• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * AAC Spectral Band Replication decoding functions
3  * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4  * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5  *
6  * Fixed point code
7  * Copyright (c) 2013
8  *      MIPS Technologies, Inc., California.
9  *
10  * This file is part of FFmpeg.
11  *
12  * FFmpeg is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU Lesser General Public
14  * License as published by the Free Software Foundation; either
15  * version 2.1 of the License, or (at your option) any later version.
16  *
17  * FFmpeg is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * Lesser General Public License for more details.
21  *
22  * You should have received a copy of the GNU Lesser General Public
23  * License along with FFmpeg; if not, write to the Free Software
24  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25  */
26 
27 /**
28  * @file
29  * AAC Spectral Band Replication decoding functions
30  * @author Robert Swain ( rob opendot cl )
31  * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
32  * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33  */
34 
35 #include "libavutil/qsort.h"
36 
aacsbr_tableinit(void)37 static av_cold void aacsbr_tableinit(void)
38 {
39     int n;
40 
41     for (n = 0; n < 320; n++)
42         sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
43 }
44 
AAC_RENAME(ff_aac_sbr_init)45 av_cold void AAC_RENAME(ff_aac_sbr_init)(void)
46 {
47     static const struct {
48         const void *sbr_codes, *sbr_bits;
49         const unsigned int table_size, elem_size;
50     } sbr_tmp[] = {
51         SBR_VLC_ROW(t_huffman_env_1_5dB),
52         SBR_VLC_ROW(f_huffman_env_1_5dB),
53         SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
54         SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
55         SBR_VLC_ROW(t_huffman_env_3_0dB),
56         SBR_VLC_ROW(f_huffman_env_3_0dB),
57         SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
58         SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
59         SBR_VLC_ROW(t_huffman_noise_3_0dB),
60         SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
61     };
62 
63     // SBR VLC table initialization
64     SBR_INIT_VLC_STATIC(0, 1098);
65     SBR_INIT_VLC_STATIC(1, 1092);
66     SBR_INIT_VLC_STATIC(2, 768);
67     SBR_INIT_VLC_STATIC(3, 1026);
68     SBR_INIT_VLC_STATIC(4, 1058);
69     SBR_INIT_VLC_STATIC(5, 1052);
70     SBR_INIT_VLC_STATIC(6, 544);
71     SBR_INIT_VLC_STATIC(7, 544);
72     SBR_INIT_VLC_STATIC(8, 592);
73     SBR_INIT_VLC_STATIC(9, 512);
74 
75     aacsbr_tableinit();
76 
77     AAC_RENAME(ff_ps_init)();
78 }
79 
80 /** Places SBR in pure upsampling mode. */
sbr_turnoff(SpectralBandReplication * sbr)81 static void sbr_turnoff(SpectralBandReplication *sbr) {
82     sbr->start = 0;
83     sbr->ready_for_dequant = 0;
84     // Init defults used in pure upsampling mode
85     sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
86     sbr->m[1] = 0;
87     // Reset values for first SBR header
88     sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
89     memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
90 }
91 
AAC_RENAME(ff_aac_sbr_ctx_init)92 av_cold void AAC_RENAME(ff_aac_sbr_ctx_init)(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
93 {
94     if(sbr->mdct.mdct_bits)
95         return;
96     sbr->kx[0] = sbr->kx[1];
97     sbr->id_aac = id_aac;
98     sbr_turnoff(sbr);
99     sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
100     sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
101     /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
102      * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
103      * and scale back down at synthesis. */
104     AAC_RENAME_32(ff_mdct_init)(&sbr->mdct,     7, 1, 1.0 / (64 * 32768.0));
105     AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
106     AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
107     AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
108     aacsbr_func_ptr_init(&sbr->c);
109 }
110 
AAC_RENAME(ff_aac_sbr_ctx_close)111 av_cold void AAC_RENAME(ff_aac_sbr_ctx_close)(SpectralBandReplication *sbr)
112 {
113     AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
114     AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
115 }
116 
qsort_comparison_function_int16(const void * a,const void * b)117 static int qsort_comparison_function_int16(const void *a, const void *b)
118 {
119     return *(const int16_t *)a - *(const int16_t *)b;
120 }
121 
in_table_int16(const int16_t * table,int last_el,int16_t needle)122 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
123 {
124     int i;
125     for (i = 0; i <= last_el; i++)
126         if (table[i] == needle)
127             return 1;
128     return 0;
129 }
130 
131 /// Limiter Frequency Band Table (14496-3 sp04 p198)
sbr_make_f_tablelim(SpectralBandReplication * sbr)132 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
133 {
134     int k;
135     if (sbr->bs_limiter_bands > 0) {
136         static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f),   //2^(0.49/1.2)
137                                                Q23(1.18509277094158210129f),   //2^(0.49/2)
138                                                Q23(1.11987160404675912501f) }; //2^(0.49/3)
139         const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
140         int16_t patch_borders[7];
141         uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
142 
143         patch_borders[0] = sbr->kx[1];
144         for (k = 1; k <= sbr->num_patches; k++)
145             patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
146 
147         memcpy(sbr->f_tablelim, sbr->f_tablelow,
148                (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
149         if (sbr->num_patches > 1)
150             memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
151                    (sbr->num_patches - 1) * sizeof(patch_borders[0]));
152 
153         AV_QSORT(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
154               uint16_t,
155               qsort_comparison_function_int16);
156 
157         sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
158         while (out < sbr->f_tablelim + sbr->n_lim) {
159 #if USE_FIXED
160             if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
161 #else
162             if (*in >= *out * lim_bands_per_octave_warped) {
163 #endif /* USE_FIXED */
164                 *++out = *in++;
165             } else if (*in == *out ||
166                 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
167                 in++;
168                 sbr->n_lim--;
169             } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
170                 *out = *in++;
171                 sbr->n_lim--;
172             } else {
173                 *++out = *in++;
174             }
175         }
176     } else {
177         sbr->f_tablelim[0] = sbr->f_tablelow[0];
178         sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
179         sbr->n_lim = 1;
180     }
181 }
182 
183 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
184 {
185     unsigned int cnt = get_bits_count(gb);
186     uint8_t bs_header_extra_1;
187     uint8_t bs_header_extra_2;
188     int old_bs_limiter_bands = sbr->bs_limiter_bands;
189     SpectrumParameters old_spectrum_params;
190 
191     sbr->start = 1;
192     sbr->ready_for_dequant = 0;
193 
194     // Save last spectrum parameters variables to compare to new ones
195     memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
196 
197     sbr->bs_amp_res_header              = get_bits1(gb);
198     sbr->spectrum_params.bs_start_freq  = get_bits(gb, 4);
199     sbr->spectrum_params.bs_stop_freq   = get_bits(gb, 4);
200     sbr->spectrum_params.bs_xover_band  = get_bits(gb, 3);
