1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/sched/core.c
4 *
5 * Core kernel scheduler code and related syscalls
6 *
7 * Copyright (C) 1991-2002 Linus Torvalds
8 */
9 #define CREATE_TRACE_POINTS
10 #include <trace/events/sched.h>
11 #undef CREATE_TRACE_POINTS
12
13 #include "sched.h"
14
15 #include <linux/nospec.h>
16
17 #include <linux/kcov.h>
18 #include <linux/scs.h>
19 #include <linux/irq.h>
20 #include <linux/delay.h>
21
22 #ifdef CONFIG_QOS_CTRL
23 #include <linux/sched/qos_ctrl.h>
24 #endif
25
26 #include <asm/switch_to.h>
27 #include <asm/tlb.h>
28
29 #include "../workqueue_internal.h"
30 #include "../../io_uring/io-wq.h"
31 #include "../smpboot.h"
32
33 #include "pelt.h"
34 #include "smp.h"
35 #include "walt.h"
36 #include "rtg/rtg.h"
37
38 /*
39 * Export tracepoints that act as a bare tracehook (ie: have no trace event
40 * associated with them) to allow external modules to probe them.
41 */
42 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp);
43 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp);
44 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp);
45 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp);
46 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp);
47 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_thermal_tp);
48 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp);
49 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp);
50 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp);
53
54 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
55
56 #ifdef CONFIG_SCHED_DEBUG
57 /*
58 * Debugging: various feature bits
59 *
60 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of
61 * sysctl_sched_features, defined in sched.h, to allow constants propagation
62 * at compile time and compiler optimization based on features default.
63 */
64 #define SCHED_FEAT(name, enabled) \
65 (1UL << __SCHED_FEAT_##name) * enabled |
66 const_debug unsigned int sysctl_sched_features =
67 #include "features.h"
68 0;
69 #undef SCHED_FEAT
70 #endif
71
72 /*
73 * Number of tasks to iterate in a single balance run.
74 * Limited because this is done with IRQs disabled.
75 */
76 const_debug unsigned int sysctl_sched_nr_migrate = 32;
77
78 /*
79 * period over which we measure -rt task CPU usage in us.
80 * default: 1s
81 */
82 unsigned int sysctl_sched_rt_period = 1000000;
83
84 __read_mostly int scheduler_running;
85
86 /*
87 * part of the period that we allow rt tasks to run in us.
88 * default: 0.95s
89 */
90 int sysctl_sched_rt_runtime = 950000;
91
92
93 /*
94 * Serialization rules:
95 *
96 * Lock order:
97 *
98 * p->pi_lock
99 * rq->lock
100 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls)
101 *
102 * rq1->lock
103 * rq2->lock where: rq1 < rq2
104 *
105 * Regular state:
106 *
107 * Normal scheduling state is serialized by rq->lock. __schedule() takes the
108 * local CPU's rq->lock, it optionally removes the task from the runqueue and
109 * always looks at the local rq data structures to find the most elegible task
110 * to run next.
111 *
112 * Task enqueue is also under rq->lock, possibly taken from another CPU.
113 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to
114 * the local CPU to avoid bouncing the runqueue state around [ see
115 * ttwu_queue_wakelist() ]
116 *
117 * Task wakeup, specifically wakeups that involve migration, are horribly
118 * complicated to avoid having to take two rq->locks.
119 *
120 * Special state:
121 *
122 * System-calls and anything external will use task_rq_lock() which acquires
123 * both p->pi_lock and rq->lock. As a consequence the state they change is
124 * stable while holding either lock:
125 *
126 * - sched_setaffinity()/
127 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed
128 * - set_user_nice(): p->se.load, p->*prio
129 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio,
130 * p->se.load, p->rt_priority,
131 * p->dl.dl_{runtime, deadline, period, flags, bw, density}
132 * - sched_setnuma(): p->numa_preferred_nid
133 * - sched_move_task()/
134 * cpu_cgroup_fork(): p->sched_task_group
135 * - uclamp_update_active() p->uclamp*
136 *
137 * p->state <- TASK_*:
138 *
139 * is changed locklessly using set_current_state(), __set_current_state() or
140 * set_special_state(), see their respective comments, or by
141 * try_to_wake_up(). This latter uses p->pi_lock to serialize against
142 * concurrent self.
143 *
144 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }:
145 *
146 * is set by activate_task() and cleared by deactivate_task(), under
147 * rq->lock. Non-zero indicates the task is runnable, the special
148 * ON_RQ_MIGRATING state is used for migration without holding both
149 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock().
150 *
151 * p->on_cpu <- { 0, 1 }:
152 *
153 * is set by prepare_task() and cleared by finish_task() such that it will be
154 * set before p is scheduled-in and cleared after p is scheduled-out, both
155 * under rq->lock. Non-zero indicates the task is running on its CPU.
156 *
157 * [ The astute reader will observe that it is possible for two tasks on one
158 * CPU to have ->on_cpu = 1 at the same time. ]
159 *
160 * task_cpu(p): is changed by set_task_cpu(), the rules are:
161 *
162 * - Don't call set_task_cpu() on a blocked task:
163 *
164 * We don't care what CPU we're not running on, this simplifies hotplug,
165 * the CPU assignment of blocked tasks isn't required to be valid.
166 *
167 * - for try_to_wake_up(), called under p->pi_lock:
168 *
169 * This allows try_to_wake_up() to only take one rq->lock, see its comment.
170 *
171 * - for migration called under rq->lock:
172 * [ see task_on_rq_migrating() in task_rq_lock() ]
173 *
174 * o move_queued_task()
175 * o detach_task()
176 *
177 * - for migration called under double_rq_lock():
178 *
179 * o __migrate_swap_task()
180 * o push_rt_task() / pull_rt_task()
181 * o push_dl_task() / pull_dl_task()
182 * o dl_task_offline_migration()
183 *
184 */
185
186 /*
187 * __task_rq_lock - lock the rq @p resides on.
188 */
__task_rq_lock(struct task_struct * p,struct rq_flags * rf)189 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf)
190 __acquires(rq->lock)
191 {
192 struct rq *rq;
193
194 lockdep_assert_held(&p->pi_lock);
195
196 for (;;) {
197 rq = task_rq(p);
198 raw_spin_lock(&rq->lock);
199 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
200 rq_pin_lock(rq, rf);
201 return rq;
202 }
203 raw_spin_unlock(&rq->lock);
204
205 while (unlikely(task_on_rq_migrating(p)))
206 cpu_relax();
207 }
208 }
209
210 /*
211 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
212 */
task_rq_lock(struct task_struct * p,struct rq_flags * rf)213 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf)
214 __acquires(p->pi_lock)
215 __acquires(rq->lock)
216 {
217 struct rq *rq;
218
219 for (;;) {
220 raw_spin_lock_irqsave(&p->pi_lock, rf->flags);
221 rq = task_rq(p);
222 raw_spin_lock(&rq->lock);
223 /*
224 * move_queued_task() task_rq_lock()
225 *
226 * ACQUIRE (rq->lock)
227 * [S] ->on_rq = MIGRATING [L] rq = task_rq()
228 * WMB (__set_task_cpu()) ACQUIRE (rq->lock);
229 * [S] ->cpu = new_cpu [L] task_rq()
230 * [L] ->on_rq
231 * RELEASE (rq->lock)
232 *
233 * If we observe the old CPU in task_rq_lock(), the acquire of
234 * the old rq->lock will fully serialize against the stores.
235 *
236 * If we observe the new CPU in task_rq_lock(), the address
237 * dependency headed by '[L] rq = task_rq()' and the acquire
238 * will pair with the WMB to ensure we then also see migrating.
239 */
240 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) {
241 rq_pin_lock(rq, rf);
242 return rq;
243 }
244 raw_spin_unlock(&rq->lock);
245 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags);
246
247 while (unlikely(task_on_rq_migrating(p)))
248 cpu_relax();
249 }
250 }
251
252 /*
253 * RQ-clock updating methods:
254 */
255
update_rq_clock_task(struct rq * rq,s64 delta)256 static void update_rq_clock_task(struct rq *rq, s64 delta)
257 {
258 /*
259 * In theory, the compile should just see 0 here, and optimize out the call
260 * to sched_rt_avg_update. But I don't trust it...
261 */
262 s64 __maybe_unused steal = 0, irq_delta = 0;
263
264 #ifdef CONFIG_IRQ_TIME_ACCOUNTING
265 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
266
267 /*
268 * Since irq_time is only updated on {soft,}irq_exit, we might run into
269 * this case when a previous update_rq_clock() happened inside a
270 * {soft,}irq region.
271 *
272 * When this happens, we stop ->clock_task and only update the
273 * prev_irq_time stamp to account for the part that fit, so that a next
274 * update will consume the rest. This ensures ->clock_task is
275 * monotonic.
276 *
277 * It does however cause some slight miss-attribution of {soft,}irq
278 * time, a more accurate solution would be to update the irq_time using
279 * the current rq->clock timestamp, except that would require using
280 * atomic ops.
281 */
282 if (irq_delta > delta)
283 irq_delta = delta;
284
285 rq->prev_irq_time += irq_delta;
286 delta -= irq_delta;
287 #endif
288 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
289 if (static_key_false((¶virt_steal_rq_enabled))) {
290 steal = paravirt_steal_clock(cpu_of(rq));
291 steal -= rq->prev_steal_time_rq;
292
293 if (unlikely(steal > delta))
294 steal = delta;
295
296 rq->prev_steal_time_rq += steal;
297 delta -= steal;
298 }
299 #endif
300
301 rq->clock_task += delta;
302
303 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ
304 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
305 update_irq_load_avg(rq, irq_delta + steal);
306 #endif
307 update_rq_clock_pelt(rq, delta);
308 }
309
update_rq_clock(struct rq * rq)310 void update_rq_clock(struct rq *rq)
311 {
312 s64 delta;
313
314 lockdep_assert_held(&rq->lock);
315
316 if (rq->clock_update_flags & RQCF_ACT_SKIP)
317 return;
318
319 #ifdef CONFIG_SCHED_DEBUG
320 if (sched_feat(WARN_DOUBLE_CLOCK))
321 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED);
322 rq->clock_update_flags |= RQCF_UPDATED;
323 #endif
324
325 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
326 if (delta < 0)
327 return;
328 rq->clock += delta;
329 update_rq_clock_task(rq, delta);
330 }
331
332 static inline void
rq_csd_init(struct rq * rq,struct __call_single_data * csd,smp_call_func_t func)333 rq_csd_init(struct rq *rq, struct __call_single_data *csd, smp_call_func_t func)
334 {
335 csd->flags = 0;
336 csd->func = func;
337 csd->info = rq;
338 }
339
340 #ifdef CONFIG_SCHED_HRTICK
341 /*
342 * Use HR-timers to deliver accurate preemption points.
343 */
344
hrtick_clear(struct rq * rq)345 static void hrtick_clear(struct rq *rq)
346 {
347 if (hrtimer_active(&rq->hrtick_timer))
348 hrtimer_cancel(&rq->hrtick_timer);
349 }
350
351 /*
352 * High-resolution timer tick.
353 * Runs from hardirq context with interrupts disabled.
354 */
hrtick(struct hrtimer * timer)355 static enum hrtimer_restart hrtick(struct hrtimer *timer)
356 {
357 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
358 struct rq_flags rf;
359
360 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
361
362 rq_lock(rq, &rf);
363 update_rq_clock(rq);
364 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
365 rq_unlock(rq, &rf);
366
367 return HRTIMER_NORESTART;
368 }
369
370 #ifdef CONFIG_SMP
371
__hrtick_restart(struct rq * rq)372 static void __hrtick_restart(struct rq *rq)
373 {
374 struct hrtimer *timer = &rq->hrtick_timer;
375 ktime_t time = rq->hrtick_time;
376
377 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD);
378 }
379
380 /*
381 * called from hardirq (IPI) context
382 */
__hrtick_start(void * arg)383 static void __hrtick_start(void *arg)
384 {
385 struct rq *rq = arg;
386 struct rq_flags rf;
387
388 rq_lock(rq, &rf);
389 __hrtick_restart(rq);
390 rq_unlock(rq, &rf);
391 }
392
393 /*
394 * Called to set the hrtick timer state.
395 *
396 * called with rq->lock held and irqs disabled
397 */
hrtick_start(struct rq * rq,u64 delay)398 void hrtick_start(struct rq *rq, u64 delay)
399 {
400 struct hrtimer *timer = &rq->hrtick_timer;
401 s64 delta;
402
403 /*
404 * Don't schedule slices shorter than 10000ns, that just
405 * doesn't make sense and can cause timer DoS.
406 */
407 delta = max_t(s64, delay, 10000LL);
408 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta);
409
410 if (rq == this_rq())
411 __hrtick_restart(rq);
412 else
413 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
414 }
415
416 #else
417 /*
418 * Called to set the hrtick timer state.
419 *
420 * called with rq->lock held and irqs disabled
421 */
hrtick_start(struct rq * rq,u64 delay)422 void hrtick_start(struct rq *rq, u64 delay)
423 {
424 /*
425 * Don't schedule slices shorter than 10000ns, that just
426 * doesn't make sense. Rely on vruntime for fairness.
427 */
428 delay = max_t(u64, delay, 10000LL);
429 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
430 HRTIMER_MODE_REL_PINNED_HARD);
431 }
432
433 #endif /* CONFIG_SMP */
434
hrtick_rq_init(struct rq * rq)435 static void hrtick_rq_init(struct rq *rq)
436 {
437 #ifdef CONFIG_SMP
438 rq_csd_init(rq, &rq->hrtick_csd, __hrtick_start);
439 #endif
440 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD);
441 rq->hrtick_timer.function = hrtick;
442 }
443 #else /* CONFIG_SCHED_HRTICK */
hrtick_clear(struct rq * rq)444 static inline void hrtick_clear(struct rq *rq)
445 {
446 }
447
hrtick_rq_init(struct rq * rq)448 static inline void hrtick_rq_init(struct rq *rq)
449 {
450 }
451 #endif /* CONFIG_SCHED_HRTICK */
452
453 /*
454 * cmpxchg based fetch_or, macro so it works for different integer types
455 */
456 #define fetch_or(ptr, mask) \
457 ({ \
458 typeof(ptr) _ptr = (ptr); \
459 typeof(mask) _mask = (mask); \
460 typeof(*_ptr) _old, _val = *_ptr; \
461 \
462 for (;;) { \
463 _old = cmpxchg(_ptr, _val, _val | _mask); \
464 if (_old == _val) \
465 break; \
466 _val = _old; \
467 } \
468 _old; \
469 })
470
471 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
472 /*
473 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
474 * this avoids any races wrt polling state changes and thereby avoids
475 * spurious IPIs.
476 */
set_nr_and_not_polling(struct task_struct * p)477 static bool set_nr_and_not_polling(struct task_struct *p)
478 {
479 struct thread_info *ti = task_thread_info(p);
480 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
481 }
482
483 /*
484 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
485 *
486 * If this returns true, then the idle task promises to call
487 * sched_ttwu_pending() and reschedule soon.
488 */
set_nr_if_polling(struct task_struct * p)489 static bool set_nr_if_polling(struct task_struct *p)
490 {
491 struct thread_info *ti = task_thread_info(p);
492 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
493
494 for (;;) {
495 if (!(val & _TIF_POLLING_NRFLAG))
496 return false;
497 if (val & _TIF_NEED_RESCHED)
498 return true;
499 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
500 if (old == val)
501 break;
502 val = old;
503 }
504 return true;
505 }
506
507 #else
set_nr_and_not_polling(struct task_struct * p)508 static bool set_nr_and_not_polling(struct task_struct *p)
509 {
510 set_tsk_need_resched(p);
511 return true;
512 }
513
514 #ifdef CONFIG_SMP
set_nr_if_polling(struct task_struct * p)515 static bool set_nr_if_polling(struct task_struct *p)
516 {
517 return false;
518 }
519 #endif
520 #endif
521
__wake_q_add(struct wake_q_head * head,struct task_struct * task)522 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task)
523 {
524 struct wake_q_node *node = &task->wake_q;
525
526 /*
527 * Atomically grab the task, if ->wake_q is !nil already it means
528 * its already queued (either by us or someone else) and will get the
529 * wakeup due to that.
530 *
531 * In order to ensure that a pending wakeup will observe our pending
532 * state, even in the failed case, an explicit smp_mb() must be used.
533 */
534 smp_mb__before_atomic();
535 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL)))
536 return false;
537
538 /*
539 * The head is context local, there can be no concurrency.
540 */
541 *head->lastp = node;
542 head->lastp = &node->next;
543 return true;
544 }
545
546 /**
547 * wake_q_add() - queue a wakeup for 'later' waking.
548 * @head: the wake_q_head to add @task to
549 * @task: the task to queue for 'later' wakeup
550 *
551 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
552 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
553 * instantly.
554 *
555 * This function must be used as-if it were wake_up_process(); IOW the task
556 * must be ready to be woken at this location.
557 */
wake_q_add(struct wake_q_head * head,struct task_struct * task)558 void wake_q_add(struct wake_q_head *head, struct task_struct *task)
559 {
560 if (__wake_q_add(head, task))
561 get_task_struct(task);
562 }
563
564 /**
565 * wake_q_add_safe() - safely queue a wakeup for 'later' waking.
566 * @head: the wake_q_head to add @task to
567 * @task: the task to queue for 'later' wakeup
568 *
569 * Queue a task for later wakeup, most likely by the wake_up_q() call in the
570 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come
571 * instantly.
572 *
573 * This function must be used as-if it were wake_up_process(); IOW the task
574 * must be ready to be woken at this location.
575 *
576 * This function is essentially a task-safe equivalent to wake_q_add(). Callers
577 * that already hold reference to @task can call the 'safe' version and trust
578 * wake_q to do the right thing depending whether or not the @task is already
579 * queued for wakeup.
580 */
wake_q_add_safe(struct wake_q_head * head,struct task_struct * task)581 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task)
582 {
583 if (!__wake_q_add(head, task))
584 put_task_struct(task);
585 }
586
wake_up_q(struct wake_q_head * head)587 void wake_up_q(struct wake_q_head *head)
588 {
589 struct wake_q_node *node = head->first;
590
591 while (node != WAKE_Q_TAIL) {
592 struct task_struct *task;
593
594 task = container_of(node, struct task_struct, wake_q);
595 BUG_ON(!task);
596 /* Task can safely be re-inserted now: */
597 node = node->next;
598 task->wake_q.next = NULL;
599
600 /*
601 * wake_up_process() executes a full barrier, which pairs with
602 * the queueing in wake_q_add() so as not to miss wakeups.
603 */
604 wake_up_process(task);
605 put_task_struct(task);
606 }
607 }
608
609 /*
610 * resched_curr - mark rq's current task 'to be rescheduled now'.
611 *
612 * On UP this means the setting of the need_resched flag, on SMP it
613 * might also involve a cross-CPU call to trigger the scheduler on
614 * the target CPU.
615 */
resched_curr(struct rq * rq)616 void resched_curr(struct rq *rq)
617 {
618 struct task_struct *curr = rq->curr;
619 int cpu;
620
621 lockdep_assert_held(&rq->lock);
622
623 if (test_tsk_need_resched(curr))
624 return;
625
626 cpu = cpu_of(rq);
627
628 if (cpu == smp_processor_id()) {
629 set_tsk_need_resched(curr);
630 set_preempt_need_resched();
631 return;
632 }
633
634 if (set_nr_and_not_polling(curr))
635 smp_send_reschedule(cpu);
636 else
637 trace_sched_wake_idle_without_ipi(cpu);
638 }
639
resched_cpu(int cpu)640 void resched_cpu(int cpu)
641 {
642 struct rq *rq = cpu_rq(cpu);
643 unsigned long flags;
644
645 raw_spin_lock_irqsave(&rq->lock, flags);
646 if (cpu_online(cpu) || cpu == smp_processor_id())
647 resched_curr(rq);
648 raw_spin_unlock_irqrestore(&rq->lock, flags);
649 }
650
651 #ifdef CONFIG_SMP
652 #ifdef CONFIG_NO_HZ_COMMON
653 /*
654 * In the semi idle case, use the nearest busy CPU for migrating timers
655 * from an idle CPU. This is good for power-savings.
656 *
657 * We don't do similar optimization for completely idle system, as
658 * selecting an idle CPU will add more delays to the timers than intended
659 * (as that CPU's timer base may not be uptodate wrt jiffies etc).
660 */
get_nohz_timer_target(void)661 int get_nohz_timer_target(void)
662 {
663 int i, cpu = smp_processor_id(), default_cpu = -1;
664 struct sched_domain *sd;
665
666 if (housekeeping_cpu(cpu, HK_FLAG_TIMER)) {
667 if (!idle_cpu(cpu))
668 return cpu;
669 default_cpu = cpu;
670 }
671
672 rcu_read_lock();
673 for_each_domain(cpu, sd) {
674 for_each_cpu_and(i, sched_domain_span(sd),
675 housekeeping_cpumask(HK_FLAG_TIMER)) {
676 if (cpu == i)
677 continue;
678
679 if (!idle_cpu(i)) {
680 cpu = i;
681 goto unlock;
682 }
683 }
684 }
685
686 if (default_cpu == -1)
687 default_cpu = housekeeping_any_cpu(HK_FLAG_TIMER);
688 cpu = default_cpu;
689 unlock:
690 rcu_read_unlock();
691 return cpu;
692 }
693
694 /*
695 * When add_timer_on() enqueues a timer into the timer wheel of an
696 * idle CPU then this timer might expire before the next timer event
697 * which is scheduled to wake up that CPU. In case of a completely
698 * idle system the next event might even be infinite time into the
699 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
700 * leaves the inner idle loop so the newly added timer is taken into
701 * account when the CPU goes back to idle and evaluates the timer
702 * wheel for the next timer event.
703 */
wake_up_idle_cpu(int cpu)704 static void wake_up_idle_cpu(int cpu)
705 {
706 struct rq *rq = cpu_rq(cpu);
707
708 if (cpu == smp_processor_id())
709 return;
710
711 if (set_nr_and_not_polling(rq->idle))
712 smp_send_reschedule(cpu);
713 else
714 trace_sched_wake_idle_without_ipi(cpu);
715 }
716
wake_up_full_nohz_cpu(int cpu)717 static bool wake_up_full_nohz_cpu(int cpu)
718 {
719 /*
720 * We just need the target to call irq_exit() and re-evaluate
721 * the next tick. The nohz full kick at least implies that.
722 * If needed we can still optimize that later with an
723 * empty IRQ.
724 */
725 if (cpu_is_offline(cpu))
726 return true; /* Don't try to wake offline CPUs. */
727 if (tick_nohz_full_cpu(cpu)) {
728 if (cpu != smp_processor_id() ||
729 tick_nohz_tick_stopped())
730 tick_nohz_full_kick_cpu(cpu);
731 return true;
732 }
733
734 return false;
735 }
736
737 /*
738 * Wake up the specified CPU. If the CPU is going offline, it is the
739 * caller's responsibility to deal with the lost wakeup, for example,
740 * by hooking into the CPU_DEAD notifier like timers and hrtimers do.
741 */
wake_up_nohz_cpu(int cpu)742 void wake_up_nohz_cpu(int cpu)
743 {
744 if (!wake_up_full_nohz_cpu(cpu))
745 wake_up_idle_cpu(cpu);
746 }
747
nohz_csd_func(void * info)748 static void nohz_csd_func(void *info)
749 {
750 struct rq *rq = info;
751 int cpu = cpu_of(rq);
752 unsigned int flags;
753
754 /*
755 * Release the rq::nohz_csd.
756 */
757 flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(cpu));
758 WARN_ON(!(flags & NOHZ_KICK_MASK));
759
760 rq->idle_balance = idle_cpu(cpu);
761 if (rq->idle_balance && !need_resched()) {
762 rq->nohz_idle_balance = flags;
763 raise_softirq_irqoff(SCHED_SOFTIRQ);
764 }
765 }
766
767 #endif /* CONFIG_NO_HZ_COMMON */
768
769 #ifdef CONFIG_NO_HZ_FULL
sched_can_stop_tick(struct rq * rq)770 bool sched_can_stop_tick(struct rq *rq)
771 {
772 int fifo_nr_running;
773
774 /* Deadline tasks, even if single, need the tick */
775 if (rq->dl.dl_nr_running)
776 return false;
777
778 /*
779 * If there are more than one RR tasks, we need the tick to effect the
780 * actual RR behaviour.
781 */
782 if (rq->rt.rr_nr_running) {
783 if (rq->rt.rr_nr_running == 1)
784 return true;
785 else
786 return false;
787 }
788
789 /*
790 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
791 * forced preemption between FIFO tasks.
792 */
793 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
794 if (fifo_nr_running)
795 return true;
796
797 /*
798 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
799 * if there's more than one we need the tick for involuntary
800 * preemption.
801 */
802 if (rq->nr_running > 1)
803 return false;
804
805 return true;
806 }
807 #endif /* CONFIG_NO_HZ_FULL */
808 #endif /* CONFIG_SMP */
809
810 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
811 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
812 /*
813 * Iterate task_group tree rooted at *from, calling @down when first entering a
814 * node and @up when leaving it for the final time.
815 *
816 * Caller must hold rcu_lock or sufficient equivalent.
817 */
walk_tg_tree_from(struct task_group * from,tg_visitor down,tg_visitor up,void * data)818 int walk_tg_tree_from(struct task_group *from,
819 tg_visitor down, tg_visitor up, void *data)
820 {
821 struct task_group *parent, *child;
822 int ret;
823
824 parent = from;
825
826 down:
827 ret = (*down)(parent, data);
828 if (ret)
829 goto out;
830 list_for_each_entry_rcu(child, &parent->children, siblings) {
831 parent = child;
832 goto down;
833
834 up:
835 continue;
836 }
837 ret = (*up)(parent, data);
838 if (ret || parent == from)
839 goto out;
840
841 child = parent;
842 parent = parent->parent;
843 if (parent)
844 goto up;
845 out:
846 return ret;
847 }
848
tg_nop(struct task_group * tg,void * data)849 int tg_nop(struct task_group *tg, void *data)
850 {
851 return 0;
852 }
853 #endif
854
set_load_weight(struct task_struct * p)855 static void set_load_weight(struct task_struct *p)
856 {
857 bool update_load = !(READ_ONCE(p->state) & TASK_NEW);
858 int prio = p->static_prio - MAX_RT_PRIO;
859 struct load_weight *load = &p->se.load;
860
861 /*
862 * SCHED_IDLE tasks get minimal weight:
863 */
864 if (task_has_idle_policy(p)) {
865 load->weight = scale_load(WEIGHT_IDLEPRIO);
866 load->inv_weight = WMULT_IDLEPRIO;
867 return;
868 }
869
870 /*
871 * SCHED_OTHER tasks have to update their load when changing their
872 * weight
873 */
874 if (update_load && p->sched_class == &fair_sched_class) {
875 reweight_task(p, prio);
876 } else {
877 load->weight = scale_load(sched_prio_to_weight[prio]);
878 load->inv_weight = sched_prio_to_wmult[prio];
879 }
880 }
881
882 #ifdef CONFIG_SCHED_LATENCY_NICE
set_latency_weight(struct task_struct * p)883 static void set_latency_weight(struct task_struct *p)
884 {
885 p->se.latency_weight = sched_latency_to_weight[p->latency_prio];
886 }
887
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)888 static void __setscheduler_latency(struct task_struct *p,
889 const struct sched_attr *attr)
890 {
891 if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE) {
892 p->latency_prio = NICE_TO_LATENCY(attr->sched_latency_nice);
893 set_latency_weight(p);
894 }
895 }
896
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)897 static int latency_nice_validate(struct task_struct *p, bool user,
898 const struct sched_attr *attr)
899 {
900 if (attr->sched_latency_nice > MAX_LATENCY_NICE)
901 return -EINVAL;
902 if (attr->sched_latency_nice < MIN_LATENCY_NICE)
903 return -EINVAL;
904 /* Use the same security checks as NICE */
905 if (user && attr->sched_latency_nice < LATENCY_TO_NICE(p->latency_prio)
906 && !capable(CAP_SYS_NICE))
907 return -EPERM;
908
909 return 0;
910 }
911 #else
912 static void
__setscheduler_latency(struct task_struct * p,const struct sched_attr * attr)913 __setscheduler_latency(struct task_struct *p, const struct sched_attr *attr)
914 {
915 }
916
917 static inline
latency_nice_validate(struct task_struct * p,bool user,const struct sched_attr * attr)918 int latency_nice_validate(struct task_struct *p, bool user,
919 const struct sched_attr *attr)
920 {
921 return -EOPNOTSUPP;
922 }
923 #endif
924
925 #ifdef CONFIG_UCLAMP_TASK
926 /*
927 * Serializes updates of utilization clamp values
928 *
929 * The (slow-path) user-space triggers utilization clamp value updates which
930 * can require updates on (fast-path) scheduler's data structures used to
931 * support enqueue/dequeue operations.
932 * While the per-CPU rq lock protects fast-path update operations, user-space
933 * requests are serialized using a mutex to reduce the risk of conflicting
934 * updates or API abuses.
935 */
936 static DEFINE_MUTEX(uclamp_mutex);
937
938 /* Max allowed minimum utilization */
939 unsigned int sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE;
940
941 /* Max allowed maximum utilization */
942 unsigned int sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE;
943
944 /*
945 * By default RT tasks run at the maximum performance point/capacity of the
946 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to
947 * SCHED_CAPACITY_SCALE.
948 *
949 * This knob allows admins to change the default behavior when uclamp is being
950 * used. In battery powered devices, particularly, running at the maximum
951 * capacity and frequency will increase energy consumption and shorten the
952 * battery life.
953 *
954 * This knob only affects RT tasks that their uclamp_se->user_defined == false.
955 *
956 * This knob will not override the system default sched_util_clamp_min defined
957 * above.
958 */
959 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE;
960
961 /* All clamps are required to be less or equal than these values */
962 static struct uclamp_se uclamp_default[UCLAMP_CNT];
963
964 /*
965 * This static key is used to reduce the uclamp overhead in the fast path. It
966 * primarily disables the call to uclamp_rq_{inc, dec}() in
967 * enqueue/dequeue_task().
968 *
969 * This allows users to continue to enable uclamp in their kernel config with
970 * minimum uclamp overhead in the fast path.
971 *
972 * As soon as userspace modifies any of the uclamp knobs, the static key is
973 * enabled, since we have an actual users that make use of uclamp
974 * functionality.
975 *
976 * The knobs that would enable this static key are:
977 *
978 * * A task modifying its uclamp value with sched_setattr().
979 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs.
