• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * MPEG-4 ALS decoder
3  * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * MPEG-4 ALS decoder
25  * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26  */
27 
28 #include <inttypes.h>
29 
30 #include "avcodec.h"
31 #include "get_bits.h"
32 #include "unary.h"
33 #include "mpeg4audio.h"
34 #include "bgmc.h"
35 #include "bswapdsp.h"
36 #include "codec_internal.h"
37 #include "internal.h"
38 #include "mlz.h"
39 #include "libavutil/samplefmt.h"
40 #include "libavutil/crc.h"
41 #include "libavutil/softfloat_ieee754.h"
42 #include "libavutil/intfloat.h"
43 #include "libavutil/intreadwrite.h"
44 
45 #include <stdint.h>
46 
47 /** Rice parameters and corresponding index offsets for decoding the
48  *  indices of scaled PARCOR values. The table chosen is set globally
49  *  by the encoder and stored in ALSSpecificConfig.
50  */
51 static const int8_t parcor_rice_table[3][20][2] = {
52     { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
53       { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
54       { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
55       {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
56     { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
57       { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
58       {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
59       {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
60     { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
61       { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
62       {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
63       {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
64 };
65 
66 
67 /** Scaled PARCOR values used for the first two PARCOR coefficients.
68  *  To be indexed by the Rice coded indices.
69  *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
70  *  Actual values are divided by 32 in order to be stored in 16 bits.
71  */
72 static const int16_t parcor_scaled_values[] = {
73     -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
74     -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
75     -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
76     -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
77     -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
78      -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
79      -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
80      -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
81      -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
82      -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
83      -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
84      -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
85      -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
86      -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
87      -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
88      -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
89      -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
90      -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
91      -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
92      -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
93      -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
94      -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
95       -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
96        46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
97       143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
98       244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
99       349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
100       458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
101       571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
102       688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
103       810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
104       935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
105 };
106 
107 
108 /** Gain values of p(0) for long-term prediction.
109  *  To be indexed by the Rice coded indices.
110  */
111 static const uint8_t ltp_gain_values [4][4] = {
112     { 0,  8, 16,  24},
113     {32, 40, 48,  56},
114     {64, 70, 76,  82},
115     {88, 92, 96, 100}
116 };
117 
118 
119 /** Inter-channel weighting factors for multi-channel correlation.
120  *  To be indexed by the Rice coded indices.
121  */
122 static const int16_t mcc_weightings[] = {
123     204,  192,  179,  166,  153,  140,  128,  115,
124     102,   89,   76,   64,   51,   38,   25,   12,
125       0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
126    -102, -115, -128, -140, -153, -166, -179, -192
127 };
128 
129 
130 /** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
131  */
132 static const uint8_t tail_code[16][6] = {
133     { 74, 44, 25, 13,  7, 3},
134     { 68, 42, 24, 13,  7, 3},
135     { 58, 39, 23, 13,  7, 3},
136     {126, 70, 37, 19, 10, 5},
137     {132, 70, 37, 20, 10, 5},
138     {124, 70, 38, 20, 10, 5},
139     {120, 69, 37, 20, 11, 5},
140     {116, 67, 37, 20, 11, 5},
141     {108, 66, 36, 20, 10, 5},
142     {102, 62, 36, 20, 10, 5},
143     { 88, 58, 34, 19, 10, 5},
144     {162, 89, 49, 25, 13, 7},
145     {156, 87, 49, 26, 14, 7},
146     {150, 86, 47, 26, 14, 7},
147     {142, 84, 47, 26, 14, 7},
148     {131, 79, 46, 26, 14, 7}
149 };
150 
151 
152 enum RA_Flag {
153     RA_FLAG_NONE,
154     RA_FLAG_FRAMES,
155     RA_FLAG_HEADER
156 };
157 
158 
159 typedef struct ALSSpecificConfig {
160     uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
161     int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
162     int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
163     int msb_first;            ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
164     int frame_length;         ///< frame length for each frame (last frame may differ)
165     int ra_distance;          ///< distance between RA frames (in frames, 0...255)
166     enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
167     int adapt_order;          ///< adaptive order: 1 = on, 0 = off
168     int coef_table;           ///< table index of Rice code parameters
169     int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
170     int max_order;            ///< maximum prediction order (0..1023)
171     int block_switching;      ///< number of block switching levels
172     int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
173     int sb_part;              ///< sub-block partition
174     int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
175     int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
176     int chan_config;          ///< indicates that a chan_config_info field is present
177     int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
178     int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
179     int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
180     int *chan_pos;            ///< original channel positions
181     int crc_enabled;          ///< enable Cyclic Redundancy Checksum
182 } ALSSpecificConfig;
183 
184 
185 typedef struct ALSChannelData {
186     int stop_flag;
187     int master_channel;
188     int time_diff_flag;
189     int time_diff_sign;
190     int time_diff_index;
191     int weighting[6];
192 } ALSChannelData;
193 
194 
195 typedef struct ALSDecContext {
196     AVCodecContext *avctx;
197     ALSSpecificConfig sconf;
198     GetBitContext gb;
199     BswapDSPContext bdsp;
200     const AVCRC *crc_table;
201     uint32_t crc_org;               ///< CRC value of the original input data
202     uint32_t crc;                   ///< CRC value calculated from decoded data
203     unsigned int cur_frame_length;  ///< length of the current frame to decode
204     unsigned int frame_id;          ///< the frame ID / number of the current frame
205     unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
206     unsigned int cs_switch;         ///< if true, channel rearrangement is done
207     unsigned int num_blocks;        ///< number of blocks used in the current frame
208     unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
209     uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
210     int *bgmc_lut_status;           ///< pointer at lookup table status flags used for BGMC
211     int ltp_lag_length;             ///< number of bits used for ltp lag value
212     int *const_block;               ///< contains const_block flags for all channels
213     unsigned int *shift_lsbs;       ///< contains shift_lsbs flags for all channels
214     unsigned int *opt_order;        ///< contains opt_order flags for all channels
215     int *store_prev_samples;        ///< contains store_prev_samples flags for all channels
216     int *use_ltp;                   ///< contains use_ltp flags for all channels
217     int *ltp_lag;                   ///< contains ltp lag values for all channels
218     int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
219     int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
220     int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
221     int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
222     int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
223     int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
224     int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
225     ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
226     ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
227     int *reverted_channels;         ///< stores a flag for each reverted channel
228     int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
229     int32_t **raw_samples;          ///< decoded raw samples for each channel
230     int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
231     uint8_t *crc_buffer;            ///< buffer of byte order corrected samples used for CRC check
232     MLZ* mlz;                       ///< masked lz decompression structure
233     SoftFloat_IEEE754 *acf;         ///< contains common multiplier for all channels
234     int *last_acf_mantissa;         ///< contains the last acf mantissa data of common multiplier for all channels
235     int *shift_value;               ///< value by which the binary point is to be shifted for all channels
236     int *last_shift_value;          ///< contains last shift value for all channels
237     int **raw_mantissa;             ///< decoded mantissa bits of the difference signal
238     unsigned char *larray;          ///< buffer to store the output of masked lz decompression
239     int *nbits;                     ///< contains the number of bits to read for masked lz decompression for all samples
240     int highest_decoded_channel;
241 } ALSDecContext;
242 
243 
244 typedef struct ALSBlockData {
245     unsigned int block_length;      ///< number of samples within the block
246     unsigned int ra_block;          ///< if true, this is a random access block
247     int          *const_block;      ///< if true, this is a constant value block
248     int          js_blocks;         ///< true if this block contains a difference signal
249     unsigned int *shift_lsbs;       ///< shift of values for this block
250     unsigned int *opt_order;        ///< prediction order of this block
251     int          *store_prev_samples;///< if true, carryover samples have to be stored
252     int          *use_ltp;          ///< if true, long-term prediction is used
253     int          *ltp_lag;          ///< lag value for long-term prediction
254     int          *ltp_gain;         ///< gain values for ltp 5-tap filter
255     int32_t      *quant_cof;        ///< quantized parcor coefficients
256     int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
257     int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
258     int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
259     int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
260 } ALSBlockData;
261 
262 
dprint_specific_config(ALSDecContext * ctx)263 static av_cold void dprint_specific_config(ALSDecContext *ctx)
264 {
265 #ifdef DEBUG
266     AVCodecContext *avctx    = ctx->avctx;
267     ALSSpecificConfig *sconf = &ctx->sconf;
268 
269     ff_dlog(avctx, "resolution = %i\n",           sconf->resolution);
270     ff_dlog(avctx, "floating = %i\n",             sconf->floating);
271     ff_dlog(avctx, "frame_length = %i\n",         sconf->frame_length);
272     ff_dlog(avctx, "ra_distance = %i\n",          sconf->ra_distance);
273     ff_dlog(avctx, "ra_flag = %i\n",              sconf->ra_flag);
274     ff_dlog(avctx, "adapt_order = %i\n",          sconf->adapt_order);
275     ff_dlog(avctx, "coef_table = %i\n",           sconf->coef_table);
276     ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
277     ff_dlog(avctx, "max_order = %i\n",            sconf->max_order);
278     ff_dlog(avctx, "block_switching = %i\n",      sconf->block_switching);
279     ff_dlog(avctx, "bgmc = %i\n",                 sconf->bgmc);
280     ff_dlog(avctx, "sb_part = %i\n",              sconf->sb_part);
281     ff_dlog(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
282     ff_dlog(avctx, "mc_coding = %i\n",            sconf->mc_coding);
283     ff_dlog(avctx, "chan_config = %i\n",          sconf->chan_config);
284     ff_dlog(avctx, "chan_sort = %i\n",            sconf->chan_sort);
285     ff_dlog(avctx, "RLSLMS = %i\n",               sconf->rlslms);
286     ff_dlog(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
287 #endif
288 }
289 
290 
291 /** Read an ALSSpecificConfig from a buffer into the output struct.
