1 /*
2 * AAC Spectral Band Replication decoding functions
3 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5 *
6 * Fixed point code
7 * Copyright (c) 2013
8 * MIPS Technologies, Inc., California.
9 *
10 * This file is part of FFmpeg.
11 *
12 * FFmpeg is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU Lesser General Public
14 * License as published by the Free Software Foundation; either
15 * version 2.1 of the License, or (at your option) any later version.
16 *
17 * FFmpeg is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
20 * Lesser General Public License for more details.
21 *
22 * You should have received a copy of the GNU Lesser General Public
23 * License along with FFmpeg; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25 */
26
27 /**
28 * @file
29 * AAC Spectral Band Replication decoding functions
30 * @author Robert Swain ( rob opendot cl )
31 * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
32 * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33 */
34
35 #include "libavutil/qsort.h"
36
aacsbr_tableinit(void)37 static av_cold void aacsbr_tableinit(void)
38 {
39 int n;
40
41 for (n = 0; n < 320; n++)
42 sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
43 }
44
AAC_RENAME(ff_aac_sbr_init)45 av_cold void AAC_RENAME(ff_aac_sbr_init)(void)
46 {
47 static const struct {
48 const void *sbr_codes, *sbr_bits;
49 const unsigned int table_size, elem_size;
50 } sbr_tmp[] = {
51 SBR_VLC_ROW(t_huffman_env_1_5dB),
52 SBR_VLC_ROW(f_huffman_env_1_5dB),
53 SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
54 SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
55 SBR_VLC_ROW(t_huffman_env_3_0dB),
56 SBR_VLC_ROW(f_huffman_env_3_0dB),
57 SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
58 SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
59 SBR_VLC_ROW(t_huffman_noise_3_0dB),
60 SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
61 };
62
63 // SBR VLC table initialization
64 SBR_INIT_VLC_STATIC(0, 1098);
65 SBR_INIT_VLC_STATIC(1, 1092);
66 SBR_INIT_VLC_STATIC(2, 768);
67 SBR_INIT_VLC_STATIC(3, 1026);
68 SBR_INIT_VLC_STATIC(4, 1058);
69 SBR_INIT_VLC_STATIC(5, 1052);
70 SBR_INIT_VLC_STATIC(6, 544);
71 SBR_INIT_VLC_STATIC(7, 544);
72 SBR_INIT_VLC_STATIC(8, 592);
73 SBR_INIT_VLC_STATIC(9, 512);
74
75 aacsbr_tableinit();
76
77 AAC_RENAME(ff_ps_init)();
78 }
79
80 /** Places SBR in pure upsampling mode. */
sbr_turnoff(SpectralBandReplication * sbr)81 static void sbr_turnoff(SpectralBandReplication *sbr) {
82 sbr->start = 0;
83 sbr->ready_for_dequant = 0;
84 // Init defults used in pure upsampling mode
85 sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
86 sbr->m[1] = 0;
87 // Reset values for first SBR header
88 sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
89 memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
90 }
91
AAC_RENAME(ff_aac_sbr_ctx_init)92 av_cold void AAC_RENAME(ff_aac_sbr_ctx_init)(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
93 {
94 if(sbr->mdct.mdct_bits)
95 return;
96 sbr->kx[0] = sbr->kx[1];
97 sbr->id_aac = id_aac;
98 sbr_turnoff(sbr);
99 sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
100 sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
101 /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
102 * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
103 * and scale back down at synthesis. */
104 AAC_RENAME_32(ff_mdct_init)(&sbr->mdct, 7, 1, 1.0 / (64 * 32768.0));
105 AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
106 AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
107 AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
108 aacsbr_func_ptr_init(&sbr->c);
109 }
110
AAC_RENAME(ff_aac_sbr_ctx_close)111 av_cold void AAC_RENAME(ff_aac_sbr_ctx_close)(SpectralBandReplication *sbr)
112 {
113 AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
114 AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
115 }
116
qsort_comparison_function_int16(const void * a,const void * b)117 static int qsort_comparison_function_int16(const void *a, const void *b)
118 {
119 return *(const int16_t *)a - *(const int16_t *)b;
120 }
121
in_table_int16(const int16_t * table,int last_el,int16_t needle)122 static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
123 {
124 int i;
125 for (i = 0; i <= last_el; i++)
126 if (table[i] == needle)
127 return 1;
128 return 0;
129 }
130
131 /// Limiter Frequency Band Table (14496-3 sp04 p198)
sbr_make_f_tablelim(SpectralBandReplication * sbr)132 static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
133 {
134 int k;
135 if (sbr->bs_limiter_bands > 0) {
136 static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f), //2^(0.49/1.2)
137 Q23(1.18509277094158210129f), //2^(0.49/2)
138 Q23(1.11987160404675912501f) }; //2^(0.49/3)
139 const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
140 int16_t patch_borders[7];
141 uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
142
143 patch_borders[0] = sbr->kx[1];
144 for (k = 1; k <= sbr->num_patches; k++)
145 patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
146
147 memcpy(sbr->f_tablelim, sbr->f_tablelow,
148 (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
149 if (sbr->num_patches > 1)
150 memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
151 (sbr->num_patches - 1) * sizeof(patch_borders[0]));
152
153 AV_QSORT(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
154 uint16_t,
155 qsort_comparison_function_int16);
156
157 sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
158 while (out < sbr->f_tablelim + sbr->n_lim) {
159 #if USE_FIXED
160 if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
161 #else
162 if (*in >= *out * lim_bands_per_octave_warped) {
163 #endif /* USE_FIXED */
164 *++out = *in++;
165 } else if (*in == *out ||
166 !in_table_int16(patch_borders, sbr->num_patches, *in)) {
167 in++;
168 sbr->n_lim--;
169 } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
170 *out = *in++;
171 sbr->n_lim--;
172 } else {
173 *++out = *in++;
174 }
175 }
176 } else {
177 sbr->f_tablelim[0] = sbr->f_tablelow[0];
178 sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
179 sbr->n_lim = 1;
180 }
181 }
182
183 static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
184 {
185 unsigned int cnt = get_bits_count(gb);
186 uint8_t bs_header_extra_1;
187 uint8_t bs_header_extra_2;
188 int old_bs_limiter_bands = sbr->bs_limiter_bands;
