1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 */
16
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/slab.h>
24 #include <linux/mutex.h>
25 #include <linux/dma-map-ops.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
28 #include <linux/firmware.h>
29 #include <linux/string.h>
30 #include <linux/debugfs.h>
31 #include <linux/rculist.h>
32 #include <linux/remoteproc.h>
33 #include <linux/iommu.h>
34 #include <linux/idr.h>
35 #include <linux/elf.h>
36 #include <linux/crc32.h>
37 #include <linux/of_reserved_mem.h>
38 #include <linux/virtio_ids.h>
39 #include <linux/virtio_ring.h>
40 #include <asm/byteorder.h>
41 #include <linux/platform_device.h>
42
43 #include "remoteproc_internal.h"
44
45 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
46
47 static DEFINE_MUTEX(rproc_list_mutex);
48 static LIST_HEAD(rproc_list);
49 static struct notifier_block rproc_panic_nb;
50
51 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
52 void *, int offset, int avail);
53
54 static int rproc_alloc_carveout(struct rproc *rproc,
55 struct rproc_mem_entry *mem);
56 static int rproc_release_carveout(struct rproc *rproc,
57 struct rproc_mem_entry *mem);
58
59 /* Unique indices for remoteproc devices */
60 static DEFINE_IDA(rproc_dev_index);
61
62 static const char * const rproc_crash_names[] = {
63 [RPROC_MMUFAULT] = "mmufault",
64 [RPROC_WATCHDOG] = "watchdog",
65 [RPROC_FATAL_ERROR] = "fatal error",
66 };
67
68 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)69 static const char *rproc_crash_to_string(enum rproc_crash_type type)
70 {
71 if (type < ARRAY_SIZE(rproc_crash_names))
72 return rproc_crash_names[type];
73 return "unknown";
74 }
75
76 /*
77 * This is the IOMMU fault handler we register with the IOMMU API
78 * (when relevant; not all remote processors access memory through
79 * an IOMMU).
80 *
81 * IOMMU core will invoke this handler whenever the remote processor
82 * will try to access an unmapped device address.
83 */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)84 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
85 unsigned long iova, int flags, void *token)
86 {
87 struct rproc *rproc = token;
88
89 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
90
91 rproc_report_crash(rproc, RPROC_MMUFAULT);
92
93 /*
94 * Let the iommu core know we're not really handling this fault;
95 * we just used it as a recovery trigger.
96 */
97 return -ENOSYS;
98 }
99
rproc_enable_iommu(struct rproc * rproc)100 static int rproc_enable_iommu(struct rproc *rproc)
101 {
102 struct iommu_domain *domain;
103 struct device *dev = rproc->dev.parent;
104 int ret;
105
106 if (!rproc->has_iommu) {
107 dev_dbg(dev, "iommu not present\n");
108 return 0;
109 }
110
111 domain = iommu_domain_alloc(dev->bus);
112 if (!domain) {
113 dev_err(dev, "can't alloc iommu domain\n");
114 return -ENOMEM;
115 }
116
117 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
118
119 ret = iommu_attach_device(domain, dev);
120 if (ret) {
121 dev_err(dev, "can't attach iommu device: %d\n", ret);
122 goto free_domain;
123 }
124
125 rproc->domain = domain;
126
127 return 0;
128
129 free_domain:
130 iommu_domain_free(domain);
131 return ret;
132 }
133
rproc_disable_iommu(struct rproc * rproc)134 static void rproc_disable_iommu(struct rproc *rproc)
135 {
136 struct iommu_domain *domain = rproc->domain;
137 struct device *dev = rproc->dev.parent;
138
139 if (!domain)
140 return;
141
142 iommu_detach_device(domain, dev);
143 iommu_domain_free(domain);
144 }
145
rproc_va_to_pa(void * cpu_addr)146 phys_addr_t rproc_va_to_pa(void *cpu_addr)
147 {
148 /*
149 * Return physical address according to virtual address location
150 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
151 * - in kernel: if region allocated in generic dma memory pool
152 */
153 if (is_vmalloc_addr(cpu_addr)) {
154 return page_to_phys(vmalloc_to_page(cpu_addr)) +
155 offset_in_page(cpu_addr);
156 }
157
158 WARN_ON(!virt_addr_valid(cpu_addr));
159 return virt_to_phys(cpu_addr);
160 }
161 EXPORT_SYMBOL(rproc_va_to_pa);
162
163 /**
164 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
165 * @rproc: handle of a remote processor
166 * @da: remoteproc device address to translate
167 * @len: length of the memory region @da is pointing to
168 *
169 * Some remote processors will ask us to allocate them physically contiguous
170 * memory regions (which we call "carveouts"), and map them to specific
171 * device addresses (which are hardcoded in the firmware). They may also have
172 * dedicated memory regions internal to the processors, and use them either
173 * exclusively or alongside carveouts.
174 *
175 * They may then ask us to copy objects into specific device addresses (e.g.
176 * code/data sections) or expose us certain symbols in other device address
177 * (e.g. their trace buffer).
178 *
179 * This function is a helper function with which we can go over the allocated
180 * carveouts and translate specific device addresses to kernel virtual addresses
181 * so we can access the referenced memory. This function also allows to perform
182 * translations on the internal remoteproc memory regions through a platform
183 * implementation specific da_to_va ops, if present.
184 *
185 * The function returns a valid kernel address on success or NULL on failure.
186 *
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
189 * here the output of the DMA API for the carveouts, which should be more
190 * correct.
191 */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len)192 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len)
193 {
194 struct rproc_mem_entry *carveout;
195 void *ptr = NULL;
196
197 if (rproc->ops->da_to_va) {
198 ptr = rproc->ops->da_to_va(rproc, da, len);
199 if (ptr)
200 goto out;
201 }
202
203 list_for_each_entry(carveout, &rproc->carveouts, node) {
204 int offset = da - carveout->da;
205
206 /* Verify that carveout is allocated */
207 if (!carveout->va)
208 continue;
209
210 /* try next carveout if da is too small */
211 if (offset < 0)
212 continue;
213
214 /* try next carveout if da is too large */
215 if (offset + len > carveout->len)
216 continue;
217
218 ptr = carveout->va + offset;
219
220 break;
221 }
222
223 out:
224 return ptr;
225 }
226 EXPORT_SYMBOL(rproc_da_to_va);
227
228 /**
229 * rproc_find_carveout_by_name() - lookup the carveout region by a name
230 * @rproc: handle of a remote processor
231 * @name: carveout name to find (format string)
232 * @...: optional parameters matching @name string
233 *
234 * Platform driver has the capability to register some pre-allacoted carveout
235 * (physically contiguous memory regions) before rproc firmware loading and
236 * associated resource table analysis. These regions may be dedicated memory
237 * regions internal to the coprocessor or specified DDR region with specific
238 * attributes
239 *
240 * This function is a helper function with which we can go over the
241 * allocated carveouts and return associated region characteristics like
242 * coprocessor address, length or processor virtual address.
243 *
244 * Return: a valid pointer on carveout entry on success or NULL on failure.
245 */
246 __printf(2, 3)
247 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)248 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
249 {
250 va_list args;
251 char _name[32];
252 struct rproc_mem_entry *carveout, *mem = NULL;
253
254 if (!name)
255 return NULL;
256
257 va_start(args, name);
258 vsnprintf(_name, sizeof(_name), name, args);
259 va_end(args);
260
261 list_for_each_entry(carveout, &rproc->carveouts, node) {
262 /* Compare carveout and requested names */
263 if (!strcmp(carveout->name, _name)) {
264 mem = carveout;
265 break;
266 }
267 }
268
269 return mem;
270 }
271
272 /**
273 * rproc_check_carveout_da() - Check specified carveout da configuration
274 * @rproc: handle of a remote processor
275 * @mem: pointer on carveout to check
276 * @da: area device address
277 * @len: associated area size
278 *
279 * This function is a helper function to verify requested device area (couple
280 * da, len) is part of specified carveout.
281 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
282 * checked.