980 * * An admin modifying the cgroup cpu.uclamp.{min, max}
981 */
982 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used);
983
984 /* Integer rounded range for each bucket */
985 #define UCLAMP_BUCKET_DELTA DIV_ROUND_CLOSEST(SCHED_CAPACITY_SCALE, UCLAMP_BUCKETS)
986
987 #define for_each_clamp_id(clamp_id) \
988 for ((clamp_id) = 0; (clamp_id) < UCLAMP_CNT; (clamp_id)++)
989
uclamp_bucket_id(unsigned int clamp_value)990 static inline unsigned int uclamp_bucket_id(unsigned int clamp_value)
991 {
992 return min_t(unsigned int, clamp_value / UCLAMP_BUCKET_DELTA, UCLAMP_BUCKETS - 1);
993 }
994
uclamp_none(enum uclamp_id clamp_id)995 static inline unsigned int uclamp_none(enum uclamp_id clamp_id)
996 {
997 if (clamp_id == UCLAMP_MIN)
998 return 0;
999 return SCHED_CAPACITY_SCALE;
1000 }
1001
uclamp_se_set(struct uclamp_se * uc_se,unsigned int value,bool user_defined)1002 static inline void uclamp_se_set(struct uclamp_se *uc_se,
1003 unsigned int value, bool user_defined)
1004 {
1005 uc_se->value = value;
1006 uc_se->bucket_id = uclamp_bucket_id(value);
1007 uc_se->user_defined = user_defined;
1008 }
1009
1010 static inline unsigned int
uclamp_idle_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1011 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id,
1012 unsigned int clamp_value)
1013 {
1014 /*
1015 * Avoid blocked utilization pushing up the frequency when we go
1016 * idle (which drops the max-clamp) by retaining the last known
1017 * max-clamp.
1018 */
1019 if (clamp_id == UCLAMP_MAX) {
1020 rq->uclamp_flags |= UCLAMP_FLAG_IDLE;
1021 return clamp_value;
1022 }
1023
1024 return uclamp_none(UCLAMP_MIN);
1025 }
1026
uclamp_idle_reset(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1027 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id,
1028 unsigned int clamp_value)
1029 {
1030 /* Reset max-clamp retention only on idle exit */
1031 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1032 return;
1033
1034 uclamp_rq_set(rq, clamp_id, clamp_value);
1035 }
1036
1037 static inline
uclamp_rq_max_value(struct rq * rq,enum uclamp_id clamp_id,unsigned int clamp_value)1038 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id,
1039 unsigned int clamp_value)
1040 {
1041 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket;
1042 int bucket_id = UCLAMP_BUCKETS - 1;
1043
1044 /*
1045 * Since both min and max clamps are max aggregated, find the
1046 * top most bucket with tasks in.
1047 */
1048 for ( ; bucket_id >= 0; bucket_id--) {
1049 if (!bucket[bucket_id].tasks)
1050 continue;
1051 return bucket[bucket_id].value;
1052 }
1053
1054 /* No tasks -- default clamp values */
1055 return uclamp_idle_value(rq, clamp_id, clamp_value);
1056 }
1057
__uclamp_update_util_min_rt_default(struct task_struct * p)1058 static void __uclamp_update_util_min_rt_default(struct task_struct *p)
1059 {
1060 unsigned int default_util_min;
1061 struct uclamp_se *uc_se;
1062
1063 lockdep_assert_held(&p->pi_lock);
1064
1065 uc_se = &p->uclamp_req[UCLAMP_MIN];
1066
1067 /* Only sync if user didn't override the default */
1068 if (uc_se->user_defined)
1069 return;
1070
1071 default_util_min = sysctl_sched_uclamp_util_min_rt_default;
1072 uclamp_se_set(uc_se, default_util_min, false);
1073 }
1074
uclamp_update_util_min_rt_default(struct task_struct * p)1075 static void uclamp_update_util_min_rt_default(struct task_struct *p)
1076 {
1077 struct rq_flags rf;
1078 struct rq *rq;
1079
1080 if (!rt_task(p))
1081 return;
1082
1083 /* Protect updates to p->uclamp_* */
1084 rq = task_rq_lock(p, &rf);
1085 __uclamp_update_util_min_rt_default(p);
1086 task_rq_unlock(rq, p, &rf);
1087 }
1088
uclamp_sync_util_min_rt_default(void)1089 static void uclamp_sync_util_min_rt_default(void)
1090 {
1091 struct task_struct *g, *p;
1092
1093 /*
1094 * copy_process() sysctl_uclamp
1095 * uclamp_min_rt = X;
1096 * write_lock(&tasklist_lock) read_lock(&tasklist_lock)
1097 * // link thread smp_mb__after_spinlock()
1098 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock);
1099 * sched_post_fork() for_each_process_thread()
1100 * __uclamp_sync_rt() __uclamp_sync_rt()
1101 *
1102 * Ensures that either sched_post_fork() will observe the new
1103 * uclamp_min_rt or for_each_process_thread() will observe the new
1104 * task.
1105 */
1106 read_lock(&tasklist_lock);
1107 smp_mb__after_spinlock();
1108 read_unlock(&tasklist_lock);
1109
1110 rcu_read_lock();
1111 for_each_process_thread(g, p)
1112 uclamp_update_util_min_rt_default(p);
1113 rcu_read_unlock();
1114 }
1115
1116 static inline struct uclamp_se
uclamp_tg_restrict(struct task_struct * p,enum uclamp_id clamp_id)1117 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id)
1118 {
1119 /* Copy by value as we could modify it */
1120 struct uclamp_se uc_req = p->uclamp_req[clamp_id];
1121 #ifdef CONFIG_UCLAMP_TASK_GROUP
1122 unsigned int tg_min, tg_max, value;
1123
1124 /*
1125 * Tasks in autogroups or root task group will be
1126 * restricted by system defaults.
1127 */
1128 if (task_group_is_autogroup(task_group(p)))
1129 return uc_req;
1130 if (task_group(p) == &root_task_group)
1131 return uc_req;
1132
1133 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value;
1134 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value;
1135 value = uc_req.value;
1136 value = clamp(value, tg_min, tg_max);
1137 uclamp_se_set(&uc_req, value, false);
1138 #endif
1139
1140 return uc_req;
1141 }
1142
1143 /*
1144 * The effective clamp bucket index of a task depends on, by increasing
1145 * priority:
1146 * - the task specific clamp value, when explicitly requested from userspace
1147 * - the task group effective clamp value, for tasks not either in the root
1148 * group or in an autogroup
1149 * - the system default clamp value, defined by the sysadmin
1150 */
1151 static inline struct uclamp_se
uclamp_eff_get(struct task_struct * p,enum uclamp_id clamp_id)1152 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id)
1153 {
1154 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id);
1155 struct uclamp_se uc_max = uclamp_default[clamp_id];
1156
1157 /* System default restrictions always apply */
1158 if (unlikely(uc_req.value > uc_max.value))
1159 return uc_max;
1160
1161 return uc_req;
1162 }
1163
uclamp_eff_value(struct task_struct * p,enum uclamp_id clamp_id)1164 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id)
1165 {
1166 struct uclamp_se uc_eff;
1167
1168 /* Task currently refcounted: use back-annotated (effective) value */
1169 if (p->uclamp[clamp_id].active)
1170 return (unsigned long)p->uclamp[clamp_id].value;
1171
1172 uc_eff = uclamp_eff_get(p, clamp_id);
1173
1174 return (unsigned long)uc_eff.value;
1175 }
1176
1177 /*
1178 * When a task is enqueued on a rq, the clamp bucket currently defined by the
1179 * task's uclamp::bucket_id is refcounted on that rq. This also immediately
1180 * updates the rq's clamp value if required.
1181 *
1182 * Tasks can have a task-specific value requested from user-space, track
1183 * within each bucket the maximum value for tasks refcounted in it.
1184 * This "local max aggregation" allows to track the exact "requested" value
1185 * for each bucket when all its RUNNABLE tasks require the same clamp.
1186 */
uclamp_rq_inc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1187 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p,
1188 enum uclamp_id clamp_id)
1189 {
1190 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1191 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1192 struct uclamp_bucket *bucket;
1193
1194 lockdep_assert_held(&rq->lock);
1195
1196 /* Update task effective clamp */
1197 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id);
1198
1199 bucket = &uc_rq->bucket[uc_se->bucket_id];
1200 bucket->tasks++;
1201 uc_se->active = true;
1202
1203 uclamp_idle_reset(rq, clamp_id, uc_se->value);
1204
1205 /*
1206 * Local max aggregation: rq buckets always track the max
1207 * "requested" clamp value of its RUNNABLE tasks.
1208 */
1209 if (bucket->tasks == 1 || uc_se->value > bucket->value)
1210 bucket->value = uc_se->value;
1211
1212 if (uc_se->value > uclamp_rq_get(rq, clamp_id))
1213 uclamp_rq_set(rq, clamp_id, uc_se->value);
1214 }
1215
1216 /*
1217 * When a task is dequeued from a rq, the clamp bucket refcounted by the task
1218 * is released. If this is the last task reference counting the rq's max
1219 * active clamp value, then the rq's clamp value is updated.
1220 *
1221 * Both refcounted tasks and rq's cached clamp values are expected to be
1222 * always valid. If it's detected they are not, as defensive programming,
1223 * enforce the expected state and warn.
1224 */
uclamp_rq_dec_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1225 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p,
1226 enum uclamp_id clamp_id)
1227 {
1228 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id];
1229 struct uclamp_se *uc_se = &p->uclamp[clamp_id];
1230 struct uclamp_bucket *bucket;
1231 unsigned int bkt_clamp;
1232 unsigned int rq_clamp;
1233
1234 lockdep_assert_held(&rq->lock);
1235
1236 /*
1237 * If sched_uclamp_used was enabled after task @p was enqueued,
1238 * we could end up with unbalanced call to uclamp_rq_dec_id().
1239 *
1240 * In this case the uc_se->active flag should be false since no uclamp
1241 * accounting was performed at enqueue time and we can just return
1242 * here.
1243 *
1244 * Need to be careful of the following enqeueue/dequeue ordering
1245 * problem too
1246 *
1247 * enqueue(taskA)
1248 * // sched_uclamp_used gets enabled
1249 * enqueue(taskB)
1250 * dequeue(taskA)
1251 * // Must not decrement bukcet->tasks here
1252 * dequeue(taskB)
1253 *
1254 * where we could end up with stale data in uc_se and
1255 * bucket[uc_se->bucket_id].
1256 *
1257 * The following check here eliminates the possibility of such race.
1258 */
1259 if (unlikely(!uc_se->active))
1260 return;
1261
1262 bucket = &uc_rq->bucket[uc_se->bucket_id];
1263
1264 SCHED_WARN_ON(!bucket->tasks);
1265 if (likely(bucket->tasks))
1266 bucket->tasks--;
1267
1268 uc_se->active = false;
1269
1270 /*
1271 * Keep "local max aggregation" simple and accept to (possibly)
1272 * overboost some RUNNABLE tasks in the same bucket.
1273 * The rq clamp bucket value is reset to its base value whenever
1274 * there are no more RUNNABLE tasks refcounting it.
1275 */
1276 if (likely(bucket->tasks))
1277 return;
1278
1279 rq_clamp = uclamp_rq_get(rq, clamp_id);
1280 /*
1281 * Defensive programming: this should never happen. If it happens,
1282 * e.g. due to future modification, warn and fixup the expected value.
1283 */
1284 SCHED_WARN_ON(bucket->value > rq_clamp);
1285 if (bucket->value >= rq_clamp) {
1286 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value);
1287 uclamp_rq_set(rq, clamp_id, bkt_clamp);
1288 }
1289 }
1290
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1291 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p)
1292 {
1293 enum uclamp_id clamp_id;
1294
1295 /*
1296 * Avoid any overhead until uclamp is actually used by the userspace.
1297 *
1298 * The condition is constructed such that a NOP is generated when
1299 * sched_uclamp_used is disabled.
1300 */
1301 if (!static_branch_unlikely(&sched_uclamp_used))
1302 return;
1303
1304 if (unlikely(!p->sched_class->uclamp_enabled))
1305 return;
1306
1307 for_each_clamp_id(clamp_id)
1308 uclamp_rq_inc_id(rq, p, clamp_id);
1309
1310 /* Reset clamp idle holding when there is one RUNNABLE task */
1311 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE)
1312 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1313 }
1314
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1315 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p)
1316 {
1317 enum uclamp_id clamp_id;
1318
1319 /*
1320 * Avoid any overhead until uclamp is actually used by the userspace.
1321 *
1322 * The condition is constructed such that a NOP is generated when
1323 * sched_uclamp_used is disabled.
1324 */
1325 if (!static_branch_unlikely(&sched_uclamp_used))
1326 return;
1327
1328 if (unlikely(!p->sched_class->uclamp_enabled))
1329 return;
1330
1331 for_each_clamp_id(clamp_id)
1332 uclamp_rq_dec_id(rq, p, clamp_id);
1333 }
1334
uclamp_rq_reinc_id(struct rq * rq,struct task_struct * p,enum uclamp_id clamp_id)1335 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p,
1336 enum uclamp_id clamp_id)
1337 {
1338 if (!p->uclamp[clamp_id].active)
1339 return;
1340
1341 uclamp_rq_dec_id(rq, p, clamp_id);
1342 uclamp_rq_inc_id(rq, p, clamp_id);
1343
1344 /*
1345 * Make sure to clear the idle flag if we've transiently reached 0
1346 * active tasks on rq.
1347 */
1348 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE))
1349 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE;
1350 }
1351
1352 static inline void
uclamp_update_active(struct task_struct * p)1353 uclamp_update_active(struct task_struct *p)
1354 {
1355 enum uclamp_id clamp_id;
1356 struct rq_flags rf;
1357 struct rq *rq;
1358
1359 /*
1360 * Lock the task and the rq where the task is (or was) queued.
1361 *
1362 * We might lock the (previous) rq of a !RUNNABLE task, but that's the
1363 * price to pay to safely serialize util_{min,max} updates with
1364 * enqueues, dequeues and migration operations.
1365 * This is the same locking schema used by __set_cpus_allowed_ptr().
1366 */
1367 rq = task_rq_lock(p, &rf);
1368
1369 /*
1370 * Setting the clamp bucket is serialized by task_rq_lock().
1371 * If the task is not yet RUNNABLE and its task_struct is not
1372 * affecting a valid clamp bucket, the next time it's enqueued,
1373 * it will already see the updated clamp bucket value.
1374 */
1375 for_each_clamp_id(clamp_id)
1376 uclamp_rq_reinc_id(rq, p, clamp_id);
1377
1378 task_rq_unlock(rq, p, &rf);
1379 }
1380
1381 #ifdef CONFIG_UCLAMP_TASK_GROUP
1382 static inline void
uclamp_update_active_tasks(struct cgroup_subsys_state * css)1383 uclamp_update_active_tasks(struct cgroup_subsys_state *css)
1384 {
1385 struct css_task_iter it;
1386 struct task_struct *p;
1387
1388 css_task_iter_start(css, 0, &it);
1389 while ((p = css_task_iter_next(&it)))
1390 uclamp_update_active(p);
1391 css_task_iter_end(&it);
1392 }
1393
1394 static void cpu_util_update_eff(struct cgroup_subsys_state *css);
uclamp_update_root_tg(void)1395 static void uclamp_update_root_tg(void)
1396 {
1397 struct task_group *tg = &root_task_group;
1398
1399 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN],
1400 sysctl_sched_uclamp_util_min, false);
1401 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX],
1402 sysctl_sched_uclamp_util_max, false);
1403
1404 rcu_read_lock();
1405 cpu_util_update_eff(&root_task_group.css);
1406 rcu_read_unlock();
1407 }
1408 #else
uclamp_update_root_tg(void)1409 static void uclamp_update_root_tg(void) { }
1410 #endif
1411
sysctl_sched_uclamp_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1412 int sysctl_sched_uclamp_handler(struct ctl_table *table, int write,
1413 void *buffer, size_t *lenp, loff_t *ppos)
1414 {
1415 bool update_root_tg = false;
1416 int old_min, old_max, old_min_rt;
1417 int result;
1418
1419 mutex_lock(&uclamp_mutex);
1420 old_min = sysctl_sched_uclamp_util_min;
1421 old_max = sysctl_sched_uclamp_util_max;
1422 old_min_rt = sysctl_sched_uclamp_util_min_rt_default;
1423
1424 result = proc_dointvec(table, write, buffer, lenp, ppos);
1425 if (result)
1426 goto undo;
1427 if (!write)
1428 goto done;
1429
1430 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max ||
1431 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE ||
1432 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) {
1433
1434 result = -EINVAL;
1435 goto undo;
1436 }
1437
1438 if (old_min != sysctl_sched_uclamp_util_min) {
1439 uclamp_se_set(&uclamp_default[UCLAMP_MIN],
1440 sysctl_sched_uclamp_util_min, false);
1441 update_root_tg = true;
1442 }
1443 if (old_max != sysctl_sched_uclamp_util_max) {
1444 uclamp_se_set(&uclamp_default[UCLAMP_MAX],
1445 sysctl_sched_uclamp_util_max, false);
1446 update_root_tg = true;
1447 }
1448
1449 if (update_root_tg) {
1450 static_branch_enable(&sched_uclamp_used);
1451 uclamp_update_root_tg();
1452 }
1453
1454 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) {
1455 static_branch_enable(&sched_uclamp_used);
1456 uclamp_sync_util_min_rt_default();
1457 }
1458
1459 /*
1460 * We update all RUNNABLE tasks only when task groups are in use.
1461 * Otherwise, keep it simple and do just a lazy update at each next
1462 * task enqueue time.
1463 */
1464
1465 goto done;
1466
1467 undo:
1468 sysctl_sched_uclamp_util_min = old_min;
1469 sysctl_sched_uclamp_util_max = old_max;
1470 sysctl_sched_uclamp_util_min_rt_default = old_min_rt;
1471 done:
1472 mutex_unlock(&uclamp_mutex);
1473
1474 return result;
1475 }
1476
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1477 static int uclamp_validate(struct task_struct *p,
1478 const struct sched_attr *attr)
1479 {
1480 unsigned int lower_bound = p->uclamp_req[UCLAMP_MIN].value;
1481 unsigned int upper_bound = p->uclamp_req[UCLAMP_MAX].value;
1482
1483 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN)
1484 lower_bound = attr->sched_util_min;
1485 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX)
1486 upper_bound = attr->sched_util_max;
1487
1488 if (lower_bound > upper_bound)
1489 return -EINVAL;
1490 if (upper_bound > SCHED_CAPACITY_SCALE)
1491 return -EINVAL;
1492
1493 /*
1494 * We have valid uclamp attributes; make sure uclamp is enabled.
1495 *
1496 * We need to do that here, because enabling static branches is a
1497 * blocking operation which obviously cannot be done while holding
1498 * scheduler locks.
1499 */
1500 static_branch_enable(&sched_uclamp_used);
1501
1502 return 0;
1503 }
1504
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1505 static void __setscheduler_uclamp(struct task_struct *p,
1506 const struct sched_attr *attr)
1507 {
1508 enum uclamp_id clamp_id;
1509
1510 /*
1511 * On scheduling class change, reset to default clamps for tasks
1512 * without a task-specific value.
1513 */
1514 for_each_clamp_id(clamp_id) {
1515 struct uclamp_se *uc_se = &p->uclamp_req[clamp_id];
1516
1517 /* Keep using defined clamps across class changes */
1518 if (uc_se->user_defined)
1519 continue;
1520
1521 /*
1522 * RT by default have a 100% boost value that could be modified
1523 * at runtime.
1524 */
1525 if (unlikely(rt_task(p) && clamp_id == UCLAMP_MIN))
1526 __uclamp_update_util_min_rt_default(p);
1527 else
1528 uclamp_se_set(uc_se, uclamp_none(clamp_id), false);
1529
1530 }
1531
1532 if (likely(!(attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)))
1533 return;
1534
1535 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MIN) {
1536 uclamp_se_set(&p->uclamp_req[UCLAMP_MIN],
1537 attr->sched_util_min, true);
1538 }
1539
1540 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP_MAX) {
1541 uclamp_se_set(&p->uclamp_req[UCLAMP_MAX],
1542 attr->sched_util_max, true);
1543 }
1544 }
1545
uclamp_fork(struct task_struct * p)1546 static void uclamp_fork(struct task_struct *p)
1547 {
1548 enum uclamp_id clamp_id;
1549
1550 /*
1551 * We don't need to hold task_rq_lock() when updating p->uclamp_* here
1552 * as the task is still at its early fork stages.
1553 */
1554 for_each_clamp_id(clamp_id)
1555 p->uclamp[clamp_id].active = false;
1556
1557 if (likely(!p->sched_reset_on_fork))
1558 return;
1559
1560 for_each_clamp_id(clamp_id) {
1561 uclamp_se_set(&p->uclamp_req[clamp_id],
1562 uclamp_none(clamp_id), false);
1563 }
1564 }
1565
uclamp_post_fork(struct task_struct * p)1566 static void uclamp_post_fork(struct task_struct *p)
1567 {
1568 uclamp_update_util_min_rt_default(p);
1569 }
1570
init_uclamp_rq(struct rq * rq)1571 static void __init init_uclamp_rq(struct rq *rq)
1572 {
1573 enum uclamp_id clamp_id;
1574 struct uclamp_rq *uc_rq = rq->uclamp;
1575
1576 for_each_clamp_id(clamp_id) {
1577 uc_rq[clamp_id] = (struct uclamp_rq) {
1578 .value = uclamp_none(clamp_id)
1579 };
1580 }
1581
1582 rq->uclamp_flags = UCLAMP_FLAG_IDLE;
1583 }
1584
init_uclamp(void)1585 static void __init init_uclamp(void)
1586 {
1587 struct uclamp_se uc_max = {};
1588 enum uclamp_id clamp_id;
1589 int cpu;
1590
1591 for_each_possible_cpu(cpu)
1592 init_uclamp_rq(cpu_rq(cpu));
1593
1594 for_each_clamp_id(clamp_id) {
1595 uclamp_se_set(&init_task.uclamp_req[clamp_id],
1596 uclamp_none(clamp_id), false);
1597 }
1598
1599 /* System defaults allow max clamp values for both indexes */
1600 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false);
1601 for_each_clamp_id(clamp_id) {
1602 uclamp_default[clamp_id] = uc_max;
1603 #ifdef CONFIG_UCLAMP_TASK_GROUP
1604 root_task_group.uclamp_req[clamp_id] = uc_max;
1605 root_task_group.uclamp[clamp_id] = uc_max;
1606 #endif
1607 }
1608 }
1609
1610 #else /* CONFIG_UCLAMP_TASK */
uclamp_rq_inc(struct rq * rq,struct task_struct * p)1611 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { }
uclamp_rq_dec(struct rq * rq,struct task_struct * p)1612 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { }
uclamp_validate(struct task_struct * p,const struct sched_attr * attr)1613 static inline int uclamp_validate(struct task_struct *p,
1614 const struct sched_attr *attr)
1615 {
1616 return -EOPNOTSUPP;
1617 }
__setscheduler_uclamp(struct task_struct * p,const struct sched_attr * attr)1618 static void __setscheduler_uclamp(struct task_struct *p,
1619 const struct sched_attr *attr) { }
uclamp_fork(struct task_struct * p)1620 static inline void uclamp_fork(struct task_struct *p) { }
uclamp_post_fork(struct task_struct * p)1621 static inline void uclamp_post_fork(struct task_struct *p) { }
init_uclamp(void)1622 static inline void init_uclamp(void) { }
1623 #endif /* CONFIG_UCLAMP_TASK */
1624
enqueue_task(struct rq * rq,struct task_struct * p,int flags)1625 static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
1626 {
1627 if (!(flags & ENQUEUE_NOCLOCK))
1628 update_rq_clock(rq);
1629
1630 if (!(flags & ENQUEUE_RESTORE)) {
1631 sched_info_queued(rq, p);
1632 psi_enqueue(p, flags & ENQUEUE_WAKEUP);
1633 }
1634
1635 uclamp_rq_inc(rq, p);
1636 p->sched_class->enqueue_task(rq, p, flags);
1637 }
1638
dequeue_task(struct rq * rq,struct task_struct * p,int flags)1639 static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
1640 {
1641 if (!(flags & DEQUEUE_NOCLOCK))
1642 update_rq_clock(rq);
1643
1644 if (!(flags & DEQUEUE_SAVE)) {
1645 sched_info_dequeued(rq, p);
1646 psi_dequeue(p, flags & DEQUEUE_SLEEP);
1647 }
1648
1649 uclamp_rq_dec(rq, p);
1650 p->sched_class->dequeue_task(rq, p, flags);
1651 }
1652
activate_task(struct rq * rq,struct task_struct * p,int flags)1653 void activate_task(struct rq *rq, struct task_struct *p, int flags)
1654 {
1655 if (task_on_rq_migrating(p))
1656 flags |= ENQUEUE_MIGRATED;
1657
1658 enqueue_task(rq, p, flags);
1659
1660 p->on_rq = TASK_ON_RQ_QUEUED;
1661 }
1662
deactivate_task(struct rq * rq,struct task_struct * p,int flags)1663 void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1664 {
1665 p->on_rq = (flags & DEQUEUE_SLEEP) ? 0 : TASK_ON_RQ_MIGRATING;
1666
1667 dequeue_task(rq, p, flags);
1668 }
1669
__normal_prio(int policy,int rt_prio,int nice)1670 static inline int __normal_prio(int policy, int rt_prio, int nice)
1671 {
1672 int prio;
1673
1674 if (dl_policy(policy))
1675 prio = MAX_DL_PRIO - 1;
1676 else if (rt_policy(policy))
1677 prio = MAX_RT_PRIO - 1 - rt_prio;
1678 else
1679 prio = NICE_TO_PRIO(nice);
1680
1681 return prio;
1682 }
1683
1684 /*
1685 * Calculate the expected normal priority: i.e. priority
1686 * without taking RT-inheritance into account. Might be
1687 * boosted by interactivity modifiers. Changes upon fork,
1688 * setprio syscalls, and whenever the interactivity
1689 * estimator recalculates.
1690 */
normal_prio(struct task_struct * p)1691 static inline int normal_prio(struct task_struct *p)
1692 {
1693 return __normal_prio(p->policy, p->rt_priority, PRIO_TO_NICE(p->static_prio));
1694 }
1695
1696 /*
1697 * Calculate the current priority, i.e. the priority
1698 * taken into account by the scheduler. This value might
1699 * be boosted by RT tasks, or might be boosted by
1700 * interactivity modifiers. Will be RT if the task got
1701 * RT-boosted. If not then it returns p->normal_prio.
1702 */
effective_prio(struct task_struct * p)1703 static int effective_prio(struct task_struct *p)
1704 {
1705 p->normal_prio = normal_prio(p);
1706 /*
1707 * If we are RT tasks or we were boosted to RT priority,
1708 * keep the priority unchanged. Otherwise, update priority
1709 * to the normal priority:
1710 */
1711 if (!rt_prio(p->prio))
1712 return p->normal_prio;
1713 return p->prio;
1714 }
1715
1716 /**
1717 * task_curr - is this task currently executing on a CPU?
1718 * @p: the task in question.
1719 *
1720 * Return: 1 if the task is currently executing. 0 otherwise.
1721 */
task_curr(const struct task_struct * p)1722 inline int task_curr(const struct task_struct *p)
1723 {
1724 return cpu_curr(task_cpu(p)) == p;
1725 }
1726
1727 /*
1728 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
1729 * use the balance_callback list if you want balancing.
1730 *
1731 * this means any call to check_class_changed() must be followed by a call to
1732 * balance_callback().
1733 */
check_class_changed(struct rq * rq,struct task_struct * p,const struct sched_class * prev_class,int oldprio)1734 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1735 const struct sched_class *prev_class,
1736 int oldprio)
1737 {
1738 if (prev_class != p->sched_class) {
1739 if (prev_class->switched_from)
1740 prev_class->switched_from(rq, p);
1741
1742 p->sched_class->switched_to(rq, p);
1743 } else if (oldprio != p->prio || dl_task(p))
1744 p->sched_class->prio_changed(rq, p, oldprio);
1745 }
1746
check_preempt_curr(struct rq * rq,struct task_struct * p,int flags)1747 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1748 {
1749 if (p->sched_class == rq->curr->sched_class)
1750 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1751 else if (p->sched_class > rq->curr->sched_class)
1752 resched_curr(rq);
1753
1754 /*
1755 * A queue event has occurred, and we're going to schedule. In
1756 * this case, we can save a useless back to back clock update.
1757 */
1758 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
1759 rq_clock_skip_update(rq);
1760 }
1761
1762 #ifdef CONFIG_SMP
1763
1764 /*
1765 * Per-CPU kthreads are allowed to run on !active && online CPUs, see
1766 * __set_cpus_allowed_ptr() and select_fallback_rq().
1767 */
is_cpu_allowed(struct task_struct * p,int cpu)1768 static inline bool is_cpu_allowed(struct task_struct *p, int cpu)
1769 {
1770 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
1771 return false;
1772
1773 if (is_per_cpu_kthread(p))
1774 return cpu_online(cpu);
1775
1776 return cpu_active(cpu);
1777 }
1778
1779 /*
1780 * This is how migration works:
1781 *
1782 * 1) we invoke migration_cpu_stop() on the target CPU using
1783 * stop_one_cpu().
1784 * 2) stopper starts to run (implicitly forcing the migrated thread
1785 * off the CPU)
1786 * 3) it checks whether the migrated task is still in the wrong runqueue.
1787 * 4) if it's in the wrong runqueue then the migration thread removes
1788 * it and puts it into the right queue.
1789 * 5) stopper completes and stop_one_cpu() returns and the migration
1790 * is done.
1791 */
1792
1793 /*
1794 * move_queued_task - move a queued task to new rq.
1795 *
1796 * Returns (locked) new rq. Old rq's lock is released.
1797 */
move_queued_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int new_cpu)1798 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf,
1799 struct task_struct *p, int new_cpu)
1800 {
1801 lockdep_assert_held(&rq->lock);
1802
1803 deactivate_task(rq, p, DEQUEUE_NOCLOCK);
1804 #ifdef CONFIG_SCHED_WALT
1805 double_lock_balance(rq, cpu_rq(new_cpu));
1806 if (!(rq->clock_update_flags & RQCF_UPDATED))
1807 update_rq_clock(rq);
1808 #endif
1809 set_task_cpu(p, new_cpu);
1810 #ifdef CONFIG_SCHED_WALT
1811 double_rq_unlock(cpu_rq(new_cpu), rq);
1812 #else
1813 rq_unlock(rq, rf);
1814 #endif
1815
1816 rq = cpu_rq(new_cpu);
1817
1818 rq_lock(rq, rf);
1819 BUG_ON(task_cpu(p) != new_cpu);
1820 activate_task(rq, p, 0);
1821 check_preempt_curr(rq, p, 0);
1822
1823 return rq;
1824 }
1825
1826 struct migration_arg {
1827 struct task_struct *task;
1828 int dest_cpu;
1829 };
1830
1831 /*
1832 * Move (not current) task off this CPU, onto the destination CPU. We're doing
1833 * this because either it can't run here any more (set_cpus_allowed()
1834 * away from this CPU, or CPU going down), or because we're
1835 * attempting to rebalance this task on exec (sched_exec).
