• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/pagewalk.h>
3 #include <linux/vmacache.h>
4 #include <linux/mm_inline.h>
5 #include <linux/hugetlb.h>
6 #include <linux/huge_mm.h>
7 #include <linux/mount.h>
8 #include <linux/seq_file.h>
9 #include <linux/highmem.h>
10 #include <linux/ptrace.h>
11 #include <linux/slab.h>
12 #include <linux/pagemap.h>
13 #include <linux/mempolicy.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/sched/mm.h>
17 #include <linux/swapops.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/page_idle.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/uaccess.h>
22 #include <linux/pkeys.h>
23 #ifdef CONFIG_MEM_PURGEABLE
24 #include <linux/mm_purgeable.h>
25 #endif
26 
27 #include <asm/elf.h>
28 #include <asm/tlb.h>
29 #include <asm/tlbflush.h>
30 #include "internal.h"
31 #include <linux/hck/lite_hck_hideaddr.h>
32 
33 #define SEQ_PUT_DEC(str, val) \
34 		seq_put_decimal_ull_width(m, str, (val) << (PAGE_SHIFT-10), 8)
task_mem(struct seq_file * m,struct mm_struct * mm)35 void task_mem(struct seq_file *m, struct mm_struct *mm)
36 {
37 	unsigned long text, lib, swap, anon, file, shmem;
38 	unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
39 #ifdef CONFIG_MEM_PURGEABLE
40 	unsigned long nr_purg_sum = 0, nr_purg_pin = 0;
41 
42 	mm_purg_pages_info(mm, &nr_purg_sum, &nr_purg_pin);
43 #endif
44 
45 	anon = get_mm_counter(mm, MM_ANONPAGES);
46 	file = get_mm_counter(mm, MM_FILEPAGES);
47 	shmem = get_mm_counter(mm, MM_SHMEMPAGES);
48 
49 	/*
50 	 * Note: to minimize their overhead, mm maintains hiwater_vm and
51 	 * hiwater_rss only when about to *lower* total_vm or rss.  Any
52 	 * collector of these hiwater stats must therefore get total_vm
53 	 * and rss too, which will usually be the higher.  Barriers? not
54 	 * worth the effort, such snapshots can always be inconsistent.
55 	 */
56 	hiwater_vm = total_vm = mm->total_vm;
57 	if (hiwater_vm < mm->hiwater_vm)
58 		hiwater_vm = mm->hiwater_vm;
59 	hiwater_rss = total_rss = anon + file + shmem;
60 	if (hiwater_rss < mm->hiwater_rss)
61 		hiwater_rss = mm->hiwater_rss;
62 
63 	/* split executable areas between text and lib */
64 	text = PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK);
65 	text = min(text, mm->exec_vm << PAGE_SHIFT);
66 	lib = (mm->exec_vm << PAGE_SHIFT) - text;
67 
68 	swap = get_mm_counter(mm, MM_SWAPENTS);
69 	SEQ_PUT_DEC("VmPeak:\t", hiwater_vm);
70 	SEQ_PUT_DEC(" kB\nVmSize:\t", total_vm);
71 	SEQ_PUT_DEC(" kB\nVmLck:\t", mm->locked_vm);
72 	SEQ_PUT_DEC(" kB\nVmPin:\t", atomic64_read(&mm->pinned_vm));
73 	SEQ_PUT_DEC(" kB\nVmHWM:\t", hiwater_rss);
74 	SEQ_PUT_DEC(" kB\nVmRSS:\t", total_rss);
75 	SEQ_PUT_DEC(" kB\nRssAnon:\t", anon);
76 	SEQ_PUT_DEC(" kB\nRssFile:\t", file);
77 	SEQ_PUT_DEC(" kB\nRssShmem:\t", shmem);
78 	SEQ_PUT_DEC(" kB\nVmData:\t", mm->data_vm);
79 	SEQ_PUT_DEC(" kB\nVmStk:\t", mm->stack_vm);
80 	seq_put_decimal_ull_width(m,
81 		    " kB\nVmExe:\t", text >> 10, 8);
82 	seq_put_decimal_ull_width(m,
83 		    " kB\nVmLib:\t", lib >> 10, 8);
84 	seq_put_decimal_ull_width(m,
85 		    " kB\nVmPTE:\t", mm_pgtables_bytes(mm) >> 10, 8);
86 	SEQ_PUT_DEC(" kB\nVmSwap:\t", swap);
87 #ifdef CONFIG_MEM_PURGEABLE
88 	SEQ_PUT_DEC(" kB\nPurgSum:\t", nr_purg_sum);
89 	SEQ_PUT_DEC(" kB\nPurgPin:\t", nr_purg_pin);
90 #endif
91 	seq_puts(m, " kB\n");
92 	hugetlb_report_usage(m, mm);
93 }
94 #undef SEQ_PUT_DEC
95 
task_vsize(struct mm_struct * mm)96 unsigned long task_vsize(struct mm_struct *mm)
97 {
98 	return PAGE_SIZE * mm->total_vm;
99 }
100 
task_statm(struct mm_struct * mm,unsigned long * shared,unsigned long * text,unsigned long * data,unsigned long * resident)101 unsigned long task_statm(struct mm_struct *mm,
102 			 unsigned long *shared, unsigned long *text,
103 			 unsigned long *data, unsigned long *resident)
104 {
105 	*shared = get_mm_counter(mm, MM_FILEPAGES) +
106 			get_mm_counter(mm, MM_SHMEMPAGES);
107 	*text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
108 								>> PAGE_SHIFT;
109 	*data = mm->data_vm + mm->stack_vm;
110 	*resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
111 	return mm->total_vm;
112 }
113 
114 #ifdef CONFIG_NUMA
115 /*
116  * Save get_task_policy() for show_numa_map().
117  */
hold_task_mempolicy(struct proc_maps_private * priv)118 static void hold_task_mempolicy(struct proc_maps_private *priv)
119 {
120 	struct task_struct *task = priv->task;
121 
122 	task_lock(task);
123 	priv->task_mempolicy = get_task_policy(task);
124 	mpol_get(priv->task_mempolicy);
125 	task_unlock(task);
126 }
release_task_mempolicy(struct proc_maps_private * priv)127 static void release_task_mempolicy(struct proc_maps_private *priv)
128 {
129 	mpol_put(priv->task_mempolicy);
130 }
131 #else
hold_task_mempolicy(struct proc_maps_private * priv)132 static void hold_task_mempolicy(struct proc_maps_private *priv)
133 {
134 }
release_task_mempolicy(struct proc_maps_private * priv)135 static void release_task_mempolicy(struct proc_maps_private *priv)
136 {
137 }
138 #endif
139 
m_start(struct seq_file * m,loff_t * ppos)140 static void *m_start(struct seq_file *m, loff_t *ppos)
141 {
142 	struct proc_maps_private *priv = m->private;
143 	unsigned long last_addr = *ppos;
144 	struct mm_struct *mm;
145 	struct vm_area_struct *vma;
146 
147 	/* See m_next(). Zero at the start or after lseek. */
148 	if (last_addr == -1UL)
149 		return NULL;
150 
151 	priv->task = get_proc_task(priv->inode);
152 	if (!priv->task)
153 		return ERR_PTR(-ESRCH);
154 
155 	mm = priv->mm;
156 	if (!mm || !mmget_not_zero(mm)) {
157 		put_task_struct(priv->task);
158 		priv->task = NULL;
159 		return NULL;
160 	}
161 
162 	if (mmap_read_lock_killable(mm)) {
163 		mmput(mm);
164 		put_task_struct(priv->task);
165 		priv->task = NULL;
166 		return ERR_PTR(-EINTR);
167 	}
168 
169 	hold_task_mempolicy(priv);
170 	priv->tail_vma = get_gate_vma(mm);
171 
172 	vma = find_vma(mm, last_addr);
173 	if (vma)
174 		return vma;
175 
176 	return priv->tail_vma;
177 }
178 
m_next(struct seq_file * m,void * v,loff_t * ppos)179 static void *m_next(struct seq_file *m, void *v, loff_t *ppos)
180 {
181 	struct proc_maps_private *priv = m->private;
182 	struct vm_area_struct *next, *vma = v;
183 
184 	if (vma == priv->tail_vma)
185 		next = NULL;
186 	else if (vma->vm_next)
187 		next = vma->vm_next;
188 	else
189 		next = priv->tail_vma;
190 
191 	*ppos = next ? next->vm_start : -1UL;
192 
193 	return next;
194 }
195 
m_stop(struct seq_file * m,void * v)196 static void m_stop(struct seq_file *m, void *v)
197 {
198 	struct proc_maps_private *priv = m->private;
199 	struct mm_struct *mm = priv->mm;
200 
201 	if (!priv->task)
202 		return;
203 
204 	release_task_mempolicy(priv);
205 	mmap_read_unlock(mm);
206 	mmput(mm);
207 	put_task_struct(priv->task);
208 	priv->task = NULL;
209 }
210 
proc_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops,int psize)211 static int proc_maps_open(struct inode *inode, struct file *file,
212 			const struct seq_operations *ops, int psize)
213 {
214 	struct proc_maps_private *priv = __seq_open_private(file, ops, psize);
215 
216 	if (!priv)
217 		return -ENOMEM;
218 
219 	priv->inode = inode;
220 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
221 	if (IS_ERR(priv->mm)) {
222 		int err = PTR_ERR(priv->mm);
223 
224 		seq_release_private(inode, file);
225 		return err;
226 	}
227 
228 	return 0;
229 }
230 
proc_map_release(struct inode * inode,struct file * file)231 static int proc_map_release(struct inode *inode, struct file *file)
232 {
233 	struct seq_file *seq = file->private_data;
234 	struct proc_maps_private *priv = seq->private;
235 
236 	if (priv->mm)
237 		mmdrop(priv->mm);
238 
239 	return seq_release_private(inode, file);
240 }
241 
do_maps_open(struct inode * inode,struct file * file,const struct seq_operations * ops)242 static int do_maps_open(struct inode *inode, struct file *file,
243 			const struct seq_operations *ops)
244 {
245 	return proc_maps_open(inode, file, ops,
246 				sizeof(struct proc_maps_private));
247 }
248 
249 /*
250  * Indicate if the VMA is a stack for the given task; for
251  * /proc/PID/maps that is the stack of the main task.