292  */
read_specific_config(ALSDecContext * ctx)293 static av_cold int read_specific_config(ALSDecContext *ctx)
294 {
295     GetBitContext gb;
296     uint64_t ht_size;
297     int i, config_offset;
298     MPEG4AudioConfig m4ac = {0};
299     ALSSpecificConfig *sconf = &ctx->sconf;
300     AVCodecContext *avctx    = ctx->avctx;
301     uint32_t als_id, header_size, trailer_size;
302     int ret;
303 
304     if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
305         return ret;
306 
307     config_offset = avpriv_mpeg4audio_get_config2(&m4ac, avctx->extradata,
308                                                   avctx->extradata_size, 1, avctx);
309 
310     if (config_offset < 0)
311         return AVERROR_INVALIDDATA;
312 
313     skip_bits_long(&gb, config_offset);
314 
315     if (get_bits_left(&gb) < (30 << 3))
316         return AVERROR_INVALIDDATA;
317 
318     // read the fixed items
319     als_id                      = get_bits_long(&gb, 32);
320     avctx->sample_rate          = m4ac.sample_rate;
321     skip_bits_long(&gb, 32); // sample rate already known
322     sconf->samples              = get_bits_long(&gb, 32);
323 
324     if (avctx->ch_layout.nb_channels != m4ac.channels) {
325         av_channel_layout_uninit(&avctx->ch_layout);
326         avctx->ch_layout.order = AV_CHANNEL_ORDER_UNSPEC;
327         avctx->ch_layout.nb_channels = m4ac.channels;
328     }
329 
330     skip_bits(&gb, 16);      // number of channels already known
331     skip_bits(&gb, 3);       // skip file_type
332     sconf->resolution           = get_bits(&gb, 3);
333     sconf->floating             = get_bits1(&gb);
334     sconf->msb_first            = get_bits1(&gb);
335     sconf->frame_length         = get_bits(&gb, 16) + 1;
336     sconf->ra_distance          = get_bits(&gb, 8);
337     sconf->ra_flag              = get_bits(&gb, 2);
338     sconf->adapt_order          = get_bits1(&gb);
339     sconf->coef_table           = get_bits(&gb, 2);
340     sconf->long_term_prediction = get_bits1(&gb);
341     sconf->max_order            = get_bits(&gb, 10);
342     sconf->block_switching      = get_bits(&gb, 2);
343     sconf->bgmc                 = get_bits1(&gb);
344     sconf->sb_part              = get_bits1(&gb);
345     sconf->joint_stereo         = get_bits1(&gb);
346     sconf->mc_coding            = get_bits1(&gb);
347     sconf->chan_config          = get_bits1(&gb);
348     sconf->chan_sort            = get_bits1(&gb);
349     sconf->crc_enabled          = get_bits1(&gb);
350     sconf->rlslms               = get_bits1(&gb);
351     skip_bits(&gb, 5);       // skip 5 reserved bits
352     skip_bits1(&gb);         // skip aux_data_enabled
353 
354 
355     // check for ALSSpecificConfig struct
356     if (als_id != MKBETAG('A','L','S','\0'))
357         return AVERROR_INVALIDDATA;
358 
359     if (avctx->ch_layout.nb_channels > FF_SANE_NB_CHANNELS) {
360         avpriv_request_sample(avctx, "Huge number of channels");
361         return AVERROR_PATCHWELCOME;
362     }
363 
364     if (avctx->ch_layout.nb_channels == 0)
365         return AVERROR_INVALIDDATA;
366 
367     ctx->cur_frame_length = sconf->frame_length;
368 
369     // read channel config
370     if (sconf->chan_config)
371         sconf->chan_config_info = get_bits(&gb, 16);
372     // TODO: use this to set avctx->channel_layout
373 
374 
375     // read channel sorting
376     if (sconf->chan_sort && avctx->ch_layout.nb_channels > 1) {
377         int chan_pos_bits = av_ceil_log2(avctx->ch_layout.nb_channels);
378         int bits_needed  = avctx->ch_layout.nb_channels * chan_pos_bits + 7;
379         if (get_bits_left(&gb) < bits_needed)
380             return AVERROR_INVALIDDATA;
381 
382         if (!(sconf->chan_pos = av_malloc_array(avctx->ch_layout.nb_channels, sizeof(*sconf->chan_pos))))
383             return AVERROR(ENOMEM);
384 
385         ctx->cs_switch = 1;
386 
387         for (i = 0; i < avctx->ch_layout.nb_channels; i++) {
388             sconf->chan_pos[i] = -1;
389         }
390 
391         for (i = 0; i < avctx->ch_layout.nb_channels; i++) {
392             int idx;
393 
394             idx = get_bits(&gb, chan_pos_bits);
395             if (idx >= avctx->ch_layout.nb_channels || sconf->chan_pos[idx] != -1) {
396                 av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
397                 ctx->cs_switch = 0;
398                 break;
399             }
400             sconf->chan_pos[idx] = i;
401         }
402 
403         align_get_bits(&gb);
404     }
405 
406 
407     // read fixed header and trailer sizes,
408     // if size = 0xFFFFFFFF then there is no data field!
409     if (get_bits_left(&gb) < 64)
410         return AVERROR_INVALIDDATA;
411 
412     header_size  = get_bits_long(&gb, 32);
413     trailer_size = get_bits_long(&gb, 32);
414     if (header_size  == 0xFFFFFFFF)
415         header_size  = 0;
416     if (trailer_size == 0xFFFFFFFF)
417         trailer_size = 0;
418 
419     ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
420 
421 
422     // skip the header and trailer data
423     if (get_bits_left(&gb) < ht_size)
424         return AVERROR_INVALIDDATA;
425 
426     if (ht_size > INT32_MAX)
427         return AVERROR_PATCHWELCOME;
428 
429     skip_bits_long(&gb, ht_size);
430 
431 
432     // initialize CRC calculation
433     if (sconf->crc_enabled) {
434         if (get_bits_left(&gb) < 32)
435             return AVERROR_INVALIDDATA;
436 
437         if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
438             ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
439             ctx->crc       = 0xFFFFFFFF;
440             ctx->crc_org   = ~get_bits_long(&gb, 32);
441         } else
442             skip_bits_long(&gb, 32);
443     }
444 
445 
446     // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
447 
448     dprint_specific_config(ctx);
449 
450     return 0;
451 }
452 
453 
454 /** Check the ALSSpecificConfig for unsupported features.
455  */
check_specific_config(ALSDecContext * ctx)456 static int check_specific_config(ALSDecContext *ctx)
457 {
458     ALSSpecificConfig *sconf = &ctx->sconf;
459     int error = 0;
460 
461     // report unsupported feature and set error value
462     #define MISSING_ERR(cond, str, errval)              \
463     {                                                   \
464         if (cond) {                                     \
465             avpriv_report_missing_feature(ctx->avctx,   \
466                                           str);         \
467             error = errval;                             \
468         }                                               \
469     }
470 
471     MISSING_ERR(sconf->rlslms,    "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
472 
473     return error;
474 }
475 
476 
477 /** Parse the bs_info field to extract the block partitioning used in
478  *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
479  */
parse_bs_info(const uint32_t bs_info,unsigned int n,unsigned int div,unsigned int ** div_blocks,unsigned int * num_blocks)480 static void parse_bs_info(const uint32_t bs_info, unsigned int n,
481                           unsigned int div, unsigned int **div_blocks,
482                           unsigned int *num_blocks)
483 {
484     if (n < 31 && ((bs_info << n) & 0x40000000)) {
485         // if the level is valid and the investigated bit n is set
486         // then recursively check both children at bits (2n+1) and (2n+2)
487         n   *= 2;
488         div += 1;
489         parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
490         parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
491     } else {
492         // else the bit is not set or the last level has been reached
493         // (bit implicitly not set)
494         **div_blocks = div;
495         (*div_blocks)++;
496         (*num_blocks)++;
497     }
498 }
499 
500 
501 /** Read and decode a Rice codeword.
502  */
decode_rice(GetBitContext * gb,unsigned int k)503 static int32_t decode_rice(GetBitContext *gb, unsigned int k)
504 {
505     int max = get_bits_left(gb) - k;
506     unsigned q = get_unary(gb, 0, max);
507     int r   = k ? get_bits1(gb) : !(q & 1);
508 
509     if (k > 1) {
510         q <<= (k - 1);
511         q  += get_bits_long(gb, k - 1);
512     } else if (!k) {
513         q >>= 1;
514     }
515     return r ? q : ~q;
516 }
517 
518 
519 /** Convert PARCOR coefficient k to direct filter coefficient.
520  */
parcor_to_lpc(unsigned int k,const int32_t * par,int32_t * cof)521 static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
522 {
523     int i, j;
524 
525     for (i = 0, j = k - 1; i < j; i++, j--) {
526         unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
527         cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
528         cof[i]  += tmp1;
529     }
530     if (i == j)
531         cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
532 
533     cof[k] = par[k];
534 }
535 
536 
537 /** Read block switching field if necessary and set actual block sizes.
538  *  Also assure that the block sizes of the last frame correspond to the
539  *  actual number of samples.
540  */
get_block_sizes(ALSDecContext * ctx,unsigned int * div_blocks,uint32_t * bs_info)541 static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
542                             uint32_t *bs_info)
543 {
544     ALSSpecificConfig *sconf     = &ctx->sconf;
545     GetBitContext *gb            = &ctx->gb;
546     unsigned int *ptr_div_blocks = div_blocks;
547     unsigned int b;
548 
549     if (sconf->block_switching) {
550         unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
551         *bs_info = get_bits_long(gb, bs_info_len);
552         *bs_info <<= (32 - bs_info_len);
553     }
554 
555     ctx->num_blocks = 0;
556     parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
557 
558     // The last frame may have an overdetermined block structure given in
559     // the bitstream. In that case the defined block structure would need
560     // more samples than available to be consistent.
