's active nodes, remember
2098 	 * this node as the task's preferred numa node, so the workload can
2099 	 * settle down.
2100 	 * A task that migrated to a second choice node will be better off
2101 	 * trying for a better one later. Do not set the preferred node here.
2102 	 */
2103 	if (ng) {
2104 		if (env.best_cpu == -1)
2105 			nid = env.src_nid;
2106 		else
2107 			nid = cpu_to_node(env.best_cpu);
2108 
2109 		if (nid != p->numa_preferred_nid)
2110 			sched_setnuma(p, nid);
2111 	}
2112 
2113 	/* No better CPU than the current one was found. */
2114 	if (env.best_cpu == -1) {
2115 		trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2116 		return -EAGAIN;
2117 	}
2118 
2119 	best_rq = cpu_rq(env.best_cpu);
2120 	if (env.best_task == NULL) {
2121 		ret = migrate_task_to(p, env.best_cpu);
2122 		WRITE_ONCE(best_rq->numa_migrate_on, 0);
2123 		if (ret != 0)
2124 			trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2125 		return ret;
2126 	}
2127 
2128 	ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2129 	WRITE_ONCE(best_rq->numa_migrate_on, 0);
2130 
2131 	if (ret != 0)
2132 		trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2133 	put_task_struct(env.best_task);
2134 	return ret;
2135 }
2136 
2137 /* Attempt to migrate a task to a CPU on the preferred node. */
numa_migrate_preferred(struct task_struct * p)2138 static void numa_migrate_preferred(struct task_struct *p)
2139 {
2140 	unsigned long interval = HZ;
2141 
2142 	/* This task has no NUMA fault statistics yet */
2143 	if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2144 		return;
2145 
2146 	/* Periodically retry migrating the task to the preferred node */
2147 	interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2148 	p->numa_migrate_retry = jiffies + interval;
2149 
2150 	/* Success if task is already running on preferred CPU */
2151 	if (task_node(p) == p->numa_preferred_nid)
2152 		return;
2153 
2154 	/* Otherwise, try migrate to a CPU on the preferred node */
2155 	task_numa_migrate(p);
2156 }
2157 
2158 /*
2159  * Find out how many nodes on the workload is actively running on. Do this by
2160  * tracking the nodes from which NUMA hinting faults are triggered. This can
2161  * be different from the set of nodes where the workload's memory is currently
2162  * located.
2163  */
numa_group_count_active_nodes(struct numa_group * numa_group)2164 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2165 {
2166 	unsigned long faults, max_faults = 0;
2167 	int nid, active_nodes = 0;
2168 
2169 	for_each_online_node(nid) {
2170 		faults = group_faults_cpu(numa_group, nid);
2171 		if (faults > max_faults)
2172 			max_faults = faults;
2173 	}
2174 
2175 	for_each_online_node(nid) {
2176 		faults = group_faults_cpu(numa_group, nid);
2177 		if (faults * ACTIVE_NODE_FRACTION > max_faults)
2178 			active_nodes++;
2179 	}
2180 
2181 	numa_group->max_faults_cpu = max_faults;
2182 	numa_group->active_nodes = active_nodes;
2183 }
2184 
2185 /*
2186  * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2187  * increments. The more local the fault statistics are, the higher the scan
2188  * period will be for the next scan window. If local/(local+remote) ratio is
2189  * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2190  * the scan period will decrease. Aim for 70% local accesses.
2191  */
2192 #define NUMA_PERIOD_SLOTS 10
2193 #define NUMA_PERIOD_THRESHOLD 7
2194 
2195 /*
2196  * Increase the scan period (slow down scanning) if the majority of
2197  * our memory is already on our local node, or if the majority of
2198  * the page accesses are shared with other processes.
2199  * Otherwise, decrease the scan period.
2200  */
update_task_scan_period(struct task_struct * p,unsigned long shared,unsigned long private)2201 static void update_task_scan_period(struct task_struct *p,
2202 			unsigned long shared, unsigned long private)
2203 {
2204 	unsigned int period_slot;
2205 	int lr_ratio, ps_ratio;
2206 	int diff;
2207 
2208 	unsigned long remote = p->numa_faults_locality[0];
2209 	unsigned long local = p->numa_faults_locality[1];
2210 
2211 	/*
2212 	 * If there were no record hinting faults then either the task is
2213 	 * completely idle or all activity is areas that are not of interest
2214 	 * to automatic numa balancing. Related to that, if there were failed
2215 	 * migration then it implies we are migrating too quickly or the local
2216 	 * node is overloaded. In either case, scan slower
2217 	 */
2218 	if (local + shared == 0 || p->numa_faults_locality[2]) {
2219 		p->numa_scan_period = min(p->numa_scan_period_max,
2220 			p->numa_scan_period << 1);
2221 
2222 		p->mm->numa_next_scan = jiffies +
2223 			msecs_to_jiffies(p->numa_scan_period);
2224 
2225 		return;
2226 	}
2227 
2228 	/*
2229 	 * Prepare to scale scan period relative to the current period.
2230 	 *	 == NUMA_PERIOD_THRESHOLD scan period stays the same
2231 	 *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2232 	 *	 >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2233 	 */
2234 	period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2235 	lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2236 	ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2237 
2238 	if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2239 		/*
2240 		 * Most memory accesses are local. There is no need to
2241 		 * do fast NUMA scanning, since memory is already local.
2242 		 */
2243 		int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2244 		if (!slot)
2245 			slot = 1;
2246 		diff = slot * period_slot;
2247 	} else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2248 		/*
2249 		 * Most memory accesses are shared with other tasks.
2250 		 * There is no point in continuing fast NUMA scanning,
2251 		 * since other tasks may just move the memory elsewhere.
2252 		 */
2253 		int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2254 		if (!slot)
2255 			slot = 1;
2256 		diff = slot * period_slot;
2257 	} else {
2258 		/*
2259 		 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2260 		 * yet they are not on the local NUMA node. Speed up
2261 		 * NUMA scanning to get the memory moved over.
2262 		 */
2263 		int ratio = max(lr_ratio, ps_ratio);
2264 		diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2265 	}
2266 
2267 	p->numa_scan_period = clamp(p->numa_scan_period + diff,
2268 			task_scan_min(p), task_scan_max(p));
2269 	memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2270 }
2271 
2272 /*
2273  * Get the fraction of time the task has been running since the last
2274  * NUMA placement cycle. The scheduler keeps similar statistics, but
2275  * decays those on a 32ms period, which is orders of magnitude off
2276  * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2277  * stats only if the task is so new there are no NUMA statistics yet.
2278  */
numa_get_avg_runtime(struct task_struct * p,u64 * period)2279 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2280 {
2281 	u64 runtime, delta, now;
2282 	/* Use the start of this time slice to avoid calculations. */
2283 	now = p->se.exec_start;
2284 	runtime = p->se.sum_exec_runtime;
2285 
2286 	if (p->last_task_numa_placement) {
2287 		delta = runtime - p->last_sum_exec_runtime;
2288 		*period = now - p->last_task_numa_placement;
2289 
2290 		/* Avoid time going backwards, prevent potential divide error: */
2291 		if (unlikely((s64)*period < 0))
2292 			*period = 0;
2293 	} else {
2294 		delta = p->se.avg.load_sum;
2295 		*period = LOAD_AVG_MAX;
2296 	}
2297 
2298 	p->last_sum_exec_runtime = runtime;
2299 	p->last_task_numa_placement = now;
2300 
2301 	return delta;
2302 }
2303 
2304 /*
2305  * Determine the preferred nid for a task in a numa_group. This needs to
2306  * be done in a way that produces consistent results with group_weight,
2307  * otherwise workloads might not converge.
2308  */
preferred_group_nid(struct task_struct * p,int nid)2309 static int preferred_group_nid(struct task_struct *p, int nid)
2310 {
2311 	nodemask_t nodes;
2312 	int dist;
2313 
2314 	/* Direct connections between all NUMA nodes. */
2315 	if (sched_numa_topology_type == NUMA_DIRECT)
2316 		return nid;
2317 
2318 	/*
2319 	 * On a system with glueless mesh NUMA topology, group_weight
2320 	 * scores nodes according to the number of NUMA hinting faults on
2321 	 * both the node itself, and on nearby nodes.
2322 	 */
2323 	if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2324 		unsigned long score, max_score = 0;
2325 		int node, max_node = nid;
2326 
2327 		dist = sched_max_numa_distance;
2328 
2329 		for_each_online_node(node) {
2330 			score = group_weight(p, node, dist);
2331 			if (score > max_score) {
2332 				max_score = score;
2333 				max_node = node;
2334 			}
2335 		}
2336 		return max_node;
2337 	}
2338 
2339 	/*
2340 	 * Finding the preferred nid in a system with NUMA backplane
2341 	 * interconnect topology is more involved. The goal is to locate
2342 	 * tasks from numa_groups near each other in the system, and
2343 	 * untangle workloads from different sides of the system. This requires
2344 	 * searching down the hierarchy of node groups, recursively searching
2345 	 * inside the highest scoring group of nodes. The nodemask tricks
2346 	 * keep the complexity of the search down.
2347 	 */
2348 	nodes = node_online_map;
2349 	for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2350 		unsigned long max_faults = 0;
2351 		nodemask_t max_group = NODE_MASK_NONE;
2352 		int a, b;
2353 
2354 		/* Are there nodes at this distance from each other? */
2355 		if (!find_numa_distance(dist))
2356 			continue;
2357 
2358 		for_each_node_mask(a, nodes) {
2359 			unsigned long faults = 0;
2360 			nodemask_t this_group;
2361 			nodes_clear(this_group);
2362 
2363 			/* Sum group's NUMA faults; includes a==b case. */
2364 			for_each_node_mask(b, nodes) {
2365 				if (node_distance(a, b) < dist) {
2366 					faults += group_faults(p, b);
2367 					node_set(b, this_group);
2368 					node_clear(b, nodes);
2369 				}
2370 			}
2371 
2372 			/* Remember the top group. */
2373 			if (faults > max_faults) {
2374 				max_faults = faults;
2375 				max_group = this_group;
2376 				/*
2377 				 * subtle: at the smallest distance there is
2378 				 * just one node left in each "group", the
2379 				 * winner is the preferred nid.
2380 				 */
2381 				nid = a;
2382 			}
2383 		}
2384 		/* Next round, evaluate the nodes within max_group. */
2385 		if (!max_faults)
2386 			break;
2387 		nodes = max_group;
2388 	}
2389 	return nid;
2390 }
2391 
task_numa_placement(struct task_struct * p)2392 static void task_numa_placement(struct task_struct *p)
2393 {
2394 	int seq, nid, max_nid = NUMA_NO_NODE;
2395 	unsigned long max_faults = 0;
2396 	unsigned long fault_types[2] = { 0, 0 };
2397 	unsigned long total_faults;
2398 	u64 runtime, period;
2399 	spinlock_t *group_lock = NULL;
2400 	struct numa_group *ng;
2401 
2402 	/*
2403 	 * The p->mm->numa_scan_seq field gets updated without
2404 	 * exclusive access. Use READ_ONCE() here to ensure
2405 	 * that the field is read in a single access:
2406 	 */
2407 	seq = READ_ONCE(p->mm->numa_scan_seq);
2408 	if (p->numa_scan_seq == seq)
2409 		return;
2410 	p->numa_scan_seq = seq;
2411 	p->numa_scan_period_max = task_scan_max(p);
2412 
2413 	total_faults = p->numa_faults_locality[0] +
2414 		       p->numa_faults_locality[1];
2415 	runtime = numa_get_avg_runtime(p, &period);
2416 
2417 	/* If the task is part of a group prevent parallel updates to group stats */
2418 	ng = deref_curr_numa_group(p);
2419 	if (ng) {
2420 		group_lock = &ng->lock;
2421 		spin_lock_irq(group_lock);
2422 	}
2423 
2424 	/* Find the node with the highest number of faults */
2425 	for_each_online_node(nid) {
2426 		/* Keep track of the offsets in numa_faults array */
2427 		int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2428 		unsigned long faults = 0, group_faults = 0;
2429 		int priv;
2430 
2431 		for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2432 			long diff, f_diff, f_weight;
2433 
2434 			mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2435 			membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2436 			cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2437 			cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2438 
2439 			/* Decay existing window, copy faults since last scan */
2440 			diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2441 			fault_types[priv] += p->numa_faults[membuf_idx];
2442 			p->numa_faults[membuf_idx] = 0;
2443 
2444 			/*
2445 			 * Normalize the faults_from, so all tasks in a group
2446 			 * count according to CPU use, instead of by the raw
2447 			 * number of faults. Tasks with little runtime have
2448 			 * little over-all impact on throughput, and thus their
2449 			 * faults are less important.
2450 			 */
2451 			f_weight = div64_u64(runtime << 16, period + 1);
2452 			f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2453 				   (total_faults + 1);
2454 			f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2455 			p->numa_faults[cpubuf_idx] = 0;
2456 
2457 			p->numa_faults[mem_idx] += diff;
2458 			p->numa_faults[cpu_idx] += f_diff;
2459 			faults += p->numa_faults[mem_idx];
2460 			p->total_numa_faults += diff;
2461 			if (ng) {
2462 				/*
2463 				 * safe because we can only change our own group
2464 				 *
2465 				 * mem_idx represents the offset for a given
2466 				 * nid and priv in a specific region because it
2467 				 * is at the beginning of the numa_faults array.
2468 				 */
2469 				ng->faults[mem_idx] += diff;
2470 				ng->faults_cpu[mem_idx] += f_diff;
2471 				ng->total_faults += diff;
2472 				group_faults += ng->faults[mem_idx];
2473 			}
2474 		}
2475 
2476 		if (!ng) {
2477 			if (faults > max_faults) {
2478 				max_faults = faults;
2479 				max_nid = nid;
2480 			}
2481 		} else if (group_faults > max_faults) {
2482 			max_faults = group_faults;
2483 			max_nid = nid;
2484 		}
2485 	}
2486 
2487 	if (ng) {
2488 		numa_group_count_active_nodes(ng);
2489 		spin_unlock_irq(group_lock);
2490 		max_nid = preferred_group_nid(p, max_nid);
2491 	}
2492 
2493 	if (max_faults) {
2494 		/* Set the new preferred node */
2495 		if (max_nid != p->numa_preferred_nid)
2496 			sched_setnuma(p, max_nid);
2497 	}
2498 
2499 	update_task_scan_period(p, fault_types[0], fault_types[1]);
2500 }
2501 
get_numa_group(struct numa_group * grp)2502 static inline int get_numa_group(struct numa_group *grp)
2503 {
2504 	return refcount_inc_not_zero(&grp->refcount);
2505 }
2506 
put_numa_group(struct numa_group * grp)2507 static inline void put_numa_group(struct numa_group *grp)
2508 {
2509 	if (refcount_dec_and_test(&grp->refcount))
2510 		kfree_rcu(grp, rcu);
2511 }
2512 
task_numa_group(struct task_struct * p,int cpupid,int flags,int * priv)2513 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2514 			int *priv)
2515 {
2516 	struct numa_group *grp, *my_grp;
2517 	struct task_struct *tsk;
2518 	bool join = false;
2519 	int cpu = cpupid_to_cpu(cpupid);
2520 	int i;
2521 
2522 	if (unlikely(!deref_curr_numa_group(p))) {
2523 		unsigned int size = sizeof(struct numa_group) +
2524 				    4*nr_node_ids*sizeof(unsigned long);
2525 
2526 		grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2527 		if (!grp)
2528 			return;
2529 
2530 		refcount_set(&grp->refcount, 1);
2531 		grp->active_nodes = 1;
2532 		grp->max_faults_cpu = 0;
2533 		spin_lock_init(&grp->lock);
2534 		grp->gid = p->pid;
2535 		/* Second half of the array tracks nids where faults happen */
2536 		grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2537 						nr_node_ids;
2538 
2539 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2540 			grp->faults[i] = p->numa_faults[i];
2541 
2542 		grp->total_faults = p->total_numa_faults;
2543 
2544 		grp->nr_tasks++;
2545 		rcu_assign_pointer(p->numa_group, grp);
2546 	}
2547 
2548 	rcu_read_lock();
2549 	tsk = READ_ONCE(cpu_rq(cpu)->curr);
2550 
2551 	if (!cpupid_match_pid(tsk, cpupid))
2552 		goto no_join;
2553 
2554 	grp = rcu_dereference(tsk->numa_group);
2555 	if (!grp)
2556 		goto no_join;
2557 
2558 	my_grp = deref_curr_numa_group(p);
2559 	if (grp == my_grp)
2560 		goto no_join;
2561 
2562 	/*
2563 	 * Only join the other group if its bigger; if we're the bigger group,
2564 	 * the other task will join us.
2565 	 */
2566 	if (my_grp->nr_tasks > grp->nr_tasks)
2567 		goto no_join;
2568 
2569 	/*
2570 	 * Tie-break on the grp address.
2571 	 */
2572 	if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2573 		goto no_join;
2574 
2575 	/* Always join threads in the same process. */
2576 	if (tsk->mm == current->mm)
2577 		join = true;
2578 
2579 	/* Simple filter to avoid false positives due to PID collisions */
2580 	if (flags & TNF_SHARED)
2581 		join = true;
2582 
2583 	/* Update priv based on whether false sharing was detected */
2584 	*priv = !join;
2585 
2586 	if (join && !get_numa_group(grp))
2587 		goto no_join;
2588 
2589 	rcu_read_unlock();
2590 
2591 	if (!join)
2592 		return;
2593 
2594 	BUG_ON(irqs_disabled());
2595 	double_lock_irq(&my_grp->lock, &grp->lock);
2596 
2597 	for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2598 		my_grp->faults[i] -= p->numa_faults[i];
2599 		grp->faults[i] += p->numa_faults[i];
2600 	}
2601 	my_grp->total_faults -= p->total_numa_faults;
2602 	grp->total_faults += p->total_numa_faults;
2603 
2604 	my_grp->nr_tasks--;
2605 	grp->nr_tasks++;
2606 
2607 	spin_unlock(&my_grp->lock);
2608 	spin_unlock_irq(&grp->lock);
2609 
2610 	rcu_assign_pointer(p->numa_group, grp);
2611 
2612 	put_numa_group(my_grp);
2613 	return;
2614 
2615 no_join:
2616 	rcu_read_unlock();
2617 	return;
2618 }
2619 
2620 /*
2621  * Get rid of NUMA staticstics associated with a task (either current or dead).
2622  * If @final is set, the task is dead and has reached refcount zero, so we can
2623  * safely free all relevant data structures. Otherwise, there might be
2624  * concurrent reads from places like load balancing and procfs, and we should
2625  * reset the data back to default state without freeing ->numa_faults.
2626  */
task_numa_free(struct task_struct * p,bool final)2627 void task_numa_free(struct task_struct *p, bool final)
2628 {
2629 	/* safe: p either is current or is being freed by current */
2630 	struct numa_group *grp = rcu_dereference_raw(p->numa_group);
2631 	unsigned long *numa_faults = p->numa_faults;
2632 	unsigned long flags;
2633 	int i;
2634 
2635 	if (!numa_faults)
2636 		return;
2637 
2638 	if (grp) {
2639 		spin_lock_irqsave(&grp->lock, flags);
2640 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2641 			grp->faults[i] -= p->numa_faults[i];
2642 		grp->total_faults -= p->total_numa_faults;
2643 
2644 		grp->nr_tasks--;
2645 		spin_unlock_irqrestore(&grp->lock, flags);
2646 		RCU_INIT_POINTER(p->numa_group, NULL);
2647 		put_numa_group(grp);
2648 	}
2649 
2650 	if (final) {
2651 		p->numa_faults = NULL;
2652 		kfree(numa_faults);
2653 	} else {
2654 		p->total_numa_faults = 0;
2655 		for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2656 			numa_faults[i] = 0;
2657 	}
2658 }
2659 
2660 /*
2661  * Got a PROT_NONE fault for a page on @node.
2662  */
task_numa_fault(int last_cpupid,int mem_node,int pages,int flags)2663 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2664 {
2665 	struct task_struct *p = current;
2666 	bool migrated = flags & TNF_MIGRATED;
2667 	int cpu_node = task_node(current);
2668 	int local = !!(flags & TNF_FAULT_LOCAL);
2669 	struct numa_group *ng;
2670 	int priv;
2671 
2672 	if (!static_branch_likely(&sched_numa_balancing))
2673 		return;
2674 
2675 	/* for example, ksmd faulting in a user's mm */
2676 	if (!p->mm)
2677 		return;
2678 
2679 	/* Allocate buffer to track faults on a per-node basis */
2680 	if (unlikely(!p->numa_faults)) {
2681 		int size = sizeof(*p->numa_faults) *
2682 			   NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2683 
2684 		p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2685 		if (!p->numa_faults)
2686 			return;
2687 
2688 		p->total_numa_faults = 0;
2689 		memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2690 	}
2691 
2692 	/*
2693 	 * First accesses are treated as private, otherwise consider accesses
2694 	 * to be private if the accessing pid has not changed
2695 	 */
2696 	if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2697 		priv = 1;
2698 	} else {
2699 		priv = cpupid_match_pid(p, last_cpupid);
2700 		if (!priv && !(flags & TNF_NO_GROUP))
2701 			task_numa_group(p, last_cpupid, flags, &priv);
2702 	}
2703 
2704 	/*
2705 	 * If a workload spans multiple NUMA nodes, a shared fault that
2706 	 * occurs wholly within the set of nodes that the workload is
2707 	 * actively using should be counted as local. This allows the
2708 	 * scan rate to slow down when a workload has settled down.
2709 	 */
2710 	ng = deref_curr_numa_group(p);
2711 	if (!priv && !local && ng && ng->active_nodes > 1 &&
2712 				numa_is_active_node(cpu_node, ng) &&
2713 				numa_is_active_node(mem_node, ng))
2714 		local = 1;
2715 
2716 	/*
2717 	 * Retry to migrate task to preferred node periodically, in case it
2718 	 * previously failed, or the scheduler moved us.
2719 	 */
2720 	if (time_after(jiffies, p->numa_migrate_retry)) {
2721 		task_numa_placement(p);
2722 		numa_migrate_preferred(p);
2723 	}
2724 
2725 	if (migrated)
2726 		p->numa_pages_migrated += pages;
2727 	if (flags & TNF_MIGRATE_FAIL)
2728 		p->numa_faults_locality[2] += pages;
2729 
2730 	p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2731 	p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2732 	p->numa_faults_locality[local] += pages;
2733 }
2734 
reset_ptenuma_scan(struct task_struct * p)2735 static void reset_ptenuma_scan(struct task_struct *p)
2736 {
2737 	/*
2738 	 * We only did a read acquisition of the mmap sem, so
2739 	 * p->mm->numa_scan_seq is written to without exclusive access
2740 	 * and the update is not guaranteed to be atomic. That's not
2741 	 * much of an issue though, since this is just used for
2742 	 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2743 	 * expensive, to avoid any form of compiler optimizations:
2744 	 */
2745 	WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2746 	p->mm->numa_scan_offset = 0;
2747 }
2748 
2749 /*
2750  * The expensive part of numa migration is done from task_work context.
2751  * Triggered from task_tick_numa().
2752  */
task_numa_work(struct callback_head * work)2753 static void task_numa_work(struct callback_head *work)
2754 {
2755 	unsigned long migrate, next_scan, now = jiffies;
2756 	struct task_struct *p = current;
2757 	struct mm_struct *mm = p->mm;
2758 	u64 runtime = p->se.sum_exec_runtime;
2759 	struct vm_area_struct *vma;
2760 	unsigned long start, end;
2761 	unsigned long nr_pte_updates = 0;
2762 	long pages, virtpages;
2763 
2764 	SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2765 
2766 	work->next = work;
2767 	/*
2768 	 * Who cares about NUMA placement when they're dying.
2769 	 *
2770 	 * NOTE: make sure not to dereference p->mm before this check,
2771 	 * exit_task_work() happens _after_ exit_mm() so we could be called
2772 	 * without p->mm even though we still had it when we enqueued this
2773 	 * work.
2774 	 */
2775 	if (p->flags & PF_EXITING)
2776 		return;
2777 
2778 	if (!mm->numa_next_scan) {
2779 		mm->numa_next_scan = now +
2780 			msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2781 	}
2782 
2783 	/*
2784 	 * Enforce maximal scan/migration frequency..
2785 	 */
2786 	migrate = mm->numa_next_scan;
2787 	if (time_before(now, migrate))
2788 		return;
2789 
2790 	if (p->numa_scan_period == 0) {
2791 		p->numa_scan_period_max = task_scan_max(p);
2792 		p->numa_scan_period = task_scan_start(p);
2793 	}
2794 
2795 	next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2796 	if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2797 		return;
2798 
2799 	/*
2800 	 * Delay this task enough that another task of this mm will likely win
2801 	 * the next time around.
2802 	 */
2803 	p->node_stamp += 2 * TICK_NSEC;
2804 
2805 	start = mm->numa_scan_offset;
2806 	pages = sysctl_numa_balancing_scan_size;
2807 	pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2808 	virtpages = pages * 8;	   /* Scan up to this much virtual space */
2809 	if (!pages)
2810 		return;
2811 
2812 
2813 	if (!mmap_read_trylock(mm))
2814 		return;
2815 	vma = find_vma(mm, start);
2816 	if (!vma) {
2817 		reset_ptenuma_scan(p);
2818 		start = 0;
2819 		vma = mm->mmap;
2820 	}
2821 	for (; vma; vma = vma->vm_next) {
2822 		if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2823 			is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2824 			continue;
2825 		}
2826 
2827 		/*
2828 		 * Shared library pages mapped by multiple processes are not
2829 		 * migrated as it is expected they are cache replicated. Avoid
2830 		 * hinting faults in read-only file-backed mappings or the vdso
2831 		 * as migrating the pages will be of marginal benefit.
2832 		 */
2833 		if (!vma->vm_mm ||
2834 		    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2835 			continue;
2836 
2837 		/*
2838 		 * Skip inaccessible VMAs to avoid any confusion between
2839 		 * PROT_NONE and NUMA hinting ptes
2840 		 */
2841 		if (!vma_is_accessible(vma))
2842 			continue;
2843 
2844 		do {
2845 			start = max(start, vma->vm_start);
2846 			end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2847 			end = min(end, vma->vm_end);
2848 			nr_pte_updates = change_prot_numa(vma, start, end);
2849 
2850 			/*
2851 			 * Try to scan sysctl_numa_balancing_size worth of
2852 			 * hpages that have at least one present PTE that
2853 			 * is not already pte-numa. If the VMA contains
2854 			 * areas that are unused or already full of prot_numa
2855 			 * PTEs, scan up to virtpages, to skip through those
2856 			 * areas faster.
2857 			 */
2858 			if (nr_pte_updates)
2859 				pages -= (end - start) >> PAGE_SHIFT;
2860 			virtpages -= (end - start) >> PAGE_SHIFT;
2861 
2862 			start = end;
2863 			if (pages <= 0 || virtpages <= 0)
2864 				goto out;
2865 
2866 			cond_resched();
2867 		} while (end != vma->vm_end);
2868 	}
2869 
2870 out:
2871 	/*
2872 	 * It is possible to reach the end of the VMA list but the last few
2873 	 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2874 	 * would find the !migratable VMA on the next scan but not reset the
2875 	 * scanner to the start so check it now.
2876 	 */
2877 	if (vma)
2878 		mm->numa_scan_offset = start;
2879 	else
2880 		reset_ptenuma_scan(p);
2881 	mmap_read_unlock(mm);
2882 
2883 	/*
2884 	 * Make sure tasks use at least 32x as much time to run other code
2885 	 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2886 	 * Usually update_task_scan_period slows down scanning enough; on an
2887 	 * overloaded system we need to limit overhead on a per task basis.
2888 	 */
2889 	if (unlikely(p->se.sum_exec_runtime != runtime)) {
2890 		u64 diff = p->se.sum_exec_runtime - runtime;
2891 		p->node_stamp += 32 * diff;
2892 	}
2893 }
2894 
init_numa_balancing(unsigned long clone_flags,struct task_struct * p)2895 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
2896 {
2897 	int mm_users = 0;
2898 	struct mm_struct *mm = p->mm;
2899 
2900 	if (mm) {
2901 		mm_users = atomic_read(&mm->mm_users);
2902 		if (mm_users == 1) {
2903 			mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2904 			mm->numa_scan_seq = 0;
2905 		}
2906 	}
2907 	p->node_stamp			= 0;
2908 	p->numa_scan_seq		= mm ? mm->numa_scan_seq : 0;
2909 	p->numa_scan_period		= sysctl_numa_balancing_scan_delay;
2910 	/* Protect against double add, see task_tick_numa and task_numa_work */
2911 	p->numa_work.next		= &p->numa_work;
2912 	p->numa_faults			= NULL;
2913 	RCU_INIT_POINTER(p->numa_group, NULL);
2914 	p->last_task_numa_placement	= 0;
2915 	p->last_sum_exec_runtime	= 0;
2916 
2917 	init_task_work(&p->numa_work, task_numa_work);
2918 
2919 	/* New address space, reset the preferred nid */
2920 	if (!(clone_flags & CLONE_VM)) {
2921 		p->numa_preferred_nid = NUMA_NO_NODE;
2922 		return;
2923 	}
2924 
2925 	/*
2926 	 * New thread, keep existing numa_preferred_nid which should be copied
2927 	 * already by arch_dup_task_struct but stagger when scans start.
2928 	 */
2929 	if (mm) {
2930 		unsigned int delay;
2931 
2932 		delay = min_t(unsigned int, task_scan_max(current),
2933 			current->numa_scan_period * mm_users * NSEC_PER_MSEC);
2934 		delay += 2 * TICK_NSEC;
2935 		p->node_stamp = delay;
2936 	}
2937 }
2938 
2939 /*
2940  * Drive the periodic memory faults..
2941  */
task_tick_numa(struct rq * rq,struct task_struct * curr)2942 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2943 {
2944 	struct callback_head *work = &curr->numa_work;
2945 	u64 period, now;
2946 
2947 	/*
2948 	 * We don't care about NUMA placement if we don't have memory.
2949 	 */
2950 	if ((curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
2951 		return;
2952 
2953 	/*
2954 	 * Using runtime rather than walltime has the dual advantage that
2955 	 * we (mostly) drive the selection from busy threads and that the
2956 	 * task needs to have done some actual work before we bother with
2957 	 * NUMA placement.
2958 	 */
2959 	now = curr->se.sum_exec_runtime;
2960 	period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2961 
2962 	if (now > curr->node_stamp + period) {
2963 		if (!curr->node_stamp)
2964 			curr->numa_scan_period = task_scan_start(curr);
2965 		curr->node_stamp += period;
2966 
2967 		if (!time_before(jiffies, curr->mm->numa_next_scan))
2968 			task_work_add(curr, work, TWA_RESUME);
2969 	}
2970 }
2971 
update_scan_period(struct task_struct * p,int new_cpu)2972 static void update_scan_period(struct task_struct *p, int new_cpu)
2973 {
2974 	int src_nid = cpu_to_node(task_cpu(p));
2975 	int dst_nid = cpu_to_node(new_cpu);
2976 
2977 	if (!static_branch_likely(&sched_numa_balancing))
2978 		return;
2979 
2980 	if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2981 		return;
2982 
2983 	if (src_nid == dst_nid)
2984 		return;
2985 
2986 	/*
2987 	 * Allow resets if faults have been trapped before one scan
2988 	 * has completed. This is most likely due to a new task that
2989 	 * is pulled cross-node due to wakeups or load balancing.
2990 	 */
2991 	if (p->numa_scan_seq) {
2992 		/*
2993 		 * Avoid scan adjustments if moving to the preferred
2994 		 * node or if the task was not previously running on
2995 		 * the preferred node.
2996 		 */
2997 		if (dst_nid == p->numa_preferred_nid ||
2998 		    (p->numa_preferred_nid != NUMA_NO_NODE &&
2999 			src_nid != p->numa_preferred_nid))
3000 			return;
3001 	}
3002 
3003 	p->numa_scan_period = task_scan_start(p);
3004 }
3005 
3006 #else
task_tick_numa(struct rq * rq,struct task_struct * curr)3007 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3008 {
3009 }
3010 
account_numa_enqueue(struct rq * rq,struct task_struct * p)3011 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3012 {
3013 }
3014 
account_numa_dequeue(struct rq * rq,struct task_struct * p)3015 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3016 {
3017 }
3018 
update_scan_period(struct task_struct * p,int new_cpu)3019 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3020 {
3021 }
3022 
3023 #endif /* CONFIG_NUMA_BALANCING */
3024 
3025 static void
account_entity_enqueue(struct cfs_rq * cfs_rq,struct sched_entity * se)3026 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3027 {
3028 	update_load_add(&cfs_rq->load, se->load.weight);
3029 #ifdef CONFIG_SMP
3030 	if (entity_is_task(se)) {
3031 		struct rq *rq = rq_of(cfs_rq);
3032 
3033 		account_numa_enqueue(rq, task_of(se));
3034 		list_add(&se->group_node, &rq->cfs_tasks);
3035 	}
3036 #endif
3037 	cfs_rq->nr_running++;
3038 }
3039 
3040 static void
account_entity_dequeue(struct cfs_rq * cfs_rq,struct sched_entity * se)3041 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3042 {
3043 	update_load_sub(&cfs_rq->load, se->load.weight);
3044 #ifdef CONFIG_SMP
3045 	if (entity_is_task(se)) {
3046 		account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3047 		list_del_init(&se->group_node);
3048 	}
3049 #endif
3050 	cfs_rq->nr_running--;
3051 }
3052 
3053 /*
3054  * Signed add and clamp on underflow.
3055  *
3056  * Explicitly do a load-store to ensure the intermediate value never hits
3057  * memory. This allows lockless observations without ever seeing the negative
3058  * values.
3059  */
3060 #define add_positive(_ptr, _val) do {                           \
3061 	typeof(_ptr) ptr = (_ptr);                              \
3062 	typeof(_val) val = (_val);                              \
3063 	typeof(*ptr) res, var = READ_ONCE(*ptr);                \
3064 								\
3065 	res = var + val;                                        \
3066 								\
3067 	if (val < 0 && res > var)                               \
3068 		res = 0;                                        \
3069 								\
3070 	WRITE_ONCE(*ptr, res);                                  \
3071 } while (0)
3072 
3073 /*
3074  * Unsigned subtract and clamp on underflow.
3075  *
3076  * Explicitly do a load-store to ensure the intermediate value never hits
3077  * memory. This allows lockless observations without ever seeing the negative
3078  * values.
3079  */
3080 #define sub_positive(_ptr, _val) do {				\
3081 	typeof(_ptr) ptr = (_ptr);				\
3082 	typeof(*ptr) val = (_val);				\
3083 	typeof(*ptr) res, var = READ_ONCE(*ptr);		\
3084 	res = var - val;					\
3085 	if (res > var)						\
3086 		res = 0;					\
3087 	WRITE_ONCE(*ptr, res);					\
3088 } while (0)
3089 
3090 /*
3091  * Remove and clamp on negative, from a local variable.
3092  *
3093  * A variant of sub_positive(), which does not use explicit load-store
3094  * and is thus optimized for local variable updates.
3095  */
3096 #define lsub_positive(_ptr, _val) do {				\
3097 	typeof(_ptr) ptr = (_ptr);				\
3098 	*ptr -= min_t(typeof(*ptr), *ptr, _val);		\
3099 } while (0)
3100 
3101 #ifdef CONFIG_SMP
3102 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3103 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3104 {
3105 	cfs_rq->avg.load_avg += se->avg.load_avg;
3106 	cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3107 }
3108 
3109 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3110 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3111 {
3112 	sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3113 	sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3114 }
3115 #else
3116 static inline void
enqueue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3117 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3118 static inline void
dequeue_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3119 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3120 #endif
3121 
reweight_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,unsigned long weight)3122 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3123 			    unsigned long weight)
3124 {
3125 	if (se->on_rq) {
3126 		/* commit outstanding execution time */
3127 		if (cfs_rq->curr == se)
3128 			update_curr(cfs_rq);
3129 		update_load_sub(&cfs_rq->load, se->load.weight);
3130 	}
3131 	dequeue_load_avg(cfs_rq, se);
3132 
3133 	update_load_set(&se->load, weight);
3134 
3135 #ifdef CONFIG_SMP
3136 	do {
3137 		u32 divider = get_pelt_divider(&se->avg);
3138 
3139 		se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3140 	} while (0);
3141 #endif
3142 
3143 	enqueue_load_avg(cfs_rq, se);
3144 	if (se->on_rq)
3145 		update_load_add(&cfs_rq->load, se->load.weight);
3146 
3147 }
3148 
reweight_task(struct task_struct * p,int prio)3149 void reweight_task(struct task_struct *p, int prio)
3150 {
3151 	struct sched_entity *se = &p->se;
3152 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3153 	struct load_weight *load = &se->load;
3154 	unsigned long weight = scale_load(sched_prio_to_weight[prio]);
3155 
3156 	reweight_entity(cfs_rq, se, weight);
3157 	load->inv_weight = sched_prio_to_wmult[prio];
3158 }
3159 
3160 #ifdef CONFIG_FAIR_GROUP_SCHED
3161 #ifdef CONFIG_SMP
3162 /*
3163  * All this does is approximate the hierarchical proportion which includes that
3164  * global sum we all love to hate.
3165  *
3166  * That is, the weight of a group entity, is the proportional share of the
3167  * group weight based on the group runqueue weights. That is:
3168  *
3169  *                     tg->weight * grq->load.weight
3170  *   ge->load.weight = -----------------------------               (1)
3171  *                       \Sum grq->load.weight
3172  *
3173  * Now, because computing that sum is prohibitively expensive to compute (been
3174  * there, done that) we approximate it with this average stuff. The average
3175  * moves slower and therefore the approximation is cheaper and more stable.
3176  *
3177  * So instead of the above, we substitute:
3178  *
3179  *   grq->load.weight -> grq->avg.load_avg                         (2)
3180  *
3181  * which yields the following:
3182  *
3183  *                     tg->weight * grq->avg.load_avg
3184  *   ge->load.weight = ------------------------------              (3)
3185  *                             tg->load_avg
3186  *
3187  * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3188  *
3189  * That is shares_avg, and it is right (given the approximation (2)).
3190  *
3191  * The problem with it is that because the average is slow -- it was designed
3192  * to be exactly that of course -- this leads to transients in boundary
3193  * conditions. In specific, the case where the group was idle and we start the
3194  * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3195  * yielding bad latency etc..
3196  *
3197  * Now, in that special case (1) reduces to:
3198  *
3199  *                     tg->weight * grq->load.weight
3200  *   ge->load.weight = ----------------------------- = tg->weight   (4)
3201  *                         grp->load.weight
3202  *
3203  * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3204  *
3205  * So what we do is modify our approximation (3) to approach (4) in the (near)
3206  * UP case, like:
3207  *
3208  *   ge->load.weight =
3209  *
3210  *              tg->weight * grq->load.weight
3211  *     ---------------------------------------------------         (5)
3212  *     tg->load_avg - grq->avg.load_avg + grq->load.weight
3213  *
3214  * But because grq->load.weight can drop to 0, resulting in a divide by zero,
3215  * we need to use grq->avg.load_avg as its lower bound, which then gives:
3216  *
3217  *
3218  *                     tg->weight * grq->load.weight
3219  *   ge->load.weight = -----------------------------		   (6)
3220  *                             tg_load_avg'
3221  *
3222  * Where:
3223  *
3224  *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
3225  *                  max(grq->load.weight, grq->avg.load_avg)
3226  *
3227  * And that is shares_weight and is icky. In the (near) UP case it approaches
3228  * (4) while in the normal case it approaches (3). It consistently
3229  * overestimates the ge->load.weight and therefore:
3230  *
3231  *   \Sum ge->load.weight >= tg->weight
3232  *
3233  * hence icky!
3234  */
calc_group_shares(struct cfs_rq * cfs_rq)3235 static long calc_group_shares(struct cfs_rq *cfs_rq)
3236 {
3237 	long tg_weight, tg_shares, load, shares;
3238 	struct task_group *tg = cfs_rq->tg;
3239 
3240 	tg_shares = READ_ONCE(tg->shares);
3241 
3242 	load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
3243 
3244 	tg_weight = atomic_long_read(&tg->load_avg);
3245 
3246 	/* Ensure tg_weight >= load */
3247 	tg_weight -= cfs_rq->tg_load_avg_contrib;
3248 	tg_weight += load;
3249 
3250 	shares = (tg_shares * load);
3251 	if (tg_weight)
3252 		shares /= tg_weight;
3253 
3254 	/*
3255 	 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
3256 	 * of a group with small tg->shares value. It is a floor value which is
3257 	 * assigned as a minimum load.weight to the sched_entity representing
3258 	 * the group on a CPU.
3259 	 *
3260 	 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
3261 	 * on an 8-core system with 8 tasks each runnable on one CPU shares has
3262 	 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
3263 	 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
3264 	 * instead of 0.
3265 	 */
3266 	return clamp_t(long, shares, MIN_SHARES, tg_shares);
3267 }
3268 #endif /* CONFIG_SMP */
3269 
3270 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3271 
3272 /*
3273  * Recomputes the group entity based on the current state of its group
3274  * runqueue.
3275  */
update_cfs_group(struct sched_entity * se)3276 static void update_cfs_group(struct sched_entity *se)
3277 {
3278 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3279 	long shares;
3280 
3281 	if (!gcfs_rq)
3282 		return;
3283 
3284 	if (throttled_hierarchy(gcfs_rq))
3285 		return;
3286 
3287 #ifndef CONFIG_SMP
3288 	shares = READ_ONCE(gcfs_rq->tg->shares);
3289 
3290 	if (likely(se->load.weight == shares))
3291 		return;
3292 #else
3293 	shares   = calc_group_shares(gcfs_rq);
3294 #endif
3295 
3296 	reweight_entity(cfs_rq_of(se), se, shares);
3297 }
3298 
3299 #else /* CONFIG_FAIR_GROUP_SCHED */
update_cfs_group(struct sched_entity * se)3300 static inline void update_cfs_group(struct sched_entity *se)
3301 {
3302 }
3303 #endif /* CONFIG_FAIR_GROUP_SCHED */
3304 
cfs_rq_util_change(struct cfs_rq * cfs_rq,int flags)3305 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3306 {
3307 	struct rq *rq = rq_of(cfs_rq);
3308 
3309 	if (&rq->cfs == cfs_rq) {
3310 		/*
3311 		 * There are a few boundary cases this might miss but it should
3312 		 * get called often enough that that should (hopefully) not be
3313 		 * a real problem.
3314 		 *
3315 		 * It will not get called when we go idle, because the idle
3316 		 * thread is a different class (!fair), nor will the utilization
3317 		 * number include things like RT tasks.
3318 		 *
3319 		 * As is, the util number is not freq-invariant (we'd have to
3320 		 * implement arch_scale_freq_capacity() for that).
3321 		 *
3322 		 * See cpu_util().
3323 		 */
3324 		cpufreq_update_util(rq, flags);
3325 	}
3326 }
3327 
3328 #ifdef CONFIG_SMP
3329 #ifdef CONFIG_FAIR_GROUP_SCHED
3330 /**
3331  * update_tg_load_avg - update the tg's load avg
3332  * @cfs_rq: the cfs_rq whose avg changed
3333  *
3334  * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3335  * However, because tg->load_avg is a global value there are performance
3336  * considerations.
3337  *
3338  * In order to avoid having to look at the other cfs_rq's, we use a
3339  * differential update where we store the last value we propagated. This in
3340  * turn allows skipping updates if the differential is 'small'.
3341  *
3342  * Updating tg's load_avg is necessary before update_cfs_share().
3343  */
update_tg_load_avg(struct cfs_rq * cfs_rq)3344 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
3345 {
3346 	long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3347 
3348 	/*
3349 	 * No need to update load_avg for root_task_group as it is not used.
3350 	 */
3351 	if (cfs_rq->tg == &root_task_group)
3352 		return;
3353 
3354 	if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3355 		atomic_long_add(delta, &cfs_rq->tg->load_avg);
3356 		cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3357 	}
3358 }
3359 
3360 /*
3361  * Called within set_task_rq() right before setting a task's CPU. The
3362  * caller only guarantees p->pi_lock is held; no other assumptions,
3363  * including the state of rq->lock, should be made.
3364  */
set_task_rq_fair(struct sched_entity * se,struct cfs_rq * prev,struct cfs_rq * next)3365 void set_task_rq_fair(struct sched_entity *se,
3366 		      struct cfs_rq *prev, struct cfs_rq *next)
3367 {
3368 	u64 p_last_update_time;
3369 	u64 n_last_update_time;
3370 
3371 	if (!sched_feat(ATTACH_AGE_LOAD))
3372 		return;
3373 
3374 	/*
3375 	 * We are supposed to update the task to "current" time, then its up to
3376 	 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3377 	 * getting what current time is, so simply throw away the out-of-date
3378 	 * time. This will result in the wakee task is less decayed, but giving
3379 	 * the wakee more load sounds not bad.
3380 	 */
3381 	if (!(se->avg.last_update_time && prev))
3382 		return;
3383 
3384 #ifndef CONFIG_64BIT
3385 	{
3386 		u64 p_last_update_time_copy;
3387 		u64 n_last_update_time_copy;
3388 
3389 		do {
3390 			p_last_update_time_copy = prev->load_last_update_time_copy;
3391 			n_last_update_time_copy = next->load_last_update_time_copy;
3392 
3393 			smp_rmb();
3394 
3395 			p_last_update_time = prev->avg.last_update_time;
3396 			n_last_update_time = next->avg.last_update_time;
3397 
3398 		} while (p_last_update_time != p_last_update_time_copy ||
3399 			 n_last_update_time != n_last_update_time_copy);
3400 	}
3401 #else
3402 	p_last_update_time = prev->avg.last_update_time;
3403 	n_last_update_time = next->avg.last_update_time;
3404 #endif
3405 	__update_load_avg_blocked_se(p_last_update_time, se);
3406 	se->avg.last_update_time = n_last_update_time;
3407 }
3408 
3409 /*
3410  * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3411  * propagate its contribution. The key to this propagation is the invariant
3412  * that for each group:
3413  *
3414  *   ge->avg == grq->avg						(1)
3415  *
3416  * _IFF_ we look at the pure running and runnable sums. Because they
3417  * represent the very same entity, just at different points in the hierarchy.