252  */
is_stack(struct vm_area_struct * vma)253 static int is_stack(struct vm_area_struct *vma)
254 {
255 	/*
256 	 * We make no effort to guess what a given thread considers to be
257 	 * its "stack".  It's not even well-defined for programs written
258 	 * languages like Go.
259 	 */
260 	return vma->vm_start <= vma->vm_mm->start_stack &&
261 		vma->vm_end >= vma->vm_mm->start_stack;
262 }
263 
show_vma_header_prefix(struct seq_file * m,unsigned long start,unsigned long end,vm_flags_t flags,unsigned long long pgoff,dev_t dev,unsigned long ino)264 static void show_vma_header_prefix(struct seq_file *m,
265 				   unsigned long start, unsigned long end,
266 				   vm_flags_t flags, unsigned long long pgoff,
267 				   dev_t dev, unsigned long ino)
268 {
269 	seq_setwidth(m, 25 + sizeof(void *) * 6 - 1);
270 	seq_put_hex_ll(m, NULL, start, 8);
271 	seq_put_hex_ll(m, "-", end, 8);
272 	seq_putc(m, ' ');
273 	seq_putc(m, flags & VM_READ ? 'r' : '-');
274 	seq_putc(m, flags & VM_WRITE ? 'w' : '-');
275 	seq_putc(m, flags & VM_EXEC ? 'x' : '-');
276 	seq_putc(m, flags & VM_MAYSHARE ? 's' : 'p');
277 	seq_put_hex_ll(m, " ", pgoff, 8);
278 	seq_put_hex_ll(m, " ", MAJOR(dev), 2);
279 	seq_put_hex_ll(m, ":", MINOR(dev), 2);
280 	seq_put_decimal_ull(m, " ", ino);
281 	seq_putc(m, ' ');
282 }
283 
284 static void
show_map_vma(struct seq_file * m,struct vm_area_struct * vma)285 show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
286 {
287 	struct mm_struct *mm = vma->vm_mm;
288 	struct file *file = vma->vm_file;
289 	vm_flags_t flags = vma->vm_flags;
290 	unsigned long ino = 0;
291 	unsigned long long pgoff = 0;
292 	unsigned long start, end;
293 	dev_t dev = 0;
294 	const char *name = NULL;
295 
296 	if (file) {
297 		struct inode *inode = file_inode(vma->vm_file);
298 		dev = inode->i_sb->s_dev;
299 		ino = inode->i_ino;
300 		pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
301 	}
302 
303 	start = vma->vm_start;
304 	end = vma->vm_end;
305 	CALL_HCK_LITE_HOOK(hideaddr_header_prefix_lhck, &start, &end, &flags, m, vma);
306 	show_vma_header_prefix(m, start, end, flags, pgoff, dev, ino);
307 
308 	/*
309 	 * Print the dentry name for named mappings, and a
310 	 * special [heap] marker for the heap:
311 	 */
312 	if (file) {
313 		seq_pad(m, ' ');
314 		seq_file_path(m, file, "\n");
315 		goto done;
316 	}
317 
318 	if (vma->vm_ops && vma->vm_ops->name) {
319 		name = vma->vm_ops->name(vma);
320 		if (name)
321 			goto done;
322 	}
323 
324 	name = arch_vma_name(vma);
325 	if (!name) {
326 		struct anon_vma_name *anon_name;
327 
328 		if (!mm) {
329 			name = "[vdso]";
330 			goto done;
331 		}
332 
333 		if (vma->vm_start <= mm->brk &&
334 		    vma->vm_end >= mm->start_brk) {
335 			name = "[heap]";
336 			goto done;
337 		}
338 
339 		if (is_stack(vma)) {
340 			name = "[stack]";
341 			goto done;
342 		}
343 
344 		anon_name = anon_vma_name(vma);
345 		if (anon_name) {
346 			seq_pad(m, ' ');
347 			seq_printf(m, "[anon:%s]", anon_name->name);
348 		}
349 	}
350 
351 done:
352 	if (name) {
353 		seq_pad(m, ' ');
354 		seq_puts(m, name);
355 	}
356 	seq_putc(m, '\n');
357 }
358 
show_map(struct seq_file * m,void * v)359 static int show_map(struct seq_file *m, void *v)
360 {
361 	show_map_vma(m, v);
362 	return 0;
363 }
364 
365 static const struct seq_operations proc_pid_maps_op = {
366 	.start	= m_start,
367 	.next	= m_next,
368 	.stop	= m_stop,
369 	.show	= show_map
370 };
371 
pid_maps_open(struct inode * inode,struct file * file)372 static int pid_maps_open(struct inode *inode, struct file *file)
373 {
374 	return do_maps_open(inode, file, &proc_pid_maps_op);
375 }
376 
377 const struct file_operations proc_pid_maps_operations = {
378 	.open		= pid_maps_open,
379 	.read		= seq_read,
380 	.llseek		= seq_lseek,
381 	.release	= proc_map_release,
382 };
383 
384 /*
385  * Proportional Set Size(PSS): my share of RSS.
386  *
387  * PSS of a process is the count of pages it has in memory, where each
388  * page is divided by the number of processes sharing it.  So if a
389  * process has 1000 pages all to itself, and 1000 shared with one other
390  * process, its PSS will be 1500.
391  *
392  * To keep (accumulated) division errors low, we adopt a 64bit
393  * fixed-point pss counter to minimize division errors. So (pss >>
394  * PSS_SHIFT) would be the real byte count.
395  *
396  * A shift of 12 before division means (assuming 4K page size):
397  * 	- 1M 3-user-pages add up to 8KB errors;
398  * 	- supports mapcount up to 2^24, or 16M;
399  * 	- supports PSS up to 2^52 bytes, or 4PB.
400  */
401 #define PSS_SHIFT 12
402 
403 #ifdef CONFIG_PROC_PAGE_MONITOR
404 struct mem_size_stats {
405 	unsigned long resident;
406 	unsigned long shared_clean;
407 	unsigned long shared_dirty;
408 	unsigned long private_clean;
409 	unsigned long private_dirty;
410 	unsigned long referenced;
411 	unsigned long anonymous;
412 	unsigned long lazyfree;
413 	unsigned long anonymous_thp;
414 	unsigned long shmem_thp;
415 	unsigned long file_thp;
416 	unsigned long swap;
417 	unsigned long shared_hugetlb;
418 	unsigned long private_hugetlb;
419 	u64 pss;
420 	u64 pss_anon;
421 	u64 pss_file;
422 	u64 pss_shmem;
423 	u64 pss_locked;
424 	u64 swap_pss;
425 	bool check_shmem_swap;
426 };
427 
smaps_page_accumulate(struct mem_size_stats * mss,struct page * page,unsigned long size,unsigned long pss,bool dirty,bool locked,bool private)428 static void smaps_page_accumulate(struct mem_size_stats *mss,
429 		struct page *page, unsigned long size, unsigned long pss,
430 		bool dirty, bool locked, bool private)
431 {
432 	mss->pss += pss;
433 
434 	if (PageAnon(page))
435 		mss->pss_anon += pss;
436 	else if (PageSwapBacked(page))
437 		mss->pss_shmem += pss;
438 	else
439 		mss->pss_file += pss;
440 
441 	if (locked)
442 		mss->pss_locked += pss;
443 
444 	if (dirty || PageDirty(page)) {
445 		if (private)
446 			mss->private_dirty += size;
447 		else
448 			mss->shared_dirty += size;
449 	} else {
450 		if (private)
451 			mss->private_clean += size;
452 		else
453 			mss->shared_clean += size;
454 	}
455 }
456 
smaps_account(struct mem_size_stats * mss,struct page * page,bool compound,bool young,bool dirty,bool locked,bool migration)457 static void smaps_account(struct mem_size_stats *mss, struct page *page,
458 		bool compound, bool young, bool dirty, bool locked,
459 		bool migration)
460 {
461 	int i, nr = compound ? compound_nr(page) : 1;
462 	unsigned long size = nr * PAGE_SIZE;
463 
464 	/*
465 	 * First accumulate quantities that depend only on |size| and the type
466 	 * of the compound page.
467 	 */
468 	if (PageAnon(page)) {
469 		mss->anonymous += size;
470 		if (!PageSwapBacked(page) && !dirty && !PageDirty(page))
471 			mss->lazyfree += size;
472 	}
473 
474 	mss->resident += size;
475 	/* Accumulate the size in pages that have been accessed. */
476 	if (young || page_is_young(page) || PageReferenced(page))
477 		mss->referenced += size;
478 
479 	/*
480 	 * Then accumulate quantities that may depend on sharing, or that may
481 	 * differ page-by-page.
482 	 *
483 	 * page_count(page) == 1 guarantees the page is mapped exactly once.
484 	 * If any subpage of the compound page mapped with PTE it would elevate
485 	 * page_count().
486 	 *
487 	 * The page_mapcount() is called to get a snapshot of the mapcount.
488 	 * Without holding the page lock this snapshot can be slightly wrong as
489 	 * we cannot always read the mapcount atomically.  It is not safe to
490 	 * call page_mapcount() even with PTL held if the page is not mapped,
491 	 * especially for migration entries.  Treat regular migration entries
492 	 * as mapcount == 1.