1836 *
1837 * So we race with normal scheduler movements, but that's OK, as long
1838 * as the task is no longer on this CPU.
1839 */
__migrate_task(struct rq * rq,struct rq_flags * rf,struct task_struct * p,int dest_cpu)1840 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf,
1841 struct task_struct *p, int dest_cpu)
1842 {
1843 /* Affinity changed (again). */
1844 if (!is_cpu_allowed(p, dest_cpu))
1845 return rq;
1846
1847 update_rq_clock(rq);
1848 rq = move_queued_task(rq, rf, p, dest_cpu);
1849
1850 return rq;
1851 }
1852
1853 /*
1854 * migration_cpu_stop - this will be executed by a highprio stopper thread
1855 * and performs thread migration by bumping thread off CPU then
1856 * 'pushing' onto another runqueue.
1857 */
migration_cpu_stop(void * data)1858 static int migration_cpu_stop(void *data)
1859 {
1860 struct migration_arg *arg = data;
1861 struct task_struct *p = arg->task;
1862 struct rq *rq = this_rq();
1863 struct rq_flags rf;
1864
1865 /*
1866 * The original target CPU might have gone down and we might
1867 * be on another CPU but it doesn't matter.
1868 */
1869 local_irq_disable();
1870 /*
1871 * We need to explicitly wake pending tasks before running
1872 * __migrate_task() such that we will not miss enforcing cpus_ptr
1873 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1874 */
1875 flush_smp_call_function_from_idle();
1876
1877 raw_spin_lock(&p->pi_lock);
1878 rq_lock(rq, &rf);
1879 /*
1880 * If task_rq(p) != rq, it cannot be migrated here, because we're
1881 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1882 * we're holding p->pi_lock.
1883 */
1884 if (task_rq(p) == rq) {
1885 if (task_on_rq_queued(p))
1886 rq = __migrate_task(rq, &rf, p, arg->dest_cpu);
1887 else
1888 p->wake_cpu = arg->dest_cpu;
1889 }
1890 rq_unlock(rq, &rf);
1891 raw_spin_unlock(&p->pi_lock);
1892
1893 local_irq_enable();
1894 return 0;
1895 }
1896
1897 /*
1898 * sched_class::set_cpus_allowed must do the below, but is not required to
1899 * actually call this function.
1900 */
set_cpus_allowed_common(struct task_struct * p,const struct cpumask * new_mask)1901 void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
1902 {
1903 cpumask_copy(&p->cpus_mask, new_mask);
1904 p->nr_cpus_allowed = cpumask_weight(new_mask);
1905 }
1906
do_set_cpus_allowed(struct task_struct * p,const struct cpumask * new_mask)1907 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1908 {
1909 struct rq *rq = task_rq(p);
1910 bool queued, running;
1911
1912 lockdep_assert_held(&p->pi_lock);
1913
1914 queued = task_on_rq_queued(p);
1915 running = task_current(rq, p);
1916
1917 if (queued) {
1918 /*
1919 * Because __kthread_bind() calls this on blocked tasks without
1920 * holding rq->lock.
1921 */
1922 lockdep_assert_held(&rq->lock);
1923 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
1924 }
1925 if (running)
1926 put_prev_task(rq, p);
1927
1928 p->sched_class->set_cpus_allowed(p, new_mask);
1929
1930 if (queued)
1931 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
1932 if (running)
1933 set_next_task(rq, p);
1934 }
1935
1936 /*
1937 * Change a given task's CPU affinity. Migrate the thread to a
1938 * proper CPU and schedule it away if the CPU it's executing on
1939 * is removed from the allowed bitmask.
1940 *
1941 * NOTE: the caller must have a valid reference to the task, the
1942 * task must not exit() & deallocate itself prematurely. The
1943 * call is not atomic; no spinlocks may be held.
1944 */
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)1945 static int __set_cpus_allowed_ptr(struct task_struct *p,
1946 const struct cpumask *new_mask, bool check)
1947 {
1948 const struct cpumask *cpu_valid_mask = cpu_active_mask;
1949 unsigned int dest_cpu;
1950 struct rq_flags rf;
1951 struct rq *rq;
1952 int ret = 0;
1953 #ifdef CONFIG_CPU_ISOLATION_OPT
1954 cpumask_t allowed_mask;
1955 #endif
1956
1957 rq = task_rq_lock(p, &rf);
1958 update_rq_clock(rq);
1959
1960 if (p->flags & PF_KTHREAD) {
1961 /*
1962 * Kernel threads are allowed on online && !active CPUs
1963 */
1964 cpu_valid_mask = cpu_online_mask;
1965 }
1966
1967 /*
1968 * Must re-check here, to close a race against __kthread_bind(),
1969 * sched_setaffinity() is not guaranteed to observe the flag.
1970 */
1971 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1972 ret = -EINVAL;
1973 goto out;
1974 }
1975
1976 if (cpumask_equal(&p->cpus_mask, new_mask))
1977 goto out;
1978
1979 #ifdef CONFIG_CPU_ISOLATION_OPT
1980 cpumask_andnot(&allowed_mask, new_mask, cpu_isolated_mask);
1981 cpumask_and(&allowed_mask, &allowed_mask, cpu_valid_mask);
1982
1983 dest_cpu = cpumask_any(&allowed_mask);
1984 if (dest_cpu >= nr_cpu_ids) {
1985 cpumask_and(&allowed_mask, cpu_valid_mask, new_mask);
1986 dest_cpu = cpumask_any(&allowed_mask);
1987 if (!cpumask_intersects(new_mask, cpu_valid_mask)) {
1988 ret = -EINVAL;
1989 goto out;
1990 }
1991 }
1992 #else
1993 /*
1994 * Picking a ~random cpu helps in cases where we are changing affinity
1995 * for groups of tasks (ie. cpuset), so that load balancing is not
1996 * immediately required to distribute the tasks within their new mask.
1997 */
1998 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, new_mask);
1999 if (dest_cpu >= nr_cpu_ids) {
2000 ret = -EINVAL;
2001 goto out;
2002 }
2003 #endif
2004
2005 do_set_cpus_allowed(p, new_mask);
2006
2007 if (p->flags & PF_KTHREAD) {
2008 /*
2009 * For kernel threads that do indeed end up on online &&
2010 * !active we want to ensure they are strict per-CPU threads.
2011 */
2012 WARN_ON(cpumask_intersects(new_mask, cpu_online_mask) &&
2013 !cpumask_intersects(new_mask, cpu_active_mask) &&
2014 p->nr_cpus_allowed != 1);
2015 }
2016
2017 /* Can the task run on the task's current CPU? If so, we're done */
2018 #ifdef CONFIG_CPU_ISOLATION_OPT
2019 if (cpumask_test_cpu(task_cpu(p), &allowed_mask))
2020 goto out;
2021 #else
2022 if (cpumask_test_cpu(task_cpu(p), new_mask))
2023 goto out;
2024 #endif
2025
2026 if (task_running(rq, p) || p->state == TASK_WAKING) {
2027 struct migration_arg arg = { p, dest_cpu };
2028 /* Need help from migration thread: drop lock and wait. */
2029 task_rq_unlock(rq, p, &rf);
2030 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
2031 return 0;
2032 } else if (task_on_rq_queued(p)) {
2033 /*
2034 * OK, since we're going to drop the lock immediately
2035 * afterwards anyway.
2036 */
2037 rq = move_queued_task(rq, &rf, p, dest_cpu);
2038 }
2039 out:
2040 task_rq_unlock(rq, p, &rf);
2041
2042 return ret;
2043 }
2044
set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask)2045 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
2046 {
2047 return __set_cpus_allowed_ptr(p, new_mask, false);
2048 }
2049 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
2050
set_task_cpu(struct task_struct * p,unsigned int new_cpu)2051 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2052 {
2053 #ifdef CONFIG_SCHED_DEBUG
2054 /*
2055 * We should never call set_task_cpu() on a blocked task,
2056 * ttwu() will sort out the placement.
2057 */
2058 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2059 !p->on_rq);
2060
2061 /*
2062 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
2063 * because schedstat_wait_{start,end} rebase migrating task's wait_start
2064 * time relying on p->on_rq.
2065 */
2066 WARN_ON_ONCE(p->state == TASK_RUNNING &&
2067 p->sched_class == &fair_sched_class &&
2068 (p->on_rq && !task_on_rq_migrating(p)));
2069
2070 #ifdef CONFIG_LOCKDEP
2071 /*
2072 * The caller should hold either p->pi_lock or rq->lock, when changing
2073 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
2074 *
2075 * sched_move_task() holds both and thus holding either pins the cgroup,
2076 * see task_group().
2077 *
2078 * Furthermore, all task_rq users should acquire both locks, see
2079 * task_rq_lock().
2080 */
2081 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
2082 lockdep_is_held(&task_rq(p)->lock)));
2083 #endif
2084 /*
2085 * Clearly, migrating tasks to offline CPUs is a fairly daft thing.
2086 */
2087 WARN_ON_ONCE(!cpu_online(new_cpu));
2088 #endif
2089
2090 trace_sched_migrate_task(p, new_cpu);
2091
2092 if (task_cpu(p) != new_cpu) {
2093 if (p->sched_class->migrate_task_rq)
2094 p->sched_class->migrate_task_rq(p, new_cpu);
2095 p->se.nr_migrations++;
2096 rseq_migrate(p);
2097 perf_event_task_migrate(p);
2098 fixup_busy_time(p, new_cpu);
2099 }
2100
2101 __set_task_cpu(p, new_cpu);
2102 }
2103
2104 #ifdef CONFIG_NUMA_BALANCING
__migrate_swap_task(struct task_struct * p,int cpu)2105 static void __migrate_swap_task(struct task_struct *p, int cpu)
2106 {
2107 if (task_on_rq_queued(p)) {
2108 struct rq *src_rq, *dst_rq;
2109 struct rq_flags srf, drf;
2110
2111 src_rq = task_rq(p);
2112 dst_rq = cpu_rq(cpu);
2113
2114 rq_pin_lock(src_rq, &srf);
2115 rq_pin_lock(dst_rq, &drf);
2116
2117 deactivate_task(src_rq, p, 0);
2118 set_task_cpu(p, cpu);
2119 activate_task(dst_rq, p, 0);
2120 check_preempt_curr(dst_rq, p, 0);
2121
2122 rq_unpin_lock(dst_rq, &drf);
2123 rq_unpin_lock(src_rq, &srf);
2124
2125 } else {
2126 /*
2127 * Task isn't running anymore; make it appear like we migrated
2128 * it before it went to sleep. This means on wakeup we make the
2129 * previous CPU our target instead of where it really is.
2130 */
2131 p->wake_cpu = cpu;
2132 }
2133 }
2134
2135 struct migration_swap_arg {
2136 struct task_struct *src_task, *dst_task;
2137 int src_cpu, dst_cpu;
2138 };
2139
migrate_swap_stop(void * data)2140 static int migrate_swap_stop(void *data)
2141 {
2142 struct migration_swap_arg *arg = data;
2143 struct rq *src_rq, *dst_rq;
2144 int ret = -EAGAIN;
2145
2146 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
2147 return -EAGAIN;
2148
2149 src_rq = cpu_rq(arg->src_cpu);
2150 dst_rq = cpu_rq(arg->dst_cpu);
2151
2152 double_raw_lock(&arg->src_task->pi_lock,
2153 &arg->dst_task->pi_lock);
2154 double_rq_lock(src_rq, dst_rq);
2155
2156 if (task_cpu(arg->dst_task) != arg->dst_cpu)
2157 goto unlock;
2158
2159 if (task_cpu(arg->src_task) != arg->src_cpu)
2160 goto unlock;
2161
2162 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr))
2163 goto unlock;
2164
2165 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr))
2166 goto unlock;
2167
2168 __migrate_swap_task(arg->src_task, arg->dst_cpu);
2169 __migrate_swap_task(arg->dst_task, arg->src_cpu);
2170
2171 ret = 0;
2172
2173 unlock:
2174 double_rq_unlock(src_rq, dst_rq);
2175 raw_spin_unlock(&arg->dst_task->pi_lock);
2176 raw_spin_unlock(&arg->src_task->pi_lock);
2177
2178 return ret;
2179 }
2180
2181 /*
2182 * Cross migrate two tasks
2183 */
migrate_swap(struct task_struct * cur,struct task_struct * p,int target_cpu,int curr_cpu)2184 int migrate_swap(struct task_struct *cur, struct task_struct *p,
2185 int target_cpu, int curr_cpu)
2186 {
2187 struct migration_swap_arg arg;
2188 int ret = -EINVAL;
2189
2190 arg = (struct migration_swap_arg){
2191 .src_task = cur,
2192 .src_cpu = curr_cpu,
2193 .dst_task = p,
2194 .dst_cpu = target_cpu,
2195 };
2196
2197 if (arg.src_cpu == arg.dst_cpu)
2198 goto out;
2199
2200 /*
2201 * These three tests are all lockless; this is OK since all of them
2202 * will be re-checked with proper locks held further down the line.
2203 */
2204 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
2205 goto out;
2206
2207 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr))
2208 goto out;
2209
2210 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr))
2211 goto out;
2212
2213 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
2214 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
2215
2216 out:
2217 return ret;
2218 }
2219 #endif /* CONFIG_NUMA_BALANCING */
2220
2221 /*
2222 * wait_task_inactive - wait for a thread to unschedule.
2223 *
2224 * If @match_state is nonzero, it's the @p->state value just checked and
2225 * not expected to change. If it changes, i.e. @p might have woken up,
2226 * then return zero. When we succeed in waiting for @p to be off its CPU,
2227 * we return a positive number (its total switch count). If a second call
2228 * a short while later returns the same number, the caller can be sure that
2229 * @p has remained unscheduled the whole time.
2230 *
2231 * The caller must ensure that the task *will* unschedule sometime soon,
2232 * else this function might spin for a *long* time. This function can't
2233 * be called with interrupts off, or it may introduce deadlock with
2234 * smp_call_function() if an IPI is sent by the same process we are
2235 * waiting to become inactive.
2236 */
wait_task_inactive(struct task_struct * p,long match_state)2237 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2238 {
2239 int running, queued;
2240 struct rq_flags rf;
2241 unsigned long ncsw;
2242 struct rq *rq;
2243
2244 for (;;) {
2245 /*
2246 * We do the initial early heuristics without holding
2247 * any task-queue locks at all. We'll only try to get
2248 * the runqueue lock when things look like they will
2249 * work out!
2250 */
2251 rq = task_rq(p);
2252
2253 /*
2254 * If the task is actively running on another CPU
2255 * still, just relax and busy-wait without holding
2256 * any locks.
2257 *
2258 * NOTE! Since we don't hold any locks, it's not
2259 * even sure that "rq" stays as the right runqueue!
2260 * But we don't care, since "task_running()" will
2261 * return false if the runqueue has changed and p
2262 * is actually now running somewhere else!
2263 */
2264 while (task_running(rq, p)) {
2265 if (match_state && unlikely(p->state != match_state))
2266 return 0;
2267 cpu_relax();
2268 }
2269
2270 /*
2271 * Ok, time to look more closely! We need the rq
2272 * lock now, to be *sure*. If we're wrong, we'll
2273 * just go back and repeat.
2274 */
2275 rq = task_rq_lock(p, &rf);
2276 trace_sched_wait_task(p);
2277 running = task_running(rq, p);
2278 queued = task_on_rq_queued(p);
2279 ncsw = 0;
2280 if (!match_state || p->state == match_state)
2281 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2282 task_rq_unlock(rq, p, &rf);
2283
2284 /*
2285 * If it changed from the expected state, bail out now.
2286 */
2287 if (unlikely(!ncsw))
2288 break;
2289
2290 /*
2291 * Was it really running after all now that we
2292 * checked with the proper locks actually held?
2293 *
2294 * Oops. Go back and try again..
2295 */
2296 if (unlikely(running)) {
2297 cpu_relax();
2298 continue;
2299 }
2300
2301 /*
2302 * It's not enough that it's not actively running,
2303 * it must be off the runqueue _entirely_, and not
2304 * preempted!
2305 *
2306 * So if it was still runnable (but just not actively
2307 * running right now), it's preempted, and we should
2308 * yield - it could be a while.
2309 */
2310 if (unlikely(queued)) {
2311 ktime_t to = NSEC_PER_SEC / HZ;
2312
2313 set_current_state(TASK_UNINTERRUPTIBLE);
2314 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
2315 continue;
2316 }
2317
2318 /*
2319 * Ahh, all good. It wasn't running, and it wasn't
2320 * runnable, which means that it will never become
2321 * running in the future either. We're all done!
2322 */
2323 break;
2324 }
2325
2326 return ncsw;
2327 }
2328
2329 /***
2330 * kick_process - kick a running thread to enter/exit the kernel
2331 * @p: the to-be-kicked thread
2332 *
2333 * Cause a process which is running on another CPU to enter
2334 * kernel-mode, without any delay. (to get signals handled.)
2335 *
2336 * NOTE: this function doesn't have to take the runqueue lock,
2337 * because all it wants to ensure is that the remote task enters
2338 * the kernel. If the IPI races and the task has been migrated
2339 * to another CPU then no harm is done and the purpose has been
2340 * achieved as well.
2341 */
kick_process(struct task_struct * p)2342 void kick_process(struct task_struct *p)
2343 {
2344 int cpu;
2345
2346 preempt_disable();
2347 cpu = task_cpu(p);
2348 if ((cpu != smp_processor_id()) && task_curr(p))
2349 smp_send_reschedule(cpu);
2350 preempt_enable();
2351 }
2352 EXPORT_SYMBOL_GPL(kick_process);
2353
2354 /*
2355 * ->cpus_ptr is protected by both rq->lock and p->pi_lock
2356 *
2357 * A few notes on cpu_active vs cpu_online:
2358 *
2359 * - cpu_active must be a subset of cpu_online
2360 *
2361 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU,
2362 * see __set_cpus_allowed_ptr(). At this point the newly online
2363 * CPU isn't yet part of the sched domains, and balancing will not
2364 * see it.
2365 *
2366 * - on CPU-down we clear cpu_active() to mask the sched domains and
2367 * avoid the load balancer to place new tasks on the to be removed
2368 * CPU. Existing tasks will remain running there and will be taken
2369 * off.
2370 *
2371 * This means that fallback selection must not select !active CPUs.
2372 * And can assume that any active CPU must be online. Conversely
2373 * select_task_rq() below may allow selection of !active CPUs in order
2374 * to satisfy the above rules.
2375 */
2376 #ifdef CONFIG_CPU_ISOLATION_OPT
select_fallback_rq(int cpu,struct task_struct * p,bool allow_iso)2377 static int select_fallback_rq(int cpu, struct task_struct *p, bool allow_iso)
2378 #else
2379 static int select_fallback_rq(int cpu, struct task_struct *p)
2380 #endif
2381 {
2382 int nid = cpu_to_node(cpu);
2383 const struct cpumask *nodemask = NULL;
2384 enum { cpuset, possible, fail, bug } state = cpuset;
2385 int dest_cpu;
2386 #ifdef CONFIG_CPU_ISOLATION_OPT
2387 int isolated_candidate = -1;
2388 #endif
2389
2390 /*
2391 * If the node that the CPU is on has been offlined, cpu_to_node()
2392 * will return -1. There is no CPU on the node, and we should
2393 * select the CPU on the other node.
2394 */
2395 if (nid != -1) {
2396 nodemask = cpumask_of_node(nid);
2397
2398 /* Look for allowed, online CPU in same node. */
2399 for_each_cpu(dest_cpu, nodemask) {
2400 if (!cpu_active(dest_cpu))
2401 continue;
2402 if (cpu_isolated(dest_cpu))
2403 continue;
2404 if (cpumask_test_cpu(dest_cpu, p->cpus_ptr))
2405 return dest_cpu;
2406 }
2407 }
2408
2409 for (;;) {
2410 /* Any allowed, online CPU? */
2411 for_each_cpu(dest_cpu, p->cpus_ptr) {
2412 if (!is_cpu_allowed(p, dest_cpu))
2413 continue;
2414 #ifdef CONFIG_CPU_ISOLATION_OPT
2415 if (cpu_isolated(dest_cpu)) {
2416 if (allow_iso)
2417 isolated_candidate = dest_cpu;
2418 continue;
2419 }
2420 goto out;
2421 }
2422
2423 if (isolated_candidate != -1) {
2424 dest_cpu = isolated_candidate;
2425 #endif
2426 goto out;
2427 }
2428
2429 /* No more Mr. Nice Guy. */
2430 switch (state) {
2431 case cpuset:
2432 if (IS_ENABLED(CONFIG_CPUSETS)) {
2433 cpuset_cpus_allowed_fallback(p);
2434 state = possible;
2435 break;
2436 }
2437 fallthrough;
2438 case possible:
2439 do_set_cpus_allowed(p, cpu_possible_mask);
2440 state = fail;
2441 break;
2442
2443 case fail:
2444 #ifdef CONFIG_CPU_ISOLATION_OPT
2445 allow_iso = true;
2446 state = bug;
2447 break;
2448 #else
2449 /* fall through; */
2450 #endif
2451
2452 case bug:
2453 BUG();
2454 break;
2455 }
2456 }
2457
2458 out:
2459 if (state != cpuset) {
2460 /*
2461 * Don't tell them about moving exiting tasks or
2462 * kernel threads (both mm NULL), since they never
2463 * leave kernel.
2464 */
2465 if (p->mm && printk_ratelimit()) {
2466 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2467 task_pid_nr(p), p->comm, cpu);
2468 }
2469 }
2470
2471 return dest_cpu;
2472 }
2473
2474 /*
2475 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable.
2476 */
2477 static inline
select_task_rq(struct task_struct * p,int cpu,int sd_flags,int wake_flags)2478 int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
2479 {
2480 #ifdef CONFIG_CPU_ISOLATION_OPT
2481 bool allow_isolated = (p->flags & PF_KTHREAD);
2482 #endif
2483
2484 lockdep_assert_held(&p->pi_lock);
2485
2486 if (p->nr_cpus_allowed > 1)
2487 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
2488 else
2489 cpu = cpumask_any(p->cpus_ptr);
2490
2491 /*
2492 * In order not to call set_task_cpu() on a blocking task we need
2493 * to rely on ttwu() to place the task on a valid ->cpus_ptr
2494 * CPU.
2495 *
2496 * Since this is common to all placement strategies, this lives here.
2497 *
2498 * [ this allows ->select_task() to simply return task_cpu(p) and
2499 * not worry about this generic constraint ]
2500 */
2501 #ifdef CONFIG_CPU_ISOLATION_OPT
2502 if (unlikely(!is_cpu_allowed(p, cpu)) ||
2503 (cpu_isolated(cpu) && !allow_isolated))
2504 cpu = select_fallback_rq(task_cpu(p), p, allow_isolated);
2505 #else
2506 if (unlikely(!is_cpu_allowed(p, cpu)))
2507 cpu = select_fallback_rq(task_cpu(p), p);
2508 #endif
2509
2510 return cpu;
2511 }
2512
sched_set_stop_task(int cpu,struct task_struct * stop)2513 void sched_set_stop_task(int cpu, struct task_struct *stop)
2514 {
2515 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
2516 struct task_struct *old_stop = cpu_rq(cpu)->stop;
2517
2518 if (stop) {
2519 /*
2520 * Make it appear like a SCHED_FIFO task, its something
2521 * userspace knows about and won't get confused about.
2522 *
2523 * Also, it will make PI more or less work without too
2524 * much confusion -- but then, stop work should not
2525 * rely on PI working anyway.
2526 */
2527 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m);
2528
2529 stop->sched_class = &stop_sched_class;
2530 }
2531
2532 cpu_rq(cpu)->stop = stop;
2533
2534 if (old_stop) {
2535 /*
2536 * Reset it back to a normal scheduling class so that
2537 * it can die in pieces.
2538 */
2539 old_stop->sched_class = &rt_sched_class;
2540 }
2541 }
2542
2543 #else
2544
__set_cpus_allowed_ptr(struct task_struct * p,const struct cpumask * new_mask,bool check)2545 static inline int __set_cpus_allowed_ptr(struct task_struct *p,
2546 const struct cpumask *new_mask, bool check)
2547 {
2548 return set_cpus_allowed_ptr(p, new_mask);
2549 }
2550
2551 #endif /* CONFIG_SMP */
2552
2553 static void
ttwu_stat(struct task_struct * p,int cpu,int wake_flags)2554 ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
2555 {
2556 struct rq *rq;
2557
2558 if (!schedstat_enabled())
2559 return;
2560
2561 rq = this_rq();
2562
2563 #ifdef CONFIG_SMP
2564 if (cpu == rq->cpu) {
2565 __schedstat_inc(rq->ttwu_local);
2566 __schedstat_inc(p->se.statistics.nr_wakeups_local);
2567 } else {
2568 struct sched_domain *sd;
2569
2570 __schedstat_inc(p->se.statistics.nr_wakeups_remote);
2571 rcu_read_lock();
2572 for_each_domain(rq->cpu, sd) {
2573 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2574 __schedstat_inc(sd->ttwu_wake_remote);
2575 break;
2576 }
2577 }
2578 rcu_read_unlock();
2579 }
2580
2581 if (wake_flags & WF_MIGRATED)
2582 __schedstat_inc(p->se.statistics.nr_wakeups_migrate);
2583 #endif /* CONFIG_SMP */
2584
2585 __schedstat_inc(rq->ttwu_count);
2586 __schedstat_inc(p->se.statistics.nr_wakeups);
2587
2588 if (wake_flags & WF_SYNC)
2589 __schedstat_inc(p->se.statistics.nr_wakeups_sync);
2590 }
2591
2592 /*
2593 * Mark the task runnable and perform wakeup-preemption.
2594 */
ttwu_do_wakeup(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2595 static void ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags,
2596 struct rq_flags *rf)
2597 {
2598 check_preempt_curr(rq, p, wake_flags);
2599 p->state = TASK_RUNNING;
2600 trace_sched_wakeup(p);
2601
2602 #ifdef CONFIG_SMP
2603 if (p->sched_class->task_woken) {
2604 /*
2605 * Our task @p is fully woken up and running; so its safe to
2606 * drop the rq->lock, hereafter rq is only used for statistics.
2607 */
2608 rq_unpin_lock(rq, rf);
2609 p->sched_class->task_woken(rq, p);
2610 rq_repin_lock(rq, rf);
2611 }
2612
2613 if (rq->idle_stamp) {
2614 u64 delta = rq_clock(rq) - rq->idle_stamp;
2615 u64 max = 2*rq->max_idle_balance_cost;
2616
2617 update_avg(&rq->avg_idle, delta);
2618
2619 if (rq->avg_idle > max)
2620 rq->avg_idle = max;
2621
2622 rq->idle_stamp = 0;
2623 }
2624 #endif
2625 }
2626
2627 static void
ttwu_do_activate(struct rq * rq,struct task_struct * p,int wake_flags,struct rq_flags * rf)2628 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags,
2629 struct rq_flags *rf)
2630 {
2631 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK;
2632
2633 lockdep_assert_held(&rq->lock);
2634
2635 if (p->sched_contributes_to_load)
2636 rq->nr_uninterruptible--;
2637
2638 #ifdef CONFIG_SMP
2639 if (wake_flags & WF_MIGRATED)
2640 en_flags |= ENQUEUE_MIGRATED;
2641 else
2642 #endif
2643 if (p->in_iowait) {
2644 delayacct_blkio_end(p);
2645 atomic_dec(&task_rq(p)->nr_iowait);
2646 }
2647
2648 activate_task(rq, p, en_flags);
2649 ttwu_do_wakeup(rq, p, wake_flags, rf);
2650 }
2651
2652 /*
2653 * Consider @p being inside a wait loop:
2654 *
2655 * for (;;) {
2656 * set_current_state(TASK_UNINTERRUPTIBLE);
2657 *
2658 * if (CONDITION)
2659 * break;
2660 *
2661 * schedule();
2662 * }
2663 * __set_current_state(TASK_RUNNING);
2664 *
2665 * between set_current_state() and schedule(). In this case @p is still
2666 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in
2667 * an atomic manner.
2668 *
2669 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq
2670 * then schedule() must still happen and p->state can be changed to
2671 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we
2672 * need to do a full wakeup with enqueue.
2673 *
2674 * Returns: %true when the wakeup is done,
2675 * %false otherwise.
2676 */
ttwu_runnable(struct task_struct * p,int wake_flags)2677 static int ttwu_runnable(struct task_struct *p, int wake_flags)
2678 {
2679 struct rq_flags rf;
2680 struct rq *rq;
2681 int ret = 0;
2682
2683 rq = __task_rq_lock(p, &rf);
2684 if (task_on_rq_queued(p)) {
2685 /* check_preempt_curr() may use rq clock */
2686 update_rq_clock(rq);
2687 ttwu_do_wakeup(rq, p, wake_flags, &rf);
2688 ret = 1;
2689 }
2690 __task_rq_unlock(rq, &rf);
2691
2692 return ret;
2693 }
2694
2695 #ifdef CONFIG_SMP
sched_ttwu_pending(void * arg)2696 void sched_ttwu_pending(void *arg)
2697 {
2698 struct llist_node *llist = arg;
2699 struct rq *rq = this_rq();
2700 struct task_struct *p, *t;
2701 struct rq_flags rf;
2702
2703 if (!llist)
2704 return;
2705
2706 /*
2707 * rq::ttwu_pending racy indication of out-standing wakeups.
2708 * Races such that false-negatives are possible, since they
2709 * are shorter lived that false-positives would be.
2710 */
2711 WRITE_ONCE(rq->ttwu_pending, 0);
2712
2713 rq_lock_irqsave(rq, &rf);
2714 update_rq_clock(rq);
2715
2716 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) {
2717 if (WARN_ON_ONCE(p->on_cpu))
2718 smp_cond_load_acquire(&p->on_cpu, !VAL);
2719
2720 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq)))
2721 set_task_cpu(p, cpu_of(rq));
2722
2723 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf);
2724 }
2725
2726 rq_unlock_irqrestore(rq, &rf);
2727 }
2728
send_call_function_single_ipi(int cpu)2729 void send_call_function_single_ipi(int cpu)
2730 {
2731 struct rq *rq = cpu_rq(cpu);
2732
2733 if (!set_nr_if_polling(rq->idle))
2734 arch_send_call_function_single_ipi(cpu);
2735 else
2736 trace_sched_wake_idle_without_ipi(cpu);
2737 }
2738
2739 /*
2740 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if
2741 * necessary. The wakee CPU on receipt of the IPI will queue the task
2742 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost
2743 * of the wakeup instead of the waker.
