1 //==- llvm/CodeGen/MachineDominators.h - Machine Dom Calculation -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines classes mirroring those in llvm/Analysis/Dominators.h,
10 // but for target-specific code rather than target-independent IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #ifndef LLVM_CODEGEN_MACHINEDOMINATORS_H
15 #define LLVM_CODEGEN_MACHINEDOMINATORS_H
16
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/CodeGen/MachineBasicBlock.h"
20 #include "llvm/CodeGen/MachineFunctionPass.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/Support/GenericDomTree.h"
23 #include "llvm/Support/GenericDomTreeConstruction.h"
24 #include <cassert>
25 #include <memory>
26 #include <vector>
27
28 namespace llvm {
29
30 template <>
addRoot(MachineBasicBlock * MBB)31 inline void DominatorTreeBase<MachineBasicBlock, false>::addRoot(
32 MachineBasicBlock *MBB) {
33 this->Roots.push_back(MBB);
34 }
35
36 extern template class DomTreeNodeBase<MachineBasicBlock>;
37 extern template class DominatorTreeBase<MachineBasicBlock, false>; // DomTree
38 extern template class DominatorTreeBase<MachineBasicBlock, true>; // PostDomTree
39
40 using MachineDomTreeNode = DomTreeNodeBase<MachineBasicBlock>;
41
42 //===-------------------------------------
43 /// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
44 /// compute a normal dominator tree.
45 ///
46 class MachineDominatorTree : public MachineFunctionPass {
47 using DomTreeT = DomTreeBase<MachineBasicBlock>;
48
49 /// Helper structure used to hold all the basic blocks
50 /// involved in the split of a critical edge.
51 struct CriticalEdge {
52 MachineBasicBlock *FromBB;
53 MachineBasicBlock *ToBB;
54 MachineBasicBlock *NewBB;
55 };
56
57 /// Pile up all the critical edges to be split.
58 /// The splitting of a critical edge is local and thus, it is possible
59 /// to apply several of those changes at the same time.
60 mutable SmallVector<CriticalEdge, 32> CriticalEdgesToSplit;
61
62 /// Remember all the basic blocks that are inserted during
63 /// edge splitting.
64 /// Invariant: NewBBs == all the basic blocks contained in the NewBB
65 /// field of all the elements of CriticalEdgesToSplit.
66 /// I.e., forall elt in CriticalEdgesToSplit, it exists BB in NewBBs
67 /// such as BB == elt.NewBB.
68 mutable SmallSet<MachineBasicBlock *, 32> NewBBs;
69
70 /// The DominatorTreeBase that is used to compute a normal dominator tree.
71 std::unique_ptr<DomTreeT> DT;
72
73 /// Apply all the recorded critical edges to the DT.
74 /// This updates the underlying DT information in a way that uses
75 /// the fast query path of DT as much as possible.
76 ///
77 /// \post CriticalEdgesToSplit.empty().
78 void applySplitCriticalEdges() const;
79
80 public:
81 static char ID; // Pass ID, replacement for typeid
82
83 MachineDominatorTree();
MachineDominatorTree(MachineFunction & MF)84 explicit MachineDominatorTree(MachineFunction &MF) : MachineFunctionPass(ID) {
85 calculate(MF);
86 }
87
getBase()88 DomTreeT &getBase() {
89 if (!DT) DT.reset(new DomTreeT());
90 applySplitCriticalEdges();
91 return *DT;
92 }
93
94 void getAnalysisUsage(AnalysisUsage &AU) const override;
95
96 /// getRoots - Return the root blocks of the current CFG. This may include
97 /// multiple blocks if we are computing post dominators. For forward
98 /// dominators, this will always be a single block (the entry node).