493 	 */
494 	if ((page_count(page) == 1) || migration) {
495 		smaps_page_accumulate(mss, page, size, size << PSS_SHIFT, dirty,
496 			locked, true);
497 		return;
498 	}
499 	for (i = 0; i < nr; i++, page++) {
500 		int mapcount = page_mapcount(page);
501 		unsigned long pss = PAGE_SIZE << PSS_SHIFT;
502 		if (mapcount >= 2)
503 			pss /= mapcount;
504 		smaps_page_accumulate(mss, page, PAGE_SIZE, pss, dirty, locked,
505 				      mapcount < 2);
506 	}
507 }
508 
509 #ifdef CONFIG_SHMEM
smaps_pte_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)510 static int smaps_pte_hole(unsigned long addr, unsigned long end,
511 			  __always_unused int depth, struct mm_walk *walk)
512 {
513 	struct mem_size_stats *mss = walk->private;
514 
515 	mss->swap += shmem_partial_swap_usage(
516 			walk->vma->vm_file->f_mapping, addr, end);
517 
518 	return 0;
519 }
520 #else
521 #define smaps_pte_hole		NULL
522 #endif /* CONFIG_SHMEM */
523 
smaps_pte_entry(pte_t * pte,unsigned long addr,struct mm_walk * walk)524 static void smaps_pte_entry(pte_t *pte, unsigned long addr,
525 		struct mm_walk *walk)
526 {
527 	struct mem_size_stats *mss = walk->private;
528 	struct vm_area_struct *vma = walk->vma;
529 	bool locked = !!(vma->vm_flags & VM_LOCKED);
530 	struct page *page = NULL;
531 	bool migration = false, young = false, dirty = false;
532 
533 	if (pte_present(*pte)) {
534 		page = vm_normal_page(vma, addr, *pte);
535 		young = pte_young(*pte);
536 		dirty = pte_dirty(*pte);
537 	} else if (is_swap_pte(*pte)) {
538 		swp_entry_t swpent = pte_to_swp_entry(*pte);
539 
540 		if (!non_swap_entry(swpent)) {
541 			int mapcount;
542 
543 			mss->swap += PAGE_SIZE;
544 			mapcount = swp_swapcount(swpent);
545 			if (mapcount >= 2) {
546 				u64 pss_delta = (u64)PAGE_SIZE << PSS_SHIFT;
547 
548 				do_div(pss_delta, mapcount);
549 				mss->swap_pss += pss_delta;
550 			} else {
551 				mss->swap_pss += (u64)PAGE_SIZE << PSS_SHIFT;
552 			}
553 		} else if (is_migration_entry(swpent)) {
554 			migration = true;
555 			page = migration_entry_to_page(swpent);
556 		} else if (is_device_private_entry(swpent))
557 			page = device_private_entry_to_page(swpent);
558 	} else if (unlikely(IS_ENABLED(CONFIG_SHMEM) && mss->check_shmem_swap
559 							&& pte_none(*pte))) {
560 		page = xa_load(&vma->vm_file->f_mapping->i_pages,
561 						linear_page_index(vma, addr));
562 		if (xa_is_value(page))
563 			mss->swap += PAGE_SIZE;
564 		return;
565 	}
566 
567 	if (!page)
568 		return;
569 
570 	smaps_account(mss, page, false, young, dirty, locked, migration);
571 }
572 
573 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)574 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
575 		struct mm_walk *walk)
576 {
577 	struct mem_size_stats *mss = walk->private;
578 	struct vm_area_struct *vma = walk->vma;
579 	bool locked = !!(vma->vm_flags & VM_LOCKED);
580 	struct page *page = NULL;
581 	bool migration = false;
582 
583 	if (pmd_present(*pmd)) {
584 		/* FOLL_DUMP will return -EFAULT on huge zero page */
585 		page = follow_trans_huge_pmd(vma, addr, pmd, FOLL_DUMP);
586 	} else if (unlikely(thp_migration_supported() && is_swap_pmd(*pmd))) {
587 		swp_entry_t entry = pmd_to_swp_entry(*pmd);
588 
589 		if (is_migration_entry(entry)) {
590 			migration = true;
591 			page = migration_entry_to_page(entry);
592 		}
593 	}
594 	if (IS_ERR_OR_NULL(page))
595 		return;
596 	if (PageAnon(page))
597 		mss->anonymous_thp += HPAGE_PMD_SIZE;
598 	else if (PageSwapBacked(page))
599 		mss->shmem_thp += HPAGE_PMD_SIZE;
600 	else if (is_zone_device_page(page))
601 		/* pass */;
602 	else
603 		mss->file_thp += HPAGE_PMD_SIZE;
604 
605 	smaps_account(mss, page, true, pmd_young(*pmd), pmd_dirty(*pmd),
606 		      locked, migration);
607 }
608 #else
smaps_pmd_entry(pmd_t * pmd,unsigned long addr,struct mm_walk * walk)609 static void smaps_pmd_entry(pmd_t *pmd, unsigned long addr,
610 		struct mm_walk *walk)
611 {
612 }
613 #endif
614 
smaps_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)615 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
616 			   struct mm_walk *walk)
617 {
618 	struct vm_area_struct *vma = walk->vma;
619 	pte_t *pte;
620 	spinlock_t *ptl;
621 
622 	ptl = pmd_trans_huge_lock(pmd, vma);
623 	if (ptl) {
624 		smaps_pmd_entry(pmd, addr, walk);
625 		spin_unlock(ptl);
626 		goto out;
627 	}
628 
629 	if (pmd_trans_unstable(pmd))
630 		goto out;
631 	/*
632 	 * The mmap_lock held all the way back in m_start() is what
633 	 * keeps khugepaged out of here and from collapsing things
634 	 * in here.
635 	 */
636 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
637 	for (; addr != end; pte++, addr += PAGE_SIZE)
638 		smaps_pte_entry(pte, addr, walk);
639 	pte_unmap_unlock(pte - 1, ptl);
640 out:
641 	cond_resched();
642 	return 0;
643 }
644 
show_smap_vma_flags(struct seq_file * m,struct vm_area_struct * vma)645 static void show_smap_vma_flags(struct seq_file *m, struct vm_area_struct *vma)
646 {
647 	/*
648 	 * Don't forget to update Documentation/ on changes.
649 	 */
650 	static const char mnemonics[BITS_PER_LONG][2] = {
651 		/*
652 		 * In case if we meet a flag we don't know about.
653 		 */
654 		[0 ... (BITS_PER_LONG-1)] = "??",
655 
656 		[ilog2(VM_READ)]	= "rd",
657 		[ilog2(VM_WRITE)]	= "wr",
658 		[ilog2(VM_EXEC)]	= "ex",
659 		[ilog2(VM_SHARED)]	= "sh",
660 		[ilog2(VM_MAYREAD)]	= "mr",
661 		[ilog2(VM_MAYWRITE)]	= "mw",
662 		[ilog2(VM_MAYEXEC)]	= "me",
663 		[ilog2(VM_MAYSHARE)]	= "ms",
664 		[ilog2(VM_GROWSDOWN)]	= "gd",
665 		[ilog2(VM_PFNMAP)]	= "pf",
666 		[ilog2(VM_DENYWRITE)]	= "dw",
667 		[ilog2(VM_LOCKED)]	= "lo",
668 		[ilog2(VM_IO)]		= "io",
669 		[ilog2(VM_SEQ_READ)]	= "sr",
670 		[ilog2(VM_RAND_READ)]	= "rr",
671 		[ilog2(VM_DONTCOPY)]	= "dc",
672 		[ilog2(VM_DONTEXPAND)]	= "de",
673 		[ilog2(VM_ACCOUNT)]	= "ac",
674 		[ilog2(VM_NORESERVE)]	= "nr",
675 		[ilog2(VM_HUGETLB)]	= "ht",
676 		[ilog2(VM_SYNC)]	= "sf",
677 		[ilog2(VM_ARCH_1)]	= "ar",
678 		[ilog2(VM_WIPEONFORK)]	= "wf",
679 		[ilog2(VM_DONTDUMP)]	= "dd",
680 #ifdef CONFIG_ARM64_BTI
681 		[ilog2(VM_ARM64_BTI)]	= "bt",
682 #endif
683 #ifdef CONFIG_MEM_SOFT_DIRTY
684 		[ilog2(VM_SOFTDIRTY)]	= "sd",
685 #endif
686 		[ilog2(VM_MIXEDMAP)]	= "mm",
687 		[ilog2(VM_HUGEPAGE)]	= "hg",
688 		[ilog2(VM_NOHUGEPAGE)]	= "nh",
689 		[ilog2(VM_MERGEABLE)]	= "mg",
690 		[ilog2(VM_UFFD_MISSING)]= "um",
691 		[ilog2(VM_UFFD_WP)]	= "uw",
692 #ifdef CONFIG_ARM64_MTE
693 		[ilog2(VM_MTE)]		= "mt",
694 		[ilog2(VM_MTE_ALLOWED)]	= "",
695 #endif
696 #ifdef CONFIG_ARCH_HAS_PKEYS
697 		/* These come out via ProtectionKey: */
698 		[ilog2(VM_PKEY_BIT0)]	= "",
699 		[ilog2(VM_PKEY_BIT1)]	= "",
700 		[ilog2(VM_PKEY_BIT2)]	= "",
701 		[ilog2(VM_PKEY_BIT3)]	= "",
702 #if VM_PKEY_BIT4
703 		[ilog2(VM_PKEY_BIT4)]	= "",
704 #endif
705 #endif /* CONFIG_ARCH_HAS_PKEYS */
706 	};
707 	size_t i;
708 
709 	seq_puts(m, "VmFlags: ");
710 	for (i = 0; i < BITS_PER_LONG; i++) {
711 		if (!mnemonics[i][0])
712 			continue;
713 		if (vma->vm_flags & (1UL << i)) {
714 			seq_putc(m, mnemonics[i][0]);
715 			seq_putc(m, mnemonics[i][1]);
716 			seq_putc(m, ' ');
717 		}
718 	}
719 	seq_putc(m, '\n');
720 }
721 
722 #ifdef CONFIG_HUGETLB_PAGE
smaps_hugetlb_range(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)723 static int smaps_hugetlb_range(pte_t *pte, unsigned long hmask,
724 				 unsigned long addr, unsigned long end,
725 				 struct mm_walk *walk)
726 {
727 	struct mem_size_stats *mss = walk->private;
728 	struct vm_area_struct *vma = walk->vma;
729 	struct page *page = NULL;
730 
731 	if (pte_present(*pte)) {
732 		page = vm_normal_page(vma, addr, *pte);
733 	} else if (is_swap_pte(*pte)) {
734 		swp_entry_t swpent = pte_to_swp_entry(*pte);
735 
736 		if (is_migration_entry(swpent))
737 			page = migration_entry_to_page(swpent);
738 		else if (is_device_private_entry(swpent))
739 			page = device_private_entry_to_page(swpent);
740 	}
741 	if (page) {
742 		if (page_mapcount(page) >= 2 || hugetlb_pmd_shared(pte))
743 			mss->shared_hugetlb += huge_page_size(hstate_vma(vma));
744 		else
745 			mss->private_hugetlb += huge_page_size(hstate_vma(vma));
746 	}
747 	return 0;
748 }
749 #else
750 #define smaps_hugetlb_range	NULL
751 #endif /* HUGETLB_PAGE */
752 
753 static const struct mm_walk_ops smaps_walk_ops = {
754 	.pmd_entry		= smaps_pte_range,
755 	.hugetlb_entry		= smaps_hugetlb_range,
756 };
757 
758 static const struct mm_walk_ops smaps_shmem_walk_ops = {
759 	.pmd_entry		= smaps_pte_range,
760 	.hugetlb_entry		= smaps_hugetlb_range,
761 	.pte_hole		= smaps_pte_hole,
762 };
763 
764 /*
765  * Gather mem stats from @vma with the indicated beginning
766  * address @start, and keep them in @mss.