3418  *
3419  * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
3420  * and simply copies the running/runnable sum over (but still wrong, because
3421  * the group entity and group rq do not have their PELT windows aligned).
3422  *
3423  * However, update_tg_cfs_load() is more complex. So we have:
3424  *
3425  *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg		(2)
3426  *
3427  * And since, like util, the runnable part should be directly transferable,
3428  * the following would _appear_ to be the straight forward approach:
3429  *
3430  *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg	(3)
3431  *
3432  * And per (1) we have:
3433  *
3434  *   ge->avg.runnable_avg == grq->avg.runnable_avg
3435  *
3436  * Which gives:
3437  *
3438  *                      ge->load.weight * grq->avg.load_avg
3439  *   ge->avg.load_avg = -----------------------------------		(4)
3440  *                               grq->load.weight
3441  *
3442  * Except that is wrong!
3443  *
3444  * Because while for entities historical weight is not important and we
3445  * really only care about our future and therefore can consider a pure
3446  * runnable sum, runqueues can NOT do this.
3447  *
3448  * We specifically want runqueues to have a load_avg that includes
3449  * historical weights. Those represent the blocked load, the load we expect
3450  * to (shortly) return to us. This only works by keeping the weights as
3451  * integral part of the sum. We therefore cannot decompose as per (3).
3452  *
3453  * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3454  * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3455  * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3456  * runnable section of these tasks overlap (or not). If they were to perfectly
3457  * align the rq as a whole would be runnable 2/3 of the time. If however we
3458  * always have at least 1 runnable task, the rq as a whole is always runnable.
3459  *
3460  * So we'll have to approximate.. :/
3461  *
3462  * Given the constraint:
3463  *
3464  *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3465  *
3466  * We can construct a rule that adds runnable to a rq by assuming minimal
3467  * overlap.
3468  *
3469  * On removal, we'll assume each task is equally runnable; which yields:
3470  *
3471  *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3472  *
3473  * XXX: only do this for the part of runnable > running ?
3474  *
3475  */
3476 static inline void
update_tg_cfs_util(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3477 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3478 {
3479 	long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3480 	u32 divider;
3481 
3482 	/* Nothing to update */
3483 	if (!delta)
3484 		return;
3485 
3486 	/*
3487 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3488 	 * See ___update_load_avg() for details.
3489 	 */
3490 	divider = get_pelt_divider(&cfs_rq->avg);
3491 
3492 	/* Set new sched_entity's utilization */
3493 	se->avg.util_avg = gcfs_rq->avg.util_avg;
3494 	se->avg.util_sum = se->avg.util_avg * divider;
3495 
3496 	/* Update parent cfs_rq utilization */
3497 	add_positive(&cfs_rq->avg.util_avg, delta);
3498 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3499 }
3500 
3501 static inline void
update_tg_cfs_runnable(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3502 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3503 {
3504 	long delta = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
3505 	u32 divider;
3506 
3507 	/* Nothing to update */
3508 	if (!delta)
3509 		return;
3510 
3511 	/*
3512 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3513 	 * See ___update_load_avg() for details.
3514 	 */
3515 	divider = get_pelt_divider(&cfs_rq->avg);
3516 
3517 	/* Set new sched_entity's runnable */
3518 	se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
3519 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3520 
3521 	/* Update parent cfs_rq runnable */
3522 	add_positive(&cfs_rq->avg.runnable_avg, delta);
3523 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3524 }
3525 
3526 static inline void
update_tg_cfs_load(struct cfs_rq * cfs_rq,struct sched_entity * se,struct cfs_rq * gcfs_rq)3527 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3528 {
3529 	long delta, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3530 	unsigned long load_avg;
3531 	u64 load_sum = 0;
3532 	u32 divider;
3533 
3534 	if (!runnable_sum)
3535 		return;
3536 
3537 	gcfs_rq->prop_runnable_sum = 0;
3538 
3539 	/*
3540 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3541 	 * See ___update_load_avg() for details.
3542 	 */
3543 	divider = get_pelt_divider(&cfs_rq->avg);
3544 
3545 	if (runnable_sum >= 0) {
3546 		/*
3547 		 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3548 		 * the CPU is saturated running == runnable.
3549 		 */
3550 		runnable_sum += se->avg.load_sum;
3551 		runnable_sum = min_t(long, runnable_sum, divider);
3552 	} else {
3553 		/*
3554 		 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3555 		 * assuming all tasks are equally runnable.
3556 		 */
3557 		if (scale_load_down(gcfs_rq->load.weight)) {
3558 			load_sum = div_s64(gcfs_rq->avg.load_sum,
3559 				scale_load_down(gcfs_rq->load.weight));
3560 		}
3561 
3562 		/* But make sure to not inflate se's runnable */
3563 		runnable_sum = min(se->avg.load_sum, load_sum);
3564 	}
3565 
3566 	/*
3567 	 * runnable_sum can't be lower than running_sum
3568 	 * Rescale running sum to be in the same range as runnable sum
3569 	 * running_sum is in [0 : LOAD_AVG_MAX <<  SCHED_CAPACITY_SHIFT]
3570 	 * runnable_sum is in [0 : LOAD_AVG_MAX]
3571 	 */
3572 	running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
3573 	runnable_sum = max(runnable_sum, running_sum);
3574 
3575 	load_sum = (s64)se_weight(se) * runnable_sum;
3576 	load_avg = div_s64(load_sum, divider);
3577 
3578 	delta = load_avg - se->avg.load_avg;
3579 
3580 	se->avg.load_sum = runnable_sum;
3581 	se->avg.load_avg = load_avg;
3582 
3583 	add_positive(&cfs_rq->avg.load_avg, delta);
3584 	cfs_rq->avg.load_sum = cfs_rq->avg.load_avg * divider;
3585 }
3586 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3587 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3588 {
3589 	cfs_rq->propagate = 1;
3590 	cfs_rq->prop_runnable_sum += runnable_sum;
3591 }
3592 
3593 /* Update task and its cfs_rq load average */
propagate_entity_load_avg(struct sched_entity * se)3594 static inline int propagate_entity_load_avg(struct sched_entity *se)
3595 {
3596 	struct cfs_rq *cfs_rq, *gcfs_rq;
3597 
3598 	if (entity_is_task(se))
3599 		return 0;
3600 
3601 	gcfs_rq = group_cfs_rq(se);
3602 	if (!gcfs_rq->propagate)
3603 		return 0;
3604 
3605 	gcfs_rq->propagate = 0;
3606 
3607 	cfs_rq = cfs_rq_of(se);
3608 
3609 	add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3610 
3611 	update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3612 	update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3613 	update_tg_cfs_load(cfs_rq, se, gcfs_rq);
3614 
3615 	trace_pelt_cfs_tp(cfs_rq);
3616 	trace_pelt_se_tp(se);
3617 
3618 	return 1;
3619 }
3620 
3621 /*
3622  * Check if we need to update the load and the utilization of a blocked
3623  * group_entity:
3624  */
skip_blocked_update(struct sched_entity * se)3625 static inline bool skip_blocked_update(struct sched_entity *se)
3626 {
3627 	struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3628 
3629 	/*
3630 	 * If sched_entity still have not zero load or utilization, we have to
3631 	 * decay it:
3632 	 */
3633 	if (se->avg.load_avg || se->avg.util_avg)
3634 		return false;
3635 
3636 	/*
3637 	 * If there is a pending propagation, we have to update the load and
3638 	 * the utilization of the sched_entity:
3639 	 */
3640 	if (gcfs_rq->propagate)
3641 		return false;
3642 
3643 	/*
3644 	 * Otherwise, the load and the utilization of the sched_entity is
3645 	 * already zero and there is no pending propagation, so it will be a
3646 	 * waste of time to try to decay it:
3647 	 */
3648 	return true;
3649 }
3650 
3651 #else /* CONFIG_FAIR_GROUP_SCHED */
3652 
update_tg_load_avg(struct cfs_rq * cfs_rq)3653 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
3654 
propagate_entity_load_avg(struct sched_entity * se)3655 static inline int propagate_entity_load_avg(struct sched_entity *se)
3656 {
3657 	return 0;
3658 }
3659 
add_tg_cfs_propagate(struct cfs_rq * cfs_rq,long runnable_sum)3660 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3661 
3662 #endif /* CONFIG_FAIR_GROUP_SCHED */
3663 
3664 /**
3665  * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3666  * @now: current time, as per cfs_rq_clock_pelt()
3667  * @cfs_rq: cfs_rq to update
3668  *
3669  * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3670  * avg. The immediate corollary is that all (fair) tasks must be attached, see
3671  * post_init_entity_util_avg().
3672  *
3673  * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3674  *
3675  * Returns true if the load decayed or we removed load.
3676  *
3677  * Since both these conditions indicate a changed cfs_rq->avg.load we should
3678  * call update_tg_load_avg() when this function returns true.
3679  */
3680 static inline int
update_cfs_rq_load_avg(u64 now,struct cfs_rq * cfs_rq)3681 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3682 {
3683 	unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
3684 	struct sched_avg *sa = &cfs_rq->avg;
3685 	int decayed = 0;
3686 
3687 	if (cfs_rq->removed.nr) {
3688 		unsigned long r;
3689 		u32 divider = get_pelt_divider(&cfs_rq->avg);
3690 
3691 		raw_spin_lock(&cfs_rq->removed.lock);
3692 		swap(cfs_rq->removed.util_avg, removed_util);
3693 		swap(cfs_rq->removed.load_avg, removed_load);
3694 		swap(cfs_rq->removed.runnable_avg, removed_runnable);
3695 		cfs_rq->removed.nr = 0;
3696 		raw_spin_unlock(&cfs_rq->removed.lock);
3697 
3698 		r = removed_load;
3699 		sub_positive(&sa->load_avg, r);
3700 		sa->load_sum = sa->load_avg * divider;
3701 
3702 		r = removed_util;
3703 		sub_positive(&sa->util_avg, r);
3704 		sub_positive(&sa->util_sum, r * divider);
3705 		/*
3706 		 * Because of rounding, se->util_sum might ends up being +1 more than
3707 		 * cfs->util_sum. Although this is not a problem by itself, detaching
3708 		 * a lot of tasks with the rounding problem between 2 updates of
3709 		 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
3710 		 * cfs_util_avg is not.
3711 		 * Check that util_sum is still above its lower bound for the new
3712 		 * util_avg. Given that period_contrib might have moved since the last
3713 		 * sync, we are only sure that util_sum must be above or equal to
3714 		 *    util_avg * minimum possible divider
3715 		 */
3716 		sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
3717 
3718 		r = removed_runnable;
3719 		sub_positive(&sa->runnable_avg, r);
3720 		sa->runnable_sum = sa->runnable_avg * divider;
3721 
3722 		/*
3723 		 * removed_runnable is the unweighted version of removed_load so we
3724 		 * can use it to estimate removed_load_sum.
3725 		 */
3726 		add_tg_cfs_propagate(cfs_rq,
3727 			-(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
3728 
3729 		decayed = 1;
3730 	}
3731 
3732 	decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
3733 
3734 #ifndef CONFIG_64BIT
3735 	smp_wmb();
3736 	cfs_rq->load_last_update_time_copy = sa->last_update_time;
3737 #endif
3738 
3739 	return decayed;
3740 }
3741 
3742 /**
3743  * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3744  * @cfs_rq: cfs_rq to attach to
3745  * @se: sched_entity to attach
3746  *
3747  * Must call update_cfs_rq_load_avg() before this, since we rely on
3748  * cfs_rq->avg.last_update_time being current.
3749  */
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3750 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3751 {
3752 	/*
3753 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3754 	 * See ___update_load_avg() for details.
3755 	 */
3756 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3757 
3758 	/*
3759 	 * When we attach the @se to the @cfs_rq, we must align the decay
3760 	 * window because without that, really weird and wonderful things can
3761 	 * happen.
3762 	 *
3763 	 * XXX illustrate
3764 	 */
3765 	se->avg.last_update_time = cfs_rq->avg.last_update_time;
3766 	se->avg.period_contrib = cfs_rq->avg.period_contrib;
3767 
3768 	/*
3769 	 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3770 	 * period_contrib. This isn't strictly correct, but since we're
3771 	 * entirely outside of the PELT hierarchy, nobody cares if we truncate
3772 	 * _sum a little.
3773 	 */
3774 	se->avg.util_sum = se->avg.util_avg * divider;
3775 
3776 	se->avg.runnable_sum = se->avg.runnable_avg * divider;
3777 
3778 	se->avg.load_sum = se->avg.load_avg * divider;
3779 	if (se_weight(se) < se->avg.load_sum)
3780 		se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
3781 	else
3782 		se->avg.load_sum = 1;
3783 
3784 	enqueue_load_avg(cfs_rq, se);
3785 	cfs_rq->avg.util_avg += se->avg.util_avg;
3786 	cfs_rq->avg.util_sum += se->avg.util_sum;
3787 	cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
3788 	cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
3789 
3790 	add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3791 
3792 	cfs_rq_util_change(cfs_rq, 0);
3793 
3794 	trace_pelt_cfs_tp(cfs_rq);
3795 }
3796 
3797 /**
3798  * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3799  * @cfs_rq: cfs_rq to detach from
3800  * @se: sched_entity to detach
3801  *
3802  * Must call update_cfs_rq_load_avg() before this, since we rely on
3803  * cfs_rq->avg.last_update_time being current.
3804  */
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)3805 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3806 {
3807 	/*
3808 	 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
3809 	 * See ___update_load_avg() for details.
3810 	 */
3811 	u32 divider = get_pelt_divider(&cfs_rq->avg);
3812 
3813 	dequeue_load_avg(cfs_rq, se);
3814 	sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3815 	cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * divider;
3816 	sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
3817 	cfs_rq->avg.runnable_sum = cfs_rq->avg.runnable_avg * divider;
3818 
3819 	add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3820 
3821 	cfs_rq_util_change(cfs_rq, 0);
3822 
3823 	trace_pelt_cfs_tp(cfs_rq);
3824 }
3825 
3826 /*
3827  * Optional action to be done while updating the load average
3828  */
3829 #define UPDATE_TG	0x1
3830 #define SKIP_AGE_LOAD	0x2
3831 #define DO_ATTACH	0x4
3832 
3833 /* Update task and its cfs_rq load average */
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)3834 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3835 {
3836 	u64 now = cfs_rq_clock_pelt(cfs_rq);
3837 	int decayed;
3838 
3839 	/*
3840 	 * Track task load average for carrying it to new CPU after migrated, and
3841 	 * track group sched_entity load average for task_h_load calc in migration
3842 	 */
3843 	if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3844 		__update_load_avg_se(now, cfs_rq, se);
3845 
3846 	decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3847 	decayed |= propagate_entity_load_avg(se);
3848 
3849 	if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3850 
3851 		/*
3852 		 * DO_ATTACH means we're here from enqueue_entity().
3853 		 * !last_update_time means we've passed through
3854 		 * migrate_task_rq_fair() indicating we migrated.
3855 		 *
3856 		 * IOW we're enqueueing a task on a new CPU.
3857 		 */
3858 		attach_entity_load_avg(cfs_rq, se);
3859 		update_tg_load_avg(cfs_rq);
3860 
3861 	} else if (decayed) {
3862 		cfs_rq_util_change(cfs_rq, 0);
3863 
3864 		if (flags & UPDATE_TG)
3865 			update_tg_load_avg(cfs_rq);
3866 	}
3867 }
3868 
3869 #ifndef CONFIG_64BIT
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3870 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3871 {
3872 	u64 last_update_time_copy;
3873 	u64 last_update_time;
3874 
3875 	do {
3876 		last_update_time_copy = cfs_rq->load_last_update_time_copy;
3877 		smp_rmb();
3878 		last_update_time = cfs_rq->avg.last_update_time;
3879 	} while (last_update_time != last_update_time_copy);
3880 
3881 	return last_update_time;
3882 }
3883 #else
cfs_rq_last_update_time(struct cfs_rq * cfs_rq)3884 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3885 {
3886 	return cfs_rq->avg.last_update_time;
3887 }
3888 #endif
3889 
3890 /*
3891  * Synchronize entity load avg of dequeued entity without locking
3892  * the previous rq.
3893  */
sync_entity_load_avg(struct sched_entity * se)3894 static void sync_entity_load_avg(struct sched_entity *se)
3895 {
3896 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3897 	u64 last_update_time;
3898 
3899 	last_update_time = cfs_rq_last_update_time(cfs_rq);
3900 	__update_load_avg_blocked_se(last_update_time, se);
3901 }
3902 
3903 /*
3904  * Task first catches up with cfs_rq, and then subtract
3905  * itself from the cfs_rq (task must be off the queue now).
3906  */
remove_entity_load_avg(struct sched_entity * se)3907 static void remove_entity_load_avg(struct sched_entity *se)
3908 {
3909 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
3910 	unsigned long flags;
3911 
3912 	/*
3913 	 * tasks cannot exit without having gone through wake_up_new_task() ->
3914 	 * post_init_entity_util_avg() which will have added things to the
3915 	 * cfs_rq, so we can remove unconditionally.
3916 	 */
3917 
3918 	sync_entity_load_avg(se);
3919 
3920 	raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3921 	++cfs_rq->removed.nr;
3922 	cfs_rq->removed.util_avg	+= se->avg.util_avg;
3923 	cfs_rq->removed.load_avg	+= se->avg.load_avg;
3924 	cfs_rq->removed.runnable_avg	+= se->avg.runnable_avg;
3925 	raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3926 }
3927 
cfs_rq_runnable_avg(struct cfs_rq * cfs_rq)3928 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
3929 {
3930 	return cfs_rq->avg.runnable_avg;
3931 }
3932 
cfs_rq_load_avg(struct cfs_rq * cfs_rq)3933 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3934 {
3935 	return cfs_rq->avg.load_avg;
3936 }
3937 
3938 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf);
3939 
task_util(struct task_struct * p)3940 static inline unsigned long task_util(struct task_struct *p)
3941 {
3942 #ifdef CONFIG_SCHED_WALT
3943 	if (likely(!walt_disabled && sysctl_sched_use_walt_task_util))
3944 		return p->ravg.demand_scaled;
3945 #endif
3946 	return READ_ONCE(p->se.avg.util_avg);
3947 }
3948 
_task_util_est(struct task_struct * p)3949 static inline unsigned long _task_util_est(struct task_struct *p)
3950 {
3951 	struct util_est ue = READ_ONCE(p->se.avg.util_est);
3952 
3953 	return max(ue.ewma, (ue.enqueued & ~UTIL_AVG_UNCHANGED));
3954 }
3955 
task_util_est(struct task_struct * p)3956 static inline unsigned long task_util_est(struct task_struct *p)
3957 {
3958 #ifdef CONFIG_SCHED_WALT
3959 	if (likely(!walt_disabled && sysctl_sched_use_walt_task_util))
3960 		return p->ravg.demand_scaled;
3961 #endif
3962 	return max(task_util(p), _task_util_est(p));
3963 }
3964 
3965 #ifdef CONFIG_UCLAMP_TASK
3966 #ifdef CONFIG_SCHED_RT_CAS
uclamp_task_util(struct task_struct * p,unsigned long uclamp_min,unsigned long uclamp_max)3967 unsigned long uclamp_task_util(struct task_struct *p,
3968 					     unsigned long uclamp_min,
3969 					     unsigned long uclamp_max)
3970 #else
3971 static inline unsigned long uclamp_task_util(struct task_struct *p,
3972 					     unsigned long uclamp_min,
3973 					     unsigned long uclamp_max)
3974 #endif
3975 {
3976 	return clamp(task_util_est(p), uclamp_min, uclamp_max);
3977 }
3978 #else
3979 #ifdef CONFIG_SCHED_RT_CAS
uclamp_task_util(struct task_struct * p,unsigned long uclamp_min,unsigned long uclamp_max)3980 unsigned long uclamp_task_util(struct task_struct *p,
3981 					     unsigned long uclamp_min,
3982 					     unsigned long uclamp_max)
3983 #else
3984 static inline unsigned long uclamp_task_util(struct task_struct *p,
3985 					     unsigned long uclamp_min,
3986 					     unsigned long uclamp_max)
3987 #endif
3988 {
3989 	return task_util_est(p);
3990 }
3991 #endif
3992 
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)3993 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3994 				    struct task_struct *p)
3995 {
3996 	unsigned int enqueued;
3997 
3998 	if (!sched_feat(UTIL_EST))
3999 		return;
4000 
4001 	/* Update root cfs_rq's estimated utilization */
4002 	enqueued  = cfs_rq->avg.util_est.enqueued;
4003 	enqueued += _task_util_est(p);
4004 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4005 
4006 	trace_sched_util_est_cfs_tp(cfs_rq);
4007 }
4008 
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4009 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4010 				    struct task_struct *p)
4011 {
4012 	unsigned int enqueued;
4013 
4014 	if (!sched_feat(UTIL_EST))
4015 		return;
4016 
4017 	/* Update root cfs_rq's estimated utilization */
4018 	enqueued  = cfs_rq->avg.util_est.enqueued;
4019 	enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4020 	WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
4021 
4022 	trace_sched_util_est_cfs_tp(cfs_rq);
4023 }
4024 
4025 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4026 
4027 /*
4028  * Check if a (signed) value is within a specified (unsigned) margin,
4029  * based on the observation that:
4030  *
4031  *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
4032  *
4033  * NOTE: this only works when value + maring < INT_MAX.
4034  */
within_margin(int value,int margin)4035 static inline bool within_margin(int value, int margin)
4036 {
4037 	return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
4038 }
4039 
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4040 static inline void util_est_update(struct cfs_rq *cfs_rq,
4041 				   struct task_struct *p,
4042 				   bool task_sleep)
4043 {
4044 	long last_ewma_diff, last_enqueued_diff;
4045 	struct util_est ue;
4046 
4047 	if (!sched_feat(UTIL_EST))
4048 		return;
4049 
4050 	/*
4051 	 * Skip update of task's estimated utilization when the task has not
4052 	 * yet completed an activation, e.g. being migrated.
4053 	 */
4054 	if (!task_sleep)
4055 		return;
4056 
4057 	/*
4058 	 * If the PELT values haven't changed since enqueue time,
4059 	 * skip the util_est update.
4060 	 */
4061 	ue = p->se.avg.util_est;
4062 	if (ue.enqueued & UTIL_AVG_UNCHANGED)
4063 		return;
4064 
4065 	last_enqueued_diff = ue.enqueued;
4066 
4067 	/*
4068 	 * Reset EWMA on utilization increases, the moving average is used only
4069 	 * to smooth utilization decreases.
4070 	 */
4071 	ue.enqueued = task_util(p);
4072 	if (sched_feat(UTIL_EST_FASTUP)) {
4073 		if (ue.ewma < ue.enqueued) {
4074 			ue.ewma = ue.enqueued;
4075 			goto done;
4076 		}
4077 	}
4078 
4079 	/*
4080 	 * Skip update of task's estimated utilization when its members are
4081 	 * already ~1% close to its last activation value.
4082 	 */
4083 	last_ewma_diff = ue.enqueued - ue.ewma;
4084 	last_enqueued_diff -= ue.enqueued;
4085 	if (within_margin(last_ewma_diff, UTIL_EST_MARGIN)) {
4086 		if (!within_margin(last_enqueued_diff, UTIL_EST_MARGIN))
4087 			goto done;
4088 
4089 		return;
4090 	}
4091 
4092 	/*
4093 	 * To avoid overestimation of actual task utilization, skip updates if
4094 	 * we cannot grant there is idle time in this CPU.
4095 	 */
4096 	if (task_util(p) > capacity_orig_of(cpu_of(rq_of(cfs_rq))))
4097 		return;
4098 
4099 	/*
4100 	 * Update Task's estimated utilization
4101 	 *
4102 	 * When *p completes an activation we can consolidate another sample
4103 	 * of the task size. This is done by storing the current PELT value
4104 	 * as ue.enqueued and by using this value to update the Exponential
4105 	 * Weighted Moving Average (EWMA):
4106 	 *
4107 	 *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
4108 	 *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
4109 	 *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
4110 	 *          = w * (      last_ewma_diff            ) +     ewma(t-1)
4111 	 *          = w * (last_ewma_diff  +  ewma(t-1) / w)
4112 	 *
4113 	 * Where 'w' is the weight of new samples, which is configured to be
4114 	 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
4115 	 */
4116 	ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
4117 	ue.ewma  += last_ewma_diff;
4118 	ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
4119 done:
4120 	ue.enqueued |= UTIL_AVG_UNCHANGED;
4121 	WRITE_ONCE(p->se.avg.util_est, ue);
4122 
4123 	trace_sched_util_est_se_tp(&p->se);
4124 }
4125 
util_fits_cpu(unsigned long util,unsigned long uclamp_min,unsigned long uclamp_max,int cpu)4126 static inline int util_fits_cpu(unsigned long util,
4127 				unsigned long uclamp_min,
4128 				unsigned long uclamp_max,
4129 				int cpu)
4130 {
4131 	unsigned long capacity_orig, capacity_orig_thermal;
4132 	unsigned long capacity = capacity_of(cpu);
4133 	bool fits, uclamp_max_fits;
4134 
4135 	/*
4136 	 * Check if the real util fits without any uclamp boost/cap applied.
4137 	 */
4138 	fits = fits_capacity(util, capacity);
4139 
4140 	if (!uclamp_is_used())
4141 		return fits;
4142 
4143 	/*
4144 	 * We must use capacity_orig_of() for comparing against uclamp_min and
4145 	 * uclamp_max. We only care about capacity pressure (by using
4146 	 * capacity_of()) for comparing against the real util.
4147 	 *
4148 	 * If a task is boosted to 1024 for example, we don't want a tiny
4149 	 * pressure to skew the check whether it fits a CPU or not.
4150 	 *
4151 	 * Similarly if a task is capped to capacity_orig_of(little_cpu), it
4152 	 * should fit a little cpu even if there's some pressure.
4153 	 *
4154 	 * Only exception is for thermal pressure since it has a direct impact
4155 	 * on available OPP of the system.
4156 	 *
4157 	 * We honour it for uclamp_min only as a drop in performance level
4158 	 * could result in not getting the requested minimum performance level.
4159 	 *
4160 	 * For uclamp_max, we can tolerate a drop in performance level as the
4161 	 * goal is to cap the task. So it's okay if it's getting less.
4162 	 *
4163 	 * In case of capacity inversion we should honour the inverted capacity
4164 	 * for both uclamp_min and uclamp_max all the time.
4165 	 */
4166 	capacity_orig = cpu_in_capacity_inversion(cpu);
4167 	if (capacity_orig) {
4168 		capacity_orig_thermal = capacity_orig;
4169 	} else {
4170 		capacity_orig = capacity_orig_of(cpu);
4171 		capacity_orig_thermal = capacity_orig - arch_scale_thermal_pressure(cpu);
4172 	}
4173 
4174 	/*
4175 	 * We want to force a task to fit a cpu as implied by uclamp_max.
4176 	 * But we do have some corner cases to cater for..
4177 	 *
4178 	 *
4179 	 *                                 C=z
4180 	 *   |                             ___
4181 	 *   |                  C=y       |   |
4182 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _  uclamp_max
4183 	 *   |      C=x        |   |      |   |
4184 	 *   |      ___        |   |      |   |
4185 	 *   |     |   |       |   |      |   |    (util somewhere in this region)
4186 	 *   |     |   |       |   |      |   |
4187 	 *   |     |   |       |   |      |   |
4188 	 *   +----------------------------------------
4189 	 *         cpu0        cpu1       cpu2
4190 	 *
4191 	 *   In the above example if a task is capped to a specific performance
4192 	 *   point, y, then when:
4193 	 *
4194 	 *   * util = 80% of x then it does not fit on cpu0 and should migrate
4195 	 *     to cpu1
4196 	 *   * util = 80% of y then it is forced to fit on cpu1 to honour
4197 	 *     uclamp_max request.
4198 	 *
4199 	 *   which is what we're enforcing here. A task always fits if
4200 	 *   uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
4201 	 *   the normal upmigration rules should withhold still.
4202 	 *
4203 	 *   Only exception is when we are on max capacity, then we need to be
4204 	 *   careful not to block overutilized state. This is so because:
4205 	 *
4206 	 *     1. There's no concept of capping at max_capacity! We can't go
4207 	 *        beyond this performance level anyway.
4208 	 *     2. The system is being saturated when we're operating near
4209 	 *        max capacity, it doesn't make sense to block overutilized.
4210 	 */
4211 	uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
4212 	uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
4213 	fits = fits || uclamp_max_fits;
4214 
4215 	/*
4216 	 *
4217 	 *                                 C=z
4218 	 *   |                             ___       (region a, capped, util >= uclamp_max)
4219 	 *   |                  C=y       |   |
4220 	 *   |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
4221 	 *   |      C=x        |   |      |   |
4222 	 *   |      ___        |   |      |   |      (region b, uclamp_min <= util <= uclamp_max)
4223 	 *   |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
4224 	 *   |     |   |       |   |      |   |
4225 	 *   |     |   |       |   |      |   |      (region c, boosted, util < uclamp_min)
4226 	 *   +----------------------------------------
4227 	 *         cpu0        cpu1       cpu2
4228 	 *
4229 	 * a) If util > uclamp_max, then we're capped, we don't care about
4230 	 *    actual fitness value here. We only care if uclamp_max fits
4231 	 *    capacity without taking margin/pressure into account.
4232 	 *    See comment above.
4233 	 *
4234 	 * b) If uclamp_min <= util <= uclamp_max, then the normal
4235 	 *    fits_capacity() rules apply. Except we need to ensure that we
4236 	 *    enforce we remain within uclamp_max, see comment above.
4237 	 *
4238 	 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
4239 	 *    need to take into account the boosted value fits the CPU without
4240 	 *    taking margin/pressure into account.
4241 	 *
4242 	 * Cases (a) and (b) are handled in the 'fits' variable already. We
4243 	 * just need to consider an extra check for case (c) after ensuring we
4244 	 * handle the case uclamp_min > uclamp_max.
4245 	 */
4246 	uclamp_min = min(uclamp_min, uclamp_max);
4247 	if (util < uclamp_min && capacity_orig != SCHED_CAPACITY_SCALE)
4248 		fits = fits && (uclamp_min <= capacity_orig_thermal);
4249 
4250 	return fits;
4251 }
4252 
task_fits_cpu(struct task_struct * p,int cpu)4253 static inline int task_fits_cpu(struct task_struct *p, int cpu)
4254 {
4255 	unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
4256 	unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
4257 	unsigned long util = task_util_est(p);
4258 	return util_fits_cpu(util, uclamp_min, uclamp_max, cpu);
4259 }
4260 
4261 #ifdef CONFIG_SCHED_RTG
task_fits_max(struct task_struct * p,int cpu)4262 bool task_fits_max(struct task_struct *p, int cpu)
4263 {
4264 	unsigned long capacity = capacity_orig_of(cpu);
4265 	unsigned long max_capacity = cpu_rq(cpu)->rd->max_cpu_capacity;
4266 
4267 	if (capacity == max_capacity)
4268 		return true;
4269 
4270 	return task_fits_cpu(p, cpu);
4271 }
4272 #endif
4273 
update_misfit_status(struct task_struct * p,struct rq * rq)4274 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
4275 {
4276 	bool task_fits = false;
4277 #ifdef CONFIG_SCHED_RTG
4278 	int cpu = cpu_of(rq);
4279 	struct cpumask *rtg_target = NULL;
4280 #endif
4281 
4282 	if (!static_branch_unlikely(&sched_asym_cpucapacity))
4283 		return;
4284 
4285 	if (!p || p->nr_cpus_allowed == 1) {
4286 		rq->misfit_task_load = 0;
4287 		return;
4288 	}
4289 
4290 #ifdef CONFIG_SCHED_RTG
4291 	rtg_target = find_rtg_target(p);
4292 	if (rtg_target)
4293 		task_fits = capacity_orig_of(cpu) >=
4294 				capacity_orig_of(cpumask_first(rtg_target));
4295 	else
4296 		task_fits = task_fits_cpu(p, cpu_of(rq));
4297 #else
4298 	task_fits = task_fits_cpu(p, cpu_of(rq));
4299 #endif
4300 	if (task_fits) {
4301 		rq->misfit_task_load = 0;
4302 		return;
4303 	}
4304 
4305 	/*
4306 	 * Make sure that misfit_task_load will not be null even if
4307 	 * task_h_load() returns 0.
4308 	 */
4309 	rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
4310 }
4311 
4312 #else /* CONFIG_SMP */
4313 
4314 #define UPDATE_TG	0x0
4315 #define SKIP_AGE_LOAD	0x0
4316 #define DO_ATTACH	0x0
4317 
update_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se,int not_used1)4318 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
4319 {
4320 	cfs_rq_util_change(cfs_rq, 0);
4321 }
4322 
remove_entity_load_avg(struct sched_entity * se)4323 static inline void remove_entity_load_avg(struct sched_entity *se) {}
4324 
4325 static inline void
attach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4326 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4327 static inline void
detach_entity_load_avg(struct cfs_rq * cfs_rq,struct sched_entity * se)4328 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
4329 
newidle_balance(struct rq * rq,struct rq_flags * rf)4330 static inline int newidle_balance(struct rq *rq, struct rq_flags *rf)
4331 {
4332 	return 0;
4333 }
4334 
4335 static inline void
util_est_enqueue(struct cfs_rq * cfs_rq,struct task_struct * p)4336 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4337 
4338 static inline void
util_est_dequeue(struct cfs_rq * cfs_rq,struct task_struct * p)4339 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
4340 
4341 static inline void
util_est_update(struct cfs_rq * cfs_rq,struct task_struct * p,bool task_sleep)4342 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
4343 		bool task_sleep) {}
update_misfit_status(struct task_struct * p,struct rq * rq)4344 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
4345 
4346 #endif /* CONFIG_SMP */
4347 
check_spread(struct cfs_rq * cfs_rq,struct sched_entity * se)4348 static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
4349 {
4350 #ifdef CONFIG_SCHED_DEBUG
4351 	s64 d = se->vruntime - cfs_rq->min_vruntime;
4352 
4353 	if (d < 0)
4354 		d = -d;
4355 
4356 	if (d > 3*sysctl_sched_latency)
4357 		schedstat_inc(cfs_rq->nr_spread_over);
4358 #endif
4359 }
4360 
entity_is_long_sleeper(struct sched_entity * se)4361 static inline bool entity_is_long_sleeper(struct sched_entity *se)
4362 {
4363 	struct cfs_rq *cfs_rq;
4364 	u64 sleep_time;
4365 
4366 	if (se->exec_start == 0)
4367 		return false;
4368 
4369 	cfs_rq = cfs_rq_of(se);
4370 
4371 	sleep_time = rq_clock_task(rq_of(cfs_rq));
4372 
4373 	/* Happen while migrating because of clock task divergence */
4374 	if (sleep_time <= se->exec_start)
4375 		return false;
4376 
4377 	sleep_time -= se->exec_start;
4378 	if (sleep_time > ((1ULL << 63) / scale_load_down(NICE_0_LOAD)))
4379 		return true;
4380 
4381 	return false;
4382 }
4383 
4384 static void
place_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int initial)4385 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
4386 {
4387 	u64 vruntime = cfs_rq->min_vruntime;
4388 
4389 	/*
4390 	 * The 'current' period is already promised to the current tasks,
4391 	 * however the extra weight of the new task will slow them down a
4392 	 * little, place the new task so that it fits in the slot that
4393 	 * stays open at the end.
4394 	 */
4395 	if (initial && sched_feat(START_DEBIT))
4396 		vruntime += sched_vslice(cfs_rq, se);
4397 
4398 	/* sleeps up to a single latency don't count. */
4399 	if (!initial) {
4400 		unsigned long thresh = sysctl_sched_latency;
4401 
4402 		/*
4403 		 * Halve their sleep time's effect, to allow
4404 		 * for a gentler effect of sleepers:
4405 		 */
4406 		if (sched_feat(GENTLE_FAIR_SLEEPERS))
4407 			thresh >>= 1;
4408 
4409 		vruntime -= thresh;
4410 	}
4411 
4412 	/*
4413 	 * Pull vruntime of the entity being placed to the base level of
4414 	 * cfs_rq, to prevent boosting it if placed backwards.
4415 	 * However, min_vruntime can advance much faster than real time, with
4416 	 * the extreme being when an entity with the minimal weight always runs
4417 	 * on the cfs_rq. If the waking entity slept for a long time, its
4418 	 * vruntime difference from min_vruntime may overflow s64 and their
4419 	 * comparison may get inversed, so ignore the entity's original
4420 	 * vruntime in that case.
4421 	 * The maximal vruntime speedup is given by the ratio of normal to
4422 	 * minimal weight: scale_load_down(NICE_0_LOAD) / MIN_SHARES.
4423 	 * When placing a migrated waking entity, its exec_start has been set
4424 	 * from a different rq. In order to take into account a possible
4425 	 * divergence between new and prev rq's clocks task because of irq and
4426 	 * stolen time, we take an additional margin.
4427 	 * So, cutting off on the sleep time of
4428 	 *     2^63 / scale_load_down(NICE_0_LOAD) ~ 104 days
4429 	 * should be safe.
4430 	 */
4431 	if (entity_is_long_sleeper(se))
4432 		se->vruntime = vruntime;
4433 	else
4434 		se->vruntime = max_vruntime(se->vruntime, vruntime);
4435 }
4436 
4437 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
4438 
check_schedstat_required(void)4439 static inline void check_schedstat_required(void)
4440 {
4441 #ifdef CONFIG_SCHEDSTATS
4442 	if (schedstat_enabled())
4443 		return;
4444 
4445 	/* Force schedstat enabled if a dependent tracepoint is active */
4446 	if (trace_sched_stat_wait_enabled()    ||
4447 			trace_sched_stat_sleep_enabled()   ||
4448 			trace_sched_stat_iowait_enabled()  ||
4449 			trace_sched_stat_blocked_enabled() ||
4450 			trace_sched_stat_runtime_enabled())  {
4451 		printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
4452 			     "stat_blocked and stat_runtime require the "
4453 			     "kernel parameter schedstats=enable or "
4454 			     "kernel.sched_schedstats=1\n");
4455 	}
4456 #endif
4457 }
4458 
4459 static inline bool cfs_bandwidth_used(void);
4460 
4461 /*
4462  * MIGRATION
4463  *
4464  *	dequeue
4465  *	  update_curr()
4466  *	    update_min_vruntime()
4467  *	  vruntime -= min_vruntime
4468  *
4469  *	enqueue
4470  *	  update_curr()
4471  *	    update_min_vruntime()
4472  *	  vruntime += min_vruntime
4473  *
4474  * this way the vruntime transition between RQs is done when both
4475  * min_vruntime are up-to-date.
4476  *
4477  * WAKEUP (remote)
4478  *
4479  *	->migrate_task_rq_fair() (p->state == TASK_WAKING)
4480  *	  vruntime -= min_vruntime
4481  *
4482  *	enqueue
4483  *	  update_curr()
4484  *	    update_min_vruntime()
4485  *	  vruntime += min_vruntime
4486  *
4487  * this way we don't have the most up-to-date min_vruntime on the originating
4488  * CPU and an up-to-date min_vruntime on the destination CPU.
4489  */
4490 
4491 static void
enqueue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4492 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4493 {
4494 	bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
4495 	bool curr = cfs_rq->curr == se;
4496 
4497 	/*
4498 	 * If we're the current task, we must renormalise before calling
4499 	 * update_curr().
4500 	 */
4501 	if (renorm && curr)
4502 		se->vruntime += cfs_rq->min_vruntime;
4503 
4504 	update_curr(cfs_rq);
4505 
4506 	/*
4507 	 * Otherwise, renormalise after, such that we're placed at the current
4508 	 * moment in time, instead of some random moment in the past. Being
4509 	 * placed in the past could significantly boost this task to the
4510 	 * fairness detriment of existing tasks.
4511 	 */
4512 	if (renorm && !curr)
4513 		se->vruntime += cfs_rq->min_vruntime;
4514 
4515 	/*
4516 	 * When enqueuing a sched_entity, we must:
4517 	 *   - Update loads to have both entity and cfs_rq synced with now.
4518 	 *   - Add its load to cfs_rq->runnable_avg
4519 	 *   - For group_entity, update its weight to reflect the new share of
4520 	 *     its group cfs_rq
4521 	 *   - Add its new weight to cfs_rq->load.weight
4522 	 */
4523 	update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
4524 	se_update_runnable(se);
4525 	update_cfs_group(se);
4526 	account_entity_enqueue(cfs_rq, se);
4527 
4528 	if (flags & ENQUEUE_WAKEUP)
4529 		place_entity(cfs_rq, se, 0);
4530 	/* Entity has migrated, no longer consider this task hot */
4531 	if (flags & ENQUEUE_MIGRATED)
4532 		se->exec_start = 0;
4533 
4534 	check_schedstat_required();
4535 	update_stats_enqueue(cfs_rq, se, flags);
4536 	check_spread(cfs_rq, se);
4537 	if (!curr)
4538 		__enqueue_entity(cfs_rq, se);
4539 	se->on_rq = 1;
4540 
4541 	/*
4542 	 * When bandwidth control is enabled, cfs might have been removed
4543 	 * because of a parent been throttled but cfs->nr_running > 1. Try to
4544 	 * add it unconditionnally.
4545 	 */
4546 	if (cfs_rq->nr_running == 1 || cfs_bandwidth_used())
4547 		list_add_leaf_cfs_rq(cfs_rq);
4548 
4549 	if (cfs_rq->nr_running == 1)
4550 		check_enqueue_throttle(cfs_rq);
4551 }
4552 
__clear_buddies_last(struct sched_entity * se)4553 static void __clear_buddies_last(struct sched_entity *se)
4554 {
4555 	for_each_sched_entity(se) {
4556 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4557 		if (cfs_rq->last != se)
4558 			break;
4559 
4560 		cfs_rq->last = NULL;
4561 	}
4562 }
4563 
__clear_buddies_next(struct sched_entity * se)4564 static void __clear_buddies_next(struct sched_entity *se)
4565 {
4566 	for_each_sched_entity(se) {
4567 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4568 		if (cfs_rq->next != se)
4569 			break;
4570 
4571 		cfs_rq->next = NULL;
4572 	}
4573 }
4574 
__clear_buddies_skip(struct sched_entity * se)4575 static void __clear_buddies_skip(struct sched_entity *se)
4576 {
4577 	for_each_sched_entity(se) {
4578 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
4579 		if (cfs_rq->skip != se)
4580 			break;
4581 
4582 		cfs_rq->skip = NULL;
4583 	}
4584 }
4585 
clear_buddies(struct cfs_rq * cfs_rq,struct sched_entity * se)4586 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
4587 {
4588 	if (cfs_rq->last == se)
4589 		__clear_buddies_last(se);
4590 
4591 	if (cfs_rq->next == se)
4592 		__clear_buddies_next(se);
4593 
4594 	if (cfs_rq->skip == se)
4595 		__clear_buddies_skip(se);
4596 }
4597 
4598 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4599 
4600 static void
dequeue_entity(struct cfs_rq * cfs_rq,struct sched_entity * se,int flags)4601 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4602 {
4603 	/*
4604 	 * Update run-time statistics of the 'current'.
4605 	 */
4606 	update_curr(cfs_rq);
4607 
4608 	/*
4609 	 * When dequeuing a sched_entity, we must:
4610 	 *   - Update loads to have both entity and cfs_rq synced with now.
4611 	 *   - Subtract its load from the cfs_rq->runnable_avg.
4612 	 *   - Subtract its previous weight from cfs_rq->load.weight.
4613 	 *   - For group entity, update its weight to reflect the new share
4614 	 *     of its group cfs_rq.
4615 	 */
4616 	update_load_avg(cfs_rq, se, UPDATE_TG);
4617 	se_update_runnable(se);
4618 
4619 	update_stats_dequeue(cfs_rq, se, flags);
4620 
4621 	clear_buddies(cfs_rq, se);
4622 
4623 	if (se != cfs_rq->curr)
4624 		__dequeue_entity(cfs_rq, se);
4625 	se->on_rq = 0;
4626 	account_entity_dequeue(cfs_rq, se);
4627 
4628 	/*
4629 	 * Normalize after update_curr(); which will also have moved
4630 	 * min_vruntime if @se is the one holding it back. But before doing
4631 	 * update_min_vruntime() again, which will discount @se's position and
4632 	 * can move min_vruntime forward still more.
4633 	 */
4634 	if (!(flags & DEQUEUE_SLEEP))
4635 		se->vruntime -= cfs_rq->min_vruntime;
4636 
4637 	/* return excess runtime on last dequeue */
4638 	return_cfs_rq_runtime(cfs_rq);
4639 
4640 	update_cfs_group(se);
4641 
4642 	/*
4643 	 * Now advance min_vruntime if @se was the entity holding it back,
4644 	 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4645 	 * put back on, and if we advance min_vruntime, we'll be placed back
4646 	 * further than we started -- ie. we'll be penalized.
