1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Task-based RCU implementations.
4 *
5 * Copyright (C) 2020 Paul E. McKenney
6 */
7
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9
10 ////////////////////////////////////////////////////////////////////////
11 //
12 // Generic data structures.
13
14 struct rcu_tasks;
15 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
16 typedef void (*pregp_func_t)(void);
17 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
18 typedef void (*postscan_func_t)(struct list_head *hop);
19 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
20 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
21
22 /**
23 * Definition for a Tasks-RCU-like mechanism.
24 * @cbs_head: Head of callback list.
25 * @cbs_tail: Tail pointer for callback list.
26 * @cbs_wq: Wait queue allowning new callback to get kthread's attention.
27 * @cbs_lock: Lock protecting callback list.
28 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
29 * @gp_func: This flavor's grace-period-wait function.
30 * @gp_state: Grace period's most recent state transition (debugging).
31 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
32 * @init_fract: Initial backoff sleep interval.
33 * @gp_jiffies: Time of last @gp_state transition.
34 * @gp_start: Most recent grace-period start in jiffies.
35 * @n_gps: Number of grace periods completed since boot.
36 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
37 * @n_ipis_fails: Number of IPI-send failures.
38 * @pregp_func: This flavor's pre-grace-period function (optional).
39 * @pertask_func: This flavor's per-task scan function (optional).
40 * @postscan_func: This flavor's post-task scan function (optional).
41 * @holdout_func: This flavor's holdout-list scan function (optional).
42 * @postgp_func: This flavor's post-grace-period function (optional).
43 * @call_func: This flavor's call_rcu()-equivalent function.
44 * @name: This flavor's textual name.
45 * @kname: This flavor's kthread name.
46 */
47 struct rcu_tasks {
48 struct rcu_head *cbs_head;
49 struct rcu_head **cbs_tail;
50 struct wait_queue_head cbs_wq;
51 raw_spinlock_t cbs_lock;
52 int gp_state;
53 int gp_sleep;
54 int init_fract;
55 unsigned long gp_jiffies;
56 unsigned long gp_start;
57 unsigned long n_gps;
58 unsigned long n_ipis;
59 unsigned long n_ipis_fails;
60 struct task_struct *kthread_ptr;
61 rcu_tasks_gp_func_t gp_func;
62 pregp_func_t pregp_func;
63 pertask_func_t pertask_func;
64 postscan_func_t postscan_func;
65 holdouts_func_t holdouts_func;
66 postgp_func_t postgp_func;
67 call_rcu_func_t call_func;
68 char *name;
69 char *kname;
70 };
71
72 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
73 static struct rcu_tasks rt_name = \
74 { \
75 .cbs_tail = &rt_name.cbs_head, \
76 .cbs_wq = __WAIT_QUEUE_HEAD_INITIALIZER(rt_name.cbs_wq), \
77 .cbs_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_lock), \
78 .gp_func = gp, \
79 .call_func = call, \
80 .name = n, \
81 .kname = #rt_name, \
82 }
83
84 /* Track exiting tasks in order to allow them to be waited for. */
85 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
86
87 /* Avoid IPIing CPUs early in the grace period. */
88 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
89 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
90 module_param(rcu_task_ipi_delay, int, 0644);
91
92 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
93 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
94 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
95 module_param(rcu_task_stall_timeout, int, 0644);
96
97 /* RCU tasks grace-period state for debugging. */
98 #define RTGS_INIT 0
99 #define RTGS_WAIT_WAIT_CBS 1
100 #define RTGS_WAIT_GP 2
101 #define RTGS_PRE_WAIT_GP 3
102 #define RTGS_SCAN_TASKLIST 4
103 #define RTGS_POST_SCAN_TASKLIST 5
104 #define RTGS_WAIT_SCAN_HOLDOUTS 6
105 #define RTGS_SCAN_HOLDOUTS 7
106 #define RTGS_POST_GP 8
107 #define RTGS_WAIT_READERS 9
108 #define RTGS_INVOKE_CBS 10
109 #define RTGS_WAIT_CBS 11
110 #ifndef CONFIG_TINY_RCU
111 static const char * const rcu_tasks_gp_state_names[] = {
112 "RTGS_INIT",
113 "RTGS_WAIT_WAIT_CBS",
114 "RTGS_WAIT_GP",
115 "RTGS_PRE_WAIT_GP",
116 "RTGS_SCAN_TASKLIST",
117 "RTGS_POST_SCAN_TASKLIST",
118 "RTGS_WAIT_SCAN_HOLDOUTS",
119 "RTGS_SCAN_HOLDOUTS",
120 "RTGS_POST_GP",
121 "RTGS_WAIT_READERS",
122 "RTGS_INVOKE_CBS",
123 "RTGS_WAIT_CBS",
124 };
125 #endif /* #ifndef CONFIG_TINY_RCU */
126
127 ////////////////////////////////////////////////////////////////////////
128 //
129 // Generic code.
130
131 /* Record grace-period phase and time. */
set_tasks_gp_state(struct rcu_tasks * rtp,int newstate)132 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
133 {
134 rtp->gp_state = newstate;
135 rtp->gp_jiffies = jiffies;
136 }
137
138 #ifndef CONFIG_TINY_RCU
139 /* Return state name. */
tasks_gp_state_getname(struct rcu_tasks * rtp)140 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
141 {
142 int i = data_race(rtp->gp_state); // Let KCSAN detect update races
143 int j = READ_ONCE(i); // Prevent the compiler from reading twice
144
145 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
146 return "???";
147 return rcu_tasks_gp_state_names[j];
148 }
149 #endif /* #ifndef CONFIG_TINY_RCU */
150
151 // Enqueue a callback for the specified flavor of Tasks RCU.