283 *
284 * Return: 0 if carveout matches request else error
285 */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)286 static int rproc_check_carveout_da(struct rproc *rproc,
287 struct rproc_mem_entry *mem, u32 da, u32 len)
288 {
289 struct device *dev = &rproc->dev;
290 int delta;
291
292 /* Check requested resource length */
293 if (len > mem->len) {
294 dev_err(dev, "Registered carveout doesn't fit len request\n");
295 return -EINVAL;
296 }
297
298 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
299 /* Address doesn't match registered carveout configuration */
300 return -EINVAL;
301 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
302 delta = da - mem->da;
303
304 /* Check requested resource belongs to registered carveout */
305 if (delta < 0) {
306 dev_err(dev,
307 "Registered carveout doesn't fit da request\n");
308 return -EINVAL;
309 }
310
311 if (delta + len > mem->len) {
312 dev_err(dev,
313 "Registered carveout doesn't fit len request\n");
314 return -EINVAL;
315 }
316 }
317
318 return 0;
319 }
320
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)321 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
322 {
323 struct rproc *rproc = rvdev->rproc;
324 struct device *dev = &rproc->dev;
325 struct rproc_vring *rvring = &rvdev->vring[i];
326 struct fw_rsc_vdev *rsc;
327 int ret, notifyid;
328 struct rproc_mem_entry *mem;
329 size_t size;
330
331 /* actual size of vring (in bytes) */
332 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
333
334 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
335
336 /* Search for pre-registered carveout */
337 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
338 i);
339 if (mem) {
340 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
341 return -ENOMEM;
342 } else {
343 /* Register carveout in in list */
344 mem = rproc_mem_entry_init(dev, NULL, 0,
345 size, rsc->vring[i].da,
346 rproc_alloc_carveout,
347 rproc_release_carveout,
348 "vdev%dvring%d",
349 rvdev->index, i);
350 if (!mem) {
351 dev_err(dev, "Can't allocate memory entry structure\n");
352 return -ENOMEM;
353 }
354
355 rproc_add_carveout(rproc, mem);
356 }
357
358 /*
359 * Assign an rproc-wide unique index for this vring
360 * TODO: assign a notifyid for rvdev updates as well
361 * TODO: support predefined notifyids (via resource table)
362 */
363 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
364 if (ret < 0) {
365 dev_err(dev, "idr_alloc failed: %d\n", ret);
366 return ret;
367 }
368 notifyid = ret;
369
370 /* Potentially bump max_notifyid */
371 if (notifyid > rproc->max_notifyid)
372 rproc->max_notifyid = notifyid;
373
374 rvring->notifyid = notifyid;
375
376 /* Let the rproc know the notifyid of this vring.*/
377 rsc->vring[i].notifyid = notifyid;
378 return 0;
379 }
380
381 static int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)382 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
383 {
384 struct rproc *rproc = rvdev->rproc;
385 struct device *dev = &rproc->dev;
386 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
387 struct rproc_vring *rvring = &rvdev->vring[i];
388
389 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
390 i, vring->da, vring->num, vring->align);
391
392 /* verify queue size and vring alignment are sane */
393 if (!vring->num || !vring->align) {
394 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
395 vring->num, vring->align);
396 return -EINVAL;
397 }
398
399 rvring->len = vring->num;
400 rvring->align = vring->align;
401 rvring->rvdev = rvdev;
402
403 return 0;
404 }
405
rproc_free_vring(struct rproc_vring * rvring)406 void rproc_free_vring(struct rproc_vring *rvring)
407 {
408 struct rproc *rproc = rvring->rvdev->rproc;
409 int idx = rvring - rvring->rvdev->vring;
410 struct fw_rsc_vdev *rsc;
411
412 idr_remove(&rproc->notifyids, rvring->notifyid);
413
414 /*
415 * At this point rproc_stop() has been called and the installed resource
416 * table in the remote processor memory may no longer be accessible. As
417 * such and as per rproc_stop(), rproc->table_ptr points to the cached
418 * resource table (rproc->cached_table). The cached resource table is
419 * only available when a remote processor has been booted by the
420 * remoteproc core, otherwise it is NULL.
421 *
422 * Based on the above, reset the virtio device section in the cached
423 * resource table only if there is one to work with.
424 */
425 if (rproc->table_ptr) {
426 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
427 rsc->vring[idx].da = 0;
428 rsc->vring[idx].notifyid = -1;
429 }
430 }
431
rproc_vdev_do_start(struct rproc_subdev * subdev)432 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
433 {
434 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
435
436 return rproc_add_virtio_dev(rvdev, rvdev->id);
437 }
438
rproc_vdev_do_stop(struct rproc_subdev * subdev,bool crashed)439 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
440 {
441 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
442 int ret;
443
444 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
445 if (ret)
446 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
447 }
448
449 /**
450 * rproc_rvdev_release() - release the existence of a rvdev
451 *
452 * @dev: the subdevice's dev
453 */
rproc_rvdev_release(struct device * dev)454 static void rproc_rvdev_release(struct device *dev)
455 {
456 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
457
458 of_reserved_mem_device_release(dev);
459
460 kfree(rvdev);
461 }
462
copy_dma_range_map(struct device * to,struct device * from)463 static int copy_dma_range_map(struct device *to, struct device *from)
464 {
465 const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
466 int num_ranges = 0;
467
468 if (!map)
469 return 0;
470
471 for (r = map; r->size; r++)
472 num_ranges++;
473
474 new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
475 GFP_KERNEL);
476 if (!new_map)
477 return -ENOMEM;
478 to->dma_range_map = new_map;
479 return 0;
480 }
481
482 /**
483 * rproc_handle_vdev() - handle a vdev fw resource
484 * @rproc: the remote processor
485 * @rsc: the vring resource descriptor
486 * @offset: offset of the resource entry
487 * @avail: size of available data (for sanity checking the image)
488 *
489 * This resource entry requests the host to statically register a virtio
490 * device (vdev), and setup everything needed to support it. It contains
491 * everything needed to make it possible: the virtio device id, virtio
492 * device features, vrings information, virtio config space, etc...
493 *
494 * Before registering the vdev, the vrings are allocated from non-cacheable
495 * physically contiguous memory. Currently we only support two vrings per
496 * remote processor (temporary limitation). We might also want to consider
497 * doing the vring allocation only later when ->find_vqs() is invoked, and
498 * then release them upon ->del_vqs().
499 *
500 * Note: @da is currently not really handled correctly: we dynamically
501 * allocate it using the DMA API, ignoring requested hard coded addresses,
502 * and we don't take care of any required IOMMU programming. This is all
503 * going to be taken care of when the generic iommu-based DMA API will be
504 * merged. Meanwhile, statically-addressed iommu-based firmware images should
505 * use RSC_DEVMEM resource entries to map their required @da to the physical
506 * address of their base CMA region (ouch, hacky!).
507 *
508 * Returns 0 on success, or an appropriate error code otherwise
509 */
rproc_handle_vdev(struct rproc * rproc,struct fw_rsc_vdev * rsc,int offset,int avail)510 static int rproc_handle_vdev(struct rproc *rproc, struct fw_rsc_vdev *rsc,
511 int offset, int avail)
512 {
513 struct device *dev = &rproc->dev;
514 struct rproc_vdev *rvdev;
515 int i, ret;
516 char name[16];
517
518 /* make sure resource isn't truncated */
519 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
520 avail) {
521 dev_err(dev, "vdev rsc is truncated\n");
522 return -EINVAL;
523 }
524
525 /* make sure reserved bytes are zeroes */
526 if (rsc->reserved[0] || rsc->reserved[1]) {
527 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
528 return -EINVAL;
529 }
530
531 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
532 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
533
534 /* we currently support only two vrings per rvdev */
535 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
536 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
537 return -EINVAL;
538 }
539
540 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
541 if (!rvdev)
542 return -ENOMEM;
543
544 kref_init(&rvdev->refcount);
545
546 rvdev->id = rsc->id;
547 rvdev->rproc = rproc;
548 rvdev->index = rproc->nb_vdev++;
549
550 /* Initialise vdev subdevice */
551 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
552 rvdev->dev.parent = &rproc->dev;
553 rvdev->dev.release = rproc_rvdev_release;
554 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
555 dev_set_drvdata(&rvdev->dev, rvdev);
556
557 ret = device_register(&rvdev->dev);
558 if (ret) {
559 put_device(&rvdev->dev);
560 return ret;
561 }
562
563 ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
564 if (ret)
565 goto free_rvdev;
566
567 /* Make device dma capable by inheriting from parent's capabilities */
568 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
569
570 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
571 dma_get_mask(rproc->dev.parent));
572 if (ret) {
573 dev_warn(dev,
574 "Failed to set DMA mask %llx. Trying to continue... %x\n",
575 dma_get_mask(rproc->dev.parent), ret);
576 }
577
578 /* parse the vrings */
579 for (i = 0; i < rsc->num_of_vrings; i++) {
580 ret = rproc_parse_vring(rvdev, rsc, i);
581 if (ret)
582 goto free_rvdev;
583 }
584
585 /* remember the resource offset*/
586 rvdev->rsc_offset = offset;
587
588 /* allocate the vring resources */
589 for (i = 0; i < rsc->num_of_vrings; i++) {
590 ret = rproc_alloc_vring(rvdev, i);
591 if (ret)
592 goto unwind_vring_allocations;
593 }
594
595 list_add_tail(&rvdev->node, &rproc->rvdevs);
596
597 rvdev->subdev.start = rproc_vdev_do_start;
598 rvdev->subdev.stop = rproc_vdev_do_stop;
599
600 rproc_add_subdev(rproc, &rvdev->subdev);
601
602 return 0;
603
604 unwind_vring_allocations:
605 for (i--; i >= 0; i--)
606 rproc_free_vring(&rvdev->vring[i]);
607 free_rvdev:
608 device_unregister(&rvdev->dev);
609 return ret;
610 }
611
rproc_vdev_release(struct kref * ref)612 void rproc_vdev_release(struct kref *ref)
613 {
614 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
615 struct rproc_vring *rvring;
616 struct rproc *rproc = rvdev->rproc;
617 int id;
618
619 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
620 rvring = &rvdev->vring[id];
621 rproc_free_vring(rvring);
622 }
623
624 rproc_remove_subdev(rproc, &rvdev->subdev);
625 list_del(&rvdev->node);
626 device_unregister(&rvdev->dev);
627 }
628
629 /**
630 * rproc_handle_trace() - handle a shared trace buffer resource
631 * @rproc: the remote processor
632 * @rsc: the trace resource descriptor
633 * @offset: offset of the resource entry
634 * @avail: size of available data (for sanity checking the image)
635 *
636 * In case the remote processor dumps trace logs into memory,
637 * export it via debugfs.
638 *
639 * Currently, the 'da' member of @rsc should contain the device address
640 * where the remote processor is dumping the traces. Later we could also
641 * support dynamically allocating this address using the generic
642 * DMA API (but currently there isn't a use case for that).