767  *
768  * Use vm_start of @vma as the beginning address if @start is 0.
769  */
smap_gather_stats(struct vm_area_struct * vma,struct mem_size_stats * mss,unsigned long start)770 static void smap_gather_stats(struct vm_area_struct *vma,
771 		struct mem_size_stats *mss, unsigned long start)
772 {
773 	const struct mm_walk_ops *ops = &smaps_walk_ops;
774 
775 	/* Invalid start */
776 	if (start >= vma->vm_end)
777 		return;
778 
779 #ifdef CONFIG_SHMEM
780 	/* In case of smaps_rollup, reset the value from previous vma */
781 	mss->check_shmem_swap = false;
782 	if (vma->vm_file && shmem_mapping(vma->vm_file->f_mapping)) {
783 		/*
784 		 * For shared or readonly shmem mappings we know that all
785 		 * swapped out pages belong to the shmem object, and we can
786 		 * obtain the swap value much more efficiently. For private
787 		 * writable mappings, we might have COW pages that are
788 		 * not affected by the parent swapped out pages of the shmem
789 		 * object, so we have to distinguish them during the page walk.
790 		 * Unless we know that the shmem object (or the part mapped by
791 		 * our VMA) has no swapped out pages at all.
792 		 */
793 		unsigned long shmem_swapped = shmem_swap_usage(vma);
794 
795 		if (!start && (!shmem_swapped || (vma->vm_flags & VM_SHARED) ||
796 					!(vma->vm_flags & VM_WRITE))) {
797 			mss->swap += shmem_swapped;
798 		} else {
799 			mss->check_shmem_swap = true;
800 			ops = &smaps_shmem_walk_ops;
801 		}
802 	}
803 #endif
804 	/* mmap_lock is held in m_start */
805 	if (!start)
806 		walk_page_vma(vma, ops, mss);
807 	else
808 		walk_page_range(vma->vm_mm, start, vma->vm_end, ops, mss);
809 }
810 
811 #define SEQ_PUT_DEC(str, val) \
812 		seq_put_decimal_ull_width(m, str, (val) >> 10, 8)
813 
814 /* Show the contents common for smaps and smaps_rollup */
__show_smap(struct seq_file * m,const struct mem_size_stats * mss,bool rollup_mode)815 static void __show_smap(struct seq_file *m, const struct mem_size_stats *mss,
816 	bool rollup_mode)
817 {
818 	SEQ_PUT_DEC("Rss:            ", mss->resident);
819 	SEQ_PUT_DEC(" kB\nPss:            ", mss->pss >> PSS_SHIFT);
820 	if (rollup_mode) {
821 		/*
822 		 * These are meaningful only for smaps_rollup, otherwise two of
823 		 * them are zero, and the other one is the same as Pss.
824 		 */
825 		SEQ_PUT_DEC(" kB\nPss_Anon:       ",
826 			mss->pss_anon >> PSS_SHIFT);
827 		SEQ_PUT_DEC(" kB\nPss_File:       ",
828 			mss->pss_file >> PSS_SHIFT);
829 		SEQ_PUT_DEC(" kB\nPss_Shmem:      ",
830 			mss->pss_shmem >> PSS_SHIFT);
831 	}
832 	SEQ_PUT_DEC(" kB\nShared_Clean:   ", mss->shared_clean);
833 	SEQ_PUT_DEC(" kB\nShared_Dirty:   ", mss->shared_dirty);
834 	SEQ_PUT_DEC(" kB\nPrivate_Clean:  ", mss->private_clean);
835 	SEQ_PUT_DEC(" kB\nPrivate_Dirty:  ", mss->private_dirty);
836 	SEQ_PUT_DEC(" kB\nReferenced:     ", mss->referenced);
837 	SEQ_PUT_DEC(" kB\nAnonymous:      ", mss->anonymous);
838 	SEQ_PUT_DEC(" kB\nLazyFree:       ", mss->lazyfree);
839 	SEQ_PUT_DEC(" kB\nAnonHugePages:  ", mss->anonymous_thp);
840 	SEQ_PUT_DEC(" kB\nShmemPmdMapped: ", mss->shmem_thp);
841 	SEQ_PUT_DEC(" kB\nFilePmdMapped:  ", mss->file_thp);
842 	SEQ_PUT_DEC(" kB\nShared_Hugetlb: ", mss->shared_hugetlb);
843 	seq_put_decimal_ull_width(m, " kB\nPrivate_Hugetlb: ",
844 				  mss->private_hugetlb >> 10, 7);
845 	SEQ_PUT_DEC(" kB\nSwap:           ", mss->swap);
846 	SEQ_PUT_DEC(" kB\nSwapPss:        ",
847 					mss->swap_pss >> PSS_SHIFT);
848 	SEQ_PUT_DEC(" kB\nLocked:         ",
849 					mss->pss_locked >> PSS_SHIFT);
850 	seq_puts(m, " kB\n");
851 }
852 
show_smap(struct seq_file * m,void * v)853 static int show_smap(struct seq_file *m, void *v)
854 {
855 	struct vm_area_struct *vma = v;
856 	struct mem_size_stats mss;
857 
858 	memset(&mss, 0, sizeof(mss));
859 
860 	smap_gather_stats(vma, &mss, 0);
861 
862 	show_map_vma(m, vma);
863 
864 	SEQ_PUT_DEC("Size:           ", vma->vm_end - vma->vm_start);
865 	SEQ_PUT_DEC(" kB\nKernelPageSize: ", vma_kernel_pagesize(vma));
866 	SEQ_PUT_DEC(" kB\nMMUPageSize:    ", vma_mmu_pagesize(vma));
867 	seq_puts(m, " kB\n");
868 
869 	__show_smap(m, &mss, false);
870 
871 	seq_printf(m, "THPeligible:    %d\n",
872 		   transparent_hugepage_active(vma));
873 
874 	if (arch_pkeys_enabled())
875 		seq_printf(m, "ProtectionKey:  %8u\n", vma_pkey(vma));
876 	show_smap_vma_flags(m, vma);
877 
878 	return 0;
879 }
880 
show_smaps_rollup(struct seq_file * m,void * v)881 static int show_smaps_rollup(struct seq_file *m, void *v)
882 {
883 	struct proc_maps_private *priv = m->private;
884 	struct mem_size_stats mss;
885 	struct mm_struct *mm;
886 	struct vm_area_struct *vma;
887 	unsigned long last_vma_end = 0;
888 	int ret = 0;
889 
890 	priv->task = get_proc_task(priv->inode);
891 	if (!priv->task)
892 		return -ESRCH;
893 
894 	mm = priv->mm;
895 	if (!mm || !mmget_not_zero(mm)) {
896 		ret = -ESRCH;
897 		goto out_put_task;
898 	}
899 
900 	memset(&mss, 0, sizeof(mss));
901 
902 	ret = mmap_read_lock_killable(mm);
903 	if (ret)
904 		goto out_put_mm;
905 
906 	hold_task_mempolicy(priv);
907 
908 	for (vma = priv->mm->mmap; vma;) {
909 		smap_gather_stats(vma, &mss, 0);
910 		last_vma_end = vma->vm_end;
911 
912 		/*
913 		 * Release mmap_lock temporarily if someone wants to
914 		 * access it for write request.
915 		 */
916 		if (mmap_lock_is_contended(mm)) {
917 			mmap_read_unlock(mm);
918 			ret = mmap_read_lock_killable(mm);
919 			if (ret) {
920 				release_task_mempolicy(priv);
921 				goto out_put_mm;
922 			}
923 
924 			/*
925 			 * After dropping the lock, there are four cases to
926 			 * consider. See the following example for explanation.
927 			 *
928 			 *   +------+------+-----------+
929 			 *   | VMA1 | VMA2 | VMA3      |
930 			 *   +------+------+-----------+
931 			 *   |      |      |           |
932 			 *  4k     8k     16k         400k
933 			 *
934 			 * Suppose we drop the lock after reading VMA2 due to
935 			 * contention, then we get:
936 			 *
937 			 *	last_vma_end = 16k
938 			 *
939 			 * 1) VMA2 is freed, but VMA3 exists:
940 			 *
941 			 *    find_vma(mm, 16k - 1) will return VMA3.
942 			 *    In this case, just continue from VMA3.
943 			 *
944 			 * 2) VMA2 still exists:
945 			 *
946 			 *    find_vma(mm, 16k - 1) will return VMA2.
947 			 *    Iterate the loop like the original one.
948 			 *
949 			 * 3) No more VMAs can be found:
950 			 *
951 			 *    find_vma(mm, 16k - 1) will return NULL.
952 			 *    No more things to do, just break.
953 			 *
954 			 * 4) (last_vma_end - 1) is the middle of a vma (VMA'):
955 			 *
956 			 *    find_vma(mm, 16k - 1) will return VMA' whose range
957 			 *    contains last_vma_end.