call_rcu_tasks_generic(struct rcu_head * rhp,rcu_callback_t func,struct rcu_tasks * rtp)152 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
153 struct rcu_tasks *rtp)
154 {
155 unsigned long flags;
156 bool needwake;
157
158 rhp->next = NULL;
159 rhp->func = func;
160 raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
161 needwake = !rtp->cbs_head;
162 WRITE_ONCE(*rtp->cbs_tail, rhp);
163 rtp->cbs_tail = &rhp->next;
164 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
165 /* We can't create the thread unless interrupts are enabled. */
166 if (needwake && READ_ONCE(rtp->kthread_ptr))
167 wake_up(&rtp->cbs_wq);
168 }
169
170 // Wait for a grace period for the specified flavor of Tasks RCU.
synchronize_rcu_tasks_generic(struct rcu_tasks * rtp)171 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
172 {
173 /* Complain if the scheduler has not started. */
174 if (WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
175 "synchronize_%s() called too soon", rtp->name))
176 return;
177
178 /* Wait for the grace period. */
179 wait_rcu_gp(rtp->call_func);
180 }
181
182 /* RCU-tasks kthread that detects grace periods and invokes callbacks. */
rcu_tasks_kthread(void * arg)183 static int __noreturn rcu_tasks_kthread(void *arg)
184 {
185 unsigned long flags;
186 struct rcu_head *list;
187 struct rcu_head *next;
188 struct rcu_tasks *rtp = arg;
189
190 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
191 housekeeping_affine(current, HK_FLAG_RCU);
192 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
193
194 /*
195 * Each pass through the following loop makes one check for
196 * newly arrived callbacks, and, if there are some, waits for
197 * one RCU-tasks grace period and then invokes the callbacks.
198 * This loop is terminated by the system going down. ;-)
199 */
200 for (;;) {
201 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
202
203 /* Pick up any new callbacks. */
204 raw_spin_lock_irqsave(&rtp->cbs_lock, flags);
205 smp_mb__after_spinlock(); // Order updates vs. GP.
206 list = rtp->cbs_head;
207 rtp->cbs_head = NULL;
208 rtp->cbs_tail = &rtp->cbs_head;
209 raw_spin_unlock_irqrestore(&rtp->cbs_lock, flags);
210
211 /* If there were none, wait a bit and start over. */
212 if (!list) {
213 wait_event_interruptible(rtp->cbs_wq,
214 READ_ONCE(rtp->cbs_head));
215 if (!rtp->cbs_head) {
216 WARN_ON(signal_pending(current));
217 set_tasks_gp_state(rtp, RTGS_WAIT_WAIT_CBS);
218 schedule_timeout_idle(HZ/10);
219 }
220 continue;
221 }
222
223 // Wait for one grace period.
224 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
225 rtp->gp_start = jiffies;
226 rtp->gp_func(rtp);
227 rtp->n_gps++;
228
229 /* Invoke the callbacks. */
230 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
231 while (list) {
232 next = list->next;
233 local_bh_disable();
234 list->func(list);
235 local_bh_enable();
236 list = next;
237 cond_resched();
238 }
239 /* Paranoid sleep to keep this from entering a tight loop */
240 schedule_timeout_idle(rtp->gp_sleep);
241 }
242 }
243
244 /* Spawn RCU-tasks grace-period kthread. */
rcu_spawn_tasks_kthread_generic(struct rcu_tasks * rtp)245 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
246 {
247 struct task_struct *t;
248
249 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
250 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
251 return;
252 smp_mb(); /* Ensure others see full kthread. */
253 }
254
255 #ifndef CONFIG_TINY_RCU
256
257 /*
258 * Print any non-default Tasks RCU settings.
259 */
rcu_tasks_bootup_oddness(void)260 static void __init rcu_tasks_bootup_oddness(void)
261 {
262 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
263 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
264 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
265 #endif /* #ifdef CONFIG_TASKS_RCU */
266 #ifdef CONFIG_TASKS_RCU
267 pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
268 #endif /* #ifdef CONFIG_TASKS_RCU */
269 #ifdef CONFIG_TASKS_RUDE_RCU
270 pr_info("\tRude variant of Tasks RCU enabled.\n");
271 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
272 #ifdef CONFIG_TASKS_TRACE_RCU
273 pr_info("\tTracing variant of Tasks RCU enabled.\n");
274 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
275 }
276
277 #endif /* #ifndef CONFIG_TINY_RCU */
278
279 #ifndef CONFIG_TINY_RCU
280 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
show_rcu_tasks_generic_gp_kthread(struct rcu_tasks * rtp,char * s)281 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
282 {
283 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
284 rtp->kname,
285 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
286 jiffies - data_race(rtp->gp_jiffies),
287 data_race(rtp->n_gps),
288 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
289 ".k"[!!data_race(rtp->kthread_ptr)],
290 ".C"[!!data_race(rtp->cbs_head)],
291 s);
292 }
293 #endif /* #ifndef CONFIG_TINY_RCU */
294
295 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
296
297 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
298
299 ////////////////////////////////////////////////////////////////////////
300 //
301 // Shared code between task-list-scanning variants of Tasks RCU.
302
303 /* Wait for one RCU-tasks grace period. */
rcu_tasks_wait_gp(struct rcu_tasks * rtp)304 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
305 {
306 struct task_struct *g, *t;
307 unsigned long lastreport;
308 LIST_HEAD(holdouts);
309 int fract;
310
311 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
312 rtp->pregp_func();
313
314 /*
315 * There were callbacks, so we need to wait for an RCU-tasks
316 * grace period. Start off by scanning the task list for tasks
317 * that are not already voluntarily blocked. Mark these tasks
318 * and make a list of them in holdouts.
319 */
320 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
321 rcu_read_lock();
322 for_each_process_thread(g, t)
323 rtp->pertask_func(t, &holdouts);
324 rcu_read_unlock();
325
326 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
327 rtp->postscan_func(&holdouts);
328
329 /*
330 * Each pass through the following loop scans the list of holdout
331 * tasks, removing any that are no longer holdouts. When the list
332 * is empty, we are done.
333 */
334 lastreport = jiffies;
335
336 // Start off with initial wait and slowly back off to 1 HZ wait.