561     // The block structure is actually used but the block sizes are adapted
562     // to fit the actual number of available samples.
563     // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
564     // This results in the actual block sizes:    2 2 1 0.
565     // This is not specified in 14496-3 but actually done by the reference
566     // codec RM22 revision 2.
567     // This appears to happen in case of an odd number of samples in the last
568     // frame which is actually not allowed by the block length switching part
569     // of 14496-3.
570     // The ALS conformance files feature an odd number of samples in the last
571     // frame.
572 
573     for (b = 0; b < ctx->num_blocks; b++)
574         div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
575 
576     if (ctx->cur_frame_length != ctx->sconf.frame_length) {
577         unsigned int remaining = ctx->cur_frame_length;
578 
579         for (b = 0; b < ctx->num_blocks; b++) {
580             if (remaining <= div_blocks[b]) {
581                 div_blocks[b] = remaining;
582                 ctx->num_blocks = b + 1;
583                 break;
584             }
585 
586             remaining -= div_blocks[b];
587         }
588     }
589 }
590 
591 
592 /** Read the block data for a constant block
593  */
read_const_block_data(ALSDecContext * ctx,ALSBlockData * bd)594 static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
595 {
596     ALSSpecificConfig *sconf = &ctx->sconf;
597     AVCodecContext *avctx    = ctx->avctx;
598     GetBitContext *gb        = &ctx->gb;
599 
600     if (bd->block_length <= 0)
601         return AVERROR_INVALIDDATA;
602 
603     *bd->raw_samples = 0;
604     *bd->const_block = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
605     bd->js_blocks    = get_bits1(gb);
606 
607     // skip 5 reserved bits
608     skip_bits(gb, 5);
609 
610     if (*bd->const_block) {
611         unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
612         *bd->raw_samples = get_sbits_long(gb, const_val_bits);
613     }
614 
615     // ensure constant block decoding by reusing this field
616     *bd->const_block = 1;
617 
618     return 0;
619 }
620 
621 
622 /** Decode the block data for a constant block
623  */
decode_const_block_data(ALSDecContext * ctx,ALSBlockData * bd)624 static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
625 {
626     int      smp = bd->block_length - 1;
627     int32_t  val = *bd->raw_samples;
628     int32_t *dst = bd->raw_samples + 1;
629 
630     // write raw samples into buffer
631     for (; smp; smp--)
632         *dst++ = val;
633 }
634 
635 
636 /** Read the block data for a non-constant block
637  */
read_var_block_data(ALSDecContext * ctx,ALSBlockData * bd)638 static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
639 {
640     ALSSpecificConfig *sconf = &ctx->sconf;
641     AVCodecContext *avctx    = ctx->avctx;
642     GetBitContext *gb        = &ctx->gb;
643     unsigned int k;
644     unsigned int s[8];
645     unsigned int sx[8];
646     unsigned int sub_blocks, log2_sub_blocks, sb_length;
647     unsigned int start      = 0;
648     unsigned int opt_order;
649     int          sb;
650     int32_t      *quant_cof = bd->quant_cof;
651     int32_t      *current_res;
652 
653 
654     // ensure variable block decoding by reusing this field
655     *bd->const_block = 0;
656 
657     *bd->opt_order  = 1;
658     bd->js_blocks   = get_bits1(gb);
659 
660     opt_order       = *bd->opt_order;
661 
662     // determine the number of subblocks for entropy decoding
663     if (!sconf->bgmc && !sconf->sb_part) {
664         log2_sub_blocks = 0;
665     } else {
666         if (sconf->bgmc && sconf->sb_part)
667             log2_sub_blocks = get_bits(gb, 2);
668         else
669             log2_sub_blocks = 2 * get_bits1(gb);
670     }
671 
672     sub_blocks = 1 << log2_sub_blocks;
673 
674     // do not continue in case of a damaged stream since
675     // block_length must be evenly divisible by sub_blocks
676     if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) {
677         av_log(avctx, AV_LOG_WARNING,
678                "Block length is not evenly divisible by the number of subblocks.\n");
679         return AVERROR_INVALIDDATA;
680     }
681 
682     sb_length = bd->block_length >> log2_sub_blocks;
683 
684     if (sconf->bgmc) {
685         s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
686         for (k = 1; k < sub_blocks; k++)
687             s[k] = s[k - 1] + decode_rice(gb, 2);
688 
689         for (k = 0; k < sub_blocks; k++) {
690             sx[k]   = s[k] & 0x0F;
691             s [k] >>= 4;
692         }
693     } else {
694         s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
695         for (k = 1; k < sub_blocks; k++)
696             s[k] = s[k - 1] + decode_rice(gb, 0);
697     }
698     for (k = 1; k < sub_blocks; k++)
699         if (s[k] > 32) {
700             av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
701             return AVERROR_INVALIDDATA;
702         }
703 
704     if (get_bits1(gb))
705         *bd->shift_lsbs = get_bits(gb, 4) + 1;
706 
707     *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
708 
709 
710     if (!sconf->rlslms) {
711         if (sconf->adapt_order && sconf->max_order) {
712             int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
713                                                 2, sconf->max_order + 1));
714             *bd->opt_order       = get_bits(gb, opt_order_length);
715             if (*bd->opt_order > sconf->max_order) {
716                 *bd->opt_order = sconf->max_order;
717                 av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
718                 return AVERROR_INVALIDDATA;
719             }
720         } else {
721             *bd->opt_order = sconf->max_order;
722         }
723         opt_order = *bd->opt_order;
724 
725         if (opt_order) {
726             int add_base;
727 
728             if (sconf->coef_table == 3) {
729                 add_base = 0x7F;
730 
731                 // read coefficient 0
732                 quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
733 
734                 // read coefficient 1
735                 if (opt_order > 1)
736                     quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
737 
738                 // read coefficients 2 to opt_order
739                 for (k = 2; k < opt_order; k++)
740                     quant_cof[k] = get_bits(gb, 7);
741             } else {
742                 int k_max;
743                 add_base = 1;
744 
745                 // read coefficient 0 to 19
746                 k_max = FFMIN(opt_order, 20);
747                 for (k = 0; k < k_max; k++) {
748                     int rice_param = parcor_rice_table[sconf->coef_table][k][1];
749                     int offset     = parcor_rice_table[sconf->coef_table][k][0];
750                     quant_cof[k] = decode_rice(gb, rice_param) + offset;
751                     if (quant_cof[k] < -64 || quant_cof[k] > 63) {
752                         av_log(avctx, AV_LOG_ERROR,
753                                "quant_cof %"PRId32" is out of range.\n",
754                                quant_cof[k]);
755                         return AVERROR_INVALIDDATA;
756                     }
757                 }
758 
759                 // read coefficients 20 to 126
760                 k_max = FFMIN(opt_order, 127);
761                 for (; k < k_max; k++)
762                     quant_cof[k] = decode_rice(gb, 2) + (k & 1);
763 
764                 // read coefficients 127 to opt_order
765                 for (; k < opt_order; k++)
766                     quant_cof[k] = decode_rice(gb, 1);
767 
768                 quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
769 
770                 if (opt_order > 1)
771                     quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
772             }
773 
774             for (k = 2; k < opt_order; k++)
775                 quant_cof[k] = (quant_cof[k] * (1U << 14)) + (add_base << 13);
776         }
777     }
778 
779     // read LTP gain and lag values
780     if (sconf->long_term_prediction) {
781         *bd->use_ltp = get_bits1(gb);
782 
783         if (*bd->use_ltp) {
784             int r, c;
785 
786             bd->ltp_gain[0]   = decode_rice(gb, 1) * 8;
787             bd->ltp_gain[1]   = decode_rice(gb, 2) * 8;
788 
789             r                 = get_unary(gb, 0, 4);
790             c                 = get_bits(gb, 2);
791             if (r >= 4) {
792                 av_log(avctx, AV_LOG_ERROR, "r overflow\n");
793                 return AVERROR_INVALIDDATA;
794             }
795 
796             bd->ltp_gain[2]   = ltp_gain_values[r][c];
797 
798             bd->ltp_gain[3]   = decode_rice(gb, 2) * 8;
799             bd->ltp_gain[4]   = decode_rice(gb, 1) * 8;
800 
801             *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
802             *bd->ltp_lag     += FFMAX(4, opt_order + 1);
803         }
804     }
805 
806     // read first value and residuals in case of a random access block
807     if (bd->ra_block) {
808         start = FFMIN(opt_order, 3);
809         av_assert0(sb_length <= sconf->frame_length);
810         if (sb_length <= start) {
811             // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
812             av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
813             return AVERROR_PATCHWELCOME;
814         }
815 
816         if (opt_order)
817             bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
818         if (opt_order > 1)
819             bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
820         if (opt_order > 2)
821             bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
822     }
823 
824     // read all residuals
825     if (sconf->bgmc) {
826         int          delta[8];
827         unsigned int k    [8];
828         unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
829 
830         // read most significant bits
831         unsigned int high;
832         unsigned int low;
833         unsigned int value;
834 
835         int ret = ff_bgmc_decode_init(gb, &high, &low, &value);
836         if (ret < 0)
837             return ret;
838 
839         current_res = bd->raw_samples + start;