201                                           skip_bits(gb, 2); // bs_reserved
202 
203     bs_header_extra_1 = get_bits1(gb);
204     bs_header_extra_2 = get_bits1(gb);
205 
206     if (bs_header_extra_1) {
207         sbr->spectrum_params.bs_freq_scale  = get_bits(gb, 2);
208         sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
209         sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
210     } else {
211         sbr->spectrum_params.bs_freq_scale  = 2;
212         sbr->spectrum_params.bs_alter_scale = 1;
213         sbr->spectrum_params.bs_noise_bands = 2;
214     }
215 
216     // Check if spectrum parameters changed
217     if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
218         sbr->reset = 1;
219 
220     if (bs_header_extra_2) {
221         sbr->bs_limiter_bands  = get_bits(gb, 2);
222         sbr->bs_limiter_gains  = get_bits(gb, 2);
223         sbr->bs_interpol_freq  = get_bits1(gb);
224         sbr->bs_smoothing_mode = get_bits1(gb);
225     } else {
226         sbr->bs_limiter_bands  = 2;
227         sbr->bs_limiter_gains  = 2;
228         sbr->bs_interpol_freq  = 1;
229         sbr->bs_smoothing_mode = 1;
230     }
231 
232     if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
233         sbr_make_f_tablelim(sbr);
234 
235     return get_bits_count(gb) - cnt;
236 }
237 
238 static int array_min_int16(const int16_t *array, int nel)
239 {
240     int i, min = array[0];
241     for (i = 1; i < nel; i++)
242         min = FFMIN(array[i], min);
243     return min;
244 }
245 
246 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
247 {
248     // Requirements (14496-3 sp04 p205)
249     if (n_master <= 0) {
250         av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
251         return -1;
252     }
253     if (bs_xover_band >= n_master) {
254         av_log(avctx, AV_LOG_ERROR,
255                "Invalid bitstream, crossover band index beyond array bounds: %d\n",
256                bs_xover_band);
257         return -1;
258     }
259     return 0;
260 }
261 
262 /// Master Frequency Band Table (14496-3 sp04 p194)
263 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
264                              SpectrumParameters *spectrum)
265 {
266     unsigned int temp, max_qmf_subbands = 0;
267     unsigned int start_min, stop_min;
268     int k;
269     const int8_t *sbr_offset_ptr;
270     int16_t stop_dk[13];
271 
272     switch (sbr->sample_rate) {
273     case 16000:
274         sbr_offset_ptr = sbr_offset[0];
275         break;
276     case 22050:
277         sbr_offset_ptr = sbr_offset[1];
278         break;
279     case 24000:
280         sbr_offset_ptr = sbr_offset[2];
281         break;
282     case 32000:
283         sbr_offset_ptr = sbr_offset[3];
284         break;
285     case 44100: case 48000: case 64000:
286         sbr_offset_ptr = sbr_offset[4];
287         break;
288     case 88200: case 96000: case 128000: case 176400: case 192000:
289         sbr_offset_ptr = sbr_offset[5];
290         break;
291     default:
292         av_log(ac->avctx, AV_LOG_ERROR,
293                "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
294         return -1;
295     }
296 
297     if (sbr->sample_rate < 32000) {
298         temp = 3000;
299     } else if (sbr->sample_rate < 64000) {
300         temp = 4000;
301     } else
302         temp = 5000;
303 
304     start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
305     stop_min  = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
306 
307     sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
308 
309     if (spectrum->bs_stop_freq < 14) {
310         sbr->k[2] = stop_min;
311         make_bands(stop_dk, stop_min, 64, 13);
312         AV_QSORT(stop_dk, 13, int16_t, qsort_comparison_function_int16);
313         for (k = 0; k < spectrum->bs_stop_freq; k++)
314             sbr->k[2] += stop_dk[k];
315     } else if (spectrum->bs_stop_freq == 14) {
316         sbr->k[2] = 2*sbr->k[0];
317     } else if (spectrum->bs_stop_freq == 15) {
318         sbr->k[2] = 3*sbr->k[0];
319     } else {
320         av_log(ac->avctx, AV_LOG_ERROR,
321                "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
322         return -1;
323     }
324     sbr->k[2] = FFMIN(64, sbr->k[2]);
325 
326     // Requirements (14496-3 sp04 p205)
327     if (sbr->sample_rate <= 32000) {
328         max_qmf_subbands = 48;
329     } else if (sbr->sample_rate == 44100) {
330         max_qmf_subbands = 35;
331     } else if (sbr->sample_rate >= 48000)
332         max_qmf_subbands = 32;
333     else
334         av_assert0(0);
335 
336     if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
337         av_log(ac->avctx, AV_LOG_ERROR,
338                "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
339         return -1;
340     }
341 
342     if (!spectrum->bs_freq_scale) {
343         int dk, k2diff;
344 
345         dk = spectrum->bs_alter_scale + 1;
346         sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
347         if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
348             return -1;
349 
350         for (k = 1; k <= sbr->n_master; k++)
351             sbr->f_master[k] = dk;
352 
353         k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
354         if (k2diff < 0) {
355             sbr->f_master[1]--;
356             sbr->f_master[2]-= (k2diff < -1);
357         } else if (k2diff) {
358             sbr->f_master[sbr->n_master]++;
359         }
360 
361         sbr->f_master[0] = sbr->k[0];
362         for (k = 1; k <= sbr->n_master; k++)
363             sbr->f_master[k] += sbr->f_master[k - 1];
364 
365     } else {
366         int half_bands = 7 - spectrum->bs_freq_scale;      // bs_freq_scale  = {1,2,3}
367         int two_regions, num_bands_0;
368         int vdk0_max, vdk1_min;
369         int16_t vk0[49];
370 #if USE_FIXED
371         int tmp, nz = 0;
372 #endif /* USE_FIXED */
373 
374         if (49 * sbr->k[2] > 110 * sbr->k[0]) {
375             two_regions = 1;
376             sbr->k[1] = 2 * sbr->k[0];
377         } else {
378             two_regions = 0;
379             sbr->k[1] = sbr->k[2];
380         }
381 
382 #if USE_FIXED
383         tmp = (sbr->k[1] << 23) / sbr->k[0];
384         while (tmp < 0x40000000) {
385           tmp <<= 1;
386           nz++;
387         }
388         tmp = fixed_log(tmp - 0x80000000);
389         tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
390         tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
391         num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
392 #else
393         num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
394 #endif /* USE_FIXED */
395 
396         if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
397             av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
398             return -1;
399         }
400 
401         vk0[0] = 0;
402 
403         make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
404 
405         AV_QSORT(vk0 + 1, num_bands_0, int16_t, qsort_comparison_function_int16);
406         vdk0_max = vk0[num_bands_0];
407 
408         vk0[0] = sbr->k[0];
409         for (k = 1; k <= num_bands_0; k++) {
410             if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
411                 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
412                 return -1;
413             }
414             vk0[k] += vk0[k-1];
415         }
416 
417         if (two_regions) {
418             int16_t vk1[49];
419 #if USE_FIXED
420             int num_bands_1;
421 
422             tmp = (sbr->k[2] << 23) / sbr->k[1];
423             nz = 0;
424             while (tmp < 0x40000000) {
425               tmp <<= 1;
426               nz++;
427             }
428             tmp = fixed_log(tmp - 0x80000000);
429             tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