337 fract = rtp->init_fract;
338 if (fract > HZ)
339 fract = HZ;
340
341 for (;;) {
342 bool firstreport;
343 bool needreport;
344 int rtst;
345
346 if (list_empty(&holdouts))
347 break;
348
349 /* Slowly back off waiting for holdouts */
350 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
351 schedule_timeout_idle(HZ/fract);
352
353 if (fract > 1)
354 fract--;
355
356 rtst = READ_ONCE(rcu_task_stall_timeout);
357 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
358 if (needreport)
359 lastreport = jiffies;
360 firstreport = true;
361 WARN_ON(signal_pending(current));
362 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
363 rtp->holdouts_func(&holdouts, needreport, &firstreport);
364 }
365
366 set_tasks_gp_state(rtp, RTGS_POST_GP);
367 rtp->postgp_func(rtp);
368 }
369
370 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
371
372 #ifdef CONFIG_TASKS_RCU
373
374 ////////////////////////////////////////////////////////////////////////
375 //
376 // Simple variant of RCU whose quiescent states are voluntary context
377 // switch, cond_resched_rcu_qs(), user-space execution, and idle.
378 // As such, grace periods can take one good long time. There are no
379 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
380 // because this implementation is intended to get the system into a safe
381 // state for some of the manipulations involved in tracing and the like.
382 // Finally, this implementation does not support high call_rcu_tasks()
383 // rates from multiple CPUs. If this is required, per-CPU callback lists
384 // will be needed.
385
386 /* Pre-grace-period preparation. */
rcu_tasks_pregp_step(void)387 static void rcu_tasks_pregp_step(void)
388 {
389 /*
390 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
391 * to complete. Invoking synchronize_rcu() suffices because all
392 * these transitions occur with interrupts disabled. Without this
393 * synchronize_rcu(), a read-side critical section that started
394 * before the grace period might be incorrectly seen as having
395 * started after the grace period.
396 *
397 * This synchronize_rcu() also dispenses with the need for a
398 * memory barrier on the first store to t->rcu_tasks_holdout,
399 * as it forces the store to happen after the beginning of the
400 * grace period.
401 */
402 synchronize_rcu();
403 }
404
405 /* Per-task initial processing. */
rcu_tasks_pertask(struct task_struct * t,struct list_head * hop)406 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
407 {
408 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
409 get_task_struct(t);
410 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
411 WRITE_ONCE(t->rcu_tasks_holdout, true);
412 list_add(&t->rcu_tasks_holdout_list, hop);
413 }
414 }
415
416 /* Processing between scanning taskslist and draining the holdout list. */
rcu_tasks_postscan(struct list_head * hop)417 static void rcu_tasks_postscan(struct list_head *hop)
418 {
419 /*
420 * Exiting tasks may escape the tasklist scan. Those are vulnerable
421 * until their final schedule() with TASK_DEAD state. To cope with
422 * this, divide the fragile exit path part in two intersecting
423 * read side critical sections:
424 *
425 * 1) An _SRCU_ read side starting before calling exit_notify(),
426 * which may remove the task from the tasklist, and ending after
427 * the final preempt_disable() call in do_exit().
428 *
429 * 2) An _RCU_ read side starting with the final preempt_disable()
430 * call in do_exit() and ending with the final call to schedule()
431 * with TASK_DEAD state.
432 *
433 * This handles the part 1). And postgp will handle part 2) with a
434 * call to synchronize_rcu().
435 */
436 synchronize_srcu(&tasks_rcu_exit_srcu);
437 }
438
439 /* See if tasks are still holding out, complain if so. */
check_holdout_task(struct task_struct * t,bool needreport,bool * firstreport)440 static void check_holdout_task(struct task_struct *t,
441 bool needreport, bool *firstreport)
442 {
443 int cpu;
444
445 if (!READ_ONCE(t->rcu_tasks_holdout) ||
446 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
447 !READ_ONCE(t->on_rq) ||
448 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
449 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
450 WRITE_ONCE(t->rcu_tasks_holdout, false);
451 list_del_init(&t->rcu_tasks_holdout_list);
452 put_task_struct(t);
453 return;
454 }
455 rcu_request_urgent_qs_task(t);
456 if (!needreport)
457 return;
458 if (*firstreport) {
459 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
460 *firstreport = false;
461 }
462 cpu = task_cpu(t);
463 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
464 t, ".I"[is_idle_task(t)],
465 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
466 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
467 t->rcu_tasks_idle_cpu, cpu);
468 sched_show_task(t);
469 }
470
471 /* Scan the holdout lists for tasks no longer holding out. */
check_all_holdout_tasks(struct list_head * hop,bool needreport,bool * firstreport)472 static void check_all_holdout_tasks(struct list_head *hop,
473 bool needreport, bool *firstreport)
474 {
475 struct task_struct *t, *t1;
476
477 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
478 check_holdout_task(t, needreport, firstreport);
479 cond_resched();
480 }
481 }
482
483 /* Finish off the Tasks-RCU grace period. */
rcu_tasks_postgp(struct rcu_tasks * rtp)484 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
485 {
486 /*
487 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
488 * memory barriers prior to them in the schedule() path, memory
489 * reordering on other CPUs could cause their RCU-tasks read-side
490 * critical sections to extend past the end of the grace period.
491 * However, because these ->nvcsw updates are carried out with
492 * interrupts disabled, we can use synchronize_rcu() to force the
493 * needed ordering on all such CPUs.
494 *
495 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
496 * accesses to be within the grace period, avoiding the need for
497 * memory barriers for ->rcu_tasks_holdout accesses.
498 *
499 * In addition, this synchronize_rcu() waits for exiting tasks
500 * to complete their final preempt_disable() region of execution,
501 * cleaning up after synchronize_srcu(&tasks_rcu_exit_srcu),
502 * enforcing the whole region before tasklist removal until
503 * the final schedule() with TASK_DEAD state to be an RCU TASKS
504 * read side critical section.
505 */
506 synchronize_rcu();
507 }
508
509 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
510 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
511
512 /**
513 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
514 * @rhp: structure to be used for queueing the RCU updates.