958 			 *    Iterate VMA' from last_vma_end.
959 			 */
960 			vma = find_vma(mm, last_vma_end - 1);
961 			/* Case 3 above */
962 			if (!vma)
963 				break;
964 
965 			/* Case 1 above */
966 			if (vma->vm_start >= last_vma_end)
967 				continue;
968 
969 			/* Case 4 above */
970 			if (vma->vm_end > last_vma_end)
971 				smap_gather_stats(vma, &mss, last_vma_end);
972 		}
973 		/* Case 2 above */
974 		vma = vma->vm_next;
975 	}
976 
977 	show_vma_header_prefix(m, priv->mm->mmap ? priv->mm->mmap->vm_start : 0,
978 			       last_vma_end, 0, 0, 0, 0);
979 	seq_pad(m, ' ');
980 	seq_puts(m, "[rollup]\n");
981 
982 	__show_smap(m, &mss, true);
983 
984 	release_task_mempolicy(priv);
985 	mmap_read_unlock(mm);
986 
987 out_put_mm:
988 	mmput(mm);
989 out_put_task:
990 	put_task_struct(priv->task);
991 	priv->task = NULL;
992 
993 	return ret;
994 }
995 #undef SEQ_PUT_DEC
996 
997 static const struct seq_operations proc_pid_smaps_op = {
998 	.start	= m_start,
999 	.next	= m_next,
1000 	.stop	= m_stop,
1001 	.show	= show_smap
1002 };
1003 
pid_smaps_open(struct inode * inode,struct file * file)1004 static int pid_smaps_open(struct inode *inode, struct file *file)
1005 {
1006 	return do_maps_open(inode, file, &proc_pid_smaps_op);
1007 }
1008 
smaps_rollup_open(struct inode * inode,struct file * file)1009 static int smaps_rollup_open(struct inode *inode, struct file *file)
1010 {
1011 	int ret;
1012 	struct proc_maps_private *priv;
1013 
1014 	priv = kzalloc(sizeof(*priv), GFP_KERNEL_ACCOUNT);
1015 	if (!priv)
1016 		return -ENOMEM;
1017 
1018 	ret = single_open(file, show_smaps_rollup, priv);
1019 	if (ret)
1020 		goto out_free;
1021 
1022 	priv->inode = inode;
1023 	priv->mm = proc_mem_open(inode, PTRACE_MODE_READ);
1024 	if (IS_ERR(priv->mm)) {
1025 		ret = PTR_ERR(priv->mm);
1026 
1027 		single_release(inode, file);
1028 		goto out_free;
1029 	}
1030 
1031 	return 0;
1032 
1033 out_free:
1034 	kfree(priv);
1035 	return ret;
1036 }
1037 
smaps_rollup_release(struct inode * inode,struct file * file)1038 static int smaps_rollup_release(struct inode *inode, struct file *file)
1039 {
1040 	struct seq_file *seq = file->private_data;
1041 	struct proc_maps_private *priv = seq->private;
1042 
1043 	if (priv->mm)
1044 		mmdrop(priv->mm);
1045 
1046 	kfree(priv);
1047 	return single_release(inode, file);
1048 }
1049 
1050 const struct file_operations proc_pid_smaps_operations = {
1051 	.open		= pid_smaps_open,
1052 	.read		= seq_read,
1053 	.llseek		= seq_lseek,
1054 	.release	= proc_map_release,
1055 };
1056 
1057 const struct file_operations proc_pid_smaps_rollup_operations = {
1058 	.open		= smaps_rollup_open,
1059 	.read		= seq_read,
1060 	.llseek		= seq_lseek,
1061 	.release	= smaps_rollup_release,
1062 };
1063 
1064 enum clear_refs_types {
1065 	CLEAR_REFS_ALL = 1,
1066 	CLEAR_REFS_ANON,
1067 	CLEAR_REFS_MAPPED,
1068 	CLEAR_REFS_SOFT_DIRTY,
1069 	CLEAR_REFS_MM_HIWATER_RSS,
1070 	CLEAR_REFS_LAST,
1071 };
1072 
1073 struct clear_refs_private {
1074 	enum clear_refs_types type;
1075 };
1076 
1077 #ifdef CONFIG_MEM_SOFT_DIRTY
1078 
1079 #define is_cow_mapping(flags) (((flags) & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE)
1080 
pte_is_pinned(struct vm_area_struct * vma,unsigned long addr,pte_t pte)1081 static inline bool pte_is_pinned(struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1082 {
1083 	struct page *page;
1084 
1085 	if (!pte_write(pte))
1086 		return false;
1087 	if (!is_cow_mapping(vma->vm_flags))
1088 		return false;
1089 	if (likely(!atomic_read(&vma->vm_mm->has_pinned)))
1090 		return false;
1091 	page = vm_normal_page(vma, addr, pte);
1092 	if (!page)
1093 		return false;
1094 	return page_maybe_dma_pinned(page);
1095 }
1096 
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1097 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1098 		unsigned long addr, pte_t *pte)
1099 {
1100 	/*
1101 	 * The soft-dirty tracker uses #PF-s to catch writes
1102 	 * to pages, so write-protect the pte as well. See the
1103 	 * Documentation/admin-guide/mm/soft-dirty.rst for full description
1104 	 * of how soft-dirty works.
1105 	 */
1106 	pte_t ptent = *pte;
1107 
1108 	if (pte_present(ptent)) {
1109 		pte_t old_pte;
1110 
1111 		if (pte_is_pinned(vma, addr, ptent))
1112 			return;
1113 		old_pte = ptep_modify_prot_start(vma, addr, pte);
1114 		ptent = pte_wrprotect(old_pte);
1115 		ptent = pte_clear_soft_dirty(ptent);
1116 		ptep_modify_prot_commit(vma, addr, pte, old_pte, ptent);
1117 	} else if (is_swap_pte(ptent)) {
1118 		ptent = pte_swp_clear_soft_dirty(ptent);
1119 		set_pte_at(vma->vm_mm, addr, pte, ptent);
1120 	}
1121 }
1122 #else
clear_soft_dirty(struct vm_area_struct * vma,unsigned long addr,pte_t * pte)1123 static inline void clear_soft_dirty(struct vm_area_struct *vma,
1124 		unsigned long addr, pte_t *pte)
1125 {
1126 }
1127 #endif
1128 
1129 #if defined(CONFIG_MEM_SOFT_DIRTY) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1130 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1131 		unsigned long addr, pmd_t *pmdp)
1132 {
1133 	pmd_t old, pmd = *pmdp;
1134 
1135 	if (pmd_present(pmd)) {
1136 		/* See comment in change_huge_pmd() */
1137 		old = pmdp_invalidate(vma, addr, pmdp);
1138 		if (pmd_dirty(old))
1139 			pmd = pmd_mkdirty(pmd);
1140 		if (pmd_young(old))
1141 			pmd = pmd_mkyoung(pmd);
1142 
1143 		pmd = pmd_wrprotect(pmd);
1144 		pmd = pmd_clear_soft_dirty(pmd);
1145 
1146 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1147 	} else if (is_migration_entry(pmd_to_swp_entry(pmd))) {
1148 		pmd = pmd_swp_clear_soft_dirty(pmd);
1149 		set_pmd_at(vma->vm_mm, addr, pmdp, pmd);
1150 	}
1151 }
1152 #else
clear_soft_dirty_pmd(struct vm_area_struct * vma,unsigned long addr,pmd_t * pmdp)1153 static inline void clear_soft_dirty_pmd(struct vm_area_struct *vma,
1154 		unsigned long addr, pmd_t *pmdp)
1155 {
1156 }
1157 #endif
1158 
clear_refs_pte_range(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1159 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
1160 				unsigned long end, struct mm_walk *walk)
1161 {
1162 	struct clear_refs_private *cp = walk->private;
1163 	struct vm_area_struct *vma = walk->vma;
1164 	pte_t *pte, ptent;
1165 	spinlock_t *ptl;
1166 	struct page *page;
1167 
1168 	ptl = pmd_trans_huge_lock(pmd, vma);
1169 	if (ptl) {
1170 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1171 			clear_soft_dirty_pmd(vma, addr, pmd);
1172 			goto out;
1173 		}
1174 
1175 		if (!pmd_present(*pmd))
1176 			goto out;
1177 
1178 		page = pmd_page(*pmd);
1179 
1180 		/* Clear accessed and referenced bits. */
1181 		pmdp_test_and_clear_young(vma, addr, pmd);
1182 		test_and_clear_page_young(page);
1183 		ClearPageReferenced(page);
1184 out:
1185 		spin_unlock(ptl);
1186 		return 0;
1187 	}
1188 
1189 	if (pmd_trans_unstable(pmd))
1190 		return 0;
1191 
1192 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1193 	for (; addr != end; pte++, addr += PAGE_SIZE) {
1194 		ptent = *pte;
1195 
1196 		if (cp->type == CLEAR_REFS_SOFT_DIRTY) {
1197 			clear_soft_dirty(vma, addr, pte);
1198 			continue;
1199 		}
1200 
1201 		if (!pte_present(ptent))
1202 			continue;
1203 
1204 		page = vm_normal_page(vma, addr, ptent);
1205 		if (!page)
1206 			continue;
1207 
1208 		/* Clear accessed and referenced bits. */
1209 		ptep_test_and_clear_young(vma, addr, pte);
1210 		test_and_clear_page_young(page);
1211 		ClearPageReferenced(page);
1212 	}
1213 	pte_unmap_unlock(pte - 1, ptl);
1214 	cond_resched();
1215 	return 0;
1216 }
1217 
clear_refs_test_walk(unsigned long start,unsigned long end,struct mm_walk * walk)1218 static int clear_refs_test_walk(unsigned long start, unsigned long end,
1219 				struct mm_walk *walk)
1220 {
1221 	struct clear_refs_private *cp = walk->private;
1222 	struct vm_area_struct *vma = walk->vma;
1223 
1224 	if (vma->vm_flags & VM_PFNMAP)
1225 		return 1;
1226 
1227 	/*
1228 	 * Writing 1 to /proc/pid/clear_refs affects all pages.