840 
841         for (sb = 0; sb < sub_blocks; sb++) {
842             unsigned int sb_len  = sb_length - (sb ? 0 : start);
843 
844             k    [sb] = s[sb] > b ? s[sb] - b : 0;
845             delta[sb] = 5 - s[sb] + k[sb];
846 
847             if (k[sb] >= 32)
848                 return AVERROR_INVALIDDATA;
849 
850             ff_bgmc_decode(gb, sb_len, current_res,
851                         delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
852 
853             current_res += sb_len;
854         }
855 
856         ff_bgmc_decode_end(gb);
857 
858 
859         // read least significant bits and tails
860         current_res = bd->raw_samples + start;
861 
862         for (sb = 0; sb < sub_blocks; sb++, start = 0) {
863             unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
864             unsigned int cur_k         = k[sb];
865             unsigned int cur_s         = s[sb];
866 
867             for (; start < sb_length; start++) {
868                 int32_t res = *current_res;
869 
870                 if (res == cur_tail_code) {
871                     unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
872                                           << (5 - delta[sb]);
873 
874                     res = decode_rice(gb, cur_s);
875 
876                     if (res >= 0) {
877                         res += (max_msb    ) << cur_k;
878                     } else {
879                         res -= (max_msb - 1) << cur_k;
880                     }
881                 } else {
882                     if (res > cur_tail_code)
883                         res--;
884 
885                     if (res & 1)
886                         res = -res;
887 
888                     res >>= 1;
889 
890                     if (cur_k) {
891                         res  *= 1U << cur_k;
892                         res  |= get_bits_long(gb, cur_k);
893                     }
894                 }
895 
896                 *current_res++ = res;
897             }
898         }
899     } else {
900         current_res = bd->raw_samples + start;
901 
902         for (sb = 0; sb < sub_blocks; sb++, start = 0)
903             for (; start < sb_length; start++)
904                 *current_res++ = decode_rice(gb, s[sb]);
905      }
906 
907     return 0;
908 }
909 
910 
911 /** Decode the block data for a non-constant block
912  */
decode_var_block_data(ALSDecContext * ctx,ALSBlockData * bd)913 static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
914 {
915     ALSSpecificConfig *sconf = &ctx->sconf;
916     unsigned int block_length = bd->block_length;
917     unsigned int smp = 0;
918     unsigned int k;
919     int opt_order             = *bd->opt_order;
920     int sb;
921     int64_t y;
922     int32_t *quant_cof        = bd->quant_cof;
923     int32_t *lpc_cof          = bd->lpc_cof;
924     int32_t *raw_samples      = bd->raw_samples;
925     int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
926     int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
927 
928     // reverse long-term prediction
929     if (*bd->use_ltp) {
930         int ltp_smp;
931 
932         for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
933             int center = ltp_smp - *bd->ltp_lag;
934             int begin  = FFMAX(0, center - 2);
935             int end    = center + 3;
936             int tab    = 5 - (end - begin);
937             int base;
938 
939             y = 1 << 6;
940 
941             for (base = begin; base < end; base++, tab++)
942                 y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]);
943 
944             raw_samples[ltp_smp] += y >> 7;
945         }
946     }
947 
948     // reconstruct all samples from residuals
949     if (bd->ra_block) {
950         for (smp = 0; smp < FFMIN(opt_order, block_length); smp++) {
951             y = 1 << 19;
952 
953             for (sb = 0; sb < smp; sb++)
954                 y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
955 
956             *raw_samples++ -= y >> 20;
957             parcor_to_lpc(smp, quant_cof, lpc_cof);
958         }
959     } else {
960         for (k = 0; k < opt_order; k++)
961             parcor_to_lpc(k, quant_cof, lpc_cof);
962 
963         // store previous samples in case that they have to be altered
964         if (*bd->store_prev_samples)
965             memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
966                    sizeof(*bd->prev_raw_samples) * sconf->max_order);
967 
968         // reconstruct difference signal for prediction (joint-stereo)
969         if (bd->js_blocks && bd->raw_other) {
970             uint32_t *left, *right;
971 
972             if (bd->raw_other > raw_samples) {  // D = R - L
973                 left  = raw_samples;
974                 right = bd->raw_other;
975             } else {                                // D = R - L
976                 left  = bd->raw_other;
977                 right = raw_samples;
978             }
979 
980             for (sb = -1; sb >= -sconf->max_order; sb--)
981                 raw_samples[sb] = right[sb] - left[sb];
982         }
983 
984         // reconstruct shifted signal
985         if (*bd->shift_lsbs)
986             for (sb = -1; sb >= -sconf->max_order; sb--)
987                 raw_samples[sb] >>= *bd->shift_lsbs;
988     }
989 
990     // reverse linear prediction coefficients for efficiency
991     lpc_cof = lpc_cof + opt_order;
992 
993     for (sb = 0; sb < opt_order; sb++)
994         lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
995 
996     // reconstruct raw samples
997     raw_samples = bd->raw_samples + smp;
998     lpc_cof     = lpc_cof_reversed + opt_order;
999 
1000     for (; raw_samples < raw_samples_end; raw_samples++) {
1001         y = 1 << 19;
1002 
1003         for (sb = -opt_order; sb < 0; sb++)
1004             y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]);
1005 
1006         *raw_samples -= y >> 20;
1007     }
1008 
1009     raw_samples = bd->raw_samples;
1010 
1011     // restore previous samples in case that they have been altered
1012     if (*bd->store_prev_samples)
1013         memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
1014                sizeof(*raw_samples) * sconf->max_order);
1015 
1016     return 0;
1017 }
1018 
1019 
1020 /** Read the block data.
1021  */
read_block(ALSDecContext * ctx,ALSBlockData * bd)1022 static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
1023 {
1024     int ret;
1025     GetBitContext *gb        = &ctx->gb;
1026     ALSSpecificConfig *sconf = &ctx->sconf;
1027 
1028     *bd->shift_lsbs = 0;
1029 
1030     if (get_bits_left(gb) < 7)
1031         return AVERROR_INVALIDDATA;
1032 
1033     // read block type flag and read the samples accordingly
1034     if (get_bits1(gb)) {
1035         ret = read_var_block_data(ctx, bd);
1036     } else {
1037         ret = read_const_block_data(ctx, bd);
1038     }
1039 
1040     if (!sconf->mc_coding || ctx->js_switch)
1041         align_get_bits(gb);
1042 
1043     return ret;
1044 }
1045 
1046 
1047 /** Decode the block data.
1048  */
decode_block(ALSDecContext * ctx,ALSBlockData * bd)1049 static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
1050 {
1051     unsigned int smp;
1052     int ret = 0;
1053 
1054     // read block type flag and read the samples accordingly
1055     if (*bd->const_block)
1056         decode_const_block_data(ctx, bd);
1057     else
1058         ret = decode_var_block_data(ctx, bd); // always return 0
1059 
1060     if (ret < 0)
1061         return ret;
1062 
1063     // TODO: read RLSLMS extension data
1064 
1065     if (*bd->shift_lsbs)
1066         for (smp = 0; smp < bd->block_length; smp++)
1067             bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
1068 
1069     return 0;
1070 }
1071 
1072 
1073 /** Read and decode block data successively.
1074  */
read_decode_block(ALSDecContext * ctx,ALSBlockData * bd)1075 static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
1076 {
1077     int ret;
1078 
1079     if ((ret = read_block(ctx, bd)) < 0)
1080         return ret;
1081 
1082     return decode_block(ctx, bd);
1083 }
1084 
1085 
1086 /** Compute the number of samples left to decode for the current frame and
1087  *  sets these samples to zero.
1088  */
zero_remaining(unsigned int b,unsigned int b_max,const unsigned int * div_blocks,int32_t * buf)1089 static void zero_remaining(unsigned int b, unsigned int b_max,
1090                            const unsigned int *div_blocks, int32_t *buf)
1091 {
1092     unsigned int count = 0;
1093 
1094     while (b < b_max)
1095         count += div_blocks[b++];
1096 
1097     if (count)
1098         memset(buf, 0, sizeof(*buf) * count);
1099 }
1100 
1101 
1102 /** Decode blocks independently.
1103  */
decode_blocks_ind(ALSDecContext * ctx,unsigned int ra_frame,unsigned int c,const unsigned int * div_blocks,unsigned int * js_blocks)1104 static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1105                              unsigned int c, const unsigned int *div_blocks,
1106                              unsigned int *js_blocks)
1107 {
1108     int ret;
1109     unsigned int b;
1110     ALSBlockData bd = { 0 };
1111 
1112     bd.ra_block         = ra_frame;
1113     bd.const_block      = ctx->const_block;
1114     bd.shift_lsbs       = ctx->shift_lsbs;
1115     bd.opt_order        = ctx->opt_order;
1116     bd.store_prev_samples = ctx->store_prev_samples;
1117     bd.use_ltp          = ctx->use_ltp;
1118     bd.ltp_lag          = ctx->ltp_lag;
1119     bd.ltp_gain         = ctx->ltp_gain[0];
1120     bd.quant_cof        = ctx->quant_cof[0];
1121     bd.lpc_cof          = ctx->lpc_cof[0];
1122     bd.prev_raw_samples = ctx->prev_raw_samples;
1123     bd.raw_samples      = ctx->raw_samples[c];
1124 
1125 
1126     for (b = 0; b < ctx->num_blocks; b++) {
1127         bd.block_length     = div_blocks[b];
1128 
1129         if ((ret = read_decode_block(ctx, &bd)) < 0) {
1130             // damaged block, write zero for the rest of the frame
1131             zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1132             return ret;
1133         }
1134         bd.raw_samples += div_blocks[b];
1135         bd.ra_block     = 0;
1136     }
1137 
1138     return 0;
1139 }
1140 
1141 
1142 /** Decode blocks dependently.