515 * @func: actual callback function to be invoked after the grace period
516 *
517 * The callback function will be invoked some time after a full grace
518 * period elapses, in other words after all currently executing RCU
519 * read-side critical sections have completed. call_rcu_tasks() assumes
520 * that the read-side critical sections end at a voluntary context
521 * switch (not a preemption!), cond_resched_rcu_qs(), entry into idle,
522 * or transition to usermode execution. As such, there are no read-side
523 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
524 * this primitive is intended to determine that all tasks have passed
525 * through a safe state, not so much for data-strcuture synchronization.
526 *
527 * See the description of call_rcu() for more detailed information on
528 * memory ordering guarantees.
529 */
call_rcu_tasks(struct rcu_head * rhp,rcu_callback_t func)530 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
531 {
532 call_rcu_tasks_generic(rhp, func, &rcu_tasks);
533 }
534 EXPORT_SYMBOL_GPL(call_rcu_tasks);
535
536 /**
537 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
538 *
539 * Control will return to the caller some time after a full rcu-tasks
540 * grace period has elapsed, in other words after all currently
541 * executing rcu-tasks read-side critical sections have elapsed. These
542 * read-side critical sections are delimited by calls to schedule(),
543 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
544 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
545 *
546 * This is a very specialized primitive, intended only for a few uses in
547 * tracing and other situations requiring manipulation of function
548 * preambles and profiling hooks. The synchronize_rcu_tasks() function
549 * is not (yet) intended for heavy use from multiple CPUs.
550 *
551 * See the description of synchronize_rcu() for more detailed information
552 * on memory ordering guarantees.
553 */
synchronize_rcu_tasks(void)554 void synchronize_rcu_tasks(void)
555 {
556 synchronize_rcu_tasks_generic(&rcu_tasks);
557 }
558 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
559
560 /**
561 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
562 *
563 * Although the current implementation is guaranteed to wait, it is not
564 * obligated to, for example, if there are no pending callbacks.
565 */
rcu_barrier_tasks(void)566 void rcu_barrier_tasks(void)
567 {
568 /* There is only one callback queue, so this is easy. ;-) */
569 synchronize_rcu_tasks();
570 }
571 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
572
rcu_spawn_tasks_kthread(void)573 static int __init rcu_spawn_tasks_kthread(void)
574 {
575 rcu_tasks.gp_sleep = HZ / 10;
576 rcu_tasks.init_fract = 10;
577 rcu_tasks.pregp_func = rcu_tasks_pregp_step;
578 rcu_tasks.pertask_func = rcu_tasks_pertask;
579 rcu_tasks.postscan_func = rcu_tasks_postscan;
580 rcu_tasks.holdouts_func = check_all_holdout_tasks;
581 rcu_tasks.postgp_func = rcu_tasks_postgp;
582 rcu_spawn_tasks_kthread_generic(&rcu_tasks);
583 return 0;
584 }
585
586 #ifndef CONFIG_TINY_RCU
show_rcu_tasks_classic_gp_kthread(void)587 static void show_rcu_tasks_classic_gp_kthread(void)
588 {
589 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
590 }
591 #endif /* #ifndef CONFIG_TINY_RCU */
592
593 /*
594 * Contribute to protect against tasklist scan blind spot while the
595 * task is exiting and may be removed from the tasklist. See
596 * corresponding synchronize_srcu() for further details.
597 */
exit_tasks_rcu_start(void)598 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
599 {
600 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
601 }
602
603 /*
604 * Contribute to protect against tasklist scan blind spot while the
605 * task is exiting and may be removed from the tasklist. See
606 * corresponding synchronize_srcu() for further details.
607 */
exit_tasks_rcu_stop(void)608 void exit_tasks_rcu_stop(void) __releases(&tasks_rcu_exit_srcu)
609 {
610 struct task_struct *t = current;
611
612 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
613 }
614
615 /*
616 * Contribute to protect against tasklist scan blind spot while the
617 * task is exiting and may be removed from the tasklist. See
618 * corresponding synchronize_srcu() for further details.
619 */
exit_tasks_rcu_finish(void)620 void exit_tasks_rcu_finish(void)
621 {
622 exit_tasks_rcu_stop();
623 exit_tasks_rcu_finish_trace(current);
624 }
625
626 #else /* #ifdef CONFIG_TASKS_RCU */
show_rcu_tasks_classic_gp_kthread(void)627 static inline void show_rcu_tasks_classic_gp_kthread(void) { }
exit_tasks_rcu_start(void)628 void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_stop(void)629 void exit_tasks_rcu_stop(void) { }
exit_tasks_rcu_finish(void)630 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
631 #endif /* #else #ifdef CONFIG_TASKS_RCU */
632
633 #ifdef CONFIG_TASKS_RUDE_RCU
634
635 ////////////////////////////////////////////////////////////////////////
636 //
637 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
638 // passing an empty function to schedule_on_each_cpu(). This approach
639 // provides an asynchronous call_rcu_tasks_rude() API and batching
640 // of concurrent calls to the synchronous synchronize_rcu_rude() API.
641 // This sends IPIs far and wide and induces otherwise unnecessary context
642 // switches on all online CPUs, whether idle or not.
643
644 // Empty function to allow workqueues to force a context switch.
rcu_tasks_be_rude(struct work_struct * work)645 static void rcu_tasks_be_rude(struct work_struct *work)
646 {
647 }
648
649 // Wait for one rude RCU-tasks grace period.
rcu_tasks_rude_wait_gp(struct rcu_tasks * rtp)650 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
651 {
652 rtp->n_ipis += cpumask_weight(cpu_online_mask);
653 schedule_on_each_cpu(rcu_tasks_be_rude);
654 }
655
656 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
657 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
658 "RCU Tasks Rude");
659
660 /**
661 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
662 * @rhp: structure to be used for queueing the RCU updates.
663 * @func: actual callback function to be invoked after the grace period
664 *
665 * The callback function will be invoked some time after a full grace
666 * period elapses, in other words after all currently executing RCU
667 * read-side critical sections have completed. call_rcu_tasks_rude()
668 * assumes that the read-side critical sections end at context switch,
669 * cond_resched_rcu_qs(), or transition to usermode execution. As such,
670 * there are no read-side primitives analogous to rcu_read_lock() and
671 * rcu_read_unlock() because this primitive is intended to determine
672 * that all tasks have passed through a safe state, not so much for
673 * data-strcuture synchronization.