430             tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
431             if (spectrum->bs_alter_scale)
432                 tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
433             num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
434 #else
435             float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
436                                                      : 1.0f; // bs_alter_scale = {0,1}
437             int num_bands_1 = lrintf(half_bands * invwarp *
438                                      log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
439 #endif /* USE_FIXED */
440             make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
441 
442             vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
443 
444             if (vdk1_min < vdk0_max) {
445                 int change;
446                 AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
447                 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
448                 vk1[1]           += change;
449                 vk1[num_bands_1] -= change;
450             }
451 
452             AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
453 
454             vk1[0] = sbr->k[1];
455             for (k = 1; k <= num_bands_1; k++) {
456                 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
457                     av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
458                     return -1;
459                 }
460                 vk1[k] += vk1[k-1];
461             }
462 
463             sbr->n_master = num_bands_0 + num_bands_1;
464             if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
465                 return -1;
466             memcpy(&sbr->f_master[0],               vk0,
467                    (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
468             memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
469                     num_bands_1      * sizeof(sbr->f_master[0]));
470 
471         } else {
472             sbr->n_master = num_bands_0;
473             if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
474                 return -1;
475             memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
476         }
477     }
478 
479     return 0;
480 }
481 
482 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
483 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
484 {
485     int i, k, last_k = -1, last_msb = -1, sb = 0;
486     int msb = sbr->k[0];
487     int usb = sbr->kx[1];
488     int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
489 
490     sbr->num_patches = 0;
491 
492     if (goal_sb < sbr->kx[1] + sbr->m[1]) {
493         for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
494     } else
495         k = sbr->n_master;
496 
497     do {
498         int odd = 0;
499         if (k == last_k && msb == last_msb) {
500             av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
501             return AVERROR_INVALIDDATA;
502         }
503         last_k = k;
504         last_msb = msb;
505         for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
506             sb = sbr->f_master[i];
507             odd = (sb + sbr->k[0]) & 1;
508         }
509 
510         // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
511         // After this check the final number of patches can still be six which is
512         // illegal however the Coding Technologies decoder check stream has a final
513         // count of 6 patches
514         if (sbr->num_patches > 5) {
515             av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
516             return -1;
517         }
518 
519         sbr->patch_num_subbands[sbr->num_patches]  = FFMAX(sb - usb, 0);
520         sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
521 
522         if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
523             usb = sb;
524             msb = sb;
525             sbr->num_patches++;
526         } else
527             msb = sbr->kx[1];
528 
529         if (sbr->f_master[k] - sb < 3)
530             k = sbr->n_master;
531     } while (sb != sbr->kx[1] + sbr->m[1]);
532 
533     if (sbr->num_patches > 1 &&
534         sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
535         sbr->num_patches--;
536 
537     return 0;
538 }
539 
540 /// Derived Frequency Band Tables (14496-3 sp04 p197)
541 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
542 {
543     int k, temp;
544 #if USE_FIXED
545     int nz = 0;
546 #endif /* USE_FIXED */
547 
548     sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
549     sbr->n[0] = (sbr->n[1] + 1) >> 1;
550 
551     memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
552            (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
553     sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
554     sbr->kx[1] = sbr->f_tablehigh[0];
555 
556     // Requirements (14496-3 sp04 p205)
557     if (sbr->kx[1] + sbr->m[1] > 64) {
558         av_log(ac->avctx, AV_LOG_ERROR,
559                "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
560         return -1;
561     }
562     if (sbr->kx[1] > 32) {
563         av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
564         return -1;
565     }
566 
567     sbr->f_tablelow[0] = sbr->f_tablehigh[0];
568     temp = sbr->n[1] & 1;
569     for (k = 1; k <= sbr->n[0]; k++)
570         sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
571 #if USE_FIXED
572     temp = (sbr->k[2] << 23) / sbr->kx[1];
573     while (temp < 0x40000000) {
574         temp <<= 1;
575         nz++;
576     }
577     temp = fixed_log(temp - 0x80000000);
578     temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
579     temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
580 
581     sbr->n_q = (temp + 0x400000) >> 23;
582     if (sbr->n_q < 1)
583         sbr->n_q = 1;
584 #else
585     sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
586                                log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
587 #endif /* USE_FIXED */
588 
589     if (sbr->n_q > 5) {
590         av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
591         return -1;
592     }
593 
594     sbr->f_tablenoise[0] = sbr->f_tablelow[0];
595     temp = 0;
596     for (k = 1; k <= sbr->n_q; k++) {
597         temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
598         sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
599     }
600 
601     if (sbr_hf_calc_npatches(ac, sbr) < 0)
602         return -1;
603 
604     sbr_make_f_tablelim(sbr);
605 
606     sbr->data[0].f_indexnoise = 0;
607     sbr->data[1].f_indexnoise = 0;
608 
609     return 0;
610 }
611 
612 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
613                                               int elements)
614 {
615     int i;
616     for (i = 0; i < elements; i++) {
617         vec[i] = get_bits1(gb);
618     }
619 }
620 
621 /** ceil(log2(index+1)) */
622 static const int8_t ceil_log2[] = {
623     0, 1, 2, 2, 3, 3,
624 };
625 
626 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
627                          GetBitContext *gb, SBRData *ch_data)
628 {
629     int i;
630     int bs_pointer = 0;
631     // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
632     int abs_bord_trail = 16;
633     int num_rel_lead, num_rel_trail;
634     unsigned bs_num_env_old = ch_data->bs_num_env;
635     int bs_frame_class, bs_num_env;
636 
637     ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
638     ch_data->bs_amp_res = sbr->bs_amp_res_header;
639     ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
640 
641     switch (bs_frame_class = get_bits(gb, 2)) {
642     case FIXFIX:
643         bs_num_env = 1 << get_bits(gb, 2);
644         if (bs_num_env > 4) {
645             av_log(ac->avctx, AV_LOG_ERROR,