643 *
644 * Returns 0 on success, or an appropriate error code otherwise
645 */
rproc_handle_trace(struct rproc * rproc,struct fw_rsc_trace * rsc,int offset,int avail)646 static int rproc_handle_trace(struct rproc *rproc, struct fw_rsc_trace *rsc,
647 int offset, int avail)
648 {
649 struct rproc_debug_trace *trace;
650 struct device *dev = &rproc->dev;
651 char name[15];
652
653 if (sizeof(*rsc) > avail) {
654 dev_err(dev, "trace rsc is truncated\n");
655 return -EINVAL;
656 }
657
658 /* make sure reserved bytes are zeroes */
659 if (rsc->reserved) {
660 dev_err(dev, "trace rsc has non zero reserved bytes\n");
661 return -EINVAL;
662 }
663
664 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
665 if (!trace)
666 return -ENOMEM;
667
668 /* set the trace buffer dma properties */
669 trace->trace_mem.len = rsc->len;
670 trace->trace_mem.da = rsc->da;
671
672 /* set pointer on rproc device */
673 trace->rproc = rproc;
674
675 /* make sure snprintf always null terminates, even if truncating */
676 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
677
678 /* create the debugfs entry */
679 trace->tfile = rproc_create_trace_file(name, rproc, trace);
680 if (!trace->tfile) {
681 kfree(trace);
682 return -EINVAL;
683 }
684
685 list_add_tail(&trace->node, &rproc->traces);
686
687 rproc->num_traces++;
688
689 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
690 name, rsc->da, rsc->len);
691
692 return 0;
693 }
694
695 /**
696 * rproc_handle_devmem() - handle devmem resource entry
697 * @rproc: remote processor handle
698 * @rsc: the devmem resource entry
699 * @offset: offset of the resource entry
700 * @avail: size of available data (for sanity checking the image)
701 *
702 * Remote processors commonly need to access certain on-chip peripherals.
703 *
704 * Some of these remote processors access memory via an iommu device,
705 * and might require us to configure their iommu before they can access
706 * the on-chip peripherals they need.
707 *
708 * This resource entry is a request to map such a peripheral device.
709 *
710 * These devmem entries will contain the physical address of the device in
711 * the 'pa' member. If a specific device address is expected, then 'da' will
712 * contain it (currently this is the only use case supported). 'len' will
713 * contain the size of the physical region we need to map.
714 *
715 * Currently we just "trust" those devmem entries to contain valid physical
716 * addresses, but this is going to change: we want the implementations to
717 * tell us ranges of physical addresses the firmware is allowed to request,
718 * and not allow firmwares to request access to physical addresses that
719 * are outside those ranges.
720 */
rproc_handle_devmem(struct rproc * rproc,struct fw_rsc_devmem * rsc,int offset,int avail)721 static int rproc_handle_devmem(struct rproc *rproc, struct fw_rsc_devmem *rsc,
722 int offset, int avail)
723 {
724 struct rproc_mem_entry *mapping;
725 struct device *dev = &rproc->dev;
726 int ret;
727
728 /* no point in handling this resource without a valid iommu domain */
729 if (!rproc->domain)
730 return -EINVAL;
731
732 if (sizeof(*rsc) > avail) {
733 dev_err(dev, "devmem rsc is truncated\n");
734 return -EINVAL;
735 }
736
737 /* make sure reserved bytes are zeroes */
738 if (rsc->reserved) {
739 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
740 return -EINVAL;
741 }
742
743 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
744 if (!mapping)
745 return -ENOMEM;
746
747 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
748 if (ret) {
749 dev_err(dev, "failed to map devmem: %d\n", ret);
750 goto out;
751 }
752
753 /*
754 * We'll need this info later when we'll want to unmap everything
755 * (e.g. on shutdown).
756 *
757 * We can't trust the remote processor not to change the resource
758 * table, so we must maintain this info independently.
759 */
760 mapping->da = rsc->da;
761 mapping->len = rsc->len;
762 list_add_tail(&mapping->node, &rproc->mappings);
763
764 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
765 rsc->pa, rsc->da, rsc->len);
766
767 return 0;
768
769 out:
770 kfree(mapping);
771 return ret;
772 }
773
774 /**
775 * rproc_alloc_carveout() - allocated specified carveout
776 * @rproc: rproc handle
777 * @mem: the memory entry to allocate
778 *
779 * This function allocate specified memory entry @mem using
780 * dma_alloc_coherent() as default allocator
781 */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)782 static int rproc_alloc_carveout(struct rproc *rproc,
783 struct rproc_mem_entry *mem)
784 {
785 struct rproc_mem_entry *mapping = NULL;
786 struct device *dev = &rproc->dev;
787 dma_addr_t dma;
788 void *va;
789 int ret;
790
791 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
792 if (!va) {
793 dev_err(dev->parent,
794 "failed to allocate dma memory: len 0x%zx\n",
795 mem->len);
796 return -ENOMEM;
797 }
798
799 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
800 va, &dma, mem->len);
801
802 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
803 /*
804 * Check requested da is equal to dma address
805 * and print a warn message in case of missalignment.
806 * Don't stop rproc_start sequence as coprocessor may
807 * build pa to da translation on its side.
808 */
809 if (mem->da != (u32)dma)
810 dev_warn(dev->parent,
811 "Allocated carveout doesn't fit device address request\n");
812 }
813
814 /*
815 * Ok, this is non-standard.
816 *
817 * Sometimes we can't rely on the generic iommu-based DMA API
818 * to dynamically allocate the device address and then set the IOMMU
819 * tables accordingly, because some remote processors might
820 * _require_ us to use hard coded device addresses that their
821 * firmware was compiled with.
822 *
823 * In this case, we must use the IOMMU API directly and map
824 * the memory to the device address as expected by the remote
825 * processor.
826 *
827 * Obviously such remote processor devices should not be configured
828 * to use the iommu-based DMA API: we expect 'dma' to contain the
829 * physical address in this case.
830 */
831 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
832 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
833 if (!mapping) {
834 ret = -ENOMEM;
835 goto dma_free;
836 }
837
838 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
839 mem->flags);
840 if (ret) {
841 dev_err(dev, "iommu_map failed: %d\n", ret);
842 goto free_mapping;
843 }
844
845 /*
846 * We'll need this info later when we'll want to unmap
847 * everything (e.g. on shutdown).
848 *
849 * We can't trust the remote processor not to change the
850 * resource table, so we must maintain this info independently.
851 */
852 mapping->da = mem->da;
853 mapping->len = mem->len;
854 list_add_tail(&mapping->node, &rproc->mappings);
855
856 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
857 mem->da, &dma);
858 }
859
860 if (mem->da == FW_RSC_ADDR_ANY) {
861 /* Update device address as undefined by requester */
862 if ((u64)dma & HIGH_BITS_MASK)
863 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
864
865 mem->da = (u32)dma;
866 }
867
868 mem->dma = dma;
869 mem->va = va;
870
871 return 0;
872
873 free_mapping:
874 kfree(mapping);
875 dma_free:
876 dma_free_coherent(dev->parent, mem->len, va, dma);
877 return ret;
878 }
879
880 /**
881 * rproc_release_carveout() - release acquired carveout
882 * @rproc: rproc handle
883 * @mem: the memory entry to release
884 *
885 * This function releases specified memory entry @mem allocated via
886 * rproc_alloc_carveout() function by @rproc.
887 */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)888 static int rproc_release_carveout(struct rproc *rproc,
889 struct rproc_mem_entry *mem)
890 {
891 struct device *dev = &rproc->dev;
892
893 /* clean up carveout allocations */
894 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
895 return 0;
896 }
897
898 /**
899 * rproc_handle_carveout() - handle phys contig memory allocation requests
900 * @rproc: rproc handle
901 * @rsc: the resource entry
902 * @offset: offset of the resource entry
903 * @avail: size of available data (for image validation)
904 *
905 * This function will handle firmware requests for allocation of physically
906 * contiguous memory regions.
907 *
908 * These request entries should come first in the firmware's resource table,
909 * as other firmware entries might request placing other data objects inside
910 * these memory regions (e.g. data/code segments, trace resource entries, ...).
911 *
912 * Allocating memory this way helps utilizing the reserved physical memory
913 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
914 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
915 * pressure is important; it may have a substantial impact on performance.
916 */
rproc_handle_carveout(struct rproc * rproc,struct fw_rsc_carveout * rsc,int offset,int avail)917 static int rproc_handle_carveout(struct rproc *rproc,
918 struct fw_rsc_carveout *rsc,
919 int offset, int avail)
920 {
921 struct rproc_mem_entry *carveout;
922 struct device *dev = &rproc->dev;
923
924 if (sizeof(*rsc) > avail) {
925 dev_err(dev, "carveout rsc is truncated\n");
926 return -EINVAL;
927 }
928
929 /* make sure reserved bytes are zeroes */
930 if (rsc->reserved) {
931 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
932 return -EINVAL;
933 }
934
935 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
936 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
937
938 /*
939 * Check carveout rsc already part of a registered carveout,
940 * Search by name, then check the da and length
941 */
942 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
943
944 if (carveout) {
945 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
946 dev_err(dev,
947 "Carveout already associated to resource table\n");
948 return -ENOMEM;
949 }
950
951 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
952 return -ENOMEM;
953
954 /* Update memory carveout with resource table info */
955 carveout->rsc_offset = offset;
956 carveout->flags = rsc->flags;
957
958 return 0;
959 }
960
961 /* Register carveout in in list */
962 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
963 rproc_alloc_carveout,
964 rproc_release_carveout, rsc->name);
965 if (!carveout) {
966 dev_err(dev, "Can't allocate memory entry structure\n");
967 return -ENOMEM;
968 }
969
970 carveout->flags = rsc->flags;
971 carveout->rsc_offset = offset;
972 rproc_add_carveout(rproc, carveout);
973
974 return 0;
975 }
976
977 /**
978 * rproc_add_carveout() - register an allocated carveout region
979 * @rproc: rproc handle
980 * @mem: memory entry to register
981 *
982 * This function registers specified memory entry in @rproc carveouts list.