674 *
675 * See the description of call_rcu() for more detailed information on
676 * memory ordering guarantees.
677 */
call_rcu_tasks_rude(struct rcu_head * rhp,rcu_callback_t func)678 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
679 {
680 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
681 }
682 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
683
684 /**
685 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
686 *
687 * Control will return to the caller some time after a rude rcu-tasks
688 * grace period has elapsed, in other words after all currently
689 * executing rcu-tasks read-side critical sections have elapsed. These
690 * read-side critical sections are delimited by calls to schedule(),
691 * cond_resched_tasks_rcu_qs(), userspace execution, and (in theory,
692 * anyway) cond_resched().
693 *
694 * This is a very specialized primitive, intended only for a few uses in
695 * tracing and other situations requiring manipulation of function preambles
696 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not
697 * (yet) intended for heavy use from multiple CPUs.
698 *
699 * See the description of synchronize_rcu() for more detailed information
700 * on memory ordering guarantees.
701 */
synchronize_rcu_tasks_rude(void)702 void synchronize_rcu_tasks_rude(void)
703 {
704 synchronize_rcu_tasks_generic(&rcu_tasks_rude);
705 }
706 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
707
708 /**
709 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
710 *
711 * Although the current implementation is guaranteed to wait, it is not
712 * obligated to, for example, if there are no pending callbacks.
713 */
rcu_barrier_tasks_rude(void)714 void rcu_barrier_tasks_rude(void)
715 {
716 /* There is only one callback queue, so this is easy. ;-) */
717 synchronize_rcu_tasks_rude();
718 }
719 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
720
rcu_spawn_tasks_rude_kthread(void)721 static int __init rcu_spawn_tasks_rude_kthread(void)
722 {
723 rcu_tasks_rude.gp_sleep = HZ / 10;
724 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
725 return 0;
726 }
727
728 #ifndef CONFIG_TINY_RCU
show_rcu_tasks_rude_gp_kthread(void)729 static void show_rcu_tasks_rude_gp_kthread(void)
730 {
731 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
732 }
733 #endif /* #ifndef CONFIG_TINY_RCU */
734
735 #else /* #ifdef CONFIG_TASKS_RUDE_RCU */
show_rcu_tasks_rude_gp_kthread(void)736 static void show_rcu_tasks_rude_gp_kthread(void) {}
737 #endif /* #else #ifdef CONFIG_TASKS_RUDE_RCU */
738
739 ////////////////////////////////////////////////////////////////////////
740 //
741 // Tracing variant of Tasks RCU. This variant is designed to be used
742 // to protect tracing hooks, including those of BPF. This variant
743 // therefore:
744 //
745 // 1. Has explicit read-side markers to allow finite grace periods
746 // in the face of in-kernel loops for PREEMPT=n builds.
747 //
748 // 2. Protects code in the idle loop, exception entry/exit, and
749 // CPU-hotplug code paths, similar to the capabilities of SRCU.
750 //
751 // 3. Avoids expensive read-side instruction, having overhead similar
752 // to that of Preemptible RCU.
753 //
754 // There are of course downsides. The grace-period code can send IPIs to
755 // CPUs, even when those CPUs are in the idle loop or in nohz_full userspace.
756 // It is necessary to scan the full tasklist, much as for Tasks RCU. There
757 // is a single callback queue guarded by a single lock, again, much as for
758 // Tasks RCU. If needed, these downsides can be at least partially remedied.
759 //
760 // Perhaps most important, this variant of RCU does not affect the vanilla
761 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
762 // readers can operate from idle, offline, and exception entry/exit in no
763 // way allows rcu_preempt and rcu_sched readers to also do so.
764
765 // The lockdep state must be outside of #ifdef to be useful.
766 #ifdef CONFIG_DEBUG_LOCK_ALLOC
767 static struct lock_class_key rcu_lock_trace_key;
768 struct lockdep_map rcu_trace_lock_map =
769 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
770 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
771 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
772
773 #ifdef CONFIG_TASKS_TRACE_RCU
774
775 static atomic_t trc_n_readers_need_end; // Number of waited-for readers.
776 static DECLARE_WAIT_QUEUE_HEAD(trc_wait); // List of holdout tasks.
777
778 // Record outstanding IPIs to each CPU. No point in sending two...
779 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
780
781 // The number of detections of task quiescent state relying on
782 // heavyweight readers executing explicit memory barriers.
783 static unsigned long n_heavy_reader_attempts;
784 static unsigned long n_heavy_reader_updates;
785 static unsigned long n_heavy_reader_ofl_updates;
786
787 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
788 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
789 "RCU Tasks Trace");
790
791 /*
792 * This irq_work handler allows rcu_read_unlock_trace() to be invoked
793 * while the scheduler locks are held.
794 */
rcu_read_unlock_iw(struct irq_work * iwp)795 static void rcu_read_unlock_iw(struct irq_work *iwp)
796 {
797 wake_up(&trc_wait);
798 }
799 static DEFINE_IRQ_WORK(rcu_tasks_trace_iw, rcu_read_unlock_iw);
800
801 /* If we are the last reader, wake up the grace-period kthread. */
rcu_read_unlock_trace_special(struct task_struct * t,int nesting)802 void rcu_read_unlock_trace_special(struct task_struct *t, int nesting)
803 {
804 int nq = READ_ONCE(t->trc_reader_special.b.need_qs);
805
806 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) &&
807 t->trc_reader_special.b.need_mb)
808 smp_mb(); // Pairs with update-side barriers.