1229 	 * Writing 2 to /proc/pid/clear_refs only affects anonymous pages.
1230 	 * Writing 3 to /proc/pid/clear_refs only affects file mapped pages.
1231 	 * Writing 4 to /proc/pid/clear_refs affects all pages.
1232 	 */
1233 	if (cp->type == CLEAR_REFS_ANON && vma->vm_file)
1234 		return 1;
1235 	if (cp->type == CLEAR_REFS_MAPPED && !vma->vm_file)
1236 		return 1;
1237 	return 0;
1238 }
1239 
1240 static const struct mm_walk_ops clear_refs_walk_ops = {
1241 	.pmd_entry		= clear_refs_pte_range,
1242 	.test_walk		= clear_refs_test_walk,
1243 };
1244 
clear_refs_write(struct file * file,const char __user * buf,size_t count,loff_t * ppos)1245 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
1246 				size_t count, loff_t *ppos)
1247 {
1248 	struct task_struct *task;
1249 	char buffer[PROC_NUMBUF];
1250 	struct mm_struct *mm;
1251 	struct vm_area_struct *vma;
1252 	enum clear_refs_types type;
1253 	int itype;
1254 	int rv;
1255 
1256 	memset(buffer, 0, sizeof(buffer));
1257 	if (count > sizeof(buffer) - 1)
1258 		count = sizeof(buffer) - 1;
1259 	if (copy_from_user(buffer, buf, count))
1260 		return -EFAULT;
1261 	rv = kstrtoint(strstrip(buffer), 10, &itype);
1262 	if (rv < 0)
1263 		return rv;
1264 	type = (enum clear_refs_types)itype;
1265 	if (type < CLEAR_REFS_ALL || type >= CLEAR_REFS_LAST)
1266 		return -EINVAL;
1267 
1268 	task = get_proc_task(file_inode(file));
1269 	if (!task)
1270 		return -ESRCH;
1271 	mm = get_task_mm(task);
1272 	if (mm) {
1273 		struct mmu_notifier_range range;
1274 		struct clear_refs_private cp = {
1275 			.type = type,
1276 		};
1277 
1278 		if (mmap_write_lock_killable(mm)) {
1279 			count = -EINTR;
1280 			goto out_mm;
1281 		}
1282 		if (type == CLEAR_REFS_MM_HIWATER_RSS) {
1283 			/*
1284 			 * Writing 5 to /proc/pid/clear_refs resets the peak
1285 			 * resident set size to this mm's current rss value.
1286 			 */
1287 			reset_mm_hiwater_rss(mm);
1288 			goto out_unlock;
1289 		}
1290 
1291 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1292 			for (vma = mm->mmap; vma; vma = vma->vm_next) {
1293 				if (!(vma->vm_flags & VM_SOFTDIRTY))
1294 					continue;
1295 				vma->vm_flags &= ~VM_SOFTDIRTY;
1296 				vma_set_page_prot(vma);
1297 			}
1298 
1299 			inc_tlb_flush_pending(mm);
1300 			mmu_notifier_range_init(&range, MMU_NOTIFY_SOFT_DIRTY,
1301 						0, NULL, mm, 0, -1UL);
1302 			mmu_notifier_invalidate_range_start(&range);
1303 		}
1304 		walk_page_range(mm, 0, mm->highest_vm_end, &clear_refs_walk_ops,
1305 				&cp);
1306 		if (type == CLEAR_REFS_SOFT_DIRTY) {
1307 			mmu_notifier_invalidate_range_end(&range);
1308 			flush_tlb_mm(mm);
1309 			dec_tlb_flush_pending(mm);
1310 		}
1311 out_unlock:
1312 		mmap_write_unlock(mm);
1313 out_mm:
1314 		mmput(mm);
1315 	}
1316 	put_task_struct(task);
1317 
1318 	return count;
1319 }
1320 
1321 const struct file_operations proc_clear_refs_operations = {
1322 	.write		= clear_refs_write,
1323 	.llseek		= noop_llseek,
1324 };
1325 
1326 typedef struct {
1327 	u64 pme;
1328 } pagemap_entry_t;
1329 
1330 struct pagemapread {
1331 	int pos, len;		/* units: PM_ENTRY_BYTES, not bytes */
1332 	pagemap_entry_t *buffer;
1333 	bool show_pfn;
1334 };
1335 
1336 #define PAGEMAP_WALK_SIZE	(PMD_SIZE)
1337 #define PAGEMAP_WALK_MASK	(PMD_MASK)
1338 
1339 #define PM_ENTRY_BYTES		sizeof(pagemap_entry_t)
1340 #define PM_PFRAME_BITS		55
1341 #define PM_PFRAME_MASK		GENMASK_ULL(PM_PFRAME_BITS - 1, 0)
1342 #define PM_SOFT_DIRTY		BIT_ULL(55)
1343 #define PM_MMAP_EXCLUSIVE	BIT_ULL(56)
1344 #define PM_FILE			BIT_ULL(61)
1345 #define PM_SWAP			BIT_ULL(62)
1346 #define PM_PRESENT		BIT_ULL(63)
1347 
1348 #define PM_END_OF_BUFFER    1
1349 
make_pme(u64 frame,u64 flags)1350 static inline pagemap_entry_t make_pme(u64 frame, u64 flags)
1351 {
1352 	return (pagemap_entry_t) { .pme = (frame & PM_PFRAME_MASK) | flags };
1353 }
1354 
add_to_pagemap(unsigned long addr,pagemap_entry_t * pme,struct pagemapread * pm)1355 static int add_to_pagemap(unsigned long addr, pagemap_entry_t *pme,
1356 			  struct pagemapread *pm)
1357 {
1358 	pm->buffer[pm->pos++] = *pme;
1359 	if (pm->pos >= pm->len)
1360 		return PM_END_OF_BUFFER;
1361 	return 0;
1362 }
1363 
pagemap_pte_hole(unsigned long start,unsigned long end,__always_unused int depth,struct mm_walk * walk)1364 static int pagemap_pte_hole(unsigned long start, unsigned long end,
1365 			    __always_unused int depth, struct mm_walk *walk)
1366 {
1367 	struct pagemapread *pm = walk->private;
1368 	unsigned long addr = start;
1369 	int err = 0;
1370 
1371 	while (addr < end) {
1372 		struct vm_area_struct *vma = find_vma(walk->mm, addr);
1373 		pagemap_entry_t pme = make_pme(0, 0);
1374 		/* End of address space hole, which we mark as non-present. */
1375 		unsigned long hole_end;
1376 
1377 		if (vma)
1378 			hole_end = min(end, vma->vm_start);
1379 		else
1380 			hole_end = end;
1381 
1382 		for (; addr < hole_end; addr += PAGE_SIZE) {
1383 			err = add_to_pagemap(addr, &pme, pm);
1384 			if (err)
1385 				goto out;
1386 		}
1387 
1388 		if (!vma)
1389 			break;
1390 
1391 		/* Addresses in the VMA. */
1392 		if (vma->vm_flags & VM_SOFTDIRTY)
1393 			pme = make_pme(0, PM_SOFT_DIRTY);
1394 		for (; addr < min(end, vma->vm_end); addr += PAGE_SIZE) {
1395 			err = add_to_pagemap(addr, &pme, pm);
1396 			if (err)
1397 				goto out;
1398 		}
1399 	}
1400 out:
1401 	return err;
1402 }
1403 
pte_to_pagemap_entry(struct pagemapread * pm,struct vm_area_struct * vma,unsigned long addr,pte_t pte)1404 static pagemap_entry_t pte_to_pagemap_entry(struct pagemapread *pm,
1405 		struct vm_area_struct *vma, unsigned long addr, pte_t pte)
1406 {
1407 	u64 frame = 0, flags = 0;
1408 	struct page *page = NULL;
1409 	bool migration = false;
1410 
1411 	if (pte_present(pte)) {
1412 		if (pm->show_pfn)
1413 			frame = pte_pfn(pte);
1414 		flags |= PM_PRESENT;
1415 		page = vm_normal_page(vma, addr, pte);
1416 		if (pte_soft_dirty(pte))
1417 			flags |= PM_SOFT_DIRTY;
1418 	} else if (is_swap_pte(pte)) {
1419 		swp_entry_t entry;
1420 		if (pte_swp_soft_dirty(pte))
1421 			flags |= PM_SOFT_DIRTY;
1422 		entry = pte_to_swp_entry(pte);
1423 		if (pm->show_pfn)
1424 			frame = swp_type(entry) |
1425 				(swp_offset(entry) << MAX_SWAPFILES_SHIFT);
1426 		flags |= PM_SWAP;
1427 		if (is_migration_entry(entry)) {
1428 			migration = true;
1429 			page = migration_entry_to_page(entry);
1430 		}
1431 
1432 		if (is_device_private_entry(entry))
1433 			page = device_private_entry_to_page(entry);
1434 	}
1435 
1436 	if (page && !PageAnon(page))
1437 		flags |= PM_FILE;
1438 	if (page && !migration && page_mapcount(page) == 1)
1439 		flags |= PM_MMAP_EXCLUSIVE;
1440 	if (vma->vm_flags & VM_SOFTDIRTY)
1441 		flags |= PM_SOFT_DIRTY;
1442 
1443 	return make_pme(frame, flags);
1444 }
1445 
pagemap_pmd_range(pmd_t * pmdp,unsigned long addr,unsigned long end,struct mm_walk * walk)1446 static int pagemap_pmd_range(pmd_t *pmdp, unsigned long addr, unsigned long end,
1447 			     struct mm_walk *walk)
1448 {
1449 	struct vm_area_struct *vma = walk->vma;
1450 	struct pagemapread *pm = walk->private;
1451 	spinlock_t *ptl;
1452 	pte_t *pte, *orig_pte;
1453 	int err = 0;
1454 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1455 	bool migration = false;
1456 
1457 	ptl = pmd_trans_huge_lock(pmdp, vma);
1458 	if (ptl) {
1459 		u64 flags = 0, frame = 0;
1460 		pmd_t pmd = *pmdp;
1461 		struct page *page = NULL;
1462 
1463 		if (vma->vm_flags & VM_SOFTDIRTY)
1464 			flags |= PM_SOFT_DIRTY;
1465 
1466 		if (pmd_present(pmd)) {
1467 			page = pmd_page(pmd);
1468 
1469 			flags |= PM_PRESENT;
1470 			if (pmd_soft_dirty(pmd))
1471 				flags |= PM_SOFT_DIRTY;
1472 			if (pm->show_pfn)
1473 				frame = pmd_pfn(pmd) +
1474 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1475 		}
1476 #ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1477 		else if (is_swap_pmd(pmd)) {
1478 			swp_entry_t entry = pmd_to_swp_entry(pmd);
1479 			unsigned long offset;
1480 
1481 			if (pm->show_pfn) {
1482 				offset = swp_offset(entry) +
1483 					((addr & ~PMD_MASK) >> PAGE_SHIFT);
1484 				frame = swp_type(entry) |
1485 					(offset << MAX_SWAPFILES_SHIFT);
1486 			}
1487 			flags |= PM_SWAP;
1488 			if (pmd_swp_soft_dirty(pmd))
1489 				flags |= PM_SOFT_DIRTY;
1490 			VM_BUG_ON(!is_pmd_migration_entry(pmd));
1491 			migration = is_migration_entry(entry);
1492 			page = migration_entry_to_page(entry);
1493 		}
1494 #endif
1495 
1496 		if (page && !migration && page_mapcount(page) == 1)
1497 			flags |= PM_MMAP_EXCLUSIVE;
1498 
1499 		for (; addr != end; addr += PAGE_SIZE) {
1500 			pagemap_entry_t pme = make_pme(frame, flags);
1501 
1502 			err = add_to_pagemap(addr, &pme, pm);
1503 			if (err)
1504 				break;
1505 			if (pm->show_pfn) {
1506 				if (flags & PM_PRESENT)
1507 					frame++;
1508 				else if (flags & PM_SWAP)
1509 					frame += (1 << MAX_SWAPFILES_SHIFT);
1510 			}
1511 		}
1512 		spin_unlock(ptl);
1513 		return err;
1514 	}
1515 
1516 	if (pmd_trans_unstable(pmdp))
1517 		return 0;
1518 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1519 
1520 	/*
1521 	 * We can assume that @vma always points to a valid one and @end never
1522 	 * goes beyond vma->vm_end.