983 * Specified carveout should have been allocated before registering.
984 */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)985 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
986 {
987 list_add_tail(&mem->node, &rproc->carveouts);
988 }
989 EXPORT_SYMBOL(rproc_add_carveout);
990
991 /**
992 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
993 * @dev: pointer on device struct
994 * @va: virtual address
995 * @dma: dma address
996 * @len: memory carveout length
997 * @da: device address
998 * @alloc: memory carveout allocation function
999 * @release: memory carveout release function
1000 * @name: carveout name
1001 *
1002 * This function allocates a rproc_mem_entry struct and fill it with parameters
1003 * provided by client.
1004 */
1005 __printf(8, 9)
1006 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)1007 rproc_mem_entry_init(struct device *dev,
1008 void *va, dma_addr_t dma, size_t len, u32 da,
1009 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1010 int (*release)(struct rproc *, struct rproc_mem_entry *),
1011 const char *name, ...)
1012 {
1013 struct rproc_mem_entry *mem;
1014 va_list args;
1015
1016 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1017 if (!mem)
1018 return mem;
1019
1020 mem->va = va;
1021 mem->dma = dma;
1022 mem->da = da;
1023 mem->len = len;
1024 mem->alloc = alloc;
1025 mem->release = release;
1026 mem->rsc_offset = FW_RSC_ADDR_ANY;
1027 mem->of_resm_idx = -1;
1028
1029 va_start(args, name);
1030 vsnprintf(mem->name, sizeof(mem->name), name, args);
1031 va_end(args);
1032
1033 return mem;
1034 }
1035 EXPORT_SYMBOL(rproc_mem_entry_init);
1036
1037 /**
1038 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1039 * from a reserved memory phandle
1040 * @dev: pointer on device struct
1041 * @of_resm_idx: reserved memory phandle index in "memory-region"
1042 * @len: memory carveout length
1043 * @da: device address
1044 * @name: carveout name
1045 *
1046 * This function allocates a rproc_mem_entry struct and fill it with parameters
1047 * provided by client.
1048 */
1049 __printf(5, 6)
1050 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)1051 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1052 u32 da, const char *name, ...)
1053 {
1054 struct rproc_mem_entry *mem;
1055 va_list args;
1056
1057 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1058 if (!mem)
1059 return mem;
1060
1061 mem->da = da;
1062 mem->len = len;
1063 mem->rsc_offset = FW_RSC_ADDR_ANY;
1064 mem->of_resm_idx = of_resm_idx;
1065
1066 va_start(args, name);
1067 vsnprintf(mem->name, sizeof(mem->name), name, args);
1068 va_end(args);
1069
1070 return mem;
1071 }
1072 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1073
1074 /**
1075 * rproc_of_parse_firmware() - parse and return the firmware-name
1076 * @dev: pointer on device struct representing a rproc
1077 * @index: index to use for the firmware-name retrieval
1078 * @fw_name: pointer to a character string, in which the firmware
1079 * name is returned on success and unmodified otherwise.
1080 *
1081 * This is an OF helper function that parses a device's DT node for
1082 * the "firmware-name" property and returns the firmware name pointer
1083 * in @fw_name on success.
1084 *
1085 * Return: 0 on success, or an appropriate failure.
1086 */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)1087 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1088 {
1089 int ret;
1090
1091 ret = of_property_read_string_index(dev->of_node, "firmware-name",
1092 index, fw_name);
1093 return ret ? ret : 0;
1094 }
1095 EXPORT_SYMBOL(rproc_of_parse_firmware);
1096
1097 /*
1098 * A lookup table for resource handlers. The indices are defined in
1099 * enum fw_resource_type.
1100 */
1101 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1102 [RSC_CARVEOUT] = (rproc_handle_resource_t)rproc_handle_carveout,
1103 [RSC_DEVMEM] = (rproc_handle_resource_t)rproc_handle_devmem,
1104 [RSC_TRACE] = (rproc_handle_resource_t)rproc_handle_trace,
1105 [RSC_VDEV] = (rproc_handle_resource_t)rproc_handle_vdev,
1106 };
1107
1108 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1109 static int rproc_handle_resources(struct rproc *rproc,
1110 rproc_handle_resource_t handlers[RSC_LAST])
1111 {
1112 struct device *dev = &rproc->dev;
1113 rproc_handle_resource_t handler;
1114 int ret = 0, i;
1115
1116 if (!rproc->table_ptr)
1117 return 0;
1118
1119 for (i = 0; i < rproc->table_ptr->num; i++) {
1120 int offset = rproc->table_ptr->offset[i];
1121 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1122 int avail = rproc->table_sz - offset - sizeof(*hdr);
1123 void *rsc = (void *)hdr + sizeof(*hdr);
1124
1125 /* make sure table isn't truncated */
1126 if (avail < 0) {
1127 dev_err(dev, "rsc table is truncated\n");
1128 return -EINVAL;
1129 }
1130
1131 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1132
1133 if (hdr->type >= RSC_VENDOR_START &&
1134 hdr->type <= RSC_VENDOR_END) {
1135 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1136 offset + sizeof(*hdr), avail);
1137 if (ret == RSC_HANDLED)
1138 continue;
1139 else if (ret < 0)
1140 break;
1141
1142 dev_warn(dev, "unsupported vendor resource %d\n",
1143 hdr->type);
1144 continue;
1145 }
1146
1147 if (hdr->type >= RSC_LAST) {
1148 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1149 continue;
1150 }
1151
1152 handler = handlers[hdr->type];
1153 if (!handler)
1154 continue;
1155
1156 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1157 if (ret)
1158 break;
1159 }
1160
1161 return ret;
1162 }
1163
rproc_prepare_subdevices(struct rproc * rproc)1164 static int rproc_prepare_subdevices(struct rproc *rproc)
1165 {
1166 struct rproc_subdev *subdev;
1167 int ret;
1168
1169 list_for_each_entry(subdev, &rproc->subdevs, node) {
1170 if (subdev->prepare) {
1171 ret = subdev->prepare(subdev);
1172 if (ret)
1173 goto unroll_preparation;
1174 }
1175 }
1176
1177 return 0;
1178
1179 unroll_preparation:
1180 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1181 if (subdev->unprepare)
1182 subdev->unprepare(subdev);
1183 }
1184
1185 return ret;
1186 }
1187
rproc_start_subdevices(struct rproc * rproc)1188 static int rproc_start_subdevices(struct rproc *rproc)
1189 {
1190 struct rproc_subdev *subdev;
1191 int ret;
1192
1193 list_for_each_entry(subdev, &rproc->subdevs, node) {
1194 if (subdev->start) {
1195 ret = subdev->start(subdev);
1196 if (ret)
1197 goto unroll_registration;
1198 }
1199 }
1200
1201 return 0;
1202
1203 unroll_registration:
1204 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1205 if (subdev->stop)
1206 subdev->stop(subdev, true);
1207 }
1208
1209 return ret;
1210 }
1211
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1212 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1213 {
1214 struct rproc_subdev *subdev;
1215
1216 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1217 if (subdev->stop)
1218 subdev->stop(subdev, crashed);
1219 }
1220 }
1221
rproc_unprepare_subdevices(struct rproc * rproc)1222 static void rproc_unprepare_subdevices(struct rproc *rproc)
1223 {
1224 struct rproc_subdev *subdev;
1225
1226 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1227 if (subdev->unprepare)
1228 subdev->unprepare(subdev);
1229 }
1230 }
1231
1232 /**
1233 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1234 * in the list
1235 * @rproc: the remote processor handle
1236 *
1237 * This function parses registered carveout list, performs allocation
1238 * if alloc() ops registered and updates resource table information
1239 * if rsc_offset set.
1240 *
1241 * Return: 0 on success
1242 */
rproc_alloc_registered_carveouts(struct rproc * rproc)1243 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1244 {
1245 struct rproc_mem_entry *entry, *tmp;
1246 struct fw_rsc_carveout *rsc;
1247 struct device *dev = &rproc->dev;
1248 u64 pa;
1249 int ret;
1250
1251 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1252 if (entry->alloc) {
1253 ret = entry->alloc(rproc, entry);
1254 if (ret) {
1255 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1256 entry->name, ret);
1257 return -ENOMEM;
1258 }
1259 }
1260
1261 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1262 /* update resource table */
1263 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1264
1265 /*
1266 * Some remote processors might need to know the pa
1267 * even though they are behind an IOMMU. E.g., OMAP4's
1268 * remote M3 processor needs this so it can control
1269 * on-chip hardware accelerators that are not behind
1270 * the IOMMU, and therefor must know the pa.
1271 *
1272 * Generally we don't want to expose physical addresses
1273 * if we don't have to (remote processors are generally
1274 * _not_ trusted), so we might want to do this only for
1275 * remote processor that _must_ have this (e.g. OMAP4's
1276 * dual M3 subsystem).