1143  */
decode_blocks(ALSDecContext * ctx,unsigned int ra_frame,unsigned int c,const unsigned int * div_blocks,unsigned int * js_blocks)1144 static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1145                          unsigned int c, const unsigned int *div_blocks,
1146                          unsigned int *js_blocks)
1147 {
1148     ALSSpecificConfig *sconf = &ctx->sconf;
1149     unsigned int offset = 0;
1150     unsigned int b;
1151     int ret;
1152     ALSBlockData bd[2] = { { 0 } };
1153 
1154     bd[0].ra_block         = ra_frame;
1155     bd[0].const_block      = ctx->const_block;
1156     bd[0].shift_lsbs       = ctx->shift_lsbs;
1157     bd[0].opt_order        = ctx->opt_order;
1158     bd[0].store_prev_samples = ctx->store_prev_samples;
1159     bd[0].use_ltp          = ctx->use_ltp;
1160     bd[0].ltp_lag          = ctx->ltp_lag;
1161     bd[0].ltp_gain         = ctx->ltp_gain[0];
1162     bd[0].quant_cof        = ctx->quant_cof[0];
1163     bd[0].lpc_cof          = ctx->lpc_cof[0];
1164     bd[0].prev_raw_samples = ctx->prev_raw_samples;
1165     bd[0].js_blocks        = *js_blocks;
1166 
1167     bd[1].ra_block         = ra_frame;
1168     bd[1].const_block      = ctx->const_block;
1169     bd[1].shift_lsbs       = ctx->shift_lsbs;
1170     bd[1].opt_order        = ctx->opt_order;
1171     bd[1].store_prev_samples = ctx->store_prev_samples;
1172     bd[1].use_ltp          = ctx->use_ltp;
1173     bd[1].ltp_lag          = ctx->ltp_lag;
1174     bd[1].ltp_gain         = ctx->ltp_gain[0];
1175     bd[1].quant_cof        = ctx->quant_cof[0];
1176     bd[1].lpc_cof          = ctx->lpc_cof[0];
1177     bd[1].prev_raw_samples = ctx->prev_raw_samples;
1178     bd[1].js_blocks        = *(js_blocks + 1);
1179 
1180     // decode all blocks
1181     for (b = 0; b < ctx->num_blocks; b++) {
1182         unsigned int s;
1183 
1184         bd[0].block_length = div_blocks[b];
1185         bd[1].block_length = div_blocks[b];
1186 
1187         bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
1188         bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;
1189 
1190         bd[0].raw_other    = bd[1].raw_samples;
1191         bd[1].raw_other    = bd[0].raw_samples;
1192 
1193         if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1194             (ret = read_decode_block(ctx, &bd[1])) < 0)
1195             goto fail;
1196 
1197         // reconstruct joint-stereo blocks
1198         if (bd[0].js_blocks) {
1199             if (bd[1].js_blocks)
1200                 av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1201 
1202             for (s = 0; s < div_blocks[b]; s++)
1203                 bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s];
1204         } else if (bd[1].js_blocks) {
1205             for (s = 0; s < div_blocks[b]; s++)
1206                 bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s];
1207         }
1208 
1209         offset  += div_blocks[b];
1210         bd[0].ra_block = 0;
1211         bd[1].ra_block = 0;
1212     }
1213 
1214     // store carryover raw samples,
1215     // the others channel raw samples are stored by the calling function.
1216     memmove(ctx->raw_samples[c] - sconf->max_order,
1217             ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1218             sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1219 
1220     return 0;
1221 fail:
1222     // damaged block, write zero for the rest of the frame
1223     zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1224     zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1225     return ret;
1226 }
1227 
als_weighting(GetBitContext * gb,int k,int off)1228 static inline int als_weighting(GetBitContext *gb, int k, int off)
1229 {
1230     int idx = av_clip(decode_rice(gb, k) + off,
1231                       0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1232     return mcc_weightings[idx];
1233 }
1234 
1235 /** Read the channel data.
1236   */
read_channel_data(ALSDecContext * ctx,ALSChannelData * cd,int c)1237 static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
1238 {
1239     GetBitContext *gb       = &ctx->gb;
1240     ALSChannelData *current = cd;
1241     unsigned int channels   = ctx->avctx->ch_layout.nb_channels;
1242     int entries             = 0;
1243 
1244     while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1245         current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1246 
1247         if (current->master_channel >= channels) {
1248             av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1249             return AVERROR_INVALIDDATA;
1250         }
1251 
1252         if (current->master_channel != c) {
1253             current->time_diff_flag = get_bits1(gb);
1254             current->weighting[0]   = als_weighting(gb, 1, 16);
1255             current->weighting[1]   = als_weighting(gb, 2, 14);
1256             current->weighting[2]   = als_weighting(gb, 1, 16);
1257 
1258             if (current->time_diff_flag) {
1259                 current->weighting[3] = als_weighting(gb, 1, 16);
1260                 current->weighting[4] = als_weighting(gb, 1, 16);
1261                 current->weighting[5] = als_weighting(gb, 1, 16);
1262 
1263                 current->time_diff_sign  = get_bits1(gb);
1264                 current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1265             }
1266         }
1267 
1268         current++;
1269         entries++;
1270     }
1271 
1272     if (entries == channels) {
1273         av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1274         return AVERROR_INVALIDDATA;
1275     }
1276 
1277     align_get_bits(gb);
1278     return 0;
1279 }
1280 
1281 
1282 /** Recursively reverts the inter-channel correlation for a block.
1283  */
revert_channel_correlation(ALSDecContext * ctx,ALSBlockData * bd,ALSChannelData ** cd,int * reverted,unsigned int offset,int c)1284 static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
1285                                        ALSChannelData **cd, int *reverted,
1286                                        unsigned int offset, int c)
1287 {
1288     ALSChannelData *ch = cd[c];
1289     unsigned int   dep = 0;
1290     unsigned int channels = ctx->avctx->ch_layout.nb_channels;
1291     unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1292 
1293     if (reverted[c])
1294         return 0;
1295 
1296     reverted[c] = 1;
1297 
1298     while (dep < channels && !ch[dep].stop_flag) {
1299         revert_channel_correlation(ctx, bd, cd, reverted, offset,
1300                                    ch[dep].master_channel);
1301 
1302         dep++;
1303     }
1304 
1305     if (dep == channels) {
1306         av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1307         return AVERROR_INVALIDDATA;
1308     }
1309 
1310     bd->const_block = ctx->const_block + c;
1311     bd->shift_lsbs  = ctx->shift_lsbs + c;
1312     bd->opt_order   = ctx->opt_order + c;
1313     bd->store_prev_samples = ctx->store_prev_samples + c;
1314     bd->use_ltp     = ctx->use_ltp + c;
1315     bd->ltp_lag     = ctx->ltp_lag + c;
1316     bd->ltp_gain    = ctx->ltp_gain[c];
1317     bd->lpc_cof     = ctx->lpc_cof[c];
1318     bd->quant_cof   = ctx->quant_cof[c];
1319     bd->raw_samples = ctx->raw_samples[c] + offset;
1320 
1321     for (dep = 0; !ch[dep].stop_flag; dep++) {
1322         ptrdiff_t smp;
1323         ptrdiff_t begin = 1;
1324         ptrdiff_t end   = bd->block_length - 1;
1325         int64_t y;
1326         int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1327 
1328         if (ch[dep].master_channel == c)
1329             continue;
1330 
1331         if (ch[dep].time_diff_flag) {
1332             int t = ch[dep].time_diff_index;
1333 
1334             if (ch[dep].time_diff_sign) {
1335                 t      = -t;
1336                 if (begin < t) {
1337                     av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
1338                     return AVERROR_INVALIDDATA;
1339                 }
1340                 begin -= t;
1341             } else {
1342                 if (end < t) {
1343                     av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
1344                     return AVERROR_INVALIDDATA;
1345                 }
1346                 end   -= t;
1347             }
1348 
1349             if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1350                 FFMAX(end   + 1,   end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1351                 av_log(ctx->avctx, AV_LOG_ERROR,
1352                        "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1353                        master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1,   end + 1 + t),
1354                        ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1355                 return AVERROR_INVALIDDATA;
1356             }
1357 
1358             for (smp = begin; smp < end; smp++) {
1359                 y  = (1 << 6) +
1360                      MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
1361                      MUL64(ch[dep].weighting[1], master[smp        ]) +
1362                      MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
1363                      MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1364                      MUL64(ch[dep].weighting[4], master[smp     + t]) +
1365                      MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1366 
1367                 bd->raw_samples[smp] += y >> 7;
1368             }
1369         } else {
1370 
1371             if (begin - 1 < ctx->raw_buffer - master ||
1372                 end   + 1 > ctx->raw_buffer + channels * channel_size - master) {
1373                 av_log(ctx->avctx, AV_LOG_ERROR,
1374                        "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1375                        master + begin - 1, master + end + 1,
1376                        ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1377                 return AVERROR_INVALIDDATA;
1378             }
1379 
1380             for (smp = begin; smp < end; smp++) {
1381                 y  = (1 << 6) +
1382                      MUL64(ch[dep].weighting[0], master[smp - 1]) +
1383                      MUL64(ch[dep].weighting[1], master[smp    ]) +
1384                      MUL64(ch[dep].weighting[2], master[smp + 1]);
1385 
1386                 bd->raw_samples[smp] += y >> 7;
1387             }
1388         }
1389     }
1390 
1391     return 0;
1392 }
1393 
1394 
1395 /** multiply two softfloats and handle the rounding off
1396  */
multiply(SoftFloat_IEEE754 a,SoftFloat_IEEE754 b)1397 static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) {
1398     uint64_t mantissa_temp;
1399     uint64_t mask_64;
1400     int cutoff_bit_count;
1401     unsigned char last_2_bits;
1402     unsigned int mantissa;
1403     int32_t sign;
1404     uint32_t return_val = 0;
1405     int bit_count       = 48;
1406 
1407     sign = a.sign ^ b.sign;
1408 
1409     // Multiply mantissa bits in a 64-bit register
1410     mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
1411     mask_64       = (uint64_t)0x1 << 47;
1412 
1413     if (!mantissa_temp)
1414         return FLOAT_0;
1415 
1416     // Count the valid bit count
1417     while (!(mantissa_temp & mask_64) && mask_64) {
1418         bit_count--;
1419         mask_64 >>= 1;
1420     }
1421 
1422     // Round off
1423     cutoff_bit_count = bit_count - 24;
1424     if (cutoff_bit_count > 0) {
1425         last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
1426         if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
1427             // Need to round up
1428             mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
1429         }
1430     }
1431 
1432     if (cutoff_bit_count >= 0) {
1433         mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
1434     } else {
1435         mantissa = (unsigned int)(mantissa_temp <<-cutoff_bit_count);
1436     }
1437 
1438     // Need one more shift?