1523 	 */
1524 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmdp, addr, &ptl);
1525 	for (; addr < end; pte++, addr += PAGE_SIZE) {
1526 		pagemap_entry_t pme;
1527 
1528 		pme = pte_to_pagemap_entry(pm, vma, addr, *pte);
1529 		err = add_to_pagemap(addr, &pme, pm);
1530 		if (err)
1531 			break;
1532 	}
1533 	pte_unmap_unlock(orig_pte, ptl);
1534 
1535 	cond_resched();
1536 
1537 	return err;
1538 }
1539 
1540 #ifdef CONFIG_HUGETLB_PAGE
1541 /* This function walks within one hugetlb entry in the single call */
pagemap_hugetlb_range(pte_t * ptep,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1542 static int pagemap_hugetlb_range(pte_t *ptep, unsigned long hmask,
1543 				 unsigned long addr, unsigned long end,
1544 				 struct mm_walk *walk)
1545 {
1546 	struct pagemapread *pm = walk->private;
1547 	struct vm_area_struct *vma = walk->vma;
1548 	u64 flags = 0, frame = 0;
1549 	int err = 0;
1550 	pte_t pte;
1551 
1552 	if (vma->vm_flags & VM_SOFTDIRTY)
1553 		flags |= PM_SOFT_DIRTY;
1554 
1555 	pte = huge_ptep_get(ptep);
1556 	if (pte_present(pte)) {
1557 		struct page *page = pte_page(pte);
1558 
1559 		if (!PageAnon(page))
1560 			flags |= PM_FILE;
1561 
1562 		if (page_mapcount(page) == 1)
1563 			flags |= PM_MMAP_EXCLUSIVE;
1564 
1565 		flags |= PM_PRESENT;
1566 		if (pm->show_pfn)
1567 			frame = pte_pfn(pte) +
1568 				((addr & ~hmask) >> PAGE_SHIFT);
1569 	}
1570 
1571 	for (; addr != end; addr += PAGE_SIZE) {
1572 		pagemap_entry_t pme = make_pme(frame, flags);
1573 
1574 		err = add_to_pagemap(addr, &pme, pm);
1575 		if (err)
1576 			return err;
1577 		if (pm->show_pfn && (flags & PM_PRESENT))
1578 			frame++;
1579 	}
1580 
1581 	cond_resched();
1582 
1583 	return err;
1584 }
1585 #else
1586 #define pagemap_hugetlb_range	NULL
1587 #endif /* HUGETLB_PAGE */
1588 
1589 static const struct mm_walk_ops pagemap_ops = {
1590 	.pmd_entry	= pagemap_pmd_range,
1591 	.pte_hole	= pagemap_pte_hole,
1592 	.hugetlb_entry	= pagemap_hugetlb_range,
1593 };
1594 
1595 /*
1596  * /proc/pid/pagemap - an array mapping virtual pages to pfns
1597  *
1598  * For each page in the address space, this file contains one 64-bit entry
1599  * consisting of the following:
1600  *
1601  * Bits 0-54  page frame number (PFN) if present
1602  * Bits 0-4   swap type if swapped
1603  * Bits 5-54  swap offset if swapped
1604  * Bit  55    pte is soft-dirty (see Documentation/admin-guide/mm/soft-dirty.rst)
1605  * Bit  56    page exclusively mapped
1606  * Bits 57-60 zero
1607  * Bit  61    page is file-page or shared-anon
1608  * Bit  62    page swapped
1609  * Bit  63    page present
1610  *
1611  * If the page is not present but in swap, then the PFN contains an
1612  * encoding of the swap file number and the page's offset into the
1613  * swap. Unmapped pages return a null PFN. This allows determining
1614  * precisely which pages are mapped (or in swap) and comparing mapped
1615  * pages between processes.
1616  *
1617  * Efficient users of this interface will use /proc/pid/maps to
1618  * determine which areas of memory are actually mapped and llseek to
1619  * skip over unmapped regions.
1620  */
pagemap_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)1621 static ssize_t pagemap_read(struct file *file, char __user *buf,
1622 			    size_t count, loff_t *ppos)
1623 {
1624 	struct mm_struct *mm = file->private_data;
1625 	struct pagemapread pm;
1626 	unsigned long src;
1627 	unsigned long svpfn;
1628 	unsigned long start_vaddr;
1629 	unsigned long end_vaddr;
1630 	int ret = 0, copied = 0;
1631 
1632 	if (!mm || !mmget_not_zero(mm))
1633 		goto out;
1634 
1635 	ret = -EINVAL;
1636 	/* file position must be aligned */
1637 	if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
1638 		goto out_mm;
1639 
1640 	ret = 0;
1641 	if (!count)
1642 		goto out_mm;
1643 
1644 	/* do not disclose physical addresses: attack vector */
1645 	pm.show_pfn = file_ns_capable(file, &init_user_ns, CAP_SYS_ADMIN);
1646 
1647 	pm.len = (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
1648 	pm.buffer = kmalloc_array(pm.len, PM_ENTRY_BYTES, GFP_KERNEL);
1649 	ret = -ENOMEM;
1650 	if (!pm.buffer)
1651 		goto out_mm;
1652 
1653 	src = *ppos;
1654 	svpfn = src / PM_ENTRY_BYTES;
1655 	end_vaddr = mm->task_size;
1656 
1657 	/* watch out for wraparound */
1658 	start_vaddr = end_vaddr;
1659 	if (svpfn <= (ULONG_MAX >> PAGE_SHIFT))
1660 		start_vaddr = untagged_addr(svpfn << PAGE_SHIFT);
1661 
1662 	/* Ensure the address is inside the task */
1663 	if (start_vaddr > mm->task_size)
1664 		start_vaddr = end_vaddr;
1665 
1666 	/*
1667 	 * The odds are that this will stop walking way
1668 	 * before end_vaddr, because the length of the
1669 	 * user buffer is tracked in "pm", and the walk
1670 	 * will stop when we hit the end of the buffer.