1277 *
1278 * Non-IOMMU processors might also want to have this info.
1279 * In this case, the device address and the physical address
1280 * are the same.
1281 */
1282
1283 /* Use va if defined else dma to generate pa */
1284 if (entry->va)
1285 pa = (u64)rproc_va_to_pa(entry->va);
1286 else
1287 pa = (u64)entry->dma;
1288
1289 if (((u64)pa) & HIGH_BITS_MASK)
1290 dev_warn(dev,
1291 "Physical address cast in 32bit to fit resource table format\n");
1292
1293 rsc->pa = (u32)pa;
1294 rsc->da = entry->da;
1295 rsc->len = entry->len;
1296 }
1297 }
1298
1299 return 0;
1300 }
1301
1302
1303 /**
1304 * rproc_resource_cleanup() - clean up and free all acquired resources
1305 * @rproc: rproc handle
1306 *
1307 * This function will free all resources acquired for @rproc, and it
1308 * is called whenever @rproc either shuts down or fails to boot.
1309 */
rproc_resource_cleanup(struct rproc * rproc)1310 void rproc_resource_cleanup(struct rproc *rproc)
1311 {
1312 struct rproc_mem_entry *entry, *tmp;
1313 struct rproc_debug_trace *trace, *ttmp;
1314 struct rproc_vdev *rvdev, *rvtmp;
1315 struct device *dev = &rproc->dev;
1316
1317 /* clean up debugfs trace entries */
1318 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1319 rproc_remove_trace_file(trace->tfile);
1320 rproc->num_traces--;
1321 list_del(&trace->node);
1322 kfree(trace);
1323 }
1324
1325 /* clean up iommu mapping entries */
1326 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1327 size_t unmapped;
1328
1329 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1330 if (unmapped != entry->len) {
1331 /* nothing much to do besides complaining */
1332 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1333 unmapped);
1334 }
1335
1336 list_del(&entry->node);
1337 kfree(entry);
1338 }
1339
1340 /* clean up carveout allocations */
1341 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1342 if (entry->release)
1343 entry->release(rproc, entry);
1344 list_del(&entry->node);
1345 kfree(entry);
1346 }
1347
1348 /* clean up remote vdev entries */
1349 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1350 kref_put(&rvdev->refcount, rproc_vdev_release);
1351
1352 rproc_coredump_cleanup(rproc);
1353 }
1354 EXPORT_SYMBOL(rproc_resource_cleanup);
1355
rproc_start(struct rproc * rproc,const struct firmware * fw)1356 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1357 {
1358 struct resource_table *loaded_table;
1359 struct device *dev = &rproc->dev;
1360 int ret;
1361
1362 /* load the ELF segments to memory */
1363 ret = rproc_load_segments(rproc, fw);
1364 if (ret) {
1365 dev_err(dev, "Failed to load program segments: %d\n", ret);
1366 return ret;
1367 }
1368
1369 /*
1370 * The starting device has been given the rproc->cached_table as the
1371 * resource table. The address of the vring along with the other
1372 * allocated resources (carveouts etc) is stored in cached_table.
1373 * In order to pass this information to the remote device we must copy
1374 * this information to device memory. We also update the table_ptr so
1375 * that any subsequent changes will be applied to the loaded version.
1376 */
1377 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1378 if (loaded_table) {
1379 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1380 rproc->table_ptr = loaded_table;
1381 }
1382
1383 ret = rproc_prepare_subdevices(rproc);
1384 if (ret) {
1385 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1386 rproc->name, ret);
1387 goto reset_table_ptr;
1388 }
1389
1390 /* power up the remote processor */
1391 ret = rproc->ops->start(rproc);
1392 if (ret) {
1393 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1394 goto unprepare_subdevices;
1395 }
1396
1397 /* Start any subdevices for the remote processor */
1398 ret = rproc_start_subdevices(rproc);
1399 if (ret) {
1400 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1401 rproc->name, ret);
1402 goto stop_rproc;
1403 }
1404
1405 rproc->state = RPROC_RUNNING;
1406
1407 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1408
1409 return 0;
1410
1411 stop_rproc:
1412 rproc->ops->stop(rproc);
1413 unprepare_subdevices:
1414 rproc_unprepare_subdevices(rproc);
1415 reset_table_ptr:
1416 rproc->table_ptr = rproc->cached_table;
1417
1418 return ret;
1419 }
1420
rproc_attach(struct rproc * rproc)1421 static int rproc_attach(struct rproc *rproc)
1422 {
1423 struct device *dev = &rproc->dev;
1424 int ret;
1425
1426 ret = rproc_prepare_subdevices(rproc);
1427 if (ret) {
1428 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1429 rproc->name, ret);
1430 goto out;
1431 }
1432
1433 /* Attach to the remote processor */
1434 ret = rproc_attach_device(rproc);
1435 if (ret) {
1436 dev_err(dev, "can't attach to rproc %s: %d\n",
1437 rproc->name, ret);
1438 goto unprepare_subdevices;
1439 }
1440
1441 /* Start any subdevices for the remote processor */
1442 ret = rproc_start_subdevices(rproc);
1443 if (ret) {
1444 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1445 rproc->name, ret);
1446 goto stop_rproc;
1447 }
1448
1449 rproc->state = RPROC_RUNNING;
1450
1451 dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1452
1453 return 0;
1454
1455 stop_rproc:
1456 rproc->ops->stop(rproc);
1457 unprepare_subdevices:
1458 rproc_unprepare_subdevices(rproc);
1459 out:
1460 return ret;
1461 }
1462
1463 /*
1464 * take a firmware and boot a remote processor with it.
1465 */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1466 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1467 {
1468 struct device *dev = &rproc->dev;
1469 const char *name = rproc->firmware;
1470 int ret;
1471
1472 ret = rproc_fw_sanity_check(rproc, fw);
1473 if (ret)
1474 return ret;
1475
1476 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1477
1478 /*
1479 * if enabling an IOMMU isn't relevant for this rproc, this is
1480 * just a nop
1481 */
1482 ret = rproc_enable_iommu(rproc);
1483 if (ret) {
1484 dev_err(dev, "can't enable iommu: %d\n", ret);
1485 return ret;
1486 }
1487
1488 /* Prepare rproc for firmware loading if needed */
1489 ret = rproc_prepare_device(rproc);
1490 if (ret) {
1491 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1492 goto disable_iommu;
1493 }
1494
1495 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1496
1497 /* Load resource table, core dump segment list etc from the firmware */
1498 ret = rproc_parse_fw(rproc, fw);
1499 if (ret)
1500 goto unprepare_rproc;
1501
1502 /* reset max_notifyid */
1503 rproc->max_notifyid = -1;
1504
1505 /* reset handled vdev */
1506 rproc->nb_vdev = 0;
1507
1508 /* handle fw resources which are required to boot rproc */
1509 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1510 if (ret) {
1511 dev_err(dev, "Failed to process resources: %d\n", ret);
1512 goto clean_up_resources;
1513 }
1514
1515 /* Allocate carveout resources associated to rproc */
1516 ret = rproc_alloc_registered_carveouts(rproc);
1517 if (ret) {
1518 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1519 ret);
1520 goto clean_up_resources;
1521 }
1522
1523 ret = rproc_start(rproc, fw);
1524 if (ret)
1525 goto clean_up_resources;
1526
1527 return 0;
1528
1529 clean_up_resources:
1530 rproc_resource_cleanup(rproc);
1531 kfree(rproc->cached_table);
1532 rproc->cached_table = NULL;
1533 rproc->table_ptr = NULL;
1534 unprepare_rproc:
1535 /* release HW resources if needed */
1536 rproc_unprepare_device(rproc);
1537 disable_iommu:
1538 rproc_disable_iommu(rproc);
1539 return ret;
1540 }
1541
1542 /*
1543 * Attach to remote processor - similar to rproc_fw_boot() but without
1544 * the steps that deal with the firmware image.
1545 */
rproc_actuate(struct rproc * rproc)1546 static int rproc_actuate(struct rproc *rproc)
1547 {
1548 struct device *dev = &rproc->dev;
1549 int ret;
1550
1551 /*
1552 * if enabling an IOMMU isn't relevant for this rproc, this is
1553 * just a nop
1554 */
1555 ret = rproc_enable_iommu(rproc);
1556 if (ret) {
1557 dev_err(dev, "can't enable iommu: %d\n", ret);
1558 return ret;
1559 }
1560
1561 /* reset max_notifyid */
1562 rproc->max_notifyid = -1;
1563
1564 /* reset handled vdev */
1565 rproc->nb_vdev = 0;
1566
1567 /*
1568 * Handle firmware resources required to attach to a remote processor.
1569 * Because we are attaching rather than booting the remote processor,
1570 * we expect the platform driver to properly set rproc->table_ptr.
1571 */
1572 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1573 if (ret) {
1574 dev_err(dev, "Failed to process resources: %d\n", ret);
1575 goto disable_iommu;
1576 }
1577
1578 /* Allocate carveout resources associated to rproc */
1579 ret = rproc_alloc_registered_carveouts(rproc);
1580 if (ret) {
1581 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1582 ret);
1583 goto clean_up_resources;
1584 }
1585
1586 ret = rproc_attach(rproc);
1587 if (ret)
1588 goto clean_up_resources;
1589
1590 return 0;
1591
1592 clean_up_resources:
1593 rproc_resource_cleanup(rproc);
1594 disable_iommu:
1595 rproc_disable_iommu(rproc);
1596 return ret;
1597 }
1598
1599 /*
1600 * take a firmware and boot it up.