1439     if (mantissa & 0x01000000ul) {
1440         bit_count++;
1441         mantissa >>= 1;
1442     }
1443 
1444     if (!sign) {
1445         return_val = 0x80000000U;
1446     }
1447 
1448     return_val |= ((unsigned)av_clip(a.exp + b.exp + bit_count - 47, -126, 127) << 23) & 0x7F800000;
1449     return_val |= mantissa;
1450     return av_bits2sf_ieee754(return_val);
1451 }
1452 
1453 
1454 /** Read and decode the floating point sample data
1455  */
read_diff_float_data(ALSDecContext * ctx,unsigned int ra_frame)1456 static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
1457     AVCodecContext *avctx   = ctx->avctx;
1458     GetBitContext *gb       = &ctx->gb;
1459     SoftFloat_IEEE754 *acf  = ctx->acf;
1460     int *shift_value        = ctx->shift_value;
1461     int *last_shift_value   = ctx->last_shift_value;
1462     int *last_acf_mantissa  = ctx->last_acf_mantissa;
1463     int **raw_mantissa      = ctx->raw_mantissa;
1464     int *nbits              = ctx->nbits;
1465     unsigned char *larray   = ctx->larray;
1466     int frame_length        = ctx->cur_frame_length;
1467     SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
1468     unsigned int partA_flag;
1469     unsigned int highest_byte;
1470     unsigned int shift_amp;
1471     uint32_t tmp_32;
1472     int use_acf;
1473     int nchars;
1474     int i;
1475     int c;
1476     long k;
1477     long nbits_aligned;
1478     unsigned long acc;
1479     unsigned long j;
1480     uint32_t sign;
1481     uint32_t e;
1482     uint32_t mantissa;
1483 
1484     skip_bits_long(gb, 32); //num_bytes_diff_float
1485     use_acf = get_bits1(gb);
1486 
1487     if (ra_frame) {
1488         memset(last_acf_mantissa, 0, avctx->ch_layout.nb_channels * sizeof(*last_acf_mantissa));
1489         memset(last_shift_value,  0, avctx->ch_layout.nb_channels * sizeof(*last_shift_value) );
1490         ff_mlz_flush_dict(ctx->mlz);
1491     }
1492 
1493     if (avctx->ch_layout.nb_channels * 8 > get_bits_left(gb))
1494         return AVERROR_INVALIDDATA;
1495 
1496     for (c = 0; c < avctx->ch_layout.nb_channels; ++c) {
1497         if (use_acf) {
1498             //acf_flag
1499             if (get_bits1(gb)) {
1500                 tmp_32 = get_bits(gb, 23);
1501                 last_acf_mantissa[c] = tmp_32;
1502             } else {
1503                 tmp_32 = last_acf_mantissa[c];
1504             }
1505             acf[c] = av_bits2sf_ieee754(tmp_32);
1506         } else {
1507             acf[c] = FLOAT_1;
1508         }
1509 
1510         highest_byte = get_bits(gb, 2);
1511         partA_flag   = get_bits1(gb);
1512         shift_amp    = get_bits1(gb);
1513 
1514         if (shift_amp) {
1515             shift_value[c] = get_bits(gb, 8);
1516             last_shift_value[c] = shift_value[c];
1517         } else {
1518             shift_value[c] = last_shift_value[c];
1519         }
1520 
1521         if (partA_flag) {
1522             if (!get_bits1(gb)) { //uncompressed
1523                 for (i = 0; i < frame_length; ++i) {
1524                     if (ctx->raw_samples[c][i] == 0) {
1525                         ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
1526                     }
1527                 }
1528             } else { //compressed
1529                 nchars = 0;
1530                 for (i = 0; i < frame_length; ++i) {
1531                     if (ctx->raw_samples[c][i] == 0) {
1532                         nchars += 4;
1533                     }
1534                 }
1535 
1536                 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1537                 if(tmp_32 != nchars) {
1538                     av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1539                     return AVERROR_INVALIDDATA;
1540                 }
1541 
1542                 for (i = 0; i < frame_length; ++i) {
1543                     ctx->raw_mantissa[c][i] = AV_RB32(larray);
1544                 }
1545             }
1546         }
1547 
1548         //decode part B
1549         if (highest_byte) {
1550             for (i = 0; i < frame_length; ++i) {
1551                 if (ctx->raw_samples[c][i] != 0) {
1552                     //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
1553                     if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1554                         nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
1555                     } else {
1556                         nbits[i] = 23;
1557                     }
1558                     nbits[i] = FFMIN(nbits[i], highest_byte*8);
1559                 }
1560             }
1561 
1562             if (!get_bits1(gb)) { //uncompressed
1563                 for (i = 0; i < frame_length; ++i) {
1564                     if (ctx->raw_samples[c][i] != 0) {
1565                         raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
1566                     }
1567                 }
1568             } else { //compressed
1569                 nchars = 0;
1570                 for (i = 0; i < frame_length; ++i) {
1571                     if (ctx->raw_samples[c][i]) {
1572                         nchars += (int) nbits[i] / 8;
1573                         if (nbits[i] & 7) {
1574                             ++nchars;
1575                         }
1576                     }
1577                 }
1578 
1579                 tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1580                 if(tmp_32 != nchars) {
1581                     av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1582                     return AVERROR_INVALIDDATA;
1583                 }
1584 
1585                 j = 0;
1586                 for (i = 0; i < frame_length; ++i) {
1587                     if (ctx->raw_samples[c][i]) {
1588                         if (nbits[i] & 7) {
1589                             nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
1590                         } else {
1591                             nbits_aligned = nbits[i];
1592                         }
1593                         acc = 0;
1594                         for (k = 0; k < nbits_aligned/8; ++k) {
1595                             acc = (acc << 8) + larray[j++];
1596                         }
1597                         acc >>= (nbits_aligned - nbits[i]);
1598                         raw_mantissa[c][i] = acc;
1599                     }
1600                 }
1601             }
1602         }
1603 
1604         for (i = 0; i < frame_length; ++i) {
1605             SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
1606             pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
1607 
1608             if (ctx->raw_samples[c][i] != 0) {
1609                 if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1610                     pcm_sf = multiply(acf[c], pcm_sf);
1611                 }
1612 
1613                 sign = pcm_sf.sign;
1614                 e = pcm_sf.exp;
1615                 mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
1616 
1617                 while(mantissa >= 0x1000000) {
1618                     e++;
1619                     mantissa >>= 1;
1620                 }
1621 
1622                 if (mantissa) e += (shift_value[c] - 127);
1623                 mantissa &= 0x007fffffUL;
1624 
1625                 tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
1626                 ctx->raw_samples[c][i] = tmp_32;
1627             } else {
1628                 ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
1629             }
1630         }
1631         align_get_bits(gb);
1632     }
1633     return 0;
1634 }
1635 
1636 
1637 /** Read the frame data.
1638  */
read_frame_data(ALSDecContext * ctx,unsigned int ra_frame)1639 static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1640 {
1641     ALSSpecificConfig *sconf = &ctx->sconf;
1642     AVCodecContext *avctx    = ctx->avctx;
1643     GetBitContext *gb = &ctx->gb;
1644     unsigned int div_blocks[32];                ///< block sizes.