99 ///
getRoots()100 const SmallVectorImpl<MachineBasicBlock*> &getRoots() const {
101 applySplitCriticalEdges();
102 return DT->getRoots();
103 }
104
getRoot()105 MachineBasicBlock *getRoot() const {
106 applySplitCriticalEdges();
107 return DT->getRoot();
108 }
109
getRootNode()110 MachineDomTreeNode *getRootNode() const {
111 applySplitCriticalEdges();
112 return DT->getRootNode();
113 }
114
115 bool runOnMachineFunction(MachineFunction &F) override;
116
117 void calculate(MachineFunction &F);
118
dominates(const MachineDomTreeNode * A,const MachineDomTreeNode * B)119 bool dominates(const MachineDomTreeNode *A,
120 const MachineDomTreeNode *B) const {
121 applySplitCriticalEdges();
122 return DT->dominates(A, B);
123 }
124
dominates(const MachineBasicBlock * A,const MachineBasicBlock * B)125 bool dominates(const MachineBasicBlock *A, const MachineBasicBlock *B) const {
126 applySplitCriticalEdges();
127 return DT->dominates(A, B);
128 }
129
130 // dominates - Return true if A dominates B. This performs the
131 // special checks necessary if A and B are in the same basic block.
dominates(const MachineInstr * A,const MachineInstr * B)132 bool dominates(const MachineInstr *A, const MachineInstr *B) const {
133 applySplitCriticalEdges();
134 const MachineBasicBlock *BBA = A->getParent(), *BBB = B->getParent();
135 if (BBA != BBB) return DT->dominates(BBA, BBB);
136
137 // Loop through the basic block until we find A or B.
138 MachineBasicBlock::const_iterator I = BBA->begin();
139 for (; &*I != A && &*I != B; ++I)
140 /*empty*/ ;
141
142 return &*I == A;
143 }
144
properlyDominates(const MachineDomTreeNode * A,const MachineDomTreeNode * B)145 bool properlyDominates(const MachineDomTreeNode *A,
146 const MachineDomTreeNode *B) const {
147 applySplitCriticalEdges();
148 return DT->properlyDominates(A, B);
149 }
150
properlyDominates(const MachineBasicBlock * A,const MachineBasicBlock * B)151 bool properlyDominates(const MachineBasicBlock *A,
152 const MachineBasicBlock *B) const {
153 applySplitCriticalEdges();
154 return DT->properlyDominates(A, B);
155 }
156
157 /// findNearestCommonDominator - Find nearest common dominator basic block
158 /// for basic block A and B. If there is no such block then return NULL.
findNearestCommonDominator(MachineBasicBlock * A,MachineBasicBlock * B)159 MachineBasicBlock *findNearestCommonDominator(MachineBasicBlock *A,
160 MachineBasicBlock *B) {
161 applySplitCriticalEdges();
162 return DT->findNearestCommonDominator(A, B);
163 }
164
165 MachineDomTreeNode *operator[](MachineBasicBlock *BB) const {
166 applySplitCriticalEdges();
167 return DT->getNode(BB);
168 }
169
170 /// getNode - return the (Post)DominatorTree node for the specified basic
171 /// block. This is the same as using operator[] on this class.
172 ///
getNode(MachineBasicBlock * BB)173 MachineDomTreeNode *getNode(MachineBasicBlock *BB) const {
174 applySplitCriticalEdges();
175 return DT->getNode(BB);
176 }
177
178 /// addNewBlock - Add a new node to the dominator tree information. This
179 /// creates a new node as a child of DomBB dominator node,linking it into
180 /// the children list of the immediate dominator.
addNewBlock(MachineBasicBlock * BB,MachineBasicBlock * DomBB)181 MachineDomTreeNode *addNewBlock(MachineBasicBlock *BB,
182 MachineBasicBlock *DomBB) {
183 applySplitCriticalEdges();
184 return DT->addNewBlock(BB, DomBB);
185 }
186
187 /// changeImmediateDominator - This method is used to update the dominator
188 /// tree information when a node's immediate dominator changes.