1601 *
1602 * Note: this function is called asynchronously upon registration of the
1603 * remote processor (so we must wait until it completes before we try
1604 * to unregister the device. one other option is just to use kref here,
1605 * that might be cleaner).
1606 */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1607 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1608 {
1609 struct rproc *rproc = context;
1610
1611 rproc_boot(rproc);
1612
1613 release_firmware(fw);
1614 }
1615
rproc_trigger_auto_boot(struct rproc * rproc)1616 static int rproc_trigger_auto_boot(struct rproc *rproc)
1617 {
1618 int ret;
1619
1620 /*
1621 * Since the remote processor is in a detached state, it has already
1622 * been booted by another entity. As such there is no point in waiting
1623 * for a firmware image to be loaded, we can simply initiate the process
1624 * of attaching to it immediately.
1625 */
1626 if (rproc->state == RPROC_DETACHED)
1627 return rproc_boot(rproc);
1628
1629 /*
1630 * We're initiating an asynchronous firmware loading, so we can
1631 * be built-in kernel code, without hanging the boot process.
1632 */
1633 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_HOTPLUG,
1634 rproc->firmware, &rproc->dev, GFP_KERNEL,
1635 rproc, rproc_auto_boot_callback);
1636 if (ret < 0)
1637 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1638
1639 return ret;
1640 }
1641
rproc_stop(struct rproc * rproc,bool crashed)1642 static int rproc_stop(struct rproc *rproc, bool crashed)
1643 {
1644 struct device *dev = &rproc->dev;
1645 int ret;
1646
1647 /* Stop any subdevices for the remote processor */
1648 rproc_stop_subdevices(rproc, crashed);
1649
1650 /* the installed resource table is no longer accessible */
1651 rproc->table_ptr = rproc->cached_table;
1652
1653 /* power off the remote processor */
1654 ret = rproc->ops->stop(rproc);
1655 if (ret) {
1656 dev_err(dev, "can't stop rproc: %d\n", ret);
1657 return ret;
1658 }
1659
1660 rproc_unprepare_subdevices(rproc);
1661
1662 rproc->state = RPROC_OFFLINE;
1663
1664 /*
1665 * The remote processor has been stopped and is now offline, which means
1666 * that the next time it is brought back online the remoteproc core will
1667 * be responsible to load its firmware. As such it is no longer
1668 * autonomous.
1669 */
1670 rproc->autonomous = false;
1671
1672 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1673
1674 return 0;
1675 }
1676
1677
1678 /**
1679 * rproc_trigger_recovery() - recover a remoteproc
1680 * @rproc: the remote processor
1681 *
1682 * The recovery is done by resetting all the virtio devices, that way all the
1683 * rpmsg drivers will be reseted along with the remote processor making the
1684 * remoteproc functional again.
1685 *
1686 * This function can sleep, so it cannot be called from atomic context.
1687 */
rproc_trigger_recovery(struct rproc * rproc)1688 int rproc_trigger_recovery(struct rproc *rproc)
1689 {
1690 const struct firmware *firmware_p;
1691 struct device *dev = &rproc->dev;
1692 int ret;
1693
1694 ret = mutex_lock_interruptible(&rproc->lock);
1695 if (ret)
1696 return ret;
1697
1698 /* State could have changed before we got the mutex */
1699 if (rproc->state != RPROC_CRASHED)
1700 goto unlock_mutex;
1701
1702 dev_err(dev, "recovering %s\n", rproc->name);
1703
1704 ret = rproc_stop(rproc, true);
1705 if (ret)
1706 goto unlock_mutex;
1707
1708 /* generate coredump */
1709 rproc_coredump(rproc);
1710
1711 /* load firmware */
1712 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1713 if (ret < 0) {
1714 dev_err(dev, "request_firmware failed: %d\n", ret);
1715 goto unlock_mutex;
1716 }
1717
1718 /* boot the remote processor up again */
1719 ret = rproc_start(rproc, firmware_p);
1720
1721 release_firmware(firmware_p);
1722
1723 unlock_mutex:
1724 mutex_unlock(&rproc->lock);
1725 return ret;
1726 }
1727
1728 /**
1729 * rproc_crash_handler_work() - handle a crash
1730 * @work: work treating the crash
1731 *
1732 * This function needs to handle everything related to a crash, like cpu
1733 * registers and stack dump, information to help to debug the fatal error, etc.
1734 */
rproc_crash_handler_work(struct work_struct * work)1735 static void rproc_crash_handler_work(struct work_struct *work)
1736 {
1737 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1738 struct device *dev = &rproc->dev;
1739
1740 dev_dbg(dev, "enter %s\n", __func__);
1741
1742 mutex_lock(&rproc->lock);
1743
1744 if (rproc->state == RPROC_CRASHED) {
1745 /* handle only the first crash detected */
1746 mutex_unlock(&rproc->lock);
1747 return;
1748 }
1749
1750 if (rproc->state == RPROC_OFFLINE) {
1751 /* Don't recover if the remote processor was stopped */
1752 mutex_unlock(&rproc->lock);
1753 goto out;
1754 }
1755
1756 rproc->state = RPROC_CRASHED;
1757 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1758 rproc->name);
1759
1760 mutex_unlock(&rproc->lock);
1761
1762 if (!rproc->recovery_disabled)
1763 rproc_trigger_recovery(rproc);
1764
1765 out:
1766 pm_relax(rproc->dev.parent);
1767 }
1768
1769 /**
1770 * rproc_boot() - boot a remote processor
1771 * @rproc: handle of a remote processor
1772 *
1773 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1774 *
1775 * If the remote processor is already powered on, this function immediately
1776 * returns (successfully).
1777 *
1778 * Returns 0 on success, and an appropriate error value otherwise.
1779 */
rproc_boot(struct rproc * rproc)1780 int rproc_boot(struct rproc *rproc)
1781 {
1782 const struct firmware *firmware_p;
1783 struct device *dev;
1784 int ret;
1785
1786 if (!rproc) {
1787 pr_err("invalid rproc handle\n");
1788 return -EINVAL;
1789 }
1790
1791 dev = &rproc->dev;
1792
1793 ret = mutex_lock_interruptible(&rproc->lock);
1794 if (ret) {
1795 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1796 return ret;
1797 }
1798
1799 if (rproc->state == RPROC_DELETED) {
1800 ret = -ENODEV;
1801 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
1802 goto unlock_mutex;
1803 }
1804
1805 /* skip the boot or attach process if rproc is already powered up */
1806 if (atomic_inc_return(&rproc->power) > 1) {
1807 ret = 0;
1808 goto unlock_mutex;
1809 }
1810
1811 if (rproc->state == RPROC_DETACHED) {
1812 dev_info(dev, "attaching to %s\n", rproc->name);
1813
1814 ret = rproc_actuate(rproc);
1815 } else {
1816 dev_info(dev, "powering up %s\n", rproc->name);
1817
1818 /* load firmware */
1819 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1820 if (ret < 0) {
1821 dev_err(dev, "request_firmware failed: %d\n", ret);
1822 goto downref_rproc;
1823 }
1824
1825 ret = rproc_fw_boot(rproc, firmware_p);
1826
1827 release_firmware(firmware_p);
1828 }
1829
1830 downref_rproc:
1831 if (ret)
1832 atomic_dec(&rproc->power);
1833 unlock_mutex:
1834 mutex_unlock(&rproc->lock);
1835 return ret;
1836 }
1837 EXPORT_SYMBOL(rproc_boot);
1838
1839 /**
1840 * rproc_shutdown() - power off the remote processor
1841 * @rproc: the remote processor
1842 *
1843 * Power off a remote processor (previously booted with rproc_boot()).
1844 *
1845 * In case @rproc is still being used by an additional user(s), then
1846 * this function will just decrement the power refcount and exit,
1847 * without really powering off the device.
1848 *
1849 * Every call to rproc_boot() must (eventually) be accompanied by a call
1850 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1851 *
1852 * Notes:
1853 * - we're not decrementing the rproc's refcount, only the power refcount.
1854 * which means that the @rproc handle stays valid even after rproc_shutdown()
1855 * returns, and users can still use it with a subsequent rproc_boot(), if
1856 * needed.
1857 */
rproc_shutdown(struct rproc * rproc)1858 void rproc_shutdown(struct rproc *rproc)
1859 {
1860 struct device *dev = &rproc->dev;
1861 int ret;
1862
1863 ret = mutex_lock_interruptible(&rproc->lock);
1864 if (ret) {
1865 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
1866 return;
1867 }
1868
1869 /* if the remote proc is still needed, bail out */
1870 if (!atomic_dec_and_test(&rproc->power))
1871 goto out;
1872
1873 ret = rproc_stop(rproc, false);
1874 if (ret) {
1875 atomic_inc(&rproc->power);
1876 goto out;
1877 }
1878
1879 /* clean up all acquired resources */
1880 rproc_resource_cleanup(rproc);
1881
1882 /* release HW resources if needed */
1883 rproc_unprepare_device(rproc);
1884
1885 rproc_disable_iommu(rproc);
1886
1887 /* Free the copy of the resource table */
1888 kfree(rproc->cached_table);
1889 rproc->cached_table = NULL;
1890 rproc->table_ptr = NULL;
1891 out:
1892 mutex_unlock(&rproc->lock);
1893 }
1894 EXPORT_SYMBOL(rproc_shutdown);
1895
1896 /**
1897 * rproc_get_by_phandle() - find a remote processor by phandle
1898 * @phandle: phandle to the rproc
1899 *
1900 * Finds an rproc handle using the remote processor's phandle, and then
1901 * return a handle to the rproc.