1645     int c;
1646     unsigned int js_blocks[2];
1647     int channels = avctx->ch_layout.nb_channels;
1648     uint32_t bs_info = 0;
1649     int ret;
1650 
1651     // skip the size of the ra unit if present in the frame
1652     if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1653         skip_bits_long(gb, 32);
1654 
1655     if (sconf->mc_coding && sconf->joint_stereo) {
1656         ctx->js_switch = get_bits1(gb);
1657         align_get_bits(gb);
1658     }
1659 
1660     if (!sconf->mc_coding || ctx->js_switch) {
1661         int independent_bs = !sconf->joint_stereo;
1662         if (get_bits_left(gb) < 7*channels*ctx->num_blocks)
1663             return AVERROR_INVALIDDATA;
1664         for (c = 0; c < channels; c++) {
1665             js_blocks[0] = 0;
1666             js_blocks[1] = 0;
1667 
1668             get_block_sizes(ctx, div_blocks, &bs_info);
1669 
1670             // if joint_stereo and block_switching is set, independent decoding
1671             // is signaled via the first bit of bs_info
1672             if (sconf->joint_stereo && sconf->block_switching)
1673                 if (bs_info >> 31)
1674                     independent_bs = 2;
1675 
1676             // if this is the last channel, it has to be decoded independently
1677             if (c == channels - 1 || (c & 1))
1678                 independent_bs = 1;
1679 
1680             if (independent_bs) {
1681                 ret = decode_blocks_ind(ctx, ra_frame, c,
1682                                         div_blocks, js_blocks);
1683                 if (ret < 0)
1684                     return ret;
1685                 independent_bs--;
1686             } else {
1687                 ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1688                 if (ret < 0)
1689                     return ret;
1690 
1691                 c++;
1692             }
1693 
1694             // store carryover raw samples
1695             memmove(ctx->raw_samples[c] - sconf->max_order,
1696                     ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1697                     sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1698             ctx->highest_decoded_channel = c;
1699         }
1700     } else { // multi-channel coding
1701         ALSBlockData   bd = { 0 };
1702         int            b, ret;
1703         int            *reverted_channels = ctx->reverted_channels;
1704         unsigned int   offset             = 0;
1705 
1706         for (c = 0; c < channels; c++)
1707             if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1708                 av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1709                 return AVERROR_INVALIDDATA;
1710             }
1711 
1712         memset(reverted_channels, 0, sizeof(*reverted_channels) * channels);
1713 
1714         bd.ra_block         = ra_frame;
1715         bd.prev_raw_samples = ctx->prev_raw_samples;
1716 
1717         get_block_sizes(ctx, div_blocks, &bs_info);
1718 
1719         for (b = 0; b < ctx->num_blocks; b++) {
1720             bd.block_length = div_blocks[b];
1721             if (bd.block_length <= 0) {
1722                 av_log(ctx->avctx, AV_LOG_WARNING,
1723                        "Invalid block length %u in channel data!\n",
1724                        bd.block_length);
1725                 continue;
1726             }
1727 
1728             for (c = 0; c < channels; c++) {
1729                 bd.const_block = ctx->const_block + c;
1730                 bd.shift_lsbs  = ctx->shift_lsbs + c;
1731                 bd.opt_order   = ctx->opt_order + c;
1732                 bd.store_prev_samples = ctx->store_prev_samples + c;
1733                 bd.use_ltp     = ctx->use_ltp + c;
1734                 bd.ltp_lag     = ctx->ltp_lag + c;
1735                 bd.ltp_gain    = ctx->ltp_gain[c];
1736                 bd.lpc_cof     = ctx->lpc_cof[c];
1737                 bd.quant_cof   = ctx->quant_cof[c];
1738                 bd.raw_samples = ctx->raw_samples[c] + offset;
1739                 bd.raw_other   = NULL;
1740 
1741                 if ((ret = read_block(ctx, &bd)) < 0)
1742                     return ret;
1743                 if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1744                     return ret;
1745             }
1746 
1747             for (c = 0; c < channels; c++) {
1748                 ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1749                                                  reverted_channels, offset, c);
1750                 if (ret < 0)
1751                     return ret;
1752             }
1753             for (c = 0; c < channels; c++) {
1754                 bd.const_block = ctx->const_block + c;
1755                 bd.shift_lsbs  = ctx->shift_lsbs + c;
1756                 bd.opt_order   = ctx->opt_order + c;
1757                 bd.store_prev_samples = ctx->store_prev_samples + c;
1758                 bd.use_ltp     = ctx->use_ltp + c;
1759                 bd.ltp_lag     = ctx->ltp_lag + c;
1760                 bd.ltp_gain    = ctx->ltp_gain[c];
1761                 bd.lpc_cof     = ctx->lpc_cof[c];
1762                 bd.quant_cof   = ctx->quant_cof[c];
1763                 bd.raw_samples = ctx->raw_samples[c] + offset;
1764 
1765                 if ((ret = decode_block(ctx, &bd)) < 0)
1766                     return ret;
1767 
1768                 ctx->highest_decoded_channel = FFMAX(ctx->highest_decoded_channel, c);
1769             }
1770 
1771             memset(reverted_channels, 0, channels * sizeof(*reverted_channels));
1772             offset      += div_blocks[b];
1773             bd.ra_block  = 0;
1774         }
1775 
1776         // store carryover raw samples
1777         for (c = 0; c < channels; c++)
1778             memmove(ctx->raw_samples[c] - sconf->max_order,
1779                     ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1780                     sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1781     }
1782 
1783     if (sconf->floating) {
1784         read_diff_float_data(ctx, ra_frame);
1785     }
1786 
1787     if (get_bits_left(gb) < 0) {
1788         av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1789         return AVERROR_INVALIDDATA;
1790     }
1791 
1792     return 0;
1793 }
1794 
1795 
1796 /** Decode an ALS frame.
1797  */
decode_frame(AVCodecContext * avctx,AVFrame * frame,int * got_frame_ptr,AVPacket * avpkt)1798 static int decode_frame(AVCodecContext *avctx, AVFrame *frame,
1799                         int *got_frame_ptr, AVPacket *avpkt)
1800 {
1801     ALSDecContext *ctx       = avctx->priv_data;
1802     ALSSpecificConfig *sconf = &ctx->sconf;
1803     const uint8_t *buffer    = avpkt->data;
1804     int buffer_size          = avpkt->size;
1805     int invalid_frame, ret;
1806     int channels = avctx->ch_layout.nb_channels;
1807     unsigned int c, sample, ra_frame, bytes_read, shift;
1808 
1809     if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1810         return ret;
1811 
1812     // In the case that the distance between random access frames is set to zero
1813     // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1814     // For the first frame, if prediction is used, all samples used from the
1815     // previous frame are assumed to be zero.
1816     ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1817 
1818     // the last frame to decode might have a different length
1819     if (sconf->samples != 0xFFFFFFFF)
1820         ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1821                                       sconf->frame_length);
1822     else
1823         ctx->cur_frame_length = sconf->frame_length;
1824 
1825     ctx->highest_decoded_channel = -1;
1826     // decode the frame data
1827     if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1828         av_log(ctx->avctx, AV_LOG_WARNING,
1829                "Reading frame data failed. Skipping RA unit.\n");
1830 
1831     if (ctx->highest_decoded_channel == -1) {
1832         av_log(ctx->avctx, AV_LOG_WARNING,
1833                "No channel data decoded.\n");
1834         return AVERROR_INVALIDDATA;
1835     }
1836 
1837     ctx->frame_id++;
1838 
1839     /* get output buffer */
1840     frame->nb_samples = ctx->cur_frame_length;
1841     if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1842         return ret;
1843 
1844     // transform decoded frame into output format
1845     #define INTERLEAVE_OUTPUT(bps)                                                   \
1846     {                                                                                \
1847         int##bps##_t *dest = (int##bps##_t*)frame->data[0];                          \
1848         int32_t *raw_samples = ctx->raw_samples[0];                                  \
1849         int raw_step = channels > 1 ? ctx->raw_samples[1] - raw_samples : 1;         \
1850         shift = bps - ctx->avctx->bits_per_raw_sample;                               \
1851         if (!ctx->cs_switch) {                                                       \
1852             for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
1853                 for (c = 0; c < channels; c++)                                       \
1854                     *dest++ = raw_samples[c*raw_step + sample] * (1U << shift);      \
1855         } else {                                                                     \
1856             for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
1857                 for (c = 0; c < channels; c++)                                       \
1858                     *dest++ = raw_samples[sconf->chan_pos[c]*raw_step + sample] * (1U << shift);\
1859         }                                                                            \
1860     }
1861 
1862     if (ctx->avctx->bits_per_raw_sample <= 16) {
1863         INTERLEAVE_OUTPUT(16)
1864     } else {
1865         INTERLEAVE_OUTPUT(32)
1866     }
1867 
1868     // update CRC
1869     if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1870         int swap = HAVE_BIGENDIAN != sconf->msb_first;
1871 
1872         if (ctx->avctx->bits_per_raw_sample == 24) {
1873             int32_t *src = (int32_t *)frame->data[0];
1874 
1875             for (sample = 0;
1876                  sample < ctx->cur_frame_length * channels;
1877                  sample++) {
1878                 int32_t v;
1879 
1880                 if (swap)
1881                     v = av_bswap32(src[sample]);
1882                 else
1883                     v = src[sample];
1884                 if (!HAVE_BIGENDIAN)
1885                     v >>= 8;
1886 
1887                 ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1888             }
1889         } else {
1890             uint8_t *crc_source;
1891 
1892             if (swap) {
1893                 if (ctx->avctx->bits_per_raw_sample <= 16) {
1894                     int16_t *src  = (int16_t*) frame->data[0];
1895                     int16_t *dest = (int16_t*) ctx->crc_buffer;
1896                     for (sample = 0;
1897                          sample < ctx->cur_frame_length * channels;
1898                          sample++)
1899                         *dest++ = av_bswap16(src[sample]);
1900                 } else {
1901                     ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1902                                         (uint32_t *) frame->data[0],
1903                                         ctx->cur_frame_length * channels);
1904                 }
1905                 crc_source = ctx->crc_buffer;
1906             } else {
1907                 crc_source = frame->data[0];
1908             }
1909 
1910             ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1911                               ctx->cur_frame_length * channels *
1912                               av_get_bytes_per_sample(avctx->sample_fmt));
1913         }
1914 
1915 
1916         // check CRC sums if this is the last frame
1917         if (ctx->cur_frame_length != sconf->frame_length &&
1918             ctx->crc_org != ctx->crc) {
1919             av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1920             if (avctx->err_recognition & AV_EF_EXPLODE)
1921                 return AVERROR_INVALIDDATA;
1922         }
1923     }
1924 
1925     *got_frame_ptr = 1;
1926 
1927     bytes_read = invalid_frame ? buffer_size :
1928                                  (get_bits_count(&ctx->gb) + 7) >> 3;
1929 
1930     return bytes_read;
1931 }
1932 
1933 
1934 /** Uninitialize the ALS decoder.