2744 */
__ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2745 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2746 {
2747 struct rq *rq = cpu_rq(cpu);
2748
2749 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED);
2750
2751 WRITE_ONCE(rq->ttwu_pending, 1);
2752 __smp_call_single_queue(cpu, &p->wake_entry.llist);
2753 }
2754
wake_up_if_idle(int cpu)2755 void wake_up_if_idle(int cpu)
2756 {
2757 struct rq *rq = cpu_rq(cpu);
2758 struct rq_flags rf;
2759
2760 rcu_read_lock();
2761
2762 if (!is_idle_task(rcu_dereference(rq->curr)))
2763 goto out;
2764
2765 if (set_nr_if_polling(rq->idle)) {
2766 trace_sched_wake_idle_without_ipi(cpu);
2767 } else {
2768 rq_lock_irqsave(rq, &rf);
2769 if (is_idle_task(rq->curr))
2770 smp_send_reschedule(cpu);
2771 /* Else CPU is not idle, do nothing here: */
2772 rq_unlock_irqrestore(rq, &rf);
2773 }
2774
2775 out:
2776 rcu_read_unlock();
2777 }
2778
cpus_share_cache(int this_cpu,int that_cpu)2779 bool cpus_share_cache(int this_cpu, int that_cpu)
2780 {
2781 if (this_cpu == that_cpu)
2782 return true;
2783
2784 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
2785 }
2786
ttwu_queue_cond(int cpu,int wake_flags)2787 static inline bool ttwu_queue_cond(int cpu, int wake_flags)
2788 {
2789 /*
2790 * If the CPU does not share cache, then queue the task on the
2791 * remote rqs wakelist to avoid accessing remote data.
2792 */
2793 if (!cpus_share_cache(smp_processor_id(), cpu))
2794 return true;
2795
2796 /*
2797 * If the task is descheduling and the only running task on the
2798 * CPU then use the wakelist to offload the task activation to
2799 * the soon-to-be-idle CPU as the current CPU is likely busy.
2800 * nr_running is checked to avoid unnecessary task stacking.
2801 *
2802 * Note that we can only get here with (wakee) p->on_rq=0,
2803 * p->on_cpu can be whatever, we've done the dequeue, so
2804 * the wakee has been accounted out of ->nr_running.
2805 */
2806 if ((wake_flags & WF_ON_CPU) && !cpu_rq(cpu)->nr_running)
2807 return true;
2808
2809 return false;
2810 }
2811
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2812 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2813 {
2814 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(cpu, wake_flags)) {
2815 if (WARN_ON_ONCE(cpu == smp_processor_id()))
2816 return false;
2817
2818 sched_clock_cpu(cpu); /* Sync clocks across CPUs */
2819 __ttwu_queue_wakelist(p, cpu, wake_flags);
2820 return true;
2821 }
2822
2823 return false;
2824 }
2825
2826 #else /* !CONFIG_SMP */
2827
ttwu_queue_wakelist(struct task_struct * p,int cpu,int wake_flags)2828 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags)
2829 {
2830 return false;
2831 }
2832
2833 #endif /* CONFIG_SMP */
2834
ttwu_queue(struct task_struct * p,int cpu,int wake_flags)2835 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags)
2836 {
2837 struct rq *rq = cpu_rq(cpu);
2838 struct rq_flags rf;
2839
2840 if (ttwu_queue_wakelist(p, cpu, wake_flags))
2841 return;
2842
2843 rq_lock(rq, &rf);
2844 update_rq_clock(rq);
2845 ttwu_do_activate(rq, p, wake_flags, &rf);
2846 rq_unlock(rq, &rf);
2847 }
2848
2849 /*
2850 * Notes on Program-Order guarantees on SMP systems.
2851 *
2852 * MIGRATION
2853 *
2854 * The basic program-order guarantee on SMP systems is that when a task [t]
2855 * migrates, all its activity on its old CPU [c0] happens-before any subsequent
2856 * execution on its new CPU [c1].
2857 *
2858 * For migration (of runnable tasks) this is provided by the following means:
2859 *
2860 * A) UNLOCK of the rq(c0)->lock scheduling out task t
2861 * B) migration for t is required to synchronize *both* rq(c0)->lock and
2862 * rq(c1)->lock (if not at the same time, then in that order).
2863 * C) LOCK of the rq(c1)->lock scheduling in task
2864 *
2865 * Release/acquire chaining guarantees that B happens after A and C after B.
2866 * Note: the CPU doing B need not be c0 or c1
2867 *
2868 * Example:
2869 *
2870 * CPU0 CPU1 CPU2
2871 *
2872 * LOCK rq(0)->lock
2873 * sched-out X
2874 * sched-in Y
2875 * UNLOCK rq(0)->lock
2876 *
2877 * LOCK rq(0)->lock // orders against CPU0
2878 * dequeue X
2879 * UNLOCK rq(0)->lock
2880 *
2881 * LOCK rq(1)->lock
2882 * enqueue X
2883 * UNLOCK rq(1)->lock
2884 *
2885 * LOCK rq(1)->lock // orders against CPU2
2886 * sched-out Z
2887 * sched-in X
2888 * UNLOCK rq(1)->lock
2889 *
2890 *
2891 * BLOCKING -- aka. SLEEP + WAKEUP
2892 *
2893 * For blocking we (obviously) need to provide the same guarantee as for
2894 * migration. However the means are completely different as there is no lock
2895 * chain to provide order. Instead we do:
2896 *
2897 * 1) smp_store_release(X->on_cpu, 0) -- finish_task()
2898 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up()
2899 *
2900 * Example:
2901 *
2902 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
2903 *
2904 * LOCK rq(0)->lock LOCK X->pi_lock
2905 * dequeue X
2906 * sched-out X
2907 * smp_store_release(X->on_cpu, 0);
2908 *
2909 * smp_cond_load_acquire(&X->on_cpu, !VAL);
2910 * X->state = WAKING
2911 * set_task_cpu(X,2)
2912 *
2913 * LOCK rq(2)->lock
2914 * enqueue X
2915 * X->state = RUNNING
2916 * UNLOCK rq(2)->lock
2917 *
2918 * LOCK rq(2)->lock // orders against CPU1
2919 * sched-out Z
2920 * sched-in X
2921 * UNLOCK rq(2)->lock
2922 *
2923 * UNLOCK X->pi_lock
2924 * UNLOCK rq(0)->lock
2925 *
2926 *
2927 * However, for wakeups there is a second guarantee we must provide, namely we
2928 * must ensure that CONDITION=1 done by the caller can not be reordered with
2929 * accesses to the task state; see try_to_wake_up() and set_current_state().
2930 */
2931
2932 #ifdef CONFIG_SMP
2933 #ifdef CONFIG_SCHED_WALT
2934 /* utility function to update walt signals at wakeup */
walt_try_to_wake_up(struct task_struct * p)2935 static inline void walt_try_to_wake_up(struct task_struct *p)
2936 {
2937 struct rq *rq = cpu_rq(task_cpu(p));
2938 struct rq_flags rf;
2939 u64 wallclock;
2940
2941 rq_lock_irqsave(rq, &rf);
2942 wallclock = sched_ktime_clock();
2943 update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
2944 update_task_ravg(p, rq, TASK_WAKE, wallclock, 0);
2945 rq_unlock_irqrestore(rq, &rf);
2946 }
2947 #else
2948 #define walt_try_to_wake_up(a) {}
2949 #endif
2950 #endif
2951
2952 /**
2953 * try_to_wake_up - wake up a thread
2954 * @p: the thread to be awakened
2955 * @state: the mask of task states that can be woken
2956 * @wake_flags: wake modifier flags (WF_*)
2957 *
2958 * Conceptually does:
2959 *
2960 * If (@state & @p->state) @p->state = TASK_RUNNING.
2961 *
2962 * If the task was not queued/runnable, also place it back on a runqueue.
2963 *
2964 * This function is atomic against schedule() which would dequeue the task.
2965 *
2966 * It issues a full memory barrier before accessing @p->state, see the comment
2967 * with set_current_state().
2968 *
2969 * Uses p->pi_lock to serialize against concurrent wake-ups.
2970 *
2971 * Relies on p->pi_lock stabilizing:
2972 * - p->sched_class
2973 * - p->cpus_ptr
2974 * - p->sched_task_group
2975 * in order to do migration, see its use of select_task_rq()/set_task_cpu().
2976 *
2977 * Tries really hard to only take one task_rq(p)->lock for performance.
2978 * Takes rq->lock in:
2979 * - ttwu_runnable() -- old rq, unavoidable, see comment there;
2980 * - ttwu_queue() -- new rq, for enqueue of the task;
2981 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us.
2982 *
2983 * As a consequence we race really badly with just about everything. See the
2984 * many memory barriers and their comments for details.
2985 *
2986 * Return: %true if @p->state changes (an actual wakeup was done),
2987 * %false otherwise.
2988 */
2989 static int
try_to_wake_up(struct task_struct * p,unsigned int state,int wake_flags)2990 try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
2991 {
2992 unsigned long flags;
2993 int cpu, success = 0;
2994
2995 preempt_disable();
2996 if (p == current) {
2997 /*
2998 * We're waking current, this means 'p->on_rq' and 'task_cpu(p)
2999 * == smp_processor_id()'. Together this means we can special
3000 * case the whole 'p->on_rq && ttwu_runnable()' case below
3001 * without taking any locks.
3002 *
3003 * In particular:
3004 * - we rely on Program-Order guarantees for all the ordering,
3005 * - we're serialized against set_special_state() by virtue of
3006 * it disabling IRQs (this allows not taking ->pi_lock).
3007 */
3008 if (!(p->state & state))
3009 goto out;
3010
3011 success = 1;
3012 trace_sched_waking(p);
3013 p->state = TASK_RUNNING;
3014 trace_sched_wakeup(p);
3015 goto out;
3016 }
3017
3018 /*
3019 * If we are going to wake up a thread waiting for CONDITION we
3020 * need to ensure that CONDITION=1 done by the caller can not be
3021 * reordered with p->state check below. This pairs with smp_store_mb()
3022 * in set_current_state() that the waiting thread does.
3023 */
3024 raw_spin_lock_irqsave(&p->pi_lock, flags);
3025 smp_mb__after_spinlock();
3026 if (!(p->state & state))
3027 goto unlock;
3028
3029 trace_sched_waking(p);
3030
3031 /* We're going to change ->state: */
3032 success = 1;
3033
3034 /*
3035 * Ensure we load p->on_rq _after_ p->state, otherwise it would
3036 * be possible to, falsely, observe p->on_rq == 0 and get stuck
3037 * in smp_cond_load_acquire() below.
3038 *
3039 * sched_ttwu_pending() try_to_wake_up()
3040 * STORE p->on_rq = 1 LOAD p->state
3041 * UNLOCK rq->lock
3042 *
3043 * __schedule() (switch to task 'p')
3044 * LOCK rq->lock smp_rmb();
3045 * smp_mb__after_spinlock();
3046 * UNLOCK rq->lock
3047 *
3048 * [task p]
3049 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq
3050 *
3051 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3052 * __schedule(). See the comment for smp_mb__after_spinlock().
3053 *
3054 * A similar smb_rmb() lives in try_invoke_on_locked_down_task().
3055 */
3056 smp_rmb();
3057 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags))
3058 goto unlock;
3059
3060 #ifdef CONFIG_SMP
3061 /*
3062 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
3063 * possible to, falsely, observe p->on_cpu == 0.
3064 *
3065 * One must be running (->on_cpu == 1) in order to remove oneself
3066 * from the runqueue.
3067 *
3068 * __schedule() (switch to task 'p') try_to_wake_up()
3069 * STORE p->on_cpu = 1 LOAD p->on_rq
3070 * UNLOCK rq->lock
3071 *
3072 * __schedule() (put 'p' to sleep)
3073 * LOCK rq->lock smp_rmb();
3074 * smp_mb__after_spinlock();
3075 * STORE p->on_rq = 0 LOAD p->on_cpu
3076 *
3077 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in
3078 * __schedule(). See the comment for smp_mb__after_spinlock().
3079 *
3080 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure
3081 * schedule()'s deactivate_task() has 'happened' and p will no longer
3082 * care about it's own p->state. See the comment in __schedule().
3083 */
3084 smp_acquire__after_ctrl_dep();
3085
3086 walt_try_to_wake_up(p);
3087
3088 /*
3089 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq
3090 * == 0), which means we need to do an enqueue, change p->state to
3091 * TASK_WAKING such that we can unlock p->pi_lock before doing the
3092 * enqueue, such as ttwu_queue_wakelist().
3093 */
3094 p->state = TASK_WAKING;
3095
3096 /*
3097 * If the owning (remote) CPU is still in the middle of schedule() with
3098 * this task as prev, considering queueing p on the remote CPUs wake_list
3099 * which potentially sends an IPI instead of spinning on p->on_cpu to
3100 * let the waker make forward progress. This is safe because IRQs are
3101 * disabled and the IPI will deliver after on_cpu is cleared.
3102 *
3103 * Ensure we load task_cpu(p) after p->on_cpu:
3104 *
3105 * set_task_cpu(p, cpu);
3106 * STORE p->cpu = @cpu
3107 * __schedule() (switch to task 'p')
3108 * LOCK rq->lock
3109 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu)
3110 * STORE p->on_cpu = 1 LOAD p->cpu
3111 *
3112 * to ensure we observe the correct CPU on which the task is currently
3113 * scheduling.
3114 */
3115 if (smp_load_acquire(&p->on_cpu) &&
3116 ttwu_queue_wakelist(p, task_cpu(p), wake_flags | WF_ON_CPU))
3117 goto unlock;
3118
3119 /*
3120 * If the owning (remote) CPU is still in the middle of schedule() with
3121 * this task as prev, wait until its done referencing the task.
3122 *
3123 * Pairs with the smp_store_release() in finish_task().
3124 *
3125 * This ensures that tasks getting woken will be fully ordered against
3126 * their previous state and preserve Program Order.
3127 */
3128 smp_cond_load_acquire(&p->on_cpu, !VAL);
3129
3130 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
3131 if (task_cpu(p) != cpu) {
3132 if (p->in_iowait) {
3133 delayacct_blkio_end(p);
3134 atomic_dec(&task_rq(p)->nr_iowait);
3135 }
3136
3137 wake_flags |= WF_MIGRATED;
3138 psi_ttwu_dequeue(p);
3139 set_task_cpu(p, cpu);
3140 }
3141 #else
3142 cpu = task_cpu(p);
3143 #endif /* CONFIG_SMP */
3144
3145 ttwu_queue(p, cpu, wake_flags);
3146 unlock:
3147 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3148 out:
3149 if (success)
3150 ttwu_stat(p, task_cpu(p), wake_flags);
3151 preempt_enable();
3152
3153 return success;
3154 }
3155
3156 /**
3157 * try_invoke_on_locked_down_task - Invoke a function on task in fixed state
3158 * @p: Process for which the function is to be invoked, can be @current.
3159 * @func: Function to invoke.
3160 * @arg: Argument to function.
3161 *
3162 * If the specified task can be quickly locked into a definite state
3163 * (either sleeping or on a given runqueue), arrange to keep it in that
3164 * state while invoking @func(@arg). This function can use ->on_rq and
3165 * task_curr() to work out what the state is, if required. Given that
3166 * @func can be invoked with a runqueue lock held, it had better be quite
3167 * lightweight.
3168 *
3169 * Returns:
3170 * @false if the task slipped out from under the locks.
3171 * @true if the task was locked onto a runqueue or is sleeping.
3172 * However, @func can override this by returning @false.
3173 */
try_invoke_on_locked_down_task(struct task_struct * p,bool (* func)(struct task_struct * t,void * arg),void * arg)3174 bool try_invoke_on_locked_down_task(struct task_struct *p, bool (*func)(struct task_struct *t, void *arg), void *arg)
3175 {
3176 struct rq_flags rf;
3177 bool ret = false;
3178 struct rq *rq;
3179
3180 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3181 if (p->on_rq) {
3182 rq = __task_rq_lock(p, &rf);
3183 if (task_rq(p) == rq)
3184 ret = func(p, arg);
3185 rq_unlock(rq, &rf);
3186 } else {
3187 switch (p->state) {
3188 case TASK_RUNNING:
3189 case TASK_WAKING:
3190 break;
3191 default:
3192 smp_rmb(); // See smp_rmb() comment in try_to_wake_up().
3193 if (!p->on_rq)
3194 ret = func(p, arg);
3195 }
3196 }
3197 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags);
3198 return ret;
3199 }
3200
3201 /**
3202 * wake_up_process - Wake up a specific process
3203 * @p: The process to be woken up.
3204 *
3205 * Attempt to wake up the nominated process and move it to the set of runnable
3206 * processes.
3207 *
3208 * Return: 1 if the process was woken up, 0 if it was already running.
3209 *
3210 * This function executes a full memory barrier before accessing the task state.
3211 */
wake_up_process(struct task_struct * p)3212 int wake_up_process(struct task_struct *p)
3213 {
3214 return try_to_wake_up(p, TASK_NORMAL, 0);
3215 }
3216 EXPORT_SYMBOL(wake_up_process);
3217
wake_up_state(struct task_struct * p,unsigned int state)3218 int wake_up_state(struct task_struct *p, unsigned int state)
3219 {
3220 return try_to_wake_up(p, state, 0);
3221 }
3222
3223 /*
3224 * Perform scheduler related setup for a newly forked process p.
3225 * p is forked by current.
3226 *
3227 * __sched_fork() is basic setup used by init_idle() too:
3228 */
__sched_fork(unsigned long clone_flags,struct task_struct * p)3229 static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
3230 {
3231 p->on_rq = 0;
3232
3233 p->se.on_rq = 0;
3234 p->se.exec_start = 0;
3235 p->se.sum_exec_runtime = 0;
3236 p->se.prev_sum_exec_runtime = 0;
3237 p->se.nr_migrations = 0;
3238 p->se.vruntime = 0;
3239 INIT_LIST_HEAD(&p->se.group_node);
3240
3241 #ifdef CONFIG_FAIR_GROUP_SCHED
3242 p->se.cfs_rq = NULL;
3243 #endif
3244
3245 #ifdef CONFIG_SCHEDSTATS
3246 /* Even if schedstat is disabled, there should not be garbage */
3247 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
3248 #endif
3249
3250 RB_CLEAR_NODE(&p->dl.rb_node);
3251 init_dl_task_timer(&p->dl);
3252 init_dl_inactive_task_timer(&p->dl);
3253 __dl_clear_params(p);
3254
3255 INIT_LIST_HEAD(&p->rt.run_list);
3256 p->rt.timeout = 0;
3257 p->rt.time_slice = sched_rr_timeslice;
3258 p->rt.on_rq = 0;
3259 p->rt.on_list = 0;
3260
3261 #ifdef CONFIG_PREEMPT_NOTIFIERS
3262 INIT_HLIST_HEAD(&p->preempt_notifiers);
3263 #endif
3264
3265 #ifdef CONFIG_COMPACTION
3266 p->capture_control = NULL;
3267 #endif
3268 init_numa_balancing(clone_flags, p);
3269 #ifdef CONFIG_SMP
3270 p->wake_entry.u_flags = CSD_TYPE_TTWU;
3271 #endif
3272 #ifdef CONFIG_SCHED_RTG
3273 p->rtg_depth = 0;
3274 #endif
3275 }
3276
3277 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
3278
3279 #ifdef CONFIG_NUMA_BALANCING
3280
set_numabalancing_state(bool enabled)3281 void set_numabalancing_state(bool enabled)
3282 {
3283 if (enabled)
3284 static_branch_enable(&sched_numa_balancing);
3285 else
3286 static_branch_disable(&sched_numa_balancing);
3287 }
3288
3289 #ifdef CONFIG_PROC_SYSCTL
sysctl_numa_balancing(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3290 int sysctl_numa_balancing(struct ctl_table *table, int write,
3291 void *buffer, size_t *lenp, loff_t *ppos)
3292 {
3293 struct ctl_table t;
3294 int err;
3295 int state = static_branch_likely(&sched_numa_balancing);
3296
3297 if (write && !capable(CAP_SYS_ADMIN))
3298 return -EPERM;
3299
3300 t = *table;
3301 t.data = &state;
3302 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3303 if (err < 0)
3304 return err;
3305 if (write)
3306 set_numabalancing_state(state);
3307 return err;
3308 }
3309 #endif
3310 #endif
3311
3312 #ifdef CONFIG_SCHEDSTATS
3313
3314 DEFINE_STATIC_KEY_FALSE(sched_schedstats);
3315 static bool __initdata __sched_schedstats = false;
3316
set_schedstats(bool enabled)3317 static void set_schedstats(bool enabled)
3318 {
3319 if (enabled)
3320 static_branch_enable(&sched_schedstats);
3321 else
3322 static_branch_disable(&sched_schedstats);
3323 }
3324
force_schedstat_enabled(void)3325 void force_schedstat_enabled(void)
3326 {
3327 if (!schedstat_enabled()) {
3328 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
3329 static_branch_enable(&sched_schedstats);
3330 }
3331 }
3332
setup_schedstats(char * str)3333 static int __init setup_schedstats(char *str)
3334 {
3335 int ret = 0;
3336 if (!str)
3337 goto out;
3338
3339 /*
3340 * This code is called before jump labels have been set up, so we can't
3341 * change the static branch directly just yet. Instead set a temporary
3342 * variable so init_schedstats() can do it later.
3343 */
3344 if (!strcmp(str, "enable")) {
3345 __sched_schedstats = true;
3346 ret = 1;
3347 } else if (!strcmp(str, "disable")) {
3348 __sched_schedstats = false;
3349 ret = 1;
3350 }
3351 out:
3352 if (!ret)
3353 pr_warn("Unable to parse schedstats=\n");
3354
3355 return ret;
3356 }
3357 __setup("schedstats=", setup_schedstats);
3358
init_schedstats(void)3359 static void __init init_schedstats(void)
3360 {
3361 set_schedstats(__sched_schedstats);
3362 }
3363
3364 #ifdef CONFIG_PROC_SYSCTL
sysctl_schedstats(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3365 int sysctl_schedstats(struct ctl_table *table, int write, void *buffer,
3366 size_t *lenp, loff_t *ppos)
3367 {
3368 struct ctl_table t;
3369 int err;
3370 int state = static_branch_likely(&sched_schedstats);
3371
3372 if (write && !capable(CAP_SYS_ADMIN))
3373 return -EPERM;
3374
3375 t = *table;
3376 t.data = &state;
3377 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3378 if (err < 0)
3379 return err;
3380 if (write)
3381 set_schedstats(state);
3382 return err;
3383 }
3384 #endif /* CONFIG_PROC_SYSCTL */
3385 #else /* !CONFIG_SCHEDSTATS */
init_schedstats(void)3386 static inline void init_schedstats(void) {}
3387 #endif /* CONFIG_SCHEDSTATS */
3388
3389 /*
3390 * fork()/clone()-time setup:
3391 */
sched_fork(unsigned long clone_flags,struct task_struct * p)3392 int sched_fork(unsigned long clone_flags, struct task_struct *p)
3393 {
3394 init_new_task_load(p);
3395
3396 #ifdef CONFIG_QOS_CTRL
3397 init_task_qos(p);
3398 #endif
3399
3400 __sched_fork(clone_flags, p);
3401 /*
3402 * We mark the process as NEW here. This guarantees that
3403 * nobody will actually run it, and a signal or other external
3404 * event cannot wake it up and insert it on the runqueue either.
3405 */
3406 p->state = TASK_NEW;
3407
3408 /*
3409 * Make sure we do not leak PI boosting priority to the child.
3410 */
3411 p->prio = current->normal_prio;
3412
3413 #ifdef CONFIG_SCHED_LATENCY_NICE
3414 /* Propagate the parent's latency requirements to the child as well */
3415 p->latency_prio = current->latency_prio;
3416 #endif
3417
3418 uclamp_fork(p);
3419
3420 /*
3421 * Revert to default priority/policy on fork if requested.
3422 */
3423 if (unlikely(p->sched_reset_on_fork)) {
3424 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
3425 p->policy = SCHED_NORMAL;
3426 #ifdef CONFIG_SCHED_RTG
3427 if (current->rtg_depth != 0)
3428 p->static_prio = current->static_prio;
3429 else
3430 p->static_prio = NICE_TO_PRIO(0);
3431 #else
3432 p->static_prio = NICE_TO_PRIO(0);
3433 #endif
3434 p->rt_priority = 0;
3435 } else if (PRIO_TO_NICE(p->static_prio) < 0)
3436 p->static_prio = NICE_TO_PRIO(0);
3437
3438 p->prio = p->normal_prio = p->static_prio;
3439 set_load_weight(p);
3440
3441 #ifdef CONFIG_SCHED_LATENCY_NICE
3442 p->latency_prio = NICE_TO_LATENCY(0);
3443 set_latency_weight(p);
3444 #endif
3445
3446 /*
3447 * We don't need the reset flag anymore after the fork. It has
3448 * fulfilled its duty:
3449 */
3450 p->sched_reset_on_fork = 0;
3451 }
3452
3453 if (dl_prio(p->prio))
3454 return -EAGAIN;
3455 else if (rt_prio(p->prio))
3456 p->sched_class = &rt_sched_class;
3457 else
3458 p->sched_class = &fair_sched_class;
3459
3460 init_entity_runnable_average(&p->se);
3461
3462 #ifdef CONFIG_SCHED_INFO
3463 if (likely(sched_info_on()))
3464 memset(&p->sched_info, 0, sizeof(p->sched_info));
3465 #endif
3466 #if defined(CONFIG_SMP)
3467 p->on_cpu = 0;
3468 #endif
3469 init_task_preempt_count(p);
3470 #ifdef CONFIG_SMP
3471 plist_node_init(&p->pushable_tasks, MAX_PRIO);
3472 RB_CLEAR_NODE(&p->pushable_dl_tasks);
3473 #endif
3474 return 0;
3475 }
3476
sched_post_fork(struct task_struct * p,struct kernel_clone_args * kargs)3477 void sched_post_fork(struct task_struct *p, struct kernel_clone_args *kargs)
3478 {
3479 unsigned long flags;
3480 #ifdef CONFIG_CGROUP_SCHED
3481 struct task_group *tg;
3482 #endif
3483
3484 raw_spin_lock_irqsave(&p->pi_lock, flags);
3485 #ifdef CONFIG_CGROUP_SCHED
3486 tg = container_of(kargs->cset->subsys[cpu_cgrp_id],
3487 struct task_group, css);
3488 p->sched_task_group = autogroup_task_group(p, tg);
3489 #endif
3490 rseq_migrate(p);
3491 /*
3492 * We're setting the CPU for the first time, we don't migrate,
3493 * so use __set_task_cpu().
3494 */
3495 __set_task_cpu(p, smp_processor_id());
3496 if (p->sched_class->task_fork)
3497 p->sched_class->task_fork(p);
3498 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
3499
3500 uclamp_post_fork(p);
3501 }
3502
to_ratio(u64 period,u64 runtime)3503 unsigned long to_ratio(u64 period, u64 runtime)
3504 {
3505 if (runtime == RUNTIME_INF)
3506 return BW_UNIT;
3507
3508 /*
3509 * Doing this here saves a lot of checks in all
3510 * the calling paths, and returning zero seems
3511 * safe for them anyway.
3512 */
3513 if (period == 0)
3514 return 0;
3515
3516 return div64_u64(runtime << BW_SHIFT, period);
3517 }
3518
3519 /*
3520 * wake_up_new_task - wake up a newly created task for the first time.
3521 *
3522 * This function will do some initial scheduler statistics housekeeping
3523 * that must be done for every newly created context, then puts the task
3524 * on the runqueue and wakes it.
3525 */
wake_up_new_task(struct task_struct * p)3526 void wake_up_new_task(struct task_struct *p)
3527 {
3528 struct rq_flags rf;
3529 struct rq *rq;
3530
3531 raw_spin_lock_irqsave(&p->pi_lock, rf.flags);
3532 add_new_task_to_grp(p);
3533
3534 p->state = TASK_RUNNING;
3535 #ifdef CONFIG_SMP
3536 /*
3537 * Fork balancing, do it here and not earlier because:
3538 * - cpus_ptr can change in the fork path
3539 * - any previously selected CPU might disappear through hotplug
3540 *
3541 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq,
3542 * as we're not fully set-up yet.
3543 */
3544 p->recent_used_cpu = task_cpu(p);
3545 rseq_migrate(p);
3546 __set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
3547 #endif
3548 rq = __task_rq_lock(p, &rf);
3549 update_rq_clock(rq);
3550 post_init_entity_util_avg(p);
3551
3552 mark_task_starting(p);
3553
3554 activate_task(rq, p, ENQUEUE_NOCLOCK);
3555 trace_sched_wakeup_new(p);
3556 check_preempt_curr(rq, p, WF_FORK);
3557 #ifdef CONFIG_SMP
3558 if (p->sched_class->task_woken) {
3559 /*
3560 * Nothing relies on rq->lock after this, so its fine to
3561 * drop it.
3562 */
3563 rq_unpin_lock(rq, &rf);
3564 p->sched_class->task_woken(rq, p);
3565 rq_repin_lock(rq, &rf);
3566 }
3567 #endif
3568 task_rq_unlock(rq, p, &rf);
3569 }
3570
3571 #ifdef CONFIG_PREEMPT_NOTIFIERS
3572
3573 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key);
3574
preempt_notifier_inc(void)3575 void preempt_notifier_inc(void)
3576 {
3577 static_branch_inc(&preempt_notifier_key);
3578 }
3579 EXPORT_SYMBOL_GPL(preempt_notifier_inc);
3580
preempt_notifier_dec(void)3581 void preempt_notifier_dec(void)
3582 {
3583 static_branch_dec(&preempt_notifier_key);
3584 }
3585 EXPORT_SYMBOL_GPL(preempt_notifier_dec);
3586
3587 /**
3588 * preempt_notifier_register - tell me when current is being preempted & rescheduled
3589 * @notifier: notifier struct to register
3590 */
preempt_notifier_register(struct preempt_notifier * notifier)3591 void preempt_notifier_register(struct preempt_notifier *notifier)
3592 {
3593 if (!static_branch_unlikely(&preempt_notifier_key))
3594 WARN(1, "registering preempt_notifier while notifiers disabled\n");
3595
3596 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers);
3597 }
3598 EXPORT_SYMBOL_GPL(preempt_notifier_register);
3599
3600 /**
3601 * preempt_notifier_unregister - no longer interested in preemption notifications
3602 * @notifier: notifier struct to unregister
3603 *
3604 * This is *not* safe to call from within a preemption notifier.