1671 	 */
1672 	ret = 0;
1673 	while (count && (start_vaddr < end_vaddr)) {
1674 		int len;
1675 		unsigned long end;
1676 
1677 		pm.pos = 0;
1678 		end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
1679 		/* overflow ? */
1680 		if (end < start_vaddr || end > end_vaddr)
1681 			end = end_vaddr;
1682 		ret = mmap_read_lock_killable(mm);
1683 		if (ret)
1684 			goto out_free;
1685 		ret = walk_page_range(mm, start_vaddr, end, &pagemap_ops, &pm);
1686 		mmap_read_unlock(mm);
1687 		start_vaddr = end;
1688 
1689 		len = min(count, PM_ENTRY_BYTES * pm.pos);
1690 		if (copy_to_user(buf, pm.buffer, len)) {
1691 			ret = -EFAULT;
1692 			goto out_free;
1693 		}
1694 		copied += len;
1695 		buf += len;
1696 		count -= len;
1697 	}
1698 	*ppos += copied;
1699 	if (!ret || ret == PM_END_OF_BUFFER)
1700 		ret = copied;
1701 
1702 out_free:
1703 	kfree(pm.buffer);
1704 out_mm:
1705 	mmput(mm);
1706 out:
1707 	return ret;
1708 }
1709 
pagemap_open(struct inode * inode,struct file * file)1710 static int pagemap_open(struct inode *inode, struct file *file)
1711 {
1712 	struct mm_struct *mm;
1713 
1714 	mm = proc_mem_open(inode, PTRACE_MODE_READ);
1715 	if (IS_ERR(mm))
1716 		return PTR_ERR(mm);
1717 	file->private_data = mm;
1718 	return 0;
1719 }
1720 
pagemap_release(struct inode * inode,struct file * file)1721 static int pagemap_release(struct inode *inode, struct file *file)
1722 {
1723 	struct mm_struct *mm = file->private_data;
1724 
1725 	if (mm)
1726 		mmdrop(mm);
1727 	return 0;
1728 }
1729 
1730 const struct file_operations proc_pagemap_operations = {
1731 	.llseek		= mem_lseek, /* borrow this */
1732 	.read		= pagemap_read,
1733 	.open		= pagemap_open,
1734 	.release	= pagemap_release,
1735 };
1736 #endif /* CONFIG_PROC_PAGE_MONITOR */
1737 
1738 #ifdef CONFIG_NUMA
1739 
1740 struct numa_maps {
1741 	unsigned long pages;
1742 	unsigned long anon;
1743 	unsigned long active;
1744 	unsigned long writeback;
1745 	unsigned long mapcount_max;
1746 	unsigned long dirty;
1747 	unsigned long swapcache;
1748 	unsigned long node[MAX_NUMNODES];
1749 };
1750 
1751 struct numa_maps_private {
1752 	struct proc_maps_private proc_maps;
1753 	struct numa_maps md;
1754 };
1755 
gather_stats(struct page * page,struct numa_maps * md,int pte_dirty,unsigned long nr_pages)1756 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
1757 			unsigned long nr_pages)
1758 {
1759 	int count = page_mapcount(page);
1760 
1761 	md->pages += nr_pages;
1762 	if (pte_dirty || PageDirty(page))
1763 		md->dirty += nr_pages;
1764 
1765 	if (PageSwapCache(page))
1766 		md->swapcache += nr_pages;
1767 
1768 	if (PageActive(page) || PageUnevictable(page))
1769 		md->active += nr_pages;
1770 
1771 	if (PageWriteback(page))
1772 		md->writeback += nr_pages;
1773 
1774 	if (PageAnon(page))
1775 		md->anon += nr_pages;
1776 
1777 	if (count > md->mapcount_max)
1778 		md->mapcount_max = count;
1779 
1780 	md->node[page_to_nid(page)] += nr_pages;
1781 }
1782 
can_gather_numa_stats(pte_t pte,struct vm_area_struct * vma,unsigned long addr)1783 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
1784 		unsigned long addr)
1785 {
1786 	struct page *page;
1787 	int nid;
1788 
1789 	if (!pte_present(pte))
1790 		return NULL;
1791 
1792 	page = vm_normal_page(vma, addr, pte);
1793 	if (!page)
1794 		return NULL;
1795 
1796 	if (PageReserved(page))
1797 		return NULL;
1798 
1799 	nid = page_to_nid(page);
1800 	if (!node_isset(nid, node_states[N_MEMORY]))
1801 		return NULL;
1802 
1803 	return page;
1804 }
1805 
1806 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
can_gather_numa_stats_pmd(pmd_t pmd,struct vm_area_struct * vma,unsigned long addr)1807 static struct page *can_gather_numa_stats_pmd(pmd_t pmd,
1808 					      struct vm_area_struct *vma,
1809 					      unsigned long addr)
1810 {
1811 	struct page *page;
1812 	int nid;
1813 
1814 	if (!pmd_present(pmd))
1815 		return NULL;
1816 
1817 	page = vm_normal_page_pmd(vma, addr, pmd);
1818 	if (!page)
1819 		return NULL;
1820 
1821 	if (PageReserved(page))
1822 		return NULL;
1823 
1824 	nid = page_to_nid(page);
1825 	if (!node_isset(nid, node_states[N_MEMORY]))
1826 		return NULL;
1827 
1828 	return page;
1829 }
1830 #endif
1831 
gather_pte_stats(pmd_t * pmd,unsigned long addr,unsigned long end,struct mm_walk * walk)1832 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
1833 		unsigned long end, struct mm_walk *walk)
1834 {
1835 	struct numa_maps *md = walk->private;
1836 	struct vm_area_struct *vma = walk->vma;
1837 	spinlock_t *ptl;
1838 	pte_t *orig_pte;
1839 	pte_t *pte;
1840 
1841 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1842 	ptl = pmd_trans_huge_lock(pmd, vma);
1843 	if (ptl) {
1844 		struct page *page;
1845 
1846 		page = can_gather_numa_stats_pmd(*pmd, vma, addr);
1847 		if (page)
1848 			gather_stats(page, md, pmd_dirty(*pmd),
1849 				     HPAGE_PMD_SIZE/PAGE_SIZE);
1850 		spin_unlock(ptl);
1851 		return 0;
1852 	}
1853 
1854 	if (pmd_trans_unstable(pmd))
1855 		return 0;
1856 #endif
1857 	orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
1858 	do {
1859 		struct page *page = can_gather_numa_stats(*pte, vma, addr);
1860 		if (!page)
1861 			continue;
1862 		gather_stats(page, md, pte_dirty(*pte), 1);
1863 
1864 	} while (pte++, addr += PAGE_SIZE, addr != end);
1865 	pte_unmap_unlock(orig_pte, ptl);
1866 	cond_resched();
1867 	return 0;
1868 }
1869 #ifdef CONFIG_HUGETLB_PAGE
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1870 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1871 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1872 {
1873 	pte_t huge_pte = huge_ptep_get(pte);
1874 	struct numa_maps *md;
1875 	struct page *page;
1876 
1877 	if (!pte_present(huge_pte))
1878 		return 0;
1879 
1880 	page = pte_page(huge_pte);
1881 	if (!page)
1882 		return 0;
1883 
1884 	md = walk->private;
1885 	gather_stats(page, md, pte_dirty(huge_pte), 1);
1886 	return 0;
1887 }
1888 
1889 #else
gather_hugetlb_stats(pte_t * pte,unsigned long hmask,unsigned long addr,unsigned long end,struct mm_walk * walk)1890 static int gather_hugetlb_stats(pte_t *pte, unsigned long hmask,
1891 		unsigned long addr, unsigned long end, struct mm_walk *walk)
1892 {
1893 	return 0;
1894 }
1895 #endif
1896 
1897 static const struct mm_walk_ops show_numa_ops = {
1898 	.hugetlb_entry = gather_hugetlb_stats,
1899 	.pmd_entry = gather_pte_stats,
1900 };
1901 
1902 /*
1903  * Display pages allocated per node and memory policy via /proc.
1904  */
show_numa_map(struct seq_file * m,void * v)1905 static int show_numa_map(struct seq_file *m, void *v)
1906 {
1907 	struct numa_maps_private *numa_priv = m->private;
1908 	struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1909 	struct vm_area_struct *vma = v;
1910 	struct numa_maps *md = &numa_priv->md;
1911 	struct file *file = vma->vm_file;
1912 	struct mm_struct *mm = vma->vm_mm;
1913 	struct mempolicy *pol;
1914 	char buffer[64];
1915 	int nid;
1916 
1917 	if (!mm)
1918 		return 0;
1919 
1920 	/* Ensure we start with an empty set of numa_maps statistics. */
1921 	memset(md, 0, sizeof(*md));
1922 
1923 	pol = __get_vma_policy(vma, vma->vm_start);
1924 	if (pol) {
1925 		mpol_to_str(buffer, sizeof(buffer), pol);
1926 		mpol_cond_put(pol);
1927 	} else {
1928 		mpol_to_str(buffer, sizeof(buffer), proc_priv->task_mempolicy);
1929 	}
1930 
1931 	seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1932 
1933 	if (file) {
1934 		seq_puts(m, " file=");
1935 		seq_file_path(m, file, "\n\t= ");
1936 	} else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1937 		seq_puts(m, " heap");
1938 	} else if (is_stack(vma)) {
1939 		seq_puts(m, " stack");
1940 	}
1941 
1942 	if (is_vm_hugetlb_page(vma))
1943 		seq_puts(m, " huge");
1944 
1945 	/* mmap_lock is held by m_start */
1946 	walk_page_vma(vma, &show_numa_ops, md);
1947 
1948 	if (!md->pages)
1949 		goto out;
1950 
1951 	if (md->anon)
1952 		seq_printf(m, " anon=%lu", md->anon);
1953 
1954 	if (md->dirty)
1955 		seq_printf(m, " dirty=%lu", md->dirty);
1956 
1957 	if (md->pages != md->anon && md->pages != md->dirty)
1958 		seq_printf(m, " mapped=%lu", md->pages);
1959 
1960 	if (md->mapcount_max > 1)
1961 		seq_printf(m, " mapmax=%lu", md->mapcount_max);
1962 
1963 	if (md->swapcache)
1964 		seq_printf(m, " swapcache=%lu", md->swapcache);
1965 
1966 	if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1967 		seq_printf(m, " active=%lu", md->active);
1968 
1969 	if (md->writeback)
1970 		seq_printf(m, " writeback=%lu", md->writeback);
1971 
1972 	for_each_node_state(nid, N_MEMORY)
1973 		if (md->node[nid])
1974 			seq_printf(m, " N%d=%lu", nid, md->node[nid]);
1975 
1976 	seq_printf(m, " kernelpagesize_kB=%lu", vma_kernel_pagesize(vma) >> 10);
1977 out:
1978 	seq_putc(m, '\n');
1979 	return 0;
1980 }
1981 
1982 static const struct seq_operations proc_pid_numa_maps_op = {
1983 	.start  = m_start,
1984 	.next   = m_next,
1985 	.stop   = m_stop,
1986 	.show   = show_numa_map,
1987 };
1988 
pid_numa_maps_open(struct inode * inode,struct file * file)1989 static int pid_numa_maps_open(struct inode *inode, struct file *file)
1990 {
1991 	return proc_maps_open(inode, file, &proc_pid_numa_maps_op,
1992 				sizeof(struct numa_maps_private));
1993 }
1994 
1995 const struct file_operations proc_pid_numa_maps_operations = {
1996 	.open		= pid_numa_maps_open,
1997 	.read		= seq_read,
1998 	.llseek		= seq_lseek,
1999 	.release	= proc_map_release,
2000 };
2001 
2002 #endif /* CONFIG_NUMA */
2003