646                    "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
647                    bs_num_env);
648             return -1;
649         }
650         ch_data->bs_num_env = bs_num_env;
651         num_rel_lead                        = ch_data->bs_num_env - 1;
652         if (ch_data->bs_num_env == 1)
653             ch_data->bs_amp_res = 0;
654 
655 
656         ch_data->t_env[0]                   = 0;
657         ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
658 
659         abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
660                    ch_data->bs_num_env;
661         for (i = 0; i < num_rel_lead; i++)
662             ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
663 
664         ch_data->bs_freq_res[1] = get_bits1(gb);
665         for (i = 1; i < ch_data->bs_num_env; i++)
666             ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
667         break;
668     case FIXVAR:
669         abs_bord_trail                     += get_bits(gb, 2);
670         num_rel_trail                       = get_bits(gb, 2);
671         ch_data->bs_num_env                 = num_rel_trail + 1;
672         ch_data->t_env[0]                   = 0;
673         ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
674 
675         for (i = 0; i < num_rel_trail; i++)
676             ch_data->t_env[ch_data->bs_num_env - 1 - i] =
677                 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
678 
679         bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
680 
681         for (i = 0; i < ch_data->bs_num_env; i++)
682             ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
683         break;
684     case VARFIX:
685         ch_data->t_env[0]                   = get_bits(gb, 2);
686         num_rel_lead                        = get_bits(gb, 2);
687         ch_data->bs_num_env                 = num_rel_lead + 1;
688         ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
689 
690         for (i = 0; i < num_rel_lead; i++)
691             ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
692 
693         bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
694 
695         get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
696         break;
697     case VARVAR:
698         ch_data->t_env[0]                   = get_bits(gb, 2);
699         abs_bord_trail                     += get_bits(gb, 2);
700         num_rel_lead                        = get_bits(gb, 2);
701         num_rel_trail                       = get_bits(gb, 2);
702         bs_num_env                          = num_rel_lead + num_rel_trail + 1;
703 
704         if (bs_num_env > 5) {
705             av_log(ac->avctx, AV_LOG_ERROR,
706                    "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
707                    bs_num_env);
708             return -1;
709         }
710         ch_data->bs_num_env = bs_num_env;
711 
712         ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
713 
714         for (i = 0; i < num_rel_lead; i++)
715             ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
716         for (i = 0; i < num_rel_trail; i++)
717             ch_data->t_env[ch_data->bs_num_env - 1 - i] =
718                 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
719 
720         bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
721 
722         get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
723         break;
724     }
725     ch_data->bs_frame_class = bs_frame_class;
726 
727     av_assert0(bs_pointer >= 0);
728     if (bs_pointer > ch_data->bs_num_env + 1) {
729         av_log(ac->avctx, AV_LOG_ERROR,
730                "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
731                bs_pointer);
732         return -1;
733     }
734 
735     for (i = 1; i <= ch_data->bs_num_env; i++) {
736         if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
737             av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
738             return -1;
739         }
740     }
741 
742     ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
743 
744     ch_data->t_q[0]                     = ch_data->t_env[0];
745     ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
746     if (ch_data->bs_num_noise > 1) {
747         int idx;
748         if (ch_data->bs_frame_class == FIXFIX) {
749             idx = ch_data->bs_num_env >> 1;
750         } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
751             idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
752         } else { // VARFIX
753             if (!bs_pointer)
754                 idx = 1;
755             else if (bs_pointer == 1)
756                 idx = ch_data->bs_num_env - 1;
757             else // bs_pointer > 1
758                 idx = bs_pointer - 1;
759         }
760         ch_data->t_q[1] = ch_data->t_env[idx];
761     }
762 
763     ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
764     ch_data->e_a[1] = -1;
765     if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
766         ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
767     } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
768         ch_data->e_a[1] = bs_pointer - 1;
769 
770     return 0;
771 }
772 
773 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
774     //These variables are saved from the previous frame rather than copied
775     dst->bs_freq_res[0]    = dst->bs_freq_res[dst->bs_num_env];
776     dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
777     dst->e_a[0]            = -(dst->e_a[1] != dst->bs_num_env);
778 
779     //These variables are read from the bitstream and therefore copied
780     memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
781     memcpy(dst->t_env,         src->t_env,         sizeof(dst->t_env));
782     memcpy(dst->t_q,           src->t_q,           sizeof(dst->t_q));
783     dst->bs_num_env        = src->bs_num_env;
784     dst->bs_amp_res        = src->bs_amp_res;
785     dst->bs_num_noise      = src->bs_num_noise;
786     dst->bs_frame_class    = src->bs_frame_class;
787     dst->e_a[1]            = src->e_a[1];
788 }
789 
790 /// Read how the envelope and noise floor data is delta coded
791 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
792                           SBRData *ch_data)
793 {
794     get_bits1_vector(gb, ch_data->bs_df_env,   ch_data->bs_num_env);
795     get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
796 }
797 
798 /// Read inverse filtering data
799 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
800                           SBRData *ch_data)
801 {
802     int i;
803 
804     memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
805     for (i = 0; i < sbr->n_q; i++)
806         ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
807 }
808 
809 static int read_sbr_envelope(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
810                               SBRData *ch_data, int ch)
811 {
812     int bits;
813     int i, j, k;
814     const VLCElem *t_huff, *f_huff;
815     int t_lav, f_lav;
816     const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
817     const int odd = sbr->n[1] & 1;
818 
819     if (sbr->bs_coupling && ch) {
820         if (ch_data->bs_amp_res) {
821             bits   = 5;
822             t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
823             t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
824             f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
825             f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
826         } else {
827             bits   = 6;
828             t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
829             t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
830             f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