3605 */
preempt_notifier_unregister(struct preempt_notifier * notifier)3606 void preempt_notifier_unregister(struct preempt_notifier *notifier)
3607 {
3608 hlist_del(¬ifier->link);
3609 }
3610 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
3611
__fire_sched_in_preempt_notifiers(struct task_struct * curr)3612 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
3613 {
3614 struct preempt_notifier *notifier;
3615
3616 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3617 notifier->ops->sched_in(notifier, raw_smp_processor_id());
3618 }
3619
fire_sched_in_preempt_notifiers(struct task_struct * curr)3620 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3621 {
3622 if (static_branch_unlikely(&preempt_notifier_key))
3623 __fire_sched_in_preempt_notifiers(curr);
3624 }
3625
3626 static void
__fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3627 __fire_sched_out_preempt_notifiers(struct task_struct *curr,
3628 struct task_struct *next)
3629 {
3630 struct preempt_notifier *notifier;
3631
3632 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
3633 notifier->ops->sched_out(notifier, next);
3634 }
3635
3636 static __always_inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3637 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3638 struct task_struct *next)
3639 {
3640 if (static_branch_unlikely(&preempt_notifier_key))
3641 __fire_sched_out_preempt_notifiers(curr, next);
3642 }
3643
3644 #else /* !CONFIG_PREEMPT_NOTIFIERS */
3645
fire_sched_in_preempt_notifiers(struct task_struct * curr)3646 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
3647 {
3648 }
3649
3650 static inline void
fire_sched_out_preempt_notifiers(struct task_struct * curr,struct task_struct * next)3651 fire_sched_out_preempt_notifiers(struct task_struct *curr,
3652 struct task_struct *next)
3653 {
3654 }
3655
3656 #endif /* CONFIG_PREEMPT_NOTIFIERS */
3657
prepare_task(struct task_struct * next)3658 static inline void prepare_task(struct task_struct *next)
3659 {
3660 #ifdef CONFIG_SMP
3661 /*
3662 * Claim the task as running, we do this before switching to it
3663 * such that any running task will have this set.
3664 *
3665 * See the ttwu() WF_ON_CPU case and its ordering comment.
3666 */
3667 WRITE_ONCE(next->on_cpu, 1);
3668 #endif
3669 }
3670
finish_task(struct task_struct * prev)3671 static inline void finish_task(struct task_struct *prev)
3672 {
3673 #ifdef CONFIG_SMP
3674 /*
3675 * This must be the very last reference to @prev from this CPU. After
3676 * p->on_cpu is cleared, the task can be moved to a different CPU. We
3677 * must ensure this doesn't happen until the switch is completely
3678 * finished.
3679 *
3680 * In particular, the load of prev->state in finish_task_switch() must
3681 * happen before this.
3682 *
3683 * Pairs with the smp_cond_load_acquire() in try_to_wake_up().
3684 */
3685 smp_store_release(&prev->on_cpu, 0);
3686 #endif
3687 }
3688
3689 static inline void
prepare_lock_switch(struct rq * rq,struct task_struct * next,struct rq_flags * rf)3690 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf)
3691 {
3692 /*
3693 * Since the runqueue lock will be released by the next
3694 * task (which is an invalid locking op but in the case
3695 * of the scheduler it's an obvious special-case), so we
3696 * do an early lockdep release here:
3697 */
3698 rq_unpin_lock(rq, rf);
3699 spin_release(&rq->lock.dep_map, _THIS_IP_);
3700 #ifdef CONFIG_DEBUG_SPINLOCK
3701 /* this is a valid case when another task releases the spinlock */
3702 rq->lock.owner = next;
3703 #endif
3704 }
3705
finish_lock_switch(struct rq * rq)3706 static inline void finish_lock_switch(struct rq *rq)
3707 {
3708 /*
3709 * If we are tracking spinlock dependencies then we have to
3710 * fix up the runqueue lock - which gets 'carried over' from
3711 * prev into current:
3712 */
3713 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
3714 raw_spin_unlock_irq(&rq->lock);
3715 }
3716
3717 /*
3718 * NOP if the arch has not defined these:
3719 */
3720
3721 #ifndef prepare_arch_switch
3722 # define prepare_arch_switch(next) do { } while (0)
3723 #endif
3724
3725 #ifndef finish_arch_post_lock_switch
3726 # define finish_arch_post_lock_switch() do { } while (0)
3727 #endif
3728
3729 /**
3730 * prepare_task_switch - prepare to switch tasks
3731 * @rq: the runqueue preparing to switch
3732 * @prev: the current task that is being switched out
3733 * @next: the task we are going to switch to.
3734 *
3735 * This is called with the rq lock held and interrupts off. It must
3736 * be paired with a subsequent finish_task_switch after the context
3737 * switch.
3738 *
3739 * prepare_task_switch sets up locking and calls architecture specific
3740 * hooks.
3741 */
3742 static inline void
prepare_task_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next)3743 prepare_task_switch(struct rq *rq, struct task_struct *prev,
3744 struct task_struct *next)
3745 {
3746 kcov_prepare_switch(prev);
3747 sched_info_switch(rq, prev, next);
3748 perf_event_task_sched_out(prev, next);
3749 rseq_preempt(prev);
3750 fire_sched_out_preempt_notifiers(prev, next);
3751 prepare_task(next);
3752 prepare_arch_switch(next);
3753 }
3754
3755 /**
3756 * finish_task_switch - clean up after a task-switch
3757 * @prev: the thread we just switched away from.
3758 *
3759 * finish_task_switch must be called after the context switch, paired
3760 * with a prepare_task_switch call before the context switch.
3761 * finish_task_switch will reconcile locking set up by prepare_task_switch,
3762 * and do any other architecture-specific cleanup actions.
3763 *
3764 * Note that we may have delayed dropping an mm in context_switch(). If
3765 * so, we finish that here outside of the runqueue lock. (Doing it
3766 * with the lock held can cause deadlocks; see schedule() for
3767 * details.)
3768 *
3769 * The context switch have flipped the stack from under us and restored the
3770 * local variables which were saved when this task called schedule() in the
3771 * past. prev == current is still correct but we need to recalculate this_rq
3772 * because prev may have moved to another CPU.
3773 */
finish_task_switch(struct task_struct * prev)3774 static struct rq *finish_task_switch(struct task_struct *prev)
3775 __releases(rq->lock)
3776 {
3777 struct rq *rq = this_rq();
3778 struct mm_struct *mm = rq->prev_mm;
3779 long prev_state;
3780
3781 /*
3782 * The previous task will have left us with a preempt_count of 2
3783 * because it left us after:
3784 *
3785 * schedule()
3786 * preempt_disable(); // 1
3787 * __schedule()
3788 * raw_spin_lock_irq(&rq->lock) // 2
3789 *
3790 * Also, see FORK_PREEMPT_COUNT.
3791 */
3792 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
3793 "corrupted preempt_count: %s/%d/0x%x\n",
3794 current->comm, current->pid, preempt_count()))
3795 preempt_count_set(FORK_PREEMPT_COUNT);
3796
3797 rq->prev_mm = NULL;
3798
3799 /*
3800 * A task struct has one reference for the use as "current".
3801 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
3802 * schedule one last time. The schedule call will never return, and
3803 * the scheduled task must drop that reference.
3804 *
3805 * We must observe prev->state before clearing prev->on_cpu (in
3806 * finish_task), otherwise a concurrent wakeup can get prev
3807 * running on another CPU and we could rave with its RUNNING -> DEAD
3808 * transition, resulting in a double drop.
3809 */
3810 prev_state = prev->state;
3811 vtime_task_switch(prev);
3812 perf_event_task_sched_in(prev, current);
3813 finish_task(prev);
3814 finish_lock_switch(rq);
3815 finish_arch_post_lock_switch();
3816 kcov_finish_switch(current);
3817
3818 fire_sched_in_preempt_notifiers(current);
3819 /*
3820 * When switching through a kernel thread, the loop in
3821 * membarrier_{private,global}_expedited() may have observed that
3822 * kernel thread and not issued an IPI. It is therefore possible to
3823 * schedule between user->kernel->user threads without passing though
3824 * switch_mm(). Membarrier requires a barrier after storing to
3825 * rq->curr, before returning to userspace, so provide them here:
3826 *
3827 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly
3828 * provided by mmdrop(),
3829 * - a sync_core for SYNC_CORE.
3830 */
3831 if (mm) {
3832 membarrier_mm_sync_core_before_usermode(mm);
3833 mmdrop(mm);
3834 }
3835 if (unlikely(prev_state == TASK_DEAD)) {
3836 if (prev->sched_class->task_dead)
3837 prev->sched_class->task_dead(prev);
3838
3839 /*
3840 * Remove function-return probe instances associated with this
3841 * task and put them back on the free list.
3842 */
3843 kprobe_flush_task(prev);
3844
3845 /* Task is done with its stack. */
3846 put_task_stack(prev);
3847
3848 put_task_struct_rcu_user(prev);
3849 }
3850
3851 tick_nohz_task_switch();
3852 return rq;
3853 }
3854
3855 #ifdef CONFIG_SMP
3856
3857 /* rq->lock is NOT held, but preemption is disabled */
__balance_callback(struct rq * rq)3858 static void __balance_callback(struct rq *rq)
3859 {
3860 struct callback_head *head, *next;
3861 void (*func)(struct rq *rq);
3862 unsigned long flags;
3863
3864 raw_spin_lock_irqsave(&rq->lock, flags);
3865 head = rq->balance_callback;
3866 rq->balance_callback = NULL;
3867 while (head) {
3868 func = (void (*)(struct rq *))head->func;
3869 next = head->next;
3870 head->next = NULL;
3871 head = next;
3872
3873 func(rq);
3874 }
3875 raw_spin_unlock_irqrestore(&rq->lock, flags);
3876 }
3877
balance_callback(struct rq * rq)3878 static inline void balance_callback(struct rq *rq)
3879 {
3880 if (unlikely(rq->balance_callback))
3881 __balance_callback(rq);
3882 }
3883
3884 #else
3885
balance_callback(struct rq * rq)3886 static inline void balance_callback(struct rq *rq)
3887 {
3888 }
3889
3890 #endif
3891
3892 /**
3893 * schedule_tail - first thing a freshly forked thread must call.
3894 * @prev: the thread we just switched away from.
3895 */
schedule_tail(struct task_struct * prev)3896 asmlinkage __visible void schedule_tail(struct task_struct *prev)
3897 __releases(rq->lock)
3898 {
3899 struct rq *rq;
3900
3901 /*
3902 * New tasks start with FORK_PREEMPT_COUNT, see there and
3903 * finish_task_switch() for details.
3904 *
3905 * finish_task_switch() will drop rq->lock() and lower preempt_count
3906 * and the preempt_enable() will end up enabling preemption (on
3907 * PREEMPT_COUNT kernels).
3908 */
3909
3910 rq = finish_task_switch(prev);
3911 balance_callback(rq);
3912 preempt_enable();
3913
3914 if (current->set_child_tid)
3915 put_user(task_pid_vnr(current), current->set_child_tid);
3916
3917 calculate_sigpending();
3918 }
3919
3920 /*
3921 * context_switch - switch to the new MM and the new thread's register state.
3922 */
3923 static __always_inline struct rq *
context_switch(struct rq * rq,struct task_struct * prev,struct task_struct * next,struct rq_flags * rf)3924 context_switch(struct rq *rq, struct task_struct *prev,
3925 struct task_struct *next, struct rq_flags *rf)
3926 {
3927 prepare_task_switch(rq, prev, next);
3928
3929 /*
3930 * For paravirt, this is coupled with an exit in switch_to to
3931 * combine the page table reload and the switch backend into
3932 * one hypercall.
3933 */
3934 arch_start_context_switch(prev);
3935
3936 /*
3937 * kernel -> kernel lazy + transfer active
3938 * user -> kernel lazy + mmgrab() active
3939 *
3940 * kernel -> user switch + mmdrop() active
3941 * user -> user switch
3942 */
3943 if (!next->mm) { // to kernel
3944 enter_lazy_tlb(prev->active_mm, next);
3945
3946 next->active_mm = prev->active_mm;
3947 if (prev->mm) // from user
3948 mmgrab(prev->active_mm);
3949 else
3950 prev->active_mm = NULL;
3951 } else { // to user
3952 membarrier_switch_mm(rq, prev->active_mm, next->mm);
3953 /*
3954 * sys_membarrier() requires an smp_mb() between setting
3955 * rq->curr / membarrier_switch_mm() and returning to userspace.
3956 *
3957 * The below provides this either through switch_mm(), or in
3958 * case 'prev->active_mm == next->mm' through
3959 * finish_task_switch()'s mmdrop().
3960 */
3961 switch_mm_irqs_off(prev->active_mm, next->mm, next);
3962
3963 if (!prev->mm) { // from kernel
3964 /* will mmdrop() in finish_task_switch(). */
3965 rq->prev_mm = prev->active_mm;
3966 prev->active_mm = NULL;
3967 }
3968 }
3969
3970 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
3971
3972 prepare_lock_switch(rq, next, rf);
3973
3974 /* Here we just switch the register state and the stack. */
3975 switch_to(prev, next, prev);
3976 barrier();
3977
3978 return finish_task_switch(prev);
3979 }
3980
3981 /*
3982 * nr_running and nr_context_switches:
3983 *
3984 * externally visible scheduler statistics: current number of runnable
3985 * threads, total number of context switches performed since bootup.
3986 */
nr_running(void)3987 unsigned long nr_running(void)
3988 {
3989 unsigned long i, sum = 0;
3990
3991 for_each_online_cpu(i)
3992 sum += cpu_rq(i)->nr_running;
3993
3994 return sum;
3995 }
3996
3997 /*
3998 * Check if only the current task is running on the CPU.
3999 *
4000 * Caution: this function does not check that the caller has disabled
4001 * preemption, thus the result might have a time-of-check-to-time-of-use
4002 * race. The caller is responsible to use it correctly, for example:
4003 *
4004 * - from a non-preemptible section (of course)
4005 *
4006 * - from a thread that is bound to a single CPU
4007 *
4008 * - in a loop with very short iterations (e.g. a polling loop)
4009 */
single_task_running(void)4010 bool single_task_running(void)
4011 {
4012 return raw_rq()->nr_running == 1;
4013 }
4014 EXPORT_SYMBOL(single_task_running);
4015
nr_context_switches(void)4016 unsigned long long nr_context_switches(void)
4017 {
4018 int i;
4019 unsigned long long sum = 0;
4020
4021 for_each_possible_cpu(i)
4022 sum += cpu_rq(i)->nr_switches;
4023
4024 return sum;
4025 }
4026
4027 /*
4028 * Consumers of these two interfaces, like for example the cpuidle menu
4029 * governor, are using nonsensical data. Preferring shallow idle state selection
4030 * for a CPU that has IO-wait which might not even end up running the task when
4031 * it does become runnable.
4032 */
4033
nr_iowait_cpu(int cpu)4034 unsigned long nr_iowait_cpu(int cpu)
4035 {
4036 return atomic_read(&cpu_rq(cpu)->nr_iowait);
4037 }
4038
4039 /*
4040 * IO-wait accounting, and how its mostly bollocks (on SMP).
4041 *
4042 * The idea behind IO-wait account is to account the idle time that we could
4043 * have spend running if it were not for IO. That is, if we were to improve the
4044 * storage performance, we'd have a proportional reduction in IO-wait time.
4045 *
4046 * This all works nicely on UP, where, when a task blocks on IO, we account
4047 * idle time as IO-wait, because if the storage were faster, it could've been
4048 * running and we'd not be idle.
4049 *
4050 * This has been extended to SMP, by doing the same for each CPU. This however
4051 * is broken.
4052 *
4053 * Imagine for instance the case where two tasks block on one CPU, only the one
4054 * CPU will have IO-wait accounted, while the other has regular idle. Even
4055 * though, if the storage were faster, both could've ran at the same time,
4056 * utilising both CPUs.
4057 *
4058 * This means, that when looking globally, the current IO-wait accounting on
4059 * SMP is a lower bound, by reason of under accounting.
4060 *
4061 * Worse, since the numbers are provided per CPU, they are sometimes
4062 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly
4063 * associated with any one particular CPU, it can wake to another CPU than it
4064 * blocked on. This means the per CPU IO-wait number is meaningless.
4065 *
4066 * Task CPU affinities can make all that even more 'interesting'.
4067 */
4068
nr_iowait(void)4069 unsigned long nr_iowait(void)
4070 {
4071 unsigned long i, sum = 0;
4072
4073 for_each_possible_cpu(i)
4074 sum += nr_iowait_cpu(i);
4075
4076 return sum;
4077 }
4078
4079 #ifdef CONFIG_SMP
4080
4081 /*
4082 * sched_exec - execve() is a valuable balancing opportunity, because at
4083 * this point the task has the smallest effective memory and cache footprint.
4084 */
sched_exec(void)4085 void sched_exec(void)
4086 {
4087 struct task_struct *p = current;
4088 unsigned long flags;
4089 int dest_cpu;
4090
4091 raw_spin_lock_irqsave(&p->pi_lock, flags);
4092 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
4093 if (dest_cpu == smp_processor_id())
4094 goto unlock;
4095
4096 if (likely(cpu_active(dest_cpu) && likely(!cpu_isolated(dest_cpu)))) {
4097 struct migration_arg arg = { p, dest_cpu };
4098
4099 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4100 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
4101 return;
4102 }
4103 unlock:
4104 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4105 }
4106
4107 #endif
4108
4109 DEFINE_PER_CPU(struct kernel_stat, kstat);
4110 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
4111
4112 EXPORT_PER_CPU_SYMBOL(kstat);
4113 EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
4114
4115 /*
4116 * The function fair_sched_class.update_curr accesses the struct curr
4117 * and its field curr->exec_start; when called from task_sched_runtime(),
4118 * we observe a high rate of cache misses in practice.
4119 * Prefetching this data results in improved performance.
4120 */
prefetch_curr_exec_start(struct task_struct * p)4121 static inline void prefetch_curr_exec_start(struct task_struct *p)
4122 {
4123 #ifdef CONFIG_FAIR_GROUP_SCHED
4124 struct sched_entity *curr = (&p->se)->cfs_rq->curr;
4125 #else
4126 struct sched_entity *curr = (&task_rq(p)->cfs)->curr;
4127 #endif
4128 prefetch(curr);
4129 prefetch(&curr->exec_start);
4130 }
4131
4132 /*
4133 * Return accounted runtime for the task.
4134 * In case the task is currently running, return the runtime plus current's
4135 * pending runtime that have not been accounted yet.
4136 */
task_sched_runtime(struct task_struct * p)4137 unsigned long long task_sched_runtime(struct task_struct *p)
4138 {
4139 struct rq_flags rf;
4140 struct rq *rq;
4141 u64 ns;
4142
4143 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
4144 /*
4145 * 64-bit doesn't need locks to atomically read a 64-bit value.
4146 * So we have a optimization chance when the task's delta_exec is 0.
4147 * Reading ->on_cpu is racy, but this is ok.
4148 *
4149 * If we race with it leaving CPU, we'll take a lock. So we're correct.
4150 * If we race with it entering CPU, unaccounted time is 0. This is
4151 * indistinguishable from the read occurring a few cycles earlier.
4152 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
4153 * been accounted, so we're correct here as well.
4154 */
4155 if (!p->on_cpu || !task_on_rq_queued(p))
4156 return p->se.sum_exec_runtime;
4157 #endif
4158
4159 rq = task_rq_lock(p, &rf);
4160 /*
4161 * Must be ->curr _and_ ->on_rq. If dequeued, we would
4162 * project cycles that may never be accounted to this
4163 * thread, breaking clock_gettime().
4164 */
4165 if (task_current(rq, p) && task_on_rq_queued(p)) {
4166 prefetch_curr_exec_start(p);
4167 update_rq_clock(rq);
4168 p->sched_class->update_curr(rq);
4169 }
4170 ns = p->se.sum_exec_runtime;
4171 task_rq_unlock(rq, p, &rf);
4172
4173 return ns;
4174 }
4175
4176 /*
4177 * This function gets called by the timer code, with HZ frequency.
4178 * We call it with interrupts disabled.
4179 */
scheduler_tick(void)4180 void scheduler_tick(void)
4181 {
4182 int cpu = smp_processor_id();
4183 struct rq *rq = cpu_rq(cpu);
4184 struct task_struct *curr = rq->curr;
4185 struct rq_flags rf;
4186 u64 wallclock;
4187 unsigned long thermal_pressure;
4188
4189 arch_scale_freq_tick();
4190 sched_clock_tick();
4191
4192 rq_lock(rq, &rf);
4193
4194 set_window_start(rq);
4195 wallclock = sched_ktime_clock();
4196 update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
4197 update_rq_clock(rq);
4198 thermal_pressure = arch_scale_thermal_pressure(cpu_of(rq));
4199 update_thermal_load_avg(rq_clock_thermal(rq), rq, thermal_pressure);
4200 curr->sched_class->task_tick(rq, curr, 0);
4201 calc_global_load_tick(rq);
4202 psi_task_tick(rq);
4203
4204 rq_unlock(rq, &rf);
4205
4206 #ifdef CONFIG_SCHED_RTG
4207 sched_update_rtg_tick(curr);
4208 #endif
4209 perf_event_task_tick();
4210
4211 #ifdef CONFIG_SMP
4212 rq->idle_balance = idle_cpu(cpu);
4213 trigger_load_balance(rq);
4214
4215 #ifdef CONFIG_SCHED_EAS
4216 if (curr->sched_class->check_for_migration)
4217 curr->sched_class->check_for_migration(rq, curr);
4218 #endif
4219 #endif
4220 }
4221
4222 #ifdef CONFIG_NO_HZ_FULL
4223
4224 struct tick_work {
4225 int cpu;
4226 atomic_t state;
4227 struct delayed_work work;
4228 };
4229 /* Values for ->state, see diagram below. */
4230 #define TICK_SCHED_REMOTE_OFFLINE 0
4231 #define TICK_SCHED_REMOTE_OFFLINING 1
4232 #define TICK_SCHED_REMOTE_RUNNING 2
4233
4234 /*
4235 * State diagram for ->state:
4236 *
4237 *
4238 * TICK_SCHED_REMOTE_OFFLINE
4239 * | ^
4240 * | |
4241 * | | sched_tick_remote()
4242 * | |
4243 * | |
4244 * +--TICK_SCHED_REMOTE_OFFLINING
4245 * | ^
4246 * | |
4247 * sched_tick_start() | | sched_tick_stop()
4248 * | |
4249 * V |
4250 * TICK_SCHED_REMOTE_RUNNING
4251 *
4252 *
4253 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote()
4254 * and sched_tick_start() are happy to leave the state in RUNNING.
4255 */
4256
4257 static struct tick_work __percpu *tick_work_cpu;
4258
sched_tick_remote(struct work_struct * work)4259 static void sched_tick_remote(struct work_struct *work)
4260 {
4261 struct delayed_work *dwork = to_delayed_work(work);
4262 struct tick_work *twork = container_of(dwork, struct tick_work, work);
4263 int cpu = twork->cpu;
4264 struct rq *rq = cpu_rq(cpu);
4265 struct task_struct *curr;
4266 struct rq_flags rf;
4267 u64 delta;
4268 int os;
4269
4270 /*
4271 * Handle the tick only if it appears the remote CPU is running in full
4272 * dynticks mode. The check is racy by nature, but missing a tick or
4273 * having one too much is no big deal because the scheduler tick updates
4274 * statistics and checks timeslices in a time-independent way, regardless
4275 * of when exactly it is running.
4276 */
4277 if (!tick_nohz_tick_stopped_cpu(cpu))
4278 goto out_requeue;
4279
4280 rq_lock_irq(rq, &rf);
4281 curr = rq->curr;
4282 if (cpu_is_offline(cpu))
4283 goto out_unlock;
4284
4285 update_rq_clock(rq);
4286
4287 if (!is_idle_task(curr)) {
4288 /*
4289 * Make sure the next tick runs within a reasonable
4290 * amount of time.
4291 */
4292 delta = rq_clock_task(rq) - curr->se.exec_start;
4293 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3);
4294 }
4295 curr->sched_class->task_tick(rq, curr, 0);
4296
4297 calc_load_nohz_remote(rq);
4298 out_unlock:
4299 rq_unlock_irq(rq, &rf);
4300 out_requeue:
4301
4302 /*
4303 * Run the remote tick once per second (1Hz). This arbitrary
4304 * frequency is large enough to avoid overload but short enough
4305 * to keep scheduler internal stats reasonably up to date. But
4306 * first update state to reflect hotplug activity if required.
4307 */
4308 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING);
4309 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE);
4310 if (os == TICK_SCHED_REMOTE_RUNNING)
4311 queue_delayed_work(system_unbound_wq, dwork, HZ);
4312 }
4313
sched_tick_start(int cpu)4314 static void sched_tick_start(int cpu)
4315 {
4316 int os;
4317 struct tick_work *twork;
4318
4319 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4320 return;
4321
4322 WARN_ON_ONCE(!tick_work_cpu);
4323
4324 twork = per_cpu_ptr(tick_work_cpu, cpu);
4325 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING);
4326 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING);
4327 if (os == TICK_SCHED_REMOTE_OFFLINE) {
4328 twork->cpu = cpu;
4329 INIT_DELAYED_WORK(&twork->work, sched_tick_remote);
4330 queue_delayed_work(system_unbound_wq, &twork->work, HZ);
4331 }
4332 }
4333
4334 #ifdef CONFIG_HOTPLUG_CPU
sched_tick_stop(int cpu)4335 static void sched_tick_stop(int cpu)
4336 {
4337 struct tick_work *twork;
4338 int os;
4339
4340 if (housekeeping_cpu(cpu, HK_FLAG_TICK))
4341 return;
4342
4343 WARN_ON_ONCE(!tick_work_cpu);
4344
4345 twork = per_cpu_ptr(tick_work_cpu, cpu);
4346 /* There cannot be competing actions, but don't rely on stop-machine. */
4347 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING);
4348 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING);
4349 /* Don't cancel, as this would mess up the state machine. */
4350 }
4351 #endif /* CONFIG_HOTPLUG_CPU */
4352
sched_tick_offload_init(void)4353 int __init sched_tick_offload_init(void)
4354 {
4355 tick_work_cpu = alloc_percpu(struct tick_work);
4356 BUG_ON(!tick_work_cpu);
4357 return 0;
4358 }
4359
4360 #else /* !CONFIG_NO_HZ_FULL */
sched_tick_start(int cpu)4361 static inline void sched_tick_start(int cpu) { }
sched_tick_stop(int cpu)4362 static inline void sched_tick_stop(int cpu) { }
4363 #endif
4364
4365 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \
4366 defined(CONFIG_TRACE_PREEMPT_TOGGLE))
4367 /*
4368 * If the value passed in is equal to the current preempt count
4369 * then we just disabled preemption. Start timing the latency.
4370 */
preempt_latency_start(int val)4371 static inline void preempt_latency_start(int val)
4372 {
4373 if (preempt_count() == val) {
4374 unsigned long ip = get_lock_parent_ip();
4375 #ifdef CONFIG_DEBUG_PREEMPT
4376 current->preempt_disable_ip = ip;
4377 #endif
4378 trace_preempt_off(CALLER_ADDR0, ip);
4379 }
4380 }
4381
preempt_count_add(int val)4382 void preempt_count_add(int val)
4383 {
4384 #ifdef CONFIG_DEBUG_PREEMPT
4385 /*
4386 * Underflow?
4387 */
4388 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4389 return;
4390 #endif
4391 __preempt_count_add(val);
4392 #ifdef CONFIG_DEBUG_PREEMPT
4393 /*
4394 * Spinlock count overflowing soon?
4395 */
4396 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4397 PREEMPT_MASK - 10);
4398 #endif
4399 preempt_latency_start(val);
4400 }
4401 EXPORT_SYMBOL(preempt_count_add);
4402 NOKPROBE_SYMBOL(preempt_count_add);
4403
4404 /*
4405 * If the value passed in equals to the current preempt count
4406 * then we just enabled preemption. Stop timing the latency.
4407 */
preempt_latency_stop(int val)4408 static inline void preempt_latency_stop(int val)
4409 {
4410 if (preempt_count() == val)
4411 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
4412 }
4413
preempt_count_sub(int val)4414 void preempt_count_sub(int val)
4415 {
4416 #ifdef CONFIG_DEBUG_PREEMPT
4417 /*
4418 * Underflow?
4419 */
4420 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
4421 return;
4422 /*
4423 * Is the spinlock portion underflowing?
4424 */
4425 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4426 !(preempt_count() & PREEMPT_MASK)))
4427 return;
4428 #endif
4429
4430 preempt_latency_stop(val);
4431 __preempt_count_sub(val);
4432 }
4433 EXPORT_SYMBOL(preempt_count_sub);
4434 NOKPROBE_SYMBOL(preempt_count_sub);
4435
4436 #else
preempt_latency_start(int val)4437 static inline void preempt_latency_start(int val) { }
preempt_latency_stop(int val)4438 static inline void preempt_latency_stop(int val) { }
4439 #endif
4440
get_preempt_disable_ip(struct task_struct * p)4441 static inline unsigned long get_preempt_disable_ip(struct task_struct *p)
4442 {
4443 #ifdef CONFIG_DEBUG_PREEMPT
4444 return p->preempt_disable_ip;
4445 #else
4446 return 0;
4447 #endif
4448 }
4449
4450 /*
4451 * Print scheduling while atomic bug:
4452 */
__schedule_bug(struct task_struct * prev)4453 static noinline void __schedule_bug(struct task_struct *prev)
4454 {
4455 /* Save this before calling printk(), since that will clobber it */
4456 unsigned long preempt_disable_ip = get_preempt_disable_ip(current);
4457
4458 if (oops_in_progress)
4459 return;
4460
4461 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4462 prev->comm, prev->pid, preempt_count());
4463
4464 debug_show_held_locks(prev);
4465 print_modules();
4466 if (irqs_disabled())
4467 print_irqtrace_events(prev);
4468 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
4469 && in_atomic_preempt_off()) {
4470 pr_err("Preemption disabled at:");
4471 print_ip_sym(KERN_ERR, preempt_disable_ip);
4472 }
4473 check_panic_on_warn("scheduling while atomic");
4474
4475 dump_stack();
4476 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4477 }
4478
4479 /*
4480 * Various schedule()-time debugging checks and statistics:
4481 */
schedule_debug(struct task_struct * prev,bool preempt)4482 static inline void schedule_debug(struct task_struct *prev, bool preempt)
4483 {
4484 #ifdef CONFIG_SCHED_STACK_END_CHECK
4485 if (task_stack_end_corrupted(prev))
4486 panic("corrupted stack end detected inside scheduler\n");
4487
4488 if (task_scs_end_corrupted(prev))
4489 panic("corrupted shadow stack detected inside scheduler\n");
4490 #endif
4491
4492 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
4493 if (!preempt && prev->state && prev->non_block_count) {
4494 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n",
4495 prev->comm, prev->pid, prev->non_block_count);
4496 dump_stack();
4497 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
4498 }
4499 #endif
4500
4501 if (unlikely(in_atomic_preempt_off())) {
4502 __schedule_bug(prev);
4503 preempt_count_set(PREEMPT_DISABLED);
4504 }
4505 rcu_sleep_check();
4506
4507 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4508
4509 schedstat_inc(this_rq()->sched_count);
4510 }
4511
put_prev_task_balance(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4512 static void put_prev_task_balance(struct rq *rq, struct task_struct *prev,
4513 struct rq_flags *rf)
4514 {
4515 #ifdef CONFIG_SMP
4516 const struct sched_class *class;
4517 /*
4518 * We must do the balancing pass before put_prev_task(), such
4519 * that when we release the rq->lock the task is in the same
4520 * state as before we took rq->lock.