189 SpectrumParameters old_spectrum_params;
190
191 sbr->start = 1;
192 sbr->ready_for_dequant = 0;
193
194 // Save last spectrum parameters variables to compare to new ones
195 memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
196
197 sbr->bs_amp_res_header = get_bits1(gb);
198 sbr->spectrum_params.bs_start_freq = get_bits(gb, 4);
199 sbr->spectrum_params.bs_stop_freq = get_bits(gb, 4);
200 sbr->spectrum_params.bs_xover_band = get_bits(gb, 3);
201 skip_bits(gb, 2); // bs_reserved
202
203 bs_header_extra_1 = get_bits1(gb);
204 bs_header_extra_2 = get_bits1(gb);
205
206 if (bs_header_extra_1) {
207 sbr->spectrum_params.bs_freq_scale = get_bits(gb, 2);
208 sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
209 sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
210 } else {
211 sbr->spectrum_params.bs_freq_scale = 2;
212 sbr->spectrum_params.bs_alter_scale = 1;
213 sbr->spectrum_params.bs_noise_bands = 2;
214 }
215
216 // Check if spectrum parameters changed
217 if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
218 sbr->reset = 1;
219
220 if (bs_header_extra_2) {
221 sbr->bs_limiter_bands = get_bits(gb, 2);
222 sbr->bs_limiter_gains = get_bits(gb, 2);
223 sbr->bs_interpol_freq = get_bits1(gb);
224 sbr->bs_smoothing_mode = get_bits1(gb);
225 } else {
226 sbr->bs_limiter_bands = 2;
227 sbr->bs_limiter_gains = 2;
228 sbr->bs_interpol_freq = 1;
229 sbr->bs_smoothing_mode = 1;
230 }
231
232 if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
233 sbr_make_f_tablelim(sbr);
234
235 return get_bits_count(gb) - cnt;
236 }
237
238 static int array_min_int16(const int16_t *array, int nel)
239 {
240 int i, min = array[0];
241 for (i = 1; i < nel; i++)
242 min = FFMIN(array[i], min);
243 return min;
244 }
245
246 static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
247 {
248 // Requirements (14496-3 sp04 p205)
249 if (n_master <= 0) {
250 av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
251 return -1;
252 }
253 if (bs_xover_band >= n_master) {
254 av_log(avctx, AV_LOG_ERROR,
255 "Invalid bitstream, crossover band index beyond array bounds: %d\n",
256 bs_xover_band);
257 return -1;
258 }
259 return 0;
260 }
261
262 /// Master Frequency Band Table (14496-3 sp04 p194)
263 static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
264 SpectrumParameters *spectrum)
265 {
266 unsigned int temp, max_qmf_subbands = 0;
267 unsigned int start_min, stop_min;
268 int k;
269 const int8_t *sbr_offset_ptr;
270 int16_t stop_dk[13];
271
272 switch (sbr->sample_rate) {
273 case 16000:
274 sbr_offset_ptr = sbr_offset[0];
275 break;
276 case 22050:
277 sbr_offset_ptr = sbr_offset[1];
278 break;
279 case 24000:
280 sbr_offset_ptr = sbr_offset[2];
281 break;
282 case 32000:
283 sbr_offset_ptr = sbr_offset[3];
284 break;
285 case 44100: case 48000: case 64000:
286 sbr_offset_ptr = sbr_offset[4];
287 break;
288 case 88200: case 96000: case 128000: case 176400: case 192000:
289 sbr_offset_ptr = sbr_offset[5];
290 break;
291 default:
292 av_log(ac->avctx, AV_LOG_ERROR,
293 "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
294 return -1;
295 }
296
297 if (sbr->sample_rate < 32000) {
298 temp = 3000;
299 } else if (sbr->sample_rate < 64000) {
300 temp = 4000;
301 } else
302 temp = 5000;
303
304 start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
305 stop_min = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
306
307 sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
308
309 if (spectrum->bs_stop_freq < 14) {
310 sbr->k[2] = stop_min;
311 make_bands(stop_dk, stop_min, 64, 13);
312 AV_QSORT(stop_dk, 13, int16_t, qsort_comparison_function_int16);
313 for (k = 0; k < spectrum->bs_stop_freq; k++)
314 sbr->k[2] += stop_dk[k];
315 } else if (spectrum->bs_stop_freq == 14) {
316 sbr->k[2] = 2*sbr->k[0];
317 } else if (spectrum->bs_stop_freq == 15) {
318 sbr->k[2] = 3*sbr->k[0];
319 } else {
320 av_log(ac->avctx, AV_LOG_ERROR,
321 "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
322 return -1;
323 }
324 sbr->k[2] = FFMIN(64, sbr->k[2]);
325
326 // Requirements (14496-3 sp04 p205)
327 if (sbr->sample_rate <= 32000) {
328 max_qmf_subbands = 48;
329 } else if (sbr->sample_rate == 44100) {
330 max_qmf_subbands = 35;
331 } else if (sbr->sample_rate >= 48000)
332 max_qmf_subbands = 32;
333 else
334 av_assert0(0);
335
336 if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
337 av_log(ac->avctx, AV_LOG_ERROR,
338 "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
339 return -1;
340 }
341
342 if (!spectrum->bs_freq_scale) {
343 int dk, k2diff;
344
345 dk = spectrum->bs_alter_scale + 1;
346 sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
347 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
348 return -1;
349
350 for (k = 1; k <= sbr->n_master; k++)
351 sbr->f_master[k] = dk;
352
353 k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
354 if (k2diff < 0) {
355 sbr->f_master[1]--;
356 sbr->f_master[2]-= (k2diff < -1);
357 } else if (k2diff) {
358 sbr->f_master[sbr->n_master]++;
359 }
360
361 sbr->f_master[0] = sbr->k[0];
362 for (k = 1; k <= sbr->n_master; k++)
363 sbr->f_master[k] += sbr->f_master[k - 1];
364
365 } else {
366 int half_bands = 7 - spectrum->bs_freq_scale; // bs_freq_scale = {1,2,3}
367 int two_regions, num_bands_0;
368 int vdk0_max, vdk1_min;
369 int16_t vk0[49];
370 #if USE_FIXED
371 int tmp, nz = 0;
372 #endif /* USE_FIXED */
373
374 if (49 * sbr->k[2] > 110 * sbr->k[0]) {
375 two_regions = 1;
376 sbr->k[1] = 2 * sbr->k[0];
377 } else {
378 two_regions = 0;
379 sbr->k[1] = sbr->k[2];
380 }
381
382 #if USE_FIXED
383 tmp = (sbr->k[1] << 23) / sbr->k[0];
384 while (tmp < 0x40000000) {
385 tmp <<= 1;
386 nz++;
387 }
388 tmp = fixed_log(tmp - 0x80000000);
389 tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
390 tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
391 num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
392 #else
393 num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
394 #endif /* USE_FIXED */
395
396 if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
397 av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
398 return -1;
399 }
400
401 vk0[0] = 0;
402
403 make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
404
405 AV_QSORT(vk0 + 1, num_bands_0, int16_t, qsort_comparison_function_int16);
406 vdk0_max = vk0[num_bands_0];
407
