• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Remote Processor Framework
4  *
5  * Copyright (C) 2011 Texas Instruments, Inc.
6  * Copyright (C) 2011 Google, Inc.
7  *
8  * Ohad Ben-Cohen <ohad@wizery.com>
9  * Brian Swetland <swetland@google.com>
10  * Mark Grosen <mgrosen@ti.com>
11  * Fernando Guzman Lugo <fernando.lugo@ti.com>
12  * Suman Anna <s-anna@ti.com>
13  * Robert Tivy <rtivy@ti.com>
14  * Armando Uribe De Leon <x0095078@ti.com>
15  */
16 
17 #define pr_fmt(fmt)    "%s: " fmt, __func__
18 
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/slab.h>
24 #include <linux/mutex.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
28 #include <linux/firmware.h>
29 #include <linux/string.h>
30 #include <linux/debugfs.h>
31 #include <linux/rculist.h>
32 #include <linux/remoteproc.h>
33 #include <linux/iommu.h>
34 #include <linux/idr.h>
35 #include <linux/elf.h>
36 #include <linux/crc32.h>
37 #include <linux/of_reserved_mem.h>
38 #include <linux/virtio_ids.h>
39 #include <linux/virtio_ring.h>
40 #include <asm/byteorder.h>
41 #include <linux/platform_device.h>
42 
43 #include "remoteproc_internal.h"
44 
45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
46 
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
49 static struct notifier_block rproc_panic_nb;
50 
51 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
52 				 void *, int offset, int avail);
53 
54 static int rproc_alloc_carveout(struct rproc *rproc,
55 				struct rproc_mem_entry *mem);
56 static int rproc_release_carveout(struct rproc *rproc,
57 				  struct rproc_mem_entry *mem);
58 
59 /* Unique indices for remoteproc devices */
60 static DEFINE_IDA(rproc_dev_index);
61 
62 static const char * const rproc_crash_names[] = {
63 	[RPROC_MMUFAULT]	= "mmufault",
64 	[RPROC_WATCHDOG]	= "watchdog",
65 	[RPROC_FATAL_ERROR]	= "fatal error",
66 };
67 
68 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)69 static const char *rproc_crash_to_string(enum rproc_crash_type type)
70 {
71 	if (type < ARRAY_SIZE(rproc_crash_names))
72 		return rproc_crash_names[type];
73 	return "unknown";
74 }
75 
76 /*
77  * This is the IOMMU fault handler we register with the IOMMU API
78  * (when relevant; not all remote processors access memory through
79  * an IOMMU).
80  *
81  * IOMMU core will invoke this handler whenever the remote processor
82  * will try to access an unmapped device address.
83  */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85 			     unsigned long iova, int flags, void *token)
86 {
87 	struct rproc *rproc = token;
88 
89 	dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
90 
91 	rproc_report_crash(rproc, RPROC_MMUFAULT);
92 
93 	/*
94 	 * Let the iommu core know we're not really handling this fault;
95 	 * we just used it as a recovery trigger.
96 	 */
97 	return -ENOSYS;
98 }
99 
rproc_enable_iommu(struct rproc * rproc)100 static int rproc_enable_iommu(struct rproc *rproc)
101 {
102 	struct iommu_domain *domain;
103 	struct device *dev = rproc->dev.parent;
104 	int ret;
105 
106 	if (!rproc->has_iommu) {
107 		dev_dbg(dev, "iommu not present\n");
108 		return 0;
109 	}
110 
111 	domain = iommu_domain_alloc(dev->bus);
112 	if (!domain) {
113 		dev_err(dev, "can't alloc iommu domain\n");
114 		return -ENOMEM;
115 	}
116 
117 	iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118 
119 	ret = iommu_attach_device(domain, dev);
120 	if (ret) {
121 		dev_err(dev, "can't attach iommu device: %d\n", ret);
122 		goto free_domain;
123 	}
124 
125 	rproc->domain = domain;
126 
127 	return 0;
128 
129 free_domain:
130 	iommu_domain_free(domain);
131 	return ret;
132 }
133 
rproc_disable_iommu(struct rproc * rproc)134 static void rproc_disable_iommu(struct rproc *rproc)
135 {
136 	struct iommu_domain *domain = rproc->domain;
137 	struct device *dev = rproc->dev.parent;
138 
139 	if (!domain)
140 		return;
141 
142 	iommu_detach_device(domain, dev);
143 	iommu_domain_free(domain);
144 }
145 
rproc_va_to_pa(void * cpu_addr)146 phys_addr_t rproc_va_to_pa(void *cpu_addr)
147 {
148 	/*
149 	 * Return physical address according to virtual address location
150 	 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 	 * - in kernel: if region allocated in generic dma memory pool
152 	 */
153 	if (is_vmalloc_addr(cpu_addr)) {
154 		return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 				    offset_in_page(cpu_addr);
156 	}
157 
158 	WARN_ON(!virt_addr_valid(cpu_addr));
159 	return virt_to_phys(cpu_addr);
160 }
161 EXPORT_SYMBOL(rproc_va_to_pa);
162 
163 /**
164  * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165  * @rproc: handle of a remote processor
166  * @da: remoteproc device address to translate
167  * @len: length of the memory region @da is pointing to
168  *
169  * Some remote processors will ask us to allocate them physically contiguous
170  * memory regions (which we call "carveouts"), and map them to specific
171  * device addresses (which are hardcoded in the firmware). They may also have
172  * dedicated memory regions internal to the processors, and use them either
173  * exclusively or alongside carveouts.
174  *
175  * They may then ask us to copy objects into specific device addresses (e.g.
176  * code/data sections) or expose us certain symbols in other device address
177  * (e.g. their trace buffer).
178  *
179  * This function is a helper function with which we can go over the allocated
180  * carveouts and translate specific device addresses to kernel virtual addresses
181  * so we can access the referenced memory. This function also allows to perform
182  * translations on the internal remoteproc memory regions through a platform
183  * implementation specific da_to_va ops, if present.
184  *
185  * The function returns a valid kernel address on success or NULL on failure.
186  *
187  * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188  * but only on kernel direct mapped RAM memory. Instead, we're just using
189  * here the output of the DMA API for the carveouts, which should be more
190  * correct.
191  */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len)192 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
193 {
194 	struct rproc_mem_entry *carveout;
195 	void *ptr = NULL;
196 
197 	if (rproc->ops->da_to_va) {
198 		ptr = rproc->ops->da_to_va(rproc, da, len);
199 		if (ptr)
200 			goto out;
201 	}
202 
203 	list_for_each_entry(carveout, &rproc->carveouts, node) {
204 		int offset = da - carveout->da;
205 
206 		/*  Verify that carveout is allocated */
207 		if (!carveout->va)
208 			continue;
209 
210 		/* try next carveout if da is too small */
211 		if (offset < 0)
212 			continue;
213 
214 		/* try next carveout if da is too large */
215 		if (offset + len > carveout->len)
216 			continue;
217 
218 		ptr = carveout->va + offset;
219 
220 		break;
221 	}
222 
223 out:
224 	return ptr;
225 }
226 EXPORT_SYMBOL(rproc_da_to_va);
227 
228 /**
229  * rproc_find_carveout_by_name() - lookup the carveout region by a name
230  * @rproc: handle of a remote processor
231  * @name: carveout name to find (format string)
232  * @...: optional parameters matching @name string
233  *
234  * Platform driver has the capability to register some pre-allacoted carveout
235  * (physically contiguous memory regions) before rproc firmware loading and
236  * associated resource table analysis. These regions may be dedicated memory
237  * regions internal to the coprocessor or specified DDR region with specific
238  * attributes
239  *
240  * This function is a helper function with which we can go over the
241  * allocated carveouts and return associated region characteristics like
242  * coprocessor address, length or processor virtual address.
243  *
244  * Return: a valid pointer on carveout entry on success or NULL on failure.
245  */
246 __printf(2, 3)
247 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)248 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
249 {
250 	va_list args;
251 	char _name[32];
252 	struct rproc_mem_entry *carveout, *mem = NULL;
253 
254 	if (!name)
255 		return NULL;
256 
257 	va_start(args, name);
258 	vsnprintf(_name, sizeof(_name), name, args);
259 	va_end(args);
260 
261 	list_for_each_entry(carveout, &rproc->carveouts, node) {
262 		/* Compare carveout and requested names */
263 		if (!strcmp(carveout->name, _name)) {
264 			mem = carveout;
265 			break;
266 		}
267 	}
268 
269 	return mem;
270 }
271 
272 /**
273  * rproc_check_carveout_da() - Check specified carveout da configuration
274  * @rproc: handle of a remote processor
275  * @mem: pointer on carveout to check
276  * @da: area device address
277  * @len: associated area size
278  *
279  * This function is a helper function to verify requested device area (couple
280  * da, len) is part of specified carveout.
281  * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
282  * checked.