4647 	 */
4648 	if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4649 		update_min_vruntime(cfs_rq);
4650 }
4651 
4652 /*
4653  * Preempt the current task with a newly woken task if needed:
4654  */
4655 static void
check_preempt_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr)4656 check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4657 {
4658 	unsigned long ideal_runtime, delta_exec;
4659 	struct sched_entity *se;
4660 	s64 delta;
4661 
4662 	ideal_runtime = sched_slice(cfs_rq, curr);
4663 	delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4664 	if (delta_exec > ideal_runtime) {
4665 		resched_curr(rq_of(cfs_rq));
4666 		/*
4667 		 * The current task ran long enough, ensure it doesn't get
4668 		 * re-elected due to buddy favours.
4669 		 */
4670 		clear_buddies(cfs_rq, curr);
4671 		return;
4672 	}
4673 
4674 	/*
4675 	 * Ensure that a task that missed wakeup preemption by a
4676 	 * narrow margin doesn't have to wait for a full slice.
4677 	 * This also mitigates buddy induced latencies under load.
4678 	 */
4679 	if (delta_exec < sysctl_sched_min_granularity)
4680 		return;
4681 
4682 	se = __pick_first_entity(cfs_rq);
4683 	delta = curr->vruntime - se->vruntime;
4684 
4685 	if (delta < 0)
4686 		return;
4687 
4688 	if (delta > ideal_runtime)
4689 		resched_curr(rq_of(cfs_rq));
4690 }
4691 
4692 static void
set_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * se)4693 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4694 {
4695 	/* 'current' is not kept within the tree. */
4696 	if (se->on_rq) {
4697 		/*
4698 		 * Any task has to be enqueued before it get to execute on
4699 		 * a CPU. So account for the time it spent waiting on the
4700 		 * runqueue.
4701 		 */
4702 		update_stats_wait_end(cfs_rq, se);
4703 		__dequeue_entity(cfs_rq, se);
4704 		update_load_avg(cfs_rq, se, UPDATE_TG);
4705 	}
4706 
4707 	update_stats_curr_start(cfs_rq, se);
4708 	cfs_rq->curr = se;
4709 
4710 	/*
4711 	 * Track our maximum slice length, if the CPU's load is at
4712 	 * least twice that of our own weight (i.e. dont track it
4713 	 * when there are only lesser-weight tasks around):
4714 	 */
4715 	if (schedstat_enabled() &&
4716 	    rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
4717 		schedstat_set(se->statistics.slice_max,
4718 			max((u64)schedstat_val(se->statistics.slice_max),
4719 			    se->sum_exec_runtime - se->prev_sum_exec_runtime));
4720 	}
4721 
4722 	se->prev_sum_exec_runtime = se->sum_exec_runtime;
4723 }
4724 
4725 static int
4726 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4727 
4728 /*
4729  * Pick the next process, keeping these things in mind, in this order:
4730  * 1) keep things fair between processes/task groups
4731  * 2) pick the "next" process, since someone really wants that to run
4732  * 3) pick the "last" process, for cache locality
4733  * 4) do not run the "skip" process, if something else is available
4734  */
4735 static struct sched_entity *
pick_next_entity(struct cfs_rq * cfs_rq,struct sched_entity * curr)4736 pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4737 {
4738 	struct sched_entity *left = __pick_first_entity(cfs_rq);
4739 	struct sched_entity *se;
4740 
4741 	/*
4742 	 * If curr is set we have to see if its left of the leftmost entity
4743 	 * still in the tree, provided there was anything in the tree at all.
4744 	 */
4745 	if (!left || (curr && entity_before(curr, left)))
4746 		left = curr;
4747 
4748 	se = left; /* ideally we run the leftmost entity */
4749 
4750 	/*
4751 	 * Avoid running the skip buddy, if running something else can
4752 	 * be done without getting too unfair.
4753 	 */
4754 	if (cfs_rq->skip == se) {
4755 		struct sched_entity *second;
4756 
4757 		if (se == curr) {
4758 			second = __pick_first_entity(cfs_rq);
4759 		} else {
4760 			second = __pick_next_entity(se);
4761 			if (!second || (curr && entity_before(curr, second)))
4762 				second = curr;
4763 		}
4764 
4765 		if (second && wakeup_preempt_entity(second, left) < 1)
4766 			se = second;
4767 	}
4768 
4769 	if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1) {
4770 		/*
4771 		 * Someone really wants this to run. If it's not unfair, run it.
4772 		 */
4773 		se = cfs_rq->next;
4774 	} else if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1) {
4775 		/*
4776 		 * Prefer last buddy, try to return the CPU to a preempted task.
4777 		 */
4778 		se = cfs_rq->last;
4779 	}
4780 
4781 	clear_buddies(cfs_rq, se);
4782 
4783 	return se;
4784 }
4785 
4786 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4787 
put_prev_entity(struct cfs_rq * cfs_rq,struct sched_entity * prev)4788 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4789 {
4790 	/*
4791 	 * If still on the runqueue then deactivate_task()
4792 	 * was not called and update_curr() has to be done:
4793 	 */
4794 	if (prev->on_rq)
4795 		update_curr(cfs_rq);
4796 
4797 	/* throttle cfs_rqs exceeding runtime */
4798 	check_cfs_rq_runtime(cfs_rq);
4799 
4800 	check_spread(cfs_rq, prev);
4801 
4802 	if (prev->on_rq) {
4803 		update_stats_wait_start(cfs_rq, prev);
4804 		/* Put 'current' back into the tree. */
4805 		__enqueue_entity(cfs_rq, prev);
4806 		/* in !on_rq case, update occurred at dequeue */
4807 		update_load_avg(cfs_rq, prev, 0);
4808 	}
4809 	cfs_rq->curr = NULL;
4810 }
4811 
4812 static void
entity_tick(struct cfs_rq * cfs_rq,struct sched_entity * curr,int queued)4813 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4814 {
4815 	/*
4816 	 * Update run-time statistics of the 'current'.
4817 	 */
4818 	update_curr(cfs_rq);
4819 
4820 	/*
4821 	 * Ensure that runnable average is periodically updated.
4822 	 */
4823 	update_load_avg(cfs_rq, curr, UPDATE_TG);
4824 	update_cfs_group(curr);
4825 
4826 #ifdef CONFIG_SCHED_HRTICK
4827 	/*
4828 	 * queued ticks are scheduled to match the slice, so don't bother
4829 	 * validating it and just reschedule.
4830 	 */
4831 	if (queued) {
4832 		resched_curr(rq_of(cfs_rq));
4833 		return;
4834 	}
4835 	/*
4836 	 * don't let the period tick interfere with the hrtick preemption
4837 	 */
4838 	if (!sched_feat(DOUBLE_TICK) &&
4839 			hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4840 		return;
4841 #endif
4842 
4843 	if (cfs_rq->nr_running > 1)
4844 		check_preempt_tick(cfs_rq, curr);
4845 }
4846 
4847 
4848 /**************************************************
4849  * CFS bandwidth control machinery
4850  */
4851 
4852 #ifdef CONFIG_CFS_BANDWIDTH
4853 
4854 #ifdef CONFIG_JUMP_LABEL
4855 static struct static_key __cfs_bandwidth_used;
4856 
cfs_bandwidth_used(void)4857 static inline bool cfs_bandwidth_used(void)
4858 {
4859 	return static_key_false(&__cfs_bandwidth_used);
4860 }
4861 
cfs_bandwidth_usage_inc(void)4862 void cfs_bandwidth_usage_inc(void)
4863 {
4864 	static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4865 }
4866 
cfs_bandwidth_usage_dec(void)4867 void cfs_bandwidth_usage_dec(void)
4868 {
4869 	static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4870 }
4871 #else /* CONFIG_JUMP_LABEL */
cfs_bandwidth_used(void)4872 static bool cfs_bandwidth_used(void)
4873 {
4874 	return true;
4875 }
4876 
cfs_bandwidth_usage_inc(void)4877 void cfs_bandwidth_usage_inc(void) {}
cfs_bandwidth_usage_dec(void)4878 void cfs_bandwidth_usage_dec(void) {}
4879 #endif /* CONFIG_JUMP_LABEL */
4880 
4881 /*
4882  * default period for cfs group bandwidth.
4883  * default: 0.1s, units: nanoseconds
4884  */
default_cfs_period(void)4885 static inline u64 default_cfs_period(void)
4886 {
4887 	return 100000000ULL;
4888 }
4889 
sched_cfs_bandwidth_slice(void)4890 static inline u64 sched_cfs_bandwidth_slice(void)
4891 {
4892 	return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4893 }
4894 
4895 /*
4896  * Replenish runtime according to assigned quota. We use sched_clock_cpu
4897  * directly instead of rq->clock to avoid adding additional synchronization
4898  * around rq->lock.
4899  *
4900  * requires cfs_b->lock
4901  */
__refill_cfs_bandwidth_runtime(struct cfs_bandwidth * cfs_b)4902 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4903 {
4904 	if (cfs_b->quota != RUNTIME_INF)
4905 		cfs_b->runtime = cfs_b->quota;
4906 }
4907 
tg_cfs_bandwidth(struct task_group * tg)4908 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4909 {
4910 	return &tg->cfs_bandwidth;
4911 }
4912 
4913 /* returns 0 on failure to allocate runtime */
__assign_cfs_rq_runtime(struct cfs_bandwidth * cfs_b,struct cfs_rq * cfs_rq,u64 target_runtime)4914 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
4915 				   struct cfs_rq *cfs_rq, u64 target_runtime)
4916 {
4917 	u64 min_amount, amount = 0;
4918 
4919 	lockdep_assert_held(&cfs_b->lock);
4920 
4921 	/* note: this is a positive sum as runtime_remaining <= 0 */
4922 	min_amount = target_runtime - cfs_rq->runtime_remaining;
4923 
4924 	if (cfs_b->quota == RUNTIME_INF)
4925 		amount = min_amount;
4926 	else {
4927 		start_cfs_bandwidth(cfs_b);
4928 
4929 		if (cfs_b->runtime > 0) {
4930 			amount = min(cfs_b->runtime, min_amount);
4931 			cfs_b->runtime -= amount;
4932 			cfs_b->idle = 0;
4933 		}
4934 	}
4935 
4936 	cfs_rq->runtime_remaining += amount;
4937 
4938 	return cfs_rq->runtime_remaining > 0;
4939 }
4940 
4941 /* returns 0 on failure to allocate runtime */
assign_cfs_rq_runtime(struct cfs_rq * cfs_rq)4942 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4943 {
4944 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4945 	int ret;
4946 
4947 	raw_spin_lock(&cfs_b->lock);
4948 	ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
4949 	raw_spin_unlock(&cfs_b->lock);
4950 
4951 	return ret;
4952 }
4953 
__account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4954 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4955 {
4956 	/* dock delta_exec before expiring quota (as it could span periods) */
4957 	cfs_rq->runtime_remaining -= delta_exec;
4958 
4959 	if (likely(cfs_rq->runtime_remaining > 0))
4960 		return;
4961 
4962 	if (cfs_rq->throttled)
4963 		return;
4964 	/*
4965 	 * if we're unable to extend our runtime we resched so that the active
4966 	 * hierarchy can be throttled
4967 	 */
4968 	if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4969 		resched_curr(rq_of(cfs_rq));
4970 }
4971 
4972 static __always_inline
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)4973 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4974 {
4975 	if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4976 		return;
4977 
4978 	__account_cfs_rq_runtime(cfs_rq, delta_exec);
4979 }
4980 
cfs_rq_throttled(struct cfs_rq * cfs_rq)4981 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4982 {
4983 	return cfs_bandwidth_used() && cfs_rq->throttled;
4984 }
4985 
4986 /* check whether cfs_rq, or any parent, is throttled */
throttled_hierarchy(struct cfs_rq * cfs_rq)4987 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4988 {
4989 	return cfs_bandwidth_used() && cfs_rq->throttle_count;
4990 }
4991 
4992 /*
4993  * Ensure that neither of the group entities corresponding to src_cpu or
4994  * dest_cpu are members of a throttled hierarchy when performing group
4995  * load-balance operations.
4996  */
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)4997 static inline int throttled_lb_pair(struct task_group *tg,
4998 				    int src_cpu, int dest_cpu)
4999 {
5000 	struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5001 
5002 	src_cfs_rq = tg->cfs_rq[src_cpu];
5003 	dest_cfs_rq = tg->cfs_rq[dest_cpu];
5004 
5005 	return throttled_hierarchy(src_cfs_rq) ||
5006 	       throttled_hierarchy(dest_cfs_rq);
5007 }
5008 
tg_unthrottle_up(struct task_group * tg,void * data)5009 static int tg_unthrottle_up(struct task_group *tg, void *data)
5010 {
5011 	struct rq *rq = data;
5012 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5013 
5014 	cfs_rq->throttle_count--;
5015 	if (!cfs_rq->throttle_count) {
5016 		cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5017 					     cfs_rq->throttled_clock_pelt;
5018 
5019 		/* Add cfs_rq with already running entity in the list */
5020 		if (cfs_rq->nr_running >= 1)
5021 			list_add_leaf_cfs_rq(cfs_rq);
5022 	}
5023 
5024 	return 0;
5025 }
5026 
tg_throttle_down(struct task_group * tg,void * data)5027 static int tg_throttle_down(struct task_group *tg, void *data)
5028 {
5029 	struct rq *rq = data;
5030 	struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5031 
5032 	/* group is entering throttled state, stop time */
5033 	if (!cfs_rq->throttle_count) {
5034 		cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5035 		list_del_leaf_cfs_rq(cfs_rq);
5036 	}
5037 	cfs_rq->throttle_count++;
5038 
5039 	return 0;
5040 }
5041 
throttle_cfs_rq(struct cfs_rq * cfs_rq)5042 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5043 {
5044 	struct rq *rq = rq_of(cfs_rq);
5045 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5046 	struct sched_entity *se;
5047 	long task_delta, idle_task_delta, dequeue = 1;
5048 
5049 	raw_spin_lock(&cfs_b->lock);
5050 	/* This will start the period timer if necessary */
5051 	if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5052 		/*
5053 		 * We have raced with bandwidth becoming available, and if we
5054 		 * actually throttled the timer might not unthrottle us for an
5055 		 * entire period. We additionally needed to make sure that any
5056 		 * subsequent check_cfs_rq_runtime calls agree not to throttle
5057 		 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5058 		 * for 1ns of runtime rather than just check cfs_b.
5059 		 */
5060 		dequeue = 0;
5061 	} else {
5062 		list_add_tail_rcu(&cfs_rq->throttled_list,
5063 				  &cfs_b->throttled_cfs_rq);
5064 	}
5065 	raw_spin_unlock(&cfs_b->lock);
5066 
5067 	if (!dequeue)
5068 		return false;  /* Throttle no longer required. */
5069 
5070 	se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5071 
5072 	/* freeze hierarchy runnable averages while throttled */
5073 	rcu_read_lock();
5074 	walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5075 	rcu_read_unlock();
5076 
5077 	task_delta = cfs_rq->h_nr_running;
5078 	idle_task_delta = cfs_rq->idle_h_nr_running;
5079 	for_each_sched_entity(se) {
5080 		struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5081 		/* throttled entity or throttle-on-deactivate */
5082 		if (!se->on_rq)
5083 			break;
5084 
5085 		if (dequeue) {
5086 			dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
5087 		} else {
5088 			update_load_avg(qcfs_rq, se, 0);
5089 			se_update_runnable(se);
5090 		}
5091 
5092 		qcfs_rq->h_nr_running -= task_delta;
5093 		qcfs_rq->idle_h_nr_running -= idle_task_delta;
5094 		walt_dec_throttled_cfs_rq_stats(&qcfs_rq->walt_stats, cfs_rq);
5095 
5096 		if (qcfs_rq->load.weight)
5097 			dequeue = 0;
5098 	}
5099 
5100 	if (!se) {
5101 		sub_nr_running(rq, task_delta);
5102 		walt_dec_throttled_cfs_rq_stats(&rq->walt_stats, cfs_rq);
5103 	}
5104 
5105 	/*
5106 	 * Note: distribution will already see us throttled via the
5107 	 * throttled-list.  rq->lock protects completion.
5108 	 */
5109 	cfs_rq->throttled = 1;
5110 	cfs_rq->throttled_clock = rq_clock(rq);
5111 	return true;
5112 }
5113 
unthrottle_cfs_rq(struct cfs_rq * cfs_rq)5114 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
5115 {
5116 	struct rq *rq = rq_of(cfs_rq);
5117 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5118 	struct sched_entity *se;
5119 	long task_delta, idle_task_delta;
5120 	struct cfs_rq *tcfs_rq __maybe_unused = cfs_rq;
5121 
5122 	se = cfs_rq->tg->se[cpu_of(rq)];
5123 
5124 	cfs_rq->throttled = 0;
5125 
5126 	update_rq_clock(rq);
5127 
5128 	raw_spin_lock(&cfs_b->lock);
5129 	cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
5130 	list_del_rcu(&cfs_rq->throttled_list);
5131 	raw_spin_unlock(&cfs_b->lock);
5132 
5133 	/* update hierarchical throttle state */
5134 	walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
5135 
5136 	if (!cfs_rq->load.weight)
5137 		return;
5138 
5139 	task_delta = cfs_rq->h_nr_running;
5140 	idle_task_delta = cfs_rq->idle_h_nr_running;
5141 	for_each_sched_entity(se) {
5142 		if (se->on_rq)
5143 			break;
5144 		cfs_rq = cfs_rq_of(se);
5145 		enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
5146 
5147 		cfs_rq->h_nr_running += task_delta;
5148 		cfs_rq->idle_h_nr_running += idle_task_delta;
5149 		walt_inc_throttled_cfs_rq_stats(&cfs_rq->walt_stats, tcfs_rq);
5150 
5151 		/* end evaluation on encountering a throttled cfs_rq */
5152 		if (cfs_rq_throttled(cfs_rq))
5153 			goto unthrottle_throttle;
5154 	}
5155 
5156 	for_each_sched_entity(se) {
5157 		cfs_rq = cfs_rq_of(se);
5158 
5159 		update_load_avg(cfs_rq, se, UPDATE_TG);
5160 		se_update_runnable(se);
5161 
5162 		cfs_rq->h_nr_running += task_delta;
5163 		cfs_rq->idle_h_nr_running += idle_task_delta;
5164 		walt_inc_throttled_cfs_rq_stats(&cfs_rq->walt_stats, tcfs_rq);
5165 
5166 		/* end evaluation on encountering a throttled cfs_rq */
5167 		if (cfs_rq_throttled(cfs_rq))
5168 			goto unthrottle_throttle;
5169 
5170 		/*
5171 		 * One parent has been throttled and cfs_rq removed from the
5172 		 * list. Add it back to not break the leaf list.
5173 		 */
5174 		if (throttled_hierarchy(cfs_rq))
5175 			list_add_leaf_cfs_rq(cfs_rq);
5176 	}
5177 
5178 	/* At this point se is NULL and we are at root level*/
5179 	add_nr_running(rq, task_delta);
5180 	walt_inc_throttled_cfs_rq_stats(&rq->walt_stats, tcfs_rq);
5181 
5182 unthrottle_throttle:
5183 	/*
5184 	 * The cfs_rq_throttled() breaks in the above iteration can result in
5185 	 * incomplete leaf list maintenance, resulting in triggering the
5186 	 * assertion below.
5187 	 */
5188 	for_each_sched_entity(se) {
5189 		cfs_rq = cfs_rq_of(se);
5190 
5191 		if (list_add_leaf_cfs_rq(cfs_rq))
5192 			break;
5193 	}
5194 
5195 	assert_list_leaf_cfs_rq(rq);
5196 
5197 	/* Determine whether we need to wake up potentially idle CPU: */
5198 	if (rq->curr == rq->idle && rq->cfs.nr_running)
5199 		resched_curr(rq);
5200 }
5201 
distribute_cfs_runtime(struct cfs_bandwidth * cfs_b)5202 static void distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
5203 {
5204 	struct cfs_rq *cfs_rq;
5205 	u64 runtime, remaining = 1;
5206 
5207 	rcu_read_lock();
5208 	list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
5209 				throttled_list) {
5210 		struct rq *rq = rq_of(cfs_rq);
5211 		struct rq_flags rf;
5212 
5213 		rq_lock_irqsave(rq, &rf);
5214 		if (!cfs_rq_throttled(cfs_rq))
5215 			goto next;
5216 
5217 		/* By the above check, this should never be true */
5218 		SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
5219 
5220 		raw_spin_lock(&cfs_b->lock);
5221 		runtime = -cfs_rq->runtime_remaining + 1;
5222 		if (runtime > cfs_b->runtime)
5223 			runtime = cfs_b->runtime;
5224 		cfs_b->runtime -= runtime;
5225 		remaining = cfs_b->runtime;
5226 		raw_spin_unlock(&cfs_b->lock);
5227 
5228 		cfs_rq->runtime_remaining += runtime;
5229 
5230 		/* we check whether we're throttled above */
5231 		if (cfs_rq->runtime_remaining > 0)
5232 			unthrottle_cfs_rq(cfs_rq);
5233 
5234 next:
5235 		rq_unlock_irqrestore(rq, &rf);
5236 
5237 		if (!remaining)
5238 			break;
5239 	}
5240 	rcu_read_unlock();
5241 }
5242 
5243 /*
5244  * Responsible for refilling a task_group's bandwidth and unthrottling its
5245  * cfs_rqs as appropriate. If there has been no activity within the last
5246  * period the timer is deactivated until scheduling resumes; cfs_b->idle is
5247  * used to track this state.
5248  */
do_sched_cfs_period_timer(struct cfs_bandwidth * cfs_b,int overrun,unsigned long flags)5249 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
5250 {
5251 	int throttled;
5252 
5253 	/* no need to continue the timer with no bandwidth constraint */
5254 	if (cfs_b->quota == RUNTIME_INF)
5255 		goto out_deactivate;
5256 
5257 	throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5258 	cfs_b->nr_periods += overrun;
5259 
5260 	/*
5261 	 * idle depends on !throttled (for the case of a large deficit), and if
5262 	 * we're going inactive then everything else can be deferred
5263 	 */
5264 	if (cfs_b->idle && !throttled)
5265 		goto out_deactivate;
5266 
5267 	__refill_cfs_bandwidth_runtime(cfs_b);
5268 
5269 	if (!throttled) {
5270 		/* mark as potentially idle for the upcoming period */
5271 		cfs_b->idle = 1;
5272 		return 0;
5273 	}
5274 
5275 	/* account preceding periods in which throttling occurred */
5276 	cfs_b->nr_throttled += overrun;
5277 
5278 	/*
5279 	 * This check is repeated as we release cfs_b->lock while we unthrottle.
5280 	 */
5281 	while (throttled && cfs_b->runtime > 0) {
5282 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5283 		/* we can't nest cfs_b->lock while distributing bandwidth */
5284 		distribute_cfs_runtime(cfs_b);
5285 		raw_spin_lock_irqsave(&cfs_b->lock, flags);
5286 
5287 		throttled = !list_empty(&cfs_b->throttled_cfs_rq);
5288 	}
5289 
5290 	/*
5291 	 * While we are ensured activity in the period following an
5292 	 * unthrottle, this also covers the case in which the new bandwidth is
5293 	 * insufficient to cover the existing bandwidth deficit.  (Forcing the
5294 	 * timer to remain active while there are any throttled entities.)
5295 	 */
5296 	cfs_b->idle = 0;
5297 
5298 	return 0;
5299 
5300 out_deactivate:
5301 	return 1;
5302 }
5303 
5304 /* a cfs_rq won't donate quota below this amount */
5305 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
5306 /* minimum remaining period time to redistribute slack quota */
5307 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
5308 /* how long we wait to gather additional slack before distributing */
5309 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
5310 
5311 /*
5312  * Are we near the end of the current quota period?
5313  *
5314  * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
5315  * hrtimer base being cleared by hrtimer_start. In the case of
5316  * migrate_hrtimers, base is never cleared, so we are fine.
5317  */
runtime_refresh_within(struct cfs_bandwidth * cfs_b,u64 min_expire)5318 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
5319 {
5320 	struct hrtimer *refresh_timer = &cfs_b->period_timer;
5321 	s64 remaining;
5322 
5323 	/* if the call-back is running a quota refresh is already occurring */
5324 	if (hrtimer_callback_running(refresh_timer))
5325 		return 1;
5326 
5327 	/* is a quota refresh about to occur? */
5328 	remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
5329 	if (remaining < (s64)min_expire)
5330 		return 1;
5331 
5332 	return 0;
5333 }
5334 
start_cfs_slack_bandwidth(struct cfs_bandwidth * cfs_b)5335 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
5336 {
5337 	u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
5338 
5339 	/* if there's a quota refresh soon don't bother with slack */
5340 	if (runtime_refresh_within(cfs_b, min_left))
5341 		return;
5342 
5343 	/* don't push forwards an existing deferred unthrottle */
5344 	if (cfs_b->slack_started)
5345 		return;
5346 	cfs_b->slack_started = true;
5347 
5348 	hrtimer_start(&cfs_b->slack_timer,
5349 			ns_to_ktime(cfs_bandwidth_slack_period),
5350 			HRTIMER_MODE_REL);
5351 }
5352 
5353 /* we know any runtime found here is valid as update_curr() precedes return */
__return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5354 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5355 {
5356 	struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5357 	s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
5358 
5359 	if (slack_runtime <= 0)
5360 		return;
5361 
5362 	raw_spin_lock(&cfs_b->lock);
5363 	if (cfs_b->quota != RUNTIME_INF) {
5364 		cfs_b->runtime += slack_runtime;
5365 
5366 		/* we are under rq->lock, defer unthrottling using a timer */
5367 		if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
5368 		    !list_empty(&cfs_b->throttled_cfs_rq))
5369 			start_cfs_slack_bandwidth(cfs_b);
5370 	}
5371 	raw_spin_unlock(&cfs_b->lock);
5372 
5373 	/* even if it's not valid for return we don't want to try again */
5374 	cfs_rq->runtime_remaining -= slack_runtime;
5375 }
5376 
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5377 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5378 {
5379 	if (!cfs_bandwidth_used())
5380 		return;
5381 
5382 	if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
5383 		return;
5384 
5385 	__return_cfs_rq_runtime(cfs_rq);
5386 }
5387 
5388 /*
5389  * This is done with a timer (instead of inline with bandwidth return) since
5390  * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
5391  */
do_sched_cfs_slack_timer(struct cfs_bandwidth * cfs_b)5392 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
5393 {
5394 	u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
5395 	unsigned long flags;
5396 
5397 	/* confirm we're still not at a refresh boundary */
5398 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5399 	cfs_b->slack_started = false;
5400 
5401 	if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
5402 		raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5403 		return;
5404 	}
5405 
5406 	if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
5407 		runtime = cfs_b->runtime;
5408 
5409 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5410 
5411 	if (!runtime)
5412 		return;
5413 
5414 	distribute_cfs_runtime(cfs_b);
5415 
5416 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5417 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5418 }
5419 
5420 /*
5421  * When a group wakes up we want to make sure that its quota is not already
5422  * expired/exceeded, otherwise it may be allowed to steal additional ticks of
5423  * runtime as update_curr() throttling can not trigger until it's on-rq.
5424  */
check_enqueue_throttle(struct cfs_rq * cfs_rq)5425 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
5426 {
5427 	if (!cfs_bandwidth_used())
5428 		return;
5429 
5430 	/* an active group must be handled by the update_curr()->put() path */
5431 	if (!cfs_rq->runtime_enabled || cfs_rq->curr)
5432 		return;
5433 
5434 	/* ensure the group is not already throttled */
5435 	if (cfs_rq_throttled(cfs_rq))
5436 		return;
5437 
5438 	/* update runtime allocation */
5439 	account_cfs_rq_runtime(cfs_rq, 0);
5440 	if (cfs_rq->runtime_remaining <= 0)
5441 		throttle_cfs_rq(cfs_rq);
5442 }
5443 
sync_throttle(struct task_group * tg,int cpu)5444 static void sync_throttle(struct task_group *tg, int cpu)
5445 {
5446 	struct cfs_rq *pcfs_rq, *cfs_rq;
5447 
5448 	if (!cfs_bandwidth_used())
5449 		return;
5450 
5451 	if (!tg->parent)
5452 		return;
5453 
5454 	cfs_rq = tg->cfs_rq[cpu];
5455 	pcfs_rq = tg->parent->cfs_rq[cpu];
5456 
5457 	cfs_rq->throttle_count = pcfs_rq->throttle_count;
5458 	cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
5459 }
5460 
5461 /* conditionally throttle active cfs_rq's from put_prev_entity() */
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5462 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5463 {
5464 	if (!cfs_bandwidth_used())
5465 		return false;
5466 
5467 	if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
5468 		return false;
5469 
5470 	/*
5471 	 * it's possible for a throttled entity to be forced into a running
5472 	 * state (e.g. set_curr_task), in this case we're finished.
5473 	 */
5474 	if (cfs_rq_throttled(cfs_rq))
5475 		return true;
5476 
5477 	return throttle_cfs_rq(cfs_rq);
5478 }
5479 
sched_cfs_slack_timer(struct hrtimer * timer)5480 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
5481 {
5482 	struct cfs_bandwidth *cfs_b =
5483 		container_of(timer, struct cfs_bandwidth, slack_timer);
5484 
5485 	do_sched_cfs_slack_timer(cfs_b);
5486 
5487 	return HRTIMER_NORESTART;
5488 }
5489 
5490 extern const u64 max_cfs_quota_period;
5491 
sched_cfs_period_timer(struct hrtimer * timer)5492 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
5493 {
5494 	struct cfs_bandwidth *cfs_b =
5495 		container_of(timer, struct cfs_bandwidth, period_timer);
5496 	unsigned long flags;
5497 	int overrun;
5498 	int idle = 0;
5499 	int count = 0;
5500 
5501 	raw_spin_lock_irqsave(&cfs_b->lock, flags);
5502 	for (;;) {
5503 		overrun = hrtimer_forward_now(timer, cfs_b->period);
5504 		if (!overrun)
5505 			break;
5506 
5507 		idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
5508 
5509 		if (++count > 3) {
5510 			u64 new, old = ktime_to_ns(cfs_b->period);
5511 
5512 			/*
5513 			 * Grow period by a factor of 2 to avoid losing precision.
5514 			 * Precision loss in the quota/period ratio can cause __cfs_schedulable
5515 			 * to fail.
5516 			 */
5517 			new = old * 2;
5518 			if (new < max_cfs_quota_period) {
5519 				cfs_b->period = ns_to_ktime(new);
5520 				cfs_b->quota *= 2;
5521 
5522 				pr_warn_ratelimited(
5523 	"cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5524 					smp_processor_id(),
5525 					div_u64(new, NSEC_PER_USEC),
5526 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5527 			} else {
5528 				pr_warn_ratelimited(
5529 	"cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
5530 					smp_processor_id(),
5531 					div_u64(old, NSEC_PER_USEC),
5532 					div_u64(cfs_b->quota, NSEC_PER_USEC));
5533 			}
5534 
5535 			/* reset count so we don't come right back in here */
5536 			count = 0;
5537 		}
5538 	}
5539 	if (idle)
5540 		cfs_b->period_active = 0;
5541 	raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
5542 
5543 	return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
5544 }
5545 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5546 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5547 {
5548 	raw_spin_lock_init(&cfs_b->lock);
5549 	cfs_b->runtime = 0;
5550 	cfs_b->quota = RUNTIME_INF;
5551 	cfs_b->period = ns_to_ktime(default_cfs_period());
5552 
5553 	INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
5554 	hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
5555 	cfs_b->period_timer.function = sched_cfs_period_timer;
5556 	hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5557 	cfs_b->slack_timer.function = sched_cfs_slack_timer;
5558 	cfs_b->slack_started = false;
5559 }
5560 
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5561 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5562 {
5563 	cfs_rq->runtime_enabled = 0;
5564 	INIT_LIST_HEAD(&cfs_rq->throttled_list);
5565 	walt_init_cfs_rq_stats(cfs_rq);
5566 }
5567 
start_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5568 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5569 {
5570 	lockdep_assert_held(&cfs_b->lock);
5571 
5572 	if (cfs_b->period_active)
5573 		return;
5574 
5575 	cfs_b->period_active = 1;
5576 	hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
5577 	hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
5578 }
5579 
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5580 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
5581 {
5582 	/* init_cfs_bandwidth() was not called */
5583 	if (!cfs_b->throttled_cfs_rq.next)
5584 		return;
5585 
5586 	hrtimer_cancel(&cfs_b->period_timer);
5587 	hrtimer_cancel(&cfs_b->slack_timer);
5588 }
5589 
5590 /*
5591  * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
5592  *
5593  * The race is harmless, since modifying bandwidth settings of unhooked group
5594  * bits doesn't do much.
5595  */
5596 
5597 /* cpu online calback */
update_runtime_enabled(struct rq * rq)5598 static void __maybe_unused update_runtime_enabled(struct rq *rq)
5599 {
5600 	struct task_group *tg;
5601 
5602 	lockdep_assert_held(&rq->lock);
5603 
5604 	rcu_read_lock();
5605 	list_for_each_entry_rcu(tg, &task_groups, list) {
5606 		struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
5607 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5608 
5609 		raw_spin_lock(&cfs_b->lock);
5610 		cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
5611 		raw_spin_unlock(&cfs_b->lock);
5612 	}
5613 	rcu_read_unlock();
5614 }
5615 
5616 /* cpu offline callback */
unthrottle_offline_cfs_rqs(struct rq * rq)5617 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
5618 {
5619 	struct task_group *tg;
5620 
5621 	lockdep_assert_held(&rq->lock);
5622 
5623 	rcu_read_lock();
5624 	list_for_each_entry_rcu(tg, &task_groups, list) {
5625 		struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5626 
5627 		if (!cfs_rq->runtime_enabled)
5628 			continue;
5629 
5630 		/*
5631 		 * clock_task is not advancing so we just need to make sure
5632 		 * there's some valid quota amount
5633 		 */
5634 		cfs_rq->runtime_remaining = 1;
5635 		/*
5636 		 * Offline rq is schedulable till CPU is completely disabled
5637 		 * in take_cpu_down(), so we prevent new cfs throttling here.
5638 		 */
5639 		cfs_rq->runtime_enabled = 0;
5640 
5641 		if (cfs_rq_throttled(cfs_rq))
5642 			unthrottle_cfs_rq(cfs_rq);
5643 	}
5644 	rcu_read_unlock();
5645 }
5646 
5647 #else /* CONFIG_CFS_BANDWIDTH */
5648 
cfs_bandwidth_used(void)5649 static inline bool cfs_bandwidth_used(void)
5650 {
5651 	return false;
5652 }
5653 
account_cfs_rq_runtime(struct cfs_rq * cfs_rq,u64 delta_exec)5654 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
check_cfs_rq_runtime(struct cfs_rq * cfs_rq)5655 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
check_enqueue_throttle(struct cfs_rq * cfs_rq)5656 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
sync_throttle(struct task_group * tg,int cpu)5657 static inline void sync_throttle(struct task_group *tg, int cpu) {}
return_cfs_rq_runtime(struct cfs_rq * cfs_rq)5658 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5659 
cfs_rq_throttled(struct cfs_rq * cfs_rq)5660 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5661 {
5662 	return 0;
5663 }
5664 
throttled_hierarchy(struct cfs_rq * cfs_rq)5665 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5666 {
5667 	return 0;
5668 }
5669 
throttled_lb_pair(struct task_group * tg,int src_cpu,int dest_cpu)5670 static inline int throttled_lb_pair(struct task_group *tg,
5671 				    int src_cpu, int dest_cpu)
5672 {
5673 	return 0;
5674 }
5675 
init_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5676 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5677 
5678 #ifdef CONFIG_FAIR_GROUP_SCHED
init_cfs_rq_runtime(struct cfs_rq * cfs_rq)5679 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5680 #endif
5681 
tg_cfs_bandwidth(struct task_group * tg)5682 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5683 {
5684 	return NULL;
5685 }
destroy_cfs_bandwidth(struct cfs_bandwidth * cfs_b)5686 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
update_runtime_enabled(struct rq * rq)5687 static inline void update_runtime_enabled(struct rq *rq) {}
unthrottle_offline_cfs_rqs(struct rq * rq)5688 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5689 
5690 #endif /* CONFIG_CFS_BANDWIDTH */
5691 
5692 /**************************************************
5693  * CFS operations on tasks:
5694  */
5695 
5696 #ifdef CONFIG_SCHED_HRTICK
hrtick_start_fair(struct rq * rq,struct task_struct * p)5697 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5698 {
5699 	struct sched_entity *se = &p->se;
5700 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
5701 
5702 	SCHED_WARN_ON(task_rq(p) != rq);
5703 
5704 	if (rq->cfs.h_nr_running > 1) {
5705 		u64 slice = sched_slice(cfs_rq, se);
5706 		u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5707 		s64 delta = slice - ran;
5708 
5709 		if (delta < 0) {
5710 			if (rq->curr == p)
5711 				resched_curr(rq);
5712 			return;
5713 		}
5714 		hrtick_start(rq, delta);
5715 	}
5716 }
5717 
5718 /*
5719  * called from enqueue/dequeue and updates the hrtick when the
5720  * current task is from our class and nr_running is low enough
5721  * to matter.
5722  */
hrtick_update(struct rq * rq)5723 static void hrtick_update(struct rq *rq)
5724 {
5725 	struct task_struct *curr = rq->curr;
5726 
5727 	if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5728 		return;
5729 
5730 	if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5731 		hrtick_start_fair(rq, curr);
5732 }
5733 #else /* !CONFIG_SCHED_HRTICK */
5734 static inline void
hrtick_start_fair(struct rq * rq,struct task_struct * p)5735 hrtick_start_fair(struct rq *rq, struct task_struct *p)
5736 {
5737 }
5738 
hrtick_update(struct rq * rq)5739 static inline void hrtick_update(struct rq *rq)
5740 {
5741 }
5742 #endif
5743 
5744 #ifdef CONFIG_SMP
cpu_overutilized(int cpu)5745 static inline bool cpu_overutilized(int cpu)
5746 {
5747 	unsigned long rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
5748 	unsigned long rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
5749 
5750 	return !util_fits_cpu(cpu_util(cpu), rq_util_min, rq_util_max, cpu);
5751 }
5752 
update_overutilized_status(struct rq * rq)5753 static inline void update_overutilized_status(struct rq *rq)
5754 {
5755 	if (!READ_ONCE(rq->rd->overutilized) && cpu_overutilized(rq->cpu)) {
5756 		WRITE_ONCE(rq->rd->overutilized, SG_OVERUTILIZED);
5757 		trace_sched_overutilized_tp(rq->rd, SG_OVERUTILIZED);
5758 	}
5759 }
5760 #else
update_overutilized_status(struct rq * rq)5761 static inline void update_overutilized_status(struct rq *rq) { }
5762 #endif
5763 
5764 /* Runqueue only has SCHED_IDLE tasks enqueued */
sched_idle_rq(struct rq * rq)5765 static int sched_idle_rq(struct rq *rq)
5766 {
5767 	return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
5768 			rq->nr_running);
5769 }
5770 
5771 #ifdef CONFIG_SMP
sched_idle_cpu(int cpu)5772 static int sched_idle_cpu(int cpu)
5773 {
5774 	return sched_idle_rq(cpu_rq(cpu));
5775 }
5776 #endif
5777 
5778 static void set_next_buddy(struct sched_entity *se);
5779 
5780 #ifdef CONFIG_SCHED_LATENCY_NICE
check_preempt_from_idle(struct cfs_rq * cfs,struct sched_entity * se)5781 static void check_preempt_from_idle(struct cfs_rq *cfs, struct sched_entity *se)
5782 {
5783 	struct sched_entity *next;
5784 
5785 	if (se->latency_weight <= 0)
5786 		return;
5787 
5788 	if (cfs->nr_running <= 1)
5789 		return;
5790 	/*
5791 	 * When waking from idle, we don't need to check to preempt at wakeup
5792 	 * the idle thread and don't set next buddy as a candidate for being
5793 	 * picked in priority.
5794 	 * In case of simultaneous wakeup from idle, the latency sensitive tasks
5795 	 * lost opportunity to preempt non sensitive tasks which woke up
5796 	 * simultaneously.
5797 	 */
5798 
5799 	if (cfs->next)
5800 		next = cfs->next;
5801 	else
5802 		next = __pick_first_entity(cfs);
5803 
5804 	if (next && wakeup_preempt_entity(next, se) == 1)
5805 		set_next_buddy(se);
5806 }
5807 #endif
5808 
5809 /*
5810  * The enqueue_task method is called before nr_running is
5811  * increased. Here we update the fair scheduling stats and
5812  * then put the task into the rbtree:
5813  */
5814 static void
enqueue_task_fair(struct rq * rq,struct task_struct * p,int flags)5815 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5816 {
5817 	struct cfs_rq *cfs_rq;
5818 	struct sched_entity *se = &p->se;
5819 	int idle_h_nr_running = task_has_idle_policy(p);
5820 	int task_new = !(flags & ENQUEUE_WAKEUP);
5821 
5822 	/*
5823 	 * The code below (indirectly) updates schedutil which looks at
5824 	 * the cfs_rq utilization to select a frequency.
5825 	 * Let's add the task's estimated utilization to the cfs_rq's
5826 	 * estimated utilization, before we update schedutil.
5827 	 */
5828 	util_est_enqueue(&rq->cfs, p);
5829 
5830 	/*
5831 	 * If in_iowait is set, the code below may not trigger any cpufreq
5832 	 * utilization updates, so do it here explicitly with the IOWAIT flag
5833 	 * passed.
5834 	 */
5835 	if (p->in_iowait)
5836 		cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5837 
5838 	for_each_sched_entity(se) {
5839 		if (se->on_rq)
5840 			break;
5841 		cfs_rq = cfs_rq_of(se);
5842 		enqueue_entity(cfs_rq, se, flags);
5843 
5844 		cfs_rq->h_nr_running++;
5845 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5846 		walt_inc_cfs_rq_stats(cfs_rq, p);
5847 
5848 		/* end evaluation on encountering a throttled cfs_rq */
5849 		if (cfs_rq_throttled(cfs_rq))
5850 			goto enqueue_throttle;
5851 
5852 		flags = ENQUEUE_WAKEUP;
5853 	}
5854 
5855 	for_each_sched_entity(se) {
5856 		cfs_rq = cfs_rq_of(se);
5857 
5858 		update_load_avg(cfs_rq, se, UPDATE_TG);
5859 		se_update_runnable(se);
5860 		update_cfs_group(se);
5861 
5862 		cfs_rq->h_nr_running++;
5863 		cfs_rq->idle_h_nr_running += idle_h_nr_running;
5864 		walt_inc_cfs_rq_stats(cfs_rq, p);
5865 
5866 		/* end evaluation on encountering a throttled cfs_rq */
5867 		if (cfs_rq_throttled(cfs_rq))
5868 			goto enqueue_throttle;
5869 
5870                /*
5871                 * One parent has been throttled and cfs_rq removed from the
5872                 * list. Add it back to not break the leaf list.
5873                 */
5874                if (throttled_hierarchy(cfs_rq))
5875                        list_add_leaf_cfs_rq(cfs_rq);
5876 	}
5877 
5878 	/* At this point se is NULL and we are at root level*/
5879 	add_nr_running(rq, 1);
5880 	inc_rq_walt_stats(rq, p);
5881 	/*
5882 	 * Since new tasks are assigned an initial util_avg equal to
5883 	 * half of the spare capacity of their CPU, tiny tasks have the
5884 	 * ability to cross the overutilized threshold, which will
5885 	 * result in the load balancer ruining all the task placement
5886 	 * done by EAS. As a way to mitigate that effect, do not account
5887 	 * for the first enqueue operation of new tasks during the
5888 	 * overutilized flag detection.
5889 	 *
5890 	 * A better way of solving this problem would be to wait for
5891 	 * the PELT signals of tasks to converge before taking them
5892 	 * into account, but that is not straightforward to implement,
5893 	 * and the following generally works well enough in practice.
5894 	 */
5895 	if (!task_new)
5896 		update_overutilized_status(rq);
5897 
5898 #ifdef CONFIG_SCHED_LATENCY_NICE
5899 	if (rq->curr == rq->idle)
5900 		check_preempt_from_idle(cfs_rq_of(&p->se), &p->se);
5901 #endif
5902 
5903 enqueue_throttle:
5904 	if (cfs_bandwidth_used()) {
5905 		/*
5906 		 * When bandwidth control is enabled; the cfs_rq_throttled()
5907 		 * breaks in the above iteration can result in incomplete
5908 		 * leaf list maintenance, resulting in triggering the assertion
5909 		 * below.
5910 		 */
5911 		for_each_sched_entity(se) {
5912 			cfs_rq = cfs_rq_of(se);
5913 
5914 			if (list_add_leaf_cfs_rq(cfs_rq))
5915 				break;
5916 		}
5917 	}
5918 
5919 	assert_list_leaf_cfs_rq(rq);
5920 
5921 	hrtick_update(rq);
5922 }
5923 
5924 /*
5925  * The dequeue_task method is called before nr_running is
5926  * decreased. We remove the task from the rbtree and
5927  * update the fair scheduling stats:
5928  */
dequeue_task_fair(struct rq * rq,struct task_struct * p,int flags)5929 static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5930 {
5931 	struct cfs_rq *cfs_rq;
5932 	struct sched_entity *se = &p->se;
5933 	int task_sleep = flags & DEQUEUE_SLEEP;
5934 	int idle_h_nr_running = task_has_idle_policy(p);
5935 	bool was_sched_idle = sched_idle_rq(rq);
5936 
5937 	util_est_dequeue(&rq->cfs, p);
5938 
5939 	for_each_sched_entity(se) {
5940 		cfs_rq = cfs_rq_of(se);
5941 		dequeue_entity(cfs_rq, se, flags);
5942 
5943 		cfs_rq->h_nr_running--;
5944 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5945 		walt_dec_cfs_rq_stats(cfs_rq, p);
5946 
5947 		/* end evaluation on encountering a throttled cfs_rq */
5948 		if (cfs_rq_throttled(cfs_rq))
5949 			goto dequeue_throttle;
5950 
5951 		/* Don't dequeue parent if it has other entities besides us */
5952 		if (cfs_rq->load.weight) {
5953 			/* Avoid re-evaluating load for this entity: */
5954 			se = parent_entity(se);
5955 			/*
5956 			 * Bias pick_next to pick a task from this cfs_rq, as
5957 			 * p is sleeping when it is within its sched_slice.