1902 *
1903 * This function increments the remote processor's refcount, so always
1904 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1905 *
1906 * Returns the rproc handle on success, and NULL on failure.
1907 */
1908 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)1909 struct rproc *rproc_get_by_phandle(phandle phandle)
1910 {
1911 struct rproc *rproc = NULL, *r;
1912 struct device_node *np;
1913
1914 np = of_find_node_by_phandle(phandle);
1915 if (!np)
1916 return NULL;
1917
1918 rcu_read_lock();
1919 list_for_each_entry_rcu(r, &rproc_list, node) {
1920 if (r->dev.parent && r->dev.parent->of_node == np) {
1921 /* prevent underlying implementation from being removed */
1922 if (!try_module_get(r->dev.parent->driver->owner)) {
1923 dev_err(&r->dev, "can't get owner\n");
1924 break;
1925 }
1926
1927 rproc = r;
1928 get_device(&rproc->dev);
1929 break;
1930 }
1931 }
1932 rcu_read_unlock();
1933
1934 of_node_put(np);
1935
1936 return rproc;
1937 }
1938 #else
rproc_get_by_phandle(phandle phandle)1939 struct rproc *rproc_get_by_phandle(phandle phandle)
1940 {
1941 return NULL;
1942 }
1943 #endif
1944 EXPORT_SYMBOL(rproc_get_by_phandle);
1945
rproc_validate(struct rproc * rproc)1946 static int rproc_validate(struct rproc *rproc)
1947 {
1948 switch (rproc->state) {
1949 case RPROC_OFFLINE:
1950 /*
1951 * An offline processor without a start()
1952 * function makes no sense.
1953 */
1954 if (!rproc->ops->start)
1955 return -EINVAL;
1956 break;
1957 case RPROC_DETACHED:
1958 /*
1959 * A remote processor in a detached state without an
1960 * attach() function makes not sense.
1961 */
1962 if (!rproc->ops->attach)
1963 return -EINVAL;
1964 /*
1965 * When attaching to a remote processor the device memory
1966 * is already available and as such there is no need to have a
1967 * cached table.
1968 */
1969 if (rproc->cached_table)
1970 return -EINVAL;
1971 break;
1972 default:
1973 /*
1974 * When adding a remote processor, the state of the device
1975 * can be offline or detached, nothing else.
1976 */
1977 return -EINVAL;
1978 }
1979
1980 return 0;
1981 }
1982
1983 /**
1984 * rproc_add() - register a remote processor
1985 * @rproc: the remote processor handle to register
1986 *
1987 * Registers @rproc with the remoteproc framework, after it has been
1988 * allocated with rproc_alloc().
1989 *
1990 * This is called by the platform-specific rproc implementation, whenever
1991 * a new remote processor device is probed.
1992 *
1993 * Returns 0 on success and an appropriate error code otherwise.
1994 *
1995 * Note: this function initiates an asynchronous firmware loading
1996 * context, which will look for virtio devices supported by the rproc's
1997 * firmware.
1998 *
1999 * If found, those virtio devices will be created and added, so as a result
2000 * of registering this remote processor, additional virtio drivers might be
2001 * probed.
2002 */
rproc_add(struct rproc * rproc)2003 int rproc_add(struct rproc *rproc)
2004 {
2005 struct device *dev = &rproc->dev;
2006 int ret;
2007
2008 ret = device_add(dev);
2009 if (ret < 0)
2010 return ret;
2011
2012 ret = rproc_validate(rproc);
2013 if (ret < 0)
2014 return ret;
2015
2016 dev_info(dev, "%s is available\n", rproc->name);
2017
2018 /* create debugfs entries */
2019 rproc_create_debug_dir(rproc);
2020
2021 /* add char device for this remoteproc */
2022 ret = rproc_char_device_add(rproc);
2023 if (ret < 0)
2024 return ret;
2025
2026 /*
2027 * Remind ourselves the remote processor has been attached to rather
2028 * than booted by the remoteproc core. This is important because the
2029 * RPROC_DETACHED state will be lost as soon as the remote processor
2030 * has been attached to. Used in firmware_show() and reset in
2031 * rproc_stop().
2032 */
2033 if (rproc->state == RPROC_DETACHED)
2034 rproc->autonomous = true;
2035
2036 /* if rproc is marked always-on, request it to boot */
2037 if (rproc->auto_boot) {
2038 ret = rproc_trigger_auto_boot(rproc);
2039 if (ret < 0)
2040 return ret;
2041 }
2042
2043 /* expose to rproc_get_by_phandle users */
2044 mutex_lock(&rproc_list_mutex);
2045 list_add_rcu(&rproc->node, &rproc_list);
2046 mutex_unlock(&rproc_list_mutex);
2047
2048 return 0;
2049 }
2050 EXPORT_SYMBOL(rproc_add);
2051
devm_rproc_remove(void * rproc)2052 static void devm_rproc_remove(void *rproc)
2053 {
2054 rproc_del(rproc);
2055 }
2056
2057 /**
2058 * devm_rproc_add() - resource managed rproc_add()
2059 * @dev: the underlying device
2060 * @rproc: the remote processor handle to register
2061 *
2062 * This function performs like rproc_add() but the registered rproc device will
2063 * automatically be removed on driver detach.
2064 *
2065 * Returns: 0 on success, negative errno on failure
2066 */
devm_rproc_add(struct device * dev,struct rproc * rproc)2067 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2068 {
2069 int err;
2070
2071 err = rproc_add(rproc);
2072 if (err)
2073 return err;
2074
2075 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2076 }
2077 EXPORT_SYMBOL(devm_rproc_add);
2078
2079 /**
2080 * rproc_type_release() - release a remote processor instance
2081 * @dev: the rproc's device
2082 *
2083 * This function should _never_ be called directly.
2084 *
2085 * It will be called by the driver core when no one holds a valid pointer
2086 * to @dev anymore.
2087 */
rproc_type_release(struct device * dev)2088 static void rproc_type_release(struct device *dev)
2089 {
2090 struct rproc *rproc = container_of(dev, struct rproc, dev);
2091
2092 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2093
2094 idr_destroy(&rproc->notifyids);
2095
2096 if (rproc->index >= 0)
2097 ida_simple_remove(&rproc_dev_index, rproc->index);
2098
2099 kfree_const(rproc->firmware);
2100 kfree_const(rproc->name);
2101 kfree(rproc->ops);
2102 kfree(rproc);
2103 }
2104
2105 static const struct device_type rproc_type = {
2106 .name = "remoteproc",
2107 .release = rproc_type_release,
2108 };
2109
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2110 static int rproc_alloc_firmware(struct rproc *rproc,
2111 const char *name, const char *firmware)
2112 {
2113 const char *p;
2114
2115 /*
2116 * Allocate a firmware name if the caller gave us one to work
2117 * with. Otherwise construct a new one using a default pattern.
2118 */
2119 if (firmware)
2120 p = kstrdup_const(firmware, GFP_KERNEL);
2121 else
2122 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2123
2124 if (!p)
2125 return -ENOMEM;
2126
2127 rproc->firmware = p;
2128
2129 return 0;
2130 }
2131
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2132 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2133 {
2134 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2135 if (!rproc->ops)
2136 return -ENOMEM;
2137
2138 if (rproc->ops->load)
2139 return 0;
2140
2141 /* Default to ELF loader if no load function is specified */
2142 rproc->ops->load = rproc_elf_load_segments;
2143 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2144 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2145 rproc->ops->sanity_check = rproc_elf_sanity_check;
2146 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2147
2148 return 0;
2149 }
2150
2151 /**
2152 * rproc_alloc() - allocate a remote processor handle
2153 * @dev: the underlying device
2154 * @name: name of this remote processor
2155 * @ops: platform-specific handlers (mainly start/stop)
2156 * @firmware: name of firmware file to load, can be NULL
2157 * @len: length of private data needed by the rproc driver (in bytes)
2158 *
2159 * Allocates a new remote processor handle, but does not register
2160 * it yet. if @firmware is NULL, a default name is used.
2161 *
2162 * This function should be used by rproc implementations during initialization
2163 * of the remote processor.
2164 *
2165 * After creating an rproc handle using this function, and when ready,
2166 * implementations should then call rproc_add() to complete
2167 * the registration of the remote processor.
2168 *
2169 * On success the new rproc is returned, and on failure, NULL.