408 vk0[0] = sbr->k[0];
409 for (k = 1; k <= num_bands_0; k++) {
410 if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
411 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
412 return -1;
413 }
414 vk0[k] += vk0[k-1];
415 }
416
417 if (two_regions) {
418 int16_t vk1[49];
419 #if USE_FIXED
420 int num_bands_1;
421
422 tmp = (sbr->k[2] << 23) / sbr->k[1];
423 nz = 0;
424 while (tmp < 0x40000000) {
425 tmp <<= 1;
426 nz++;
427 }
428 tmp = fixed_log(tmp - 0x80000000);
429 tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
430 tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
431 if (spectrum->bs_alter_scale)
432 tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
433 num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
434 #else
435 float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
436 : 1.0f; // bs_alter_scale = {0,1}
437 int num_bands_1 = lrintf(half_bands * invwarp *
438 log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
439 #endif /* USE_FIXED */
440 make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
441
442 vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
443
444 if (vdk1_min < vdk0_max) {
445 int change;
446 AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
447 change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
448 vk1[1] += change;
449 vk1[num_bands_1] -= change;
450 }
451
452 AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
453
454 vk1[0] = sbr->k[1];
455 for (k = 1; k <= num_bands_1; k++) {
456 if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
457 av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
458 return -1;
459 }
460 vk1[k] += vk1[k-1];
461 }
462
463 sbr->n_master = num_bands_0 + num_bands_1;
464 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
465 return -1;
466 memcpy(&sbr->f_master[0], vk0,
467 (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
468 memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
469 num_bands_1 * sizeof(sbr->f_master[0]));
470
471 } else {
472 sbr->n_master = num_bands_0;
473 if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
474 return -1;
475 memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
476 }
477 }
478
479 return 0;
480 }
481
482 /// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
483 static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
484 {
485 int i, k, last_k = -1, last_msb = -1, sb = 0;
486 int msb = sbr->k[0];
487 int usb = sbr->kx[1];
488 int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
489
490 sbr->num_patches = 0;
491
492 if (goal_sb < sbr->kx[1] + sbr->m[1]) {
493 for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
494 } else
495 k = sbr->n_master;
496
497 do {
498 int odd = 0;
499 if (k == last_k && msb == last_msb) {
500 av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
501 return AVERROR_INVALIDDATA;
502 }
503 last_k = k;
504 last_msb = msb;
505 for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
506 sb = sbr->f_master[i];
507 odd = (sb + sbr->k[0]) & 1;
508 }
509
510 // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
511 // After this check the final number of patches can still be six which is
512 // illegal however the Coding Technologies decoder check stream has a final
513 // count of 6 patches
514 if (sbr->num_patches > 5) {
515 av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
516 return -1;
517 }
518
519 sbr->patch_num_subbands[sbr->num_patches] = FFMAX(sb - usb, 0);
520 sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
521
522 if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
523 usb = sb;
524 msb = sb;
525 sbr->num_patches++;
526 } else
527 msb = sbr->kx[1];
528
529 if (sbr->f_master[k] - sb < 3)
530 k = sbr->n_master;
531 } while (sb != sbr->kx[1] + sbr->m[1]);
532
533 if (sbr->num_patches > 1 &&
534 sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
535 sbr->num_patches--;
536
537 return 0;
538 }
539
540 /// Derived Frequency Band Tables (14496-3 sp04 p197)
541 static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
542 {
543 int k, temp;
544 #if USE_FIXED
545 int nz = 0;
546 #endif /* USE_FIXED */
547
548 sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
549 sbr->n[0] = (sbr->n[1] + 1) >> 1;
550
551 memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
552 (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
553 sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
554 sbr->kx[1] = sbr->f_tablehigh[0];
555
556 // Requirements (14496-3 sp04 p205)
557 if (sbr->kx[1] + sbr->m[1] > 64) {
558 av_log(ac->avctx, AV_LOG_ERROR,
559 "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
560 return -1;
561 }
562 if (sbr->kx[1] > 32) {
563 av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
564 return -1;
565 }
566
567 sbr->f_tablelow[0] = sbr->f_tablehigh[0];
568 temp = sbr->n[1] & 1;
569 for (k = 1; k <= sbr->n[0]; k++)
570 sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
571 #if USE_FIXED
572 temp = (sbr->k[2] << 23) / sbr->kx[1];
573 while (temp < 0x40000000) {
574 temp <<= 1;
575 nz++;
576 }
577 temp = fixed_log(temp - 0x80000000);
578 temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
579 temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
580
581 sbr->n_q = (temp + 0x400000) >> 23;
582 if (sbr->n_q < 1)
583 sbr->n_q = 1;
584 #else
585 sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
586 log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
587 #endif /* USE_FIXED */
588
589 if (sbr->n_q > 5) {
590 av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
591 return -1;
592 }
593
594 sbr->f_tablenoise[0] = sbr->f_tablelow[0];
595 temp = 0;
596 for (k = 1; k <= sbr->n_q; k++) {
597 temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
598 sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
599 }
600
601 if (sbr_hf_calc_npatches(ac, sbr) < 0)
602 return -1;
603
604 sbr_make_f_tablelim(sbr);
605
606 sbr->data[0].f_indexnoise = 0;
607 sbr->data[1].f_indexnoise = 0;
608
609 return 0;
610 }
611
612 static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
613 int elements)
614 {
615 int i;
616 for (i = 0; i < elements; i++) {
617 vec[i] = get_bits1(gb);
618 }
619 }
620
621 /** ceil(log2(index+1)) */
622 static const int8_t ceil_log2[] = {
623 0, 1, 2, 2, 3, 3,
624 };
625
626 static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
627 GetBitContext *gb, SBRData *ch_data)