4521 *
4522 * We can terminate the balance pass as soon as we know there is
4523 * a runnable task of @class priority or higher.
4524 */
4525 for_class_range(class, prev->sched_class, &idle_sched_class) {
4526 if (class->balance(rq, prev, rf))
4527 break;
4528 }
4529 #endif
4530
4531 put_prev_task(rq, prev);
4532 }
4533
4534 /*
4535 * Pick up the highest-prio task:
4536 */
4537 static inline struct task_struct *
pick_next_task(struct rq * rq,struct task_struct * prev,struct rq_flags * rf)4538 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
4539 {
4540 const struct sched_class *class;
4541 struct task_struct *p;
4542
4543 /*
4544 * Optimization: we know that if all tasks are in the fair class we can
4545 * call that function directly, but only if the @prev task wasn't of a
4546 * higher scheduling class, because otherwise those loose the
4547 * opportunity to pull in more work from other CPUs.
4548 */
4549 if (likely(prev->sched_class <= &fair_sched_class &&
4550 rq->nr_running == rq->cfs.h_nr_running)) {
4551
4552 p = pick_next_task_fair(rq, prev, rf);
4553 if (unlikely(p == RETRY_TASK))
4554 goto restart;
4555
4556 /* Assumes fair_sched_class->next == idle_sched_class */
4557 if (!p) {
4558 put_prev_task(rq, prev);
4559 p = pick_next_task_idle(rq);
4560 }
4561
4562 return p;
4563 }
4564
4565 restart:
4566 put_prev_task_balance(rq, prev, rf);
4567
4568 for_each_class(class) {
4569 p = class->pick_next_task(rq);
4570 if (p)
4571 return p;
4572 }
4573
4574 /* The idle class should always have a runnable task: */
4575 BUG();
4576 }
4577
4578 /*
4579 * __schedule() is the main scheduler function.
4580 *
4581 * The main means of driving the scheduler and thus entering this function are:
4582 *
4583 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
4584 *
4585 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
4586 * paths. For example, see arch/x86/entry_64.S.
4587 *
4588 * To drive preemption between tasks, the scheduler sets the flag in timer
4589 * interrupt handler scheduler_tick().
4590 *
4591 * 3. Wakeups don't really cause entry into schedule(). They add a
4592 * task to the run-queue and that's it.
4593 *
4594 * Now, if the new task added to the run-queue preempts the current
4595 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
4596 * called on the nearest possible occasion:
4597 *
4598 * - If the kernel is preemptible (CONFIG_PREEMPTION=y):
4599 *
4600 * - in syscall or exception context, at the next outmost
4601 * preempt_enable(). (this might be as soon as the wake_up()'s
4602 * spin_unlock()!)
4603 *
4604 * - in IRQ context, return from interrupt-handler to
4605 * preemptible context
4606 *
4607 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set)
4608 * then at the next:
4609 *
4610 * - cond_resched() call
4611 * - explicit schedule() call
4612 * - return from syscall or exception to user-space
4613 * - return from interrupt-handler to user-space
4614 *
4615 * WARNING: must be called with preemption disabled!
4616 */
__schedule(bool preempt)4617 static void __sched notrace __schedule(bool preempt)
4618 {
4619 struct task_struct *prev, *next;
4620 unsigned long *switch_count;
4621 unsigned long prev_state;
4622 struct rq_flags rf;
4623 struct rq *rq;
4624 int cpu;
4625 u64 wallclock;
4626
4627 cpu = smp_processor_id();
4628 rq = cpu_rq(cpu);
4629 prev = rq->curr;
4630
4631 schedule_debug(prev, preempt);
4632
4633 if (sched_feat(HRTICK))
4634 hrtick_clear(rq);
4635
4636 local_irq_disable();
4637 rcu_note_context_switch(preempt);
4638
4639 /*
4640 * Make sure that signal_pending_state()->signal_pending() below
4641 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
4642 * done by the caller to avoid the race with signal_wake_up():
4643 *
4644 * __set_current_state(@state) signal_wake_up()
4645 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING)
4646 * wake_up_state(p, state)
4647 * LOCK rq->lock LOCK p->pi_state
4648 * smp_mb__after_spinlock() smp_mb__after_spinlock()
4649 * if (signal_pending_state()) if (p->state & @state)
4650 *
4651 * Also, the membarrier system call requires a full memory barrier
4652 * after coming from user-space, before storing to rq->curr.
4653 */
4654 rq_lock(rq, &rf);
4655 smp_mb__after_spinlock();
4656
4657 /* Promote REQ to ACT */
4658 rq->clock_update_flags <<= 1;
4659 update_rq_clock(rq);
4660
4661 switch_count = &prev->nivcsw;
4662
4663 /*
4664 * We must load prev->state once (task_struct::state is volatile), such
4665 * that:
4666 *
4667 * - we form a control dependency vs deactivate_task() below.
4668 * - ptrace_{,un}freeze_traced() can change ->state underneath us.
4669 */
4670 prev_state = prev->state;
4671 if (!preempt && prev_state) {
4672 if (signal_pending_state(prev_state, prev)) {
4673 prev->state = TASK_RUNNING;
4674 } else {
4675 prev->sched_contributes_to_load =
4676 (prev_state & TASK_UNINTERRUPTIBLE) &&
4677 !(prev_state & TASK_NOLOAD) &&
4678 !(prev->flags & PF_FROZEN);
4679
4680 if (prev->sched_contributes_to_load)
4681 rq->nr_uninterruptible++;
4682
4683 /*
4684 * __schedule() ttwu()
4685 * prev_state = prev->state; if (p->on_rq && ...)
4686 * if (prev_state) goto out;
4687 * p->on_rq = 0; smp_acquire__after_ctrl_dep();
4688 * p->state = TASK_WAKING
4689 *
4690 * Where __schedule() and ttwu() have matching control dependencies.
4691 *
4692 * After this, schedule() must not care about p->state any more.
4693 */
4694 deactivate_task(rq, prev, DEQUEUE_SLEEP | DEQUEUE_NOCLOCK);
4695
4696 if (prev->in_iowait) {
4697 atomic_inc(&rq->nr_iowait);
4698 delayacct_blkio_start();
4699 }
4700 }
4701 switch_count = &prev->nvcsw;
4702 }
4703
4704 next = pick_next_task(rq, prev, &rf);
4705 clear_tsk_need_resched(prev);
4706 clear_preempt_need_resched();
4707
4708 wallclock = sched_ktime_clock();
4709 if (likely(prev != next)) {
4710 #ifdef CONFIG_SCHED_WALT
4711 if (!prev->on_rq)
4712 prev->last_sleep_ts = wallclock;
4713 #endif
4714 update_task_ravg(prev, rq, PUT_PREV_TASK, wallclock, 0);
4715 update_task_ravg(next, rq, PICK_NEXT_TASK, wallclock, 0);
4716 rq->nr_switches++;
4717 /*
4718 * RCU users of rcu_dereference(rq->curr) may not see
4719 * changes to task_struct made by pick_next_task().
4720 */
4721 RCU_INIT_POINTER(rq->curr, next);
4722 /*
4723 * The membarrier system call requires each architecture
4724 * to have a full memory barrier after updating
4725 * rq->curr, before returning to user-space.
4726 *
4727 * Here are the schemes providing that barrier on the
4728 * various architectures:
4729 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC.
4730 * switch_mm() rely on membarrier_arch_switch_mm() on PowerPC.
4731 * - finish_lock_switch() for weakly-ordered
4732 * architectures where spin_unlock is a full barrier,
4733 * - switch_to() for arm64 (weakly-ordered, spin_unlock
4734 * is a RELEASE barrier),
4735 */
4736 ++*switch_count;
4737
4738 psi_sched_switch(prev, next, !task_on_rq_queued(prev));
4739
4740 trace_sched_switch(preempt, prev, next);
4741
4742 /* Also unlocks the rq: */
4743 rq = context_switch(rq, prev, next, &rf);
4744 } else {
4745 update_task_ravg(prev, rq, TASK_UPDATE, wallclock, 0);
4746 rq->clock_update_flags &= ~(RQCF_ACT_SKIP|RQCF_REQ_SKIP);
4747 rq_unlock_irq(rq, &rf);
4748 }
4749
4750 balance_callback(rq);
4751 }
4752
do_task_dead(void)4753 void __noreturn do_task_dead(void)
4754 {
4755 /* Causes final put_task_struct in finish_task_switch(): */
4756 set_special_state(TASK_DEAD);
4757
4758 /* Tell freezer to ignore us: */
4759 current->flags |= PF_NOFREEZE;
4760
4761 __schedule(false);
4762 BUG();
4763
4764 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */
4765 for (;;)
4766 cpu_relax();
4767 }
4768
sched_submit_work(struct task_struct * tsk)4769 static inline void sched_submit_work(struct task_struct *tsk)
4770 {
4771 unsigned int task_flags;
4772
4773 if (!tsk->state)
4774 return;
4775
4776 task_flags = tsk->flags;
4777 /*
4778 * If a worker went to sleep, notify and ask workqueue whether
4779 * it wants to wake up a task to maintain concurrency.
4780 * As this function is called inside the schedule() context,
4781 * we disable preemption to avoid it calling schedule() again
4782 * in the possible wakeup of a kworker and because wq_worker_sleeping()
4783 * requires it.
4784 */
4785 if (task_flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4786 preempt_disable();
4787 if (task_flags & PF_WQ_WORKER)
4788 wq_worker_sleeping(tsk);
4789 else
4790 io_wq_worker_sleeping(tsk);
4791 preempt_enable_no_resched();
4792 }
4793
4794 if (tsk_is_pi_blocked(tsk))
4795 return;
4796
4797 /*
4798 * If we are going to sleep and we have plugged IO queued,
4799 * make sure to submit it to avoid deadlocks.
4800 */
4801 if (blk_needs_flush_plug(tsk))
4802 blk_schedule_flush_plug(tsk);
4803 }
4804
sched_update_worker(struct task_struct * tsk)4805 static void sched_update_worker(struct task_struct *tsk)
4806 {
4807 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER)) {
4808 if (tsk->flags & PF_WQ_WORKER)
4809 wq_worker_running(tsk);
4810 else
4811 io_wq_worker_running(tsk);
4812 }
4813 }
4814
schedule(void)4815 asmlinkage __visible void __sched schedule(void)
4816 {
4817 struct task_struct *tsk = current;
4818
4819 sched_submit_work(tsk);
4820 do {
4821 preempt_disable();
4822 __schedule(false);
4823 sched_preempt_enable_no_resched();
4824 } while (need_resched());
4825 sched_update_worker(tsk);
4826 }
4827 EXPORT_SYMBOL(schedule);
4828
4829 /*
4830 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted
4831 * state (have scheduled out non-voluntarily) by making sure that all
4832 * tasks have either left the run queue or have gone into user space.
4833 * As idle tasks do not do either, they must not ever be preempted
4834 * (schedule out non-voluntarily).
4835 *
4836 * schedule_idle() is similar to schedule_preempt_disable() except that it
4837 * never enables preemption because it does not call sched_submit_work().
4838 */
schedule_idle(void)4839 void __sched schedule_idle(void)
4840 {
4841 /*
4842 * As this skips calling sched_submit_work(), which the idle task does
4843 * regardless because that function is a nop when the task is in a
4844 * TASK_RUNNING state, make sure this isn't used someplace that the
4845 * current task can be in any other state. Note, idle is always in the
4846 * TASK_RUNNING state.
4847 */
4848 WARN_ON_ONCE(current->state);
4849 do {
4850 __schedule(false);
4851 } while (need_resched());
4852 }
4853
4854 #ifdef CONFIG_CONTEXT_TRACKING
schedule_user(void)4855 asmlinkage __visible void __sched schedule_user(void)
4856 {
4857 /*
4858 * If we come here after a random call to set_need_resched(),
4859 * or we have been woken up remotely but the IPI has not yet arrived,
4860 * we haven't yet exited the RCU idle mode. Do it here manually until
4861 * we find a better solution.
4862 *
4863 * NB: There are buggy callers of this function. Ideally we
4864 * should warn if prev_state != CONTEXT_USER, but that will trigger
4865 * too frequently to make sense yet.
4866 */
4867 enum ctx_state prev_state = exception_enter();
4868 schedule();
4869 exception_exit(prev_state);
4870 }
4871 #endif
4872
4873 /**
4874 * schedule_preempt_disabled - called with preemption disabled
4875 *
4876 * Returns with preemption disabled. Note: preempt_count must be 1
4877 */
schedule_preempt_disabled(void)4878 void __sched schedule_preempt_disabled(void)
4879 {
4880 sched_preempt_enable_no_resched();
4881 schedule();
4882 preempt_disable();
4883 }
4884
preempt_schedule_common(void)4885 static void __sched notrace preempt_schedule_common(void)
4886 {
4887 do {
4888 /*
4889 * Because the function tracer can trace preempt_count_sub()
4890 * and it also uses preempt_enable/disable_notrace(), if
4891 * NEED_RESCHED is set, the preempt_enable_notrace() called
4892 * by the function tracer will call this function again and
4893 * cause infinite recursion.
4894 *
4895 * Preemption must be disabled here before the function
4896 * tracer can trace. Break up preempt_disable() into two
4897 * calls. One to disable preemption without fear of being
4898 * traced. The other to still record the preemption latency,
4899 * which can also be traced by the function tracer.
4900 */
4901 preempt_disable_notrace();
4902 preempt_latency_start(1);
4903 __schedule(true);
4904 preempt_latency_stop(1);
4905 preempt_enable_no_resched_notrace();
4906
4907 /*
4908 * Check again in case we missed a preemption opportunity
4909 * between schedule and now.
4910 */
4911 } while (need_resched());
4912 }
4913
4914 #ifdef CONFIG_PREEMPTION
4915 /*
4916 * This is the entry point to schedule() from in-kernel preemption
4917 * off of preempt_enable.
4918 */
preempt_schedule(void)4919 asmlinkage __visible void __sched notrace preempt_schedule(void)
4920 {
4921 /*
4922 * If there is a non-zero preempt_count or interrupts are disabled,
4923 * we do not want to preempt the current task. Just return..
4924 */
4925 if (likely(!preemptible()))
4926 return;
4927
4928 preempt_schedule_common();
4929 }
4930 NOKPROBE_SYMBOL(preempt_schedule);
4931 EXPORT_SYMBOL(preempt_schedule);
4932
4933 /**
4934 * preempt_schedule_notrace - preempt_schedule called by tracing
4935 *
4936 * The tracing infrastructure uses preempt_enable_notrace to prevent
4937 * recursion and tracing preempt enabling caused by the tracing
4938 * infrastructure itself. But as tracing can happen in areas coming
4939 * from userspace or just about to enter userspace, a preempt enable
4940 * can occur before user_exit() is called. This will cause the scheduler
4941 * to be called when the system is still in usermode.
4942 *
4943 * To prevent this, the preempt_enable_notrace will use this function
4944 * instead of preempt_schedule() to exit user context if needed before
4945 * calling the scheduler.
4946 */
preempt_schedule_notrace(void)4947 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
4948 {
4949 enum ctx_state prev_ctx;
4950
4951 if (likely(!preemptible()))
4952 return;
4953
4954 do {
4955 /*
4956 * Because the function tracer can trace preempt_count_sub()
4957 * and it also uses preempt_enable/disable_notrace(), if
4958 * NEED_RESCHED is set, the preempt_enable_notrace() called
4959 * by the function tracer will call this function again and
4960 * cause infinite recursion.
4961 *
4962 * Preemption must be disabled here before the function
4963 * tracer can trace. Break up preempt_disable() into two
4964 * calls. One to disable preemption without fear of being
4965 * traced. The other to still record the preemption latency,
4966 * which can also be traced by the function tracer.
4967 */
4968 preempt_disable_notrace();
4969 preempt_latency_start(1);
4970 /*
4971 * Needs preempt disabled in case user_exit() is traced
4972 * and the tracer calls preempt_enable_notrace() causing
4973 * an infinite recursion.
4974 */
4975 prev_ctx = exception_enter();
4976 __schedule(true);
4977 exception_exit(prev_ctx);
4978
4979 preempt_latency_stop(1);
4980 preempt_enable_no_resched_notrace();
4981 } while (need_resched());
4982 }
4983 EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
4984
4985 #endif /* CONFIG_PREEMPTION */
4986
4987 /*
4988 * This is the entry point to schedule() from kernel preemption
4989 * off of irq context.
4990 * Note, that this is called and return with irqs disabled. This will
4991 * protect us against recursive calling from irq.
4992 */
preempt_schedule_irq(void)4993 asmlinkage __visible void __sched preempt_schedule_irq(void)
4994 {
4995 enum ctx_state prev_state;
4996
4997 /* Catch callers which need to be fixed */
4998 BUG_ON(preempt_count() || !irqs_disabled());
4999
5000 prev_state = exception_enter();
5001
5002 do {
5003 preempt_disable();
5004 local_irq_enable();
5005 __schedule(true);
5006 local_irq_disable();
5007 sched_preempt_enable_no_resched();
5008 } while (need_resched());
5009
5010 exception_exit(prev_state);
5011 }
5012
default_wake_function(wait_queue_entry_t * curr,unsigned mode,int wake_flags,void * key)5013 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags,
5014 void *key)
5015 {
5016 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~WF_SYNC);
5017 return try_to_wake_up(curr->private, mode, wake_flags);
5018 }
5019 EXPORT_SYMBOL(default_wake_function);
5020
__setscheduler_prio(struct task_struct * p,int prio)5021 static void __setscheduler_prio(struct task_struct *p, int prio)
5022 {
5023 if (dl_prio(prio))
5024 p->sched_class = &dl_sched_class;
5025 else if (rt_prio(prio))
5026 p->sched_class = &rt_sched_class;
5027 else
5028 p->sched_class = &fair_sched_class;
5029
5030 p->prio = prio;
5031 }
5032
5033 #ifdef CONFIG_RT_MUTEXES
5034
__rt_effective_prio(struct task_struct * pi_task,int prio)5035 static inline int __rt_effective_prio(struct task_struct *pi_task, int prio)
5036 {
5037 if (pi_task)
5038 prio = min(prio, pi_task->prio);
5039
5040 return prio;
5041 }
5042
rt_effective_prio(struct task_struct * p,int prio)5043 static inline int rt_effective_prio(struct task_struct *p, int prio)
5044 {
5045 struct task_struct *pi_task = rt_mutex_get_top_task(p);
5046
5047 return __rt_effective_prio(pi_task, prio);
5048 }
5049
5050 /*
5051 * rt_mutex_setprio - set the current priority of a task
5052 * @p: task to boost
5053 * @pi_task: donor task
5054 *
5055 * This function changes the 'effective' priority of a task. It does
5056 * not touch ->normal_prio like __setscheduler().
5057 *
5058 * Used by the rt_mutex code to implement priority inheritance
5059 * logic. Call site only calls if the priority of the task changed.
5060 */
rt_mutex_setprio(struct task_struct * p,struct task_struct * pi_task)5061 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task)
5062 {
5063 int prio, oldprio, queued, running, queue_flag =
5064 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5065 const struct sched_class *prev_class;
5066 struct rq_flags rf;
5067 struct rq *rq;
5068
5069 /* XXX used to be waiter->prio, not waiter->task->prio */
5070 prio = __rt_effective_prio(pi_task, p->normal_prio);
5071
5072 /*
5073 * If nothing changed; bail early.
5074 */
5075 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio))
5076 return;
5077
5078 rq = __task_rq_lock(p, &rf);
5079 update_rq_clock(rq);
5080 /*
5081 * Set under pi_lock && rq->lock, such that the value can be used under
5082 * either lock.
5083 *
5084 * Note that there is loads of tricky to make this pointer cache work
5085 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to
5086 * ensure a task is de-boosted (pi_task is set to NULL) before the
5087 * task is allowed to run again (and can exit). This ensures the pointer
5088 * points to a blocked task -- which guaratees the task is present.
5089 */
5090 p->pi_top_task = pi_task;
5091
5092 /*
5093 * For FIFO/RR we only need to set prio, if that matches we're done.
5094 */
5095 if (prio == p->prio && !dl_prio(prio))
5096 goto out_unlock;
5097
5098 /*
5099 * Idle task boosting is a nono in general. There is one
5100 * exception, when PREEMPT_RT and NOHZ is active:
5101 *
5102 * The idle task calls get_next_timer_interrupt() and holds
5103 * the timer wheel base->lock on the CPU and another CPU wants
5104 * to access the timer (probably to cancel it). We can safely
5105 * ignore the boosting request, as the idle CPU runs this code
5106 * with interrupts disabled and will complete the lock
5107 * protected section without being interrupted. So there is no
5108 * real need to boost.
5109 */
5110 if (unlikely(p == rq->idle)) {
5111 WARN_ON(p != rq->curr);
5112 WARN_ON(p->pi_blocked_on);
5113 goto out_unlock;
5114 }
5115
5116 trace_sched_pi_setprio(p, pi_task);
5117 oldprio = p->prio;
5118
5119 if (oldprio == prio)
5120 queue_flag &= ~DEQUEUE_MOVE;
5121
5122 prev_class = p->sched_class;
5123 queued = task_on_rq_queued(p);
5124 running = task_current(rq, p);
5125 if (queued)
5126 dequeue_task(rq, p, queue_flag);
5127 if (running)
5128 put_prev_task(rq, p);
5129
5130 /*
5131 * Boosting condition are:
5132 * 1. -rt task is running and holds mutex A
5133 * --> -dl task blocks on mutex A
5134 *
5135 * 2. -dl task is running and holds mutex A
5136 * --> -dl task blocks on mutex A and could preempt the
5137 * running task
5138 */
5139 if (dl_prio(prio)) {
5140 if (!dl_prio(p->normal_prio) ||
5141 (pi_task && dl_prio(pi_task->prio) &&
5142 dl_entity_preempt(&pi_task->dl, &p->dl))) {
5143 p->dl.pi_se = pi_task->dl.pi_se;
5144 queue_flag |= ENQUEUE_REPLENISH;
5145 } else {
5146 p->dl.pi_se = &p->dl;
5147 }
5148 } else if (rt_prio(prio)) {
5149 if (dl_prio(oldprio))
5150 p->dl.pi_se = &p->dl;
5151 if (oldprio < prio)
5152 queue_flag |= ENQUEUE_HEAD;
5153 } else {
5154 if (dl_prio(oldprio))
5155 p->dl.pi_se = &p->dl;
5156 if (rt_prio(oldprio))
5157 p->rt.timeout = 0;
5158 }
5159
5160 __setscheduler_prio(p, prio);
5161
5162 if (queued)
5163 enqueue_task(rq, p, queue_flag);
5164 if (running)
5165 set_next_task(rq, p);
5166
5167 check_class_changed(rq, p, prev_class, oldprio);
5168 out_unlock:
5169 /* Avoid rq from going away on us: */
5170 preempt_disable();
5171 __task_rq_unlock(rq, &rf);
5172
5173 balance_callback(rq);
5174 preempt_enable();
5175 }
5176 #else
rt_effective_prio(struct task_struct * p,int prio)5177 static inline int rt_effective_prio(struct task_struct *p, int prio)
5178 {
5179 return prio;
5180 }
5181 #endif
5182
set_user_nice(struct task_struct * p,long nice)5183 void set_user_nice(struct task_struct *p, long nice)
5184 {
5185 bool queued, running;
5186 int old_prio;
5187 struct rq_flags rf;
5188 struct rq *rq;
5189
5190 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
5191 return;
5192 /*
5193 * We have to be careful, if called from sys_setpriority(),
5194 * the task might be in the middle of scheduling on another CPU.
5195 */
5196 rq = task_rq_lock(p, &rf);
5197 update_rq_clock(rq);
5198
5199 /*
5200 * The RT priorities are set via sched_setscheduler(), but we still
5201 * allow the 'normal' nice value to be set - but as expected
5202 * it wont have any effect on scheduling until the task is
5203 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
5204 */
5205 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
5206 p->static_prio = NICE_TO_PRIO(nice);
5207 goto out_unlock;
5208 }
5209 queued = task_on_rq_queued(p);
5210 running = task_current(rq, p);
5211 if (queued)
5212 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK);
5213 if (running)
5214 put_prev_task(rq, p);
5215
5216 p->static_prio = NICE_TO_PRIO(nice);
5217 set_load_weight(p);
5218 old_prio = p->prio;
5219 p->prio = effective_prio(p);
5220
5221 if (queued)
5222 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
5223 if (running)
5224 set_next_task(rq, p);
5225
5226 /*
5227 * If the task increased its priority or is running and
5228 * lowered its priority, then reschedule its CPU:
5229 */
5230 p->sched_class->prio_changed(rq, p, old_prio);
5231
5232 out_unlock:
5233 task_rq_unlock(rq, p, &rf);
5234 }
5235 EXPORT_SYMBOL(set_user_nice);
5236
5237 /*
5238 * can_nice - check if a task can reduce its nice value
5239 * @p: task
5240 * @nice: nice value
5241 */
can_nice(const struct task_struct * p,const int nice)5242 int can_nice(const struct task_struct *p, const int nice)
5243 {
5244 /* Convert nice value [19,-20] to rlimit style value [1,40]: */
5245 int nice_rlim = nice_to_rlimit(nice);
5246
5247 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
5248 capable(CAP_SYS_NICE));
5249 }
5250
5251 #ifdef __ARCH_WANT_SYS_NICE
5252
5253 /*
5254 * sys_nice - change the priority of the current process.
5255 * @increment: priority increment
5256 *
5257 * sys_setpriority is a more generic, but much slower function that
5258 * does similar things.
5259 */
SYSCALL_DEFINE1(nice,int,increment)5260 SYSCALL_DEFINE1(nice, int, increment)
5261 {
5262 long nice, retval;
5263
5264 /*
5265 * Setpriority might change our priority at the same moment.
5266 * We don't have to worry. Conceptually one call occurs first
5267 * and we have a single winner.
5268 */
5269 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
5270 nice = task_nice(current) + increment;
5271
5272 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
5273 if (increment < 0 && !can_nice(current, nice))
5274 return -EPERM;
5275
5276 retval = security_task_setnice(current, nice);
5277 if (retval)
5278 return retval;
5279
5280 set_user_nice(current, nice);
5281 return 0;
5282 }
5283
5284 #endif
5285
5286 /**
5287 * task_prio - return the priority value of a given task.
5288 * @p: the task in question.
5289 *
5290 * Return: The priority value as seen by users in /proc.
5291 * RT tasks are offset by -200. Normal tasks are centered
5292 * around 0, value goes from -16 to +15.
5293 */
task_prio(const struct task_struct * p)5294 int task_prio(const struct task_struct *p)
5295 {
5296 return p->prio - MAX_RT_PRIO;
5297 }
5298
5299 /**
5300 * idle_cpu - is a given CPU idle currently?
5301 * @cpu: the processor in question.
5302 *
5303 * Return: 1 if the CPU is currently idle. 0 otherwise.
5304 */
idle_cpu(int cpu)5305 int idle_cpu(int cpu)
5306 {
5307 struct rq *rq = cpu_rq(cpu);
5308
5309 if (rq->curr != rq->idle)
5310 return 0;
5311
5312 if (rq->nr_running)
5313 return 0;
5314
5315 #ifdef CONFIG_SMP
5316 if (rq->ttwu_pending)
5317 return 0;
5318 #endif
5319
5320 return 1;
5321 }
5322
5323 /**
5324 * available_idle_cpu - is a given CPU idle for enqueuing work.
5325 * @cpu: the CPU in question.
5326 *
5327 * Return: 1 if the CPU is currently idle. 0 otherwise.
5328 */
available_idle_cpu(int cpu)5329 int available_idle_cpu(int cpu)
5330 {
5331 if (!idle_cpu(cpu))
5332 return 0;
5333
5334 if (vcpu_is_preempted(cpu))
5335 return 0;
5336
5337 return 1;
5338 }
5339
5340 /**
5341 * idle_task - return the idle task for a given CPU.
5342 * @cpu: the processor in question.
5343 *
5344 * Return: The idle task for the CPU @cpu.
5345 */
idle_task(int cpu)5346 struct task_struct *idle_task(int cpu)
5347 {
5348 return cpu_rq(cpu)->idle;
5349 }
5350
5351 /**
5352 * find_process_by_pid - find a process with a matching PID value.
5353 * @pid: the pid in question.
5354 *
5355 * The task of @pid, if found. %NULL otherwise.
5356 */
find_process_by_pid(pid_t pid)5357 static struct task_struct *find_process_by_pid(pid_t pid)
5358 {
5359 return pid ? find_task_by_vpid(pid) : current;
5360 }
5361
5362 /*
5363 * sched_setparam() passes in -1 for its policy, to let the functions
5364 * it calls know not to change it.
5365 */
5366 #define SETPARAM_POLICY -1
5367
__setscheduler_params(struct task_struct * p,const struct sched_attr * attr)5368 static void __setscheduler_params(struct task_struct *p,
5369 const struct sched_attr *attr)
5370 {
5371 int policy = attr->sched_policy;
5372
5373 if (policy == SETPARAM_POLICY)
5374 policy = p->policy;
5375
5376 p->policy = policy;
5377
5378 if (dl_policy(policy))
5379 __setparam_dl(p, attr);
5380 else if (fair_policy(policy))
5381 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
5382
5383 /*
5384 * __sched_setscheduler() ensures attr->sched_priority == 0 when
5385 * !rt_policy. Always setting this ensures that things like
5386 * getparam()/getattr() don't report silly values for !rt tasks.
5387 */
5388 p->rt_priority = attr->sched_priority;
5389 p->normal_prio = normal_prio(p);
5390 set_load_weight(p);
5391 }
5392
5393 /*
5394 * Check the target process has a UID that matches the current process's:
5395 */
check_same_owner(struct task_struct * p)5396 static bool check_same_owner(struct task_struct *p)
5397 {
5398 const struct cred *cred = current_cred(), *pcred;
5399 bool match;
5400
5401 rcu_read_lock();
5402 pcred = __task_cred(p);
5403 match = (uid_eq(cred->euid, pcred->euid) ||
5404 uid_eq(cred->euid, pcred->uid));
5405 rcu_read_unlock();
5406 return match;
5407 }
5408
__sched_setscheduler(struct task_struct * p,const struct sched_attr * attr,bool user,bool pi)5409 static int __sched_setscheduler(struct task_struct *p,
5410 const struct sched_attr *attr,
5411 bool user, bool pi)
5412 {
5413 int oldpolicy = -1, policy = attr->sched_policy;
5414 int retval, oldprio, newprio, queued, running;
5415 const struct sched_class *prev_class;
5416 struct rq_flags rf;
5417 int reset_on_fork;
5418 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
5419 struct rq *rq;
5420 bool cpuset_locked = false;
5421
5422 /* The pi code expects interrupts enabled */
5423 BUG_ON(pi && in_interrupt());
5424 recheck:
5425 /* Double check policy once rq lock held: */
5426 if (policy < 0) {
5427 reset_on_fork = p->sched_reset_on_fork;
5428 policy = oldpolicy = p->policy;
5429 } else {
5430 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
5431
5432 if (!valid_policy(policy))
5433 return -EINVAL;
5434 }
5435
5436 if (attr->sched_flags & ~(SCHED_FLAG_ALL | SCHED_FLAG_SUGOV))
5437 return -EINVAL;
5438
5439 /*
5440 * Valid priorities for SCHED_FIFO and SCHED_RR are
5441 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5442 * SCHED_BATCH and SCHED_IDLE is 0.