1935  */
decode_end(AVCodecContext * avctx)1936 static av_cold int decode_end(AVCodecContext *avctx)
1937 {
1938     ALSDecContext *ctx = avctx->priv_data;
1939     int i;
1940 
1941     av_freep(&ctx->sconf.chan_pos);
1942 
1943     ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1944 
1945     av_freep(&ctx->const_block);
1946     av_freep(&ctx->shift_lsbs);
1947     av_freep(&ctx->opt_order);
1948     av_freep(&ctx->store_prev_samples);
1949     av_freep(&ctx->use_ltp);
1950     av_freep(&ctx->ltp_lag);
1951     av_freep(&ctx->ltp_gain);
1952     av_freep(&ctx->ltp_gain_buffer);
1953     av_freep(&ctx->quant_cof);
1954     av_freep(&ctx->lpc_cof);
1955     av_freep(&ctx->quant_cof_buffer);
1956     av_freep(&ctx->lpc_cof_buffer);
1957     av_freep(&ctx->lpc_cof_reversed_buffer);
1958     av_freep(&ctx->prev_raw_samples);
1959     av_freep(&ctx->raw_samples);
1960     av_freep(&ctx->raw_buffer);
1961     av_freep(&ctx->chan_data);
1962     av_freep(&ctx->chan_data_buffer);
1963     av_freep(&ctx->reverted_channels);
1964     av_freep(&ctx->crc_buffer);
1965     if (ctx->mlz) {
1966         av_freep(&ctx->mlz->dict);
1967         av_freep(&ctx->mlz);
1968     }
1969     av_freep(&ctx->acf);
1970     av_freep(&ctx->last_acf_mantissa);
1971     av_freep(&ctx->shift_value);
1972     av_freep(&ctx->last_shift_value);
1973     if (ctx->raw_mantissa) {
1974         for (i = 0; i < avctx->ch_layout.nb_channels; i++) {
1975             av_freep(&ctx->raw_mantissa[i]);
1976         }
1977         av_freep(&ctx->raw_mantissa);
1978     }
1979     av_freep(&ctx->larray);
1980     av_freep(&ctx->nbits);
1981 
1982     return 0;
1983 }
1984 
1985 
1986 /** Initialize the ALS decoder.
1987  */
decode_init(AVCodecContext * avctx)1988 static av_cold int decode_init(AVCodecContext *avctx)
1989 {
1990     unsigned int c;
1991     unsigned int channel_size;
1992     int num_buffers, ret;
1993     int channels;
1994     ALSDecContext *ctx = avctx->priv_data;
1995     ALSSpecificConfig *sconf = &ctx->sconf;
1996     ctx->avctx = avctx;
1997 
1998     if (!avctx->extradata) {
1999         av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
2000         return AVERROR_INVALIDDATA;
2001     }
2002 
2003     if ((ret = read_specific_config(ctx)) < 0) {
2004         av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
2005         return ret;
2006     }
2007     channels = avctx->ch_layout.nb_channels;
2008 
2009     if ((ret = check_specific_config(ctx)) < 0) {
2010         return ret;
2011     }
2012 
2013     if (sconf->bgmc) {
2014         ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
2015         if (ret < 0)
2016             return ret;
2017     }
2018     if (sconf->floating) {
2019         avctx->sample_fmt          = AV_SAMPLE_FMT_FLT;
2020         avctx->bits_per_raw_sample = 32;
2021     } else {
2022         avctx->sample_fmt          = sconf->resolution > 1
2023                                      ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
2024         avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
2025         if (avctx->bits_per_raw_sample > 32) {
2026             av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
2027                    avctx->bits_per_raw_sample);
2028             return AVERROR_INVALIDDATA;
2029         }
2030     }
2031 
2032     // set maximum Rice parameter for progressive decoding based on resolution
2033     // This is not specified in 14496-3 but actually done by the reference
2034     // codec RM22 revision 2.
2035     ctx->s_max = sconf->resolution > 1 ? 31 : 15;
2036 
2037     // set lag value for long-term prediction
2038     ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
2039                               (avctx->sample_rate >= 192000);
2040 
2041     // allocate quantized parcor coefficient buffer
2042     num_buffers = sconf->mc_coding ? channels : 1;
2043     if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
2044         return AVERROR_INVALIDDATA;
2045 
2046     ctx->quant_cof        = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
2047     ctx->lpc_cof          = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
2048     ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
2049                                             sizeof(*ctx->quant_cof_buffer));
2050     ctx->lpc_cof_buffer   = av_malloc_array(num_buffers * sconf->max_order,
2051                                             sizeof(*ctx->lpc_cof_buffer));
2052     ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
2053                                                    sizeof(*ctx->lpc_cof_buffer));
2054 
2055     if (!ctx->quant_cof              || !ctx->lpc_cof        ||
2056         !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
2057         !ctx->lpc_cof_reversed_buffer) {
2058         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2059         return AVERROR(ENOMEM);
2060     }
2061 
2062     // assign quantized parcor coefficient buffers
2063     for (c = 0; c < num_buffers; c++) {
2064         ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
2065         ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
2066     }
2067 
2068     // allocate and assign lag and gain data buffer for ltp mode
2069     ctx->const_block     = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
2070     ctx->shift_lsbs      = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
2071     ctx->opt_order       = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
2072     ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
2073     ctx->use_ltp         = av_calloc(num_buffers, sizeof(*ctx->use_ltp));
2074     ctx->ltp_lag         = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
2075     ctx->ltp_gain        = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
2076     ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
2077 
2078     if (!ctx->const_block || !ctx->shift_lsbs ||
2079         !ctx->opt_order || !ctx->store_prev_samples ||
2080         !ctx->use_ltp  || !ctx->ltp_lag ||
2081         !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
2082         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2083         return AVERROR(ENOMEM);
2084     }
2085 
2086     for (c = 0; c < num_buffers; c++)
2087         ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
2088 
2089     // allocate and assign channel data buffer for mcc mode
2090     if (sconf->mc_coding) {
2091         ctx->chan_data_buffer  = av_calloc(num_buffers * num_buffers,
2092                                            sizeof(*ctx->chan_data_buffer));
2093         ctx->chan_data         = av_calloc(num_buffers, sizeof(*ctx->chan_data));
2094         ctx->reverted_channels = av_malloc_array(num_buffers,
2095                                                  sizeof(*ctx->reverted_channels));
2096 
2097         if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
2098             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2099             return AVERROR(ENOMEM);
2100         }
2101 
2102         for (c = 0; c < num_buffers; c++)
2103             ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
2104     } else {
2105         ctx->chan_data         = NULL;
2106         ctx->chan_data_buffer  = NULL;
2107         ctx->reverted_channels = NULL;
2108     }
2109 
2110     if (sconf->floating) {
2111         ctx->acf               = av_malloc_array(channels, sizeof(*ctx->acf));
2112         ctx->shift_value       = av_malloc_array(channels, sizeof(*ctx->shift_value));
2113         ctx->last_shift_value  = av_malloc_array(channels, sizeof(*ctx->last_shift_value));
2114         ctx->last_acf_mantissa = av_malloc_array(channels, sizeof(*ctx->last_acf_mantissa));
2115         ctx->raw_mantissa      = av_calloc(channels, sizeof(*ctx->raw_mantissa));
2116 
2117         ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
2118         ctx->nbits  = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
2119         ctx->mlz    = av_mallocz(sizeof(*ctx->mlz));
2120 
2121         if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
2122             || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
2123             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2124             return AVERROR(ENOMEM);
2125         }
2126 
2127         ret = ff_mlz_init_dict(avctx, ctx->mlz);
2128         if (ret < 0)
2129             return ret;
2130         ff_mlz_flush_dict(ctx->mlz);
2131 
2132         for (c = 0; c < channels; ++c) {
2133             ctx->raw_mantissa[c] = av_calloc(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
2134         }
2135     }
2136 
2137     channel_size      = sconf->frame_length + sconf->max_order;
2138 
2139     // allocate previous raw sample buffer
2140     ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
2141     ctx->raw_buffer       = av_calloc(channels * channel_size, sizeof(*ctx->raw_buffer));
2142     ctx->raw_samples      = av_malloc_array(channels, sizeof(*ctx->raw_samples));
2143     if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
2144         av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2145         return AVERROR(ENOMEM);
2146     }
2147 
2148     // assign raw samples buffers
2149     ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
2150     for (c = 1; c < channels; c++)
2151         ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
2152 
2153     // allocate crc buffer
2154     if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
2155         (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
2156         ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
2157                                           channels *
2158                                           av_get_bytes_per_sample(avctx->sample_fmt),
2159                                           sizeof(*ctx->crc_buffer));
2160         if (!ctx->crc_buffer) {
2161             av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2162             return AVERROR(ENOMEM);
2163         }
2164     }
2165 
2166     ff_bswapdsp_init(&ctx->bdsp);
2167 
2168     return 0;
2169 }
2170 
2171 
2172 /** Flush (reset) the frame ID after seeking.
2173  */
flush(AVCodecContext * avctx)2174 static av_cold void flush(AVCodecContext *avctx)
2175 {
2176     ALSDecContext *ctx = avctx->priv_data;
2177 
2178     ctx->frame_id = 0;
2179 }
2180 
2181 
2182 const FFCodec ff_als_decoder = {
2183     .p.name         = "als",
2184     .p.long_name    = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
2185     .p.type         = AVMEDIA_TYPE_AUDIO,
2186     .p.id           = AV_CODEC_ID_MP4ALS,
2187     .priv_data_size = sizeof(ALSDecContext),
2188     .init           = decode_init,
2189     .close          = decode_end,
2190     FF_CODEC_DECODE_CB(decode_frame),
2191     .flush          = flush,
2192     .p.capabilities = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
2193     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
2194 };
2195