628 {
629 int i;
630 int bs_pointer = 0;
631 // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
632 int abs_bord_trail = 16;
633 int num_rel_lead, num_rel_trail;
634 unsigned bs_num_env_old = ch_data->bs_num_env;
635 int bs_frame_class, bs_num_env;
636
637 ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
638 ch_data->bs_amp_res = sbr->bs_amp_res_header;
639 ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
640
641 switch (bs_frame_class = get_bits(gb, 2)) {
642 case FIXFIX:
643 bs_num_env = 1 << get_bits(gb, 2);
644 if (bs_num_env > 4) {
645 av_log(ac->avctx, AV_LOG_ERROR,
646 "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
647 bs_num_env);
648 return -1;
649 }
650 ch_data->bs_num_env = bs_num_env;
651 num_rel_lead = ch_data->bs_num_env - 1;
652 if (ch_data->bs_num_env == 1)
653 ch_data->bs_amp_res = 0;
654
655
656 ch_data->t_env[0] = 0;
657 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
658
659 abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
660 ch_data->bs_num_env;
661 for (i = 0; i < num_rel_lead; i++)
662 ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
663
664 ch_data->bs_freq_res[1] = get_bits1(gb);
665 for (i = 1; i < ch_data->bs_num_env; i++)
666 ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
667 break;
668 case FIXVAR:
669 abs_bord_trail += get_bits(gb, 2);
670 num_rel_trail = get_bits(gb, 2);
671 ch_data->bs_num_env = num_rel_trail + 1;
672 ch_data->t_env[0] = 0;
673 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
674
675 for (i = 0; i < num_rel_trail; i++)
676 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
677 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
678
679 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
680
681 for (i = 0; i < ch_data->bs_num_env; i++)
682 ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
683 break;
684 case VARFIX:
685 ch_data->t_env[0] = get_bits(gb, 2);
686 num_rel_lead = get_bits(gb, 2);
687 ch_data->bs_num_env = num_rel_lead + 1;
688 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
689
690 for (i = 0; i < num_rel_lead; i++)
691 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
692
693 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
694
695 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
696 break;
697 case VARVAR:
698 ch_data->t_env[0] = get_bits(gb, 2);
699 abs_bord_trail += get_bits(gb, 2);
700 num_rel_lead = get_bits(gb, 2);
701 num_rel_trail = get_bits(gb, 2);
702 bs_num_env = num_rel_lead + num_rel_trail + 1;
703
704 if (bs_num_env > 5) {
705 av_log(ac->avctx, AV_LOG_ERROR,
706 "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
707 bs_num_env);
708 return -1;
709 }
710 ch_data->bs_num_env = bs_num_env;
711
712 ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
713
714 for (i = 0; i < num_rel_lead; i++)
715 ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
716 for (i = 0; i < num_rel_trail; i++)
717 ch_data->t_env[ch_data->bs_num_env - 1 - i] =
718 ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
719
720 bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
721
722 get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
723 break;
724 }
725 ch_data->bs_frame_class = bs_frame_class;
726
727 av_assert0(bs_pointer >= 0);
728 if (bs_pointer > ch_data->bs_num_env + 1) {
729 av_log(ac->avctx, AV_LOG_ERROR,
730 "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
731 bs_pointer);
732 return -1;
733 }
734
735 for (i = 1; i <= ch_data->bs_num_env; i++) {
736 if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
737 av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
738 return -1;
739 }
740 }
741
742 ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
743
744 ch_data->t_q[0] = ch_data->t_env[0];
745 ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
746 if (ch_data->bs_num_noise > 1) {
747 int idx;
748 if (ch_data->bs_frame_class == FIXFIX) {
749 idx = ch_data->bs_num_env >> 1;
750 } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
751 idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
752 } else { // VARFIX
753 if (!bs_pointer)
754 idx = 1;
755 else if (bs_pointer == 1)
756 idx = ch_data->bs_num_env - 1;
757 else // bs_pointer > 1
758 idx = bs_pointer - 1;
759 }
760 ch_data->t_q[1] = ch_data->t_env[idx];
761 }
762
763 ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
764 ch_data->e_a[1] = -1;
765 if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
766 ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
767 } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
768 ch_data->e_a[1] = bs_pointer - 1;
769
770 return 0;
771 }
772
773 static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
774 //These variables are saved from the previous frame rather than copied
775 dst->bs_freq_res[0] = dst->bs_freq_res[dst->bs_num_env];
776 dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
777 dst->e_a[0] = -(dst->e_a[1] != dst->bs_num_env);
778
779 //These variables are read from the bitstream and therefore copied
780 memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
781 memcpy(dst->t_env, src->t_env, sizeof(dst->t_env));
782 memcpy(dst->t_q, src->t_q, sizeof(dst->t_q));
783 dst->bs_num_env = src->bs_num_env;
784 dst->bs_amp_res = src->bs_amp_res;
785 dst->bs_num_noise = src->bs_num_noise;
786 dst->bs_frame_class = src->bs_frame_class;
787 dst->e_a[1] = src->e_a[1];
788 }
789
790 /// Read how the envelope and noise floor data is delta coded
791 static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
792 SBRData *ch_data)
793 {
794 get_bits1_vector(gb, ch_data->bs_df_env, ch_data->bs_num_env);
795 get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
796 }
797
798 /// Read inverse filtering data
799 static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
800 SBRData *ch_data)
801 {
802 int i;
803
804 memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
805 for (i = 0; i < sbr->n_q; i++)
806 ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
807 }
808
809 static int read_sbr_envelope(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
810 SBRData *ch_data, int ch)
811 {
812 int bits;
813 int i, j, k;
814 const VLCElem *t_huff, *f_huff;
815 int t_lav, f_lav;
816 const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
817 const int odd = sbr->n[1] & 1;
818
819 if (sbr->bs_coupling && ch) {
820 if (ch_data->bs_amp_res) {