283  *
284  * Return: 0 if carveout matches request else error
285  */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)286 static int rproc_check_carveout_da(struct rproc *rproc,
287 				   struct rproc_mem_entry *mem, u32 da, u32 len)
288 {
289 	struct device *dev = &rproc->dev;
290 	int delta;
291 
292 	/* Check requested resource length */
293 	if (len > mem->len) {
294 		dev_err(dev, "Registered carveout doesn't fit len request\n");
295 		return -EINVAL;
296 	}
297 
298 	if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
299 		/* Address doesn't match registered carveout configuration */
300 		return -EINVAL;
301 	} else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
302 		delta = da - mem->da;
303 
304 		/* Check requested resource belongs to registered carveout */
305 		if (delta < 0) {
306 			dev_err(dev,
307 				"Registered carveout doesn't fit da request\n");
308 			return -EINVAL;
309 		}
310 
311 		if (delta + len > mem->len) {
312 			dev_err(dev,
313 				"Registered carveout doesn't fit len request\n");
314 			return -EINVAL;
315 		}
316 	}
317 
318 	return 0;
319 }
320 
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)321 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
322 {
323 	struct rproc *rproc = rvdev->rproc;
324 	struct device *dev = &rproc->dev;
325 	struct rproc_vring *rvring = &rvdev->vring[i];
326 	struct fw_rsc_vdev *rsc;
327 	int ret, notifyid;
328 	struct rproc_mem_entry *mem;
329 	size_t size;
330 
331 	/* actual size of vring (in bytes) */
332 	size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
333 
334 	rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
335 
336 	/* Search for pre-registered carveout */
337 	mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
338 					  i);
339 	if (mem) {
340 		if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
341 			return -ENOMEM;
342 	} else {
343 		/* Register carveout in in list */
344 		mem = rproc_mem_entry_init(dev, NULL, 0,
345 					   size, rsc->vring[i].da,
346 					   rproc_alloc_carveout,
347 					   rproc_release_carveout,
348 					   "vdev%dvring%d",
349 					   rvdev->index, i);
350 		if (!mem) {
351 			dev_err(dev, "Can't allocate memory entry structure\n");
352 			return -ENOMEM;
353 		}
354 
355 		rproc_add_carveout(rproc, mem);
356 	}
357 
358 	/*
359 	 * Assign an rproc-wide unique index for this vring
360 	 * TODO: assign a notifyid for rvdev updates as well
361 	 * TODO: support predefined notifyids (via resource table)
362 	 */
363 	ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
364 	if (ret < 0) {
365 		dev_err(dev, "idr_alloc failed: %d\n", ret);
366 		return ret;
367 	}
368 	notifyid = ret;
369 
370 	/* Potentially bump max_notifyid */
371 	if (notifyid > rproc->max_notifyid)
372 		rproc->max_notifyid = notifyid;
373 
374 	rvring->notifyid = notifyid;
375 
376 	/* Let the rproc know the notifyid of this vring.*/
377 	rsc->vring[i].notifyid = notifyid;
378 	return 0;
379 }
380 
381 static int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)382 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
383 {
384 	struct rproc *rproc = rvdev->rproc;
385 	struct device *dev = &rproc->dev;
386 	struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
387 	struct rproc_vring *rvring = &rvdev->vring[i];
388 
389 	dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
390 		i, vring->da, vring->num, vring->align);
391 
392 	/* verify queue size and vring alignment are sane */
393 	if (!vring->num || !vring->align) {
394 		dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
395 			vring->num, vring->align);
396 		return -EINVAL;
397 	}
398 
399 	rvring->len = vring->num;
400 	rvring->align = vring->align;
401 	rvring->rvdev = rvdev;
402 
403 	return 0;
404 }
405 
rproc_free_vring(struct rproc_vring * rvring)406 void rproc_free_vring(struct rproc_vring *rvring)
407 {
408 	struct rproc *rproc = rvring->rvdev->rproc;
409 	int idx = rvring - rvring->rvdev->vring;
410 	struct fw_rsc_vdev *rsc;
411 
412 	idr_remove(&rproc->notifyids, rvring->notifyid);
413 
414 	/*
415 	 * At this point rproc_stop() has been called and the installed resource
416 	 * table in the remote processor memory may no longer be accessible. As
417 	 * such and as per rproc_stop(), rproc->table_ptr points to the cached
418 	 * resource table (rproc->cached_table).  The cached resource table is
419 	 * only available when a remote processor has been booted by the
420 	 * remoteproc core, otherwise it is NULL.
421 	 *
422 	 * Based on the above, reset the virtio device section in the cached
423 	 * resource table only if there is one to work with.
424 	 */
425 	if (rproc->table_ptr) {
426 		rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
427 		rsc->vring[idx].da = 0;
428 		rsc->vring[idx].notifyid = -1;
429 	}
430 }
431 
rproc_vdev_do_start(struct rproc_subdev * subdev)432 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
433 {
434 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
435 
436 	return rproc_add_virtio_dev(rvdev, rvdev->id);
437 }
438 
rproc_vdev_do_stop(struct rproc_subdev * subdev,bool crashed)439 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
440 {
441 	struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
442 	int ret;
443 
444 	ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
445 	if (ret)
446 		dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
447 }
448 
449 /**
450  * rproc_rvdev_release() - release the existence of a rvdev
451  *
452  * @dev: the subdevice's dev
453  */
rproc_rvdev_release(struct device * dev)454 static void rproc_rvdev_release(struct device *dev)
455 {
456 	struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
457 
458 	of_reserved_mem_device_release(dev);
459 
460 	kfree(rvdev);
461 }
462 
copy_dma_range_map(struct device * to,struct device * from)463 static int copy_dma_range_map(struct device *to, struct device *from)
464 {
465 	const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
466 	int num_ranges = 0;
467 
468 	if (!map)
469 		return 0;
470 
471 	for (r = map; r->size; r++)
472 		num_ranges++;
473 
474 	new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
475 			  GFP_KERNEL);
476 	if (!new_map)
477 		return -ENOMEM;
478 	to->dma_range_map = new_map;
479 	return 0;
480 }
481 
482 /**
483  * rproc_handle_vdev() - handle a vdev fw resource
484  * @rproc: the remote processor
485  * @rsc: the vring resource descriptor
486  * @offset: offset of the resource entry
487  * @avail: size of available data (for sanity checking the image)
488  *
489  * This resource entry requests the host to statically register a virtio
490  * device (vdev), and setup everything needed to support it. It contains
491  * everything needed to make it possible: the virtio device id, virtio
492  * device features, vrings information, virtio config space, etc...
493  *
494  * Before registering the vdev, the vrings are allocated from non-cacheable
495  * physically contiguous memory. Currently we only support two vrings per
496  * remote processor (temporary limitation). We might also want to consider
497  * doing the vring allocation only later when ->find_vqs() is invoked, and
498  * then release them upon ->del_vqs().
499  *
500  * Note: @da is currently not really handled correctly: we dynamically
501  * allocate it using the DMA API, ignoring requested hard coded addresses,
502  * and we don't take care of any required IOMMU programming. This is all
503  * going to be taken care of when the generic iommu-based DMA API will be
504  * merged. Meanwhile, statically-addressed iommu-based firmware images should
505  * use RSC_DEVMEM resource entries to map their required @da to the physical
506  * address of their base CMA region (ouch, hacky!).
507  *
508  * Returns 0 on success, or an appropriate error code otherwise
509  */
rproc_handle_vdev(struct rproc * rproc,struct fw_rsc_vdev * rsc,int offset,int avail)510 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
511 			     int offset, int avail)
512 {
513 	struct device *dev = &rproc->dev;
514 	struct rproc_vdev *rvdev;
515 	int i, ret;
516 	char name[16];
517 
518 	/* make sure resource isn't truncated */
519 	if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
520 			avail) {
521 		dev_err(dev, "vdev rsc is truncated\n");
522 		return -EINVAL;
523 	}
524 
525 	/* make sure reserved bytes are zeroes */
526 	if (rsc->reserved[0] || rsc->reserved[1]) {
527 		dev_err(dev, "vdev rsc has non zero reserved bytes\n");
528 		return -EINVAL;
529 	}
530 
531 	dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
532 		rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
533 
534 	/* we currently support only two vrings per rvdev */
535 	if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
536 		dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
537 		return -EINVAL;
538 	}
539 
540 	rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
541 	if (!rvdev)
542 		return -ENOMEM;
543 
544 	kref_init(&rvdev->refcount);
545 
546 	rvdev->id = rsc->id;
547 	rvdev->rproc = rproc;
548 	rvdev->index = rproc->nb_vdev++;
549 
550 	/* Initialise vdev subdevice */
551 	snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
552 	rvdev->dev.parent = &rproc->dev;
553 	rvdev->dev.release = rproc_rvdev_release;
554 	dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
555 	dev_set_drvdata(&rvdev->dev, rvdev);
556 
557 	ret = device_register(&rvdev->dev);
558 	if (ret) {
559 		put_device(&rvdev->dev);
560 		return ret;
561 	}
562 
563 	ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
564 	if (ret)
565 		goto free_rvdev;
566 
567 	/* Make device dma capable by inheriting from parent's capabilities */
568 	set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
569 
570 	ret = dma_coerce_mask_and_coherent(&rvdev->dev,
571 					   dma_get_mask(rproc->dev.parent));
572 	if (ret) {
573 		dev_warn(dev,
574 			 "Failed to set DMA mask %llx. Trying to continue... %x\n",
575 			 dma_get_mask(rproc->dev.parent), ret);
576 	}
577 
578 	/* parse the vrings */
579 	for (i = 0; i < rsc->num_of_vrings; i++) {
580 		ret = rproc_parse_vring(rvdev, rsc, i);
581 		if (ret)
582 			goto free_rvdev;
583 	}
584 
585 	/* remember the resource offset*/
586 	rvdev->rsc_offset = offset;
587 
588 	/* allocate the vring resources */
589 	for (i = 0; i < rsc->num_of_vrings; i++) {
590 		ret = rproc_alloc_vring(rvdev, i);
591 		if (ret)
592 			goto unwind_vring_allocations;
593 	}
594 
595 	list_add_tail(&rvdev->node, &rproc->rvdevs);
596 
597 	rvdev->subdev.start = rproc_vdev_do_start;
598 	rvdev->subdev.stop = rproc_vdev_do_stop;
599 
600 	rproc_add_subdev(rproc, &rvdev->subdev);
601 
602 	return 0;
603 
604 unwind_vring_allocations:
605 	for (i--; i >= 0; i--)
606 		rproc_free_vring(&rvdev->vring[i]);
607 free_rvdev:
608 	device_unregister(&rvdev->dev);
609 	return ret;
610 }
611 
rproc_vdev_release(struct kref * ref)612 void rproc_vdev_release(struct kref *ref)
613 {
614 	struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
615 	struct rproc_vring *rvring;
616 	struct rproc *rproc = rvdev->rproc;
617 	int id;
618 
619 	for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
620 		rvring = &rvdev->vring[id];
621 		rproc_free_vring(rvring);
622 	}
623 
624 	rproc_remove_subdev(rproc, &rvdev->subdev);
625 	list_del(&rvdev->node);
626 	device_unregister(&rvdev->dev);
627 }
628 
629 /**
630  * rproc_handle_trace() - handle a shared trace buffer resource
631  * @rproc: the remote processor
632  * @rsc: the trace resource descriptor
633  * @offset: offset of the resource entry
634  * @avail: size of available data (for sanity checking the image)
635  *
636  * In case the remote processor dumps trace logs into memory,
637  * export it via debugfs.