809 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
810 if (nq)
811 WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
812 WRITE_ONCE(t->trc_reader_nesting, nesting);
813 if (nq && atomic_dec_and_test(&trc_n_readers_need_end))
814 irq_work_queue(&rcu_tasks_trace_iw);
815 }
816 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
817
818 /* Add a task to the holdout list, if it is not already on the list. */
trc_add_holdout(struct task_struct * t,struct list_head * bhp)819 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
820 {
821 if (list_empty(&t->trc_holdout_list)) {
822 get_task_struct(t);
823 list_add(&t->trc_holdout_list, bhp);
824 }
825 }
826
827 /* Remove a task from the holdout list, if it is in fact present. */
trc_del_holdout(struct task_struct * t)828 static void trc_del_holdout(struct task_struct *t)
829 {
830 if (!list_empty(&t->trc_holdout_list)) {
831 list_del_init(&t->trc_holdout_list);
832 put_task_struct(t);
833 }
834 }
835
836 /* IPI handler to check task state. */
trc_read_check_handler(void * t_in)837 static void trc_read_check_handler(void *t_in)
838 {
839 struct task_struct *t = current;
840 struct task_struct *texp = t_in;
841
842 // If the task is no longer running on this CPU, leave.
843 if (unlikely(texp != t)) {
844 goto reset_ipi; // Already on holdout list, so will check later.
845 }
846
847 // If the task is not in a read-side critical section, and
848 // if this is the last reader, awaken the grace-period kthread.
849 if (likely(!READ_ONCE(t->trc_reader_nesting))) {
850 WRITE_ONCE(t->trc_reader_checked, true);
851 goto reset_ipi;
852 }
853 // If we are racing with an rcu_read_unlock_trace(), try again later.
854 if (unlikely(READ_ONCE(t->trc_reader_nesting) < 0))
855 goto reset_ipi;
856 WRITE_ONCE(t->trc_reader_checked, true);
857
858 // Get here if the task is in a read-side critical section. Set
859 // its state so that it will awaken the grace-period kthread upon
860 // exit from that critical section.
861 atomic_inc(&trc_n_readers_need_end); // One more to wait on.
862 WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
863 WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
864
865 reset_ipi:
866 // Allow future IPIs to be sent on CPU and for task.
867 // Also order this IPI handler against any later manipulations of
868 // the intended task.
869 smp_store_release(&per_cpu(trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
870 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
871 }
872
873 /* Callback function for scheduler to check locked-down task. */
trc_inspect_reader(struct task_struct * t,void * arg)874 static bool trc_inspect_reader(struct task_struct *t, void *arg)
875 {
876 int cpu = task_cpu(t);
877 int nesting;
878 bool ofl = cpu_is_offline(cpu);
879
880 if (task_curr(t)) {
881 WARN_ON_ONCE(ofl && !is_idle_task(t));
882
883 // If no chance of heavyweight readers, do it the hard way.
884 if (!ofl && !IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
885 return false;
886
887 // If heavyweight readers are enabled on the remote task,
888 // we can inspect its state despite its currently running.
889 // However, we cannot safely change its state.
890 n_heavy_reader_attempts++;
891 if (!ofl && // Check for "running" idle tasks on offline CPUs.
892 !rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
893 return false; // No quiescent state, do it the hard way.
894 n_heavy_reader_updates++;
895 if (ofl)
896 n_heavy_reader_ofl_updates++;
897 nesting = 0;
898 } else {
899 // The task is not running, so C-language access is safe.
900 nesting = t->trc_reader_nesting;
901 }
902
903 // If not exiting a read-side critical section, mark as checked
904 // so that the grace-period kthread will remove it from the
905 // holdout list.
906 t->trc_reader_checked = nesting >= 0;
907 if (nesting <= 0)
908 return !nesting; // If in QS, done, otherwise try again later.
909
910 // The task is in a read-side critical section, so set up its
911 // state so that it will awaken the grace-period kthread upon exit
912 // from that critical section.
913 atomic_inc(&trc_n_readers_need_end); // One more to wait on.
914 WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs));
915 WRITE_ONCE(t->trc_reader_special.b.need_qs, true);
916 return true;
917 }
918
919 /* Attempt to extract the state for the specified task. */
trc_wait_for_one_reader(struct task_struct * t,struct list_head * bhp)920 static void trc_wait_for_one_reader(struct task_struct *t,
921 struct list_head *bhp)
922 {
923 int cpu;
924
925 // If a previous IPI is still in flight, let it complete.
926 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
927 return;
928
929 // The current task had better be in a quiescent state.
930 if (t == current) {
931 t->trc_reader_checked = true;
932 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
933 return;
934 }
935
936 // Attempt to nail down the task for inspection.
937 get_task_struct(t);
938 if (try_invoke_on_locked_down_task(t, trc_inspect_reader, NULL)) {
939 put_task_struct(t);
940 return;
941 }
942 put_task_struct(t);
943
944 // If currently running, send an IPI, either way, add to list.
945 trc_add_holdout(t, bhp);
946 if (task_curr(t) &&
947 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
948 // The task is currently running, so try IPIing it.
949 cpu = task_cpu(t);
950
951 // If there is already an IPI outstanding, let it happen.
952 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
953 return;
954
955 per_cpu(trc_ipi_to_cpu, cpu) = true;
956 t->trc_ipi_to_cpu = cpu;
957 rcu_tasks_trace.n_ipis++;
958 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
959 // Just in case there is some other reason for
960 // failure than the target CPU being offline.
961 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n",
962 __func__, cpu);
963 rcu_tasks_trace.n_ipis_fails++;
964 per_cpu(trc_ipi_to_cpu, cpu) = false;
965 t->trc_ipi_to_cpu = -1;
966 }
967 }
968 }
969
970 /* Initialize for a new RCU-tasks-trace grace period. */
rcu_tasks_trace_pregp_step(void)971 static void rcu_tasks_trace_pregp_step(void)
972 {
973 int cpu;
974
975 // Allow for fast-acting IPIs.
976 atomic_set(&trc_n_readers_need_end, 1);
977
978 // There shouldn't be any old IPIs, but...
979 for_each_possible_cpu(cpu)
980 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
981
982 // Disable CPU hotplug across the tasklist scan.
983 // This also waits for all readers in CPU-hotplug code paths.