189 ///
changeImmediateDominator(MachineBasicBlock * N,MachineBasicBlock * NewIDom)190 void changeImmediateDominator(MachineBasicBlock *N,
191 MachineBasicBlock *NewIDom) {
192 applySplitCriticalEdges();
193 DT->changeImmediateDominator(N, NewIDom);
194 }
195
changeImmediateDominator(MachineDomTreeNode * N,MachineDomTreeNode * NewIDom)196 void changeImmediateDominator(MachineDomTreeNode *N,
197 MachineDomTreeNode *NewIDom) {
198 applySplitCriticalEdges();
199 DT->changeImmediateDominator(N, NewIDom);
200 }
201
202 /// eraseNode - Removes a node from the dominator tree. Block must not
203 /// dominate any other blocks. Removes node from its immediate dominator's
204 /// children list. Deletes dominator node associated with basic block BB.
eraseNode(MachineBasicBlock * BB)205 void eraseNode(MachineBasicBlock *BB) {
206 applySplitCriticalEdges();
207 DT->eraseNode(BB);
208 }
209
210 /// splitBlock - BB is split and now it has one successor. Update dominator
211 /// tree to reflect this change.
splitBlock(MachineBasicBlock * NewBB)212 void splitBlock(MachineBasicBlock* NewBB) {
213 applySplitCriticalEdges();
214 DT->splitBlock(NewBB);
215 }
216
217 /// isReachableFromEntry - Return true if A is dominated by the entry
218 /// block of the function containing it.
isReachableFromEntry(const MachineBasicBlock * A)219 bool isReachableFromEntry(const MachineBasicBlock *A) {
220 applySplitCriticalEdges();
221 return DT->isReachableFromEntry(A);
222 }
223
224 void releaseMemory() override;
225
226 void verifyAnalysis() const override;
227
228 void print(raw_ostream &OS, const Module*) const override;
229
230 /// Record that the critical edge (FromBB, ToBB) has been
231 /// split with NewBB.
232 /// This is best to use this method instead of directly update the
233 /// underlying information, because this helps mitigating the
234 /// number of time the DT information is invalidated.
235 ///
236 /// \note Do not use this method with regular edges.
237 ///
238 /// \note To benefit from the compile time improvement incurred by this
239 /// method, the users of this method have to limit the queries to the DT
240 /// interface between two edges splitting. In other words, they have to
241 /// pack the splitting of critical edges as much as possible.
recordSplitCriticalEdge(MachineBasicBlock * FromBB,MachineBasicBlock * ToBB,MachineBasicBlock * NewBB)242 void recordSplitCriticalEdge(MachineBasicBlock *FromBB,
243 MachineBasicBlock *ToBB,
244 MachineBasicBlock *NewBB) {
245 bool Inserted = NewBBs.insert(NewBB).second;
246 (void)Inserted;
247 assert(Inserted &&
248 "A basic block inserted via edge splitting cannot appear twice");
249 CriticalEdgesToSplit.push_back({FromBB, ToBB, NewBB});
250 }
251 };
252
253 //===-------------------------------------
254 /// DominatorTree GraphTraits specialization so the DominatorTree can be
255 /// iterable by generic graph iterators.
256 ///
257
258 template <class Node, class ChildIterator>
259 struct MachineDomTreeGraphTraitsBase {
260 using NodeRef = Node *;
261 using ChildIteratorType = ChildIterator;
262
getEntryNodeMachineDomTreeGraphTraitsBase263 static NodeRef getEntryNode(NodeRef N) { return N; }
child_beginMachineDomTreeGraphTraitsBase264 static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
child_endMachineDomTreeGraphTraitsBase265 static ChildIteratorType child_end(NodeRef N) { return N->end(); }
266 };
267
268 template <class T> struct GraphTraits;
269
270 template <>
271 struct GraphTraits<MachineDomTreeNode *>
272 : public MachineDomTreeGraphTraitsBase<MachineDomTreeNode,
273 MachineDomTreeNode::iterator> {};
274
275 template <>
276 struct GraphTraits<const MachineDomTreeNode *>
277 : public MachineDomTreeGraphTraitsBase<const MachineDomTreeNode,
278 MachineDomTreeNode::const_iterator> {
279 };
280
281 template <> struct GraphTraits<MachineDominatorTree*>
282 : public GraphTraits<MachineDomTreeNode *> {
283 static NodeRef getEntryNode(MachineDominatorTree *DT) {
284 return DT->getRootNode();
285 }
286 };
287
288 } // end namespace llvm
289
290 #endif // LLVM_CODEGEN_MACHINEDOMINATORS_H
291