5958 			 */
5959 			if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5960 				set_next_buddy(se);
5961 			break;
5962 		}
5963 		flags |= DEQUEUE_SLEEP;
5964 	}
5965 
5966 	for_each_sched_entity(se) {
5967 		cfs_rq = cfs_rq_of(se);
5968 
5969 		update_load_avg(cfs_rq, se, UPDATE_TG);
5970 		se_update_runnable(se);
5971 		update_cfs_group(se);
5972 
5973 		cfs_rq->h_nr_running--;
5974 		cfs_rq->idle_h_nr_running -= idle_h_nr_running;
5975 		walt_dec_cfs_rq_stats(cfs_rq, p);
5976 
5977 		/* end evaluation on encountering a throttled cfs_rq */
5978 		if (cfs_rq_throttled(cfs_rq))
5979 			goto dequeue_throttle;
5980 
5981 	}
5982 
5983 	/* At this point se is NULL and we are at root level*/
5984 	sub_nr_running(rq, 1);
5985 	dec_rq_walt_stats(rq, p);
5986 
5987 	/* balance early to pull high priority tasks */
5988 	if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
5989 		rq->next_balance = jiffies;
5990 
5991 dequeue_throttle:
5992 	util_est_update(&rq->cfs, p, task_sleep);
5993 	hrtick_update(rq);
5994 }
5995 
5996 #ifdef CONFIG_SMP
5997 
5998 /* Working cpumask for: load_balance, load_balance_newidle. */
5999 DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
6000 DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
6001 
6002 #ifdef CONFIG_NO_HZ_COMMON
6003 
6004 static struct {
6005 	cpumask_var_t idle_cpus_mask;
6006 	atomic_t nr_cpus;
6007 	int has_blocked;		/* Idle CPUS has blocked load */
6008 	unsigned long next_balance;     /* in jiffy units */
6009 	unsigned long next_blocked;	/* Next update of blocked load in jiffies */
6010 } nohz ____cacheline_aligned;
6011 
6012 #endif /* CONFIG_NO_HZ_COMMON */
6013 
cpu_load(struct rq * rq)6014 static unsigned long cpu_load(struct rq *rq)
6015 {
6016 	return cfs_rq_load_avg(&rq->cfs);
6017 }
6018 
6019 /*
6020  * cpu_load_without - compute CPU load without any contributions from *p
6021  * @cpu: the CPU which load is requested
6022  * @p: the task which load should be discounted
6023  *
6024  * The load of a CPU is defined by the load of tasks currently enqueued on that
6025  * CPU as well as tasks which are currently sleeping after an execution on that
6026  * CPU.
6027  *
6028  * This method returns the load of the specified CPU by discounting the load of
6029  * the specified task, whenever the task is currently contributing to the CPU
6030  * load.
6031  */
cpu_load_without(struct rq * rq,struct task_struct * p)6032 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
6033 {
6034 	struct cfs_rq *cfs_rq;
6035 	unsigned int load;
6036 
6037 	/* Task has no contribution or is new */
6038 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6039 		return cpu_load(rq);
6040 
6041 	cfs_rq = &rq->cfs;
6042 	load = READ_ONCE(cfs_rq->avg.load_avg);
6043 
6044 	/* Discount task's util from CPU's util */
6045 	lsub_positive(&load, task_h_load(p));
6046 
6047 	return load;
6048 }
6049 
cpu_runnable(struct rq * rq)6050 static unsigned long cpu_runnable(struct rq *rq)
6051 {
6052 	return cfs_rq_runnable_avg(&rq->cfs);
6053 }
6054 
cpu_runnable_without(struct rq * rq,struct task_struct * p)6055 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
6056 {
6057 	struct cfs_rq *cfs_rq;
6058 	unsigned int runnable;
6059 
6060 	/* Task has no contribution or is new */
6061 	if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6062 		return cpu_runnable(rq);
6063 
6064 	cfs_rq = &rq->cfs;
6065 	runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
6066 
6067 	/* Discount task's runnable from CPU's runnable */
6068 	lsub_positive(&runnable, p->se.avg.runnable_avg);
6069 
6070 	return runnable;
6071 }
6072 
record_wakee(struct task_struct * p)6073 static void record_wakee(struct task_struct *p)
6074 {
6075 	/*
6076 	 * Only decay a single time; tasks that have less then 1 wakeup per
6077 	 * jiffy will not have built up many flips.
6078 	 */
6079 	if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
6080 		current->wakee_flips >>= 1;
6081 		current->wakee_flip_decay_ts = jiffies;
6082 	}
6083 
6084 	if (current->last_wakee != p) {
6085 		current->last_wakee = p;
6086 		current->wakee_flips++;
6087 	}
6088 }
6089 
6090 /*
6091  * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
6092  *
6093  * A waker of many should wake a different task than the one last awakened
6094  * at a frequency roughly N times higher than one of its wakees.
6095  *
6096  * In order to determine whether we should let the load spread vs consolidating
6097  * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
6098  * partner, and a factor of lls_size higher frequency in the other.
6099  *
6100  * With both conditions met, we can be relatively sure that the relationship is
6101  * non-monogamous, with partner count exceeding socket size.
6102  *
6103  * Waker/wakee being client/server, worker/dispatcher, interrupt source or
6104  * whatever is irrelevant, spread criteria is apparent partner count exceeds
6105  * socket size.
6106  */
wake_wide(struct task_struct * p)6107 static int wake_wide(struct task_struct *p)
6108 {
6109 	unsigned int master = current->wakee_flips;
6110 	unsigned int slave = p->wakee_flips;
6111 	int factor = __this_cpu_read(sd_llc_size);
6112 
6113 	if (master < slave)
6114 		swap(master, slave);
6115 	if (slave < factor || master < slave * factor)
6116 		return 0;
6117 	return 1;
6118 }
6119 
6120 /*
6121  * The purpose of wake_affine() is to quickly determine on which CPU we can run
6122  * soonest. For the purpose of speed we only consider the waking and previous
6123  * CPU.
6124  *
6125  * wake_affine_idle() - only considers 'now', it check if the waking CPU is
6126  *			cache-affine and is (or	will be) idle.
6127  *
6128  * wake_affine_weight() - considers the weight to reflect the average
6129  *			  scheduling latency of the CPUs. This seems to work
6130  *			  for the overloaded case.
6131  */
6132 static int
wake_affine_idle(int this_cpu,int prev_cpu,int sync)6133 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
6134 {
6135 	/*
6136 	 * If this_cpu is idle, it implies the wakeup is from interrupt
6137 	 * context. Only allow the move if cache is shared. Otherwise an
6138 	 * interrupt intensive workload could force all tasks onto one
6139 	 * node depending on the IO topology or IRQ affinity settings.
6140 	 *
6141 	 * If the prev_cpu is idle and cache affine then avoid a migration.
6142 	 * There is no guarantee that the cache hot data from an interrupt
6143 	 * is more important than cache hot data on the prev_cpu and from
6144 	 * a cpufreq perspective, it's better to have higher utilisation
6145 	 * on one CPU.
6146 	 */
6147 	if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
6148 		return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
6149 
6150 	if (sync && cpu_rq(this_cpu)->nr_running == 1)
6151 		return this_cpu;
6152 
6153 	return nr_cpumask_bits;
6154 }
6155 
6156 static int
wake_affine_weight(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6157 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
6158 		   int this_cpu, int prev_cpu, int sync)
6159 {
6160 	s64 this_eff_load, prev_eff_load;
6161 	unsigned long task_load;
6162 
6163 	this_eff_load = cpu_load(cpu_rq(this_cpu));
6164 
6165 	if (sync) {
6166 		unsigned long current_load = task_h_load(current);
6167 
6168 		if (current_load > this_eff_load)
6169 			return this_cpu;
6170 
6171 		this_eff_load -= current_load;
6172 	}
6173 
6174 	task_load = task_h_load(p);
6175 
6176 	this_eff_load += task_load;
6177 	if (sched_feat(WA_BIAS))
6178 		this_eff_load *= 100;
6179 	this_eff_load *= capacity_of(prev_cpu);
6180 
6181 	prev_eff_load = cpu_load(cpu_rq(prev_cpu));
6182 	prev_eff_load -= task_load;
6183 	if (sched_feat(WA_BIAS))
6184 		prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
6185 	prev_eff_load *= capacity_of(this_cpu);
6186 
6187 	/*
6188 	 * If sync, adjust the weight of prev_eff_load such that if
6189 	 * prev_eff == this_eff that select_idle_sibling() will consider
6190 	 * stacking the wakee on top of the waker if no other CPU is
6191 	 * idle.
6192 	 */
6193 	if (sync)
6194 		prev_eff_load += 1;
6195 
6196 	return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
6197 }
6198 
wake_affine(struct sched_domain * sd,struct task_struct * p,int this_cpu,int prev_cpu,int sync)6199 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
6200 		       int this_cpu, int prev_cpu, int sync)
6201 {
6202 	int target = nr_cpumask_bits;
6203 
6204 	if (sched_feat(WA_IDLE))
6205 		target = wake_affine_idle(this_cpu, prev_cpu, sync);
6206 
6207 	if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
6208 		target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
6209 
6210 	schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
6211 	if (target == nr_cpumask_bits)
6212 		return prev_cpu;
6213 
6214 	schedstat_inc(sd->ttwu_move_affine);
6215 	schedstat_inc(p->se.statistics.nr_wakeups_affine);
6216 	return target;
6217 }
6218 
6219 static struct sched_group *
6220 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
6221 
6222 /*
6223  * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
6224  */
6225 static int
find_idlest_group_cpu(struct sched_group * group,struct task_struct * p,int this_cpu)6226 find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
6227 {
6228 	unsigned long load, min_load = ULONG_MAX;
6229 	unsigned int min_exit_latency = UINT_MAX;
6230 	u64 latest_idle_timestamp = 0;
6231 	int least_loaded_cpu = this_cpu;
6232 	int shallowest_idle_cpu = -1;
6233 	int i;
6234 
6235 	/* Check if we have any choice: */
6236 	if (group->group_weight == 1)
6237 		return cpumask_first(sched_group_span(group));
6238 
6239 	/* Traverse only the allowed CPUs */
6240 	for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
6241 		if (cpu_isolated(i))
6242 			continue;
6243 
6244 		if (sched_idle_cpu(i))
6245 			return i;
6246 
6247 		if (available_idle_cpu(i)) {
6248 			struct rq *rq = cpu_rq(i);
6249 			struct cpuidle_state *idle = idle_get_state(rq);
6250 			if (idle && idle->exit_latency < min_exit_latency) {
6251 				/*
6252 				 * We give priority to a CPU whose idle state
6253 				 * has the smallest exit latency irrespective
6254 				 * of any idle timestamp.
6255 				 */
6256 				min_exit_latency = idle->exit_latency;
6257 				latest_idle_timestamp = rq->idle_stamp;
6258 				shallowest_idle_cpu = i;
6259 			} else if ((!idle || idle->exit_latency == min_exit_latency) &&
6260 				   rq->idle_stamp > latest_idle_timestamp) {
6261 				/*
6262 				 * If equal or no active idle state, then
6263 				 * the most recently idled CPU might have
6264 				 * a warmer cache.
6265 				 */
6266 				latest_idle_timestamp = rq->idle_stamp;
6267 				shallowest_idle_cpu = i;
6268 			}
6269 		} else if (shallowest_idle_cpu == -1) {
6270 			load = cpu_load(cpu_rq(i));
6271 			if (load < min_load) {
6272 				min_load = load;
6273 				least_loaded_cpu = i;
6274 			}
6275 		}
6276 	}
6277 
6278 	return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
6279 }
6280 
find_idlest_cpu(struct sched_domain * sd,struct task_struct * p,int cpu,int prev_cpu,int sd_flag)6281 static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
6282 				  int cpu, int prev_cpu, int sd_flag)
6283 {
6284 	int new_cpu = cpu;
6285 
6286 	if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
6287 		return prev_cpu;
6288 
6289 	/*
6290 	 * We need task's util for cpu_util_without, sync it up to
6291 	 * prev_cpu's last_update_time.
6292 	 */
6293 	if (!(sd_flag & SD_BALANCE_FORK))
6294 		sync_entity_load_avg(&p->se);
6295 
6296 	while (sd) {
6297 		struct sched_group *group;
6298 		struct sched_domain *tmp;
6299 		int weight;
6300 
6301 		if (!(sd->flags & sd_flag)) {
6302 			sd = sd->child;
6303 			continue;
6304 		}
6305 
6306 		group = find_idlest_group(sd, p, cpu);
6307 		if (!group) {
6308 			sd = sd->child;
6309 			continue;
6310 		}
6311 
6312 		new_cpu = find_idlest_group_cpu(group, p, cpu);
6313 		if (new_cpu == cpu) {
6314 			/* Now try balancing at a lower domain level of 'cpu': */
6315 			sd = sd->child;
6316 			continue;
6317 		}
6318 
6319 		/* Now try balancing at a lower domain level of 'new_cpu': */
6320 		cpu = new_cpu;
6321 		weight = sd->span_weight;
6322 		sd = NULL;
6323 		for_each_domain(cpu, tmp) {
6324 			if (weight <= tmp->span_weight)
6325 				break;
6326 			if (tmp->flags & sd_flag)
6327 				sd = tmp;
6328 		}
6329 	}
6330 
6331 	return new_cpu;
6332 }
6333 
6334 #ifdef CONFIG_SCHED_SMT
6335 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
6336 EXPORT_SYMBOL_GPL(sched_smt_present);
6337 
set_idle_cores(int cpu,int val)6338 static inline void set_idle_cores(int cpu, int val)
6339 {
6340 	struct sched_domain_shared *sds;
6341 
6342 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6343 	if (sds)
6344 		WRITE_ONCE(sds->has_idle_cores, val);
6345 }
6346 
test_idle_cores(int cpu,bool def)6347 static inline bool test_idle_cores(int cpu, bool def)
6348 {
6349 	struct sched_domain_shared *sds;
6350 
6351 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
6352 	if (sds)
6353 		return READ_ONCE(sds->has_idle_cores);
6354 
6355 	return def;
6356 }
6357 
6358 /*
6359  * Scans the local SMT mask to see if the entire core is idle, and records this
6360  * information in sd_llc_shared->has_idle_cores.
6361  *
6362  * Since SMT siblings share all cache levels, inspecting this limited remote
6363  * state should be fairly cheap.
6364  */
__update_idle_core(struct rq * rq)6365 void __update_idle_core(struct rq *rq)
6366 {
6367 	int core = cpu_of(rq);
6368 	int cpu;
6369 
6370 	rcu_read_lock();
6371 	if (test_idle_cores(core, true))
6372 		goto unlock;
6373 
6374 	for_each_cpu(cpu, cpu_smt_mask(core)) {
6375 		if (cpu == core)
6376 			continue;
6377 
6378 		if (!available_idle_cpu(cpu))
6379 			goto unlock;
6380 	}
6381 
6382 	set_idle_cores(core, 1);
6383 unlock:
6384 	rcu_read_unlock();
6385 }
6386 
6387 /*
6388  * Scan the entire LLC domain for idle cores; this dynamically switches off if
6389  * there are no idle cores left in the system; tracked through
6390  * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
6391  */
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)6392 static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6393 {
6394 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6395 	int core, cpu;
6396 
6397 	if (!static_branch_likely(&sched_smt_present))
6398 		return -1;
6399 
6400 	if (!test_idle_cores(target, false))
6401 		return -1;
6402 
6403 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6404 #ifdef CONFIG_CPU_ISOLATION_OPT
6405 	cpumask_andnot(cpus, cpus, cpu_isolated_mask);
6406 #endif
6407 
6408 	for_each_cpu_wrap(core, cpus, target) {
6409 		bool idle = true;
6410 
6411 		for_each_cpu(cpu, cpu_smt_mask(core)) {
6412 			if (!available_idle_cpu(cpu)) {
6413 				idle = false;
6414 				break;
6415 			}
6416 		}
6417 		cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
6418 
6419 		if (idle)
6420 			return core;
6421 	}
6422 
6423 	/*
6424 	 * Failed to find an idle core; stop looking for one.
6425 	 */
6426 	set_idle_cores(target, 0);
6427 
6428 	return -1;
6429 }
6430 
6431 /*
6432  * Scan the local SMT mask for idle CPUs.
6433  */
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6434 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6435 {
6436 	int cpu;
6437 
6438 	if (!static_branch_likely(&sched_smt_present))
6439 		return -1;
6440 
6441 	for_each_cpu(cpu, cpu_smt_mask(target)) {
6442 		if (!cpumask_test_cpu(cpu, p->cpus_ptr) ||
6443 		    !cpumask_test_cpu(cpu, sched_domain_span(sd)))
6444 			continue;
6445 		if (cpu_isolated(cpu))
6446 			continue;
6447 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6448 			return cpu;
6449 	}
6450 
6451 	return -1;
6452 }
6453 
6454 #else /* CONFIG_SCHED_SMT */
6455 
select_idle_core(struct task_struct * p,struct sched_domain * sd,int target)6456 static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6457 {
6458 	return -1;
6459 }
6460 
select_idle_smt(struct task_struct * p,struct sched_domain * sd,int target)6461 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6462 {
6463 	return -1;
6464 }
6465 
6466 #endif /* CONFIG_SCHED_SMT */
6467 
6468 /*
6469  * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6470  * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6471  * average idle time for this rq (as found in rq->avg_idle).
6472  */
select_idle_cpu(struct task_struct * p,struct sched_domain * sd,int target)6473 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6474 {
6475 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6476 	struct sched_domain *this_sd;
6477 	u64 avg_cost, avg_idle;
6478 	u64 time;
6479 	int this = smp_processor_id();
6480 	int cpu, nr = INT_MAX;
6481 
6482 	this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6483 	if (!this_sd)
6484 		return -1;
6485 
6486 	/*
6487 	 * Due to large variance we need a large fuzz factor; hackbench in
6488 	 * particularly is sensitive here.
6489 	 */
6490 	avg_idle = this_rq()->avg_idle / 512;
6491 	avg_cost = this_sd->avg_scan_cost + 1;
6492 
6493 	if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6494 		return -1;
6495 
6496 	if (sched_feat(SIS_PROP)) {
6497 		u64 span_avg = sd->span_weight * avg_idle;
6498 		if (span_avg > 4*avg_cost)
6499 			nr = div_u64(span_avg, avg_cost);
6500 		else
6501 			nr = 4;
6502 	}
6503 
6504 	time = cpu_clock(this);
6505 
6506 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6507 
6508 	for_each_cpu_wrap(cpu, cpus, target) {
6509 		if (!--nr)
6510 			return -1;
6511 		if (cpu_isolated(cpu))
6512 			continue;
6513 		if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
6514 			break;
6515 	}
6516 
6517 	time = cpu_clock(this) - time;
6518 	update_avg(&this_sd->avg_scan_cost, time);
6519 
6520 	return cpu;
6521 }
6522 
6523 /*
6524  * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
6525  * the task fits. If no CPU is big enough, but there are idle ones, try to
6526  * maximize capacity.
6527  */
6528 static int
select_idle_capacity(struct task_struct * p,struct sched_domain * sd,int target)6529 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
6530 {
6531 	unsigned long task_util, util_min, util_max, best_cap = 0;
6532 	int cpu, best_cpu = -1;
6533 	struct cpumask *cpus;
6534 
6535 	cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
6536 	cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
6537 
6538 	task_util = task_util_est(p);
6539 	util_min = uclamp_eff_value(p, UCLAMP_MIN);
6540 	util_max = uclamp_eff_value(p, UCLAMP_MAX);
6541 
6542 	for_each_cpu_wrap(cpu, cpus, target) {
6543 		unsigned long cpu_cap = capacity_of(cpu);
6544 
6545 		if (cpu_isolated(cpu))
6546 			continue;
6547 
6548 		if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
6549 			continue;
6550 		if (util_fits_cpu(task_util, util_min, util_max, cpu))
6551 			return cpu;
6552 
6553 		if (cpu_cap > best_cap) {
6554 			best_cap = cpu_cap;
6555 			best_cpu = cpu;
6556 		}
6557 	}
6558 
6559 	return best_cpu;
6560 }
6561 
asym_fits_cpu(unsigned long util,unsigned long util_min,unsigned long util_max,int cpu)6562 static inline bool asym_fits_cpu(unsigned long util,
6563 				 unsigned long util_min,
6564 				 unsigned long util_max,
6565 				 int cpu)
6566 {
6567 	if (static_branch_unlikely(&sched_asym_cpucapacity))
6568 		return util_fits_cpu(util, util_min, util_max, cpu);
6569 
6570 	return true;
6571 }
6572 
6573 /*
6574  * Try and locate an idle core/thread in the LLC cache domain.
6575  */
select_idle_sibling(struct task_struct * p,int prev,int target)6576 static int select_idle_sibling(struct task_struct *p, int prev, int target)
6577 {
6578 	struct sched_domain *sd;
6579 	unsigned long task_util, util_min, util_max;
6580 	int i, recent_used_cpu;
6581 
6582 	/*
6583 	 * On asymmetric system, update task utilization because we will check
6584 	 * that the task fits with cpu's capacity.
6585 	 */
6586 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6587 		sync_entity_load_avg(&p->se);
6588 		task_util = task_util_est(p);
6589 		util_min = uclamp_eff_value(p, UCLAMP_MIN);
6590 		util_max = uclamp_eff_value(p, UCLAMP_MAX);
6591 	}
6592 
6593 	if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
6594 	    !cpu_isolated(target) && asym_fits_cpu(task_util, util_min, util_max, target))
6595 		return target;
6596 
6597 	/*
6598 	 * If the previous CPU is cache affine and idle, don't be stupid:
6599 	 */
6600 	if (prev != target && cpus_share_cache(prev, target) &&
6601 	    ((available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
6602 	    !cpu_isolated(target) && asym_fits_cpu(task_util, util_min, util_max, prev)))
6603 		return prev;
6604 
6605 	/*
6606 	 * Allow a per-cpu kthread to stack with the wakee if the
6607 	 * kworker thread and the tasks previous CPUs are the same.
6608 	 * The assumption is that the wakee queued work for the
6609 	 * per-cpu kthread that is now complete and the wakeup is
6610 	 * essentially a sync wakeup. An obvious example of this
6611 	 * pattern is IO completions.
6612 	 */
6613 	if (is_per_cpu_kthread(current) &&
6614 	    in_task() &&
6615 	    prev == smp_processor_id() &&
6616 	    this_rq()->nr_running <= 1 &&
6617 	    asym_fits_cpu(task_util, util_min, util_max, prev)) {
6618 		return prev;
6619 	}
6620 
6621 	/* Check a recently used CPU as a potential idle candidate: */
6622 	recent_used_cpu = p->recent_used_cpu;
6623 	if (recent_used_cpu != prev &&
6624 	    recent_used_cpu != target &&
6625 	    cpus_share_cache(recent_used_cpu, target) &&
6626 	    (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
6627 	    cpumask_test_cpu(p->recent_used_cpu, p->cpus_ptr) &&
6628 	    asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
6629 		/*
6630 		 * Replace recent_used_cpu with prev as it is a potential
6631 		 * candidate for the next wake:
6632 		 */
6633 		p->recent_used_cpu = prev;
6634 		return recent_used_cpu;
6635 	}
6636 
6637 	/*
6638 	 * For asymmetric CPU capacity systems, our domain of interest is
6639 	 * sd_asym_cpucapacity rather than sd_llc.
6640 	 */
6641 	if (static_branch_unlikely(&sched_asym_cpucapacity)) {
6642 		sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
6643 		/*
6644 		 * On an asymmetric CPU capacity system where an exclusive
6645 		 * cpuset defines a symmetric island (i.e. one unique
6646 		 * capacity_orig value through the cpuset), the key will be set
6647 		 * but the CPUs within that cpuset will not have a domain with
6648 		 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
6649 		 * capacity path.
6650 		 */
6651 		if (sd) {
6652 			i = select_idle_capacity(p, sd, target);
6653 			return ((unsigned)i < nr_cpumask_bits) ? i : target;
6654 		}
6655 	}
6656 
6657 	sd = rcu_dereference(per_cpu(sd_llc, target));
6658 	if (!sd)
6659 		return target;
6660 
6661 	i = select_idle_core(p, sd, target);
6662 	if ((unsigned)i < nr_cpumask_bits)
6663 		return i;
6664 
6665 	i = select_idle_cpu(p, sd, target);
6666 	if ((unsigned)i < nr_cpumask_bits)
6667 		return i;
6668 
6669 	i = select_idle_smt(p, sd, target);
6670 	if ((unsigned)i < nr_cpumask_bits)
6671 		return i;
6672 
6673 	return target;
6674 }
6675 
6676 /**
6677  * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6678  * @cpu: the CPU to get the utilization of
6679  *
6680  * The unit of the return value must be the one of capacity so we can compare
6681  * the utilization with the capacity of the CPU that is available for CFS task
6682  * (ie cpu_capacity).
6683  *
6684  * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6685  * recent utilization of currently non-runnable tasks on a CPU. It represents
6686  * the amount of utilization of a CPU in the range [0..capacity_orig] where
6687  * capacity_orig is the cpu_capacity available at the highest frequency
6688  * (arch_scale_freq_capacity()).
6689  * The utilization of a CPU converges towards a sum equal to or less than the
6690  * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6691  * the running time on this CPU scaled by capacity_curr.
6692  *
6693  * The estimated utilization of a CPU is defined to be the maximum between its
6694  * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6695  * currently RUNNABLE on that CPU.
6696  * This allows to properly represent the expected utilization of a CPU which
6697  * has just got a big task running since a long sleep period. At the same time
6698  * however it preserves the benefits of the "blocked utilization" in
6699  * describing the potential for other tasks waking up on the same CPU.
6700  *
6701  * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6702  * higher than capacity_orig because of unfortunate rounding in
6703  * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6704  * the average stabilizes with the new running time. We need to check that the
6705  * utilization stays within the range of [0..capacity_orig] and cap it if
6706  * necessary. Without utilization capping, a group could be seen as overloaded
6707  * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6708  * available capacity. We allow utilization to overshoot capacity_curr (but not
6709  * capacity_orig) as it useful for predicting the capacity required after task
6710  * migrations (scheduler-driven DVFS).
6711  *
6712  * Return: the (estimated) utilization for the specified CPU
6713  */
cpu_util(int cpu)6714 unsigned long cpu_util(int cpu)
6715 {
6716 	struct cfs_rq *cfs_rq;
6717 	unsigned int util;
6718 
6719 #ifdef CONFIG_SCHED_WALT
6720 	if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util)) {
6721 		u64 walt_cpu_util =
6722 			cpu_rq(cpu)->walt_stats.cumulative_runnable_avg_scaled;
6723 
6724 		return min_t(unsigned long, walt_cpu_util,
6725 				capacity_orig_of(cpu));
6726 	}
6727 #endif
6728 
6729 	cfs_rq = &cpu_rq(cpu)->cfs;
6730 	util = READ_ONCE(cfs_rq->avg.util_avg);
6731 
6732 	if (sched_feat(UTIL_EST))
6733 		util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6734 
6735 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6736 }
6737 
6738 /*
6739  * cpu_util_without: compute cpu utilization without any contributions from *p
6740  * @cpu: the CPU which utilization is requested
6741  * @p: the task which utilization should be discounted
6742  *
6743  * The utilization of a CPU is defined by the utilization of tasks currently
6744  * enqueued on that CPU as well as tasks which are currently sleeping after an
6745  * execution on that CPU.
6746  *
6747  * This method returns the utilization of the specified CPU by discounting the
6748  * utilization of the specified task, whenever the task is currently
6749  * contributing to the CPU utilization.
6750  */
cpu_util_without(int cpu,struct task_struct * p)6751 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
6752 {
6753 	struct cfs_rq *cfs_rq;
6754 	unsigned int util;
6755 
6756 #ifdef CONFIG_SCHED_WALT
6757 	/*
6758 	 * WALT does not decay idle tasks in the same manner
6759 	 * as PELT, so it makes little sense to subtract task
6760 	 * utilization from cpu utilization. Instead just use
6761 	 * cpu_util for this case.
6762 	 */
6763 	if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util) &&
6764 						p->state == TASK_WAKING)
6765 		return cpu_util(cpu);
6766 #endif
6767 
6768 	/* Task has no contribution or is new */
6769 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6770 		return cpu_util(cpu);
6771 
6772 #ifdef CONFIG_SCHED_WALT
6773 	if (likely(!walt_disabled && sysctl_sched_use_walt_cpu_util)) {
6774 		util = max_t(long, cpu_util(cpu) - task_util(p), 0);
6775 		return min_t(unsigned long, util, capacity_orig_of(cpu));
6776 	}
6777 #endif
6778 
6779 	cfs_rq = &cpu_rq(cpu)->cfs;
6780 	util = READ_ONCE(cfs_rq->avg.util_avg);
6781 
6782 	/* Discount task's util from CPU's util */
6783 	lsub_positive(&util, task_util(p));
6784 
6785 	/*
6786 	 * Covered cases:
6787 	 *
6788 	 * a) if *p is the only task sleeping on this CPU, then:
6789 	 *      cpu_util (== task_util) > util_est (== 0)
6790 	 *    and thus we return:
6791 	 *      cpu_util_without = (cpu_util - task_util) = 0
6792 	 *
6793 	 * b) if other tasks are SLEEPING on this CPU, which is now exiting
6794 	 *    IDLE, then:
6795 	 *      cpu_util >= task_util
6796 	 *      cpu_util > util_est (== 0)
6797 	 *    and thus we discount *p's blocked utilization to return:
6798 	 *      cpu_util_without = (cpu_util - task_util) >= 0
6799 	 *
6800 	 * c) if other tasks are RUNNABLE on that CPU and
6801 	 *      util_est > cpu_util
6802 	 *    then we use util_est since it returns a more restrictive
6803 	 *    estimation of the spare capacity on that CPU, by just
6804 	 *    considering the expected utilization of tasks already
6805 	 *    runnable on that CPU.
6806 	 *
6807 	 * Cases a) and b) are covered by the above code, while case c) is
6808 	 * covered by the following code when estimated utilization is
6809 	 * enabled.
6810 	 */
6811 	if (sched_feat(UTIL_EST)) {
6812 		unsigned int estimated =
6813 			READ_ONCE(cfs_rq->avg.util_est.enqueued);
6814 
6815 		/*
6816 		 * Despite the following checks we still have a small window
6817 		 * for a possible race, when an execl's select_task_rq_fair()
6818 		 * races with LB's detach_task():
6819 		 *
6820 		 *   detach_task()
6821 		 *     p->on_rq = TASK_ON_RQ_MIGRATING;
6822 		 *     ---------------------------------- A
6823 		 *     deactivate_task()                   \
6824 		 *       dequeue_task()                     + RaceTime
6825 		 *         util_est_dequeue()              /
6826 		 *     ---------------------------------- B
6827 		 *
6828 		 * The additional check on "current == p" it's required to
6829 		 * properly fix the execl regression and it helps in further
6830 		 * reducing the chances for the above race.
6831 		 */
6832 		if (unlikely(task_on_rq_queued(p) || current == p))
6833 			lsub_positive(&estimated, _task_util_est(p));
6834 
6835 		util = max(util, estimated);
6836 	}
6837 
6838 	/*
6839 	 * Utilization (estimated) can exceed the CPU capacity, thus let's
6840 	 * clamp to the maximum CPU capacity to ensure consistency with
6841 	 * the cpu_util call.
6842 	 */
6843 	return min_t(unsigned long, util, capacity_orig_of(cpu));
6844 }
6845 
6846 #ifdef CONFIG_SCHED_RTG
capacity_spare_without(int cpu,struct task_struct * p)6847 unsigned long capacity_spare_without(int cpu, struct task_struct *p)
6848 {
6849 	return max_t(long, capacity_of(cpu) - cpu_util_without(cpu, p), 0);
6850 }
6851 #endif
6852 /*
6853  * Predicts what cpu_util(@cpu) would return if @p was migrated (and enqueued)
6854  * to @dst_cpu.
6855  */
cpu_util_next(int cpu,struct task_struct * p,int dst_cpu)6856 static unsigned long cpu_util_next(int cpu, struct task_struct *p, int dst_cpu)
6857 {
6858 	struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
6859 	unsigned long util_est, util = READ_ONCE(cfs_rq->avg.util_avg);
6860 
6861 	/*
6862 	 * If @p migrates from @cpu to another, remove its contribution. Or,
6863 	 * if @p migrates from another CPU to @cpu, add its contribution. In
6864 	 * the other cases, @cpu is not impacted by the migration, so the
6865 	 * util_avg should already be correct.
6866 	 */
6867 	if (task_cpu(p) == cpu && dst_cpu != cpu)
6868 		sub_positive(&util, task_util(p));
6869 	else if (task_cpu(p) != cpu && dst_cpu == cpu)
6870 		util += task_util(p);
6871 
6872 	if (sched_feat(UTIL_EST)) {
6873 		util_est = READ_ONCE(cfs_rq->avg.util_est.enqueued);
6874 
6875 		/*
6876 		 * During wake-up, the task isn't enqueued yet and doesn't
6877 		 * appear in the cfs_rq->avg.util_est.enqueued of any rq,
6878 		 * so just add it (if needed) to "simulate" what will be
6879 		 * cpu_util() after the task has been enqueued.
6880 		 */
6881 		if (dst_cpu == cpu)
6882 			util_est += _task_util_est(p);
6883 
6884 		util = max(util, util_est);
6885 	}
6886 
6887 	return min(util, capacity_orig_of(cpu));
6888 }
6889 
6890 /*
6891  * Returns the current capacity of cpu after applying both
6892  * cpu and freq scaling.
6893  */
capacity_curr_of(int cpu)6894 unsigned long capacity_curr_of(int cpu)
6895 {
6896 	unsigned long max_cap = cpu_rq(cpu)->cpu_capacity_orig;
6897 	unsigned long scale_freq = arch_scale_freq_capacity(cpu);
6898 
6899 	return cap_scale(max_cap, scale_freq);
6900 }
6901 
6902 /*
6903  * compute_energy(): Estimates the energy that @pd would consume if @p was
6904  * migrated to @dst_cpu. compute_energy() predicts what will be the utilization
6905  * landscape of @pd's CPUs after the task migration, and uses the Energy Model
6906  * to compute what would be the energy if we decided to actually migrate that
6907  * task.
6908  */
6909 static long
compute_energy(struct task_struct * p,int dst_cpu,struct perf_domain * pd)6910 compute_energy(struct task_struct *p, int dst_cpu, struct perf_domain *pd)
6911 {
6912 	struct cpumask *pd_mask = perf_domain_span(pd);
6913 	unsigned long cpu_cap = arch_scale_cpu_capacity(cpumask_first(pd_mask));
6914 	unsigned long max_util = 0, sum_util = 0;
6915 	int cpu;
6916 
6917 	/*
6918 	 * The capacity state of CPUs of the current rd can be driven by CPUs
6919 	 * of another rd if they belong to the same pd. So, account for the
6920 	 * utilization of these CPUs too by masking pd with cpu_online_mask
6921 	 * instead of the rd span.
6922 	 *
6923 	 * If an entire pd is outside of the current rd, it will not appear in
6924 	 * its pd list and will not be accounted by compute_energy().
6925 	 */
6926 	for_each_cpu_and(cpu, pd_mask, cpu_online_mask) {
6927 		unsigned long cpu_util, util_cfs = cpu_util_next(cpu, p, dst_cpu);
6928 		struct task_struct *tsk = cpu == dst_cpu ? p : NULL;
6929 
6930 		/*
6931 		 * Busy time computation: utilization clamping is not
6932 		 * required since the ratio (sum_util / cpu_capacity)
6933 		 * is already enough to scale the EM reported power
6934 		 * consumption at the (eventually clamped) cpu_capacity.
6935 		 */
6936 		sum_util += schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6937 					       ENERGY_UTIL, NULL);
6938 
6939 		/*
6940 		 * Performance domain frequency: utilization clamping
6941 		 * must be considered since it affects the selection
6942 		 * of the performance domain frequency.
6943 		 * NOTE: in case RT tasks are running, by default the
6944 		 * FREQUENCY_UTIL's utilization can be max OPP.
6945 		 */
6946 		cpu_util = schedutil_cpu_util(cpu, util_cfs, cpu_cap,
6947 					      FREQUENCY_UTIL, tsk);
6948 		max_util = max(max_util, cpu_util);
6949 	}
6950 
6951 	return em_cpu_energy(pd->em_pd, max_util, sum_util);
6952 }
6953 
6954 /*
6955  * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
6956  * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
6957  * spare capacity in each performance domain and uses it as a potential
6958  * candidate to execute the task. Then, it uses the Energy Model to figure
6959  * out which of the CPU candidates is the most energy-efficient.
6960  *
6961  * The rationale for this heuristic is as follows. In a performance domain,
6962  * all the most energy efficient CPU candidates (according to the Energy
6963  * Model) are those for which we'll request a low frequency. When there are
6964  * several CPUs for which the frequency request will be the same, we don't
6965  * have enough data to break the tie between them, because the Energy Model
6966  * only includes active power costs. With this model, if we assume that
6967  * frequency requests follow utilization (e.g. using schedutil), the CPU with
6968  * the maximum spare capacity in a performance domain is guaranteed to be among
6969  * the best candidates of the performance domain.
6970  *
6971  * In practice, it could be preferable from an energy standpoint to pack
6972  * small tasks on a CPU in order to let other CPUs go in deeper idle states,
6973  * but that could also hurt our chances to go cluster idle, and we have no
6974  * ways to tell with the current Energy Model if this is actually a good
6975  * idea or not. So, find_energy_efficient_cpu() basically favors
6976  * cluster-packing, and spreading inside a cluster. That should at least be
6977  * a good thing for latency, and this is consistent with the idea that most
6978  * of the energy savings of EAS come from the asymmetry of the system, and
6979  * not so much from breaking the tie between identical CPUs. That's also the
6980  * reason why EAS is enabled in the topology code only for systems where
6981  * SD_ASYM_CPUCAPACITY is set.
6982  *
6983  * NOTE: Forkees are not accepted in the energy-aware wake-up path because
6984  * they don't have any useful utilization data yet and it's not possible to
6985  * forecast their impact on energy consumption. Consequently, they will be
6986  * placed by find_idlest_cpu() on the least loaded CPU, which might turn out
6987  * to be energy-inefficient in some use-cases. The alternative would be to
6988  * bias new tasks towards specific types of CPUs first, or to try to infer
6989  * their util_avg from the parent task, but those heuristics could hurt
6990  * other use-cases too. So, until someone finds a better way to solve this,
6991  * let's keep things simple by re-using the existing slow path.
6992  */
find_energy_efficient_cpu(struct task_struct * p,int prev_cpu)6993 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
6994 {
6995 	unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
6996 	unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
6997 	unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
6998 	struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
6999 	unsigned long cpu_cap, util, base_energy = 0;
7000 	int cpu, best_energy_cpu = prev_cpu;
7001 	struct sched_domain *sd;
7002 	struct perf_domain *pd;
7003 
7004 	rcu_read_lock();
7005 	pd = rcu_dereference(rd->pd);
7006 	if (!pd || READ_ONCE(rd->overutilized))
7007 		goto fail;
7008 
7009 	/*
7010 	 * Energy-aware wake-up happens on the lowest sched_domain starting
7011 	 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
7012 	 */
7013 	sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
7014 	while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
7015 		sd = sd->parent;
7016 	if (!sd)
7017 		goto fail;
7018 
7019 	sync_entity_load_avg(&p->se);
7020 	if (!uclamp_task_util(p, p_util_min, p_util_max))
7021 		goto unlock;
7022 
7023 	for (; pd; pd = pd->next) {
7024 		unsigned long util_min = p_util_min, util_max = p_util_max;
7025 		unsigned long cur_delta, spare_cap, max_spare_cap = 0;
7026 		unsigned long rq_util_min, rq_util_max;
7027 		unsigned long base_energy_pd;
7028 		int max_spare_cap_cpu = -1;
7029 
7030 		/* Compute the 'base' energy of the pd, without @p */
7031 		base_energy_pd = compute_energy(p, -1, pd);
7032 		base_energy += base_energy_pd;
7033 
7034 		for_each_cpu_and(cpu, perf_domain_span(pd), sched_domain_span(sd)) {
7035 			struct rq *rq = cpu_rq(cpu);
7036 
7037 			if (!cpumask_test_cpu(cpu, p->cpus_ptr))
7038 				continue;
7039 
7040 			util = cpu_util_next(cpu, p, cpu);
7041 			cpu_cap = capacity_of(cpu);
7042 			spare_cap = cpu_cap;
7043 			lsub_positive(&spare_cap, util);
7044 
7045 			/*
7046 			 * Skip CPUs that cannot satisfy the capacity request.
7047 			 * IOW, placing the task there would make the CPU
7048 			 * overutilized. Take uclamp into account to see how
7049 			 * much capacity we can get out of the CPU; this is
7050 			 * aligned with schedutil_cpu_util().
7051 			 */
7052 			if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
7053 				/*
7054 				 * Open code uclamp_rq_util_with() except for
7055 				 * the clamp() part. Ie: apply max aggregation
7056 				 * only. util_fits_cpu() logic requires to
7057 				 * operate on non clamped util but must use the
7058 				 * max-aggregated uclamp_{min, max}.
7059 				 */
7060 				rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
7061 				rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
7062 
7063 				util_min = max(rq_util_min, p_util_min);
7064 				util_max = max(rq_util_max, p_util_max);
7065 			}
7066 			if (!util_fits_cpu(util, util_min, util_max, cpu))
7067 				continue;
7068 
7069 			/* Always use prev_cpu as a candidate. */
7070 			if (cpu == prev_cpu) {
7071 				prev_delta = compute_energy(p, prev_cpu, pd);
7072 				prev_delta -= base_energy_pd;
7073 				best_delta = min(best_delta, prev_delta);
7074 			}
7075 
7076 			/*
7077 			 * Find the CPU with the maximum spare capacity in
7078 			 * the performance domain
7079 			 */
7080 			if (spare_cap > max_spare_cap) {
7081 				max_spare_cap = spare_cap;
7082 				max_spare_cap_cpu = cpu;
7083 			}
7084 		}
7085 
7086 		/* Evaluate the energy impact of using this CPU. */
7087 		if (max_spare_cap_cpu >= 0 && max_spare_cap_cpu != prev_cpu) {
7088 			cur_delta = compute_energy(p, max_spare_cap_cpu, pd);
7089 			cur_delta -= base_energy_pd;
7090 			if (cur_delta < best_delta) {
7091 				best_delta = cur_delta;
7092 				best_energy_cpu = max_spare_cap_cpu;
7093 			}
7094 		}
7095 	}
7096 unlock:
7097 	rcu_read_unlock();
7098 
7099 	/*
7100 	 * Pick the best CPU if prev_cpu cannot be used, or if it saves at
7101 	 * least 6% of the energy used by prev_cpu.
7102 	 */
7103 	if (prev_delta == ULONG_MAX)
7104 		return best_energy_cpu;
7105 
7106 	if ((prev_delta - best_delta) > ((prev_delta + base_energy) >> 4))
7107 		return best_energy_cpu;
7108 
7109 	return prev_cpu;
7110 
7111 fail:
7112 	rcu_read_unlock();
7113 
7114 	return -1;
7115 }
7116 
7117 /*
7118  * select_task_rq_fair: Select target runqueue for the waking task in domains
7119  * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
7120  * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
7121  *
7122  * Balances load by selecting the idlest CPU in the idlest group, or under
7123  * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
7124  *
7125  * Returns the target CPU number.
7126  *
7127  * preempt must be disabled.
7128  */
7129 static int
select_task_rq_fair(struct task_struct * p,int prev_cpu,int sd_flag,int wake_flags)7130 select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
7131 {
7132 	struct sched_domain *tmp, *sd = NULL;
7133 	int cpu = smp_processor_id();
7134 	int new_cpu = prev_cpu;
7135 	int want_affine = 0;
7136 	int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
7137 #ifdef CONFIG_SCHED_RTG
7138 	int target_cpu = -1;
7139 		target_cpu = find_rtg_cpu(p);
7140 		if (target_cpu >= 0)
7141 			return target_cpu;
7142 #endif
7143 
7144 	if (sd_flag & SD_BALANCE_WAKE) {
7145 		record_wakee(p);
7146 
7147 		if (sched_energy_enabled()) {
7148 			new_cpu = find_energy_efficient_cpu(p, prev_cpu);
7149 			if (new_cpu >= 0)
7150 				return new_cpu;
7151 			new_cpu = prev_cpu;
7152 		}
7153 
7154 		want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
7155 	}
7156 
7157 	rcu_read_lock();
7158 	for_each_domain(cpu, tmp) {
7159 		/*
7160 		 * If both 'cpu' and 'prev_cpu' are part of this domain,
7161 		 * cpu is a valid SD_WAKE_AFFINE target.