831             f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
832         }
833     } else {
834         if (ch_data->bs_amp_res) {
835             bits   = 6;
836             t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
837             t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
838             f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
839             f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
840         } else {
841             bits   = 7;
842             t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
843             t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
844             f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
845             f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
846         }
847     }
848 
849     for (i = 0; i < ch_data->bs_num_env; i++) {
850         if (ch_data->bs_df_env[i]) {
851             // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
852             if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
853                 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
854                     ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
855                     if (ch_data->env_facs_q[i + 1][j] > 127U) {
856                         av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
857                         return AVERROR_INVALIDDATA;
858                     }
859                 }
860             } else if (ch_data->bs_freq_res[i + 1]) {
861                 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
862                     k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
863                     ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
864                     if (ch_data->env_facs_q[i + 1][j] > 127U) {
865                         av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
866                         return AVERROR_INVALIDDATA;
867                     }
868                 }
869             } else {
870                 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
871                     k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
872                     ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
873                     if (ch_data->env_facs_q[i + 1][j] > 127U) {
874                         av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
875                         return AVERROR_INVALIDDATA;
876                     }
877                 }
878             }
879         } else {
880             ch_data->env_facs_q[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
881             for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
882                 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
883                 if (ch_data->env_facs_q[i + 1][j] > 127U) {
884                     av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
885                     return AVERROR_INVALIDDATA;
886                 }
887             }
888         }
889     }
890 
891     //assign 0th elements of env_facs_q from last elements
892     memcpy(ch_data->env_facs_q[0], ch_data->env_facs_q[ch_data->bs_num_env],
893            sizeof(ch_data->env_facs_q[0]));
894 
895     return 0;
896 }
897 
898 static int read_sbr_noise(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
899                            SBRData *ch_data, int ch)
900 {
901     int i, j;
902     const VLCElem *t_huff, *f_huff;
903     int t_lav, f_lav;
904     int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
905 
906     if (sbr->bs_coupling && ch) {
907         t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
908         t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
909         f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
910         f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
911     } else {
912         t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
913         t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
914         f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
915         f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
916     }
917 
918     for (i = 0; i < ch_data->bs_num_noise; i++) {
919         if (ch_data->bs_df_noise[i]) {
920             for (j = 0; j < sbr->n_q; j++) {
921                 ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
922                 if (ch_data->noise_facs_q[i + 1][j] > 30U) {
923                     av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
924                     return AVERROR_INVALIDDATA;
925                 }
926             }
927         } else {
928             ch_data->noise_facs_q[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
929             for (j = 1; j < sbr->n_q; j++) {
930                 ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
931                 if (ch_data->noise_facs_q[i + 1][j] > 30U) {
932                     av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
933                     return AVERROR_INVALIDDATA;
934                 }
935             }
936         }
937     }
938 
939     //assign 0th elements of noise_facs_q from last elements
940     memcpy(ch_data->noise_facs_q[0], ch_data->noise_facs_q[ch_data->bs_num_noise],
941            sizeof(ch_data->noise_facs_q[0]));
942     return 0;
943 }
944 
945 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
946                                GetBitContext *gb,
947                                int bs_extension_id, int *num_bits_left)
948 {
949     switch (bs_extension_id) {
950     case EXTENSION_ID_PS:
951         if (!ac->oc[1].m4ac.ps) {
952             av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
953             skip_bits_long(gb, *num_bits_left); // bs_fill_bits
954             *num_bits_left = 0;
955         } else {
956             *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps.common, *num_bits_left);
957             ac->avctx->profile = FF_PROFILE_AAC_HE_V2;
958         }
959         break;
960     default:
961         // some files contain 0-padding
962         if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
963             avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
964         skip_bits_long(gb, *num_bits_left); // bs_fill_bits
965         *num_bits_left = 0;
966         break;
967     }
968 }
969 
970 static int read_sbr_single_channel_element(AACContext *ac,
971                                             SpectralBandReplication *sbr,
972                                             GetBitContext *gb)
973 {
974     int ret;
975 
976     if (get_bits1(gb)) // bs_data_extra
977         skip_bits(gb, 4); // bs_reserved
978 
979     if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
980         return -1;
981     read_sbr_dtdf(sbr, gb, &sbr->data[0]);
982     read_sbr_invf(sbr, gb, &sbr->data[0]);
983     if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
984         return ret;
985     if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
986         return ret;
987 
988     if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
989         get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
990 
991     return 0;
992 }
993 
994 static int read_sbr_channel_pair_element(AACContext *ac,
995                                           SpectralBandReplication *sbr,
996                                           GetBitContext *gb)
997 {
998     int ret;
999 
1000     if (get_bits1(gb))    // bs_data_extra
1001         skip_bits(gb, 8); // bs_reserved
1002 
1003     if ((sbr->bs_coupling = get_bits1(gb))) {
1004         if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
1005             return -1;
1006         copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
1007         read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1008         read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1009         read_sbr_invf(sbr, gb, &sbr->data[0]);