638  *
639  * Currently, the 'da' member of @rsc should contain the device address
640  * where the remote processor is dumping the traces. Later we could also
641  * support dynamically allocating this address using the generic
642  * DMA API (but currently there isn't a use case for that).
643  *
644  * Returns 0 on success, or an appropriate error code otherwise
645  */
rproc_handle_trace(struct rproc * rproc,struct fw_rsc_trace * rsc,int offset,int avail)646 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
647 			      int offset, int avail)
648 {
649 	struct rproc_debug_trace *trace;
650 	struct device *dev = &rproc->dev;
651 	char name[15];
652 
653 	if (sizeof(*rsc) > avail) {
654 		dev_err(dev, "trace rsc is truncated\n");
655 		return -EINVAL;
656 	}
657 
658 	/* make sure reserved bytes are zeroes */
659 	if (rsc->reserved) {
660 		dev_err(dev, "trace rsc has non zero reserved bytes\n");
661 		return -EINVAL;
662 	}
663 
664 	trace = kzalloc(sizeof(*trace), GFP_KERNEL);
665 	if (!trace)
666 		return -ENOMEM;
667 
668 	/* set the trace buffer dma properties */
669 	trace->trace_mem.len = rsc->len;
670 	trace->trace_mem.da = rsc->da;
671 
672 	/* set pointer on rproc device */
673 	trace->rproc = rproc;
674 
675 	/* make sure snprintf always null terminates, even if truncating */
676 	snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
677 
678 	/* create the debugfs entry */
679 	trace->tfile = rproc_create_trace_file(name, rproc, trace);
680 	if (!trace->tfile) {
681 		kfree(trace);
682 		return -EINVAL;
683 	}
684 
685 	list_add_tail(&trace->node, &rproc->traces);
686 
687 	rproc->num_traces++;
688 
689 	dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
690 		name, rsc->da, rsc->len);
691 
692 	return 0;
693 }
694 
695 /**
696  * rproc_handle_devmem() - handle devmem resource entry
697  * @rproc: remote processor handle
698  * @rsc: the devmem resource entry
699  * @offset: offset of the resource entry
700  * @avail: size of available data (for sanity checking the image)
701  *
702  * Remote processors commonly need to access certain on-chip peripherals.
703  *
704  * Some of these remote processors access memory via an iommu device,
705  * and might require us to configure their iommu before they can access
706  * the on-chip peripherals they need.
707  *
708  * This resource entry is a request to map such a peripheral device.
709  *
710  * These devmem entries will contain the physical address of the device in
711  * the 'pa' member. If a specific device address is expected, then 'da' will
712  * contain it (currently this is the only use case supported). 'len' will
713  * contain the size of the physical region we need to map.
714  *
715  * Currently we just "trust" those devmem entries to contain valid physical
716  * addresses, but this is going to change: we want the implementations to
717  * tell us ranges of physical addresses the firmware is allowed to request,
718  * and not allow firmwares to request access to physical addresses that
719  * are outside those ranges.
720  */
rproc_handle_devmem(struct rproc * rproc,struct fw_rsc_devmem * rsc,int offset,int avail)721 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
722 			       int offset, int avail)
723 {
724 	struct rproc_mem_entry *mapping;
725 	struct device *dev = &rproc->dev;
726 	int ret;
727 
728 	/* no point in handling this resource without a valid iommu domain */
729 	if (!rproc->domain)
730 		return -EINVAL;
731 
732 	if (sizeof(*rsc) > avail) {
733 		dev_err(dev, "devmem rsc is truncated\n");
734 		return -EINVAL;
735 	}
736 
737 	/* make sure reserved bytes are zeroes */
738 	if (rsc->reserved) {
739 		dev_err(dev, "devmem rsc has non zero reserved bytes\n");
740 		return -EINVAL;
741 	}
742 
743 	mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
744 	if (!mapping)
745 		return -ENOMEM;
746 
747 	ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
748 	if (ret) {
749 		dev_err(dev, "failed to map devmem: %d\n", ret);
750 		goto out;
751 	}
752 
753 	/*
754 	 * We'll need this info later when we'll want to unmap everything
755 	 * (e.g. on shutdown).
756 	 *
757 	 * We can't trust the remote processor not to change the resource
758 	 * table, so we must maintain this info independently.
759 	 */
760 	mapping->da = rsc->da;
761 	mapping->len = rsc->len;
762 	list_add_tail(&mapping->node, &rproc->mappings);
763 
764 	dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
765 		rsc->pa, rsc->da, rsc->len);
766 
767 	return 0;
768 
769 out:
770 	kfree(mapping);
771 	return ret;
772 }
773 
774 /**
775  * rproc_alloc_carveout() - allocated specified carveout
776  * @rproc: rproc handle
777  * @mem: the memory entry to allocate
778  *
779  * This function allocate specified memory entry @mem using
780  * dma_alloc_coherent() as default allocator
781  */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)782 static int rproc_alloc_carveout(struct rproc *rproc,
783 				struct rproc_mem_entry *mem)
784 {
785 	struct rproc_mem_entry *mapping = NULL;
786 	struct device *dev = &rproc->dev;
787 	dma_addr_t dma;
788 	void *va;
789 	int ret;
790 
791 	va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
792 	if (!va) {
793 		dev_err(dev->parent,
794 			"failed to allocate dma memory: len 0x%zx\n",
795 			mem->len);
796 		return -ENOMEM;
797 	}
798 
799 	dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
800 		va, &dma, mem->len);
801 
802 	if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
803 		/*
804 		 * Check requested da is equal to dma address
805 		 * and print a warn message in case of missalignment.
806 		 * Don't stop rproc_start sequence as coprocessor may
807 		 * build pa to da translation on its side.
808 		 */
809 		if (mem->da != (u32)dma)
810 			dev_warn(dev->parent,
811 				 "Allocated carveout doesn't fit device address request\n");
812 	}
813 
814 	/*
815 	 * Ok, this is non-standard.
816 	 *
817 	 * Sometimes we can't rely on the generic iommu-based DMA API
818 	 * to dynamically allocate the device address and then set the IOMMU
819 	 * tables accordingly, because some remote processors might
820 	 * _require_ us to use hard coded device addresses that their
821 	 * firmware was compiled with.
822 	 *
823 	 * In this case, we must use the IOMMU API directly and map
824 	 * the memory to the device address as expected by the remote
825 	 * processor.
826 	 *
827 	 * Obviously such remote processor devices should not be configured
828 	 * to use the iommu-based DMA API: we expect 'dma' to contain the
829 	 * physical address in this case.
830 	 */
831 	if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
832 		mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
833 		if (!mapping) {
834 			ret = -ENOMEM;
835 			goto dma_free;
836 		}
837 
838 		ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
839 				mem->flags);
840 		if (ret) {
841 			dev_err(dev, "iommu_map failed: %d\n", ret);
842 			goto free_mapping;
843 		}
844 
845 		/*
846 		 * We'll need this info later when we'll want to unmap
847 		 * everything (e.g. on shutdown).
848 		 *
849 		 * We can't trust the remote processor not to change the
850 		 * resource table, so we must maintain this info independently.
851 		 */
852 		mapping->da = mem->da;
853 		mapping->len = mem->len;
854 		list_add_tail(&mapping->node, &rproc->mappings);
855 
856 		dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
857 			mem->da, &dma);
858 	}
859 
860 	if (mem->da == FW_RSC_ADDR_ANY) {
861 		/* Update device address as undefined by requester */
862 		if ((u64)dma & HIGH_BITS_MASK)
863 			dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
864 
865 		mem->da = (u32)dma;
866 	}
867 
868 	mem->dma = dma;
869 	mem->va = va;
870 
871 	return 0;
872 
873 free_mapping:
874 	kfree(mapping);
875 dma_free:
876 	dma_free_coherent(dev->parent, mem->len, va, dma);
877 	return ret;
878 }
879 
880 /**
881  * rproc_release_carveout() - release acquired carveout
882  * @rproc: rproc handle
883  * @mem: the memory entry to release
884  *
885  * This function releases specified memory entry @mem allocated via
886  * rproc_alloc_carveout() function by @rproc.
887  */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)888 static int rproc_release_carveout(struct rproc *rproc,
889 				  struct rproc_mem_entry *mem)
890 {
891 	struct device *dev = &rproc->dev;
892 
893 	/* clean up carveout allocations */
894 	dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
895 	return 0;
896 }
897 
898 /**
899  * rproc_handle_carveout() - handle phys contig memory allocation requests
900  * @rproc: rproc handle
901  * @rsc: the resource entry
902  * @offset: offset of the resource entry
903  * @avail: size of available data (for image validation)
904  *
905  * This function will handle firmware requests for allocation of physically
906  * contiguous memory regions.
907  *
908  * These request entries should come first in the firmware's resource table,
909  * as other firmware entries might request placing other data objects inside
910  * these memory regions (e.g. data/code segments, trace resource entries, ...).
911  *
912  * Allocating memory this way helps utilizing the reserved physical memory
913  * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
914  * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
915  * pressure is important; it may have a substantial impact on performance.