821 bits = 5;
822 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
823 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
824 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
825 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
826 } else {
827 bits = 6;
828 t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
829 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
830 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
831 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
832 }
833 } else {
834 if (ch_data->bs_amp_res) {
835 bits = 6;
836 t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
837 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
838 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
839 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
840 } else {
841 bits = 7;
842 t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
843 t_lav = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
844 f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
845 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
846 }
847 }
848
849 for (i = 0; i < ch_data->bs_num_env; i++) {
850 if (ch_data->bs_df_env[i]) {
851 // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
852 if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
853 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
854 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
855 if (ch_data->env_facs_q[i + 1][j] > 127U) {
856 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
857 return AVERROR_INVALIDDATA;
858 }
859 }
860 } else if (ch_data->bs_freq_res[i + 1]) {
861 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
862 k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
863 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
864 if (ch_data->env_facs_q[i + 1][j] > 127U) {
865 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
866 return AVERROR_INVALIDDATA;
867 }
868 }
869 } else {
870 for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
871 k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
872 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
873 if (ch_data->env_facs_q[i + 1][j] > 127U) {
874 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
875 return AVERROR_INVALIDDATA;
876 }
877 }
878 }
879 } else {
880 ch_data->env_facs_q[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
881 for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
882 ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
883 if (ch_data->env_facs_q[i + 1][j] > 127U) {
884 av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
885 return AVERROR_INVALIDDATA;
886 }
887 }
888 }
889 }
890
891 //assign 0th elements of env_facs_q from last elements
892 memcpy(ch_data->env_facs_q[0], ch_data->env_facs_q[ch_data->bs_num_env],
893 sizeof(ch_data->env_facs_q[0]));
894
895 return 0;
896 }
897
898 static int read_sbr_noise(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
899 SBRData *ch_data, int ch)
900 {
901 int i, j;
902 const VLCElem *t_huff, *f_huff;
903 int t_lav, f_lav;
904 int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
905
906 if (sbr->bs_coupling && ch) {
907 t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
908 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
909 f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
910 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
911 } else {
912 t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
913 t_lav = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
914 f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
915 f_lav = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
916 }
917
918 for (i = 0; i < ch_data->bs_num_noise; i++) {
919 if (ch_data->bs_df_noise[i]) {
920 for (j = 0; j < sbr->n_q; j++) {
921 ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
922 if (ch_data->noise_facs_q[i + 1][j] > 30U) {
923 av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
924 return AVERROR_INVALIDDATA;
925 }
926 }
927 } else {
928 ch_data->noise_facs_q[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
929 for (j = 1; j < sbr->n_q; j++) {
930 ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
931 if (ch_data->noise_facs_q[i + 1][j] > 30U) {
932 av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
933 return AVERROR_INVALIDDATA;
934 }
935 }
936 }
937 }
938
939 //assign 0th elements of noise_facs_q from last elements
940 memcpy(ch_data->noise_facs_q[0], ch_data->noise_facs_q[ch_data->bs_num_noise],
941 sizeof(ch_data->noise_facs_q[0]));
942 return 0;
943 }
944
945 static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
946 GetBitContext *gb,
947 int bs_extension_id, int *num_bits_left)
948 {
949 switch (bs_extension_id) {
950 case EXTENSION_ID_PS:
951 if (!ac->oc[1].m4ac.ps) {
952 av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
953 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
954 *num_bits_left = 0;
955 } else {
956 *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps.common, *num_bits_left);
957 ac->avctx->profile = FF_PROFILE_AAC_HE_V2;
958 }
959 break;
960 default:
961 // some files contain 0-padding
962 if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
963 avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
964 skip_bits_long(gb, *num_bits_left); // bs_fill_bits
965 *num_bits_left = 0;
966 break;
967 }
968 }
969
970 static int read_sbr_single_channel_element(AACContext *ac,
971 SpectralBandReplication *sbr,
972 GetBitContext *gb)
973 {
974 int ret;
975
976 if (get_bits1(gb)) // bs_data_extra
977 skip_bits(gb, 4); // bs_reserved
978
979 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
980 return -1;
981 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
982 read_sbr_invf(sbr, gb, &sbr->data[0]);
983 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
984 return ret;
985 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
986 return ret;
987
988 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
989 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
990
991 return 0;
992 }
993
994 static int read_sbr_channel_pair_element(AACContext *ac,
995 SpectralBandReplication *sbr,
996 GetBitContext *gb)
997 {
998 int ret;
999
1000 if (get_bits1(gb)) // bs_data_extra
1001 skip_bits(gb, 8); // bs_reserved
1002
1003 if ((sbr->bs_coupling = get_bits1(gb))) {
1004 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