2170 *
2171 * Note: _never_ directly deallocate @rproc, even if it was not registered
2172 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2173 */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2174 struct rproc *rproc_alloc(struct device *dev, const char *name,
2175 const struct rproc_ops *ops,
2176 const char *firmware, int len)
2177 {
2178 struct rproc *rproc;
2179
2180 if (!dev || !name || !ops)
2181 return NULL;
2182
2183 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2184 if (!rproc)
2185 return NULL;
2186
2187 rproc->priv = &rproc[1];
2188 rproc->auto_boot = true;
2189 rproc->elf_class = ELFCLASSNONE;
2190 rproc->elf_machine = EM_NONE;
2191
2192 device_initialize(&rproc->dev);
2193 rproc->dev.parent = dev;
2194 rproc->dev.type = &rproc_type;
2195 rproc->dev.class = &rproc_class;
2196 rproc->dev.driver_data = rproc;
2197 idr_init(&rproc->notifyids);
2198
2199 rproc->name = kstrdup_const(name, GFP_KERNEL);
2200 if (!rproc->name)
2201 goto put_device;
2202
2203 if (rproc_alloc_firmware(rproc, name, firmware))
2204 goto put_device;
2205
2206 if (rproc_alloc_ops(rproc, ops))
2207 goto put_device;
2208
2209 /* Assign a unique device index and name */
2210 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2211 if (rproc->index < 0) {
2212 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2213 goto put_device;
2214 }
2215
2216 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2217
2218 atomic_set(&rproc->power, 0);
2219
2220 mutex_init(&rproc->lock);
2221
2222 INIT_LIST_HEAD(&rproc->carveouts);
2223 INIT_LIST_HEAD(&rproc->mappings);
2224 INIT_LIST_HEAD(&rproc->traces);
2225 INIT_LIST_HEAD(&rproc->rvdevs);
2226 INIT_LIST_HEAD(&rproc->subdevs);
2227 INIT_LIST_HEAD(&rproc->dump_segments);
2228
2229 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2230
2231 rproc->state = RPROC_OFFLINE;
2232
2233 return rproc;
2234
2235 put_device:
2236 put_device(&rproc->dev);
2237 return NULL;
2238 }
2239 EXPORT_SYMBOL(rproc_alloc);
2240
2241 /**
2242 * rproc_free() - unroll rproc_alloc()
2243 * @rproc: the remote processor handle
2244 *
2245 * This function decrements the rproc dev refcount.
2246 *
2247 * If no one holds any reference to rproc anymore, then its refcount would
2248 * now drop to zero, and it would be freed.
2249 */
rproc_free(struct rproc * rproc)2250 void rproc_free(struct rproc *rproc)
2251 {
2252 put_device(&rproc->dev);
2253 }
2254 EXPORT_SYMBOL(rproc_free);
2255
2256 /**
2257 * rproc_put() - release rproc reference
2258 * @rproc: the remote processor handle
2259 *
2260 * This function decrements the rproc dev refcount.
2261 *
2262 * If no one holds any reference to rproc anymore, then its refcount would
2263 * now drop to zero, and it would be freed.
2264 */
rproc_put(struct rproc * rproc)2265 void rproc_put(struct rproc *rproc)
2266 {
2267 module_put(rproc->dev.parent->driver->owner);
2268 put_device(&rproc->dev);
2269 }
2270 EXPORT_SYMBOL(rproc_put);
2271
2272 /**
2273 * rproc_del() - unregister a remote processor
2274 * @rproc: rproc handle to unregister
2275 *
2276 * This function should be called when the platform specific rproc
2277 * implementation decides to remove the rproc device. it should
2278 * _only_ be called if a previous invocation of rproc_add()
2279 * has completed successfully.
2280 *
2281 * After rproc_del() returns, @rproc isn't freed yet, because
2282 * of the outstanding reference created by rproc_alloc. To decrement that
2283 * one last refcount, one still needs to call rproc_free().
2284 *
2285 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2286 */
rproc_del(struct rproc * rproc)2287 int rproc_del(struct rproc *rproc)
2288 {
2289 if (!rproc)
2290 return -EINVAL;
2291
2292 /* if rproc is marked always-on, rproc_add() booted it */
2293 /* TODO: make sure this works with rproc->power > 1 */
2294 if (rproc->auto_boot)
2295 rproc_shutdown(rproc);
2296
2297 mutex_lock(&rproc->lock);
2298 rproc->state = RPROC_DELETED;
2299 mutex_unlock(&rproc->lock);
2300
2301 rproc_delete_debug_dir(rproc);
2302
2303 /* the rproc is downref'ed as soon as it's removed from the klist */
2304 mutex_lock(&rproc_list_mutex);
2305 list_del_rcu(&rproc->node);
2306 mutex_unlock(&rproc_list_mutex);
2307
2308 /* Ensure that no readers of rproc_list are still active */
2309 synchronize_rcu();
2310
2311 device_del(&rproc->dev);
2312 rproc_char_device_remove(rproc);
2313
2314 return 0;
2315 }
2316 EXPORT_SYMBOL(rproc_del);
2317
devm_rproc_free(struct device * dev,void * res)2318 static void devm_rproc_free(struct device *dev, void *res)
2319 {
2320 rproc_free(*(struct rproc **)res);
2321 }
2322
2323 /**
2324 * devm_rproc_alloc() - resource managed rproc_alloc()
2325 * @dev: the underlying device
2326 * @name: name of this remote processor
2327 * @ops: platform-specific handlers (mainly start/stop)
2328 * @firmware: name of firmware file to load, can be NULL
2329 * @len: length of private data needed by the rproc driver (in bytes)
2330 *
2331 * This function performs like rproc_alloc() but the acquired rproc device will
2332 * automatically be released on driver detach.
2333 *
2334 * Returns: new rproc instance, or NULL on failure
2335 */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2336 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2337 const struct rproc_ops *ops,
2338 const char *firmware, int len)
2339 {
2340 struct rproc **ptr, *rproc;
2341
2342 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2343 if (!ptr)
2344 return NULL;
2345
2346 rproc = rproc_alloc(dev, name, ops, firmware, len);
2347 if (rproc) {
2348 *ptr = rproc;
2349 devres_add(dev, ptr);
2350 } else {
2351 devres_free(ptr);
2352 }
2353
2354 return rproc;
2355 }
2356 EXPORT_SYMBOL(devm_rproc_alloc);
2357
2358 /**
2359 * rproc_add_subdev() - add a subdevice to a remoteproc
2360 * @rproc: rproc handle to add the subdevice to
2361 * @subdev: subdev handle to register
2362 *
2363 * Caller is responsible for populating optional subdevice function pointers.
2364 */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2365 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2366 {
2367 list_add_tail(&subdev->node, &rproc->subdevs);
2368 }
2369 EXPORT_SYMBOL(rproc_add_subdev);
2370
2371 /**
2372 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2373 * @rproc: rproc handle to remove the subdevice from
2374 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2375 */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2376 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2377 {
2378 list_del(&subdev->node);
2379 }
2380 EXPORT_SYMBOL(rproc_remove_subdev);
2381
2382 /**
2383 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2384 * @dev: child device to find ancestor of
2385 *
2386 * Returns the ancestor rproc instance, or NULL if not found.
2387 */
rproc_get_by_child(struct device * dev)2388 struct rproc *rproc_get_by_child(struct device *dev)
2389 {
2390 for (dev = dev->parent; dev; dev = dev->parent) {
2391 if (dev->type == &rproc_type)
2392 return dev->driver_data;
2393 }
2394
2395 return NULL;
2396 }
2397 EXPORT_SYMBOL(rproc_get_by_child);
2398
2399 /**
2400 * rproc_report_crash() - rproc crash reporter function
2401 * @rproc: remote processor
2402 * @type: crash type
2403 *
2404 * This function must be called every time a crash is detected by the low-level
2405 * drivers implementing a specific remoteproc. This should not be called from a
2406 * non-remoteproc driver.
2407 *
2408 * This function can be called from atomic/interrupt context.
2409 */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2410 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2411 {
2412 if (!rproc) {
2413 pr_err("NULL rproc pointer\n");
2414 return;
2415 }
2416
2417 /* Prevent suspend while the remoteproc is being recovered */
2418 pm_stay_awake(rproc->dev.parent);
2419
2420 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2421 rproc->name, rproc_crash_to_string(type));
2422
2423 /* create a new task to handle the error */
2424 schedule_work(&rproc->crash_handler);
2425 }
2426 EXPORT_SYMBOL(rproc_report_crash);
2427
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2428 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2429 void *ptr)
2430 {
2431 unsigned int longest = 0;
2432 struct rproc *rproc;
2433 unsigned int d;
2434
2435 rcu_read_lock();
2436 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2437 if (!rproc->ops->panic || rproc->state != RPROC_RUNNING)
2438 continue;
2439
2440 d = rproc->ops->panic(rproc);
2441 longest = max(longest, d);
2442 }
2443 rcu_read_unlock();
2444
2445 /*
2446 * Delay for the longest requested duration before returning. This can
2447 * be used by the remoteproc drivers to give the remote processor time
2448 * to perform any requested operations (such as flush caches), when
2449 * it's not possible to signal the Linux side due to the panic.
2450 */
2451 mdelay(longest);
2452
2453 return NOTIFY_DONE;
2454 }
2455
rproc_init_panic(void)2456 static void __init rproc_init_panic(void)
2457 {
2458 rproc_panic_nb.notifier_call = rproc_panic_handler;
2459 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2460 }
2461
rproc_exit_panic(void)2462 static void __exit rproc_exit_panic(void)
2463 {
2464 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2465 }
2466
remoteproc_init(void)2467 static int __init remoteproc_init(void)
2468 {
2469 rproc_init_sysfs();
2470 rproc_init_debugfs();
2471 rproc_init_cdev();
2472 rproc_init_panic();
2473
2474 return 0;
2475 }
2476 subsys_initcall(remoteproc_init);
2477
remoteproc_exit(void)2478 static void __exit remoteproc_exit(void)
2479 {
2480 ida_destroy(&rproc_dev_index);
2481
2482 rproc_exit_panic();
2483 rproc_exit_debugfs();
2484 rproc_exit_sysfs();
2485 }
2486 module_exit(remoteproc_exit);
2487
2488 MODULE_LICENSE("GPL v2");
2489 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2490