1010         memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1011         memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1012         if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1013             return ret;
1014         if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1015             return ret;
1016         if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1017             return ret;
1018         if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1019             return ret;
1020     } else {
1021         if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
1022             read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
1023             return -1;
1024         read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1025         read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1026         read_sbr_invf(sbr, gb, &sbr->data[0]);
1027         read_sbr_invf(sbr, gb, &sbr->data[1]);
1028         if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1029             return ret;
1030         if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1031             return ret;
1032         if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1033             return ret;
1034         if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1035             return ret;
1036     }
1037 
1038     if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1039         get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1040     if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1041         get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1042 
1043     return 0;
1044 }
1045 
1046 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1047                                   GetBitContext *gb, int id_aac)
1048 {
1049     unsigned int cnt = get_bits_count(gb);
1050 
1051     sbr->id_aac = id_aac;
1052     sbr->ready_for_dequant = 1;
1053 
1054     if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1055         if (read_sbr_single_channel_element(ac, sbr, gb)) {
1056             sbr_turnoff(sbr);
1057             return get_bits_count(gb) - cnt;
1058         }
1059     } else if (id_aac == TYPE_CPE) {
1060         if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1061             sbr_turnoff(sbr);
1062             return get_bits_count(gb) - cnt;
1063         }
1064     } else {
1065         av_log(ac->avctx, AV_LOG_ERROR,
1066             "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1067         sbr_turnoff(sbr);
1068         return get_bits_count(gb) - cnt;
1069     }
1070     if (get_bits1(gb)) { // bs_extended_data
1071         int num_bits_left = get_bits(gb, 4); // bs_extension_size
1072         if (num_bits_left == 15)
1073             num_bits_left += get_bits(gb, 8); // bs_esc_count
1074 
1075         num_bits_left <<= 3;
1076         while (num_bits_left > 7) {
1077             num_bits_left -= 2;
1078             read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1079         }
1080         if (num_bits_left < 0) {
1081             av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1082         }
1083         if (num_bits_left > 0)
1084             skip_bits(gb, num_bits_left);
1085     }
1086 
1087     return get_bits_count(gb) - cnt;
1088 }
1089 
1090 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1091 {
1092     int err;
1093     err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1094     if (err >= 0)
1095         err = sbr_make_f_derived(ac, sbr);
1096     if (err < 0) {
1097         av_log(ac->avctx, AV_LOG_ERROR,
1098                "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1099         sbr_turnoff(sbr);
1100     }
1101 }
1102 
1103 /**
1104  * Decode Spectral Band Replication extension data; reference: table 4.55.
1105  *
1106  * @param   crc flag indicating the presence of CRC checksum
1107  * @param   cnt length of TYPE_FIL syntactic element in bytes
1108  *
1109  * @return  Returns number of bytes consumed from the TYPE_FIL element.
1110  */
1111 int AAC_RENAME(ff_decode_sbr_extension)(AACContext *ac, SpectralBandReplication *sbr,
1112                             GetBitContext *gb_host, int crc, int cnt, int id_aac)
1113 {
1114     unsigned int num_sbr_bits = 0, num_align_bits;
1115     unsigned bytes_read;
1116     GetBitContext gbc = *gb_host, *gb = &gbc;
1117     skip_bits_long(gb_host, cnt*8 - 4);
1118 
1119     sbr->reset = 0;
1120 
1121     if (!sbr->sample_rate)
1122         sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1123     if (!ac->oc[1].m4ac.ext_sample_rate)
1124         ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1125 
1126     if (crc) {
1127         skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1128         num_sbr_bits += 10;
1129     }
1130 
1131     //Save some state from the previous frame.
1132     sbr->kx[0] = sbr->kx[1];
1133     sbr->m[0] = sbr->m[1];
1134     sbr->kx_and_m_pushed = 1;
1135 
1136     num_sbr_bits++;
1137     if (get_bits1(gb)) // bs_header_flag
1138         num_sbr_bits += read_sbr_header(sbr, gb);
1139 
1140     if (sbr->reset)
1141         sbr_reset(ac, sbr);
1142 
1143     if (sbr->start)
1144         num_sbr_bits  += read_sbr_data(ac, sbr, gb, id_aac);
1145 
1146     num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1147     bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1148 
1149     if (bytes_read > cnt) {
1150         av_log(ac->avctx, AV_LOG_ERROR,
1151                "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1152         sbr_turnoff(sbr);
1153     }
1154     return cnt;
1155 }
1156 
1157 /**
1158  * Analysis QMF Bank (14496-3 sp04 p206)
1159  *
1160  * @param   x       pointer to the beginning of the first sample window
1161  * @param   W       array of complex-valued samples split into subbands
1162  */
1163 #ifndef sbr_qmf_analysis
1164 #if USE_FIXED
1165 static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
1166 #else
1167 static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
1168 #endif /* USE_FIXED */
1169                              SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
1170                              INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1171 {
1172     int i;
1173 #if USE_FIXED
1174     int j;
1175 #endif
1176     memcpy(x    , x+1024, (320-32)*sizeof(x[0]));
1177     memcpy(x+288, in,         1024*sizeof(x[0]));
1178     for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1179                                // are not supported
1180         dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1181         sbrdsp->sum64x5(z);
1182         sbrdsp->qmf_pre_shuffle(z);
1183 #if USE_FIXED
1184         for (j = 64; j < 128; j++) {
1185             if (z[j] > 1<<24) {
1186                 av_log(NULL, AV_LOG_WARNING,
1187                        "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
1188                        z[j], 1<<24);
1189                 z[j] = 1<<24;
1190             } else if (z[j] < -(1<<24)) {
1191                 av_log(NULL, AV_LOG_WARNING,
1192                        "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
1193                        z[j], -(1<<24));
1194                 z[j] = -(1<<24);
1195             }
1196         }
1197 #endif
1198         mdct->imdct_half(mdct, z, z+64);
1199         sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1200         x += 32;
1201     }
1202 }
1203 #endif
1204 
1205 /**
1206  * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1207  * (14496-3 sp04 p206)
1208  */
1209 #ifndef sbr_qmf_synthesis
1210 static void sbr_qmf_synthesis(FFTContext *mdct,
1211 #if USE_FIXED
1212                               SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
1213 #else