1005 return -1;
1006 copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
1007 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1008 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1009 read_sbr_invf(sbr, gb, &sbr->data[0]);
1010 memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1011 memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1012 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1013 return ret;
1014 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1015 return ret;
1016 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1017 return ret;
1018 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1019 return ret;
1020 } else {
1021 if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
1022 read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
1023 return -1;
1024 read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1025 read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1026 read_sbr_invf(sbr, gb, &sbr->data[0]);
1027 read_sbr_invf(sbr, gb, &sbr->data[1]);
1028 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1029 return ret;
1030 if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1031 return ret;
1032 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1033 return ret;
1034 if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1035 return ret;
1036 }
1037
1038 if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1039 get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1040 if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1041 get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1042
1043 return 0;
1044 }
1045
1046 static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1047 GetBitContext *gb, int id_aac)
1048 {
1049 unsigned int cnt = get_bits_count(gb);
1050
1051 sbr->id_aac = id_aac;
1052 sbr->ready_for_dequant = 1;
1053
1054 if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1055 if (read_sbr_single_channel_element(ac, sbr, gb)) {
1056 sbr_turnoff(sbr);
1057 return get_bits_count(gb) - cnt;
1058 }
1059 } else if (id_aac == TYPE_CPE) {
1060 if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1061 sbr_turnoff(sbr);
1062 return get_bits_count(gb) - cnt;
1063 }
1064 } else {
1065 av_log(ac->avctx, AV_LOG_ERROR,
1066 "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1067 sbr_turnoff(sbr);
1068 return get_bits_count(gb) - cnt;
1069 }
1070 if (get_bits1(gb)) { // bs_extended_data
1071 int num_bits_left = get_bits(gb, 4); // bs_extension_size
1072 if (num_bits_left == 15)
1073 num_bits_left += get_bits(gb, 8); // bs_esc_count
1074
1075 num_bits_left <<= 3;
1076 while (num_bits_left > 7) {
1077 num_bits_left -= 2;
1078 read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1079 }
1080 if (num_bits_left < 0) {
1081 av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1082 }
1083 if (num_bits_left > 0)
1084 skip_bits(gb, num_bits_left);
1085 }
1086
1087 return get_bits_count(gb) - cnt;
1088 }
1089
1090 static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1091 {
1092 int err;
1093 err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1094 if (err >= 0)
1095 err = sbr_make_f_derived(ac, sbr);
1096 if (err < 0) {
1097 av_log(ac->avctx, AV_LOG_ERROR,
1098 "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1099 sbr_turnoff(sbr);
1100 }
1101 }
1102
1103 /**
1104 * Decode Spectral Band Replication extension data; reference: table 4.55.
1105 *
1106 * @param crc flag indicating the presence of CRC checksum
1107 * @param cnt length of TYPE_FIL syntactic element in bytes
1108 *
1109 * @return Returns number of bytes consumed from the TYPE_FIL element.
1110 */
1111 int AAC_RENAME(ff_decode_sbr_extension)(AACContext *ac, SpectralBandReplication *sbr,
1112 GetBitContext *gb_host, int crc, int cnt, int id_aac)
1113 {
1114 unsigned int num_sbr_bits = 0, num_align_bits;
1115 unsigned bytes_read;
1116 GetBitContext gbc = *gb_host, *gb = &gbc;
1117 skip_bits_long(gb_host, cnt*8 - 4);
1118
1119 sbr->reset = 0;
1120
1121 if (!sbr->sample_rate)
1122 sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1123 if (!ac->oc[1].m4ac.ext_sample_rate)
1124 ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1125
1126 if (crc) {
1127 skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1128 num_sbr_bits += 10;
1129 }
1130
1131 //Save some state from the previous frame.
1132 sbr->kx[0] = sbr->kx[1];
1133 sbr->m[0] = sbr->m[1];
1134 sbr->kx_and_m_pushed = 1;
1135
1136 num_sbr_bits++;
1137 if (get_bits1(gb)) // bs_header_flag
1138 num_sbr_bits += read_sbr_header(sbr, gb);
1139
1140 if (sbr->reset)
1141 sbr_reset(ac, sbr);
1142
1143 if (sbr->start)
1144 num_sbr_bits += read_sbr_data(ac, sbr, gb, id_aac);
1145
1146 num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1147 bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1148
1149 if (bytes_read > cnt) {
1150 av_log(ac->avctx, AV_LOG_ERROR,
1151 "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1152 sbr_turnoff(sbr);
1153 }
1154 return cnt;
1155 }
1156
1157 /**
1158 * Analysis QMF Bank (14496-3 sp04 p206)
1159 *
1160 * @param x pointer to the beginning of the first sample window
1161 * @param W array of complex-valued samples split into subbands
1162 */
1163 #ifndef sbr_qmf_analysis
1164 #if USE_FIXED
1165 static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
1166 #else
1167 static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
1168 #endif /* USE_FIXED */
1169 SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
1170 INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1171 {
1172 int i;
1173 #if USE_FIXED
1174 int j;
1175 #endif
1176 memcpy(x , x+1024, (320-32)*sizeof(x[0]));
1177 memcpy(x+288, in, 1024*sizeof(x[0]));
1178 for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1179 // are not supported
1180 dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1181 sbrdsp->sum64x5(z);
1182 sbrdsp->qmf_pre_shuffle(z);
1183 #if USE_FIXED
1184 for (j = 64; j < 128; j++) {
1185 if (z[j] > 1<<24) {
1186 av_log(NULL, AV_LOG_WARNING,
1187 "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
1188 z[j], 1<<24);
1189 z[j] = 1<<24;
1190 } else if (z[j] < -(1<<24)) {
1191 av_log(NULL, AV_LOG_WARNING,
1192 "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
1193 z[j], -(1<<24));
1194 z[j] = -(1<<24);
1195 }
1196 }
1197 #endif
1198 mdct->imdct_half(mdct, z, z+64);