984 cpus_read_lock();
985 }
986
987 /* Do first-round processing for the specified task. */
rcu_tasks_trace_pertask(struct task_struct * t,struct list_head * hop)988 static void rcu_tasks_trace_pertask(struct task_struct *t,
989 struct list_head *hop)
990 {
991 // During early boot when there is only the one boot CPU, there
992 // is no idle task for the other CPUs. Just return.
993 if (unlikely(t == NULL))
994 return;
995
996 WRITE_ONCE(t->trc_reader_special.b.need_qs, false);
997 WRITE_ONCE(t->trc_reader_checked, false);
998 t->trc_ipi_to_cpu = -1;
999 trc_wait_for_one_reader(t, hop);
1000 }
1001
1002 /*
1003 * Do intermediate processing between task and holdout scans and
1004 * pick up the idle tasks.
1005 */
rcu_tasks_trace_postscan(struct list_head * hop)1006 static void rcu_tasks_trace_postscan(struct list_head *hop)
1007 {
1008 int cpu;
1009
1010 for_each_possible_cpu(cpu)
1011 rcu_tasks_trace_pertask(idle_task(cpu), hop);
1012
1013 // Re-enable CPU hotplug now that the tasklist scan has completed.
1014 cpus_read_unlock();
1015
1016 // Wait for late-stage exiting tasks to finish exiting.
1017 // These might have passed the call to exit_tasks_rcu_finish().
1018 synchronize_rcu();
1019 // Any tasks that exit after this point will set ->trc_reader_checked.
1020 }
1021
1022 /* Show the state of a task stalling the current RCU tasks trace GP. */
show_stalled_task_trace(struct task_struct * t,bool * firstreport)1023 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1024 {
1025 int cpu;
1026
1027 if (*firstreport) {
1028 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1029 *firstreport = false;
1030 }
1031 // FIXME: This should attempt to use try_invoke_on_nonrunning_task().
1032 cpu = task_cpu(t);
1033 pr_alert("P%d: %c%c%c nesting: %d%c cpu: %d\n",
1034 t->pid,
1035 ".I"[READ_ONCE(t->trc_ipi_to_cpu) > 0],
1036 ".i"[is_idle_task(t)],
1037 ".N"[cpu > 0 && tick_nohz_full_cpu(cpu)],
1038 READ_ONCE(t->trc_reader_nesting),
1039 " N"[!!READ_ONCE(t->trc_reader_special.b.need_qs)],
1040 cpu);
1041 sched_show_task(t);
1042 }
1043
1044 /* List stalled IPIs for RCU tasks trace. */
show_stalled_ipi_trace(void)1045 static void show_stalled_ipi_trace(void)
1046 {
1047 int cpu;
1048
1049 for_each_possible_cpu(cpu)
1050 if (per_cpu(trc_ipi_to_cpu, cpu))
1051 pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1052 }
1053
1054 /* Do one scan of the holdout list. */
check_all_holdout_tasks_trace(struct list_head * hop,bool needreport,bool * firstreport)1055 static void check_all_holdout_tasks_trace(struct list_head *hop,
1056 bool needreport, bool *firstreport)
1057 {
1058 struct task_struct *g, *t;
1059
1060 // Disable CPU hotplug across the holdout list scan.
1061 cpus_read_lock();
1062
1063 list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1064 // If safe and needed, try to check the current task.
1065 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1066 !READ_ONCE(t->trc_reader_checked))
1067 trc_wait_for_one_reader(t, hop);
1068
1069 // If check succeeded, remove this task from the list.
1070 if (READ_ONCE(t->trc_reader_checked))
1071 trc_del_holdout(t);
1072 else if (needreport)
1073 show_stalled_task_trace(t, firstreport);
1074 }
1075
1076 // Re-enable CPU hotplug now that the holdout list scan has completed.
1077 cpus_read_unlock();
1078
1079 if (needreport) {
1080 if (firstreport)
1081 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1082 show_stalled_ipi_trace();
1083 }
1084 }
1085
rcu_tasks_trace_empty_fn(void * unused)1086 static void rcu_tasks_trace_empty_fn(void *unused)
1087 {
1088 }
1089
1090 /* Wait for grace period to complete and provide ordering. */
rcu_tasks_trace_postgp(struct rcu_tasks * rtp)1091 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1092 {
1093 int cpu;
1094 bool firstreport;
1095 struct task_struct *g, *t;
1096 LIST_HEAD(holdouts);
1097 long ret;
1098
1099 // Wait for any lingering IPI handlers to complete. Note that
1100 // if a CPU has gone offline or transitioned to userspace in the
1101 // meantime, all IPI handlers should have been drained beforehand.
1102 // Yes, this assumes that CPUs process IPIs in order. If that ever
1103 // changes, there will need to be a recheck and/or timed wait.
1104 for_each_online_cpu(cpu)
1105 if (smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu)))
1106 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1107
1108 // Remove the safety count.
1109 smp_mb__before_atomic(); // Order vs. earlier atomics
1110 atomic_dec(&trc_n_readers_need_end);
1111 smp_mb__after_atomic(); // Order vs. later atomics
1112
1113 // Wait for readers.
1114 set_tasks_gp_state(rtp, RTGS_WAIT_READERS);
1115 for (;;) {
1116 ret = wait_event_idle_exclusive_timeout(
1117 trc_wait,
1118 atomic_read(&trc_n_readers_need_end) == 0,
1119 READ_ONCE(rcu_task_stall_timeout));
1120 if (ret)
1121 break; // Count reached zero.
1122 // Stall warning time, so make a list of the offenders.
1123 rcu_read_lock();
1124 for_each_process_thread(g, t)
1125 if (READ_ONCE(t->trc_reader_special.b.need_qs))
1126 trc_add_holdout(t, &holdouts);
1127 rcu_read_unlock();
1128 firstreport = true;
1129 list_for_each_entry_safe(t, g, &holdouts, trc_holdout_list) {
1130 if (READ_ONCE(t->trc_reader_special.b.need_qs))
1131 show_stalled_task_trace(t, &firstreport);
1132 trc_del_holdout(t); // Release task_struct reference.