5443 */
5444 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
5445 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
5446 return -EINVAL;
5447 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
5448 (rt_policy(policy) != (attr->sched_priority != 0)))
5449 return -EINVAL;
5450
5451 /*
5452 * Allow unprivileged RT tasks to decrease priority:
5453 */
5454 if (user && !capable(CAP_SYS_NICE)) {
5455 if (fair_policy(policy)) {
5456 if (attr->sched_nice < task_nice(p) &&
5457 !can_nice(p, attr->sched_nice))
5458 return -EPERM;
5459 }
5460
5461 if (rt_policy(policy)) {
5462 unsigned long rlim_rtprio =
5463 task_rlimit(p, RLIMIT_RTPRIO);
5464
5465 /* Can't set/change the rt policy: */
5466 if (policy != p->policy && !rlim_rtprio)
5467 return -EPERM;
5468
5469 /* Can't increase priority: */
5470 if (attr->sched_priority > p->rt_priority &&
5471 attr->sched_priority > rlim_rtprio)
5472 return -EPERM;
5473 }
5474
5475 /*
5476 * Can't set/change SCHED_DEADLINE policy at all for now
5477 * (safest behavior); in the future we would like to allow
5478 * unprivileged DL tasks to increase their relative deadline
5479 * or reduce their runtime (both ways reducing utilization)
5480 */
5481 if (dl_policy(policy))
5482 return -EPERM;
5483
5484 /*
5485 * Treat SCHED_IDLE as nice 20. Only allow a switch to
5486 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
5487 */
5488 if (task_has_idle_policy(p) && !idle_policy(policy)) {
5489 if (!can_nice(p, task_nice(p)))
5490 return -EPERM;
5491 }
5492
5493 /* Can't change other user's priorities: */
5494 if (!check_same_owner(p))
5495 return -EPERM;
5496
5497 /* Normal users shall not reset the sched_reset_on_fork flag: */
5498 if (p->sched_reset_on_fork && !reset_on_fork)
5499 return -EPERM;
5500 }
5501
5502 if (user) {
5503 if (attr->sched_flags & SCHED_FLAG_SUGOV)
5504 return -EINVAL;
5505
5506 retval = security_task_setscheduler(p);
5507 if (retval)
5508 return retval;
5509 }
5510
5511 /* Update task specific "requested" clamps */
5512 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) {
5513 retval = uclamp_validate(p, attr);
5514 if (retval)
5515 return retval;
5516 }
5517
5518 if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE) {
5519 retval = latency_nice_validate(p, user, attr);
5520 if (retval)
5521 return retval;
5522 }
5523
5524 /*
5525 * SCHED_DEADLINE bandwidth accounting relies on stable cpusets
5526 * information.
5527 */
5528 if (dl_policy(policy) || dl_policy(p->policy)) {
5529 cpuset_locked = true;
5530 cpuset_lock();
5531 }
5532
5533 /*
5534 * Make sure no PI-waiters arrive (or leave) while we are
5535 * changing the priority of the task:
5536 *
5537 * To be able to change p->policy safely, the appropriate
5538 * runqueue lock must be held.
5539 */
5540 rq = task_rq_lock(p, &rf);
5541 update_rq_clock(rq);
5542
5543 /*
5544 * Changing the policy of the stop threads its a very bad idea:
5545 */
5546 if (p == rq->stop) {
5547 retval = -EINVAL;
5548 goto unlock;
5549 }
5550
5551 /*
5552 * If not changing anything there's no need to proceed further,
5553 * but store a possible modification of reset_on_fork.
5554 */
5555 if (unlikely(policy == p->policy)) {
5556 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
5557 goto change;
5558 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
5559 goto change;
5560 if (dl_policy(policy) && dl_param_changed(p, attr))
5561 goto change;
5562 if (attr->sched_flags & SCHED_FLAG_UTIL_CLAMP)
5563 goto change;
5564 #ifdef CONFIG_SCHED_LATENCY_NICE
5565 if (attr->sched_flags & SCHED_FLAG_LATENCY_NICE &&
5566 attr->sched_latency_nice != LATENCY_TO_NICE(p->latency_prio))
5567 goto change;
5568 #endif
5569
5570 p->sched_reset_on_fork = reset_on_fork;
5571 retval = 0;
5572 goto unlock;
5573 }
5574 change:
5575
5576 if (user) {
5577 #ifdef CONFIG_RT_GROUP_SCHED
5578 /*
5579 * Do not allow realtime tasks into groups that have no runtime
5580 * assigned.
5581 */
5582 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5583 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
5584 !task_group_is_autogroup(task_group(p))) {
5585 retval = -EPERM;
5586 goto unlock;
5587 }
5588 #endif
5589 #ifdef CONFIG_SMP
5590 if (dl_bandwidth_enabled() && dl_policy(policy) &&
5591 !(attr->sched_flags & SCHED_FLAG_SUGOV)) {
5592 cpumask_t *span = rq->rd->span;
5593
5594 /*
5595 * Don't allow tasks with an affinity mask smaller than
5596 * the entire root_domain to become SCHED_DEADLINE. We
5597 * will also fail if there's no bandwidth available.
5598 */
5599 if (!cpumask_subset(span, p->cpus_ptr) ||
5600 rq->rd->dl_bw.bw == 0) {
5601 retval = -EPERM;
5602 goto unlock;
5603 }
5604 }
5605 #endif
5606 }
5607
5608 /* Re-check policy now with rq lock held: */
5609 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5610 policy = oldpolicy = -1;
5611 task_rq_unlock(rq, p, &rf);
5612 if (cpuset_locked)
5613 cpuset_unlock();
5614 goto recheck;
5615 }
5616
5617 /*
5618 * If setscheduling to SCHED_DEADLINE (or changing the parameters
5619 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
5620 * is available.
5621 */
5622 if ((dl_policy(policy) || dl_task(p)) && sched_dl_overflow(p, policy, attr)) {
5623 retval = -EBUSY;
5624 goto unlock;
5625 }
5626
5627 p->sched_reset_on_fork = reset_on_fork;
5628 oldprio = p->prio;
5629
5630 newprio = __normal_prio(policy, attr->sched_priority, attr->sched_nice);
5631 if (pi) {
5632 /*
5633 * Take priority boosted tasks into account. If the new
5634 * effective priority is unchanged, we just store the new
5635 * normal parameters and do not touch the scheduler class and
5636 * the runqueue. This will be done when the task deboost
5637 * itself.
5638 */
5639 newprio = rt_effective_prio(p, newprio);
5640 if (newprio == oldprio)
5641 queue_flags &= ~DEQUEUE_MOVE;
5642 }
5643
5644 queued = task_on_rq_queued(p);
5645 running = task_current(rq, p);
5646 if (queued)
5647 dequeue_task(rq, p, queue_flags);
5648 if (running)
5649 put_prev_task(rq, p);
5650
5651 prev_class = p->sched_class;
5652
5653 if (!(attr->sched_flags & SCHED_FLAG_KEEP_PARAMS)) {
5654 __setscheduler_params(p, attr);
5655 __setscheduler_prio(p, newprio);
5656 }
5657 __setscheduler_latency(p, attr);
5658 __setscheduler_uclamp(p, attr);
5659
5660 if (queued) {
5661 /*
5662 * We enqueue to tail when the priority of a task is
5663 * increased (user space view).
5664 */
5665 if (oldprio < p->prio)
5666 queue_flags |= ENQUEUE_HEAD;
5667
5668 enqueue_task(rq, p, queue_flags);
5669 }
5670 if (running)
5671 set_next_task(rq, p);
5672
5673 check_class_changed(rq, p, prev_class, oldprio);
5674
5675 /* Avoid rq from going away on us: */
5676 preempt_disable();
5677 task_rq_unlock(rq, p, &rf);
5678
5679 if (pi) {
5680 if (cpuset_locked)
5681 cpuset_unlock();
5682 rt_mutex_adjust_pi(p);
5683 }
5684
5685 /* Run balance callbacks after we've adjusted the PI chain: */
5686 balance_callback(rq);
5687 preempt_enable();
5688
5689 return 0;
5690
5691 unlock:
5692 task_rq_unlock(rq, p, &rf);
5693 if (cpuset_locked)
5694 cpuset_unlock();
5695 return retval;
5696 }
5697
_sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param,bool check)5698 static int _sched_setscheduler(struct task_struct *p, int policy,
5699 const struct sched_param *param, bool check)
5700 {
5701 struct sched_attr attr = {
5702 .sched_policy = policy,
5703 .sched_priority = param->sched_priority,
5704 .sched_nice = PRIO_TO_NICE(p->static_prio),
5705 };
5706
5707 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
5708 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
5709 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
5710 policy &= ~SCHED_RESET_ON_FORK;
5711 attr.sched_policy = policy;
5712 }
5713
5714 return __sched_setscheduler(p, &attr, check, true);
5715 }
5716 /**
5717 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5718 * @p: the task in question.
5719 * @policy: new policy.
5720 * @param: structure containing the new RT priority.
5721 *
5722 * Use sched_set_fifo(), read its comment.
5723 *
5724 * Return: 0 on success. An error code otherwise.
5725 *
5726 * NOTE that the task may be already dead.
5727 */
sched_setscheduler(struct task_struct * p,int policy,const struct sched_param * param)5728 int sched_setscheduler(struct task_struct *p, int policy,
5729 const struct sched_param *param)
5730 {
5731 return _sched_setscheduler(p, policy, param, true);
5732 }
5733
sched_setattr(struct task_struct * p,const struct sched_attr * attr)5734 int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
5735 {
5736 return __sched_setscheduler(p, attr, true, true);
5737 }
5738
sched_setattr_nocheck(struct task_struct * p,const struct sched_attr * attr)5739 int sched_setattr_nocheck(struct task_struct *p, const struct sched_attr *attr)
5740 {
5741 return __sched_setscheduler(p, attr, false, true);
5742 }
5743
5744 /**
5745 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5746 * @p: the task in question.
5747 * @policy: new policy.
5748 * @param: structure containing the new RT priority.
5749 *
5750 * Just like sched_setscheduler, only don't bother checking if the
5751 * current context has permission. For example, this is needed in
5752 * stop_machine(): we create temporary high priority worker threads,
5753 * but our caller might not have that capability.
5754 *
5755 * Return: 0 on success. An error code otherwise.
5756 */
sched_setscheduler_nocheck(struct task_struct * p,int policy,const struct sched_param * param)5757 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5758 const struct sched_param *param)
5759 {
5760 return _sched_setscheduler(p, policy, param, false);
5761 }
5762
5763 /*
5764 * SCHED_FIFO is a broken scheduler model; that is, it is fundamentally
5765 * incapable of resource management, which is the one thing an OS really should
5766 * be doing.
5767 *
5768 * This is of course the reason it is limited to privileged users only.
5769 *
5770 * Worse still; it is fundamentally impossible to compose static priority
5771 * workloads. You cannot take two correctly working static prio workloads
5772 * and smash them together and still expect them to work.
5773 *
5774 * For this reason 'all' FIFO tasks the kernel creates are basically at:
5775 *
5776 * MAX_RT_PRIO / 2
5777 *
5778 * The administrator _MUST_ configure the system, the kernel simply doesn't
5779 * know enough information to make a sensible choice.
5780 */
sched_set_fifo(struct task_struct * p)5781 void sched_set_fifo(struct task_struct *p)
5782 {
5783 struct sched_param sp = { .sched_priority = MAX_RT_PRIO / 2 };
5784 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5785 }
5786 EXPORT_SYMBOL_GPL(sched_set_fifo);
5787
5788 /*
5789 * For when you don't much care about FIFO, but want to be above SCHED_NORMAL.
5790 */
sched_set_fifo_low(struct task_struct * p)5791 void sched_set_fifo_low(struct task_struct *p)
5792 {
5793 struct sched_param sp = { .sched_priority = 1 };
5794 WARN_ON_ONCE(sched_setscheduler_nocheck(p, SCHED_FIFO, &sp) != 0);
5795 }
5796 EXPORT_SYMBOL_GPL(sched_set_fifo_low);
5797
sched_set_normal(struct task_struct * p,int nice)5798 void sched_set_normal(struct task_struct *p, int nice)
5799 {
5800 struct sched_attr attr = {
5801 .sched_policy = SCHED_NORMAL,
5802 .sched_nice = nice,
5803 };
5804 WARN_ON_ONCE(sched_setattr_nocheck(p, &attr) != 0);
5805 }
5806 EXPORT_SYMBOL_GPL(sched_set_normal);
5807
5808 static int
do_sched_setscheduler(pid_t pid,int policy,struct sched_param __user * param)5809 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
5810 {
5811 struct sched_param lparam;
5812 struct task_struct *p;
5813 int retval;
5814
5815 if (!param || pid < 0)
5816 return -EINVAL;
5817 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5818 return -EFAULT;
5819
5820 rcu_read_lock();
5821 retval = -ESRCH;
5822 p = find_process_by_pid(pid);
5823 if (likely(p))
5824 get_task_struct(p);
5825 rcu_read_unlock();
5826
5827 if (likely(p)) {
5828 retval = sched_setscheduler(p, policy, &lparam);
5829 put_task_struct(p);
5830 }
5831
5832 return retval;
5833 }
5834
5835 /*
5836 * Mimics kernel/events/core.c perf_copy_attr().
5837 */
sched_copy_attr(struct sched_attr __user * uattr,struct sched_attr * attr)5838 static int sched_copy_attr(struct sched_attr __user *uattr, struct sched_attr *attr)
5839 {
5840 u32 size;
5841 int ret;
5842
5843 /* Zero the full structure, so that a short copy will be nice: */
5844 memset(attr, 0, sizeof(*attr));
5845
5846 ret = get_user(size, &uattr->size);
5847 if (ret)
5848 return ret;
5849
5850 /* ABI compatibility quirk: */
5851 if (!size)
5852 size = SCHED_ATTR_SIZE_VER0;
5853 if (size < SCHED_ATTR_SIZE_VER0 || size > PAGE_SIZE)
5854 goto err_size;
5855
5856 ret = copy_struct_from_user(attr, sizeof(*attr), uattr, size);
5857 if (ret) {
5858 if (ret == -E2BIG)
5859 goto err_size;
5860 return ret;
5861 }
5862
5863 if ((attr->sched_flags & SCHED_FLAG_UTIL_CLAMP) &&
5864 size < SCHED_ATTR_SIZE_VER1)
5865 return -EINVAL;
5866
5867 #ifdef CONFIG_SCHED_LATENCY_NICE
5868 if ((attr->sched_flags & SCHED_FLAG_LATENCY_NICE) &&
5869 size < SCHED_ATTR_SIZE_VER2)
5870 return -EINVAL;
5871 #endif
5872 /*
5873 * XXX: Do we want to be lenient like existing syscalls; or do we want
5874 * to be strict and return an error on out-of-bounds values?
5875 */
5876 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
5877
5878 return 0;
5879
5880 err_size:
5881 put_user(sizeof(*attr), &uattr->size);
5882 return -E2BIG;
5883 }
5884
5885 /**
5886 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5887 * @pid: the pid in question.
5888 * @policy: new policy.
5889 * @param: structure containing the new RT priority.
5890 *
5891 * Return: 0 on success. An error code otherwise.
5892 */
SYSCALL_DEFINE3(sched_setscheduler,pid_t,pid,int,policy,struct sched_param __user *,param)5893 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy, struct sched_param __user *, param)
5894 {
5895 if (policy < 0)
5896 return -EINVAL;
5897
5898 return do_sched_setscheduler(pid, policy, param);
5899 }
5900
5901 /**
5902 * sys_sched_setparam - set/change the RT priority of a thread
5903 * @pid: the pid in question.
5904 * @param: structure containing the new RT priority.
5905 *
5906 * Return: 0 on success. An error code otherwise.
5907 */
SYSCALL_DEFINE2(sched_setparam,pid_t,pid,struct sched_param __user *,param)5908 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
5909 {
5910 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
5911 }
5912
5913 /**
5914 * sys_sched_setattr - same as above, but with extended sched_attr
5915 * @pid: the pid in question.
5916 * @uattr: structure containing the extended parameters.
5917 * @flags: for future extension.
5918 */
SYSCALL_DEFINE3(sched_setattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,flags)5919 SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
5920 unsigned int, flags)
5921 {
5922 struct sched_attr attr;
5923 struct task_struct *p;
5924 int retval;
5925
5926 if (!uattr || pid < 0 || flags)
5927 return -EINVAL;
5928
5929 retval = sched_copy_attr(uattr, &attr);
5930 if (retval)
5931 return retval;
5932
5933 if ((int)attr.sched_policy < 0)
5934 return -EINVAL;
5935 if (attr.sched_flags & SCHED_FLAG_KEEP_POLICY)
5936 attr.sched_policy = SETPARAM_POLICY;
5937
5938 rcu_read_lock();
5939 retval = -ESRCH;
5940 p = find_process_by_pid(pid);
5941 if (likely(p))
5942 get_task_struct(p);
5943 rcu_read_unlock();
5944
5945 if (likely(p)) {
5946 retval = sched_setattr(p, &attr);
5947 put_task_struct(p);
5948 }
5949
5950 return retval;
5951 }
5952
5953 /**
5954 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5955 * @pid: the pid in question.
5956 *
5957 * Return: On success, the policy of the thread. Otherwise, a negative error
5958 * code.
5959 */
SYSCALL_DEFINE1(sched_getscheduler,pid_t,pid)5960 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
5961 {
5962 struct task_struct *p;
5963 int retval;
5964
5965 if (pid < 0)
5966 return -EINVAL;
5967
5968 retval = -ESRCH;
5969 rcu_read_lock();
5970 p = find_process_by_pid(pid);
5971 if (p) {
5972 retval = security_task_getscheduler(p);
5973 if (!retval)
5974 retval = p->policy
5975 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
5976 }
5977 rcu_read_unlock();
5978 return retval;
5979 }
5980
5981 /**
5982 * sys_sched_getparam - get the RT priority of a thread
5983 * @pid: the pid in question.
5984 * @param: structure containing the RT priority.
5985 *
5986 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
5987 * code.
5988 */
SYSCALL_DEFINE2(sched_getparam,pid_t,pid,struct sched_param __user *,param)5989 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
5990 {
5991 struct sched_param lp = { .sched_priority = 0 };
5992 struct task_struct *p;
5993 int retval;
5994
5995 if (!param || pid < 0)
5996 return -EINVAL;
5997
5998 rcu_read_lock();
5999 p = find_process_by_pid(pid);
6000 retval = -ESRCH;
6001 if (!p)
6002 goto out_unlock;
6003
6004 retval = security_task_getscheduler(p);
6005 if (retval)
6006 goto out_unlock;
6007
6008 if (task_has_rt_policy(p))
6009 lp.sched_priority = p->rt_priority;
6010 rcu_read_unlock();
6011
6012 /*
6013 * This one might sleep, we cannot do it with a spinlock held ...
6014 */
6015 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6016
6017 return retval;
6018
6019 out_unlock:
6020 rcu_read_unlock();
6021 return retval;
6022 }
6023
6024 /*
6025 * Copy the kernel size attribute structure (which might be larger
6026 * than what user-space knows about) to user-space.
6027 *
6028 * Note that all cases are valid: user-space buffer can be larger or
6029 * smaller than the kernel-space buffer. The usual case is that both
6030 * have the same size.
6031 */
6032 static int
sched_attr_copy_to_user(struct sched_attr __user * uattr,struct sched_attr * kattr,unsigned int usize)6033 sched_attr_copy_to_user(struct sched_attr __user *uattr,
6034 struct sched_attr *kattr,
6035 unsigned int usize)
6036 {
6037 unsigned int ksize = sizeof(*kattr);
6038
6039 if (!access_ok(uattr, usize))
6040 return -EFAULT;
6041
6042 /*
6043 * sched_getattr() ABI forwards and backwards compatibility:
6044 *
6045 * If usize == ksize then we just copy everything to user-space and all is good.
6046 *
6047 * If usize < ksize then we only copy as much as user-space has space for,
6048 * this keeps ABI compatibility as well. We skip the rest.
6049 *
6050 * If usize > ksize then user-space is using a newer version of the ABI,
6051 * which part the kernel doesn't know about. Just ignore it - tooling can
6052 * detect the kernel's knowledge of attributes from the attr->size value
6053 * which is set to ksize in this case.
6054 */
6055 kattr->size = min(usize, ksize);
6056
6057 if (copy_to_user(uattr, kattr, kattr->size))
6058 return -EFAULT;
6059
6060 return 0;
6061 }
6062
6063 /**
6064 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
6065 * @pid: the pid in question.
6066 * @uattr: structure containing the extended parameters.
6067 * @usize: sizeof(attr) for fwd/bwd comp.
6068 * @flags: for future extension.
6069 */
SYSCALL_DEFINE4(sched_getattr,pid_t,pid,struct sched_attr __user *,uattr,unsigned int,usize,unsigned int,flags)6070 SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
6071 unsigned int, usize, unsigned int, flags)
6072 {
6073 struct sched_attr kattr = { };
6074 struct task_struct *p;
6075 int retval;
6076
6077 if (!uattr || pid < 0 || usize > PAGE_SIZE ||
6078 usize < SCHED_ATTR_SIZE_VER0 || flags)
6079 return -EINVAL;
6080
6081 rcu_read_lock();
6082 p = find_process_by_pid(pid);
6083 retval = -ESRCH;
6084 if (!p)
6085 goto out_unlock;
6086
6087 retval = security_task_getscheduler(p);
6088 if (retval)
6089 goto out_unlock;
6090
6091 kattr.sched_policy = p->policy;
6092 if (p->sched_reset_on_fork)
6093 kattr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
6094 if (task_has_dl_policy(p))
6095 __getparam_dl(p, &kattr);
6096 else if (task_has_rt_policy(p))
6097 kattr.sched_priority = p->rt_priority;
6098 else
6099 kattr.sched_nice = task_nice(p);
6100
6101 #ifdef CONFIG_SCHED_LATENCY_NICE
6102 kattr.sched_latency_nice = LATENCY_TO_NICE(p->latency_prio);
6103 #endif
6104
6105 #ifdef CONFIG_UCLAMP_TASK
6106 /*
6107 * This could race with another potential updater, but this is fine
6108 * because it'll correctly read the old or the new value. We don't need
6109 * to guarantee who wins the race as long as it doesn't return garbage.
6110 */
6111 kattr.sched_util_min = p->uclamp_req[UCLAMP_MIN].value;
6112 kattr.sched_util_max = p->uclamp_req[UCLAMP_MAX].value;
6113 #endif
6114
6115 rcu_read_unlock();
6116
6117 return sched_attr_copy_to_user(uattr, &kattr, usize);
6118
6119 out_unlock:
6120 rcu_read_unlock();
6121 return retval;
6122 }
6123
sched_setaffinity(pid_t pid,const struct cpumask * in_mask)6124 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6125 {
6126 cpumask_var_t cpus_allowed, new_mask;
6127 struct task_struct *p;
6128 int retval;
6129 #ifdef CONFIG_CPU_ISOLATION_OPT
6130 int dest_cpu;
6131 cpumask_t allowed_mask;
6132 #endif
6133
6134 rcu_read_lock();
6135
6136 p = find_process_by_pid(pid);
6137 if (!p) {
6138 rcu_read_unlock();
6139 return -ESRCH;
6140 }
6141
6142 /* Prevent p going away */
6143 get_task_struct(p);
6144 rcu_read_unlock();
6145
6146 if (p->flags & PF_NO_SETAFFINITY) {
6147 retval = -EINVAL;
6148 goto out_put_task;
6149 }
6150 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6151 retval = -ENOMEM;
6152 goto out_put_task;
6153 }
6154 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6155 retval = -ENOMEM;
6156 goto out_free_cpus_allowed;
6157 }
6158 retval = -EPERM;
6159 if (!check_same_owner(p)) {
6160 rcu_read_lock();
6161 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
6162 rcu_read_unlock();
6163 goto out_free_new_mask;
6164 }
6165 rcu_read_unlock();
6166 }
6167
6168 retval = security_task_setscheduler(p);
6169 if (retval)
6170 goto out_free_new_mask;
6171
6172
6173 cpuset_cpus_allowed(p, cpus_allowed);
6174 cpumask_and(new_mask, in_mask, cpus_allowed);
6175
6176 /*
6177 * Since bandwidth control happens on root_domain basis,
6178 * if admission test is enabled, we only admit -deadline
6179 * tasks allowed to run on all the CPUs in the task's
6180 * root_domain.
6181 */
6182 #ifdef CONFIG_SMP
6183 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
6184 rcu_read_lock();
6185 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
6186 retval = -EBUSY;
6187 rcu_read_unlock();
6188 goto out_free_new_mask;
6189 }
6190 rcu_read_unlock();
6191 }
6192 #endif
6193 again:
6194 #ifdef CONFIG_CPU_ISOLATION_OPT
6195 cpumask_andnot(&allowed_mask, new_mask, cpu_isolated_mask);
6196 dest_cpu = cpumask_any_and(cpu_active_mask, &allowed_mask);
6197 if (dest_cpu < nr_cpu_ids) {
6198 #endif
6199 retval = __set_cpus_allowed_ptr(p, new_mask, true);
6200 if (!retval) {
6201 cpuset_cpus_allowed(p, cpus_allowed);
6202 if (!cpumask_subset(new_mask, cpus_allowed)) {
6203 /*
6204 * We must have raced with a concurrent cpuset
6205 * update. Just reset the cpus_allowed to the
6206 * cpuset's cpus_allowed
6207 */
6208 cpumask_copy(new_mask, cpus_allowed);
6209 goto again;
6210 }
6211 }
6212 #ifdef CONFIG_CPU_ISOLATION_OPT
6213 } else {
6214 retval = -EINVAL;
6215 }
6216 #endif
6217
6218 out_free_new_mask:
6219 free_cpumask_var(new_mask);
6220 out_free_cpus_allowed:
6221 free_cpumask_var(cpus_allowed);
6222 out_put_task:
6223 put_task_struct(p);
6224 return retval;
6225 }
6226
get_user_cpu_mask(unsigned long __user * user_mask_ptr,unsigned len,struct cpumask * new_mask)6227 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6228 struct cpumask *new_mask)
6229 {
6230 if (len < cpumask_size())
6231 cpumask_clear(new_mask);
6232 else if (len > cpumask_size())
6233 len = cpumask_size();
6234
6235 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6236 }
6237
6238 /**
6239 * sys_sched_setaffinity - set the CPU affinity of a process
6240 * @pid: pid of the process
6241 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6242 * @user_mask_ptr: user-space pointer to the new CPU mask
6243 *
6244 * Return: 0 on success. An error code otherwise.
6245 */
SYSCALL_DEFINE3(sched_setaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6246 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6247 unsigned long __user *, user_mask_ptr)
6248 {
6249 cpumask_var_t new_mask;
6250 int retval;
6251
6252 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6253 return -ENOMEM;
6254
6255 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6256 if (retval == 0)
6257 retval = sched_setaffinity(pid, new_mask);
6258 free_cpumask_var(new_mask);
6259 return retval;
6260 }
6261
sched_getaffinity(pid_t pid,struct cpumask * mask)6262 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6263 {
6264 struct task_struct *p;
6265 unsigned long flags;
6266 int retval;
6267
6268 rcu_read_lock();
6269
6270 retval = -ESRCH;
6271 p = find_process_by_pid(pid);
6272 if (!p)
6273 goto out_unlock;
6274
6275 retval = security_task_getscheduler(p);
6276 if (retval)
6277 goto out_unlock;
6278
6279 raw_spin_lock_irqsave(&p->pi_lock, flags);
6280 cpumask_and(mask, &p->cpus_mask, cpu_active_mask);
6281
6282 #ifdef CONFIG_CPU_ISOLATION_OPT
6283 /* The userspace tasks are forbidden to run on
6284 * isolated CPUs. So exclude isolated CPUs from
6285 * the getaffinity.
6286 */
6287 if (!(p->flags & PF_KTHREAD))
6288 cpumask_andnot(mask, mask, cpu_isolated_mask);
6289 #endif
6290
6291 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
6292
6293 out_unlock:
6294 rcu_read_unlock();
6295
6296 return retval;
6297 }
6298
6299 /**
6300 * sys_sched_getaffinity - get the CPU affinity of a process
6301 * @pid: pid of the process
6302 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6303 * @user_mask_ptr: user-space pointer to hold the current CPU mask
6304 *
6305 * Return: size of CPU mask copied to user_mask_ptr on success. An
6306 * error code otherwise.
6307 */
SYSCALL_DEFINE3(sched_getaffinity,pid_t,pid,unsigned int,len,unsigned long __user *,user_mask_ptr)6308 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6309 unsigned long __user *, user_mask_ptr)
6310 {
6311 int ret;
6312 cpumask_var_t mask;
6313
6314 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
6315 return -EINVAL;
6316 if (len & (sizeof(unsigned long)-1))
6317 return -EINVAL;
6318
6319 if (!zalloc_cpumask_var(&mask, GFP_KERNEL))
6320 return -ENOMEM;
6321
6322 ret = sched_getaffinity(pid, mask);
6323 if (ret == 0) {
6324 unsigned int retlen = min(len, cpumask_size());
6325
6326 if (copy_to_user(user_mask_ptr, cpumask_bits(mask), retlen))
6327 ret = -EFAULT;
6328 else
6329 ret = retlen;
6330 }
6331 free_cpumask_var(mask);
6332
6333 return ret;
6334 }
6335
6336 /**
6337 * sys_sched_yield - yield the current processor to other threads.
6338 *
6339 * This function yields the current CPU to other tasks. If there are no
6340 * other threads running on this CPU then this function will return.
6341 *
6342 * Return: 0.