1199 sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1200 x += 32;
1201 }
1202 }
1203 #endif
1204
1205 /**
1206 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1207 * (14496-3 sp04 p206)
1208 */
1209 #ifndef sbr_qmf_synthesis
1210 static void sbr_qmf_synthesis(FFTContext *mdct,
1211 #if USE_FIXED
1212 SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
1213 #else
1214 SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1215 #endif /* USE_FIXED */
1216 INTFLOAT *out, INTFLOAT X[2][38][64],
1217 INTFLOAT mdct_buf[2][64],
1218 INTFLOAT *v0, int *v_off, const unsigned int div)
1219 {
1220 int i, n;
1221 const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1222 const int step = 128 >> div;
1223 INTFLOAT *v;
1224 for (i = 0; i < 32; i++) {
1225 if (*v_off < step) {
1226 int saved_samples = (1280 - 128) >> div;
1227 memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1228 *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1229 } else {
1230 *v_off -= step;
1231 }
1232 v = v0 + *v_off;
1233 if (div) {
1234 for (n = 0; n < 32; n++) {
1235 X[0][i][ n] = -X[0][i][n];
1236 X[0][i][32+n] = X[1][i][31-n];
1237 }
1238 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1239 sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1240 } else {
1241 sbrdsp->neg_odd_64(X[1][i]);
1242 mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1243 mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1244 sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1245 }
1246 dsp->vector_fmul (out, v , sbr_qmf_window , 64 >> div);
1247 dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out , 64 >> div);
1248 dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out , 64 >> div);
1249 dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out , 64 >> div);
1250 dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out , 64 >> div);
1251 dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out , 64 >> div);
1252 dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out , 64 >> div);
1253 dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out , 64 >> div);
1254 dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out , 64 >> div);
1255 dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out , 64 >> div);
1256 out += 64 >> div;
1257 }
1258 }
1259 #endif
1260
1261 /// Generate the subband filtered lowband
1262 static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1263 INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1264 int buf_idx)
1265 {
1266 int i, k;
1267 const int t_HFGen = 8;
1268 const int i_f = 32;
1269 memset(X_low, 0, 32*sizeof(*X_low));
1270 for (k = 0; k < sbr->kx[1]; k++) {
1271 for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1272 X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1273 X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1274 }
1275 }
1276 buf_idx = 1-buf_idx;
1277 for (k = 0; k < sbr->kx[0]; k++) {
1278 for (i = 0; i < t_HFGen; i++) {
1279 X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1280 X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1281 }
1282 }
1283 return 0;
1284 }
1285
1286 /// High Frequency Generator (14496-3 sp04 p215)
1287 static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1288 INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
1289 const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
1290 const INTFLOAT bw_array[5], const uint8_t *t_env,
1291 int bs_num_env)
1292 {
1293 int j, x;
1294 int g = 0;
1295 int k = sbr->kx[1];
1296 for (j = 0; j < sbr->num_patches; j++) {
1297 for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1298 const int p = sbr->patch_start_subband[j] + x;
1299 while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1300 g++;
1301 g--;
1302
1303 if (g < 0) {
1304 av_log(ac->avctx, AV_LOG_ERROR,
1305 "ERROR : no subband found for frequency %d\n", k);
1306 return -1;
1307 }
1308
1309 sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1310 X_low[p] + ENVELOPE_ADJUSTMENT_OFFSET,
1311 alpha0[p], alpha1[p], bw_array[g],
1312 2 * t_env[0], 2 * t_env[bs_num_env]);
1313 }
1314 }
1315 if (k < sbr->m[1] + sbr->kx[1])
1316 memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1317
1318 return 0;
1319 }
1320
1321 /// Generate the subband filtered lowband
1322 static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
1323 const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
1324 const INTFLOAT X_low[32][40][2], int ch)
1325 {
1326 int k, i;
1327 const int i_f = 32;
1328 const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1329 memset(X, 0, 2*sizeof(*X));
1330 for (k = 0; k < sbr->kx[0]; k++) {
1331 for (i = 0; i < i_Temp; i++) {
1332 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1333 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1334 }
1335 }
1336 for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1337 for (i = 0; i < i_Temp; i++) {
1338 X[0][i][k] = Y0[i + i_f][k][0];
1339 X[1][i][k] = Y0[i + i_f][k][1];
1340 }
1341 }
1342
1343 for (k = 0; k < sbr->kx[1]; k++) {
1344 for (i = i_Temp; i < 38; i++) {
1345 X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1346 X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1347 }
1348 }
1349 for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1350 for (i = i_Temp; i < i_f; i++) {
1351 X[0][i][k] = Y1[i][k][0];
1352 X[1][i][k] = Y1[i][k][1];
1353 }
1354 }
1355 return 0;
1356 }
1357
1358 /** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1359 * (14496-3 sp04 p217)
1360 */
1361 static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1362 SBRData *ch_data, int e_a[2])
1363 {
1364 int e, i, m;
1365
1366 memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1367 for (e = 0; e < ch_data->bs_num_env; e++) {
1368 const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1369 uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1370 int k;
1371
1372 if (sbr->kx[1] != table[0]) {
1373 av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1374 "Derived frequency tables were not regenerated.\n");
1375 sbr_turnoff(sbr);
1376 return AVERROR_BUG;
1377 }
1378 for (i = 0; i < ilim; i++)
1379 for (m = table[i]; m < table[i + 1]; m++)
1380 sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1381
1382 // ch_data->bs_num_noise > 1 => 2 noise floors
1383 k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1384 for (i = 0; i < sbr->n_q; i++)