1214                               SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1215 #endif /* USE_FIXED */
1216                               INTFLOAT *out, INTFLOAT X[2][38][64],
1217                               INTFLOAT mdct_buf[2][64],
1218                               INTFLOAT *v0, int *v_off, const unsigned int div)
1219 {
1220     int i, n;
1221     const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1222     const int step = 128 >> div;
1223     INTFLOAT *v;
1224     for (i = 0; i < 32; i++) {
1225         if (*v_off < step) {
1226             int saved_samples = (1280 - 128) >> div;
1227             memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1228             *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1229         } else {
1230             *v_off -= step;
1231         }
1232         v = v0 + *v_off;
1233         if (div) {
1234             for (n = 0; n < 32; n++) {
1235                 X[0][i][   n] = -X[0][i][n];
1236                 X[0][i][32+n] =  X[1][i][31-n];
1237             }
1238             mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1239             sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1240         } else {
1241             sbrdsp->neg_odd_64(X[1][i]);
1242             mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1243             mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1244             sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1245         }
1246         dsp->vector_fmul    (out, v                , sbr_qmf_window                       , 64 >> div);
1247         dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out   , 64 >> div);
1248         dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out   , 64 >> div);
1249         dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out   , 64 >> div);
1250         dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out   , 64 >> div);
1251         dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out   , 64 >> div);
1252         dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out   , 64 >> div);
1253         dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out   , 64 >> div);
1254         dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out   , 64 >> div);
1255         dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out   , 64 >> div);
1256         out += 64 >> div;
1257     }
1258 }
1259 #endif
1260 
1261 /// Generate the subband filtered lowband
1262 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1263                       INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1264                       int buf_idx)
1265 {
1266     int i, k;
1267     const int t_HFGen = 8;
1268     const int i_f = 32;
1269     memset(X_low, 0, 32*sizeof(*X_low));
1270     for (k = 0; k < sbr->kx[1]; k++) {
1271         for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1272             X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1273             X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1274         }
1275     }
1276     buf_idx = 1-buf_idx;
1277     for (k = 0; k < sbr->kx[0]; k++) {
1278         for (i = 0; i < t_HFGen; i++) {
1279             X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1280             X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1281         }
1282     }
1283     return 0;
1284 }
1285 
1286 /// High Frequency Generator (14496-3 sp04 p215)
1287 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1288                       INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
1289                       const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
1290                       const INTFLOAT bw_array[5], const uint8_t *t_env,
1291                       int bs_num_env)
1292 {
1293     int j, x;
1294     int g = 0;
1295     int k = sbr->kx[1];
1296     for (j = 0; j < sbr->num_patches; j++) {
1297         for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1298             const int p = sbr->patch_start_subband[j] + x;
1299             while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1300                 g++;
1301             g--;
1302 
1303             if (g < 0) {
1304                 av_log(ac->avctx, AV_LOG_ERROR,
1305                        "ERROR : no subband found for frequency %d\n", k);
1306                 return -1;
1307             }
1308 
1309             sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1310                             X_low[p]  + ENVELOPE_ADJUSTMENT_OFFSET,
1311                             alpha0[p], alpha1[p], bw_array[g],
1312                             2 * t_env[0], 2 * t_env[bs_num_env]);
1313         }
1314     }
1315     if (k < sbr->m[1] + sbr->kx[1])
1316         memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1317 
1318     return 0;
1319 }
1320 
1321 /// Generate the subband filtered lowband
1322 static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
1323                      const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
1324                      const INTFLOAT X_low[32][40][2], int ch)
1325 {
1326     int k, i;
1327     const int i_f = 32;
1328     const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1329     memset(X, 0, 2*sizeof(*X));
1330     for (k = 0; k < sbr->kx[0]; k++) {
1331         for (i = 0; i < i_Temp; i++) {
1332             X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1333             X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1334         }
1335     }
1336     for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1337         for (i = 0; i < i_Temp; i++) {
1338             X[0][i][k] = Y0[i + i_f][k][0];
1339             X[1][i][k] = Y0[i + i_f][k][1];
1340         }
1341     }
1342 
1343     for (k = 0; k < sbr->kx[1]; k++) {
1344         for (i = i_Temp; i < 38; i++) {
1345             X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1346             X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1347         }
1348     }
1349     for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1350         for (i = i_Temp; i < i_f; i++) {
1351             X[0][i][k] = Y1[i][k][0];
1352             X[1][i][k] = Y1[i][k][1];
1353         }
1354     }
1355     return 0;
1356 }
1357 
1358 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1359  * (14496-3 sp04 p217)
1360  */
1361 static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1362                         SBRData *ch_data, int e_a[2])
1363 {
1364     int e, i, m;
1365 
1366     memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1367     for (e = 0; e < ch_data->bs_num_env; e++) {
1368         const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1369         uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1370         int k;
1371 
1372         if (sbr->kx[1] != table[0]) {
1373             av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1374                    "Derived frequency tables were not regenerated.\n");
1375             sbr_turnoff(sbr);
1376             return AVERROR_BUG;
1377         }
1378         for (i = 0; i < ilim; i++)
1379             for (m = table[i]; m < table[i + 1]; m++)
1380                 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1381 
1382         // ch_data->bs_num_noise > 1 => 2 noise floors
1383         k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1384         for (i = 0; i < sbr->n_q; i++)
1385             for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1386                 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1387 
1388         for (i = 0; i < sbr->n[1]; i++) {
1389             if (ch_data->bs_add_harmonic_flag) {
1390                 const unsigned int m_midpoint =
1391                     (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1392 