7162 		 */
7163 		if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
7164 		    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
7165 			if (cpu != prev_cpu)
7166 				new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
7167 
7168 			sd = NULL; /* Prefer wake_affine over balance flags */
7169 			break;
7170 		}
7171 
7172 		if (tmp->flags & sd_flag)
7173 			sd = tmp;
7174 		else if (!want_affine)
7175 			break;
7176 	}
7177 
7178 	if (unlikely(sd)) {
7179 		/* Slow path */
7180 		new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
7181 	} else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
7182 		/* Fast path */
7183 
7184 		new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
7185 
7186 		if (want_affine)
7187 			current->recent_used_cpu = cpu;
7188 	}
7189 	rcu_read_unlock();
7190 
7191 	return new_cpu;
7192 }
7193 
7194 static void detach_entity_cfs_rq(struct sched_entity *se);
7195 
7196 /*
7197  * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
7198  * cfs_rq_of(p) references at time of call are still valid and identify the
7199  * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
7200  */
migrate_task_rq_fair(struct task_struct * p,int new_cpu)7201 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
7202 {
7203 	/*
7204 	 * As blocked tasks retain absolute vruntime the migration needs to
7205 	 * deal with this by subtracting the old and adding the new
7206 	 * min_vruntime -- the latter is done by enqueue_entity() when placing
7207 	 * the task on the new runqueue.
7208 	 */
7209 	if (p->state == TASK_WAKING) {
7210 		struct sched_entity *se = &p->se;
7211 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
7212 		u64 min_vruntime;
7213 
7214 #ifndef CONFIG_64BIT
7215 		u64 min_vruntime_copy;
7216 
7217 		do {
7218 			min_vruntime_copy = cfs_rq->min_vruntime_copy;
7219 			smp_rmb();
7220 			min_vruntime = cfs_rq->min_vruntime;
7221 		} while (min_vruntime != min_vruntime_copy);
7222 #else
7223 		min_vruntime = cfs_rq->min_vruntime;
7224 #endif
7225 
7226 		se->vruntime -= min_vruntime;
7227 	}
7228 
7229 	if (p->on_rq == TASK_ON_RQ_MIGRATING) {
7230 		/*
7231 		 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
7232 		 * rq->lock and can modify state directly.
7233 		 */
7234 		lockdep_assert_held(&task_rq(p)->lock);
7235 		detach_entity_cfs_rq(&p->se);
7236 
7237 	} else {
7238 		/*
7239 		 * We are supposed to update the task to "current" time, then
7240 		 * its up to date and ready to go to new CPU/cfs_rq. But we
7241 		 * have difficulty in getting what current time is, so simply
7242 		 * throw away the out-of-date time. This will result in the
7243 		 * wakee task is less decayed, but giving the wakee more load
7244 		 * sounds not bad.
7245 		 */
7246 		remove_entity_load_avg(&p->se);
7247 	}
7248 
7249 	/* Tell new CPU we are migrated */
7250 	p->se.avg.last_update_time = 0;
7251 
7252 	update_scan_period(p, new_cpu);
7253 }
7254 
task_dead_fair(struct task_struct * p)7255 static void task_dead_fair(struct task_struct *p)
7256 {
7257 	remove_entity_load_avg(&p->se);
7258 }
7259 
7260 static int
balance_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7261 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7262 {
7263 	if (rq->nr_running)
7264 		return 1;
7265 
7266 	return newidle_balance(rq, rf) != 0;
7267 }
7268 #endif /* CONFIG_SMP */
7269 
7270 #ifdef CONFIG_SCHED_LATENCY_NICE
wakeup_latency_gran(struct sched_entity * curr,struct sched_entity * se)7271 static long wakeup_latency_gran(struct sched_entity *curr, struct sched_entity *se)
7272 {
7273 	int latency_weight = se->latency_weight;
7274 	long thresh = sysctl_sched_latency;
7275 
7276 	/*
7277 	 * A positive latency weigth means that the sched_entity has latency
7278 	 * requirement that needs to be evaluated versus other entity.
7279 	 * Otherwise, use the latency weight to evaluate how much scheduling
7280 	 * delay is acceptable by se.
7281 	 */
7282 	if ((se->latency_weight > 0) || (curr->latency_weight > 0))
7283 		latency_weight -= curr->latency_weight;
7284 
7285 	if (!latency_weight)
7286 		return 0;
7287 
7288 	if (sched_feat(GENTLE_FAIR_SLEEPERS))
7289 		thresh >>= 1;
7290 
7291 	/*
7292 	 * Clamp the delta to stay in the scheduler period range
7293 	 * [-sysctl_sched_latency:sysctl_sched_latency]
7294 	 */
7295 	latency_weight = clamp_t(long, latency_weight,
7296 				-1 * NICE_LATENCY_WEIGHT_MAX,
7297 				NICE_LATENCY_WEIGHT_MAX);
7298 
7299 	return (thresh * latency_weight) >> NICE_LATENCY_SHIFT;
7300 }
7301 #endif
7302 
wakeup_gran(struct sched_entity * se)7303 static unsigned long wakeup_gran(struct sched_entity *se)
7304 {
7305 	unsigned long gran = sysctl_sched_wakeup_granularity;
7306 
7307 	/*
7308 	 * Since its curr running now, convert the gran from real-time
7309 	 * to virtual-time in his units.
7310 	 *
7311 	 * By using 'se' instead of 'curr' we penalize light tasks, so
7312 	 * they get preempted easier. That is, if 'se' < 'curr' then
7313 	 * the resulting gran will be larger, therefore penalizing the
7314 	 * lighter, if otoh 'se' > 'curr' then the resulting gran will
7315 	 * be smaller, again penalizing the lighter task.
7316 	 *
7317 	 * This is especially important for buddies when the leftmost
7318 	 * task is higher priority than the buddy.
7319 	 */
7320 	return calc_delta_fair(gran, se);
7321 }
7322 
7323 /*
7324  * Should 'se' preempt 'curr'.
7325  *
7326  *             |s1
7327  *        |s2
7328  *   |s3
7329  *         g
7330  *      |<--->|c
7331  *
7332  *  w(c, s1) = -1
7333  *  w(c, s2) =  0
7334  *  w(c, s3) =  1
7335  *
7336  */
7337 static int
wakeup_preempt_entity(struct sched_entity * curr,struct sched_entity * se)7338 wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
7339 {
7340 	s64 gran, vdiff = curr->vruntime - se->vruntime;
7341 
7342 #ifdef CONFIG_SCHED_LATENCY_NICE
7343 	/* Take into account latency priority */
7344 	vdiff += wakeup_latency_gran(curr, se);
7345 #endif
7346 
7347 	if (vdiff <= 0)
7348 		return -1;
7349 
7350 	gran = wakeup_gran(se);
7351 	if (vdiff > gran)
7352 		return 1;
7353 
7354 	return 0;
7355 }
7356 
set_last_buddy(struct sched_entity * se)7357 static void set_last_buddy(struct sched_entity *se)
7358 {
7359 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7360 		return;
7361 
7362 	for_each_sched_entity(se) {
7363 		if (SCHED_WARN_ON(!se->on_rq))
7364 			return;
7365 		cfs_rq_of(se)->last = se;
7366 	}
7367 }
7368 
set_next_buddy(struct sched_entity * se)7369 static void set_next_buddy(struct sched_entity *se)
7370 {
7371 	if (entity_is_task(se) && unlikely(task_has_idle_policy(task_of(se))))
7372 		return;
7373 
7374 	for_each_sched_entity(se) {
7375 		if (SCHED_WARN_ON(!se->on_rq))
7376 			return;
7377 		cfs_rq_of(se)->next = se;
7378 	}
7379 }
7380 
set_skip_buddy(struct sched_entity * se)7381 static void set_skip_buddy(struct sched_entity *se)
7382 {
7383 	for_each_sched_entity(se)
7384 		cfs_rq_of(se)->skip = se;
7385 }
7386 
7387 /*
7388  * Preempt the current task with a newly woken task if needed:
7389  */
check_preempt_wakeup(struct rq * rq,struct task_struct * p,int wake_flags)7390 static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
7391 {
7392 	struct task_struct *curr = rq->curr;
7393 	struct sched_entity *se = &curr->se, *pse = &p->se;
7394 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7395 	int scale = cfs_rq->nr_running >= sched_nr_latency;
7396 	int next_buddy_marked = 0;
7397 
7398 	if (unlikely(se == pse))
7399 		return;
7400 
7401 	/*
7402 	 * This is possible from callers such as attach_tasks(), in which we
7403 	 * unconditionally check_prempt_curr() after an enqueue (which may have
7404 	 * lead to a throttle).  This both saves work and prevents false
7405 	 * next-buddy nomination below.
7406 	 */
7407 	if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
7408 		return;
7409 
7410 	if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
7411 		set_next_buddy(pse);
7412 		next_buddy_marked = 1;
7413 	}
7414 
7415 	/*
7416 	 * We can come here with TIF_NEED_RESCHED already set from new task
7417 	 * wake up path.
7418 	 *
7419 	 * Note: this also catches the edge-case of curr being in a throttled
7420 	 * group (e.g. via set_curr_task), since update_curr() (in the
7421 	 * enqueue of curr) will have resulted in resched being set.  This
7422 	 * prevents us from potentially nominating it as a false LAST_BUDDY
7423 	 * below.
7424 	 */
7425 	if (test_tsk_need_resched(curr))
7426 		return;
7427 
7428 	/* Idle tasks are by definition preempted by non-idle tasks. */
7429 	if (unlikely(task_has_idle_policy(curr)) &&
7430 	    likely(!task_has_idle_policy(p)))
7431 		goto preempt;
7432 
7433 	/*
7434 	 * Batch and idle tasks do not preempt non-idle tasks (their preemption
7435 	 * is driven by the tick):
7436 	 */
7437 	if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
7438 		return;
7439 
7440 	find_matching_se(&se, &pse);
7441 	update_curr(cfs_rq_of(se));
7442 	BUG_ON(!pse);
7443 	if (wakeup_preempt_entity(se, pse) == 1) {
7444 		/*
7445 		 * Bias pick_next to pick the sched entity that is
7446 		 * triggering this preemption.
7447 		 */
7448 		if (!next_buddy_marked)
7449 			set_next_buddy(pse);
7450 		goto preempt;
7451 	}
7452 
7453 	return;
7454 
7455 preempt:
7456 	resched_curr(rq);
7457 	/*
7458 	 * Only set the backward buddy when the current task is still
7459 	 * on the rq. This can happen when a wakeup gets interleaved
7460 	 * with schedule on the ->pre_schedule() or idle_balance()
7461 	 * point, either of which can * drop the rq lock.
7462 	 *
7463 	 * Also, during early boot the idle thread is in the fair class,
7464 	 * for obvious reasons its a bad idea to schedule back to it.
7465 	 */
7466 	if (unlikely(!se->on_rq || curr == rq->idle))
7467 		return;
7468 
7469 	if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
7470 		set_last_buddy(se);
7471 }
7472 
7473 struct task_struct *
pick_next_task_fair(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)7474 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
7475 {
7476 	struct cfs_rq *cfs_rq = &rq->cfs;
7477 	struct sched_entity *se;
7478 	struct task_struct *p;
7479 	int new_tasks;
7480 
7481 again:
7482 	if (!sched_fair_runnable(rq))
7483 		goto idle;
7484 
7485 #ifdef CONFIG_FAIR_GROUP_SCHED
7486 	if (!prev || prev->sched_class != &fair_sched_class)
7487 		goto simple;
7488 
7489 	/*
7490 	 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
7491 	 * likely that a next task is from the same cgroup as the current.
7492 	 *
7493 	 * Therefore attempt to avoid putting and setting the entire cgroup
7494 	 * hierarchy, only change the part that actually changes.
7495 	 */
7496 
7497 	do {
7498 		struct sched_entity *curr = cfs_rq->curr;
7499 
7500 		/*
7501 		 * Since we got here without doing put_prev_entity() we also
7502 		 * have to consider cfs_rq->curr. If it is still a runnable
7503 		 * entity, update_curr() will update its vruntime, otherwise
7504 		 * forget we've ever seen it.
7505 		 */
7506 		if (curr) {
7507 			if (curr->on_rq)
7508 				update_curr(cfs_rq);
7509 			else
7510 				curr = NULL;
7511 
7512 			/*
7513 			 * This call to check_cfs_rq_runtime() will do the
7514 			 * throttle and dequeue its entity in the parent(s).
7515 			 * Therefore the nr_running test will indeed
7516 			 * be correct.
7517 			 */
7518 			if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
7519 				cfs_rq = &rq->cfs;
7520 
7521 				if (!cfs_rq->nr_running)
7522 					goto idle;
7523 
7524 				goto simple;
7525 			}
7526 		}
7527 
7528 		se = pick_next_entity(cfs_rq, curr);
7529 		cfs_rq = group_cfs_rq(se);
7530 	} while (cfs_rq);
7531 
7532 	p = task_of(se);
7533 
7534 	/*
7535 	 * Since we haven't yet done put_prev_entity and if the selected task
7536 	 * is a different task than we started out with, try and touch the
7537 	 * least amount of cfs_rqs.
7538 	 */
7539 	if (prev != p) {
7540 		struct sched_entity *pse = &prev->se;
7541 
7542 		while (!(cfs_rq = is_same_group(se, pse))) {
7543 			int se_depth = se->depth;
7544 			int pse_depth = pse->depth;
7545 
7546 			if (se_depth <= pse_depth) {
7547 				put_prev_entity(cfs_rq_of(pse), pse);
7548 				pse = parent_entity(pse);
7549 			}
7550 			if (se_depth >= pse_depth) {
7551 				set_next_entity(cfs_rq_of(se), se);
7552 				se = parent_entity(se);
7553 			}
7554 		}
7555 
7556 		put_prev_entity(cfs_rq, pse);
7557 		set_next_entity(cfs_rq, se);
7558 	}
7559 
7560 	goto done;
7561 simple:
7562 #endif
7563 	if (prev)
7564 		put_prev_task(rq, prev);
7565 
7566 	do {
7567 		se = pick_next_entity(cfs_rq, NULL);
7568 		set_next_entity(cfs_rq, se);
7569 		cfs_rq = group_cfs_rq(se);
7570 	} while (cfs_rq);
7571 
7572 	p = task_of(se);
7573 
7574 done: __maybe_unused;
7575 #ifdef CONFIG_SMP
7576 	/*
7577 	 * Move the next running task to the front of
7578 	 * the list, so our cfs_tasks list becomes MRU
7579 	 * one.
7580 	 */
7581 	list_move(&p->se.group_node, &rq->cfs_tasks);
7582 #endif
7583 
7584 	if (hrtick_enabled(rq))
7585 		hrtick_start_fair(rq, p);
7586 
7587 	update_misfit_status(p, rq);
7588 
7589 	return p;
7590 
7591 idle:
7592 	if (!rf)
7593 		return NULL;
7594 
7595 	new_tasks = newidle_balance(rq, rf);
7596 
7597 	/*
7598 	 * Because newidle_balance() releases (and re-acquires) rq->lock, it is
7599 	 * possible for any higher priority task to appear. In that case we
7600 	 * must re-start the pick_next_entity() loop.
7601 	 */
7602 	if (new_tasks < 0)
7603 		return RETRY_TASK;
7604 
7605 	if (new_tasks > 0)
7606 		goto again;
7607 
7608 	/*
7609 	 * rq is about to be idle, check if we need to update the
7610 	 * lost_idle_time of clock_pelt
7611 	 */
7612 	update_idle_rq_clock_pelt(rq);
7613 
7614 	return NULL;
7615 }
7616 
__pick_next_task_fair(struct rq * rq)7617 static struct task_struct *__pick_next_task_fair(struct rq *rq)
7618 {
7619 	return pick_next_task_fair(rq, NULL, NULL);
7620 }
7621 
7622 /*
7623  * Account for a descheduled task:
7624  */
put_prev_task_fair(struct rq * rq,struct task_struct * prev)7625 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
7626 {
7627 	struct sched_entity *se = &prev->se;
7628 	struct cfs_rq *cfs_rq;
7629 
7630 	for_each_sched_entity(se) {
7631 		cfs_rq = cfs_rq_of(se);
7632 		put_prev_entity(cfs_rq, se);
7633 	}
7634 }
7635 
7636 /*
7637  * sched_yield() is very simple
7638  *
7639  * The magic of dealing with the ->skip buddy is in pick_next_entity.
7640  */
yield_task_fair(struct rq * rq)7641 static void yield_task_fair(struct rq *rq)
7642 {
7643 	struct task_struct *curr = rq->curr;
7644 	struct cfs_rq *cfs_rq = task_cfs_rq(curr);
7645 	struct sched_entity *se = &curr->se;
7646 
7647 	/*
7648 	 * Are we the only task in the tree?
7649 	 */
7650 	if (unlikely(rq->nr_running == 1))
7651 		return;
7652 
7653 	clear_buddies(cfs_rq, se);
7654 
7655 	if (curr->policy != SCHED_BATCH) {
7656 		update_rq_clock(rq);
7657 		/*
7658 		 * Update run-time statistics of the 'current'.
7659 		 */
7660 		update_curr(cfs_rq);
7661 		/*
7662 		 * Tell update_rq_clock() that we've just updated,
7663 		 * so we don't do microscopic update in schedule()
7664 		 * and double the fastpath cost.
7665 		 */
7666 		rq_clock_skip_update(rq);
7667 	}
7668 
7669 	set_skip_buddy(se);
7670 }
7671 
yield_to_task_fair(struct rq * rq,struct task_struct * p)7672 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
7673 {
7674 	struct sched_entity *se = &p->se;
7675 
7676 	/* throttled hierarchies are not runnable */
7677 	if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
7678 		return false;
7679 
7680 	/* Tell the scheduler that we'd really like pse to run next. */
7681 	set_next_buddy(se);
7682 
7683 	yield_task_fair(rq);
7684 
7685 	return true;
7686 }
7687 
7688 #ifdef CONFIG_SMP
7689 /**************************************************
7690  * Fair scheduling class load-balancing methods.
7691  *
7692  * BASICS
7693  *
7694  * The purpose of load-balancing is to achieve the same basic fairness the
7695  * per-CPU scheduler provides, namely provide a proportional amount of compute
7696  * time to each task. This is expressed in the following equation:
7697  *
7698  *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
7699  *
7700  * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
7701  * W_i,0 is defined as:
7702  *
7703  *   W_i,0 = \Sum_j w_i,j                                             (2)
7704  *
7705  * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
7706  * is derived from the nice value as per sched_prio_to_weight[].
7707  *
7708  * The weight average is an exponential decay average of the instantaneous
7709  * weight:
7710  *
7711  *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
7712  *
7713  * C_i is the compute capacity of CPU i, typically it is the
7714  * fraction of 'recent' time available for SCHED_OTHER task execution. But it
7715  * can also include other factors [XXX].
7716  *
7717  * To achieve this balance we define a measure of imbalance which follows
7718  * directly from (1):
7719  *
7720  *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
7721  *
7722  * We them move tasks around to minimize the imbalance. In the continuous
7723  * function space it is obvious this converges, in the discrete case we get
7724  * a few fun cases generally called infeasible weight scenarios.
7725  *
7726  * [XXX expand on:
7727  *     - infeasible weights;
7728  *     - local vs global optima in the discrete case. ]
7729  *
7730  *
7731  * SCHED DOMAINS
7732  *
7733  * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
7734  * for all i,j solution, we create a tree of CPUs that follows the hardware
7735  * topology where each level pairs two lower groups (or better). This results
7736  * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
7737  * tree to only the first of the previous level and we decrease the frequency
7738  * of load-balance at each level inv. proportional to the number of CPUs in
7739  * the groups.
7740  *
7741  * This yields:
7742  *
7743  *     log_2 n     1     n
7744  *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
7745  *     i = 0      2^i   2^i
7746  *                               `- size of each group
7747  *         |         |     `- number of CPUs doing load-balance
7748  *         |         `- freq
7749  *         `- sum over all levels
7750  *
7751  * Coupled with a limit on how many tasks we can migrate every balance pass,
7752  * this makes (5) the runtime complexity of the balancer.
7753  *
7754  * An important property here is that each CPU is still (indirectly) connected
7755  * to every other CPU in at most O(log n) steps:
7756  *
7757  * The adjacency matrix of the resulting graph is given by:
7758  *
7759  *             log_2 n
7760  *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
7761  *             k = 0
7762  *
7763  * And you'll find that:
7764  *
7765  *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
7766  *
7767  * Showing there's indeed a path between every CPU in at most O(log n) steps.
7768  * The task movement gives a factor of O(m), giving a convergence complexity
7769  * of:
7770  *
7771  *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
7772  *
7773  *
7774  * WORK CONSERVING
7775  *
7776  * In order to avoid CPUs going idle while there's still work to do, new idle
7777  * balancing is more aggressive and has the newly idle CPU iterate up the domain
7778  * tree itself instead of relying on other CPUs to bring it work.
7779  *
7780  * This adds some complexity to both (5) and (8) but it reduces the total idle
7781  * time.
7782  *
7783  * [XXX more?]
7784  *
7785  *
7786  * CGROUPS
7787  *
7788  * Cgroups make a horror show out of (2), instead of a simple sum we get:
7789  *
7790  *                                s_k,i
7791  *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
7792  *                                 S_k
7793  *
7794  * Where
7795  *
7796  *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
7797  *
7798  * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
7799  *
7800  * The big problem is S_k, its a global sum needed to compute a local (W_i)
7801  * property.
7802  *
7803  * [XXX write more on how we solve this.. _after_ merging pjt's patches that
7804  *      rewrite all of this once again.]
7805  */
7806 
7807 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
7808 
7809 enum fbq_type { regular, remote, all };
7810 
7811 /*
7812  * 'group_type' describes the group of CPUs at the moment of load balancing.
7813  *
7814  * The enum is ordered by pulling priority, with the group with lowest priority
7815  * first so the group_type can simply be compared when selecting the busiest
7816  * group. See update_sd_pick_busiest().
7817  */
7818 enum group_type {
7819 	/* The group has spare capacity that can be used to run more tasks.  */
7820 	group_has_spare = 0,
7821 	/*
7822 	 * The group is fully used and the tasks don't compete for more CPU
7823 	 * cycles. Nevertheless, some tasks might wait before running.
7824 	 */
7825 	group_fully_busy,
7826 	/*
7827 	 * SD_ASYM_CPUCAPACITY only: One task doesn't fit with CPU's capacity
7828 	 * and must be migrated to a more powerful CPU.
7829 	 */
7830 	group_misfit_task,
7831 	/*
7832 	 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
7833 	 * and the task should be migrated to it instead of running on the
7834 	 * current CPU.
7835 	 */
7836 	group_asym_packing,
7837 	/*
7838 	 * The tasks' affinity constraints previously prevented the scheduler
7839 	 * from balancing the load across the system.
7840 	 */
7841 	group_imbalanced,
7842 	/*
7843 	 * The CPU is overloaded and can't provide expected CPU cycles to all
7844 	 * tasks.
7845 	 */
7846 	group_overloaded
7847 };
7848 
7849 enum migration_type {
7850 	migrate_load = 0,
7851 	migrate_util,
7852 	migrate_task,
7853 	migrate_misfit
7854 };
7855 
7856 #define LBF_ALL_PINNED	0x01
7857 #define LBF_NEED_BREAK	0x02
7858 #define LBF_DST_PINNED  0x04
7859 #define LBF_SOME_PINNED	0x08
7860 #define LBF_NOHZ_STATS	0x10
7861 #define LBF_NOHZ_AGAIN	0x20
7862 #define LBF_IGNORE_PREFERRED_CLUSTER_TASKS 0x200
7863 
7864 struct lb_env {
7865 	struct sched_domain	*sd;
7866 
7867 	struct rq		*src_rq;
7868 	int			src_cpu;
7869 
7870 	int			dst_cpu;
7871 	struct rq		*dst_rq;
7872 
7873 	struct cpumask		*dst_grpmask;
7874 	int			new_dst_cpu;
7875 	enum cpu_idle_type	idle;
7876 	long			imbalance;
7877 	/* The set of CPUs under consideration for load-balancing */
7878 	struct cpumask		*cpus;
7879 
7880 	unsigned int		flags;
7881 
7882 	unsigned int		loop;
7883 	unsigned int		loop_break;
7884 	unsigned int		loop_max;
7885 
7886 	enum fbq_type		fbq_type;
7887 	enum migration_type	migration_type;
7888 	struct list_head	tasks;
7889 };
7890 
7891 /*
7892  * Is this task likely cache-hot:
7893  */
task_hot(struct task_struct * p,struct lb_env * env)7894 static int task_hot(struct task_struct *p, struct lb_env *env)
7895 {
7896 	s64 delta;
7897 
7898 	lockdep_assert_held(&env->src_rq->lock);
7899 
7900 	if (p->sched_class != &fair_sched_class)
7901 		return 0;
7902 
7903 	if (unlikely(task_has_idle_policy(p)))
7904 		return 0;
7905 
7906 	/* SMT siblings share cache */
7907 	if (env->sd->flags & SD_SHARE_CPUCAPACITY)
7908 		return 0;
7909 
7910 	/*
7911 	 * Buddy candidates are cache hot:
7912 	 */
7913 	if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
7914 			(&p->se == cfs_rq_of(&p->se)->next ||
7915 			 &p->se == cfs_rq_of(&p->se)->last))
7916 		return 1;
7917 
7918 	if (sysctl_sched_migration_cost == -1)
7919 		return 1;
7920 	if (sysctl_sched_migration_cost == 0)
7921 		return 0;
7922 
7923 	delta = rq_clock_task(env->src_rq) - p->se.exec_start;
7924 
7925 	return delta < (s64)sysctl_sched_migration_cost;
7926 }
7927 
7928 #ifdef CONFIG_NUMA_BALANCING
7929 /*
7930  * Returns 1, if task migration degrades locality
7931  * Returns 0, if task migration improves locality i.e migration preferred.
7932  * Returns -1, if task migration is not affected by locality.
7933  */
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7934 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
7935 {
7936 	struct numa_group *numa_group = rcu_dereference(p->numa_group);
7937 	unsigned long src_weight, dst_weight;
7938 	int src_nid, dst_nid, dist;
7939 
7940 	if (!static_branch_likely(&sched_numa_balancing))
7941 		return -1;
7942 
7943 	if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7944 		return -1;
7945 
7946 	src_nid = cpu_to_node(env->src_cpu);
7947 	dst_nid = cpu_to_node(env->dst_cpu);
7948 
7949 	if (src_nid == dst_nid)
7950 		return -1;
7951 
7952 	/* Migrating away from the preferred node is always bad. */
7953 	if (src_nid == p->numa_preferred_nid) {
7954 		if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7955 			return 1;
7956 		else
7957 			return -1;
7958 	}
7959 
7960 	/* Encourage migration to the preferred node. */
7961 	if (dst_nid == p->numa_preferred_nid)
7962 		return 0;
7963 
7964 	/* Leaving a core idle is often worse than degrading locality. */
7965 	if (env->idle == CPU_IDLE)
7966 		return -1;
7967 
7968 	dist = node_distance(src_nid, dst_nid);
7969 	if (numa_group) {
7970 		src_weight = group_weight(p, src_nid, dist);
7971 		dst_weight = group_weight(p, dst_nid, dist);
7972 	} else {
7973 		src_weight = task_weight(p, src_nid, dist);
7974 		dst_weight = task_weight(p, dst_nid, dist);
7975 	}
7976 
7977 	return dst_weight < src_weight;
7978 }
7979 
7980 #else
migrate_degrades_locality(struct task_struct * p,struct lb_env * env)7981 static inline int migrate_degrades_locality(struct task_struct *p,
7982 					     struct lb_env *env)
7983 {
7984 	return -1;
7985 }
7986 #endif
7987 
7988 /*
7989  * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7990  */
7991 static
can_migrate_task(struct task_struct * p,struct lb_env * env)7992 int can_migrate_task(struct task_struct *p, struct lb_env *env)
7993 {
7994 	int tsk_cache_hot;
7995 
7996 	lockdep_assert_held(&env->src_rq->lock);
7997 
7998 	/*
7999 	 * We do not migrate tasks that are:
8000 	 * 1) throttled_lb_pair, or
8001 	 * 2) cannot be migrated to this CPU due to cpus_ptr, or
8002 	 * 3) running (obviously), or
8003 	 * 4) are cache-hot on their current CPU.
8004 	 */
8005 	if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
8006 		return 0;
8007 
8008 	/* Disregard pcpu kthreads; they are where they need to be. */
8009 	if (kthread_is_per_cpu(p))
8010 		return 0;
8011 
8012 	if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
8013 		int cpu;
8014 
8015 		schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
8016 
8017 		env->flags |= LBF_SOME_PINNED;
8018 
8019 		/*
8020 		 * Remember if this task can be migrated to any other CPU in
8021 		 * our sched_group. We may want to revisit it if we couldn't
8022 		 * meet load balance goals by pulling other tasks on src_cpu.
8023 		 *
8024 		 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
8025 		 * already computed one in current iteration.
8026 		 */
8027 		if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
8028 			return 0;
8029 
8030 		/* Prevent to re-select dst_cpu via env's CPUs: */
8031 		for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
8032 			if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
8033 				env->flags |= LBF_DST_PINNED;
8034 				env->new_dst_cpu = cpu;
8035 				break;
8036 			}
8037 		}
8038 
8039 		return 0;
8040 	}
8041 
8042 	/* Record that we found atleast one task that could run on dst_cpu */
8043 	env->flags &= ~LBF_ALL_PINNED;
8044 
8045 
8046 #ifdef CONFIG_SCHED_RTG
8047 	if (env->flags & LBF_IGNORE_PREFERRED_CLUSTER_TASKS &&
8048 			 !preferred_cluster(cpu_rq(env->dst_cpu)->cluster, p))
8049 		return 0;
8050 #endif
8051 
8052 	if (task_running(env->src_rq, p)) {
8053 		schedstat_inc(p->se.statistics.nr_failed_migrations_running);
8054 		return 0;
8055 	}
8056 
8057 	/*
8058 	 * Aggressive migration if:
8059 	 * 1) destination numa is preferred
8060 	 * 2) task is cache cold, or
8061 	 * 3) too many balance attempts have failed.
8062 	 */
8063 	tsk_cache_hot = migrate_degrades_locality(p, env);
8064 	if (tsk_cache_hot == -1)
8065 		tsk_cache_hot = task_hot(p, env);
8066 
8067 	if (tsk_cache_hot <= 0 ||
8068 	    env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
8069 		if (tsk_cache_hot == 1) {
8070 			schedstat_inc(env->sd->lb_hot_gained[env->idle]);
8071 			schedstat_inc(p->se.statistics.nr_forced_migrations);
8072 		}
8073 		return 1;
8074 	}
8075 
8076 	schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
8077 	return 0;
8078 }
8079 
8080 /*
8081  * detach_task() -- detach the task for the migration specified in env
8082  */
detach_task(struct task_struct * p,struct lb_env * env)8083 static void detach_task(struct task_struct *p, struct lb_env *env)
8084 {
8085 	lockdep_assert_held(&env->src_rq->lock);
8086 
8087 	deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
8088 #ifdef CONFIG_SCHED_WALT
8089 	double_lock_balance(env->src_rq, env->dst_rq);
8090 	if (!(env->src_rq->clock_update_flags & RQCF_UPDATED))
8091 		update_rq_clock(env->src_rq);
8092 #endif
8093 	set_task_cpu(p, env->dst_cpu);
8094 #ifdef CONFIG_SCHED_WALT
8095 	double_unlock_balance(env->src_rq, env->dst_rq);
8096 #endif
8097 }
8098 
8099 /*
8100  * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
8101  * part of active balancing operations within "domain".
8102  *
8103  * Returns a task if successful and NULL otherwise.
8104  */
detach_one_task(struct lb_env * env)8105 static struct task_struct *detach_one_task(struct lb_env *env)
8106 {
8107 	struct task_struct *p;
8108 
8109 	lockdep_assert_held(&env->src_rq->lock);
8110 
8111 	list_for_each_entry_reverse(p,
8112 			&env->src_rq->cfs_tasks, se.group_node) {
8113 		if (!can_migrate_task(p, env))
8114 			continue;
8115 
8116 		detach_task(p, env);
8117 
8118 		/*
8119 		 * Right now, this is only the second place where
8120 		 * lb_gained[env->idle] is updated (other is detach_tasks)
8121 		 * so we can safely collect stats here rather than
8122 		 * inside detach_tasks().
8123 		 */
8124 		schedstat_inc(env->sd->lb_gained[env->idle]);
8125 		return p;
8126 	}
8127 	return NULL;
8128 }
8129 
8130 static const unsigned int sched_nr_migrate_break = 32;
8131 
8132 /*
8133  * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
8134  * busiest_rq, as part of a balancing operation within domain "sd".
8135  *
8136  * Returns number of detached tasks if successful and 0 otherwise.
8137  */
detach_tasks(struct lb_env * env)8138 static int detach_tasks(struct lb_env *env)
8139 {
8140 	struct list_head *tasks = &env->src_rq->cfs_tasks;
8141 	unsigned long util, load;
8142 	struct task_struct *p;
8143 	int detached = 0;
8144 #ifdef CONFIG_SCHED_RTG
8145 	int orig_loop = env->loop;
8146 #endif
8147 
8148 	lockdep_assert_held(&env->src_rq->lock);
8149 
8150 	if (env->imbalance <= 0)
8151 		return 0;
8152 
8153 #ifdef CONFIG_SCHED_RTG
8154 	if (!same_cluster(env->dst_cpu, env->src_cpu))
8155 		env->flags |= LBF_IGNORE_PREFERRED_CLUSTER_TASKS;
8156 
8157 redo:
8158 #endif
8159 	while (!list_empty(tasks)) {
8160 		/*
8161 		 * We don't want to steal all, otherwise we may be treated likewise,
8162 		 * which could at worst lead to a livelock crash.
8163 		 */
8164 		if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
8165 			break;
8166 
8167 		p = list_last_entry(tasks, struct task_struct, se.group_node);
8168 
8169 		env->loop++;
8170 		/* We've more or less seen every task there is, call it quits */
8171 		if (env->loop > env->loop_max)
8172 			break;
8173 
8174 		/* take a breather every nr_migrate tasks */
8175 		if (env->loop > env->loop_break) {
8176 			env->loop_break += sched_nr_migrate_break;
8177 			env->flags |= LBF_NEED_BREAK;
8178 			break;
8179 		}
8180 
8181 		if (!can_migrate_task(p, env))
8182 			goto next;
8183 
8184 		switch (env->migration_type) {
8185 		case migrate_load:
8186 			/*
8187 			 * Depending of the number of CPUs and tasks and the
8188 			 * cgroup hierarchy, task_h_load() can return a null
8189 			 * value. Make sure that env->imbalance decreases
8190 			 * otherwise detach_tasks() will stop only after
8191 			 * detaching up to loop_max tasks.
8192 			 */
8193 			load = max_t(unsigned long, task_h_load(p), 1);
8194 
8195 			if (sched_feat(LB_MIN) &&
8196 			    load < 16 && !env->sd->nr_balance_failed)
8197 				goto next;
8198 
8199 			/*
8200 			 * Make sure that we don't migrate too much load.
8201 			 * Nevertheless, let relax the constraint if
8202 			 * scheduler fails to find a good waiting task to
8203 			 * migrate.
8204 			 */
8205 			if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
8206 				goto next;
8207 
8208 			env->imbalance -= load;
8209 			break;
8210 
8211 		case migrate_util:
8212 			util = task_util_est(p);
8213 
8214 			if (util > env->imbalance)
8215 				goto next;
8216 
8217 			env->imbalance -= util;
8218 			break;
8219 
8220 		case migrate_task:
8221 			env->imbalance--;
8222 			break;
8223 
8224 		case migrate_misfit:
8225 			/* This is not a misfit task */
8226 			if (task_fits_cpu(p, env->src_cpu))
8227 				goto next;
8228 
8229 			env->imbalance = 0;
8230 			break;
8231 		}
8232 
8233 		detach_task(p, env);
8234 		list_add(&p->se.group_node, &env->tasks);
8235 
8236 		detached++;
8237 
8238 #ifdef CONFIG_PREEMPTION
8239 		/*
8240 		 * NEWIDLE balancing is a source of latency, so preemptible
8241 		 * kernels will stop after the first task is detached to minimize
8242 		 * the critical section.
8243 		 */
8244 		if (env->idle == CPU_NEWLY_IDLE)
8245 			break;
8246 #endif
8247 
8248 		/*
8249 		 * We only want to steal up to the prescribed amount of
8250 		 * load/util/tasks.
8251 		 */
8252 		if (env->imbalance <= 0)
8253 			break;
8254 
8255 		continue;
8256 next:
8257 		list_move(&p->se.group_node, tasks);
8258 	}
8259 
8260 #ifdef CONFIG_SCHED_RTG
8261 	if (env->flags & LBF_IGNORE_PREFERRED_CLUSTER_TASKS && !detached) {
8262 		tasks = &env->src_rq->cfs_tasks;
8263 		env->flags &= ~LBF_IGNORE_PREFERRED_CLUSTER_TASKS;
8264 		env->loop = orig_loop;
8265 		goto redo;
8266 	}
8267 #endif
8268 
8269 	/*
8270 	 * Right now, this is one of only two places we collect this stat
8271 	 * so we can safely collect detach_one_task() stats here rather
8272 	 * than inside detach_one_task().
8273 	 */
8274 	schedstat_add(env->sd->lb_gained[env->idle], detached);
8275 
8276 	return detached;
8277 }
8278 
8279 /*
8280  * attach_task() -- attach the task detached by detach_task() to its new rq.
8281  */
attach_task(struct rq * rq,struct task_struct * p)8282 static void attach_task(struct rq *rq, struct task_struct *p)
8283 {
8284 	lockdep_assert_held(&rq->lock);
8285 
8286 	BUG_ON(task_rq(p) != rq);
8287 	activate_task(rq, p, ENQUEUE_NOCLOCK);
8288 	check_preempt_curr(rq, p, 0);
8289 }
8290 
8291 /*
8292  * attach_one_task() -- attaches the task returned from detach_one_task() to
8293  * its new rq.
8294  */
attach_one_task(struct rq * rq,struct task_struct * p)8295 static void attach_one_task(struct rq *rq, struct task_struct *p)
8296 {
8297 	struct rq_flags rf;
8298 
8299 	rq_lock(rq, &rf);
8300 	update_rq_clock(rq);
8301 	attach_task(rq, p);
8302 	rq_unlock(rq, &rf);
8303 }
8304 
8305 /*
8306  * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
8307  * new rq.
8308  */
attach_tasks(struct lb_env * env)8309 static void attach_tasks(struct lb_env *env)
8310 {
8311 	struct list_head *tasks = &env->tasks;
8312 	struct task_struct *p;
8313 	struct rq_flags rf;
8314 
8315 	rq_lock(env->dst_rq, &rf);
8316 	update_rq_clock(env->dst_rq);
8317 
8318 	while (!list_empty(tasks)) {
8319 		p = list_first_entry(tasks, struct task_struct, se.group_node);
8320 		list_del_init(&p->se.group_node);
8321 
8322 		attach_task(env->dst_rq, p);
8323 	}
8324 
8325 	rq_unlock(env->dst_rq, &rf);
8326 }
8327 
8328 #ifdef CONFIG_NO_HZ_COMMON
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8329 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
8330 {
8331 	if (cfs_rq->avg.load_avg)
8332 		return true;
8333 
8334 	if (cfs_rq->avg.util_avg)
8335 		return true;
8336 
8337 	return false;
8338 }
8339 
others_have_blocked(struct rq * rq)8340 static inline bool others_have_blocked(struct rq *rq)
8341 {
8342 	if (READ_ONCE(rq->avg_rt.util_avg))
8343 		return true;
8344 
8345 	if (READ_ONCE(rq->avg_dl.util_avg))
8346 		return true;
8347 
8348 	if (thermal_load_avg(rq))
8349 		return true;
8350 
8351 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
8352 	if (READ_ONCE(rq->avg_irq.util_avg))
8353 		return true;
8354 #endif
8355 
8356 	return false;
8357 }
8358 
update_blocked_load_status(struct rq * rq,bool has_blocked)8359 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
8360 {
8361 	rq->last_blocked_load_update_tick = jiffies;
8362 
8363 	if (!has_blocked)
8364 		rq->has_blocked_load = 0;
8365 }
8366 #else
cfs_rq_has_blocked(struct cfs_rq * cfs_rq)8367 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
others_have_blocked(struct rq * rq)8368 static inline bool others_have_blocked(struct rq *rq) { return false; }
update_blocked_load_status(struct rq * rq,bool has_blocked)8369 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
8370 #endif
8371 
__update_blocked_others(struct rq * rq,bool * done)8372 static bool __update_blocked_others(struct rq *rq, bool *done)
8373 {
8374 	const struct sched_class *curr_class;
8375 	u64 now = rq_clock_pelt(rq);
8376 	unsigned long thermal_pressure;
8377 	bool decayed;
8378 
8379 	/*
8380 	 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
8381 	 * DL and IRQ signals have been updated before updating CFS.
8382 	 */
8383 	curr_class = rq->curr->sched_class;
8384 
8385 	thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
8386 
8387 	decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
8388 		  update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
8389 		  update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure) |
8390 		  update_irq_load_avg(rq, 0);
8391 
8392 	if (others_have_blocked(rq))
8393 		*done = false;
8394 
8395 	return decayed;
8396 }
8397 
8398 #ifdef CONFIG_FAIR_GROUP_SCHED
8399 
cfs_rq_is_decayed(struct cfs_rq * cfs_rq)8400 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
8401 {
8402 	if (cfs_rq->load.weight)
8403 		return false;
8404 
8405 	if (cfs_rq->avg.load_sum)
8406 		return false;
8407 
8408 	if (cfs_rq->avg.util_sum)
8409 		return false;
8410 
8411 	if (cfs_rq->avg.runnable_sum)
8412 		return false;
8413 
8414 	return true;
8415 }
8416 
__update_blocked_fair(struct rq * rq,bool * done)8417 static bool __update_blocked_fair(struct rq *rq, bool *done)
8418 {
8419 	struct cfs_rq *cfs_rq, *pos;
8420 	bool decayed = false;
8421 	int cpu = cpu_of(rq);
8422 
8423 	/*
8424 	 * Iterates the task_group tree in a bottom up fashion, see
8425 	 * list_add_leaf_cfs_rq() for details.
8426 	 */
8427 	for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
8428 		struct sched_entity *se;
8429 
8430 		if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
8431 			update_tg_load_avg(cfs_rq);
8432 
8433 			if (cfs_rq == &rq->cfs)
8434 				decayed = true;
8435 		}
8436 
8437 		/* Propagate pending load changes to the parent, if any: */
8438 		se = cfs_rq->tg->se[cpu];
8439 		if (se && !skip_blocked_update(se))
8440 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
8441 
8442 		/*
8443 		 * There can be a lot of idle CPU cgroups.  Don't let fully
8444 		 * decayed cfs_rqs linger on the list.
8445 		 */
8446 		if (cfs_rq_is_decayed(cfs_rq))
8447 			list_del_leaf_cfs_rq(cfs_rq);
8448 
8449 		/* Don't need periodic decay once load/util_avg are null */
8450 		if (cfs_rq_has_blocked(cfs_rq))
8451 			*done = false;
8452 	}
8453 
8454 	return decayed;
8455 }
8456 
8457 /*
8458  * Compute the hierarchical load factor for cfs_rq and all its ascendants.
8459  * This needs to be done in a top-down fashion because the load of a child
8460  * group is a fraction of its parents load.
8461  */
update_cfs_rq_h_load(struct cfs_rq * cfs_rq)8462 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
8463 {
8464 	struct rq *rq = rq_of(cfs_rq);
8465 	struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
8466 	unsigned long now = jiffies;
8467 	unsigned long load;
8468 
8469 	if (cfs_rq->last_h_load_update == now)
8470 		return;
8471 
8472 	WRITE_ONCE(cfs_rq->h_load_next, NULL);
8473 	for_each_sched_entity(se) {
8474 		cfs_rq = cfs_rq_of(se);
8475 		WRITE_ONCE(cfs_rq->h_load_next, se);
8476 		if (cfs_rq->last_h_load_update == now)
8477 			break;
8478 	}
8479 
8480 	if (!se) {
8481 		cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
8482 		cfs_rq->last_h_load_update = now;
8483 	}
8484 
8485 	while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
8486 		load = cfs_rq->h_load;
8487 		load = div64_ul(load * se->avg.load_avg,
8488 			cfs_rq_load_avg(cfs_rq) + 1);
8489 		cfs_rq = group_cfs_rq(se);
8490 		cfs_rq->h_load = load;
8491 		cfs_rq->last_h_load_update = now;
8492 	}
8493 }
8494 
task_h_load(struct task_struct * p)8495 static unsigned long task_h_load(struct task_struct *p)
8496 {
8497 	struct cfs_rq *cfs_rq = task_cfs_rq(p);
8498 
8499 	update_cfs_rq_h_load(cfs_rq);
8500 	return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
8501 			cfs_rq_load_avg(cfs_rq) + 1);
8502 }
8503 #else
__update_blocked_fair(struct rq * rq,bool * done)8504 static bool __update_blocked_fair(struct rq *rq, bool *done)
8505 {
8506 	struct cfs_rq *cfs_rq = &rq->cfs;
8507 	bool decayed;
8508 
8509 	decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
8510 	if (cfs_rq_has_blocked(cfs_rq))
8511 		*done = false;
8512 
8513 	return decayed;
8514 }
8515 
task_h_load(struct task_struct * p)8516 static unsigned long task_h_load(struct task_struct *p)
8517 {
8518 	return p->se.avg.load_avg;
8519 }
8520 #endif
8521 
update_blocked_averages(int cpu)8522 static void update_blocked_averages(int cpu)
8523 {
8524 	bool decayed = false, done = true;
8525 	struct rq *rq = cpu_rq(cpu);
8526 	struct rq_flags rf;
8527 
8528 	rq_lock_irqsave(rq, &rf);
8529 	update_rq_clock(rq);
8530 
8531 	decayed |= __update_blocked_others(rq, &done);
8532 	decayed |= __update_blocked_fair(rq, &done);
8533 
8534 	update_blocked_load_status(rq, !done);
8535 	if (decayed)
8536 		cpufreq_update_util(rq, 0);
8537 	rq_unlock_irqrestore(rq, &rf);
8538 }
8539 
8540 /********** Helpers for find_busiest_group ************************/
8541 
8542 /*
8543  * sg_lb_stats - stats of a sched_group required for load_balancing
8544  */
8545 struct sg_lb_stats {
8546 	unsigned long avg_load; /*Avg load across the CPUs of the group */
8547 	unsigned long group_load; /* Total load over the CPUs of the group */
8548 	unsigned long group_capacity;
8549 	unsigned long group_util; /* Total utilization over the CPUs of the group */
8550 	unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
8551 	unsigned int sum_nr_running; /* Nr of tasks running in the group */
8552 	unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
8553 	unsigned int idle_cpus;
8554 	unsigned int group_weight;
8555 	enum group_type group_type;
8556 	unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
8557 	unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
8558 #ifdef CONFIG_NUMA_BALANCING
8559 	unsigned int nr_numa_running;
8560 	unsigned int nr_preferred_running;
8561 #endif
8562 };
8563 
8564 /*
8565  * sd_lb_stats - Structure to store the statistics of a sched_domain
8566  *		 during load balancing.