1133 }
1134 if (firstreport)
1135 pr_err("INFO: rcu_tasks_trace detected stalls? (Counter/taskslist mismatch?)\n");
1136 show_stalled_ipi_trace();
1137 pr_err("\t%d holdouts\n", atomic_read(&trc_n_readers_need_end));
1138 }
1139 smp_mb(); // Caller's code must be ordered after wakeup.
1140 // Pairs with pretty much every ordering primitive.
1141 }
1142
1143 /* Report any needed quiescent state for this exiting task. */
exit_tasks_rcu_finish_trace(struct task_struct * t)1144 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1145 {
1146 WRITE_ONCE(t->trc_reader_checked, true);
1147 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1148 WRITE_ONCE(t->trc_reader_nesting, 0);
1149 if (WARN_ON_ONCE(READ_ONCE(t->trc_reader_special.b.need_qs)))
1150 rcu_read_unlock_trace_special(t, 0);
1151 }
1152
1153 /**
1154 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1155 * @rhp: structure to be used for queueing the RCU updates.
1156 * @func: actual callback function to be invoked after the grace period
1157 *
1158 * The callback function will be invoked some time after a full grace
1159 * period elapses, in other words after all currently executing RCU
1160 * read-side critical sections have completed. call_rcu_tasks_trace()
1161 * assumes that the read-side critical sections end at context switch,
1162 * cond_resched_rcu_qs(), or transition to usermode execution. As such,
1163 * there are no read-side primitives analogous to rcu_read_lock() and
1164 * rcu_read_unlock() because this primitive is intended to determine
1165 * that all tasks have passed through a safe state, not so much for
1166 * data-strcuture synchronization.
1167 *
1168 * See the description of call_rcu() for more detailed information on
1169 * memory ordering guarantees.
1170 */
call_rcu_tasks_trace(struct rcu_head * rhp,rcu_callback_t func)1171 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1172 {
1173 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1174 }
1175 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1176
1177 /**
1178 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1179 *
1180 * Control will return to the caller some time after a trace rcu-tasks
1181 * grace period has elapsed, in other words after all currently executing
1182 * rcu-tasks read-side critical sections have elapsed. These read-side
1183 * critical sections are delimited by calls to rcu_read_lock_trace()
1184 * and rcu_read_unlock_trace().
1185 *
1186 * This is a very specialized primitive, intended only for a few uses in
1187 * tracing and other situations requiring manipulation of function preambles
1188 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not
1189 * (yet) intended for heavy use from multiple CPUs.
1190 *
1191 * See the description of synchronize_rcu() for more detailed information
1192 * on memory ordering guarantees.
1193 */
synchronize_rcu_tasks_trace(void)1194 void synchronize_rcu_tasks_trace(void)
1195 {
1196 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1197 synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1198 }
1199 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1200
1201 /**
1202 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1203 *
1204 * Although the current implementation is guaranteed to wait, it is not
1205 * obligated to, for example, if there are no pending callbacks.
1206 */
rcu_barrier_tasks_trace(void)1207 void rcu_barrier_tasks_trace(void)
1208 {
1209 /* There is only one callback queue, so this is easy. ;-) */
1210 synchronize_rcu_tasks_trace();
1211 }
1212 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1213
rcu_spawn_tasks_trace_kthread(void)1214 static int __init rcu_spawn_tasks_trace_kthread(void)
1215 {
1216 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1217 rcu_tasks_trace.gp_sleep = HZ / 10;
1218 rcu_tasks_trace.init_fract = 10;
1219 } else {
1220 rcu_tasks_trace.gp_sleep = HZ / 200;
1221 if (rcu_tasks_trace.gp_sleep <= 0)
1222 rcu_tasks_trace.gp_sleep = 1;
1223 rcu_tasks_trace.init_fract = HZ / 5;
1224 if (rcu_tasks_trace.init_fract <= 0)
1225 rcu_tasks_trace.init_fract = 1;
1226 }
1227 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1228 rcu_tasks_trace.pertask_func = rcu_tasks_trace_pertask;
1229 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1230 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1231 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1232 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1233 return 0;
1234 }
1235
1236 #ifndef CONFIG_TINY_RCU
show_rcu_tasks_trace_gp_kthread(void)1237 static void show_rcu_tasks_trace_gp_kthread(void)
1238 {
1239 char buf[64];
1240
1241 sprintf(buf, "N%d h:%lu/%lu/%lu", atomic_read(&trc_n_readers_need_end),
1242 data_race(n_heavy_reader_ofl_updates),
1243 data_race(n_heavy_reader_updates),
1244 data_race(n_heavy_reader_attempts));
1245 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1246 }
1247 #endif /* #ifndef CONFIG_TINY_RCU */
1248
1249 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
exit_tasks_rcu_finish_trace(struct task_struct * t)1250 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
show_rcu_tasks_trace_gp_kthread(void)1251 static inline void show_rcu_tasks_trace_gp_kthread(void) {}
1252 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1253
1254 #ifndef CONFIG_TINY_RCU
show_rcu_tasks_gp_kthreads(void)1255 void show_rcu_tasks_gp_kthreads(void)
1256 {
1257 show_rcu_tasks_classic_gp_kthread();
1258 show_rcu_tasks_rude_gp_kthread();
1259 show_rcu_tasks_trace_gp_kthread();
1260 }
1261 #endif /* #ifndef CONFIG_TINY_RCU */
1262
rcu_init_tasks_generic(void)1263 void __init rcu_init_tasks_generic(void)
1264 {
1265 #ifdef CONFIG_TASKS_RCU
1266 rcu_spawn_tasks_kthread();
1267 #endif
1268
1269 #ifdef CONFIG_TASKS_RUDE_RCU
1270 rcu_spawn_tasks_rude_kthread();
1271 #endif
1272
1273 #ifdef CONFIG_TASKS_TRACE_RCU
1274 rcu_spawn_tasks_trace_kthread();
1275 #endif
1276 }
1277
1278 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
rcu_tasks_bootup_oddness(void)1279 static inline void rcu_tasks_bootup_oddness(void) {}
show_rcu_tasks_gp_kthreads(void)1280 void show_rcu_tasks_gp_kthreads(void) {}
1281 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
1282