916  */
rproc_handle_carveout(struct rproc * rproc,struct fw_rsc_carveout * rsc,int offset,int avail)917 static int rproc_handle_carveout(struct rproc *rproc,
918 				 struct fw_rsc_carveout *rsc,
919 				 int offset, int avail)
920 {
921 	struct rproc_mem_entry *carveout;
922 	struct device *dev = &rproc->dev;
923 
924 	if (sizeof(*rsc) > avail) {
925 		dev_err(dev, "carveout rsc is truncated\n");
926 		return -EINVAL;
927 	}
928 
929 	/* make sure reserved bytes are zeroes */
930 	if (rsc->reserved) {
931 		dev_err(dev, "carveout rsc has non zero reserved bytes\n");
932 		return -EINVAL;
933 	}
934 
935 	dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
936 		rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
937 
938 	/*
939 	 * Check carveout rsc already part of a registered carveout,
940 	 * Search by name, then check the da and length
941 	 */
942 	carveout = rproc_find_carveout_by_name(rproc, rsc->name);
943 
944 	if (carveout) {
945 		if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
946 			dev_err(dev,
947 				"Carveout already associated to resource table\n");
948 			return -ENOMEM;
949 		}
950 
951 		if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
952 			return -ENOMEM;
953 
954 		/* Update memory carveout with resource table info */
955 		carveout->rsc_offset = offset;
956 		carveout->flags = rsc->flags;
957 
958 		return 0;
959 	}
960 
961 	/* Register carveout in in list */
962 	carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
963 					rproc_alloc_carveout,
964 					rproc_release_carveout, rsc->name);
965 	if (!carveout) {
966 		dev_err(dev, "Can't allocate memory entry structure\n");
967 		return -ENOMEM;
968 	}
969 
970 	carveout->flags = rsc->flags;
971 	carveout->rsc_offset = offset;
972 	rproc_add_carveout(rproc, carveout);
973 
974 	return 0;
975 }
976 
977 /**
978  * rproc_add_carveout() - register an allocated carveout region
979  * @rproc: rproc handle
980  * @mem: memory entry to register
981  *
982  * This function registers specified memory entry in @rproc carveouts list.
983  * Specified carveout should have been allocated before registering.
984  */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)985 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
986 {
987 	list_add_tail(&mem->node, &rproc->carveouts);
988 }
989 EXPORT_SYMBOL(rproc_add_carveout);
990 
991 /**
992  * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
993  * @dev: pointer on device struct
994  * @va: virtual address
995  * @dma: dma address
996  * @len: memory carveout length
997  * @da: device address
998  * @alloc: memory carveout allocation function
999  * @release: memory carveout release function
1000  * @name: carveout name
1001  *
1002  * This function allocates a rproc_mem_entry struct and fill it with parameters
1003  * provided by client.
1004  */
1005 __printf(8, 9)
1006 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)1007 rproc_mem_entry_init(struct device *dev,
1008 		     void *va, dma_addr_t dma, size_t len, u32 da,
1009 		     int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1010 		     int (*release)(struct rproc *, struct rproc_mem_entry *),
1011 		     const char *name, ...)
1012 {
1013 	struct rproc_mem_entry *mem;
1014 	va_list args;
1015 
1016 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1017 	if (!mem)
1018 		return mem;
1019 
1020 	mem->va = va;
1021 	mem->dma = dma;
1022 	mem->da = da;
1023 	mem->len = len;
1024 	mem->alloc = alloc;
1025 	mem->release = release;
1026 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1027 	mem->of_resm_idx = -1;
1028 
1029 	va_start(args, name);
1030 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1031 	va_end(args);
1032 
1033 	return mem;
1034 }
1035 EXPORT_SYMBOL(rproc_mem_entry_init);
1036 
1037 /**
1038  * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1039  * from a reserved memory phandle
1040  * @dev: pointer on device struct
1041  * @of_resm_idx: reserved memory phandle index in "memory-region"
1042  * @len: memory carveout length
1043  * @da: device address
1044  * @name: carveout name
1045  *
1046  * This function allocates a rproc_mem_entry struct and fill it with parameters
1047  * provided by client.
1048  */
1049 __printf(5, 6)
1050 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)1051 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1052 			     u32 da, const char *name, ...)
1053 {
1054 	struct rproc_mem_entry *mem;
1055 	va_list args;
1056 
1057 	mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1058 	if (!mem)
1059 		return mem;
1060 
1061 	mem->da = da;
1062 	mem->len = len;
1063 	mem->rsc_offset = FW_RSC_ADDR_ANY;
1064 	mem->of_resm_idx = of_resm_idx;
1065 
1066 	va_start(args, name);
1067 	vsnprintf(mem->name, sizeof(mem->name), name, args);
1068 	va_end(args);
1069 
1070 	return mem;
1071 }
1072 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1073 
1074 /**
1075  * rproc_of_parse_firmware() - parse and return the firmware-name
1076  * @dev: pointer on device struct representing a rproc
1077  * @index: index to use for the firmware-name retrieval
1078  * @fw_name: pointer to a character string, in which the firmware
1079  *           name is returned on success and unmodified otherwise.
1080  *
1081  * This is an OF helper function that parses a device's DT node for
1082  * the "firmware-name" property and returns the firmware name pointer
1083  * in @fw_name on success.
1084  *
1085  * Return: 0 on success, or an appropriate failure.
1086  */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)1087 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1088 {
1089 	int ret;
1090 
1091 	ret = of_property_read_string_index(dev->of_node, "firmware-name",
1092 					    index, fw_name);
1093 	return ret ? ret : 0;
1094 }
1095 EXPORT_SYMBOL(rproc_of_parse_firmware);
1096 
1097 /*
1098  * A lookup table for resource handlers. The indices are defined in
1099  * enum fw_resource_type.
1100  */
1101 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1102 	[RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1103 	[RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1104 	[RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1105 	[RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1106 };
1107 
1108 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1109 static int rproc_handle_resources(struct rproc *rproc,
1110 				  rproc_handle_resource_t handlers[RSC_LAST])
1111 {
1112 	struct device *dev = &rproc->dev;
1113 	rproc_handle_resource_t handler;
1114 	int ret = 0, i;
1115 
1116 	if (!rproc->table_ptr)
1117 		return 0;
1118 
1119 	for (i = 0; i < rproc->table_ptr->num; i++) {
1120 		int offset = rproc->table_ptr->offset[i];
1121 		struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1122 		int avail = rproc->table_sz - offset - sizeof(*hdr);
1123 		void *rsc = (void *)hdr + sizeof(*hdr);
1124 
1125 		/* make sure table isn't truncated */
1126 		if (avail < 0) {
1127 			dev_err(dev, "rsc table is truncated\n");
1128 			return -EINVAL;
1129 		}
1130 
1131 		dev_dbg(dev, "rsc: type %d\n", hdr->type);
1132 
1133 		if (hdr->type >= RSC_VENDOR_START &&
1134 		    hdr->type <= RSC_VENDOR_END) {
1135 			ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1136 					       offset + sizeof(*hdr), avail);
1137 			if (ret == RSC_HANDLED)
1138 				continue;
1139 			else if (ret < 0)
1140 				break;
1141 
1142 			dev_warn(dev, "unsupported vendor resource %d\n",
1143 				 hdr->type);
1144 			continue;
1145 		}
1146 
1147 		if (hdr->type >= RSC_LAST) {
1148 			dev_warn(dev, "unsupported resource %d\n", hdr->type);
1149 			continue;
1150 		}
1151 
1152 		handler = handlers[hdr->type];
1153 		if (!handler)
1154 			continue;
1155 
1156 		ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1157 		if (ret)
1158 			break;
1159 	}
1160 
1161 	return ret;
1162 }
1163 
rproc_prepare_subdevices(struct rproc * rproc)1164 static int rproc_prepare_subdevices(struct rproc *rproc)
1165 {
1166 	struct rproc_subdev *subdev;
1167 	int ret;
1168 
1169 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1170 		if (subdev->prepare) {
1171 			ret = subdev->prepare(subdev);
1172 			if (ret)
1173 				goto unroll_preparation;
1174 		}
1175 	}
1176 
1177 	return 0;
1178 
1179 unroll_preparation:
1180 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1181 		if (subdev->unprepare)
1182 			subdev->unprepare(subdev);
1183 	}
1184 
1185 	return ret;
1186 }
1187 
rproc_start_subdevices(struct rproc * rproc)1188 static int rproc_start_subdevices(struct rproc *rproc)
1189 {
1190 	struct rproc_subdev *subdev;
1191 	int ret;
1192 
1193 	list_for_each_entry(subdev, &rproc->subdevs, node) {
1194 		if (subdev->start) {
1195 			ret = subdev->start(subdev);
1196 			if (ret)
1197 				goto unroll_registration;
1198 		}
1199 	}
1200 
1201 	return 0;
1202 
1203 unroll_registration:
1204 	list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1205 		if (subdev->stop)
1206 			subdev->stop(subdev, true);
1207 	}
1208 
1209 	return ret;
1210 }
1211 
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1212 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1213 {
1214 	struct rproc_subdev *subdev;
1215 
1216 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1217 		if (subdev->stop)
1218 			subdev->stop(subdev, crashed);
1219 	}
1220 }
1221 
rproc_unprepare_subdevices(struct rproc * rproc)1222 static void rproc_unprepare_subdevices(struct rproc *rproc)
1223 {
1224 	struct rproc_subdev *subdev;
1225 
1226 	list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1227 		if (subdev->unprepare)
1228 			subdev->unprepare(subdev);
1229 	}
1230 }
1231 
1232 /**
1233  * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1234  * in the list
1235  * @rproc: the remote processor handle
1236  *
1237  * This function parses registered carveout list, performs allocation
1238  * if alloc() ops registered and updates resource table information
1239  * if rsc_offset set.
1240  *
1241  * Return: 0 on success
1242  */
rproc_alloc_registered_carveouts(struct rproc * rproc)1243 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1244 {
1245 	struct rproc_mem_entry *entry, *tmp;
1246 	struct fw_rsc_carveout *rsc;
1247 	struct device *dev = &rproc->dev;
1248 	u64 pa;
1249 	int ret;
1250 
1251 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1252 		if (entry->alloc) {
1253 			ret = entry->alloc(rproc, entry);
1254 			if (ret) {
1255 				dev_err(dev, "Unable to allocate carveout %s: %d\n",
1256 					entry->name, ret);
1257 				return -ENOMEM;
1258 			}
1259 		}
1260 
1261 		if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1262 			/* update resource table */
1263 			rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1264 
1265 			/*
1266 			 * Some remote processors might need to know the pa
1267 			 * even though they are behind an IOMMU. E.g., OMAP4's
1268 			 * remote M3 processor needs this so it can control
1269 			 * on-chip hardware accelerators that are not behind
1270 			 * the IOMMU, and therefor must know the pa.
1271 			 *
1272 			 * Generally we don't want to expose physical addresses
1273 			 * if we don't have to (remote processors are generally
1274 			 * _not_ trusted), so we might want to do this only for
1275 			 * remote processor that _must_ have this (e.g. OMAP4's
1276 			 * dual M3 subsystem).
1277 			 *
1278 			 * Non-IOMMU processors might also want to have this info.