8567  */
8568 struct sd_lb_stats {
8569 	struct sched_group *busiest;	/* Busiest group in this sd */
8570 	struct sched_group *local;	/* Local group in this sd */
8571 	unsigned long total_load;	/* Total load of all groups in sd */
8572 	unsigned long total_capacity;	/* Total capacity of all groups in sd */
8573 	unsigned long avg_load;	/* Average load across all groups in sd */
8574 	unsigned int prefer_sibling; /* tasks should go to sibling first */
8575 
8576 	struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
8577 	struct sg_lb_stats local_stat;	/* Statistics of the local group */
8578 };
8579 
init_sd_lb_stats(struct sd_lb_stats * sds)8580 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
8581 {
8582 	/*
8583 	 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
8584 	 * local_stat because update_sg_lb_stats() does a full clear/assignment.
8585 	 * We must however set busiest_stat::group_type and
8586 	 * busiest_stat::idle_cpus to the worst busiest group because
8587 	 * update_sd_pick_busiest() reads these before assignment.
8588 	 */
8589 	*sds = (struct sd_lb_stats){
8590 		.busiest = NULL,
8591 		.local = NULL,
8592 		.total_load = 0UL,
8593 		.total_capacity = 0UL,
8594 		.busiest_stat = {
8595 			.idle_cpus = UINT_MAX,
8596 			.group_type = group_has_spare,
8597 		},
8598 	};
8599 }
8600 
scale_rt_capacity(int cpu)8601 static unsigned long scale_rt_capacity(int cpu)
8602 {
8603 	struct rq *rq = cpu_rq(cpu);
8604 	unsigned long max = arch_scale_cpu_capacity(cpu);
8605 	unsigned long used, free;
8606 	unsigned long irq;
8607 
8608 	irq = cpu_util_irq(rq);
8609 
8610 	if (unlikely(irq >= max))
8611 		return 1;
8612 
8613 	/*
8614 	 * avg_rt.util_avg and avg_dl.util_avg track binary signals
8615 	 * (running and not running) with weights 0 and 1024 respectively.
8616 	 * avg_thermal.load_avg tracks thermal pressure and the weighted
8617 	 * average uses the actual delta max capacity(load).
8618 	 */
8619 	used = READ_ONCE(rq->avg_rt.util_avg);
8620 	used += READ_ONCE(rq->avg_dl.util_avg);
8621 	used += thermal_load_avg(rq);
8622 
8623 	if (unlikely(used >= max))
8624 		return 1;
8625 
8626 	free = max - used;
8627 
8628 	return scale_irq_capacity(free, irq, max);
8629 }
8630 
update_cpu_capacity(struct sched_domain * sd,int cpu)8631 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
8632 {
8633 	unsigned long capacity_orig = arch_scale_cpu_capacity(cpu);
8634 	unsigned long capacity = scale_rt_capacity(cpu);
8635 	struct sched_group *sdg = sd->groups;
8636 	struct rq *rq = cpu_rq(cpu);
8637 
8638 	rq->cpu_capacity_orig = capacity_orig;
8639 
8640 	if (!capacity)
8641 		capacity = 1;
8642 
8643 	rq->cpu_capacity = capacity;
8644 
8645 	/*
8646 	 * Detect if the performance domain is in capacity inversion state.
8647 	 *
8648 	 * Capacity inversion happens when another perf domain with equal or
8649 	 * lower capacity_orig_of() ends up having higher capacity than this
8650 	 * domain after subtracting thermal pressure.
8651 	 *
8652 	 * We only take into account thermal pressure in this detection as it's
8653 	 * the only metric that actually results in *real* reduction of
8654 	 * capacity due to performance points (OPPs) being dropped/become
8655 	 * unreachable due to thermal throttling.
8656 	 *
8657 	 * We assume:
8658 	 *   * That all cpus in a perf domain have the same capacity_orig
8659 	 *     (same uArch).
8660 	 *   * Thermal pressure will impact all cpus in this perf domain
8661 	 *     equally.
8662 	 */
8663 	if (sched_energy_enabled()) {
8664 		unsigned long inv_cap = capacity_orig - thermal_load_avg(rq);
8665 		struct perf_domain *pd;
8666 
8667 		rcu_read_lock();
8668 
8669 		pd = rcu_dereference(rq->rd->pd);
8670 		rq->cpu_capacity_inverted = 0;
8671 
8672 		for (; pd; pd = pd->next) {
8673 			struct cpumask *pd_span = perf_domain_span(pd);
8674 			unsigned long pd_cap_orig, pd_cap;
8675 
8676 			/* We can't be inverted against our own pd */
8677 			if (cpumask_test_cpu(cpu_of(rq), pd_span))
8678 				continue;
8679 
8680 			cpu = cpumask_any(pd_span);
8681 			pd_cap_orig = arch_scale_cpu_capacity(cpu);
8682 
8683 			if (capacity_orig < pd_cap_orig)
8684 				continue;
8685 
8686 			/*
8687 			 * handle the case of multiple perf domains have the
8688 			 * same capacity_orig but one of them is under higher
8689 			 * thermal pressure. We record it as capacity
8690 			 * inversion.
8691 			 */
8692 			if (capacity_orig == pd_cap_orig) {
8693 				pd_cap = pd_cap_orig - thermal_load_avg(cpu_rq(cpu));
8694 
8695 				if (pd_cap > inv_cap) {
8696 					rq->cpu_capacity_inverted = inv_cap;
8697 					break;
8698 				}
8699 			} else if (pd_cap_orig > inv_cap) {
8700 				rq->cpu_capacity_inverted = inv_cap;
8701 				break;
8702 			}
8703 		}
8704 
8705 		rcu_read_unlock();
8706 	}
8707 
8708 	trace_sched_cpu_capacity_tp(rq);
8709 
8710 	sdg->sgc->capacity = capacity;
8711 	sdg->sgc->min_capacity = capacity;
8712 	sdg->sgc->max_capacity = capacity;
8713 }
8714 
update_group_capacity(struct sched_domain * sd,int cpu)8715 void update_group_capacity(struct sched_domain *sd, int cpu)
8716 {
8717 	struct sched_domain *child = sd->child;
8718 	struct sched_group *group, *sdg = sd->groups;
8719 	unsigned long capacity, min_capacity, max_capacity;
8720 	unsigned long interval;
8721 
8722 	interval = msecs_to_jiffies(sd->balance_interval);
8723 	interval = clamp(interval, 1UL, max_load_balance_interval);
8724 	sdg->sgc->next_update = jiffies + interval;
8725 
8726 	if (!child) {
8727 		update_cpu_capacity(sd, cpu);
8728 		return;
8729 	}
8730 
8731 	capacity = 0;
8732 	min_capacity = ULONG_MAX;
8733 	max_capacity = 0;
8734 
8735 	if (child->flags & SD_OVERLAP) {
8736 		/*
8737 		 * SD_OVERLAP domains cannot assume that child groups
8738 		 * span the current group.
8739 		 */
8740 
8741 		for_each_cpu(cpu, sched_group_span(sdg)) {
8742 			unsigned long cpu_cap = capacity_of(cpu);
8743 
8744 			if (cpu_isolated(cpu))
8745 				continue;
8746 
8747 			capacity += cpu_cap;
8748 			min_capacity = min(cpu_cap, min_capacity);
8749 			max_capacity = max(cpu_cap, max_capacity);
8750 		}
8751 	} else  {
8752 		/*
8753 		 * !SD_OVERLAP domains can assume that child groups
8754 		 * span the current group.
8755 		 */
8756 
8757 		group = child->groups;
8758 		do {
8759 			struct sched_group_capacity *sgc = group->sgc;
8760 			__maybe_unused cpumask_t *cpus =
8761 					sched_group_span(group);
8762 
8763 			if (!cpu_isolated(cpumask_first(cpus))) {
8764 				capacity += sgc->capacity;
8765 				min_capacity = min(sgc->min_capacity,
8766 							min_capacity);
8767 				max_capacity = max(sgc->max_capacity,
8768 							max_capacity);
8769 			}
8770 			group = group->next;
8771 		} while (group != child->groups);
8772 	}
8773 
8774 	sdg->sgc->capacity = capacity;
8775 	sdg->sgc->min_capacity = min_capacity;
8776 	sdg->sgc->max_capacity = max_capacity;
8777 }
8778 
8779 /*
8780  * Check whether the capacity of the rq has been noticeably reduced by side
8781  * activity. The imbalance_pct is used for the threshold.
8782  * Return true is the capacity is reduced
8783  */
8784 static inline int
check_cpu_capacity(struct rq * rq,struct sched_domain * sd)8785 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
8786 {
8787 	return ((rq->cpu_capacity * sd->imbalance_pct) <
8788 				(rq->cpu_capacity_orig * 100));
8789 }
8790 
8791 /*
8792  * Check whether a rq has a misfit task and if it looks like we can actually
8793  * help that task: we can migrate the task to a CPU of higher capacity, or
8794  * the task's current CPU is heavily pressured.
8795  */
check_misfit_status(struct rq * rq,struct sched_domain * sd)8796 static inline int check_misfit_status(struct rq *rq, struct sched_domain *sd)
8797 {
8798 	return rq->misfit_task_load &&
8799 		(rq->cpu_capacity_orig < rq->rd->max_cpu_capacity ||
8800 		 check_cpu_capacity(rq, sd));
8801 }
8802 
8803 /*
8804  * Group imbalance indicates (and tries to solve) the problem where balancing
8805  * groups is inadequate due to ->cpus_ptr constraints.
8806  *
8807  * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
8808  * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
8809  * Something like:
8810  *
8811  *	{ 0 1 2 3 } { 4 5 6 7 }
8812  *	        *     * * *
8813  *
8814  * If we were to balance group-wise we'd place two tasks in the first group and
8815  * two tasks in the second group. Clearly this is undesired as it will overload
8816  * cpu 3 and leave one of the CPUs in the second group unused.
8817  *
8818  * The current solution to this issue is detecting the skew in the first group
8819  * by noticing the lower domain failed to reach balance and had difficulty
8820  * moving tasks due to affinity constraints.
8821  *
8822  * When this is so detected; this group becomes a candidate for busiest; see
8823  * update_sd_pick_busiest(). And calculate_imbalance() and
8824  * find_busiest_group() avoid some of the usual balance conditions to allow it
8825  * to create an effective group imbalance.
8826  *
8827  * This is a somewhat tricky proposition since the next run might not find the
8828  * group imbalance and decide the groups need to be balanced again. A most
8829  * subtle and fragile situation.
8830  */
8831 
sg_imbalanced(struct sched_group * group)8832 static inline int sg_imbalanced(struct sched_group *group)
8833 {
8834 	return group->sgc->imbalance;
8835 }
8836 
8837 /*
8838  * group_has_capacity returns true if the group has spare capacity that could
8839  * be used by some tasks.
8840  * We consider that a group has spare capacity if the  * number of task is
8841  * smaller than the number of CPUs or if the utilization is lower than the
8842  * available capacity for CFS tasks.
8843  * For the latter, we use a threshold to stabilize the state, to take into
8844  * account the variance of the tasks' load and to return true if the available
8845  * capacity in meaningful for the load balancer.
8846  * As an example, an available capacity of 1% can appear but it doesn't make
8847  * any benefit for the load balance.
8848  */
8849 static inline bool
group_has_capacity(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8850 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8851 {
8852 	if (sgs->sum_nr_running < sgs->group_weight)
8853 		return true;
8854 
8855 	if ((sgs->group_capacity * imbalance_pct) <
8856 			(sgs->group_runnable * 100))
8857 		return false;
8858 
8859 	if ((sgs->group_capacity * 100) >
8860 			(sgs->group_util * imbalance_pct))
8861 		return true;
8862 
8863 	return false;
8864 }
8865 
8866 /*
8867  *  group_is_overloaded returns true if the group has more tasks than it can
8868  *  handle.
8869  *  group_is_overloaded is not equals to !group_has_capacity because a group
8870  *  with the exact right number of tasks, has no more spare capacity but is not
8871  *  overloaded so both group_has_capacity and group_is_overloaded return
8872  *  false.
8873  */
8874 static inline bool
group_is_overloaded(unsigned int imbalance_pct,struct sg_lb_stats * sgs)8875 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
8876 {
8877 	if (sgs->sum_nr_running <= sgs->group_weight)
8878 		return false;
8879 
8880 	if ((sgs->group_capacity * 100) <
8881 			(sgs->group_util * imbalance_pct))
8882 		return true;
8883 
8884 	if ((sgs->group_capacity * imbalance_pct) <
8885 			(sgs->group_runnable * 100))
8886 		return true;
8887 
8888 	return false;
8889 }
8890 
8891 /*
8892  * group_smaller_min_cpu_capacity: Returns true if sched_group sg has smaller
8893  * per-CPU capacity than sched_group ref.
8894  */
8895 static inline bool
group_smaller_min_cpu_capacity(struct sched_group * sg,struct sched_group * ref)8896 group_smaller_min_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8897 {
8898 	return fits_capacity(sg->sgc->min_capacity, ref->sgc->min_capacity);
8899 }
8900 
8901 /*
8902  * group_smaller_max_cpu_capacity: Returns true if sched_group sg has smaller
8903  * per-CPU capacity_orig than sched_group ref.
8904  */
8905 static inline bool
group_smaller_max_cpu_capacity(struct sched_group * sg,struct sched_group * ref)8906 group_smaller_max_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
8907 {
8908 	return fits_capacity(sg->sgc->max_capacity, ref->sgc->max_capacity);
8909 }
8910 
8911 static inline enum
group_classify(unsigned int imbalance_pct,struct sched_group * group,struct sg_lb_stats * sgs)8912 group_type group_classify(unsigned int imbalance_pct,
8913 			  struct sched_group *group,
8914 			  struct sg_lb_stats *sgs)
8915 {
8916 	if (group_is_overloaded(imbalance_pct, sgs))
8917 		return group_overloaded;
8918 
8919 	if (sg_imbalanced(group))
8920 		return group_imbalanced;
8921 
8922 	if (sgs->group_asym_packing)
8923 		return group_asym_packing;
8924 
8925 	if (sgs->group_misfit_task_load)
8926 		return group_misfit_task;
8927 
8928 	if (!group_has_capacity(imbalance_pct, sgs))
8929 		return group_fully_busy;
8930 
8931 	return group_has_spare;
8932 }
8933 
update_nohz_stats(struct rq * rq,bool force)8934 static bool update_nohz_stats(struct rq *rq, bool force)
8935 {
8936 #ifdef CONFIG_NO_HZ_COMMON
8937 	unsigned int cpu = rq->cpu;
8938 
8939 	if (!rq->has_blocked_load)
8940 		return false;
8941 
8942 	if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
8943 		return false;
8944 
8945 	if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
8946 		return true;
8947 
8948 	update_blocked_averages(cpu);
8949 
8950 	return rq->has_blocked_load;
8951 #else
8952 	return false;
8953 #endif
8954 }
8955 
8956 /**
8957  * update_sg_lb_stats - Update sched_group's statistics for load balancing.
8958  * @env: The load balancing environment.
8959  * @group: sched_group whose statistics are to be updated.
8960  * @sgs: variable to hold the statistics for this group.
8961  * @sg_status: Holds flag indicating the status of the sched_group
8962  */
update_sg_lb_stats(struct lb_env * env,struct sched_group * group,struct sg_lb_stats * sgs,int * sg_status)8963 static inline void update_sg_lb_stats(struct lb_env *env,
8964 				      struct sched_group *group,
8965 				      struct sg_lb_stats *sgs,
8966 				      int *sg_status)
8967 {
8968 	int i, nr_running, local_group;
8969 
8970 	memset(sgs, 0, sizeof(*sgs));
8971 
8972 	local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(group));
8973 
8974 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8975 		struct rq *rq = cpu_rq(i);
8976 
8977 		if (cpu_isolated(i))
8978 			continue;
8979 
8980 		if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
8981 			env->flags |= LBF_NOHZ_AGAIN;
8982 
8983 		sgs->group_load += cpu_load(rq);
8984 		sgs->group_util += cpu_util(i);
8985 		sgs->group_runnable += cpu_runnable(rq);
8986 		sgs->sum_h_nr_running += rq->cfs.h_nr_running;
8987 
8988 		nr_running = rq->nr_running;
8989 		sgs->sum_nr_running += nr_running;
8990 
8991 		if (nr_running > 1)
8992 			*sg_status |= SG_OVERLOAD;
8993 
8994 		if (cpu_overutilized(i))
8995 			*sg_status |= SG_OVERUTILIZED;
8996 
8997 #ifdef CONFIG_NUMA_BALANCING
8998 		sgs->nr_numa_running += rq->nr_numa_running;
8999 		sgs->nr_preferred_running += rq->nr_preferred_running;
9000 #endif
9001 		/*
9002 		 * No need to call idle_cpu() if nr_running is not 0
9003 		 */
9004 		if (!nr_running && idle_cpu(i)) {
9005 			sgs->idle_cpus++;
9006 			/* Idle cpu can't have misfit task */
9007 			continue;
9008 		}
9009 
9010 		if (local_group)
9011 			continue;
9012 
9013 		/* Check for a misfit task on the cpu */
9014 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9015 		    sgs->group_misfit_task_load < rq->misfit_task_load) {
9016 			sgs->group_misfit_task_load = rq->misfit_task_load;
9017 			*sg_status |= SG_OVERLOAD;
9018 		}
9019 	}
9020 
9021 	/* Isolated CPU has no weight */
9022 	if (!group->group_weight) {
9023 		sgs->group_capacity = 0;
9024 		sgs->avg_load = 0;
9025 		sgs->group_type = group_has_spare;
9026 		sgs->group_weight = group->group_weight;
9027 		return;
9028 	}
9029 
9030 	/* Check if dst CPU is idle and preferred to this group */
9031 	if (env->sd->flags & SD_ASYM_PACKING &&
9032 	    env->idle != CPU_NOT_IDLE &&
9033 	    sgs->sum_h_nr_running &&
9034 	    sched_asym_prefer(env->dst_cpu, group->asym_prefer_cpu)) {
9035 		sgs->group_asym_packing = 1;
9036 	}
9037 
9038 	sgs->group_capacity = group->sgc->capacity;
9039 
9040 	sgs->group_weight = group->group_weight;
9041 
9042 	sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
9043 
9044 	/* Computing avg_load makes sense only when group is overloaded */
9045 	if (sgs->group_type == group_overloaded)
9046 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9047 				sgs->group_capacity;
9048 }
9049 
9050 /**
9051  * update_sd_pick_busiest - return 1 on busiest group
9052  * @env: The load balancing environment.
9053  * @sds: sched_domain statistics
9054  * @sg: sched_group candidate to be checked for being the busiest
9055  * @sgs: sched_group statistics
9056  *
9057  * Determine if @sg is a busier group than the previously selected
9058  * busiest group.
9059  *
9060  * Return: %true if @sg is a busier group than the previously selected
9061  * busiest group. %false otherwise.
9062  */
update_sd_pick_busiest(struct lb_env * env,struct sd_lb_stats * sds,struct sched_group * sg,struct sg_lb_stats * sgs)9063 static bool update_sd_pick_busiest(struct lb_env *env,
9064 				   struct sd_lb_stats *sds,
9065 				   struct sched_group *sg,
9066 				   struct sg_lb_stats *sgs)
9067 {
9068 	struct sg_lb_stats *busiest = &sds->busiest_stat;
9069 
9070 	/* Make sure that there is at least one task to pull */
9071 	if (!sgs->sum_h_nr_running)
9072 		return false;
9073 
9074 	/*
9075 	 * Don't try to pull misfit tasks we can't help.
9076 	 * We can use max_capacity here as reduction in capacity on some
9077 	 * CPUs in the group should either be possible to resolve
9078 	 * internally or be covered by avg_load imbalance (eventually).
9079 	 */
9080 	if (sgs->group_type == group_misfit_task &&
9081 	    (!group_smaller_max_cpu_capacity(sg, sds->local) ||
9082 	     sds->local_stat.group_type != group_has_spare))
9083 		return false;
9084 
9085 	if (sgs->group_type > busiest->group_type)
9086 		return true;
9087 
9088 	if (sgs->group_type < busiest->group_type)
9089 		return false;
9090 
9091 	/*
9092 	 * The candidate and the current busiest group are the same type of
9093 	 * group. Let check which one is the busiest according to the type.
9094 	 */
9095 
9096 	switch (sgs->group_type) {
9097 	case group_overloaded:
9098 		/* Select the overloaded group with highest avg_load. */
9099 		if (sgs->avg_load <= busiest->avg_load)
9100 			return false;
9101 		break;
9102 
9103 	case group_imbalanced:
9104 		/*
9105 		 * Select the 1st imbalanced group as we don't have any way to
9106 		 * choose one more than another.
9107 		 */
9108 		return false;
9109 
9110 	case group_asym_packing:
9111 		/* Prefer to move from lowest priority CPU's work */
9112 		if (sched_asym_prefer(sg->asym_prefer_cpu, sds->busiest->asym_prefer_cpu))
9113 			return false;
9114 		break;
9115 
9116 	case group_misfit_task:
9117 		/*
9118 		 * If we have more than one misfit sg go with the biggest
9119 		 * misfit.
9120 		 */
9121 		if (sgs->group_misfit_task_load < busiest->group_misfit_task_load)
9122 			return false;
9123 		break;
9124 
9125 	case group_fully_busy:
9126 		/*
9127 		 * Select the fully busy group with highest avg_load. In
9128 		 * theory, there is no need to pull task from such kind of
9129 		 * group because tasks have all compute capacity that they need
9130 		 * but we can still improve the overall throughput by reducing
9131 		 * contention when accessing shared HW resources.
9132 		 *
9133 		 * XXX for now avg_load is not computed and always 0 so we
9134 		 * select the 1st one.
9135 		 */
9136 		if (sgs->avg_load <= busiest->avg_load)
9137 			return false;
9138 		break;
9139 
9140 	case group_has_spare:
9141 		/*
9142 		 * Select not overloaded group with lowest number of idle cpus
9143 		 * and highest number of running tasks. We could also compare
9144 		 * the spare capacity which is more stable but it can end up
9145 		 * that the group has less spare capacity but finally more idle
9146 		 * CPUs which means less opportunity to pull tasks.
9147 		 */
9148 		if (sgs->idle_cpus > busiest->idle_cpus)
9149 			return false;
9150 		else if ((sgs->idle_cpus == busiest->idle_cpus) &&
9151 			 (sgs->sum_nr_running <= busiest->sum_nr_running))
9152 			return false;
9153 
9154 		break;
9155 	}
9156 
9157 	/*
9158 	 * Candidate sg has no more than one task per CPU and has higher
9159 	 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
9160 	 * throughput. Maximize throughput, power/energy consequences are not
9161 	 * considered.
9162 	 */
9163 	if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
9164 	    (sgs->group_type <= group_fully_busy) &&
9165 	    (group_smaller_min_cpu_capacity(sds->local, sg)))
9166 		return false;
9167 
9168 	return true;
9169 }
9170 
9171 #ifdef CONFIG_NUMA_BALANCING
fbq_classify_group(struct sg_lb_stats * sgs)9172 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9173 {
9174 	if (sgs->sum_h_nr_running > sgs->nr_numa_running)
9175 		return regular;
9176 	if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
9177 		return remote;
9178 	return all;
9179 }
9180 
fbq_classify_rq(struct rq * rq)9181 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9182 {
9183 	if (rq->nr_running > rq->nr_numa_running)
9184 		return regular;
9185 	if (rq->nr_running > rq->nr_preferred_running)
9186 		return remote;
9187 	return all;
9188 }
9189 #else
fbq_classify_group(struct sg_lb_stats * sgs)9190 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
9191 {
9192 	return all;
9193 }
9194 
fbq_classify_rq(struct rq * rq)9195 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
9196 {
9197 	return regular;
9198 }
9199 #endif /* CONFIG_NUMA_BALANCING */
9200 
9201 
9202 struct sg_lb_stats;
9203 
9204 /*
9205  * task_running_on_cpu - return 1 if @p is running on @cpu.
9206  */
9207 
task_running_on_cpu(int cpu,struct task_struct * p)9208 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
9209 {
9210 	/* Task has no contribution or is new */
9211 	if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
9212 		return 0;
9213 
9214 	if (task_on_rq_queued(p))
9215 		return 1;
9216 
9217 	return 0;
9218 }
9219 
9220 /**
9221  * idle_cpu_without - would a given CPU be idle without p ?
9222  * @cpu: the processor on which idleness is tested.
9223  * @p: task which should be ignored.
9224  *
9225  * Return: 1 if the CPU would be idle. 0 otherwise.
9226  */
idle_cpu_without(int cpu,struct task_struct * p)9227 static int idle_cpu_without(int cpu, struct task_struct *p)
9228 {
9229 	struct rq *rq = cpu_rq(cpu);
9230 
9231 	if (rq->curr != rq->idle && rq->curr != p)
9232 		return 0;
9233 
9234 	/*
9235 	 * rq->nr_running can't be used but an updated version without the
9236 	 * impact of p on cpu must be used instead. The updated nr_running
9237 	 * be computed and tested before calling idle_cpu_without().
9238 	 */
9239 
9240 #ifdef CONFIG_SMP
9241 	if (rq->ttwu_pending)
9242 		return 0;
9243 #endif
9244 
9245 	return 1;
9246 }
9247 
9248 /*
9249  * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
9250  * @sd: The sched_domain level to look for idlest group.
9251  * @group: sched_group whose statistics are to be updated.
9252  * @sgs: variable to hold the statistics for this group.
9253  * @p: The task for which we look for the idlest group/CPU.
9254  */
update_sg_wakeup_stats(struct sched_domain * sd,struct sched_group * group,struct sg_lb_stats * sgs,struct task_struct * p)9255 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
9256 					  struct sched_group *group,
9257 					  struct sg_lb_stats *sgs,
9258 					  struct task_struct *p)
9259 {
9260 	int i, nr_running;
9261 
9262 	memset(sgs, 0, sizeof(*sgs));
9263 
9264 	/* Assume that task can't fit any CPU of the group */
9265 	if (sd->flags & SD_ASYM_CPUCAPACITY)
9266 		sgs->group_misfit_task_load = 1;
9267 
9268 	for_each_cpu(i, sched_group_span(group)) {
9269 		struct rq *rq = cpu_rq(i);
9270 		unsigned int local;
9271 
9272 		sgs->group_load += cpu_load_without(rq, p);
9273 		sgs->group_util += cpu_util_without(i, p);
9274 		sgs->group_runnable += cpu_runnable_without(rq, p);
9275 		local = task_running_on_cpu(i, p);
9276 		sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
9277 
9278 		nr_running = rq->nr_running - local;
9279 		sgs->sum_nr_running += nr_running;
9280 
9281 		/*
9282 		 * No need to call idle_cpu_without() if nr_running is not 0
9283 		 */
9284 		if (!nr_running && idle_cpu_without(i, p))
9285 			sgs->idle_cpus++;
9286 
9287 		/* Check if task fits in the CPU */
9288 		if (sd->flags & SD_ASYM_CPUCAPACITY &&
9289 		    sgs->group_misfit_task_load &&
9290 		    task_fits_cpu(p, i))
9291 			sgs->group_misfit_task_load = 0;
9292 
9293 	}
9294 
9295 	sgs->group_capacity = group->sgc->capacity;
9296 
9297 	sgs->group_weight = group->group_weight;
9298 
9299 	sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
9300 
9301 	/*
9302 	 * Computing avg_load makes sense only when group is fully busy or
9303 	 * overloaded
9304 	 */
9305 	if (sgs->group_type == group_fully_busy ||
9306 		sgs->group_type == group_overloaded)
9307 		sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
9308 				sgs->group_capacity;
9309 }
9310 
update_pick_idlest(struct sched_group * idlest,struct sg_lb_stats * idlest_sgs,struct sched_group * group,struct sg_lb_stats * sgs)9311 static bool update_pick_idlest(struct sched_group *idlest,
9312 			       struct sg_lb_stats *idlest_sgs,
9313 			       struct sched_group *group,
9314 			       struct sg_lb_stats *sgs)
9315 {
9316 	if (sgs->group_type < idlest_sgs->group_type)
9317 		return true;
9318 
9319 	if (sgs->group_type > idlest_sgs->group_type)
9320 		return false;
9321 
9322 	/*
9323 	 * The candidate and the current idlest group are the same type of
9324 	 * group. Let check which one is the idlest according to the type.
9325 	 */
9326 
9327 	switch (sgs->group_type) {
9328 	case group_overloaded:
9329 	case group_fully_busy:
9330 		/* Select the group with lowest avg_load. */
9331 		if (idlest_sgs->avg_load <= sgs->avg_load)
9332 			return false;
9333 		break;
9334 
9335 	case group_imbalanced:
9336 	case group_asym_packing:
9337 		/* Those types are not used in the slow wakeup path */
9338 		return false;
9339 
9340 	case group_misfit_task:
9341 		/* Select group with the highest max capacity */
9342 		if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
9343 			return false;
9344 		break;
9345 
9346 	case group_has_spare:
9347 		/* Select group with most idle CPUs */
9348 		if (idlest_sgs->idle_cpus > sgs->idle_cpus)
9349 			return false;
9350 
9351 		/* Select group with lowest group_util */
9352 		if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
9353 			idlest_sgs->group_util <= sgs->group_util)
9354 			return false;
9355 
9356 		break;
9357 	}
9358 
9359 	return true;
9360 }
9361 
9362 /*
9363  * find_idlest_group() finds and returns the least busy CPU group within the
9364  * domain.
9365  *
9366  * Assumes p is allowed on at least one CPU in sd.
9367  */
9368 static struct sched_group *
find_idlest_group(struct sched_domain * sd,struct task_struct * p,int this_cpu)9369 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
9370 {
9371 	struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
9372 	struct sg_lb_stats local_sgs, tmp_sgs;
9373 	struct sg_lb_stats *sgs;
9374 	unsigned long imbalance;
9375 	struct sg_lb_stats idlest_sgs = {
9376 			.avg_load = UINT_MAX,
9377 			.group_type = group_overloaded,
9378 	};
9379 #ifdef CONFIG_CPU_ISOLATION_OPT
9380 	cpumask_t allowed_cpus;
9381 
9382 	cpumask_andnot(&allowed_cpus, p->cpus_ptr, cpu_isolated_mask);
9383 #endif
9384 
9385 	imbalance = scale_load_down(NICE_0_LOAD) *
9386 				(sd->imbalance_pct-100) / 100;
9387 
9388 	do {
9389 		int local_group;
9390 
9391 		/* Skip over this group if it has no CPUs allowed */
9392 #ifdef CONFIG_CPU_ISOLATION_OPT
9393 		if (!cpumask_intersects(sched_group_span(group),
9394 					&allowed_cpus))
9395 #else
9396 		if (!cpumask_intersects(sched_group_span(group),
9397 					p->cpus_ptr))
9398 #endif
9399 			continue;
9400 
9401 		local_group = cpumask_test_cpu(this_cpu,
9402 					       sched_group_span(group));
9403 
9404 		if (local_group) {
9405 			sgs = &local_sgs;
9406 			local = group;
9407 		} else {
9408 			sgs = &tmp_sgs;
9409 		}
9410 
9411 		update_sg_wakeup_stats(sd, group, sgs, p);
9412 
9413 		if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
9414 			idlest = group;
9415 			idlest_sgs = *sgs;
9416 		}
9417 
9418 	} while (group = group->next, group != sd->groups);
9419 
9420 
9421 	/* There is no idlest group to push tasks to */
9422 	if (!idlest)
9423 		return NULL;
9424 
9425 	/* The local group has been skipped because of CPU affinity */
9426 	if (!local)
9427 		return idlest;
9428 
9429 	/*
9430 	 * If the local group is idler than the selected idlest group
9431 	 * don't try and push the task.
9432 	 */
9433 	if (local_sgs.group_type < idlest_sgs.group_type)
9434 		return NULL;
9435 
9436 	/*
9437 	 * If the local group is busier than the selected idlest group
9438 	 * try and push the task.
9439 	 */
9440 	if (local_sgs.group_type > idlest_sgs.group_type)
9441 		return idlest;
9442 
9443 	switch (local_sgs.group_type) {
9444 	case group_overloaded:
9445 	case group_fully_busy:
9446 		/*
9447 		 * When comparing groups across NUMA domains, it's possible for
9448 		 * the local domain to be very lightly loaded relative to the
9449 		 * remote domains but "imbalance" skews the comparison making
9450 		 * remote CPUs look much more favourable. When considering
9451 		 * cross-domain, add imbalance to the load on the remote node
9452 		 * and consider staying local.
9453 		 */
9454 
9455 		if ((sd->flags & SD_NUMA) &&
9456 		    ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
9457 			return NULL;
9458 
9459 		/*
9460 		 * If the local group is less loaded than the selected
9461 		 * idlest group don't try and push any tasks.
9462 		 */
9463 		if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
9464 			return NULL;
9465 
9466 		if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
9467 			return NULL;
9468 		break;
9469 
9470 	case group_imbalanced:
9471 	case group_asym_packing:
9472 		/* Those type are not used in the slow wakeup path */
9473 		return NULL;
9474 
9475 	case group_misfit_task:
9476 		/* Select group with the highest max capacity */
9477 		if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
9478 			return NULL;
9479 		break;
9480 
9481 	case group_has_spare:
9482 		if (sd->flags & SD_NUMA) {
9483 #ifdef CONFIG_NUMA_BALANCING
9484 			int idlest_cpu;
9485 			/*
9486 			 * If there is spare capacity at NUMA, try to select
9487 			 * the preferred node
9488 			 */
9489 			if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
9490 				return NULL;
9491 
9492 			idlest_cpu = cpumask_first(sched_group_span(idlest));
9493 			if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
9494 				return idlest;
9495 #endif
9496 			/*
9497 			 * Otherwise, keep the task on this node to stay close
9498 			 * its wakeup source and improve locality. If there is
9499 			 * a real need of migration, periodic load balance will
9500 			 * take care of it.
9501 			 */
9502 			if (local_sgs.idle_cpus)
9503 				return NULL;
9504 		}
9505 
9506 		/*
9507 		 * Select group with highest number of idle CPUs. We could also
9508 		 * compare the utilization which is more stable but it can end
9509 		 * up that the group has less spare capacity but finally more
9510 		 * idle CPUs which means more opportunity to run task.
9511 		 */
9512 		if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
9513 			return NULL;
9514 		break;
9515 	}
9516 
9517 	return idlest;
9518 }
9519 
9520 /**
9521  * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
9522  * @env: The load balancing environment.
9523  * @sds: variable to hold the statistics for this sched_domain.
9524  */
9525 
update_sd_lb_stats(struct lb_env * env,struct sd_lb_stats * sds)9526 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
9527 {
9528 	struct sched_domain *child = env->sd->child;
9529 	struct sched_group *sg = env->sd->groups;
9530 	struct sg_lb_stats *local = &sds->local_stat;
9531 	struct sg_lb_stats tmp_sgs;
9532 	int sg_status = 0;
9533 
9534 #ifdef CONFIG_NO_HZ_COMMON
9535 	if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
9536 		env->flags |= LBF_NOHZ_STATS;
9537 #endif
9538 
9539 	do {
9540 		struct sg_lb_stats *sgs = &tmp_sgs;
9541 		int local_group;
9542 
9543 		local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
9544 		if (local_group) {
9545 			sds->local = sg;
9546 			sgs = local;
9547 
9548 			if (env->idle != CPU_NEWLY_IDLE ||
9549 			    time_after_eq(jiffies, sg->sgc->next_update))
9550 				update_group_capacity(env->sd, env->dst_cpu);
9551 		}
9552 
9553 		update_sg_lb_stats(env, sg, sgs, &sg_status);
9554 
9555 		if (local_group)
9556 			goto next_group;
9557 
9558 
9559 		if (update_sd_pick_busiest(env, sds, sg, sgs)) {
9560 			sds->busiest = sg;
9561 			sds->busiest_stat = *sgs;
9562 		}
9563 
9564 next_group:
9565 		/* Now, start updating sd_lb_stats */
9566 		sds->total_load += sgs->group_load;
9567 		sds->total_capacity += sgs->group_capacity;
9568 
9569 		sg = sg->next;
9570 	} while (sg != env->sd->groups);
9571 
9572 	/* Tag domain that child domain prefers tasks go to siblings first */
9573 	sds->prefer_sibling = child && child->flags & SD_PREFER_SIBLING;
9574 
9575 #ifdef CONFIG_NO_HZ_COMMON
9576 	if ((env->flags & LBF_NOHZ_AGAIN) &&
9577 	    cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
9578 
9579 		WRITE_ONCE(nohz.next_blocked,
9580 			   jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
9581 	}
9582 #endif
9583 
9584 	if (env->sd->flags & SD_NUMA)
9585 		env->fbq_type = fbq_classify_group(&sds->busiest_stat);
9586 
9587 	if (!env->sd->parent) {
9588 		struct root_domain *rd = env->dst_rq->rd;
9589 
9590 		/* update overload indicator if we are at root domain */
9591 		WRITE_ONCE(rd->overload, sg_status & SG_OVERLOAD);
9592 
9593 		/* Update over-utilization (tipping point, U >= 0) indicator */
9594 		WRITE_ONCE(rd->overutilized, sg_status & SG_OVERUTILIZED);
9595 		trace_sched_overutilized_tp(rd, sg_status & SG_OVERUTILIZED);
9596 	} else if (sg_status & SG_OVERUTILIZED) {
9597 		struct root_domain *rd = env->dst_rq->rd;
9598 
9599 		WRITE_ONCE(rd->overutilized, SG_OVERUTILIZED);
9600 		trace_sched_overutilized_tp(rd, SG_OVERUTILIZED);
9601 	}
9602 }
9603 
adjust_numa_imbalance(int imbalance,int nr_running)9604 static inline long adjust_numa_imbalance(int imbalance, int nr_running)
9605 {
9606 	unsigned int imbalance_min;
9607 
9608 	/*
9609 	 * Allow a small imbalance based on a simple pair of communicating
9610 	 * tasks that remain local when the source domain is almost idle.
9611 	 */
9612 	imbalance_min = 2;
9613 	if (nr_running <= imbalance_min)
9614 		return 0;
9615 
9616 	return imbalance;
9617 }
9618 
9619 /**
9620  * calculate_imbalance - Calculate the amount of imbalance present within the
9621  *			 groups of a given sched_domain during load balance.
9622  * @env: load balance environment
9623  * @sds: statistics of the sched_domain whose imbalance is to be calculated.
9624  */
calculate_imbalance(struct lb_env * env,struct sd_lb_stats * sds)9625 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
9626 {
9627 	struct sg_lb_stats *local, *busiest;
9628 
9629 	local = &sds->local_stat;
9630 	busiest = &sds->busiest_stat;
9631 
9632 	if (busiest->group_type == group_misfit_task) {
9633 		/* Set imbalance to allow misfit tasks to be balanced. */
9634 		env->migration_type = migrate_misfit;
9635 		env->imbalance = 1;
9636 		return;
9637 	}
9638 
9639 	if (busiest->group_type == group_asym_packing) {
9640 		/*
9641 		 * In case of asym capacity, we will try to migrate all load to
9642 		 * the preferred CPU.
9643 		 */
9644 		env->migration_type = migrate_task;
9645 		env->imbalance = busiest->sum_h_nr_running;
9646 		return;
9647 	}
9648 
9649 	if (busiest->group_type == group_imbalanced) {
9650 		/*
9651 		 * In the group_imb case we cannot rely on group-wide averages
9652 		 * to ensure CPU-load equilibrium, try to move any task to fix
9653 		 * the imbalance. The next load balance will take care of
9654 		 * balancing back the system.
9655 		 */
9656 		env->migration_type = migrate_task;
9657 		env->imbalance = 1;
9658 		return;
9659 	}
9660 
9661 	/*
9662 	 * Try to use spare capacity of local group without overloading it or
9663 	 * emptying busiest.
9664 	 */
9665 	if (local->group_type == group_has_spare) {
9666 		if ((busiest->group_type > group_fully_busy) &&
9667 		    !(env->sd->flags & SD_SHARE_PKG_RESOURCES)) {
9668 			/*
9669 			 * If busiest is overloaded, try to fill spare
9670 			 * capacity. This might end up creating spare capacity
9671 			 * in busiest or busiest still being overloaded but
9672 			 * there is no simple way to directly compute the
9673 			 * amount of load to migrate in order to balance the
9674 			 * system.
9675 			 */
9676 			env->migration_type = migrate_util;
9677 			env->imbalance = max(local->group_capacity, local->group_util) -
9678 					 local->group_util;
9679 
9680 			/*
9681 			 * In some cases, the group's utilization is max or even
9682 			 * higher than capacity because of migrations but the
9683 			 * local CPU is (newly) idle. There is at least one
9684 			 * waiting task in this overloaded busiest group. Let's
9685 			 * try to pull it.
9686 			 */
9687 			if (env->idle != CPU_NOT_IDLE && env->imbalance == 0) {
9688 				env->migration_type = migrate_task;
9689 				env->imbalance = 1;
9690 			}
9691 
9692 			return;
9693 		}
9694 
9695 		if (busiest->group_weight == 1 || sds->prefer_sibling) {
9696 			unsigned int nr_diff = busiest->sum_nr_running;
9697 			/*
9698 			 * When prefer sibling, evenly spread running tasks on
9699 			 * groups.
9700 			 */
9701 			env->migration_type = migrate_task;
9702 			lsub_positive(&nr_diff, local->sum_nr_running);
9703 			env->imbalance = nr_diff >> 1;
9704 		} else {
9705 
9706 			/*
9707 			 * If there is no overload, we just want to even the number of
9708 			 * idle cpus.
9709 			 */
9710 			env->migration_type = migrate_task;
9711 			env->imbalance = max_t(long, 0, (local->idle_cpus -
9712 						 busiest->idle_cpus) >> 1);
9713 		}
9714 
9715 		/* Consider allowing a small imbalance between NUMA groups */
9716 		if (env->sd->flags & SD_NUMA)
9717 			env->imbalance = adjust_numa_imbalance(env->imbalance,
9718 						busiest->sum_nr_running);
9719 
9720 		return;
9721 	}
9722 
9723 	/*
9724 	 * Local is fully busy but has to take more load to relieve the
9725 	 * busiest group
9726 	 */
9727 	if (local->group_type < group_overloaded) {
9728 		/*
9729 		 * Local will become overloaded so the avg_load metrics are
9730 		 * finally needed.
9731 		 */
9732 
9733 		local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
9734 				  local->group_capacity;
9735 
9736 		/*
9737 		 * If the local group is more loaded than the selected
9738 		 * busiest group don't try to pull any tasks.
9739 		 */
9740 		if (local->avg_load >= busiest->avg_load) {
9741 			env->imbalance = 0;
9742 			return;
9743 		}
9744 
9745 		sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
9746 				sds->total_capacity;
9747 
9748 		/*
9749 		 * If the local group is more loaded than the average system
9750 		 * load, don't try to pull any tasks.
9751 		 */
9752 		if (local->avg_load >= sds->avg_load) {
9753 			env->imbalance = 0;
9754 			return;
9755 		}
9756 
9757 	}
9758 
9759 	/*
9760 	 * Both group are or will become overloaded and we're trying to get all
9761 	 * the CPUs to the average_load, so we don't want to push ourselves
9762 	 * above the average load, nor do we wish to reduce the max loaded CPU
9763 	 * below the average load. At the same time, we also don't want to
9764 	 * reduce the group load below the group capacity. Thus we look for
9765 	 * the minimum possible imbalance.
9766 	 */
9767 	env->migration_type = migrate_load;
9768 	env->imbalance = min(
9769 		(busiest->avg_load - sds->avg_load) * busiest->group_capacity,
9770 		(sds->avg_load - local->avg_load) * local->group_capacity
9771 	) / SCHED_CAPACITY_SCALE;
9772 }
9773 
9774 /******* find_busiest_group() helpers end here *********************/
9775 
9776 /*
9777  * Decision matrix according to the local and busiest group type:
9778  *
9779  * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
9780  * has_spare        nr_idle   balanced   N/A    N/A  balanced   balanced
9781  * fully_busy       nr_idle   nr_idle    N/A    N/A  balanced   balanced
9782  * misfit_task      force     N/A        N/A    N/A  force      force
9783  * asym_packing     force     force      N/A    N/A  force      force
9784  * imbalanced       force     force      N/A    N/A  force      force
9785  * overloaded       force     force      N/A    N/A  force      avg_load
9786  *
9787  * N/A :      Not Applicable because already filtered while updating
9788  *            statistics.
9789  * balanced : The system is balanced for these 2 groups.