1393                 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1394                     (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1395             }
1396         }
1397 
1398         for (i = 0; i < ilim; i++) {
1399             int additional_sinusoid_present = 0;
1400             for (m = table[i]; m < table[i + 1]; m++) {
1401                 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1402                     additional_sinusoid_present = 1;
1403                     break;
1404                 }
1405             }
1406             memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1407                    (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1408         }
1409     }
1410 
1411     memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1412     return 0;
1413 }
1414 
1415 /// Estimation of current envelope (14496-3 sp04 p218)
1416 static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1417                              SpectralBandReplication *sbr, SBRData *ch_data)
1418 {
1419     int e, m;
1420     int kx1 = sbr->kx[1];
1421 
1422     if (sbr->bs_interpol_freq) {
1423         for (e = 0; e < ch_data->bs_num_env; e++) {
1424 #if USE_FIXED
1425             const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
1426 #else
1427             const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1428 #endif /* USE_FIXED */
1429             int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1430             int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1431 
1432             for (m = 0; m < sbr->m[1]; m++) {
1433                 AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1434 #if USE_FIXED
1435                 e_curr[e][m] = av_mul_sf(sum, recip_env_size);
1436 #else
1437                 e_curr[e][m] = sum * recip_env_size;
1438 #endif /* USE_FIXED */
1439             }
1440         }
1441     } else {
1442         int k, p;
1443 
1444         for (e = 0; e < ch_data->bs_num_env; e++) {
1445             const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1446             int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1447             int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1448             const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1449 
1450             for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1451 #if USE_FIXED
1452                 SoftFloat sum = FLOAT_0;
1453                 const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
1454                 for (k = table[p]; k < table[p + 1]; k++) {
1455                     sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
1456                 }
1457                 sum = av_mul_sf(sum, den);
1458 #else
1459                 float sum = 0.0f;
1460                 const int den = env_size * (table[p + 1] - table[p]);
1461 
1462                 for (k = table[p]; k < table[p + 1]; k++) {
1463                     sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1464                 }
1465                 sum /= den;
1466 #endif /* USE_FIXED */
1467                 for (k = table[p]; k < table[p + 1]; k++) {
1468                     e_curr[e][k - kx1] = sum;
1469                 }
1470             }
1471         }
1472     }
1473 }
1474 
1475 void AAC_RENAME(ff_sbr_apply)(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
1476                   INTFLOAT* L, INTFLOAT* R)
1477 {
1478     int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1479     int ch;
1480     int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1481     int err;
1482 
1483     if (id_aac != sbr->id_aac) {
1484         av_log(ac->avctx, id_aac == TYPE_LFE ? AV_LOG_VERBOSE : AV_LOG_WARNING,
1485             "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1486         sbr_turnoff(sbr);
1487     }
1488 
1489     if (sbr->start && !sbr->ready_for_dequant) {
1490         av_log(ac->avctx, AV_LOG_ERROR,
1491                "No quantized data read for sbr_dequant.\n");
1492         sbr_turnoff(sbr);
1493     }
1494 
1495     if (!sbr->kx_and_m_pushed) {
1496         sbr->kx[0] = sbr->kx[1];
1497         sbr->m[0] = sbr->m[1];
1498     } else {
1499         sbr->kx_and_m_pushed = 0;
1500     }
1501 
1502     if (sbr->start) {
1503         sbr_dequant(sbr, id_aac);
1504         sbr->ready_for_dequant = 0;
1505     }
1506     for (ch = 0; ch < nch; ch++) {
1507         /* decode channel */
1508         sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1509                          (INTFLOAT*)sbr->qmf_filter_scratch,
1510                          sbr->data[ch].W, sbr->data[ch].Ypos);
1511         sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1512                           (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1513                           sbr->data[ch].Ypos);
1514         sbr->data[ch].Ypos ^= 1;
1515         if (sbr->start) {
1516             sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1517                                          (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1518             sbr_chirp(sbr, &sbr->data[ch]);
1519             av_assert0(sbr->data[ch].bs_num_env > 0);
1520             sbr_hf_gen(ac, sbr, sbr->X_high,
1521                        (const INTFLOAT (*)[40][2]) sbr->X_low,
1522                        (const INTFLOAT (*)[2]) sbr->alpha0,
1523                        (const INTFLOAT (*)[2]) sbr->alpha1,
1524                        sbr->data[ch].bw_array, sbr->data[ch].t_env,
1525                        sbr->data[ch].bs_num_env);
1526 
1527             // hf_adj
1528             err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1529             if (!err) {
1530                 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1531                 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1532                 sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1533                                 (const INTFLOAT (*)[40][2]) sbr->X_high,
1534                                 sbr, &sbr->data[ch],
1535                                 sbr->data[ch].e_a);
1536             }
1537         }
1538 
1539         /* synthesis */
1540         sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1541                   (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1542                   (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[  sbr->data[ch].Ypos],
1543                   (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1544     }
1545 
1546     if (ac->oc[1].m4ac.ps == 1) {
1547         if (sbr->ps.common.start) {
1548             AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1549         } else {
1550             memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1551         }
1552         nch = 2;
1553     }
1554 
1555     sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1556                       L, sbr->X[0], sbr->qmf_filter_scratch,
1557                       sbr->data[0].synthesis_filterbank_samples,
1558                       &sbr->data[0].synthesis_filterbank_samples_offset,
1559                       downsampled);
1560     if (nch == 2)
1561         sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1562                           R, sbr->X[1], sbr->qmf_filter_scratch,
1563                           sbr->data[1].synthesis_filterbank_samples,
1564                           &sbr->data[1].synthesis_filterbank_samples_offset,
1565                           downsampled);
1566 }
1567 
1568 static void aacsbr_func_ptr_init(AACSBRContext *c)
1569 {
1570     c->sbr_lf_gen            = sbr_lf_gen;
1571     c->sbr_hf_assemble       = sbr_hf_assemble;
1572     c->sbr_x_gen             = sbr_x_gen;
1573     c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;
1574 
1575 #if !USE_FIXED
1576 #if ARCH_MIPS
1577     ff_aacsbr_func_ptr_init_mips(c);
1578 #endif
1579 #endif
1580 }
1581