1279 			 * In this case, the device address and the physical address
1280 			 * are the same.
1281 			 */
1282 
1283 			/* Use va if defined else dma to generate pa */
1284 			if (entry->va)
1285 				pa = (u64)rproc_va_to_pa(entry->va);
1286 			else
1287 				pa = (u64)entry->dma;
1288 
1289 			if (((u64)pa) & HIGH_BITS_MASK)
1290 				dev_warn(dev,
1291 					 "Physical address cast in 32bit to fit resource table format\n");
1292 
1293 			rsc->pa = (u32)pa;
1294 			rsc->da = entry->da;
1295 			rsc->len = entry->len;
1296 		}
1297 	}
1298 
1299 	return 0;
1300 }
1301 
1302 
1303 /**
1304  * rproc_resource_cleanup() - clean up and free all acquired resources
1305  * @rproc: rproc handle
1306  *
1307  * This function will free all resources acquired for @rproc, and it
1308  * is called whenever @rproc either shuts down or fails to boot.
1309  */
rproc_resource_cleanup(struct rproc * rproc)1310 void rproc_resource_cleanup(struct rproc *rproc)
1311 {
1312 	struct rproc_mem_entry *entry, *tmp;
1313 	struct rproc_debug_trace *trace, *ttmp;
1314 	struct rproc_vdev *rvdev, *rvtmp;
1315 	struct device *dev = &rproc->dev;
1316 
1317 	/* clean up debugfs trace entries */
1318 	list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1319 		rproc_remove_trace_file(trace->tfile);
1320 		rproc->num_traces--;
1321 		list_del(&trace->node);
1322 		kfree(trace);
1323 	}
1324 
1325 	/* clean up iommu mapping entries */
1326 	list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1327 		size_t unmapped;
1328 
1329 		unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1330 		if (unmapped != entry->len) {
1331 			/* nothing much to do besides complaining */
1332 			dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1333 				unmapped);
1334 		}
1335 
1336 		list_del(&entry->node);
1337 		kfree(entry);
1338 	}
1339 
1340 	/* clean up carveout allocations */
1341 	list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1342 		if (entry->release)
1343 			entry->release(rproc, entry);
1344 		list_del(&entry->node);
1345 		kfree(entry);
1346 	}
1347 
1348 	/* clean up remote vdev entries */
1349 	list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1350 		kref_put(&rvdev->refcount, rproc_vdev_release);
1351 
1352 	rproc_coredump_cleanup(rproc);
1353 }
1354 EXPORT_SYMBOL(rproc_resource_cleanup);
1355 
rproc_start(struct rproc * rproc,const struct firmware * fw)1356 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1357 {
1358 	struct resource_table *loaded_table;
1359 	struct device *dev = &rproc->dev;
1360 	int ret;
1361 
1362 	/* load the ELF segments to memory */
1363 	ret = rproc_load_segments(rproc, fw);
1364 	if (ret) {
1365 		dev_err(dev, "Failed to load program segments: %d\n", ret);
1366 		return ret;
1367 	}
1368 
1369 	/*
1370 	 * The starting device has been given the rproc->cached_table as the
1371 	 * resource table. The address of the vring along with the other
1372 	 * allocated resources (carveouts etc) is stored in cached_table.
1373 	 * In order to pass this information to the remote device we must copy
1374 	 * this information to device memory. We also update the table_ptr so
1375 	 * that any subsequent changes will be applied to the loaded version.
1376 	 */
1377 	loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1378 	if (loaded_table) {
1379 		memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1380 		rproc->table_ptr = loaded_table;
1381 	}
1382 
1383 	ret = rproc_prepare_subdevices(rproc);
1384 	if (ret) {
1385 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1386 			rproc->name, ret);
1387 		goto reset_table_ptr;
1388 	}
1389 
1390 	/* power up the remote processor */
1391 	ret = rproc->ops->start(rproc);
1392 	if (ret) {
1393 		dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1394 		goto unprepare_subdevices;
1395 	}
1396 
1397 	/* Start any subdevices for the remote processor */
1398 	ret = rproc_start_subdevices(rproc);
1399 	if (ret) {
1400 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1401 			rproc->name, ret);
1402 		goto stop_rproc;
1403 	}
1404 
1405 	rproc->state = RPROC_RUNNING;
1406 
1407 	dev_info(dev, "remote processor %s is now up\n", rproc->name);
1408 
1409 	return 0;
1410 
1411 stop_rproc:
1412 	rproc->ops->stop(rproc);
1413 unprepare_subdevices:
1414 	rproc_unprepare_subdevices(rproc);
1415 reset_table_ptr:
1416 	rproc->table_ptr = rproc->cached_table;
1417 
1418 	return ret;
1419 }
1420 
rproc_attach(struct rproc * rproc)1421 static int rproc_attach(struct rproc *rproc)
1422 {
1423 	struct device *dev = &rproc->dev;
1424 	int ret;
1425 
1426 	ret = rproc_prepare_subdevices(rproc);
1427 	if (ret) {
1428 		dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1429 			rproc->name, ret);
1430 		goto out;
1431 	}
1432 
1433 	/* Attach to the remote processor */
1434 	ret = rproc_attach_device(rproc);
1435 	if (ret) {
1436 		dev_err(dev, "can't attach to rproc %s: %d\n",
1437 			rproc->name, ret);
1438 		goto unprepare_subdevices;
1439 	}
1440 
1441 	/* Start any subdevices for the remote processor */
1442 	ret = rproc_start_subdevices(rproc);
1443 	if (ret) {
1444 		dev_err(dev, "failed to probe subdevices for %s: %d\n",
1445 			rproc->name, ret);
1446 		goto stop_rproc;
1447 	}
1448 
1449 	rproc->state = RPROC_RUNNING;
1450 
1451 	dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1452 
1453 	return 0;
1454 
1455 stop_rproc:
1456 	rproc->ops->stop(rproc);
1457 unprepare_subdevices:
1458 	rproc_unprepare_subdevices(rproc);
1459 out:
1460 	return ret;
1461 }
1462 
1463 /*
1464  * take a firmware and boot a remote processor with it.
1465  */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1466 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1467 {
1468 	struct device *dev = &rproc->dev;
1469 	const char *name = rproc->firmware;
1470 	int ret;
1471 
1472 	ret = rproc_fw_sanity_check(rproc, fw);
1473 	if (ret)
1474 		return ret;
1475 
1476 	dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1477 
1478 	/*
1479 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1480 	 * just a nop
1481 	 */
1482 	ret = rproc_enable_iommu(rproc);
1483 	if (ret) {
1484 		dev_err(dev, "can't enable iommu: %d\n", ret);
1485 		return ret;
1486 	}
1487 
1488 	/* Prepare rproc for firmware loading if needed */
1489 	ret = rproc_prepare_device(rproc);
1490 	if (ret) {
1491 		dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1492 		goto disable_iommu;
1493 	}
1494 
1495 	rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1496 
1497 	/* Load resource table, core dump segment list etc from the firmware */
1498 	ret = rproc_parse_fw(rproc, fw);
1499 	if (ret)
1500 		goto unprepare_rproc;
1501 
1502 	/* reset max_notifyid */
1503 	rproc->max_notifyid = -1;
1504 
1505 	/* reset handled vdev */
1506 	rproc->nb_vdev = 0;
1507 
1508 	/* handle fw resources which are required to boot rproc */
1509 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1510 	if (ret) {
1511 		dev_err(dev, "Failed to process resources: %d\n", ret);
1512 		goto clean_up_resources;
1513 	}
1514 
1515 	/* Allocate carveout resources associated to rproc */
1516 	ret = rproc_alloc_registered_carveouts(rproc);
1517 	if (ret) {
1518 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1519 			ret);
1520 		goto clean_up_resources;
1521 	}
1522 
1523 	ret = rproc_start(rproc, fw);
1524 	if (ret)
1525 		goto clean_up_resources;
1526 
1527 	return 0;
1528 
1529 clean_up_resources:
1530 	rproc_resource_cleanup(rproc);
1531 	kfree(rproc->cached_table);
1532 	rproc->cached_table = NULL;
1533 	rproc->table_ptr = NULL;
1534 unprepare_rproc:
1535 	/* release HW resources if needed */
1536 	rproc_unprepare_device(rproc);
1537 disable_iommu:
1538 	rproc_disable_iommu(rproc);
1539 	return ret;
1540 }
1541 
1542 /*
1543  * Attach to remote processor - similar to rproc_fw_boot() but without
1544  * the steps that deal with the firmware image.
1545  */
rproc_actuate(struct rproc * rproc)1546 static int rproc_actuate(struct rproc *rproc)
1547 {
1548 	struct device *dev = &rproc->dev;
1549 	int ret;
1550 
1551 	/*
1552 	 * if enabling an IOMMU isn't relevant for this rproc, this is
1553 	 * just a nop
1554 	 */
1555 	ret = rproc_enable_iommu(rproc);
1556 	if (ret) {
1557 		dev_err(dev, "can't enable iommu: %d\n", ret);
1558 		return ret;
1559 	}
1560 
1561 	/* reset max_notifyid */
1562 	rproc->max_notifyid = -1;
1563 
1564 	/* reset handled vdev */
1565 	rproc->nb_vdev = 0;
1566 
1567 	/*
1568 	 * Handle firmware resources required to attach to a remote processor.
1569 	 * Because we are attaching rather than booting the remote processor,
1570 	 * we expect the platform driver to properly set rproc->table_ptr.
1571 	 */
1572 	ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1573 	if (ret) {
1574 		dev_err(dev, "Failed to process resources: %d\n", ret);
1575 		goto disable_iommu;
1576 	}
1577 
1578 	/* Allocate carveout resources associated to rproc */
1579 	ret = rproc_alloc_registered_carveouts(rproc);
1580 	if (ret) {
1581 		dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1582 			ret);
1583 		goto clean_up_resources;
1584 	}
1585 
1586 	ret = rproc_attach(rproc);
1587 	if (ret)
1588 		goto clean_up_resources;
1589 
1590 	return 0;
1591 
1592 clean_up_resources:
1593 	rproc_resource_cleanup(rproc);
1594 disable_iommu:
1595 	rproc_disable_iommu(rproc);
1596 	return ret;
1597 }
1598 
1599 /*
1600  * take a firmware and boot it up.