9790  * force :    Calculate the imbalance as load migration is probably needed.
9791  * avg_load : Only if imbalance is significant enough.
9792  * nr_idle :  dst_cpu is not busy and the number of idle CPUs is quite
9793  *            different in groups.
9794  */
9795 
9796 /**
9797  * find_busiest_group - Returns the busiest group within the sched_domain
9798  * if there is an imbalance.
9799  *
9800  * Also calculates the amount of runnable load which should be moved
9801  * to restore balance.
9802  *
9803  * @env: The load balancing environment.
9804  *
9805  * Return:	- The busiest group if imbalance exists.
9806  */
find_busiest_group(struct lb_env * env)9807 static struct sched_group *find_busiest_group(struct lb_env *env)
9808 {
9809 	struct sg_lb_stats *local, *busiest;
9810 	struct sd_lb_stats sds;
9811 
9812 	init_sd_lb_stats(&sds);
9813 
9814 	/*
9815 	 * Compute the various statistics relevant for load balancing at
9816 	 * this level.
9817 	 */
9818 	update_sd_lb_stats(env, &sds);
9819 
9820 	if (sched_energy_enabled()) {
9821 		struct root_domain *rd = env->dst_rq->rd;
9822 
9823 		if (rcu_dereference(rd->pd) && !READ_ONCE(rd->overutilized))
9824 			goto out_balanced;
9825 	}
9826 
9827 	local = &sds.local_stat;
9828 	busiest = &sds.busiest_stat;
9829 
9830 	/* There is no busy sibling group to pull tasks from */
9831 	if (!sds.busiest)
9832 		goto out_balanced;
9833 
9834 	/* Misfit tasks should be dealt with regardless of the avg load */
9835 	if (busiest->group_type == group_misfit_task)
9836 		goto force_balance;
9837 
9838 	/* ASYM feature bypasses nice load balance check */
9839 	if (busiest->group_type == group_asym_packing)
9840 		goto force_balance;
9841 
9842 	/*
9843 	 * If the busiest group is imbalanced the below checks don't
9844 	 * work because they assume all things are equal, which typically
9845 	 * isn't true due to cpus_ptr constraints and the like.
9846 	 */
9847 	if (busiest->group_type == group_imbalanced)
9848 		goto force_balance;
9849 
9850 	/*
9851 	 * If the local group is busier than the selected busiest group
9852 	 * don't try and pull any tasks.
9853 	 */
9854 	if (local->group_type > busiest->group_type)
9855 		goto out_balanced;
9856 
9857 	/*
9858 	 * When groups are overloaded, use the avg_load to ensure fairness
9859 	 * between tasks.
9860 	 */
9861 	if (local->group_type == group_overloaded) {
9862 		/*
9863 		 * If the local group is more loaded than the selected
9864 		 * busiest group don't try to pull any tasks.
9865 		 */
9866 		if (local->avg_load >= busiest->avg_load)
9867 			goto out_balanced;
9868 
9869 		/* XXX broken for overlapping NUMA groups */
9870 		sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
9871 				sds.total_capacity;
9872 
9873 		/*
9874 		 * Don't pull any tasks if this group is already above the
9875 		 * domain average load.
9876 		 */
9877 		if (local->avg_load >= sds.avg_load)
9878 			goto out_balanced;
9879 
9880 		/*
9881 		 * If the busiest group is more loaded, use imbalance_pct to be
9882 		 * conservative.
9883 		 */
9884 		if (100 * busiest->avg_load <=
9885 				env->sd->imbalance_pct * local->avg_load)
9886 			goto out_balanced;
9887 	}
9888 
9889 	/* Try to move all excess tasks to child's sibling domain */
9890 	if (sds.prefer_sibling && local->group_type == group_has_spare &&
9891 	    busiest->sum_nr_running > local->sum_nr_running + 1)
9892 		goto force_balance;
9893 
9894 	if (busiest->group_type != group_overloaded) {
9895 		if (env->idle == CPU_NOT_IDLE)
9896 			/*
9897 			 * If the busiest group is not overloaded (and as a
9898 			 * result the local one too) but this CPU is already
9899 			 * busy, let another idle CPU try to pull task.
9900 			 */
9901 			goto out_balanced;
9902 
9903 		if (busiest->group_weight > 1 &&
9904 		    local->idle_cpus <= (busiest->idle_cpus + 1))
9905 			/*
9906 			 * If the busiest group is not overloaded
9907 			 * and there is no imbalance between this and busiest
9908 			 * group wrt idle CPUs, it is balanced. The imbalance
9909 			 * becomes significant if the diff is greater than 1
9910 			 * otherwise we might end up to just move the imbalance
9911 			 * on another group. Of course this applies only if
9912 			 * there is more than 1 CPU per group.
9913 			 */
9914 			goto out_balanced;
9915 
9916 		if (busiest->sum_h_nr_running == 1)
9917 			/*
9918 			 * busiest doesn't have any tasks waiting to run
9919 			 */
9920 			goto out_balanced;
9921 	}
9922 
9923 force_balance:
9924 	/* Looks like there is an imbalance. Compute it */
9925 	calculate_imbalance(env, &sds);
9926 	return env->imbalance ? sds.busiest : NULL;
9927 
9928 out_balanced:
9929 	env->imbalance = 0;
9930 	return NULL;
9931 }
9932 
9933 /*
9934  * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
9935  */
find_busiest_queue(struct lb_env * env,struct sched_group * group)9936 static struct rq *find_busiest_queue(struct lb_env *env,
9937 				     struct sched_group *group)
9938 {
9939 	struct rq *busiest = NULL, *rq;
9940 	unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
9941 	unsigned int busiest_nr = 0;
9942 	int i;
9943 
9944 	for_each_cpu_and(i, sched_group_span(group), env->cpus) {
9945 		unsigned long capacity, load, util;
9946 		unsigned int nr_running;
9947 		enum fbq_type rt;
9948 
9949 		rq = cpu_rq(i);
9950 		rt = fbq_classify_rq(rq);
9951 
9952 		/*
9953 		 * We classify groups/runqueues into three groups:
9954 		 *  - regular: there are !numa tasks
9955 		 *  - remote:  there are numa tasks that run on the 'wrong' node
9956 		 *  - all:     there is no distinction
9957 		 *
9958 		 * In order to avoid migrating ideally placed numa tasks,
9959 		 * ignore those when there's better options.
9960 		 *
9961 		 * If we ignore the actual busiest queue to migrate another
9962 		 * task, the next balance pass can still reduce the busiest
9963 		 * queue by moving tasks around inside the node.
9964 		 *
9965 		 * If we cannot move enough load due to this classification
9966 		 * the next pass will adjust the group classification and
9967 		 * allow migration of more tasks.
9968 		 *
9969 		 * Both cases only affect the total convergence complexity.
9970 		 */
9971 		if (rt > env->fbq_type)
9972 			continue;
9973 
9974 		if (cpu_isolated(i))
9975 			continue;
9976 
9977 		capacity = capacity_of(i);
9978 		nr_running = rq->cfs.h_nr_running;
9979 
9980 		/*
9981 		 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
9982 		 * eventually lead to active_balancing high->low capacity.
9983 		 * Higher per-CPU capacity is considered better than balancing
9984 		 * average load.
9985 		 */
9986 		if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
9987 		    capacity_of(env->dst_cpu) < capacity &&
9988 		    nr_running == 1)
9989 			continue;
9990 
9991 		switch (env->migration_type) {
9992 		case migrate_load:
9993 			/*
9994 			 * When comparing with load imbalance, use cpu_load()
9995 			 * which is not scaled with the CPU capacity.
9996 			 */
9997 			load = cpu_load(rq);
9998 
9999 			if (nr_running == 1 && load > env->imbalance &&
10000 			    !check_cpu_capacity(rq, env->sd))
10001 				break;
10002 
10003 			/*
10004 			 * For the load comparisons with the other CPUs,
10005 			 * consider the cpu_load() scaled with the CPU
10006 			 * capacity, so that the load can be moved away
10007 			 * from the CPU that is potentially running at a
10008 			 * lower capacity.
10009 			 *
10010 			 * Thus we're looking for max(load_i / capacity_i),
10011 			 * crosswise multiplication to rid ourselves of the
10012 			 * division works out to:
10013 			 * load_i * capacity_j > load_j * capacity_i;
10014 			 * where j is our previous maximum.
10015 			 */
10016 			if (load * busiest_capacity > busiest_load * capacity) {
10017 				busiest_load = load;
10018 				busiest_capacity = capacity;
10019 				busiest = rq;
10020 			}
10021 			break;
10022 
10023 		case migrate_util:
10024 			util = cpu_util(cpu_of(rq));
10025 
10026 			/*
10027 			 * Don't try to pull utilization from a CPU with one
10028 			 * running task. Whatever its utilization, we will fail
10029 			 * detach the task.
10030 			 */
10031 			if (nr_running <= 1)
10032 				continue;
10033 
10034 			if (busiest_util < util) {
10035 				busiest_util = util;
10036 				busiest = rq;
10037 			}
10038 			break;
10039 
10040 		case migrate_task:
10041 			if (busiest_nr < nr_running) {
10042 				busiest_nr = nr_running;
10043 				busiest = rq;
10044 			}
10045 			break;
10046 
10047 		case migrate_misfit:
10048 			/*
10049 			 * For ASYM_CPUCAPACITY domains with misfit tasks we
10050 			 * simply seek the "biggest" misfit task.
10051 			 */
10052 			if (rq->misfit_task_load > busiest_load) {
10053 				busiest_load = rq->misfit_task_load;
10054 				busiest = rq;
10055 			}
10056 
10057 			break;
10058 
10059 		}
10060 	}
10061 
10062 	return busiest;
10063 }
10064 
10065 /*
10066  * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
10067  * so long as it is large enough.
10068  */
10069 #define MAX_PINNED_INTERVAL	512
10070 
10071 static inline bool
asym_active_balance(struct lb_env * env)10072 asym_active_balance(struct lb_env *env)
10073 {
10074 	/*
10075 	 * ASYM_PACKING needs to force migrate tasks from busy but
10076 	 * lower priority CPUs in order to pack all tasks in the
10077 	 * highest priority CPUs.
10078 	 */
10079 	return env->idle != CPU_NOT_IDLE && (env->sd->flags & SD_ASYM_PACKING) &&
10080 	       sched_asym_prefer(env->dst_cpu, env->src_cpu);
10081 }
10082 
10083 static inline bool
voluntary_active_balance(struct lb_env * env)10084 voluntary_active_balance(struct lb_env *env)
10085 {
10086 	struct sched_domain *sd = env->sd;
10087 
10088 	if (asym_active_balance(env))
10089 		return 1;
10090 
10091 	/*
10092 	 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
10093 	 * It's worth migrating the task if the src_cpu's capacity is reduced
10094 	 * because of other sched_class or IRQs if more capacity stays
10095 	 * available on dst_cpu.
10096 	 */
10097 	if ((env->idle != CPU_NOT_IDLE) &&
10098 	    (env->src_rq->cfs.h_nr_running == 1)) {
10099 		if ((check_cpu_capacity(env->src_rq, sd)) &&
10100 		    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
10101 			return 1;
10102 	}
10103 
10104 	if (env->migration_type == migrate_misfit)
10105 		return 1;
10106 
10107 	return 0;
10108 }
10109 
need_active_balance(struct lb_env * env)10110 static int need_active_balance(struct lb_env *env)
10111 {
10112 	struct sched_domain *sd = env->sd;
10113 
10114 	if (voluntary_active_balance(env))
10115 		return 1;
10116 
10117 	return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
10118 }
10119 
10120 #ifdef CONFIG_CPU_ISOLATION_OPT
group_balance_cpu_not_isolated(struct sched_group * sg)10121 int group_balance_cpu_not_isolated(struct sched_group *sg)
10122 {
10123 	cpumask_t cpus;
10124 
10125 	cpumask_and(&cpus, sched_group_span(sg), group_balance_mask(sg));
10126 	cpumask_andnot(&cpus, &cpus, cpu_isolated_mask);
10127 	return cpumask_first(&cpus);
10128 }
10129 #endif
10130 
10131 static int active_load_balance_cpu_stop(void *data);
10132 
should_we_balance(struct lb_env * env)10133 static int should_we_balance(struct lb_env *env)
10134 {
10135 	struct sched_group *sg = env->sd->groups;
10136 	int cpu;
10137 
10138 	/*
10139 	 * Ensure the balancing environment is consistent; can happen
10140 	 * when the softirq triggers 'during' hotplug.
10141 	 */
10142 	if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
10143 		return 0;
10144 
10145 	/*
10146 	 * In the newly idle case, we will allow all the CPUs
10147 	 * to do the newly idle load balance.
10148 	 */
10149 	if (env->idle == CPU_NEWLY_IDLE)
10150 		return 1;
10151 
10152 	/* Try to find first idle CPU */
10153 	for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
10154 		if (!idle_cpu(cpu) || cpu_isolated(cpu))
10155 			continue;
10156 
10157 		/* Are we the first idle CPU? */
10158 		return cpu == env->dst_cpu;
10159 	}
10160 
10161 	/* Are we the first CPU of this group ? */
10162 	return group_balance_cpu_not_isolated(sg) == env->dst_cpu;
10163 }
10164 
10165 /*
10166  * Check this_cpu to ensure it is balanced within domain. Attempt to move
10167  * tasks if there is an imbalance.
10168  */
load_balance(int this_cpu,struct rq * this_rq,struct sched_domain * sd,enum cpu_idle_type idle,int * continue_balancing)10169 static int load_balance(int this_cpu, struct rq *this_rq,
10170 			struct sched_domain *sd, enum cpu_idle_type idle,
10171 			int *continue_balancing)
10172 {
10173 	int ld_moved, cur_ld_moved, active_balance = 0;
10174 	struct sched_domain *sd_parent = sd->parent;
10175 	struct sched_group *group;
10176 	struct rq *busiest;
10177 	struct rq_flags rf;
10178 	struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
10179 
10180 	struct lb_env env = {
10181 		.sd		= sd,
10182 		.dst_cpu	= this_cpu,
10183 		.dst_rq		= this_rq,
10184 		.dst_grpmask    = group_balance_mask(sd->groups),
10185 		.idle		= idle,
10186 		.loop_break	= sched_nr_migrate_break,
10187 		.cpus		= cpus,
10188 		.fbq_type	= all,
10189 		.tasks		= LIST_HEAD_INIT(env.tasks),
10190 	};
10191 
10192 	cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
10193 
10194 	schedstat_inc(sd->lb_count[idle]);
10195 
10196 redo:
10197 	if (!should_we_balance(&env)) {
10198 		*continue_balancing = 0;
10199 		goto out_balanced;
10200 	}
10201 
10202 	group = find_busiest_group(&env);
10203 	if (!group) {
10204 		schedstat_inc(sd->lb_nobusyg[idle]);
10205 		goto out_balanced;
10206 	}
10207 
10208 	busiest = find_busiest_queue(&env, group);
10209 	if (!busiest) {
10210 		schedstat_inc(sd->lb_nobusyq[idle]);
10211 		goto out_balanced;
10212 	}
10213 
10214 	BUG_ON(busiest == env.dst_rq);
10215 
10216 	schedstat_add(sd->lb_imbalance[idle], env.imbalance);
10217 
10218 	env.src_cpu = busiest->cpu;
10219 	env.src_rq = busiest;
10220 
10221 	ld_moved = 0;
10222 	if (busiest->nr_running > 1) {
10223 		/*
10224 		 * Attempt to move tasks. If find_busiest_group has found
10225 		 * an imbalance but busiest->nr_running <= 1, the group is
10226 		 * still unbalanced. ld_moved simply stays zero, so it is
10227 		 * correctly treated as an imbalance.
10228 		 */
10229 		env.flags |= LBF_ALL_PINNED;
10230 		env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
10231 
10232 more_balance:
10233 		rq_lock_irqsave(busiest, &rf);
10234 		update_rq_clock(busiest);
10235 
10236 		/*
10237 		 * cur_ld_moved - load moved in current iteration
10238 		 * ld_moved     - cumulative load moved across iterations
10239 		 */
10240 		cur_ld_moved = detach_tasks(&env);
10241 
10242 		/*
10243 		 * We've detached some tasks from busiest_rq. Every
10244 		 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
10245 		 * unlock busiest->lock, and we are able to be sure
10246 		 * that nobody can manipulate the tasks in parallel.
10247 		 * See task_rq_lock() family for the details.
10248 		 */
10249 
10250 		rq_unlock(busiest, &rf);
10251 
10252 		if (cur_ld_moved) {
10253 			attach_tasks(&env);
10254 			ld_moved += cur_ld_moved;
10255 		}
10256 
10257 		local_irq_restore(rf.flags);
10258 
10259 		if (env.flags & LBF_NEED_BREAK) {
10260 			env.flags &= ~LBF_NEED_BREAK;
10261 			goto more_balance;
10262 		}
10263 
10264 		/*
10265 		 * Revisit (affine) tasks on src_cpu that couldn't be moved to
10266 		 * us and move them to an alternate dst_cpu in our sched_group
10267 		 * where they can run. The upper limit on how many times we
10268 		 * iterate on same src_cpu is dependent on number of CPUs in our
10269 		 * sched_group.
10270 		 *
10271 		 * This changes load balance semantics a bit on who can move
10272 		 * load to a given_cpu. In addition to the given_cpu itself
10273 		 * (or a ilb_cpu acting on its behalf where given_cpu is
10274 		 * nohz-idle), we now have balance_cpu in a position to move
10275 		 * load to given_cpu. In rare situations, this may cause
10276 		 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
10277 		 * _independently_ and at _same_ time to move some load to
10278 		 * given_cpu) causing exceess load to be moved to given_cpu.
10279 		 * This however should not happen so much in practice and
10280 		 * moreover subsequent load balance cycles should correct the
10281 		 * excess load moved.
10282 		 */
10283 		if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
10284 
10285 			/* Prevent to re-select dst_cpu via env's CPUs */
10286 			__cpumask_clear_cpu(env.dst_cpu, env.cpus);
10287 
10288 			env.dst_rq	 = cpu_rq(env.new_dst_cpu);
10289 			env.dst_cpu	 = env.new_dst_cpu;
10290 			env.flags	&= ~LBF_DST_PINNED;
10291 			env.loop	 = 0;
10292 			env.loop_break	 = sched_nr_migrate_break;
10293 
10294 			/*
10295 			 * Go back to "more_balance" rather than "redo" since we
10296 			 * need to continue with same src_cpu.
10297 			 */
10298 			goto more_balance;
10299 		}
10300 
10301 		/*
10302 		 * We failed to reach balance because of affinity.
10303 		 */
10304 		if (sd_parent) {
10305 			int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10306 
10307 			if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
10308 				*group_imbalance = 1;
10309 		}
10310 
10311 		/* All tasks on this runqueue were pinned by CPU affinity */
10312 		if (unlikely(env.flags & LBF_ALL_PINNED)) {
10313 			__cpumask_clear_cpu(cpu_of(busiest), cpus);
10314 			/*
10315 			 * Attempting to continue load balancing at the current
10316 			 * sched_domain level only makes sense if there are
10317 			 * active CPUs remaining as possible busiest CPUs to
10318 			 * pull load from which are not contained within the
10319 			 * destination group that is receiving any migrated
10320 			 * load.
10321 			 */
10322 			if (!cpumask_subset(cpus, env.dst_grpmask)) {
10323 				env.loop = 0;
10324 				env.loop_break = sched_nr_migrate_break;
10325 				goto redo;
10326 			}
10327 			goto out_all_pinned;
10328 		}
10329 	}
10330 
10331 	if (!ld_moved) {
10332 		schedstat_inc(sd->lb_failed[idle]);
10333 		/*
10334 		 * Increment the failure counter only on periodic balance.
10335 		 * We do not want newidle balance, which can be very
10336 		 * frequent, pollute the failure counter causing
10337 		 * excessive cache_hot migrations and active balances.
10338 		 */
10339 		if (idle != CPU_NEWLY_IDLE)
10340 			sd->nr_balance_failed++;
10341 
10342 		if (need_active_balance(&env)) {
10343 			unsigned long flags;
10344 
10345 			raw_spin_lock_irqsave(&busiest->lock, flags);
10346 
10347 			/*
10348 			 * Don't kick the active_load_balance_cpu_stop,
10349 			 * if the curr task on busiest CPU can't be
10350 			 * moved to this_cpu:
10351 			 */
10352 			if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
10353 				raw_spin_unlock_irqrestore(&busiest->lock,
10354 							    flags);
10355 				env.flags |= LBF_ALL_PINNED;
10356 				goto out_one_pinned;
10357 			}
10358 
10359 			/*
10360 			 * ->active_balance synchronizes accesses to
10361 			 * ->active_balance_work.  Once set, it's cleared
10362 			 * only after active load balance is finished.
10363 			 */
10364 			if (!busiest->active_balance &&
10365 			    !cpu_isolated(cpu_of(busiest))) {
10366 				busiest->active_balance = 1;
10367 				busiest->push_cpu = this_cpu;
10368 				active_balance = 1;
10369 			}
10370 			raw_spin_unlock_irqrestore(&busiest->lock, flags);
10371 
10372 			if (active_balance) {
10373 				stop_one_cpu_nowait(cpu_of(busiest),
10374 					active_load_balance_cpu_stop, busiest,
10375 					&busiest->active_balance_work);
10376 			}
10377 
10378 			/* We've kicked active balancing, force task migration. */
10379 			sd->nr_balance_failed = sd->cache_nice_tries+1;
10380 		}
10381 	} else
10382 		sd->nr_balance_failed = 0;
10383 
10384 	if (likely(!active_balance) || voluntary_active_balance(&env)) {
10385 		/* We were unbalanced, so reset the balancing interval */
10386 		sd->balance_interval = sd->min_interval;
10387 	} else {
10388 		/*
10389 		 * If we've begun active balancing, start to back off. This
10390 		 * case may not be covered by the all_pinned logic if there
10391 		 * is only 1 task on the busy runqueue (because we don't call
10392 		 * detach_tasks).
10393 		 */
10394 		if (sd->balance_interval < sd->max_interval)
10395 			sd->balance_interval *= 2;
10396 	}
10397 
10398 	goto out;
10399 
10400 out_balanced:
10401 	/*
10402 	 * We reach balance although we may have faced some affinity
10403 	 * constraints. Clear the imbalance flag only if other tasks got
10404 	 * a chance to move and fix the imbalance.
10405 	 */
10406 	if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
10407 		int *group_imbalance = &sd_parent->groups->sgc->imbalance;
10408 
10409 		if (*group_imbalance)
10410 			*group_imbalance = 0;
10411 	}
10412 
10413 out_all_pinned:
10414 	/*
10415 	 * We reach balance because all tasks are pinned at this level so
10416 	 * we can't migrate them. Let the imbalance flag set so parent level
10417 	 * can try to migrate them.
10418 	 */
10419 	schedstat_inc(sd->lb_balanced[idle]);
10420 
10421 	sd->nr_balance_failed = 0;
10422 
10423 out_one_pinned:
10424 	ld_moved = 0;
10425 
10426 	/*
10427 	 * newidle_balance() disregards balance intervals, so we could
10428 	 * repeatedly reach this code, which would lead to balance_interval
10429 	 * skyrocketting in a short amount of time. Skip the balance_interval
10430 	 * increase logic to avoid that.
10431 	 */
10432 	if (env.idle == CPU_NEWLY_IDLE)
10433 		goto out;
10434 
10435 	/* tune up the balancing interval */
10436 	if ((env.flags & LBF_ALL_PINNED &&
10437 	     sd->balance_interval < MAX_PINNED_INTERVAL) ||
10438 	    sd->balance_interval < sd->max_interval)
10439 		sd->balance_interval *= 2;
10440 out:
10441 	return ld_moved;
10442 }
10443 
10444 static inline unsigned long
get_sd_balance_interval(struct sched_domain * sd,int cpu_busy)10445 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
10446 {
10447 	unsigned long interval = sd->balance_interval;
10448 
10449 	if (cpu_busy)
10450 		interval *= sd->busy_factor;
10451 
10452 	/* scale ms to jiffies */
10453 	interval = msecs_to_jiffies(interval);
10454 
10455 	/*
10456 	 * Reduce likelihood of busy balancing at higher domains racing with
10457 	 * balancing at lower domains by preventing their balancing periods
10458 	 * from being multiples of each other.
10459 	 */
10460 	if (cpu_busy)
10461 		interval -= 1;
10462 
10463 	interval = clamp(interval, 1UL, max_load_balance_interval);
10464 
10465 	return interval;
10466 }
10467 
10468 static inline void
update_next_balance(struct sched_domain * sd,unsigned long * next_balance)10469 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
10470 {
10471 	unsigned long interval, next;
10472 
10473 	/* used by idle balance, so cpu_busy = 0 */
10474 	interval = get_sd_balance_interval(sd, 0);
10475 	next = sd->last_balance + interval;
10476 
10477 	if (time_after(*next_balance, next))
10478 		*next_balance = next;
10479 }
10480 
10481 /*
10482  * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
10483  * running tasks off the busiest CPU onto idle CPUs. It requires at
10484  * least 1 task to be running on each physical CPU where possible, and
10485  * avoids physical / logical imbalances.
10486  */
active_load_balance_cpu_stop(void * data)10487 static int active_load_balance_cpu_stop(void *data)
10488 {
10489 	struct rq *busiest_rq = data;
10490 	int busiest_cpu = cpu_of(busiest_rq);
10491 	int target_cpu = busiest_rq->push_cpu;
10492 	struct rq *target_rq = cpu_rq(target_cpu);
10493 	struct sched_domain *sd = NULL;
10494 	struct task_struct *p = NULL;
10495 	struct rq_flags rf;
10496 #ifdef CONFIG_SCHED_EAS
10497 	struct task_struct *push_task;
10498 	int push_task_detached = 0;
10499 #endif
10500 
10501 	rq_lock_irq(busiest_rq, &rf);
10502 	/*
10503 	 * Between queueing the stop-work and running it is a hole in which
10504 	 * CPUs can become inactive. We should not move tasks from or to
10505 	 * inactive CPUs.
10506 	 */
10507 	if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
10508 		goto out_unlock;
10509 
10510 	/* Make sure the requested CPU hasn't gone down in the meantime: */
10511 	if (unlikely(busiest_cpu != smp_processor_id() ||
10512 		     !busiest_rq->active_balance))
10513 		goto out_unlock;
10514 
10515 	/* Is there any task to move? */
10516 	if (busiest_rq->nr_running <= 1)
10517 		goto out_unlock;
10518 
10519 	/*
10520 	 * This condition is "impossible", if it occurs
10521 	 * we need to fix it. Originally reported by
10522 	 * Bjorn Helgaas on a 128-CPU setup.
10523 	 */
10524 	BUG_ON(busiest_rq == target_rq);
10525 
10526 #ifdef CONFIG_SCHED_EAS
10527 	push_task = busiest_rq->push_task;
10528 	target_cpu = busiest_rq->push_cpu;
10529 	if (push_task) {
10530 		struct lb_env env = {
10531 			.sd		= sd,
10532 			.dst_cpu	= target_cpu,
10533 			.dst_rq		= target_rq,
10534 			.src_cpu	= busiest_rq->cpu,
10535 			.src_rq		= busiest_rq,
10536 			.idle		= CPU_IDLE,
10537 			.flags		= 0,
10538 			.loop		= 0,
10539 		};
10540 		if (task_on_rq_queued(push_task) &&
10541 		    push_task->state ==  TASK_RUNNING &&
10542 		    task_cpu(push_task) == busiest_cpu &&
10543 		    cpu_online(target_cpu)) {
10544 			update_rq_clock(busiest_rq);
10545 			detach_task(push_task, &env);
10546 			push_task_detached = 1;
10547 		}
10548 		goto out_unlock;
10549 	}
10550 #endif
10551 
10552 	/* Search for an sd spanning us and the target CPU. */
10553 	rcu_read_lock();
10554 	for_each_domain(target_cpu, sd) {
10555 		if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
10556 			break;
10557 	}
10558 
10559 	if (likely(sd)) {
10560 		struct lb_env env = {
10561 			.sd		= sd,
10562 			.dst_cpu	= target_cpu,
10563 			.dst_rq		= target_rq,
10564 			.src_cpu	= busiest_rq->cpu,
10565 			.src_rq		= busiest_rq,
10566 			.idle		= CPU_IDLE,
10567 			/*
10568 			 * can_migrate_task() doesn't need to compute new_dst_cpu
10569 			 * for active balancing. Since we have CPU_IDLE, but no
10570 			 * @dst_grpmask we need to make that test go away with lying
10571 			 * about DST_PINNED.
10572 			 */
10573 			.flags		= LBF_DST_PINNED,
10574 		};
10575 
10576 		schedstat_inc(sd->alb_count);
10577 		update_rq_clock(busiest_rq);
10578 
10579 		p = detach_one_task(&env);
10580 		if (p) {
10581 			schedstat_inc(sd->alb_pushed);
10582 			/* Active balancing done, reset the failure counter. */
10583 			sd->nr_balance_failed = 0;
10584 		} else {
10585 			schedstat_inc(sd->alb_failed);
10586 		}
10587 	}
10588 	rcu_read_unlock();
10589 out_unlock:
10590 	busiest_rq->active_balance = 0;
10591 
10592 #ifdef CONFIG_SCHED_EAS
10593 	push_task = busiest_rq->push_task;
10594 	if (push_task)
10595 		busiest_rq->push_task = NULL;
10596 #endif
10597 	rq_unlock(busiest_rq, &rf);
10598 
10599 #ifdef CONFIG_SCHED_EAS
10600 	if (push_task) {
10601 		if (push_task_detached)
10602 			attach_one_task(target_rq, push_task);
10603 
10604 		put_task_struct(push_task);
10605 	}
10606 #endif
10607 
10608 	if (p)
10609 		attach_one_task(target_rq, p);
10610 
10611 	local_irq_enable();
10612 
10613 	return 0;
10614 }
10615 
10616 static DEFINE_SPINLOCK(balancing);
10617 
10618 /*
10619  * Scale the max load_balance interval with the number of CPUs in the system.
10620  * This trades load-balance latency on larger machines for less cross talk.
10621  */
update_max_interval(void)10622 void update_max_interval(void)
10623 {
10624 	unsigned int available_cpus;
10625 #ifdef CONFIG_CPU_ISOLATION_OPT
10626 	cpumask_t avail_mask;
10627 
10628 	cpumask_andnot(&avail_mask, cpu_online_mask, cpu_isolated_mask);
10629 	available_cpus = cpumask_weight(&avail_mask);
10630 #else
10631 	available_cpus = num_online_cpus();
10632 #endif
10633 
10634 	max_load_balance_interval = HZ*available_cpus/10;
10635 }
10636 
10637 /*
10638  * It checks each scheduling domain to see if it is due to be balanced,
10639  * and initiates a balancing operation if so.
10640  *
10641  * Balancing parameters are set up in init_sched_domains.
10642  */
rebalance_domains(struct rq * rq,enum cpu_idle_type idle)10643 static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
10644 {
10645 	int continue_balancing = 1;
10646 	int cpu = rq->cpu;
10647 	int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10648 	unsigned long interval;
10649 	struct sched_domain *sd;
10650 	/* Earliest time when we have to do rebalance again */
10651 	unsigned long next_balance = jiffies + 60*HZ;
10652 	int update_next_balance = 0;
10653 	int need_serialize, need_decay = 0;
10654 	u64 max_cost = 0;
10655 
10656 	rcu_read_lock();
10657 	for_each_domain(cpu, sd) {
10658 		/*
10659 		 * Decay the newidle max times here because this is a regular
10660 		 * visit to all the domains. Decay ~1% per second.
10661 		 */
10662 		if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
10663 			sd->max_newidle_lb_cost =
10664 				(sd->max_newidle_lb_cost * 253) / 256;
10665 			sd->next_decay_max_lb_cost = jiffies + HZ;
10666 			need_decay = 1;
10667 		}
10668 		max_cost += sd->max_newidle_lb_cost;
10669 
10670 		/*
10671 		 * Stop the load balance at this level. There is another
10672 		 * CPU in our sched group which is doing load balancing more
10673 		 * actively.
10674 		 */
10675 		if (!continue_balancing) {
10676 			if (need_decay)
10677 				continue;
10678 			break;
10679 		}
10680 
10681 		interval = get_sd_balance_interval(sd, busy);
10682 
10683 		need_serialize = sd->flags & SD_SERIALIZE;
10684 		if (need_serialize) {
10685 			if (!spin_trylock(&balancing))
10686 				goto out;
10687 		}
10688 
10689 		if (time_after_eq(jiffies, sd->last_balance + interval)) {
10690 			if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
10691 				/*
10692 				 * The LBF_DST_PINNED logic could have changed
10693 				 * env->dst_cpu, so we can't know our idle
10694 				 * state even if we migrated tasks. Update it.
10695 				 */
10696 				idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
10697 				busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
10698 			}
10699 			sd->last_balance = jiffies;
10700 			interval = get_sd_balance_interval(sd, busy);
10701 		}
10702 		if (need_serialize)
10703 			spin_unlock(&balancing);
10704 out:
10705 		if (time_after(next_balance, sd->last_balance + interval)) {
10706 			next_balance = sd->last_balance + interval;
10707 			update_next_balance = 1;
10708 		}
10709 	}
10710 	if (need_decay) {
10711 		/*
10712 		 * Ensure the rq-wide value also decays but keep it at a
10713 		 * reasonable floor to avoid funnies with rq->avg_idle.
10714 		 */
10715 		rq->max_idle_balance_cost =
10716 			max((u64)sysctl_sched_migration_cost, max_cost);
10717 	}
10718 	rcu_read_unlock();
10719 
10720 	/*
10721 	 * next_balance will be updated only when there is a need.
10722 	 * When the cpu is attached to null domain for ex, it will not be
10723 	 * updated.
10724 	 */
10725 	if (likely(update_next_balance)) {
10726 		rq->next_balance = next_balance;
10727 
10728 #ifdef CONFIG_NO_HZ_COMMON
10729 		/*
10730 		 * If this CPU has been elected to perform the nohz idle
10731 		 * balance. Other idle CPUs have already rebalanced with
10732 		 * nohz_idle_balance() and nohz.next_balance has been
10733 		 * updated accordingly. This CPU is now running the idle load
10734 		 * balance for itself and we need to update the
10735 		 * nohz.next_balance accordingly.
10736 		 */
10737 		if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
10738 			nohz.next_balance = rq->next_balance;
10739 #endif
10740 	}
10741 }
10742 
on_null_domain(struct rq * rq)10743 static inline int on_null_domain(struct rq *rq)
10744 {
10745 	return unlikely(!rcu_dereference_sched(rq->sd));
10746 }
10747 
10748 #ifdef CONFIG_NO_HZ_COMMON
10749 /*
10750  * idle load balancing details
10751  * - When one of the busy CPUs notice that there may be an idle rebalancing
10752  *   needed, they will kick the idle load balancer, which then does idle
10753  *   load balancing for all the idle CPUs.
10754  * - HK_FLAG_MISC CPUs are used for this task, because HK_FLAG_SCHED not set
10755  *   anywhere yet.
10756  */
10757 
find_new_ilb(void)10758 static inline int find_new_ilb(void)
10759 {
10760 	int ilb;
10761 
10762 	for_each_cpu_and(ilb, nohz.idle_cpus_mask,
10763 			      housekeeping_cpumask(HK_FLAG_MISC)) {
10764 		if (cpu_isolated(ilb))
10765 			continue;
10766 
10767 		if (idle_cpu(ilb))
10768 			return ilb;
10769 	}
10770 
10771 	return nr_cpu_ids;
10772 }
10773 
10774 /*
10775  * Kick a CPU to do the nohz balancing, if it is time for it. We pick any
10776  * idle CPU in the HK_FLAG_MISC housekeeping set (if there is one).
10777  */
kick_ilb(unsigned int flags)10778 static void kick_ilb(unsigned int flags)
10779 {
10780 	int ilb_cpu;
10781 
10782 	/*
10783 	 * Increase nohz.next_balance only when if full ilb is triggered but
10784 	 * not if we only update stats.
10785 	 */
10786 	if (flags & NOHZ_BALANCE_KICK)
10787 		nohz.next_balance = jiffies+1;
10788 
10789 	ilb_cpu = find_new_ilb();
10790 
10791 	if (ilb_cpu >= nr_cpu_ids)
10792 		return;
10793 
10794 	/*
10795 	 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
10796 	 * the first flag owns it; cleared by nohz_csd_func().
10797 	 */
10798 	flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
10799 	if (flags & NOHZ_KICK_MASK)
10800 		return;
10801 
10802 	/*
10803 	 * This way we generate an IPI on the target CPU which
10804 	 * is idle. And the softirq performing nohz idle load balance
10805 	 * will be run before returning from the IPI.
10806 	 */
10807 	smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
10808 }
10809 
10810 /*
10811  * Current decision point for kicking the idle load balancer in the presence
10812  * of idle CPUs in the system.
10813  */
nohz_balancer_kick(struct rq * rq)10814 static void nohz_balancer_kick(struct rq *rq)
10815 {
10816 	unsigned long now = jiffies;
10817 	struct sched_domain_shared *sds;
10818 	struct sched_domain *sd;
10819 	int nr_busy, i, cpu = rq->cpu;
10820 	unsigned int flags = 0;
10821 	cpumask_t cpumask;
10822 
10823 	if (unlikely(rq->idle_balance))
10824 		return;
10825 
10826 	/*
10827 	 * We may be recently in ticked or tickless idle mode. At the first
10828 	 * busy tick after returning from idle, we will update the busy stats.
10829 	 */
10830 	nohz_balance_exit_idle(rq);
10831 
10832 	/*
10833 	 * None are in tickless mode and hence no need for NOHZ idle load
10834 	 * balancing.
10835 	 */
10836 #ifdef CONFIG_CPU_ISOLATION_OPT
10837 	cpumask_andnot(&cpumask, nohz.idle_cpus_mask, cpu_isolated_mask);
10838 	if (cpumask_empty(&cpumask))
10839 		return;
10840 #else
10841 	cpumask_copy(&cpumask, nohz.idle_cpus_mask);
10842 	if (likely(!atomic_read(&nohz.nr_cpus)))
10843 		return;
10844 #endif
10845 
10846 	if (READ_ONCE(nohz.has_blocked) &&
10847 	    time_after(now, READ_ONCE(nohz.next_blocked)))
10848 		flags = NOHZ_STATS_KICK;
10849 
10850 	if (time_before(now, nohz.next_balance))
10851 		goto out;
10852 
10853 	if (rq->nr_running >= 2) {
10854 		flags = NOHZ_KICK_MASK;
10855 		goto out;
10856 	}
10857 
10858 	rcu_read_lock();
10859 
10860 	sd = rcu_dereference(rq->sd);
10861 	if (sd) {
10862 		/*
10863 		 * If there's a CFS task and the current CPU has reduced
10864 		 * capacity; kick the ILB to see if there's a better CPU to run
10865 		 * on.
10866 		 */
10867 		if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
10868 			flags = NOHZ_KICK_MASK;
10869 			goto unlock;
10870 		}
10871 	}
10872 
10873 	sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
10874 	if (sd) {
10875 		/*
10876 		 * When ASYM_PACKING; see if there's a more preferred CPU
10877 		 * currently idle; in which case, kick the ILB to move tasks
10878 		 * around.
10879 		 */
10880 		for_each_cpu_and(i, sched_domain_span(sd), &cpumask) {
10881 			if (sched_asym_prefer(i, cpu)) {
10882 				flags = NOHZ_KICK_MASK;
10883 				goto unlock;
10884 			}
10885 		}
10886 	}
10887 
10888 	sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
10889 	if (sd) {
10890 		/*
10891 		 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
10892 		 * to run the misfit task on.
10893 		 */
10894 		if (check_misfit_status(rq, sd)) {
10895 			flags = NOHZ_KICK_MASK;
10896 			goto unlock;
10897 		}
10898 
10899 		/*
10900 		 * For asymmetric systems, we do not want to nicely balance
10901 		 * cache use, instead we want to embrace asymmetry and only
10902 		 * ensure tasks have enough CPU capacity.
10903 		 *
10904 		 * Skip the LLC logic because it's not relevant in that case.
10905 		 */
10906 		goto unlock;
10907 	}
10908 
10909 	sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
10910 	if (sds) {
10911 		/*
10912 		 * If there is an imbalance between LLC domains (IOW we could
10913 		 * increase the overall cache use), we need some less-loaded LLC
10914 		 * domain to pull some load. Likewise, we may need to spread
10915 		 * load within the current LLC domain (e.g. packed SMT cores but
10916 		 * other CPUs are idle). We can't really know from here how busy
10917 		 * the others are - so just get a nohz balance going if it looks
10918 		 * like this LLC domain has tasks we could move.
10919 		 */
10920 		nr_busy = atomic_read(&sds->nr_busy_cpus);
10921 		if (nr_busy > 1) {
10922 			flags = NOHZ_KICK_MASK;
10923 			goto unlock;
10924 		}
10925 	}
10926 unlock:
10927 	rcu_read_unlock();
10928 out:
10929 	if (flags)
10930 		kick_ilb(flags);
10931 }
10932 
set_cpu_sd_state_busy(int cpu)10933 static void set_cpu_sd_state_busy(int cpu)
10934 {
10935 	struct sched_domain *sd;
10936 
10937 	rcu_read_lock();
10938 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10939 
10940 	if (!sd || !sd->nohz_idle)
10941 		goto unlock;
10942 	sd->nohz_idle = 0;
10943 
10944 	atomic_inc(&sd->shared->nr_busy_cpus);
10945 unlock:
10946 	rcu_read_unlock();
10947 }
10948 
nohz_balance_exit_idle(struct rq * rq)10949 void nohz_balance_exit_idle(struct rq *rq)
10950 {
10951 	SCHED_WARN_ON(rq != this_rq());
10952 
10953 	if (likely(!rq->nohz_tick_stopped))
10954 		return;
10955 
10956 	rq->nohz_tick_stopped = 0;
10957 	cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
10958 	atomic_dec(&nohz.nr_cpus);
10959 
10960 	set_cpu_sd_state_busy(rq->cpu);
10961 }
10962 
set_cpu_sd_state_idle(int cpu)10963 static void set_cpu_sd_state_idle(int cpu)
10964 {
10965 	struct sched_domain *sd;
10966 
10967 	rcu_read_lock();
10968 	sd = rcu_dereference(per_cpu(sd_llc, cpu));
10969 
10970 	if (!sd || sd->nohz_idle)
10971 		goto unlock;
10972 	sd->nohz_idle = 1;
10973 
10974 	atomic_dec(&sd->shared->nr_busy_cpus);
10975 unlock:
10976 	rcu_read_unlock();
10977 }
10978 
10979 /*
10980  * This routine will record that the CPU is going idle with tick stopped.
10981  * This info will be used in performing idle load balancing in the future.
10982  */
nohz_balance_enter_idle(int cpu)10983 void nohz_balance_enter_idle(int cpu)
10984 {
10985 	struct rq *rq = cpu_rq(cpu);
10986 
10987 	SCHED_WARN_ON(cpu != smp_processor_id());
10988 
10989 	/* If this CPU is going down, then nothing needs to be done: */
10990 	if (!cpu_active(cpu))
10991 		return;
10992 
10993 	/* Spare idle load balancing on CPUs that don't want to be disturbed: */
10994 	if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
10995 		return;
10996 
10997 	/*
10998 	 * Can be set safely without rq->lock held
10999 	 * If a clear happens, it will have evaluated last additions because
11000 	 * rq->lock is held during the check and the clear
11001 	 */
11002 	rq->has_blocked_load = 1;
11003 
11004 	/*
11005 	 * The tick is still stopped but load could have been added in the
11006 	 * meantime. We set the nohz.has_blocked flag to trig a check of the
11007 	 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
11008 	 * of nohz.has_blocked can only happen after checking the new load
11009 	 */
11010 	if (rq->nohz_tick_stopped)
11011 		goto out;
11012 
11013 	/* If we're a completely isolated CPU, we don't play: */
11014 	if (on_null_domain(rq))
11015 		return;
11016 
11017 	rq->nohz_tick_stopped = 1;
11018 
11019 	cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
11020 	atomic_inc(&nohz.nr_cpus);
11021 
11022 	/*
11023 	 * Ensures that if nohz_idle_balance() fails to observe our
11024 	 * @idle_cpus_mask store, it must observe the @has_blocked
11025 	 * store.
11026 	 */
11027 	smp_mb__after_atomic();
11028 
11029 	set_cpu_sd_state_idle(cpu);
11030 
11031 out:
11032 	/*
11033 	 * Each time a cpu enter idle, we assume that it has blocked load and
11034 	 * enable the periodic update of the load of idle cpus
11035 	 */
11036 	WRITE_ONCE(nohz.has_blocked, 1);
11037 }
11038 
11039 /*
11040  * Internal function that runs load balance for all idle cpus. The load balance
11041  * can be a simple update of blocked load or a complete load balance with
11042  * tasks movement depending of flags.
11043  * The function returns false if the loop has stopped before running
11044  * through all idle CPUs.
11045  */
_nohz_idle_balance(struct rq * this_rq,unsigned int flags,enum cpu_idle_type idle)11046 static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
11047 			       enum cpu_idle_type idle)
11048 {
11049 	/* Earliest time when we have to do rebalance again */
11050 	unsigned long now = jiffies;
11051 	unsigned long next_balance = now + 60*HZ;
11052 	bool has_blocked_load = false;
11053 	int update_next_balance = 0;
11054 	int this_cpu = this_rq->cpu;
11055 	int balance_cpu;
11056 	int ret = false;
11057 	struct rq *rq;
11058 	cpumask_t cpus;
11059 
11060 	SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
11061 
11062 	/*
11063 	 * We assume there will be no idle load after this update and clear
11064 	 * the has_blocked flag. If a cpu enters idle in the mean time, it will
11065 	 * set the has_blocked flag and trig another update of idle load.