1385 for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1386 sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1387
1388 for (i = 0; i < sbr->n[1]; i++) {
1389 if (ch_data->bs_add_harmonic_flag) {
1390 const unsigned int m_midpoint =
1391 (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1392
1393 ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1394 (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1395 }
1396 }
1397
1398 for (i = 0; i < ilim; i++) {
1399 int additional_sinusoid_present = 0;
1400 for (m = table[i]; m < table[i + 1]; m++) {
1401 if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1402 additional_sinusoid_present = 1;
1403 break;
1404 }
1405 }
1406 memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1407 (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1408 }
1409 }
1410
1411 memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1412 return 0;
1413 }
1414
1415 /// Estimation of current envelope (14496-3 sp04 p218)
1416 static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1417 SpectralBandReplication *sbr, SBRData *ch_data)
1418 {
1419 int e, m;
1420 int kx1 = sbr->kx[1];
1421
1422 if (sbr->bs_interpol_freq) {
1423 for (e = 0; e < ch_data->bs_num_env; e++) {
1424 #if USE_FIXED
1425 const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
1426 #else
1427 const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1428 #endif /* USE_FIXED */
1429 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1430 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1431
1432 for (m = 0; m < sbr->m[1]; m++) {
1433 AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1434 #if USE_FIXED
1435 e_curr[e][m] = av_mul_sf(sum, recip_env_size);
1436 #else
1437 e_curr[e][m] = sum * recip_env_size;
1438 #endif /* USE_FIXED */
1439 }
1440 }
1441 } else {
1442 int k, p;
1443
1444 for (e = 0; e < ch_data->bs_num_env; e++) {
1445 const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1446 int ilb = ch_data->t_env[e] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1447 int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1448 const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1449
1450 for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1451 #if USE_FIXED
1452 SoftFloat sum = FLOAT_0;
1453 const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
1454 for (k = table[p]; k < table[p + 1]; k++) {
1455 sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
1456 }
1457 sum = av_mul_sf(sum, den);
1458 #else
1459 float sum = 0.0f;
1460 const int den = env_size * (table[p + 1] - table[p]);
1461
1462 for (k = table[p]; k < table[p + 1]; k++) {
1463 sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1464 }
1465 sum /= den;
1466 #endif /* USE_FIXED */
1467 for (k = table[p]; k < table[p + 1]; k++) {
1468 e_curr[e][k - kx1] = sum;
1469 }
1470 }
1471 }
1472 }
1473 }
1474
1475 void AAC_RENAME(ff_sbr_apply)(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
1476 INTFLOAT* L, INTFLOAT* R)
1477 {
1478 int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1479 int ch;
1480 int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1481 int err;
1482
1483 if (id_aac != sbr->id_aac) {
1484 av_log(ac->avctx, id_aac == TYPE_LFE ? AV_LOG_VERBOSE : AV_LOG_WARNING,
1485 "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1486 sbr_turnoff(sbr);
1487 }
1488
1489 if (sbr->start && !sbr->ready_for_dequant) {
1490 av_log(ac->avctx, AV_LOG_ERROR,
1491 "No quantized data read for sbr_dequant.\n");
1492 sbr_turnoff(sbr);
1493 }
1494
1495 if (!sbr->kx_and_m_pushed) {
1496 sbr->kx[0] = sbr->kx[1];
1497 sbr->m[0] = sbr->m[1];
1498 } else {
1499 sbr->kx_and_m_pushed = 0;
1500 }
1501
1502 if (sbr->start) {
1503 sbr_dequant(sbr, id_aac);
1504 sbr->ready_for_dequant = 0;
1505 }
1506 for (ch = 0; ch < nch; ch++) {
1507 /* decode channel */
1508 sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1509 (INTFLOAT*)sbr->qmf_filter_scratch,
1510 sbr->data[ch].W, sbr->data[ch].Ypos);
1511 sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1512 (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1513 sbr->data[ch].Ypos);
1514 sbr->data[ch].Ypos ^= 1;
1515 if (sbr->start) {
1516 sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1517 (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1518 sbr_chirp(sbr, &sbr->data[ch]);
1519 av_assert0(sbr->data[ch].bs_num_env > 0);
1520 sbr_hf_gen(ac, sbr, sbr->X_high,
1521 (const INTFLOAT (*)[40][2]) sbr->X_low,
1522 (const INTFLOAT (*)[2]) sbr->alpha0,
1523 (const INTFLOAT (*)[2]) sbr->alpha1,
1524 sbr->data[ch].bw_array, sbr->data[ch].t_env,
1525 sbr->data[ch].bs_num_env);
1526
1527 // hf_adj
1528 err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1529 if (!err) {
1530 sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1531 sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1532 sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1533 (const INTFLOAT (*)[40][2]) sbr->X_high,
1534 sbr, &sbr->data[ch],
1535 sbr->data[ch].e_a);
1536 }
1537 }
1538
1539 /* synthesis */
1540 sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1541 (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1542 (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[ sbr->data[ch].Ypos],
1543 (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1544 }
1545
1546 if (ac->oc[1].m4ac.ps == 1) {
1547 if (sbr->ps.common.start) {
1548 AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1549 } else {
1550 memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1551 }
1552 nch = 2;
1553 }
1554
1555 sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1556 L, sbr->X[0], sbr->qmf_filter_scratch,
1557 sbr->data[0].synthesis_filterbank_samples,
1558 &sbr->data[0].synthesis_filterbank_samples_offset,
1559 downsampled);
1560 if (nch == 2)
1561 sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1562 R, sbr->X[1], sbr->qmf_filter_scratch,
1563 sbr->data[1].synthesis_filterbank_samples,
1564 &sbr->data[1].synthesis_filterbank_samples_offset,
1565 downsampled);
1566 }
1567
1568 static void aacsbr_func_ptr_init(AACSBRContext *c)
1569 {
1570 c->sbr_lf_gen = sbr_lf_gen;
1571 c->sbr_hf_assemble = sbr_hf_assemble;
1572 c->sbr_x_gen = sbr_x_gen;
1573 c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;
1574
1575 #if !USE_FIXED
1576 #if ARCH_MIPS
1577 ff_aacsbr_func_ptr_init_mips(c);
1578 #endif
1579 #endif
1580 }
1581