1601  *
1602  * Note: this function is called asynchronously upon registration of the
1603  * remote processor (so we must wait until it completes before we try
1604  * to unregister the device. one other option is just to use kref here,
1605  * that might be cleaner).
1606  */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1607 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1608 {
1609 	struct rproc *rproc = context;
1610 
1611 	rproc_boot(rproc);
1612 
1613 	release_firmware(fw);
1614 }
1615 
rproc_trigger_auto_boot(struct rproc * rproc)1616 static int rproc_trigger_auto_boot(struct rproc *rproc)
1617 {
1618 	int ret;
1619 
1620 	/*
1621 	 * Since the remote processor is in a detached state, it has already
1622 	 * been booted by another entity.  As such there is no point in waiting
1623 	 * for a firmware image to be loaded, we can simply initiate the process
1624 	 * of attaching to it immediately.
1625 	 */
1626 	if (rproc->state == RPROC_DETACHED)
1627 		return rproc_boot(rproc);
1628 
1629 	/*
1630 	 * We're initiating an asynchronous firmware loading, so we can
1631 	 * be built-in kernel code, without hanging the boot process.
1632 	 */
1633 	ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1634 				      rproc->firmware, &rproc->dev, GFP_KERNEL,
1635 				      rproc, rproc_auto_boot_callback);
1636 	if (ret < 0)
1637 		dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1638 
1639 	return ret;
1640 }
1641 
rproc_stop(struct rproc * rproc,bool crashed)1642 static int rproc_stop(struct rproc *rproc, bool crashed)
1643 {
1644 	struct device *dev = &rproc->dev;
1645 	int ret;
1646 
1647 	/* Stop any subdevices for the remote processor */
1648 	rproc_stop_subdevices(rproc, crashed);
1649 
1650 	/* the installed resource table is no longer accessible */
1651 	rproc->table_ptr = rproc->cached_table;
1652 
1653 	/* power off the remote processor */
1654 	ret = rproc->ops->stop(rproc);
1655 	if (ret) {
1656 		dev_err(dev, "can't stop rproc: %d\n", ret);
1657 		return ret;
1658 	}
1659 
1660 	rproc_unprepare_subdevices(rproc);
1661 
1662 	rproc->state = RPROC_OFFLINE;
1663 
1664 	/*
1665 	 * The remote processor has been stopped and is now offline, which means
1666 	 * that the next time it is brought back online the remoteproc core will
1667 	 * be responsible to load its firmware.  As such it is no longer
1668 	 * autonomous.
1669 	 */
1670 	rproc->autonomous = false;
1671 
1672 	dev_info(dev, "stopped remote processor %s\n", rproc->name);
1673 
1674 	return 0;
1675 }
1676 
1677 
1678 /**
1679  * rproc_trigger_recovery() - recover a remoteproc
1680  * @rproc: the remote processor
1681  *
1682  * The recovery is done by resetting all the virtio devices, that way all the
1683  * rpmsg drivers will be reseted along with the remote processor making the
1684  * remoteproc functional again.
1685  *
1686  * This function can sleep, so it cannot be called from atomic context.
1687  */
rproc_trigger_recovery(struct rproc * rproc)1688 int rproc_trigger_recovery(struct rproc *rproc)
1689 {
1690 	const struct firmware *firmware_p;
1691 	struct device *dev = &rproc->dev;
1692 	int ret;
1693 
1694 	ret = mutex_lock_interruptible(&rproc->lock);
1695 	if (ret)
1696 		return ret;
1697 
1698 	/* State could have changed before we got the mutex */
1699 	if (rproc->state != RPROC_CRASHED)
1700 		goto unlock_mutex;
1701 
1702 	dev_err(dev, "recovering %s\n", rproc->name);
1703 
1704 	ret = rproc_stop(rproc, true);
1705 	if (ret)
1706 		goto unlock_mutex;
1707 
1708 	/* generate coredump */
1709 	rproc_coredump(rproc);
1710 
1711 	/* load firmware */
1712 	ret = request_firmware(&firmware_p, rproc->firmware, dev);
1713 	if (ret < 0) {
1714 		dev_err(dev, "request_firmware failed: %d\n", ret);
1715 		goto unlock_mutex;
1716 	}
1717 
1718 	/* boot the remote processor up again */
1719 	ret = rproc_start(rproc, firmware_p);
1720 
1721 	release_firmware(firmware_p);
1722 
1723 unlock_mutex:
1724 	mutex_unlock(&rproc->lock);
1725 	return ret;
1726 }
1727 
1728 /**
1729  * rproc_crash_handler_work() - handle a crash
1730  * @work: work treating the crash
1731  *
1732  * This function needs to handle everything related to a crash, like cpu
1733  * registers and stack dump, information to help to debug the fatal error, etc.
1734  */
rproc_crash_handler_work(struct work_struct * work)1735 static void rproc_crash_handler_work(struct work_struct *work)
1736 {
1737 	struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1738 	struct device *dev = &rproc->dev;
1739 
1740 	dev_dbg(dev, "enter %s\n", __func__);
1741 
1742 	mutex_lock(&rproc->lock);
1743 
1744 	if (rproc->state == RPROC_CRASHED) {
1745 		/* handle only the first crash detected */
1746 		mutex_unlock(&rproc->lock);
1747 		return;
1748 	}
1749 
1750 	if (rproc->state == RPROC_OFFLINE) {
1751 		/* Don't recover if the remote processor was stopped */
1752 		mutex_unlock(&rproc->lock);
1753 		goto out;
1754 	}
1755 
1756 	rproc->state = RPROC_CRASHED;
1757 	dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1758 		rproc->name);
1759 
1760 	mutex_unlock(&rproc->lock);
1761 
1762 	if (!rproc->recovery_disabled)
1763 		rproc_trigger_recovery(rproc);
1764 
1765 out:
1766 	pm_relax(rproc->dev.parent);
1767 }
1768 
1769 /**
1770  * rproc_boot() - boot a remote processor
1771  * @rproc: handle of a remote processor
1772  *
1773  * Boot a remote processor (i.e. load its firmware, power it on, ...).
1774  *
1775  * If the remote processor is already powered on, this function immediately
1776  * returns (successfully).
1777  *
1778  * Returns 0 on success, and an appropriate error value otherwise.
1779  */
rproc_boot(struct rproc * rproc)1780 int rproc_boot(struct rproc *rproc)
1781 {
1782 	const struct firmware *firmware_p;
1783 	struct device *dev;
1784 	int ret;
1785 
1786 	if (!rproc) {
1787 		pr_err("invalid rproc handle\n");
1788 		return -EINVAL;
1789 	}
1790 
1791 	dev = &rproc->dev;
1792 
1793 	ret = mutex_lock_interruptible(&rproc->lock);
1794 	if (ret) {
1795 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1796 		return ret;
1797 	}
1798 
1799 	if (rproc->state == RPROC_DELETED) {
1800 		ret = -ENODEV;
1801 		dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1802 		goto unlock_mutex;
1803 	}
1804 
1805 	/* skip the boot or attach process if rproc is already powered up */
1806 	if (atomic_inc_return(&rproc->power) > 1) {
1807 		ret = 0;
1808 		goto unlock_mutex;
1809 	}
1810 
1811 	if (rproc->state == RPROC_DETACHED) {
1812 		dev_info(dev, "attaching to %s\n", rproc->name);
1813 
1814 		ret = rproc_actuate(rproc);
1815 	} else {
1816 		dev_info(dev, "powering up %s\n", rproc->name);
1817 
1818 		/* load firmware */
1819 		ret = request_firmware(&firmware_p, rproc->firmware, dev);
1820 		if (ret < 0) {
1821 			dev_err(dev, "request_firmware failed: %d\n", ret);
1822 			goto downref_rproc;
1823 		}
1824 
1825 		ret = rproc_fw_boot(rproc, firmware_p);
1826 
1827 		release_firmware(firmware_p);
1828 	}
1829 
1830 downref_rproc:
1831 	if (ret)
1832 		atomic_dec(&rproc->power);
1833 unlock_mutex:
1834 	mutex_unlock(&rproc->lock);
1835 	return ret;
1836 }
1837 EXPORT_SYMBOL(rproc_boot);
1838 
1839 /**
1840  * rproc_shutdown() - power off the remote processor
1841  * @rproc: the remote processor
1842  *
1843  * Power off a remote processor (previously booted with rproc_boot()).
1844  *
1845  * In case @rproc is still being used by an additional user(s), then
1846  * this function will just decrement the power refcount and exit,
1847  * without really powering off the device.
1848  *
1849  * Every call to rproc_boot() must (eventually) be accompanied by a call
1850  * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1851  *
1852  * Notes:
1853  * - we're not decrementing the rproc's refcount, only the power refcount.
1854  *   which means that the @rproc handle stays valid even after rproc_shutdown()
1855  *   returns, and users can still use it with a subsequent rproc_boot(), if
1856  *   needed.
1857  */
rproc_shutdown(struct rproc * rproc)1858 void rproc_shutdown(struct rproc *rproc)
1859 {
1860 	struct device *dev = &rproc->dev;
1861 	int ret;
1862 
1863 	ret = mutex_lock_interruptible(&rproc->lock);
1864 	if (ret) {
1865 		dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1866 		return;
1867 	}
1868 
1869 	/* if the remote proc is still needed, bail out */
1870 	if (!atomic_dec_and_test(&rproc->power))
1871 		goto out;
1872 
1873 	ret = rproc_stop(rproc, false);
1874 	if (ret) {
1875 		atomic_inc(&rproc->power);
1876 		goto out;
1877 	}
1878 
1879 	/* clean up all acquired resources */
1880 	rproc_resource_cleanup(rproc);
1881 
1882 	/* release HW resources if needed */
1883 	rproc_unprepare_device(rproc);
1884 
1885 	rproc_disable_iommu(rproc);
1886 
1887 	/* Free the copy of the resource table */
1888 	kfree(rproc->cached_table);
1889 	rproc->cached_table = NULL;
1890 	rproc->table_ptr = NULL;
1891 out:
1892 	mutex_unlock(&rproc->lock);
1893 }
1894 EXPORT_SYMBOL(rproc_shutdown);
1895 
1896 /**
1897  * rproc_get_by_phandle() - find a remote processor by phandle
1898  * @phandle: phandle to the rproc
1899  *
1900  * Finds an rproc handle using the remote processor's phandle, and then
1901  * return a handle to the rproc.