11066 	 * Because a cpu that becomes idle, is added to idle_cpus_mask before
11067 	 * setting the flag, we are sure to not clear the state and not
11068 	 * check the load of an idle cpu.
11069 	 */
11070 	WRITE_ONCE(nohz.has_blocked, 0);
11071 
11072 	/*
11073 	 * Ensures that if we miss the CPU, we must see the has_blocked
11074 	 * store from nohz_balance_enter_idle().
11075 	 */
11076 	smp_mb();
11077 
11078 #ifdef CONFIG_CPU_ISOLATION_OPT
11079 	cpumask_andnot(&cpus, nohz.idle_cpus_mask, cpu_isolated_mask);
11080 #else
11081 	cpumask_copy(&cpus, nohz.idle_cpus_mask);
11082 #endif
11083 
11084 	for_each_cpu(balance_cpu, &cpus) {
11085 		if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
11086 			continue;
11087 
11088 		/*
11089 		 * If this CPU gets work to do, stop the load balancing
11090 		 * work being done for other CPUs. Next load
11091 		 * balancing owner will pick it up.
11092 		 */
11093 		if (need_resched()) {
11094 			has_blocked_load = true;
11095 			goto abort;
11096 		}
11097 
11098 		rq = cpu_rq(balance_cpu);
11099 
11100 		has_blocked_load |= update_nohz_stats(rq, true);
11101 
11102 		/*
11103 		 * If time for next balance is due,
11104 		 * do the balance.
11105 		 */
11106 		if (time_after_eq(jiffies, rq->next_balance)) {
11107 			struct rq_flags rf;
11108 
11109 			rq_lock_irqsave(rq, &rf);
11110 			update_rq_clock(rq);
11111 			rq_unlock_irqrestore(rq, &rf);
11112 
11113 			if (flags & NOHZ_BALANCE_KICK)
11114 				rebalance_domains(rq, CPU_IDLE);
11115 		}
11116 
11117 		if (time_after(next_balance, rq->next_balance)) {
11118 			next_balance = rq->next_balance;
11119 			update_next_balance = 1;
11120 		}
11121 	}
11122 
11123 	/*
11124 	 * next_balance will be updated only when there is a need.
11125 	 * When the CPU is attached to null domain for ex, it will not be
11126 	 * updated.
11127 	 */
11128 	if (likely(update_next_balance))
11129 		nohz.next_balance = next_balance;
11130 
11131 	/* Newly idle CPU doesn't need an update */
11132 	if (idle != CPU_NEWLY_IDLE) {
11133 		update_blocked_averages(this_cpu);
11134 		has_blocked_load |= this_rq->has_blocked_load;
11135 	}
11136 
11137 	if (flags & NOHZ_BALANCE_KICK)
11138 		rebalance_domains(this_rq, CPU_IDLE);
11139 
11140 	WRITE_ONCE(nohz.next_blocked,
11141 		now + msecs_to_jiffies(LOAD_AVG_PERIOD));
11142 
11143 	/* The full idle balance loop has been done */
11144 	ret = true;
11145 
11146 abort:
11147 	/* There is still blocked load, enable periodic update */
11148 	if (has_blocked_load)
11149 		WRITE_ONCE(nohz.has_blocked, 1);
11150 
11151 	return ret;
11152 }
11153 
11154 /*
11155  * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
11156  * rebalancing for all the cpus for whom scheduler ticks are stopped.
11157  */
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11158 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11159 {
11160 	unsigned int flags = this_rq->nohz_idle_balance;
11161 
11162 	if (!flags)
11163 		return false;
11164 
11165 	this_rq->nohz_idle_balance = 0;
11166 
11167 	if (idle != CPU_IDLE)
11168 		return false;
11169 
11170 	_nohz_idle_balance(this_rq, flags, idle);
11171 
11172 	return true;
11173 }
11174 
nohz_newidle_balance(struct rq * this_rq)11175 static void nohz_newidle_balance(struct rq *this_rq)
11176 {
11177 	int this_cpu = this_rq->cpu;
11178 
11179 	/*
11180 	 * This CPU doesn't want to be disturbed by scheduler
11181 	 * housekeeping
11182 	 */
11183 	if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
11184 		return;
11185 
11186 	/* Will wake up very soon. No time for doing anything else*/
11187 	if (this_rq->avg_idle < sysctl_sched_migration_cost)
11188 		return;
11189 
11190 	/* Don't need to update blocked load of idle CPUs*/
11191 	if (!READ_ONCE(nohz.has_blocked) ||
11192 	    time_before(jiffies, READ_ONCE(nohz.next_blocked)))
11193 		return;
11194 
11195 	raw_spin_unlock(&this_rq->lock);
11196 	/*
11197 	 * This CPU is going to be idle and blocked load of idle CPUs
11198 	 * need to be updated. Run the ilb locally as it is a good
11199 	 * candidate for ilb instead of waking up another idle CPU.
11200 	 * Kick an normal ilb if we failed to do the update.
11201 	 */
11202 	if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
11203 		kick_ilb(NOHZ_STATS_KICK);
11204 	raw_spin_lock(&this_rq->lock);
11205 }
11206 
11207 #else /* !CONFIG_NO_HZ_COMMON */
nohz_balancer_kick(struct rq * rq)11208 static inline void nohz_balancer_kick(struct rq *rq) { }
11209 
nohz_idle_balance(struct rq * this_rq,enum cpu_idle_type idle)11210 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
11211 {
11212 	return false;
11213 }
11214 
nohz_newidle_balance(struct rq * this_rq)11215 static inline void nohz_newidle_balance(struct rq *this_rq) { }
11216 #endif /* CONFIG_NO_HZ_COMMON */
11217 
11218 /*
11219  * idle_balance is called by schedule() if this_cpu is about to become
11220  * idle. Attempts to pull tasks from other CPUs.
11221  *
11222  * Returns:
11223  *   < 0 - we released the lock and there are !fair tasks present
11224  *     0 - failed, no new tasks
11225  *   > 0 - success, new (fair) tasks present
11226  */
newidle_balance(struct rq * this_rq,struct rq_flags * rf)11227 static int newidle_balance(struct rq *this_rq, struct rq_flags *rf)
11228 {
11229 	unsigned long next_balance = jiffies + HZ;
11230 	int this_cpu = this_rq->cpu;
11231 	struct sched_domain *sd;
11232 	int pulled_task = 0;
11233 	u64 curr_cost = 0;
11234 
11235 	if (cpu_isolated(this_cpu))
11236 		return 0;
11237 
11238 	update_misfit_status(NULL, this_rq);
11239 	/*
11240 	 * We must set idle_stamp _before_ calling idle_balance(), such that we
11241 	 * measure the duration of idle_balance() as idle time.
11242 	 */
11243 	this_rq->idle_stamp = rq_clock(this_rq);
11244 
11245 	/*
11246 	 * Do not pull tasks towards !active CPUs...
11247 	 */
11248 	if (!cpu_active(this_cpu))
11249 		return 0;
11250 
11251 	/*
11252 	 * This is OK, because current is on_cpu, which avoids it being picked
11253 	 * for load-balance and preemption/IRQs are still disabled avoiding
11254 	 * further scheduler activity on it and we're being very careful to
11255 	 * re-start the picking loop.
11256 	 */
11257 	rq_unpin_lock(this_rq, rf);
11258 
11259 	if (this_rq->avg_idle < sysctl_sched_migration_cost ||
11260 	    !READ_ONCE(this_rq->rd->overload)) {
11261 
11262 		rcu_read_lock();
11263 		sd = rcu_dereference_check_sched_domain(this_rq->sd);
11264 		if (sd)
11265 			update_next_balance(sd, &next_balance);
11266 		rcu_read_unlock();
11267 
11268 		nohz_newidle_balance(this_rq);
11269 
11270 		goto out;
11271 	}
11272 
11273 	raw_spin_unlock(&this_rq->lock);
11274 
11275 	update_blocked_averages(this_cpu);
11276 	rcu_read_lock();
11277 	for_each_domain(this_cpu, sd) {
11278 		int continue_balancing = 1;
11279 		u64 t0, domain_cost;
11280 
11281 		if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
11282 			update_next_balance(sd, &next_balance);
11283 			break;
11284 		}
11285 
11286 		if (sd->flags & SD_BALANCE_NEWIDLE) {
11287 			t0 = sched_clock_cpu(this_cpu);
11288 
11289 			pulled_task = load_balance(this_cpu, this_rq,
11290 						   sd, CPU_NEWLY_IDLE,
11291 						   &continue_balancing);
11292 
11293 			domain_cost = sched_clock_cpu(this_cpu) - t0;
11294 			if (domain_cost > sd->max_newidle_lb_cost)
11295 				sd->max_newidle_lb_cost = domain_cost;
11296 
11297 			curr_cost += domain_cost;
11298 		}
11299 
11300 		update_next_balance(sd, &next_balance);
11301 
11302 		/*
11303 		 * Stop searching for tasks to pull if there are
11304 		 * now runnable tasks on this rq.
11305 		 */
11306 		if (pulled_task || this_rq->nr_running > 0)
11307 			break;
11308 	}
11309 	rcu_read_unlock();
11310 
11311 	raw_spin_lock(&this_rq->lock);
11312 
11313 	if (curr_cost > this_rq->max_idle_balance_cost)
11314 		this_rq->max_idle_balance_cost = curr_cost;
11315 
11316 out:
11317 	/*
11318 	 * While browsing the domains, we released the rq lock, a task could
11319 	 * have been enqueued in the meantime. Since we're not going idle,
11320 	 * pretend we pulled a task.
11321 	 */
11322 	if (this_rq->cfs.h_nr_running && !pulled_task)
11323 		pulled_task = 1;
11324 
11325 	/* Move the next balance forward */
11326 	if (time_after(this_rq->next_balance, next_balance))
11327 		this_rq->next_balance = next_balance;
11328 
11329 	/* Is there a task of a high priority class? */
11330 	if (this_rq->nr_running != this_rq->cfs.h_nr_running)
11331 		pulled_task = -1;
11332 
11333 	if (pulled_task)
11334 		this_rq->idle_stamp = 0;
11335 
11336 	rq_repin_lock(this_rq, rf);
11337 
11338 	return pulled_task;
11339 }
11340 
11341 /*
11342  * run_rebalance_domains is triggered when needed from the scheduler tick.
11343  * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
11344  */
run_rebalance_domains(struct softirq_action * h)11345 static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
11346 {
11347 	struct rq *this_rq = this_rq();
11348 	enum cpu_idle_type idle = this_rq->idle_balance ?
11349 						CPU_IDLE : CPU_NOT_IDLE;
11350 
11351 	/*
11352 	 * Since core isolation doesn't update nohz.idle_cpus_mask, there
11353 	 * is a possibility this nohz kicked cpu could be isolated. Hence
11354 	 * return if the cpu is isolated.
11355 	 */
11356 	if (cpu_isolated(this_rq->cpu))
11357 		return;
11358 
11359 	/*
11360 	 * If this CPU has a pending nohz_balance_kick, then do the
11361 	 * balancing on behalf of the other idle CPUs whose ticks are
11362 	 * stopped. Do nohz_idle_balance *before* rebalance_domains to
11363 	 * give the idle CPUs a chance to load balance. Else we may
11364 	 * load balance only within the local sched_domain hierarchy
11365 	 * and abort nohz_idle_balance altogether if we pull some load.
11366 	 */
11367 	if (nohz_idle_balance(this_rq, idle))
11368 		return;
11369 
11370 	/* normal load balance */
11371 	update_blocked_averages(this_rq->cpu);
11372 	rebalance_domains(this_rq, idle);
11373 }
11374 
11375 /*
11376  * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
11377  */
trigger_load_balance(struct rq * rq)11378 void trigger_load_balance(struct rq *rq)
11379 {
11380 	/* Don't need to rebalance while attached to NULL domain or
11381 	 * cpu is isolated.
11382 	 */
11383 	if (unlikely(on_null_domain(rq)) || cpu_isolated(cpu_of(rq)))
11384 		return;
11385 
11386 	if (time_after_eq(jiffies, rq->next_balance))
11387 		raise_softirq(SCHED_SOFTIRQ);
11388 
11389 	nohz_balancer_kick(rq);
11390 }
11391 
rq_online_fair(struct rq * rq)11392 static void rq_online_fair(struct rq *rq)
11393 {
11394 	update_sysctl();
11395 
11396 	update_runtime_enabled(rq);
11397 }
11398 
rq_offline_fair(struct rq * rq)11399 static void rq_offline_fair(struct rq *rq)
11400 {
11401 	update_sysctl();
11402 
11403 	/* Ensure any throttled groups are reachable by pick_next_task */
11404 	unthrottle_offline_cfs_rqs(rq);
11405 }
11406 
11407 #ifdef CONFIG_SCHED_EAS
11408 static inline int
kick_active_balance(struct rq * rq,struct task_struct * p,int new_cpu)11409 kick_active_balance(struct rq *rq, struct task_struct *p, int new_cpu)
11410 {
11411 	unsigned long flags;
11412 	int rc = 0;
11413 
11414 	if (cpu_of(rq) == new_cpu)
11415 		return rc;
11416 
11417 	/* Invoke active balance to force migrate currently running task */
11418 	raw_spin_lock_irqsave(&rq->lock, flags);
11419 	if (!rq->active_balance) {
11420 		rq->active_balance = 1;
11421 		rq->push_cpu = new_cpu;
11422 		get_task_struct(p);
11423 		rq->push_task = p;
11424 		rc = 1;
11425 	}
11426 	raw_spin_unlock_irqrestore(&rq->lock, flags);
11427 	return rc;
11428 }
11429 
11430 DEFINE_RAW_SPINLOCK(migration_lock);
check_for_migration_fair(struct rq * rq,struct task_struct * p)11431 static void check_for_migration_fair(struct rq *rq, struct task_struct *p)
11432 {
11433 	int active_balance;
11434 	int new_cpu = -1;
11435 	int prev_cpu = task_cpu(p);
11436 	int ret;
11437 
11438 #ifdef CONFIG_SCHED_RTG
11439 	bool need_down_migrate = false;
11440 	struct cpumask *rtg_target = find_rtg_target(p);
11441 
11442 	if (rtg_target &&
11443 	    (capacity_orig_of(prev_cpu) >
11444 	     capacity_orig_of(cpumask_first(rtg_target))))
11445 		need_down_migrate = true;
11446 #endif
11447 
11448 	if (rq->misfit_task_load) {
11449 		if (rq->curr->state != TASK_RUNNING ||
11450 		    rq->curr->nr_cpus_allowed == 1)
11451 			return;
11452 
11453 		raw_spin_lock(&migration_lock);
11454 #ifdef CONFIG_SCHED_RTG
11455 		if (rtg_target) {
11456 			new_cpu = find_rtg_cpu(p);
11457 
11458 			if (new_cpu != -1 && need_down_migrate &&
11459 			    cpumask_test_cpu(new_cpu, rtg_target) &&
11460 			    idle_cpu(new_cpu))
11461 				goto do_active_balance;
11462 
11463 			if (new_cpu != -1 &&
11464 			    capacity_orig_of(new_cpu) > capacity_orig_of(prev_cpu))
11465 				goto do_active_balance;
11466 
11467 			goto out_unlock;
11468 		}
11469 #endif
11470 		rcu_read_lock();
11471 		new_cpu = find_energy_efficient_cpu(p, prev_cpu);
11472 		rcu_read_unlock();
11473 
11474 		if (new_cpu == -1 ||
11475 		    capacity_orig_of(new_cpu) <= capacity_orig_of(prev_cpu))
11476 			goto out_unlock;
11477 #ifdef CONFIG_SCHED_RTG
11478 do_active_balance:
11479 #endif
11480 		active_balance = kick_active_balance(rq, p, new_cpu);
11481 		if (active_balance) {
11482 			mark_reserved(new_cpu);
11483 			raw_spin_unlock(&migration_lock);
11484 			ret = stop_one_cpu_nowait(prev_cpu,
11485 				active_load_balance_cpu_stop, rq,
11486 				&rq->active_balance_work);
11487 			if (!ret)
11488 				clear_reserved(new_cpu);
11489 			else
11490 				wake_up_if_idle(new_cpu);
11491 			return;
11492 		}
11493 out_unlock:
11494 		raw_spin_unlock(&migration_lock);
11495 	}
11496 }
11497 #endif /* CONFIG_SCHED_EAS */
11498 #endif /* CONFIG_SMP */
11499 
11500 /*
11501  * scheduler tick hitting a task of our scheduling class.
11502  *
11503  * NOTE: This function can be called remotely by the tick offload that
11504  * goes along full dynticks. Therefore no local assumption can be made
11505  * and everything must be accessed through the @rq and @curr passed in
11506  * parameters.
11507  */
task_tick_fair(struct rq * rq,struct task_struct * curr,int queued)11508 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
11509 {
11510 	struct cfs_rq *cfs_rq;
11511 	struct sched_entity *se = &curr->se;
11512 
11513 	for_each_sched_entity(se) {
11514 		cfs_rq = cfs_rq_of(se);
11515 		entity_tick(cfs_rq, se, queued);
11516 	}
11517 
11518 	if (static_branch_unlikely(&sched_numa_balancing))
11519 		task_tick_numa(rq, curr);
11520 
11521 	update_misfit_status(curr, rq);
11522 	update_overutilized_status(task_rq(curr));
11523 }
11524 
11525 /*
11526  * called on fork with the child task as argument from the parent's context
11527  *  - child not yet on the tasklist
11528  *  - preemption disabled
11529  */
task_fork_fair(struct task_struct * p)11530 static void task_fork_fair(struct task_struct *p)
11531 {
11532 	struct cfs_rq *cfs_rq;
11533 	struct sched_entity *se = &p->se, *curr;
11534 	struct rq *rq = this_rq();
11535 	struct rq_flags rf;
11536 
11537 	rq_lock(rq, &rf);
11538 	update_rq_clock(rq);
11539 
11540 	cfs_rq = task_cfs_rq(current);
11541 	curr = cfs_rq->curr;
11542 	if (curr) {
11543 		update_curr(cfs_rq);
11544 		se->vruntime = curr->vruntime;
11545 	}
11546 	place_entity(cfs_rq, se, 1);
11547 
11548 	if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
11549 		/*
11550 		 * Upon rescheduling, sched_class::put_prev_task() will place
11551 		 * 'current' within the tree based on its new key value.
11552 		 */
11553 		swap(curr->vruntime, se->vruntime);
11554 		resched_curr(rq);
11555 	}
11556 
11557 	se->vruntime -= cfs_rq->min_vruntime;
11558 	rq_unlock(rq, &rf);
11559 }
11560 
11561 /*
11562  * Priority of the task has changed. Check to see if we preempt
11563  * the current task.
11564  */
11565 static void
prio_changed_fair(struct rq * rq,struct task_struct * p,int oldprio)11566 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
11567 {
11568 	if (!task_on_rq_queued(p))
11569 		return;
11570 
11571 	if (rq->cfs.nr_running == 1)
11572 		return;
11573 
11574 	/*
11575 	 * Reschedule if we are currently running on this runqueue and
11576 	 * our priority decreased, or if we are not currently running on
11577 	 * this runqueue and our priority is higher than the current's
11578 	 */
11579 	if (rq->curr == p) {
11580 		if (p->prio > oldprio)
11581 			resched_curr(rq);
11582 	} else
11583 		check_preempt_curr(rq, p, 0);
11584 }
11585 
vruntime_normalized(struct task_struct * p)11586 static inline bool vruntime_normalized(struct task_struct *p)
11587 {
11588 	struct sched_entity *se = &p->se;
11589 
11590 	/*
11591 	 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
11592 	 * the dequeue_entity(.flags=0) will already have normalized the
11593 	 * vruntime.
11594 	 */
11595 	if (p->on_rq)
11596 		return true;
11597 
11598 	/*
11599 	 * When !on_rq, vruntime of the task has usually NOT been normalized.
11600 	 * But there are some cases where it has already been normalized:
11601 	 *
11602 	 * - A forked child which is waiting for being woken up by
11603 	 *   wake_up_new_task().
11604 	 * - A task which has been woken up by try_to_wake_up() and
11605 	 *   waiting for actually being woken up by sched_ttwu_pending().
11606 	 */
11607 	if (!se->sum_exec_runtime ||
11608 	    (p->state == TASK_WAKING && p->sched_remote_wakeup))
11609 		return true;
11610 
11611 	return false;
11612 }
11613 
11614 #ifdef CONFIG_FAIR_GROUP_SCHED
11615 /*
11616  * Propagate the changes of the sched_entity across the tg tree to make it
11617  * visible to the root
11618  */
propagate_entity_cfs_rq(struct sched_entity * se)11619 static void propagate_entity_cfs_rq(struct sched_entity *se)
11620 {
11621 	struct cfs_rq *cfs_rq;
11622 
11623 	list_add_leaf_cfs_rq(cfs_rq_of(se));
11624 
11625 	/* Start to propagate at parent */
11626 	se = se->parent;
11627 
11628 	for_each_sched_entity(se) {
11629 		cfs_rq = cfs_rq_of(se);
11630 
11631 		if (!cfs_rq_throttled(cfs_rq)){
11632 			update_load_avg(cfs_rq, se, UPDATE_TG);
11633 			list_add_leaf_cfs_rq(cfs_rq);
11634 			continue;
11635 		}
11636 
11637 		if (list_add_leaf_cfs_rq(cfs_rq))
11638 			break;
11639 	}
11640 }
11641 #else
propagate_entity_cfs_rq(struct sched_entity * se)11642 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
11643 #endif
11644 
detach_entity_cfs_rq(struct sched_entity * se)11645 static void detach_entity_cfs_rq(struct sched_entity *se)
11646 {
11647 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11648 
11649 	/* Catch up with the cfs_rq and remove our load when we leave */
11650 	update_load_avg(cfs_rq, se, 0);
11651 	detach_entity_load_avg(cfs_rq, se);
11652 	update_tg_load_avg(cfs_rq);
11653 	propagate_entity_cfs_rq(se);
11654 }
11655 
attach_entity_cfs_rq(struct sched_entity * se)11656 static void attach_entity_cfs_rq(struct sched_entity *se)
11657 {
11658 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11659 
11660 #ifdef CONFIG_FAIR_GROUP_SCHED
11661 	/*
11662 	 * Since the real-depth could have been changed (only FAIR
11663 	 * class maintain depth value), reset depth properly.
11664 	 */
11665 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11666 #endif
11667 
11668 	/* Synchronize entity with its cfs_rq */
11669 	update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
11670 	attach_entity_load_avg(cfs_rq, se);
11671 	update_tg_load_avg(cfs_rq);
11672 	propagate_entity_cfs_rq(se);
11673 }
11674 
detach_task_cfs_rq(struct task_struct * p)11675 static void detach_task_cfs_rq(struct task_struct *p)
11676 {
11677 	struct sched_entity *se = &p->se;
11678 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11679 
11680 	if (!vruntime_normalized(p)) {
11681 		/*
11682 		 * Fix up our vruntime so that the current sleep doesn't
11683 		 * cause 'unlimited' sleep bonus.
11684 		 */
11685 		place_entity(cfs_rq, se, 0);
11686 		se->vruntime -= cfs_rq->min_vruntime;
11687 	}
11688 
11689 	detach_entity_cfs_rq(se);
11690 }
11691 
attach_task_cfs_rq(struct task_struct * p)11692 static void attach_task_cfs_rq(struct task_struct *p)
11693 {
11694 	struct sched_entity *se = &p->se;
11695 	struct cfs_rq *cfs_rq = cfs_rq_of(se);
11696 
11697 	attach_entity_cfs_rq(se);
11698 
11699 	if (!vruntime_normalized(p))
11700 		se->vruntime += cfs_rq->min_vruntime;
11701 }
11702 
switched_from_fair(struct rq * rq,struct task_struct * p)11703 static void switched_from_fair(struct rq *rq, struct task_struct *p)
11704 {
11705 	detach_task_cfs_rq(p);
11706 }
11707 
switched_to_fair(struct rq * rq,struct task_struct * p)11708 static void switched_to_fair(struct rq *rq, struct task_struct *p)
11709 {
11710 	attach_task_cfs_rq(p);
11711 
11712 	if (task_on_rq_queued(p)) {
11713 		/*
11714 		 * We were most likely switched from sched_rt, so
11715 		 * kick off the schedule if running, otherwise just see
11716 		 * if we can still preempt the current task.
11717 		 */
11718 		if (rq->curr == p)
11719 			resched_curr(rq);
11720 		else
11721 			check_preempt_curr(rq, p, 0);
11722 	}
11723 }
11724 
11725 /* Account for a task changing its policy or group.
11726  *
11727  * This routine is mostly called to set cfs_rq->curr field when a task
11728  * migrates between groups/classes.
11729  */
set_next_task_fair(struct rq * rq,struct task_struct * p,bool first)11730 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
11731 {
11732 	struct sched_entity *se = &p->se;
11733 
11734 #ifdef CONFIG_SMP
11735 	if (task_on_rq_queued(p)) {
11736 		/*
11737 		 * Move the next running task to the front of the list, so our
11738 		 * cfs_tasks list becomes MRU one.
11739 		 */
11740 		list_move(&se->group_node, &rq->cfs_tasks);
11741 	}
11742 #endif
11743 
11744 	for_each_sched_entity(se) {
11745 		struct cfs_rq *cfs_rq = cfs_rq_of(se);
11746 
11747 		set_next_entity(cfs_rq, se);
11748 		/* ensure bandwidth has been allocated on our new cfs_rq */
11749 		account_cfs_rq_runtime(cfs_rq, 0);
11750 	}
11751 }
11752 
init_cfs_rq(struct cfs_rq * cfs_rq)11753 void init_cfs_rq(struct cfs_rq *cfs_rq)
11754 {
11755 	cfs_rq->tasks_timeline = RB_ROOT_CACHED;
11756 	cfs_rq->min_vruntime = (u64)(-(1LL << 20));
11757 #ifndef CONFIG_64BIT
11758 	cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
11759 #endif
11760 #ifdef CONFIG_SMP
11761 	raw_spin_lock_init(&cfs_rq->removed.lock);
11762 #endif
11763 }
11764 
11765 #ifdef CONFIG_FAIR_GROUP_SCHED
task_set_group_fair(struct task_struct * p)11766 static void task_set_group_fair(struct task_struct *p)
11767 {
11768 	struct sched_entity *se = &p->se;
11769 
11770 	set_task_rq(p, task_cpu(p));
11771 	se->depth = se->parent ? se->parent->depth + 1 : 0;
11772 }
11773 
task_move_group_fair(struct task_struct * p)11774 static void task_move_group_fair(struct task_struct *p)
11775 {
11776 	detach_task_cfs_rq(p);
11777 	set_task_rq(p, task_cpu(p));
11778 
11779 #ifdef CONFIG_SMP
11780 	/* Tell se's cfs_rq has been changed -- migrated */
11781 	p->se.avg.last_update_time = 0;
11782 #endif
11783 	attach_task_cfs_rq(p);
11784 }
11785 
task_change_group_fair(struct task_struct * p,int type)11786 static void task_change_group_fair(struct task_struct *p, int type)
11787 {
11788 	switch (type) {
11789 	case TASK_SET_GROUP:
11790 		task_set_group_fair(p);
11791 		break;
11792 
11793 	case TASK_MOVE_GROUP:
11794 		task_move_group_fair(p);
11795 		break;
11796 	}
11797 }
11798 
free_fair_sched_group(struct task_group * tg)11799 void free_fair_sched_group(struct task_group *tg)
11800 {
11801 	int i;
11802 
11803 	destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
11804 
11805 	for_each_possible_cpu(i) {
11806 		if (tg->cfs_rq)
11807 			kfree(tg->cfs_rq[i]);
11808 		if (tg->se)
11809 			kfree(tg->se[i]);
11810 	}
11811 
11812 	kfree(tg->cfs_rq);
11813 	kfree(tg->se);
11814 }
11815 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11816 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11817 {
11818 	struct sched_entity *se;
11819 	struct cfs_rq *cfs_rq;
11820 	int i;
11821 
11822 	tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
11823 	if (!tg->cfs_rq)
11824 		goto err;
11825 	tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
11826 	if (!tg->se)
11827 		goto err;
11828 
11829 	tg->shares = NICE_0_LOAD;
11830 
11831 	init_cfs_bandwidth(tg_cfs_bandwidth(tg));
11832 
11833 	for_each_possible_cpu(i) {
11834 		cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
11835 				      GFP_KERNEL, cpu_to_node(i));
11836 		if (!cfs_rq)
11837 			goto err;
11838 
11839 		se = kzalloc_node(sizeof(struct sched_entity),
11840 				  GFP_KERNEL, cpu_to_node(i));
11841 		if (!se)
11842 			goto err_free_rq;
11843 
11844 		init_cfs_rq(cfs_rq);
11845 		init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
11846 		init_entity_runnable_average(se);
11847 	}
11848 
11849 	return 1;
11850 
11851 err_free_rq:
11852 	kfree(cfs_rq);
11853 err:
11854 	return 0;
11855 }
11856 
online_fair_sched_group(struct task_group * tg)11857 void online_fair_sched_group(struct task_group *tg)
11858 {
11859 	struct sched_entity *se;
11860 	struct rq_flags rf;
11861 	struct rq *rq;
11862 	int i;
11863 
11864 	for_each_possible_cpu(i) {
11865 		rq = cpu_rq(i);
11866 		se = tg->se[i];
11867 		rq_lock_irq(rq, &rf);
11868 		update_rq_clock(rq);
11869 		attach_entity_cfs_rq(se);
11870 		sync_throttle(tg, i);
11871 		rq_unlock_irq(rq, &rf);
11872 	}
11873 }
11874 
unregister_fair_sched_group(struct task_group * tg)11875 void unregister_fair_sched_group(struct task_group *tg)
11876 {
11877 	unsigned long flags;
11878 	struct rq *rq;
11879 	int cpu;
11880 
11881 	for_each_possible_cpu(cpu) {
11882 		if (tg->se[cpu])
11883 			remove_entity_load_avg(tg->se[cpu]);
11884 
11885 		/*
11886 		 * Only empty task groups can be destroyed; so we can speculatively
11887 		 * check on_list without danger of it being re-added.
11888 		 */
11889 		if (!tg->cfs_rq[cpu]->on_list)
11890 			continue;
11891 
11892 		rq = cpu_rq(cpu);
11893 
11894 		raw_spin_lock_irqsave(&rq->lock, flags);
11895 		list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
11896 		raw_spin_unlock_irqrestore(&rq->lock, flags);
11897 	}
11898 }
11899 
init_tg_cfs_entry(struct task_group * tg,struct cfs_rq * cfs_rq,struct sched_entity * se,int cpu,struct sched_entity * parent)11900 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
11901 			struct sched_entity *se, int cpu,
11902 			struct sched_entity *parent)
11903 {
11904 	struct rq *rq = cpu_rq(cpu);
11905 
11906 	cfs_rq->tg = tg;
11907 	cfs_rq->rq = rq;
11908 	init_cfs_rq_runtime(cfs_rq);
11909 
11910 	tg->cfs_rq[cpu] = cfs_rq;
11911 	tg->se[cpu] = se;
11912 
11913 	/* se could be NULL for root_task_group */
11914 	if (!se)
11915 		return;
11916 
11917 	if (!parent) {
11918 		se->cfs_rq = &rq->cfs;
11919 		se->depth = 0;
11920 	} else {
11921 		se->cfs_rq = parent->my_q;
11922 		se->depth = parent->depth + 1;
11923 	}
11924 
11925 	se->my_q = cfs_rq;
11926 	/* guarantee group entities always have weight */
11927 	update_load_set(&se->load, NICE_0_LOAD);
11928 	se->parent = parent;
11929 }
11930 
11931 static DEFINE_MUTEX(shares_mutex);
11932 
sched_group_set_shares(struct task_group * tg,unsigned long shares)11933 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
11934 {
11935 	int i;
11936 
11937 	/*
11938 	 * We can't change the weight of the root cgroup.
11939 	 */
11940 	if (!tg->se[0])
11941 		return -EINVAL;
11942 
11943 	shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
11944 
11945 	mutex_lock(&shares_mutex);
11946 	if (tg->shares == shares)
11947 		goto done;
11948 
11949 	tg->shares = shares;
11950 	for_each_possible_cpu(i) {
11951 		struct rq *rq = cpu_rq(i);
11952 		struct sched_entity *se = tg->se[i];
11953 		struct rq_flags rf;
11954 
11955 		/* Propagate contribution to hierarchy */
11956 		rq_lock_irqsave(rq, &rf);
11957 		update_rq_clock(rq);
11958 		for_each_sched_entity(se) {
11959 			update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
11960 			update_cfs_group(se);
11961 		}
11962 		rq_unlock_irqrestore(rq, &rf);
11963 	}
11964 
11965 done:
11966 	mutex_unlock(&shares_mutex);
11967 	return 0;
11968 }
11969 #else /* CONFIG_FAIR_GROUP_SCHED */
11970 
free_fair_sched_group(struct task_group * tg)11971 void free_fair_sched_group(struct task_group *tg) { }
11972 
alloc_fair_sched_group(struct task_group * tg,struct task_group * parent)11973 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
11974 {
11975 	return 1;
11976 }
11977 
online_fair_sched_group(struct task_group * tg)11978 void online_fair_sched_group(struct task_group *tg) { }
11979 
unregister_fair_sched_group(struct task_group * tg)11980 void unregister_fair_sched_group(struct task_group *tg) { }
11981 
11982 #endif /* CONFIG_FAIR_GROUP_SCHED */
11983 
11984 
get_rr_interval_fair(struct rq * rq,struct task_struct * task)11985 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
11986 {
11987 	struct sched_entity *se = &task->se;
11988 	unsigned int rr_interval = 0;
11989 
11990 	/*
11991 	 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
11992 	 * idle runqueue:
11993 	 */
11994 	if (rq->cfs.load.weight)
11995 		rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
11996 
11997 	return rr_interval;
11998 }
11999 
12000 /*
12001  * All the scheduling class methods:
12002  */
12003 const struct sched_class fair_sched_class
12004 	__section("__fair_sched_class") = {
12005 	.enqueue_task		= enqueue_task_fair,
12006 	.dequeue_task		= dequeue_task_fair,
12007 	.yield_task		= yield_task_fair,
12008 	.yield_to_task		= yield_to_task_fair,
12009 
12010 	.check_preempt_curr	= check_preempt_wakeup,
12011 
12012 	.pick_next_task		= __pick_next_task_fair,
12013 	.put_prev_task		= put_prev_task_fair,
12014 	.set_next_task          = set_next_task_fair,
12015 
12016 #ifdef CONFIG_SMP
12017 	.balance		= balance_fair,
12018 	.select_task_rq		= select_task_rq_fair,
12019 	.migrate_task_rq	= migrate_task_rq_fair,
12020 
12021 	.rq_online		= rq_online_fair,
12022 	.rq_offline		= rq_offline_fair,
12023 
12024 	.task_dead		= task_dead_fair,
12025 	.set_cpus_allowed	= set_cpus_allowed_common,
12026 #endif
12027 
12028 	.task_tick		= task_tick_fair,
12029 	.task_fork		= task_fork_fair,
12030 
12031 	.prio_changed		= prio_changed_fair,
12032 	.switched_from		= switched_from_fair,
12033 	.switched_to		= switched_to_fair,
12034 
12035 	.get_rr_interval	= get_rr_interval_fair,
12036 
12037 	.update_curr		= update_curr_fair,
12038 
12039 #ifdef CONFIG_FAIR_GROUP_SCHED
12040 	.task_change_group	= task_change_group_fair,
12041 #endif
12042 
12043 #ifdef CONFIG_UCLAMP_TASK
12044 	.uclamp_enabled		= 1,
12045 #endif
12046 #ifdef CONFIG_SCHED_WALT
12047 	.fixup_walt_sched_stats	= walt_fixup_sched_stats_fair,
12048 #endif
12049 #ifdef CONFIG_SCHED_EAS
12050 	.check_for_migration	= check_for_migration_fair,
12051 #endif
12052 };
12053 
12054 #ifdef CONFIG_SCHED_DEBUG
print_cfs_stats(struct seq_file * m,int cpu)12055 void print_cfs_stats(struct seq_file *m, int cpu)
12056 {
12057 	struct cfs_rq *cfs_rq, *pos;
12058 
12059 	rcu_read_lock();
12060 	for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
12061 		print_cfs_rq(m, cpu, cfs_rq);
12062 	rcu_read_unlock();
12063 }
12064 
12065 #ifdef CONFIG_NUMA_BALANCING
show_numa_stats(struct task_struct * p,struct seq_file * m)12066 void show_numa_stats(struct task_struct *p, struct seq_file *m)
12067 {
12068 	int node;
12069 	unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
12070 	struct numa_group *ng;
12071 
12072 	rcu_read_lock();
12073 	ng = rcu_dereference(p->numa_group);
12074 	for_each_online_node(node) {
12075 		if (p->numa_faults) {
12076 			tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
12077 			tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
12078 		}
12079 		if (ng) {
12080 			gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
12081 			gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
12082 		}
12083 		print_numa_stats(m, node, tsf, tpf, gsf, gpf);
12084 	}
12085 	rcu_read_unlock();
12086 }
12087 #endif /* CONFIG_NUMA_BALANCING */
12088 #endif /* CONFIG_SCHED_DEBUG */
12089 
init_sched_fair_class(void)12090 __init void init_sched_fair_class(void)
12091 {
12092 #ifdef CONFIG_SMP
12093 	open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
12094 
12095 #ifdef CONFIG_NO_HZ_COMMON
12096 	nohz.next_balance = jiffies;
12097 	nohz.next_blocked = jiffies;
12098 	zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
12099 #endif
12100 #endif /* SMP */
12101 
12102 }
12103 
12104 /* WALT sched implementation begins here */
12105 #ifdef CONFIG_SCHED_WALT
12106 
12107 #ifdef CONFIG_CFS_BANDWIDTH
12108 
walt_init_cfs_rq_stats(struct cfs_rq * cfs_rq)12109 static void walt_init_cfs_rq_stats(struct cfs_rq *cfs_rq)
12110 {
12111 	cfs_rq->walt_stats.cumulative_runnable_avg_scaled = 0;
12112 }
12113 
walt_inc_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)12114 static void walt_inc_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p)
12115 {
12116 	fixup_cumulative_runnable_avg(&cfs_rq->walt_stats,
12117 				      p->ravg.demand_scaled);
12118 }
12119 
walt_dec_cfs_rq_stats(struct cfs_rq * cfs_rq,struct task_struct * p)12120 static void walt_dec_cfs_rq_stats(struct cfs_rq *cfs_rq, struct task_struct *p)
12121 {
12122 	fixup_cumulative_runnable_avg(&cfs_rq->walt_stats,
12123 				      -(s64)p->ravg.demand_scaled);
12124 }
12125 
walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats * stats,struct cfs_rq * tcfs_rq)12126 static void walt_inc_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
12127 					    struct cfs_rq *tcfs_rq)
12128 {
12129 	struct rq *rq = rq_of(tcfs_rq);
12130 
12131 	fixup_cumulative_runnable_avg(stats,
12132 			tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
12133 
12134 	if (stats == &rq->walt_stats)
12135 		walt_fixup_cum_window_demand(rq,
12136 			tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
12137 
12138 }
12139 
walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats * stats,struct cfs_rq * tcfs_rq)12140 static void walt_dec_throttled_cfs_rq_stats(struct walt_sched_stats *stats,
12141 					    struct cfs_rq *tcfs_rq)
12142 {
12143 	struct rq *rq = rq_of(tcfs_rq);
12144 
12145 	fixup_cumulative_runnable_avg(stats,
12146 			-tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
12147 
12148 	/*
12149 	 * We remove the throttled cfs_rq's tasks's contribution from the
12150 	 * cumulative window demand so that the same can be added
12151 	 * unconditionally when the cfs_rq is unthrottled.
12152 	 */
12153 	if (stats == &rq->walt_stats)
12154 		walt_fixup_cum_window_demand(rq,
12155 			-tcfs_rq->walt_stats.cumulative_runnable_avg_scaled);
12156 }
12157 
walt_fixup_sched_stats_fair(struct rq * rq,struct task_struct * p,u16 updated_demand_scaled)12158 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p,
12159 					u16 updated_demand_scaled)
12160 {
12161 	struct cfs_rq *cfs_rq;
12162 	struct sched_entity *se = &p->se;
12163 	s64 task_load_delta = (s64)updated_demand_scaled -
12164 			      p->ravg.demand_scaled;
12165 
12166 	for_each_sched_entity(se) {
12167 		cfs_rq = cfs_rq_of(se);
12168 
12169 		fixup_cumulative_runnable_avg(&cfs_rq->walt_stats,
12170 					      task_load_delta);
12171 		if (cfs_rq_throttled(cfs_rq))
12172 			break;
12173 	}
12174 
12175 	/* Fix up rq->walt_stats only if we didn't find any throttled cfs_rq */
12176 	if (!se) {
12177 		fixup_cumulative_runnable_avg(&rq->walt_stats,
12178 					      task_load_delta);
12179 		walt_fixup_cum_window_demand(rq, task_load_delta);
12180 	}
12181 }
12182 
12183 #else /* CONFIG_CFS_BANDWIDTH */
walt_fixup_sched_stats_fair(struct rq * rq,struct task_struct * p,u16 updated_demand_scaled)12184 static void walt_fixup_sched_stats_fair(struct rq *rq, struct task_struct *p,
12185 					u16 updated_demand_scaled)
12186 {
12187 	fixup_walt_sched_stats_common(rq, p, updated_demand_scaled);
12188 }
12189 #endif /* CONFIG_CFS_BANDWIDTH */
12190 #endif /* CONFIG_SCHED_WALT */
12191 
12192 /*
12193  * Helper functions to facilitate extracting info from tracepoints.
12194  */
12195 
sched_trace_cfs_rq_avg(struct cfs_rq * cfs_rq)12196 const struct sched_avg *sched_trace_cfs_rq_avg(struct cfs_rq *cfs_rq)
12197 {
12198 #ifdef CONFIG_SMP
12199 	return cfs_rq ? &cfs_rq->avg : NULL;
12200 #else
12201 	return NULL;
12202 #endif
12203 }
12204 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_avg);
12205 
sched_trace_cfs_rq_path(struct cfs_rq * cfs_rq,char * str,int len)12206 char *sched_trace_cfs_rq_path(struct cfs_rq *cfs_rq, char *str, int len)
12207 {
12208 	if (!cfs_rq) {
12209 		if (str)
12210 			strlcpy(str, "(null)", len);
12211 		else
12212 			return NULL;
12213 	}
12214 
12215 	cfs_rq_tg_path(cfs_rq, str, len);
12216 	return str;
12217 }
12218 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_path);
12219 
sched_trace_cfs_rq_cpu(struct cfs_rq * cfs_rq)12220 int sched_trace_cfs_rq_cpu(struct cfs_rq *cfs_rq)
12221 {
12222 	return cfs_rq ? cpu_of(rq_of(cfs_rq)) : -1;
12223 }
12224 EXPORT_SYMBOL_GPL(sched_trace_cfs_rq_cpu);
12225 
sched_trace_rq_avg_rt(struct rq * rq)12226 const struct sched_avg *sched_trace_rq_avg_rt(struct rq *rq)
12227 {
12228 #ifdef CONFIG_SMP
12229 	return rq ? &rq->avg_rt : NULL;
12230 #else
12231 	return NULL;
12232 #endif
12233 }
12234 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_rt);
12235 
sched_trace_rq_avg_dl(struct rq * rq)12236 const struct sched_avg *sched_trace_rq_avg_dl(struct rq *rq)
12237 {
12238 #ifdef CONFIG_SMP
12239 	return rq ? &rq->avg_dl : NULL;
12240 #else
12241 	return NULL;
12242 #endif
12243 }
12244 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_dl);
12245 
sched_trace_rq_avg_irq(struct rq * rq)12246 const struct sched_avg *sched_trace_rq_avg_irq(struct rq *rq)
12247 {
12248 #if defined(CONFIG_SMP) && defined(CONFIG_HAVE_SCHED_AVG_IRQ)
12249 	return rq ? &rq->avg_irq : NULL;
12250 #else
12251 	return NULL;
12252 #endif
12253 }
12254 EXPORT_SYMBOL_GPL(sched_trace_rq_avg_irq);
12255 
sched_trace_rq_cpu(struct rq * rq)12256 int sched_trace_rq_cpu(struct rq *rq)
12257 {
12258 	return rq ? cpu_of(rq) : -1;
12259 }
12260 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu);
12261 
sched_trace_rq_cpu_capacity(struct rq * rq)12262 int sched_trace_rq_cpu_capacity(struct rq *rq)
12263 {
12264 	return rq ?
12265 #ifdef CONFIG_SMP
12266 		rq->cpu_capacity
12267 #else
12268 		SCHED_CAPACITY_SCALE
12269 #endif
12270 		: -1;
12271 }
12272 EXPORT_SYMBOL_GPL(sched_trace_rq_cpu_capacity);
12273 
sched_trace_rd_span(struct root_domain * rd)12274 const struct cpumask *sched_trace_rd_span(struct root_domain *rd)
12275 {
12276 #ifdef CONFIG_SMP
12277 	return rd ? rd->span : NULL;
12278 #else
12279 	return NULL;
12280 #endif
12281 }
12282 EXPORT_SYMBOL_GPL(sched_trace_rd_span);
12283 
sched_trace_rq_nr_running(struct rq * rq)12284 int sched_trace_rq_nr_running(struct rq *rq)
12285 {
12286         return rq ? rq->nr_running : -1;
12287 }
12288 EXPORT_SYMBOL_GPL(sched_trace_rq_nr_running);
12289