1902  *
1903  * This function increments the remote processor's refcount, so always
1904  * use rproc_put() to decrement it back once rproc isn't needed anymore.
1905  *
1906  * Returns the rproc handle on success, and NULL on failure.
1907  */
1908 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)1909 struct rproc *rproc_get_by_phandle(phandle phandle)
1910 {
1911 	struct rproc *rproc = NULL, *r;
1912 	struct device_node *np;
1913 
1914 	np = of_find_node_by_phandle(phandle);
1915 	if (!np)
1916 		return NULL;
1917 
1918 	rcu_read_lock();
1919 	list_for_each_entry_rcu(r, &rproc_list, node) {
1920 		if (r->dev.parent && r->dev.parent->of_node == np) {
1921 			/* prevent underlying implementation from being removed */
1922 			if (!try_module_get(r->dev.parent->driver->owner)) {
1923 				dev_err(&r->dev, "can't get owner\n");
1924 				break;
1925 			}
1926 
1927 			rproc = r;
1928 			get_device(&rproc->dev);
1929 			break;
1930 		}
1931 	}
1932 	rcu_read_unlock();
1933 
1934 	of_node_put(np);
1935 
1936 	return rproc;
1937 }
1938 #else
rproc_get_by_phandle(phandle phandle)1939 struct rproc *rproc_get_by_phandle(phandle phandle)
1940 {
1941 	return NULL;
1942 }
1943 #endif
1944 EXPORT_SYMBOL(rproc_get_by_phandle);
1945 
rproc_validate(struct rproc * rproc)1946 static int rproc_validate(struct rproc *rproc)
1947 {
1948 	switch (rproc->state) {
1949 	case RPROC_OFFLINE:
1950 		/*
1951 		 * An offline processor without a start()
1952 		 * function makes no sense.
1953 		 */
1954 		if (!rproc->ops->start)
1955 			return -EINVAL;
1956 		break;
1957 	case RPROC_DETACHED:
1958 		/*
1959 		 * A remote processor in a detached state without an
1960 		 * attach() function makes not sense.
1961 		 */
1962 		if (!rproc->ops->attach)
1963 			return -EINVAL;
1964 		/*
1965 		 * When attaching to a remote processor the device memory
1966 		 * is already available and as such there is no need to have a
1967 		 * cached table.
1968 		 */
1969 		if (rproc->cached_table)
1970 			return -EINVAL;
1971 		break;
1972 	default:
1973 		/*
1974 		 * When adding a remote processor, the state of the device
1975 		 * can be offline or detached, nothing else.
1976 		 */
1977 		return -EINVAL;
1978 	}
1979 
1980 	return 0;
1981 }
1982 
1983 /**
1984  * rproc_add() - register a remote processor
1985  * @rproc: the remote processor handle to register
1986  *
1987  * Registers @rproc with the remoteproc framework, after it has been
1988  * allocated with rproc_alloc().
1989  *
1990  * This is called by the platform-specific rproc implementation, whenever
1991  * a new remote processor device is probed.
1992  *
1993  * Returns 0 on success and an appropriate error code otherwise.
1994  *
1995  * Note: this function initiates an asynchronous firmware loading
1996  * context, which will look for virtio devices supported by the rproc's
1997  * firmware.
1998  *
1999  * If found, those virtio devices will be created and added, so as a result
2000  * of registering this remote processor, additional virtio drivers might be
2001  * probed.
2002  */
rproc_add(struct rproc * rproc)2003 int rproc_add(struct rproc *rproc)
2004 {
2005 	struct device *dev = &rproc->dev;
2006 	int ret;
2007 
2008 	ret = device_add(dev);
2009 	if (ret < 0)
2010 		return ret;
2011 
2012 	ret = rproc_validate(rproc);
2013 	if (ret < 0)
2014 		return ret;
2015 
2016 	dev_info(dev, "%s is available\n", rproc->name);
2017 
2018 	/* create debugfs entries */
2019 	rproc_create_debug_dir(rproc);
2020 
2021 	/* add char device for this remoteproc */
2022 	ret = rproc_char_device_add(rproc);
2023 	if (ret < 0)
2024 		return ret;
2025 
2026 	/*
2027 	 * Remind ourselves the remote processor has been attached to rather
2028 	 * than booted by the remoteproc core.  This is important because the
2029 	 * RPROC_DETACHED state will be lost as soon as the remote processor
2030 	 * has been attached to.  Used in firmware_show() and reset in
2031 	 * rproc_stop().
2032 	 */
2033 	if (rproc->state == RPROC_DETACHED)
2034 		rproc->autonomous = true;
2035 
2036 	/* if rproc is marked always-on, request it to boot */
2037 	if (rproc->auto_boot) {
2038 		ret = rproc_trigger_auto_boot(rproc);
2039 		if (ret < 0)
2040 			return ret;
2041 	}
2042 
2043 	/* expose to rproc_get_by_phandle users */
2044 	mutex_lock(&rproc_list_mutex);
2045 	list_add_rcu(&rproc->node, &rproc_list);
2046 	mutex_unlock(&rproc_list_mutex);
2047 
2048 	return 0;
2049 }
2050 EXPORT_SYMBOL(rproc_add);
2051 
devm_rproc_remove(void * rproc)2052 static void devm_rproc_remove(void *rproc)
2053 {
2054 	rproc_del(rproc);
2055 }
2056 
2057 /**
2058  * devm_rproc_add() - resource managed rproc_add()
2059  * @dev: the underlying device
2060  * @rproc: the remote processor handle to register
2061  *
2062  * This function performs like rproc_add() but the registered rproc device will
2063  * automatically be removed on driver detach.
2064  *
2065  * Returns: 0 on success, negative errno on failure
2066  */
devm_rproc_add(struct device * dev,struct rproc * rproc)2067 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2068 {
2069 	int err;
2070 
2071 	err = rproc_add(rproc);
2072 	if (err)
2073 		return err;
2074 
2075 	return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2076 }
2077 EXPORT_SYMBOL(devm_rproc_add);
2078 
2079 /**
2080  * rproc_type_release() - release a remote processor instance
2081  * @dev: the rproc's device
2082  *
2083  * This function should _never_ be called directly.
2084  *
2085  * It will be called by the driver core when no one holds a valid pointer
2086  * to @dev anymore.
2087  */
rproc_type_release(struct device * dev)2088 static void rproc_type_release(struct device *dev)
2089 {
2090 	struct rproc *rproc = container_of(dev, struct rproc, dev);
2091 
2092 	dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2093 
2094 	idr_destroy(&rproc->notifyids);
2095 
2096 	if (rproc->index >= 0)
2097 		ida_simple_remove(&rproc_dev_index, rproc->index);
2098 
2099 	kfree_const(rproc->firmware);
2100 	kfree_const(rproc->name);
2101 	kfree(rproc->ops);
2102 	kfree(rproc);
2103 }
2104 
2105 static const struct device_type rproc_type = {
2106 	.name		= "remoteproc",
2107 	.release	= rproc_type_release,
2108 };
2109 
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2110 static int rproc_alloc_firmware(struct rproc *rproc,
2111 				const char *name, const char *firmware)
2112 {
2113 	const char *p;
2114 
2115 	/*
2116 	 * Allocate a firmware name if the caller gave us one to work
2117 	 * with.  Otherwise construct a new one using a default pattern.
2118 	 */
2119 	if (firmware)
2120 		p = kstrdup_const(firmware, GFP_KERNEL);
2121 	else
2122 		p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2123 
2124 	if (!p)
2125 		return -ENOMEM;
2126 
2127 	rproc->firmware = p;
2128 
2129 	return 0;
2130 }
2131 
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2132 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2133 {
2134 	rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2135 	if (!rproc->ops)
2136 		return -ENOMEM;
2137 
2138 	if (rproc->ops->load)
2139 		return 0;
2140 
2141 	/* Default to ELF loader if no load function is specified */
2142 	rproc->ops->load = rproc_elf_load_segments;
2143 	rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2144 	rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2145 	rproc->ops->sanity_check = rproc_elf_sanity_check;
2146 	rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2147 
2148 	return 0;
2149 }
2150 
2151 /**
2152  * rproc_alloc() - allocate a remote processor handle
2153  * @dev: the underlying device
2154  * @name: name of this remote processor
2155  * @ops: platform-specific handlers (mainly start/stop)
2156  * @firmware: name of firmware file to load, can be NULL
2157  * @len: length of private data needed by the rproc driver (in bytes)
2158  *
2159  * Allocates a new remote processor handle, but does not register
2160  * it yet. if @firmware is NULL, a default name is used.
2161  *
2162  * This function should be used by rproc implementations during initialization
2163  * of the remote processor.
2164  *
2165  * After creating an rproc handle using this function, and when ready,
2166  * implementations should then call rproc_add() to complete
2167  * the registration of the remote processor.
2168  *
2169  * On success the new rproc is returned, and on failure, NULL.
2170  *
2171  * Note: _never_ directly deallocate @rproc, even if it was not registered
2172  * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2173  */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2174 struct rproc *rproc_alloc(struct device *dev, const char *name,
2175 			  const struct rproc_ops *ops,
2176 			  const char *firmware, int len)
2177 {
2178 	struct rproc *rproc;
2179 
2180 	if (!dev || !name || !ops)
2181 		return NULL;
2182 
2183 	rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2184 	if (!rproc)
2185 		return NULL;
2186 
2187 	rproc->priv = &rproc[1];
2188 	rproc->auto_boot = true;
2189 	rproc->elf_class = ELFCLASSNONE;
2190 	rproc->elf_machine = EM_NONE;
2191 
2192 	device_initialize(&rproc->dev);
2193 	rproc->dev.parent = dev;
2194 	rproc->dev.type = &rproc_type;
2195 	rproc->dev.class = &rproc_class;
2196 	rproc->dev.driver_data = rproc;
2197 	idr_init(&rproc->notifyids);
2198 
2199 	rproc->name = kstrdup_const(name, GFP_KERNEL);
2200 	if (!rproc->name)
2201 		goto put_device;
2202 
2203 	if (rproc_alloc_firmware(rproc, name, firmware))
2204 		goto put_device;
2205 
2206 	if (rproc_alloc_ops(rproc, ops))
2207 		goto put_device;
2208 
2209 	/* Assign a unique device index and name */
2210 	rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2211 	if (rproc->index < 0) {
2212 		dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2213 		goto put_device;
2214 	}
2215 
2216 	dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2217 
2218 	atomic_set(&rproc->power, 0);
2219 
2220 	mutex_init(&rproc->lock);
2221 
2222 	INIT_LIST_HEAD(&rproc->carveouts);
2223 	INIT_LIST_HEAD(&rproc->mappings);
2224 	INIT_LIST_HEAD(&rproc->traces);
2225 	INIT_LIST_HEAD(&rproc->rvdevs);
2226 	INIT_LIST_HEAD(&rproc->subdevs);
2227 	INIT_LIST_HEAD(&rproc->dump_segments);
2228 
2229 	INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2230 
2231 	rproc->state = RPROC_OFFLINE;
2232 
2233 	return rproc;
2234 
2235 put_device:
2236 	put_device(&rproc->dev);
2237 	return NULL;
2238 }
2239 EXPORT_SYMBOL(rproc_alloc);
2240 
2241 /**
2242  * rproc_free() - unroll rproc_alloc()
2243  * @rproc: the remote processor handle
2244  *
2245  * This function decrements the rproc dev refcount.
2246  *
2247  * If no one holds any reference to rproc anymore, then its refcount would
2248  * now drop to zero, and it would be freed.
2249  */
rproc_free(struct rproc * rproc)2250 void rproc_free(struct rproc *rproc)
2251 {
2252 	put_device(&rproc->dev);
2253 }
2254 EXPORT_SYMBOL(rproc_free);
2255 
2256 /**
2257  * rproc_put() - release rproc reference
2258  * @rproc: the remote processor handle
2259  *
2260  * This function decrements the rproc dev refcount.
2261  *
2262  * If no one holds any reference to rproc anymore, then its refcount would
2263  * now drop to zero, and it would be freed.
2264  */
rproc_put(struct rproc * rproc)2265 void rproc_put(struct rproc *rproc)
2266 {
2267 	module_put(rproc->dev.parent->driver->owner);
2268 	put_device(&rproc->dev);
2269 }
2270 EXPORT_SYMBOL(rproc_put);
2271 
2272 /**
2273  * rproc_del() - unregister a remote processor
2274  * @rproc: rproc handle to unregister
2275  *
2276  * This function should be called when the platform specific rproc
2277  * implementation decides to remove the rproc device. it should
2278  * _only_ be called if a previous invocation of rproc_add()
2279  * has completed successfully.
2280  *
2281  * After rproc_del() returns, @rproc isn't freed yet, because
2282  * of the outstanding reference created by rproc_alloc. To decrement that
2283  * one last refcount, one still needs to call rproc_free().
2284  *
2285  * Returns 0 on success and -EINVAL if @rproc isn't valid.
2286  */
rproc_del(struct rproc * rproc)2287 int rproc_del(struct rproc *rproc)
2288 {
2289 	if (!rproc)
2290 		return -EINVAL;
2291 
2292 	/* if rproc is marked always-on, rproc_add() booted it */
2293 	/* TODO: make sure this works with rproc->power > 1 */
2294 	if (rproc->auto_boot)
2295 		rproc_shutdown(rproc);
2296 
2297 	mutex_lock(&rproc->lock);
2298 	rproc->state = RPROC_DELETED;
2299 	mutex_unlock(&rproc->lock);
2300 
2301 	rproc_delete_debug_dir(rproc);
2302 
2303 	/* the rproc is downref'ed as soon as it's removed from the klist */
2304 	mutex_lock(&rproc_list_mutex);
2305 	list_del_rcu(&rproc->node);
2306 	mutex_unlock(&rproc_list_mutex);
2307 
2308 	/* Ensure that no readers of rproc_list are still active */
2309 	synchronize_rcu();
2310 
2311 	device_del(&rproc->dev);
2312 	rproc_char_device_remove(rproc);
2313 
2314 	return 0;
2315 }
2316 EXPORT_SYMBOL(rproc_del);
2317 
devm_rproc_free(struct device * dev,void * res)2318 static void devm_rproc_free(struct device *dev, void *res)
2319 {
2320 	rproc_free(*(struct rproc **)res);
2321 }
2322 
2323 /**
2324  * devm_rproc_alloc() - resource managed rproc_alloc()
2325  * @dev: the underlying device
2326  * @name: name of this remote processor
2327  * @ops: platform-specific handlers (mainly start/stop)
2328  * @firmware: name of firmware file to load, can be NULL
2329  * @len: length of private data needed by the rproc driver (in bytes)
2330  *
2331  * This function performs like rproc_alloc() but the acquired rproc device will
2332  * automatically be released on driver detach.
2333  *
2334  * Returns: new rproc instance, or NULL on failure
2335  */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2336 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2337 			       const struct rproc_ops *ops,
2338 			       const char *firmware, int len)
2339 {
2340 	struct rproc **ptr, *rproc;
2341 
2342 	ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2343 	if (!ptr)
2344 		return NULL;
2345 
2346 	rproc = rproc_alloc(dev, name, ops, firmware, len);
2347 	if (rproc) {
2348 		*ptr = rproc;
2349 		devres_add(dev, ptr);
2350 	} else {
2351 		devres_free(ptr);
2352 	}
2353 
2354 	return rproc;
2355 }
2356 EXPORT_SYMBOL(devm_rproc_alloc);
2357 
2358 /**
2359  * rproc_add_subdev() - add a subdevice to a remoteproc
2360  * @rproc: rproc handle to add the subdevice to
2361  * @subdev: subdev handle to register
2362  *
2363  * Caller is responsible for populating optional subdevice function pointers.
2364  */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2365 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2366 {
2367 	list_add_tail(&subdev->node, &rproc->subdevs);
2368 }
2369 EXPORT_SYMBOL(rproc_add_subdev);
2370 
2371 /**
2372  * rproc_remove_subdev() - remove a subdevice from a remoteproc
2373  * @rproc: rproc handle to remove the subdevice from
2374  * @subdev: subdev handle, previously registered with rproc_add_subdev()
2375  */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2376 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2377 {
2378 	list_del(&subdev->node);
2379 }
2380 EXPORT_SYMBOL(rproc_remove_subdev);
2381 
2382 /**
2383  * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2384  * @dev:	child device to find ancestor of
2385  *
2386  * Returns the ancestor rproc instance, or NULL if not found.
2387  */
rproc_get_by_child(struct device * dev)2388 struct rproc *rproc_get_by_child(struct device *dev)
2389 {
2390 	for (dev = dev->parent; dev; dev = dev->parent) {
2391 		if (dev->type == &rproc_type)
2392 			return dev->driver_data;
2393 	}
2394 
2395 	return NULL;
2396 }
2397 EXPORT_SYMBOL(rproc_get_by_child);
2398 
2399 /**
2400  * rproc_report_crash() - rproc crash reporter function
2401  * @rproc: remote processor
2402  * @type: crash type
2403  *
2404  * This function must be called every time a crash is detected by the low-level
2405  * drivers implementing a specific remoteproc. This should not be called from a
2406  * non-remoteproc driver.
2407  *
2408  * This function can be called from atomic/interrupt context.
2409  */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2410 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2411 {
2412 	if (!rproc) {
2413 		pr_err("NULL rproc pointer\n");
2414 		return;
2415 	}
2416 
2417 	/* Prevent suspend while the remoteproc is being recovered */
2418 	pm_stay_awake(rproc->dev.parent);
2419 
2420 	dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2421 		rproc->name, rproc_crash_to_string(type));
2422 
2423 	/* create a new task to handle the error */
2424 	schedule_work(&rproc->crash_handler);
2425 }
2426 EXPORT_SYMBOL(rproc_report_crash);
2427 
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2428 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2429 			       void *ptr)
2430 {
2431 	unsigned int longest = 0;
2432 	struct rproc *rproc;
2433 	unsigned int d;
2434 
2435 	rcu_read_lock();
2436 	list_for_each_entry_rcu(rproc, &rproc_list, node) {
2437 		if (!rproc->ops->panic || rproc->state != RPROC_RUNNING)
2438 			continue;
2439 
2440 		d = rproc->ops->panic(rproc);
2441 		longest = max(longest, d);
2442 	}
2443 	rcu_read_unlock();
2444 
2445 	/*
2446 	 * Delay for the longest requested duration before returning. This can
2447 	 * be used by the remoteproc drivers to give the remote processor time
2448 	 * to perform any requested operations (such as flush caches), when
2449 	 * it's not possible to signal the Linux side due to the panic.
2450 	 */
2451 	mdelay(longest);
2452 
2453 	return NOTIFY_DONE;
2454 }
2455 
rproc_init_panic(void)2456 static void __init rproc_init_panic(void)
2457 {
2458 	rproc_panic_nb.notifier_call = rproc_panic_handler;
2459 	atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2460 }
2461 
rproc_exit_panic(void)2462 static void __exit rproc_exit_panic(void)
2463 {
2464 	atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2465 }
2466 
remoteproc_init(void)2467 static int __init remoteproc_init(void)
2468 {
2469 	rproc_init_sysfs();
2470 	rproc_init_debugfs();
2471 	rproc_init_cdev();
2472 	rproc_init_panic();
2473 
2474 	return 0;
2475 }
2476 subsys_initcall(remoteproc_init);
2477 
remoteproc_exit(void)2478 static void __exit remoteproc_exit(void)
2479 {
2480 	ida_destroy(&rproc_dev_index);
2481 
2482 	rproc_exit_panic();
2483 	rproc_exit_debugfs();
2484 	rproc_exit_sysfs();
2485 }
2486 module_exit(remoteproc_exit);
2487 
2488 MODULE_LICENSE("GPL v2");
2489 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2490