6343 */
do_sched_yield(void)6344 static void do_sched_yield(void)
6345 {
6346 struct rq_flags rf;
6347 struct rq *rq;
6348
6349 rq = this_rq_lock_irq(&rf);
6350
6351 schedstat_inc(rq->yld_count);
6352 current->sched_class->yield_task(rq);
6353
6354 preempt_disable();
6355 rq_unlock_irq(rq, &rf);
6356 sched_preempt_enable_no_resched();
6357
6358 schedule();
6359 }
6360
SYSCALL_DEFINE0(sched_yield)6361 SYSCALL_DEFINE0(sched_yield)
6362 {
6363 do_sched_yield();
6364 return 0;
6365 }
6366
6367 #ifndef CONFIG_PREEMPTION
_cond_resched(void)6368 int __sched _cond_resched(void)
6369 {
6370 if (should_resched(0)) {
6371 preempt_schedule_common();
6372 return 1;
6373 }
6374 rcu_all_qs();
6375 return 0;
6376 }
6377 EXPORT_SYMBOL(_cond_resched);
6378 #endif
6379
6380 /*
6381 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6382 * call schedule, and on return reacquire the lock.
6383 *
6384 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level
6385 * operations here to prevent schedule() from being called twice (once via
6386 * spin_unlock(), once by hand).
6387 */
__cond_resched_lock(spinlock_t * lock)6388 int __cond_resched_lock(spinlock_t *lock)
6389 {
6390 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6391 int ret = 0;
6392
6393 lockdep_assert_held(lock);
6394
6395 if (spin_needbreak(lock) || resched) {
6396 spin_unlock(lock);
6397 if (resched)
6398 preempt_schedule_common();
6399 else
6400 cpu_relax();
6401 ret = 1;
6402 spin_lock(lock);
6403 }
6404 return ret;
6405 }
6406 EXPORT_SYMBOL(__cond_resched_lock);
6407
6408 /**
6409 * yield - yield the current processor to other threads.
6410 *
6411 * Do not ever use this function, there's a 99% chance you're doing it wrong.
6412 *
6413 * The scheduler is at all times free to pick the calling task as the most
6414 * eligible task to run, if removing the yield() call from your code breaks
6415 * it, its already broken.
6416 *
6417 * Typical broken usage is:
6418 *
6419 * while (!event)
6420 * yield();
6421 *
6422 * where one assumes that yield() will let 'the other' process run that will
6423 * make event true. If the current task is a SCHED_FIFO task that will never
6424 * happen. Never use yield() as a progress guarantee!!
6425 *
6426 * If you want to use yield() to wait for something, use wait_event().
6427 * If you want to use yield() to be 'nice' for others, use cond_resched().
6428 * If you still want to use yield(), do not!
6429 */
yield(void)6430 void __sched yield(void)
6431 {
6432 set_current_state(TASK_RUNNING);
6433 do_sched_yield();
6434 }
6435 EXPORT_SYMBOL(yield);
6436
6437 /**
6438 * yield_to - yield the current processor to another thread in
6439 * your thread group, or accelerate that thread toward the
6440 * processor it's on.
6441 * @p: target task
6442 * @preempt: whether task preemption is allowed or not
6443 *
6444 * It's the caller's job to ensure that the target task struct
6445 * can't go away on us before we can do any checks.
6446 *
6447 * Return:
6448 * true (>0) if we indeed boosted the target task.
6449 * false (0) if we failed to boost the target.
6450 * -ESRCH if there's no task to yield to.
6451 */
yield_to(struct task_struct * p,bool preempt)6452 int __sched yield_to(struct task_struct *p, bool preempt)
6453 {
6454 struct task_struct *curr = current;
6455 struct rq *rq, *p_rq;
6456 unsigned long flags;
6457 int yielded = 0;
6458
6459 local_irq_save(flags);
6460 rq = this_rq();
6461
6462 again:
6463 p_rq = task_rq(p);
6464 /*
6465 * If we're the only runnable task on the rq and target rq also
6466 * has only one task, there's absolutely no point in yielding.
6467 */
6468 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
6469 yielded = -ESRCH;
6470 goto out_irq;
6471 }
6472
6473 double_rq_lock(rq, p_rq);
6474 if (task_rq(p) != p_rq) {
6475 double_rq_unlock(rq, p_rq);
6476 goto again;
6477 }
6478
6479 if (!curr->sched_class->yield_to_task)
6480 goto out_unlock;
6481
6482 if (curr->sched_class != p->sched_class)
6483 goto out_unlock;
6484
6485 if (task_running(p_rq, p) || p->state)
6486 goto out_unlock;
6487
6488 yielded = curr->sched_class->yield_to_task(rq, p);
6489 if (yielded) {
6490 schedstat_inc(rq->yld_count);
6491 /*
6492 * Make p's CPU reschedule; pick_next_entity takes care of
6493 * fairness.
6494 */
6495 if (preempt && rq != p_rq)
6496 resched_curr(p_rq);
6497 }
6498
6499 out_unlock:
6500 double_rq_unlock(rq, p_rq);
6501 out_irq:
6502 local_irq_restore(flags);
6503
6504 if (yielded > 0)
6505 schedule();
6506
6507 return yielded;
6508 }
6509 EXPORT_SYMBOL_GPL(yield_to);
6510
io_schedule_prepare(void)6511 int io_schedule_prepare(void)
6512 {
6513 int old_iowait = current->in_iowait;
6514
6515 current->in_iowait = 1;
6516 blk_schedule_flush_plug(current);
6517
6518 return old_iowait;
6519 }
6520
io_schedule_finish(int token)6521 void io_schedule_finish(int token)
6522 {
6523 current->in_iowait = token;
6524 }
6525
6526 /*
6527 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6528 * that process accounting knows that this is a task in IO wait state.
6529 */
io_schedule_timeout(long timeout)6530 long __sched io_schedule_timeout(long timeout)
6531 {
6532 int token;
6533 long ret;
6534
6535 token = io_schedule_prepare();
6536 ret = schedule_timeout(timeout);
6537 io_schedule_finish(token);
6538
6539 return ret;
6540 }
6541 EXPORT_SYMBOL(io_schedule_timeout);
6542
io_schedule(void)6543 void __sched io_schedule(void)
6544 {
6545 int token;
6546
6547 token = io_schedule_prepare();
6548 schedule();
6549 io_schedule_finish(token);
6550 }
6551 EXPORT_SYMBOL(io_schedule);
6552
6553 /**
6554 * sys_sched_get_priority_max - return maximum RT priority.
6555 * @policy: scheduling class.
6556 *
6557 * Return: On success, this syscall returns the maximum
6558 * rt_priority that can be used by a given scheduling class.
6559 * On failure, a negative error code is returned.
6560 */
SYSCALL_DEFINE1(sched_get_priority_max,int,policy)6561 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6562 {
6563 int ret = -EINVAL;
6564
6565 switch (policy) {
6566 case SCHED_FIFO:
6567 case SCHED_RR:
6568 ret = MAX_USER_RT_PRIO-1;
6569 break;
6570 case SCHED_DEADLINE:
6571 case SCHED_NORMAL:
6572 case SCHED_BATCH:
6573 case SCHED_IDLE:
6574 ret = 0;
6575 break;
6576 }
6577 return ret;
6578 }
6579
6580 /**
6581 * sys_sched_get_priority_min - return minimum RT priority.
6582 * @policy: scheduling class.
6583 *
6584 * Return: On success, this syscall returns the minimum
6585 * rt_priority that can be used by a given scheduling class.
6586 * On failure, a negative error code is returned.
6587 */
SYSCALL_DEFINE1(sched_get_priority_min,int,policy)6588 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6589 {
6590 int ret = -EINVAL;
6591
6592 switch (policy) {
6593 case SCHED_FIFO:
6594 case SCHED_RR:
6595 ret = 1;
6596 break;
6597 case SCHED_DEADLINE:
6598 case SCHED_NORMAL:
6599 case SCHED_BATCH:
6600 case SCHED_IDLE:
6601 ret = 0;
6602 }
6603 return ret;
6604 }
6605
sched_rr_get_interval(pid_t pid,struct timespec64 * t)6606 static int sched_rr_get_interval(pid_t pid, struct timespec64 *t)
6607 {
6608 struct task_struct *p;
6609 unsigned int time_slice;
6610 struct rq_flags rf;
6611 struct rq *rq;
6612 int retval;
6613
6614 if (pid < 0)
6615 return -EINVAL;
6616
6617 retval = -ESRCH;
6618 rcu_read_lock();
6619 p = find_process_by_pid(pid);
6620 if (!p)
6621 goto out_unlock;
6622
6623 retval = security_task_getscheduler(p);
6624 if (retval)
6625 goto out_unlock;
6626
6627 rq = task_rq_lock(p, &rf);
6628 time_slice = 0;
6629 if (p->sched_class->get_rr_interval)
6630 time_slice = p->sched_class->get_rr_interval(rq, p);
6631 task_rq_unlock(rq, p, &rf);
6632
6633 rcu_read_unlock();
6634 jiffies_to_timespec64(time_slice, t);
6635 return 0;
6636
6637 out_unlock:
6638 rcu_read_unlock();
6639 return retval;
6640 }
6641
6642 /**
6643 * sys_sched_rr_get_interval - return the default timeslice of a process.
6644 * @pid: pid of the process.
6645 * @interval: userspace pointer to the timeslice value.
6646 *
6647 * this syscall writes the default timeslice value of a given process
6648 * into the user-space timespec buffer. A value of '0' means infinity.
6649 *
6650 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
6651 * an error code.
6652 */
SYSCALL_DEFINE2(sched_rr_get_interval,pid_t,pid,struct __kernel_timespec __user *,interval)6653 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6654 struct __kernel_timespec __user *, interval)
6655 {
6656 struct timespec64 t;
6657 int retval = sched_rr_get_interval(pid, &t);
6658
6659 if (retval == 0)
6660 retval = put_timespec64(&t, interval);
6661
6662 return retval;
6663 }
6664
6665 #ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(sched_rr_get_interval_time32,pid_t,pid,struct old_timespec32 __user *,interval)6666 SYSCALL_DEFINE2(sched_rr_get_interval_time32, pid_t, pid,
6667 struct old_timespec32 __user *, interval)
6668 {
6669 struct timespec64 t;
6670 int retval = sched_rr_get_interval(pid, &t);
6671
6672 if (retval == 0)
6673 retval = put_old_timespec32(&t, interval);
6674 return retval;
6675 }
6676 #endif
6677
sched_show_task(struct task_struct * p)6678 void sched_show_task(struct task_struct *p)
6679 {
6680 unsigned long free = 0;
6681 int ppid;
6682
6683 if (!try_get_task_stack(p))
6684 return;
6685
6686 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p));
6687
6688 if (p->state == TASK_RUNNING)
6689 pr_cont(" running task ");
6690 #ifdef CONFIG_DEBUG_STACK_USAGE
6691 free = stack_not_used(p);
6692 #endif
6693 ppid = 0;
6694 rcu_read_lock();
6695 if (pid_alive(p))
6696 ppid = task_pid_nr(rcu_dereference(p->real_parent));
6697 rcu_read_unlock();
6698 pr_cont(" stack:%5lu pid:%5d ppid:%6d flags:0x%08lx\n",
6699 free, task_pid_nr(p), ppid,
6700 (unsigned long)task_thread_info(p)->flags);
6701
6702 print_worker_info(KERN_INFO, p);
6703 show_stack(p, NULL, KERN_INFO);
6704 put_task_stack(p);
6705 }
6706 EXPORT_SYMBOL_GPL(sched_show_task);
6707
6708 static inline bool
state_filter_match(unsigned long state_filter,struct task_struct * p)6709 state_filter_match(unsigned long state_filter, struct task_struct *p)
6710 {
6711 /* no filter, everything matches */
6712 if (!state_filter)
6713 return true;
6714
6715 /* filter, but doesn't match */
6716 if (!(p->state & state_filter))
6717 return false;
6718
6719 /*
6720 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows
6721 * TASK_KILLABLE).
6722 */
6723 if (state_filter == TASK_UNINTERRUPTIBLE && p->state == TASK_IDLE)
6724 return false;
6725
6726 return true;
6727 }
6728
6729
show_state_filter(unsigned long state_filter)6730 void show_state_filter(unsigned long state_filter)
6731 {
6732 struct task_struct *g, *p;
6733
6734 rcu_read_lock();
6735 for_each_process_thread(g, p) {
6736 /*
6737 * reset the NMI-timeout, listing all files on a slow
6738 * console might take a lot of time:
6739 * Also, reset softlockup watchdogs on all CPUs, because
6740 * another CPU might be blocked waiting for us to process
6741 * an IPI.
6742 */
6743 touch_nmi_watchdog();
6744 touch_all_softlockup_watchdogs();
6745 if (state_filter_match(state_filter, p))
6746 sched_show_task(p);
6747 }
6748
6749 #ifdef CONFIG_SCHED_DEBUG
6750 if (!state_filter)
6751 sysrq_sched_debug_show();
6752 #endif
6753 rcu_read_unlock();
6754 /*
6755 * Only show locks if all tasks are dumped:
6756 */
6757 if (!state_filter)
6758 debug_show_all_locks();
6759 }
6760
6761 /**
6762 * init_idle - set up an idle thread for a given CPU
6763 * @idle: task in question
6764 * @cpu: CPU the idle task belongs to
6765 *
6766 * NOTE: this function does not set the idle thread's NEED_RESCHED
6767 * flag, to make booting more robust.
6768 */
init_idle(struct task_struct * idle,int cpu)6769 void __init init_idle(struct task_struct *idle, int cpu)
6770 {
6771 struct rq *rq = cpu_rq(cpu);
6772 unsigned long flags;
6773
6774 __sched_fork(0, idle);
6775
6776 raw_spin_lock_irqsave(&idle->pi_lock, flags);
6777 raw_spin_lock(&rq->lock);
6778
6779 idle->state = TASK_RUNNING;
6780 idle->se.exec_start = sched_clock();
6781 idle->flags |= PF_IDLE;
6782
6783 #ifdef CONFIG_SMP
6784 /*
6785 * Its possible that init_idle() gets called multiple times on a task,
6786 * in that case do_set_cpus_allowed() will not do the right thing.
6787 *
6788 * And since this is boot we can forgo the serialization.
6789 */
6790 set_cpus_allowed_common(idle, cpumask_of(cpu));
6791 #endif
6792 /*
6793 * We're having a chicken and egg problem, even though we are
6794 * holding rq->lock, the CPU isn't yet set to this CPU so the
6795 * lockdep check in task_group() will fail.
6796 *
6797 * Similar case to sched_fork(). / Alternatively we could
6798 * use task_rq_lock() here and obtain the other rq->lock.
6799 *
6800 * Silence PROVE_RCU
6801 */
6802 rcu_read_lock();
6803 __set_task_cpu(idle, cpu);
6804 rcu_read_unlock();
6805
6806 rq->idle = idle;
6807 rcu_assign_pointer(rq->curr, idle);
6808 idle->on_rq = TASK_ON_RQ_QUEUED;
6809 #ifdef CONFIG_SMP
6810 idle->on_cpu = 1;
6811 #endif
6812 raw_spin_unlock(&rq->lock);
6813 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
6814
6815 /* Set the preempt count _outside_ the spinlocks! */
6816 init_idle_preempt_count(idle, cpu);
6817
6818 /*
6819 * The idle tasks have their own, simple scheduling class:
6820 */
6821 idle->sched_class = &idle_sched_class;
6822 ftrace_graph_init_idle_task(idle, cpu);
6823 vtime_init_idle(idle, cpu);
6824 #ifdef CONFIG_SMP
6825 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
6826 #endif
6827 }
6828
6829 #ifdef CONFIG_SMP
6830
cpuset_cpumask_can_shrink(const struct cpumask * cur,const struct cpumask * trial)6831 int cpuset_cpumask_can_shrink(const struct cpumask *cur,
6832 const struct cpumask *trial)
6833 {
6834 int ret = 1;
6835
6836 if (!cpumask_weight(cur))
6837 return ret;
6838
6839 ret = dl_cpuset_cpumask_can_shrink(cur, trial);
6840
6841 return ret;
6842 }
6843
task_can_attach(struct task_struct * p)6844 int task_can_attach(struct task_struct *p)
6845 {
6846 int ret = 0;
6847
6848 /*
6849 * Kthreads which disallow setaffinity shouldn't be moved
6850 * to a new cpuset; we don't want to change their CPU
6851 * affinity and isolating such threads by their set of
6852 * allowed nodes is unnecessary. Thus, cpusets are not
6853 * applicable for such threads. This prevents checking for
6854 * success of set_cpus_allowed_ptr() on all attached tasks
6855 * before cpus_mask may be changed.
6856 */
6857 if (p->flags & PF_NO_SETAFFINITY)
6858 ret = -EINVAL;
6859
6860 return ret;
6861 }
6862
6863 bool sched_smp_initialized __read_mostly;
6864
6865 #ifdef CONFIG_NUMA_BALANCING
6866 /* Migrate current task p to target_cpu */
migrate_task_to(struct task_struct * p,int target_cpu)6867 int migrate_task_to(struct task_struct *p, int target_cpu)
6868 {
6869 struct migration_arg arg = { p, target_cpu };
6870 int curr_cpu = task_cpu(p);
6871
6872 if (curr_cpu == target_cpu)
6873 return 0;
6874
6875 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr))
6876 return -EINVAL;
6877
6878 /* TODO: This is not properly updating schedstats */
6879
6880 trace_sched_move_numa(p, curr_cpu, target_cpu);
6881 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
6882 }
6883
6884 /*
6885 * Requeue a task on a given node and accurately track the number of NUMA
6886 * tasks on the runqueues
6887 */
sched_setnuma(struct task_struct * p,int nid)6888 void sched_setnuma(struct task_struct *p, int nid)
6889 {
6890 bool queued, running;
6891 struct rq_flags rf;
6892 struct rq *rq;
6893
6894 rq = task_rq_lock(p, &rf);
6895 queued = task_on_rq_queued(p);
6896 running = task_current(rq, p);
6897
6898 if (queued)
6899 dequeue_task(rq, p, DEQUEUE_SAVE);
6900 if (running)
6901 put_prev_task(rq, p);
6902
6903 p->numa_preferred_nid = nid;
6904
6905 if (queued)
6906 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK);
6907 if (running)
6908 set_next_task(rq, p);
6909 task_rq_unlock(rq, p, &rf);
6910 }
6911 #endif /* CONFIG_NUMA_BALANCING */
6912
6913 #ifdef CONFIG_HOTPLUG_CPU
6914 /*
6915 * Ensure that the idle task is using init_mm right before its CPU goes
6916 * offline.
6917 */
idle_task_exit(void)6918 void idle_task_exit(void)
6919 {
6920 struct mm_struct *mm = current->active_mm;
6921
6922 BUG_ON(cpu_online(smp_processor_id()));
6923 BUG_ON(current != this_rq()->idle);
6924
6925 if (mm != &init_mm) {
6926 switch_mm(mm, &init_mm, current);
6927 finish_arch_post_lock_switch();
6928 }
6929
6930 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */
6931 }
6932
6933 /*
6934 * Since this CPU is going 'away' for a while, fold any nr_active delta
6935 * we might have. Assumes we're called after migrate_tasks() so that the
6936 * nr_active count is stable. We need to take the teardown thread which
6937 * is calling this into account, so we hand in adjust = 1 to the load
6938 * calculation.
6939 *
6940 * Also see the comment "Global load-average calculations".
6941 */
calc_load_migrate(struct rq * rq)6942 static void calc_load_migrate(struct rq *rq)
6943 {
6944 long delta = calc_load_fold_active(rq, 1);
6945 if (delta)
6946 atomic_long_add(delta, &calc_load_tasks);
6947 }
6948
__pick_migrate_task(struct rq * rq)6949 static struct task_struct *__pick_migrate_task(struct rq *rq)
6950 {
6951 const struct sched_class *class;
6952 struct task_struct *next;
6953
6954 for_each_class(class) {
6955 next = class->pick_next_task(rq);
6956 if (next) {
6957 next->sched_class->put_prev_task(rq, next);
6958 return next;
6959 }
6960 }
6961
6962 /* The idle class should always have a runnable task */
6963 BUG();
6964 }
6965
6966 #ifdef CONFIG_CPU_ISOLATION_OPT
6967 /*
6968 * Remove a task from the runqueue and pretend that it's migrating. This
6969 * should prevent migrations for the detached task and disallow further
6970 * changes to tsk_cpus_allowed.
6971 */
6972 static void
detach_one_task_core(struct task_struct * p,struct rq * rq,struct list_head * tasks)6973 detach_one_task_core(struct task_struct *p, struct rq *rq,
6974 struct list_head *tasks)
6975 {
6976 lockdep_assert_held(&rq->lock);
6977
6978 p->on_rq = TASK_ON_RQ_MIGRATING;
6979 deactivate_task(rq, p, 0);
6980 list_add(&p->se.group_node, tasks);
6981 }
6982
attach_tasks_core(struct list_head * tasks,struct rq * rq)6983 static void attach_tasks_core(struct list_head *tasks, struct rq *rq)
6984 {
6985 struct task_struct *p;
6986
6987 lockdep_assert_held(&rq->lock);
6988
6989 while (!list_empty(tasks)) {
6990 p = list_first_entry(tasks, struct task_struct, se.group_node);
6991 list_del_init(&p->se.group_node);
6992
6993 BUG_ON(task_rq(p) != rq);
6994 activate_task(rq, p, 0);
6995 p->on_rq = TASK_ON_RQ_QUEUED;
6996 }
6997 }
6998
6999 #else
7000
7001 static void
detach_one_task_core(struct task_struct * p,struct rq * rq,struct list_head * tasks)7002 detach_one_task_core(struct task_struct *p, struct rq *rq,
7003 struct list_head *tasks)
7004 {
7005 }
7006
attach_tasks_core(struct list_head * tasks,struct rq * rq)7007 static void attach_tasks_core(struct list_head *tasks, struct rq *rq)
7008 {
7009 }
7010
7011 #endif /* CONFIG_CPU_ISOLATION_OPT */
7012
7013 /*
7014 * Migrate all tasks (not pinned if pinned argument say so) from the rq,
7015 * sleeping tasks will be migrated by try_to_wake_up()->select_task_rq().
7016 *
7017 * Called with rq->lock held even though we'er in stop_machine() and
7018 * there's no concurrency possible, we hold the required locks anyway
7019 * because of lock validation efforts.
7020 */
migrate_tasks(struct rq * dead_rq,struct rq_flags * rf,bool migrate_pinned_tasks)7021 void migrate_tasks(struct rq *dead_rq, struct rq_flags *rf,
7022 bool migrate_pinned_tasks)
7023 {
7024 struct rq *rq = dead_rq;
7025 struct task_struct *next, *stop = rq->stop;
7026 struct rq_flags orf = *rf;
7027 int dest_cpu;
7028 unsigned int num_pinned_kthreads = 1; /* this thread */
7029 LIST_HEAD(tasks);
7030 cpumask_t avail_cpus;
7031
7032 #ifdef CONFIG_CPU_ISOLATION_OPT
7033 cpumask_andnot(&avail_cpus, cpu_online_mask, cpu_isolated_mask);
7034 #else
7035 cpumask_copy(&avail_cpus, cpu_online_mask);
7036 #endif
7037
7038 /*
7039 * Fudge the rq selection such that the below task selection loop
7040 * doesn't get stuck on the currently eligible stop task.
7041 *
7042 * We're currently inside stop_machine() and the rq is either stuck
7043 * in the stop_machine_cpu_stop() loop, or we're executing this code,
7044 * either way we should never end up calling schedule() until we're
7045 * done here.
7046 */
7047 rq->stop = NULL;
7048
7049 /*
7050 * put_prev_task() and pick_next_task() sched
7051 * class method both need to have an up-to-date
7052 * value of rq->clock[_task]
7053 */
7054 update_rq_clock(rq);
7055
7056 for (;;) {
7057 /*
7058 * There's this thread running, bail when that's the only
7059 * remaining thread.
7060 */
7061 if (rq->nr_running == 1)
7062 break;
7063
7064 next = __pick_migrate_task(rq);
7065
7066 if (!migrate_pinned_tasks && next->flags & PF_KTHREAD &&
7067 !cpumask_intersects(&avail_cpus, &next->cpus_mask)) {
7068 detach_one_task_core(next, rq, &tasks);
7069 num_pinned_kthreads += 1;
7070 continue;
7071 }
7072
7073 /*
7074 * Rules for changing task_struct::cpus_mask are holding
7075 * both pi_lock and rq->lock, such that holding either
7076 * stabilizes the mask.
7077 *
7078 * Drop rq->lock is not quite as disastrous as it usually is
7079 * because !cpu_active at this point, which means load-balance
7080 * will not interfere. Also, stop-machine.
7081 */
7082 rq_unlock(rq, rf);
7083 raw_spin_lock(&next->pi_lock);
7084 rq_relock(rq, rf);
7085 if (!(rq->clock_update_flags & RQCF_UPDATED))
7086 update_rq_clock(rq);
7087
7088 /*
7089 * Since we're inside stop-machine, _nothing_ should have
7090 * changed the task, WARN if weird stuff happened, because in
7091 * that case the above rq->lock drop is a fail too.
7092 * However, during cpu isolation the load balancer might have
7093 * interferred since we don't stop all CPUs. Ignore warning for
7094 * this case.
7095 */
7096 if (task_rq(next) != rq || !task_on_rq_queued(next)) {
7097 WARN_ON(migrate_pinned_tasks);
7098 raw_spin_unlock(&next->pi_lock);
7099 continue;
7100 }
7101
7102 /* Find suitable destination for @next, with force if needed. */
7103 #ifdef CONFIG_CPU_ISOLATION_OPT
7104 dest_cpu = select_fallback_rq(dead_rq->cpu, next, false);
7105 #else
7106 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
7107 #endif
7108 rq = __migrate_task(rq, rf, next, dest_cpu);
7109 if (rq != dead_rq) {
7110 rq_unlock(rq, rf);
7111 rq = dead_rq;
7112 *rf = orf;
7113 rq_relock(rq, rf);
7114 if (!(rq->clock_update_flags & RQCF_UPDATED))
7115 update_rq_clock(rq);
7116 }
7117 raw_spin_unlock(&next->pi_lock);
7118 }
7119
7120 rq->stop = stop;
7121
7122 if (num_pinned_kthreads > 1)
7123 attach_tasks_core(&tasks, rq);
7124 }
7125
7126 #ifdef CONFIG_SCHED_EAS
clear_eas_migration_request(int cpu)7127 static void clear_eas_migration_request(int cpu)
7128 {
7129 struct rq *rq = cpu_rq(cpu);
7130 unsigned long flags;
7131
7132 clear_reserved(cpu);
7133 if (rq->push_task) {
7134 struct task_struct *push_task = NULL;
7135
7136 raw_spin_lock_irqsave(&rq->lock, flags);
7137 if (rq->push_task) {
7138 clear_reserved(rq->push_cpu);
7139 push_task = rq->push_task;
7140 rq->push_task = NULL;
7141 }
7142 rq->active_balance = 0;
7143 raw_spin_unlock_irqrestore(&rq->lock, flags);
7144 if (push_task)
7145 put_task_struct(push_task);
7146 }
7147 }
7148 #else
clear_eas_migration_request(int cpu)7149 static inline void clear_eas_migration_request(int cpu) {}
7150 #endif
7151
7152 #ifdef CONFIG_CPU_ISOLATION_OPT
do_isolation_work_cpu_stop(void * data)7153 int do_isolation_work_cpu_stop(void *data)
7154 {
7155 unsigned int cpu = smp_processor_id();
7156 struct rq *rq = cpu_rq(cpu);
7157 struct rq_flags rf;
7158
7159 watchdog_disable(cpu);
7160
7161 local_irq_disable();
7162
7163 irq_migrate_all_off_this_cpu();
7164
7165 flush_smp_call_function_from_idle();
7166
7167 /* Update our root-domain */
7168 rq_lock(rq, &rf);
7169
7170 /*
7171 * Temporarily mark the rq as offline. This will allow us to
7172 * move tasks off the CPU.
7173 */
7174 if (rq->rd) {
7175 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7176 set_rq_offline(rq);
7177 }
7178
7179 migrate_tasks(rq, &rf, false);
7180
7181 if (rq->rd)
7182 set_rq_online(rq);
7183 rq_unlock(rq, &rf);
7184
7185 clear_eas_migration_request(cpu);
7186 local_irq_enable();
7187 return 0;
7188 }
7189
do_unisolation_work_cpu_stop(void * data)7190 int do_unisolation_work_cpu_stop(void *data)
7191 {
7192 watchdog_enable(smp_processor_id());
7193 return 0;
7194 }
7195
sched_update_group_capacities(int cpu)7196 static void sched_update_group_capacities(int cpu)
7197 {
7198 struct sched_domain *sd;
7199
7200 mutex_lock(&sched_domains_mutex);
7201 rcu_read_lock();
7202
7203 for_each_domain(cpu, sd) {
7204 int balance_cpu = group_balance_cpu(sd->groups);
7205
7206 init_sched_groups_capacity(cpu, sd);
7207 /*
7208 * Need to ensure this is also called with balancing
7209 * cpu.
7210 */
7211 if (cpu != balance_cpu)
7212 init_sched_groups_capacity(balance_cpu, sd);
7213 }
7214
7215 rcu_read_unlock();
7216 mutex_unlock(&sched_domains_mutex);
7217 }
7218
7219 static unsigned int cpu_isolation_vote[NR_CPUS];
7220
sched_isolate_count(const cpumask_t * mask,bool include_offline)7221 int sched_isolate_count(const cpumask_t *mask, bool include_offline)
7222 {
7223 cpumask_t count_mask = CPU_MASK_NONE;
7224
7225 if (include_offline) {
7226 cpumask_complement(&count_mask, cpu_online_mask);
7227 cpumask_or(&count_mask, &count_mask, cpu_isolated_mask);
7228 cpumask_and(&count_mask, &count_mask, mask);
7229 } else {
7230 cpumask_and(&count_mask, mask, cpu_isolated_mask);
7231 }
7232
7233 return cpumask_weight(&count_mask);
7234 }
7235
7236 /*
7237 * 1) CPU is isolated and cpu is offlined:
7238 * Unisolate the core.
7239 * 2) CPU is not isolated and CPU is offlined:
7240 * No action taken.
7241 * 3) CPU is offline and request to isolate
7242 * Request ignored.
7243 * 4) CPU is offline and isolated:
7244 * Not a possible state.
7245 * 5) CPU is online and request to isolate
7246 * Normal case: Isolate the CPU
7247 * 6) CPU is not isolated and comes back online
7248 * Nothing to do
7249 *
7250 * Note: The client calling sched_isolate_cpu() is repsonsible for ONLY
7251 * calling sched_unisolate_cpu() on a CPU that the client previously isolated.
7252 * Client is also responsible for unisolating when a core goes offline
7253 * (after CPU is marked offline).
7254 */
sched_isolate_cpu(int cpu)7255 int sched_isolate_cpu(int cpu)
7256 {
7257 struct rq *rq;
7258 cpumask_t avail_cpus;
7259 int ret_code = 0;
7260 u64 start_time = 0;
7261
7262 if (trace_sched_isolate_enabled())
7263 start_time = sched_clock();
7264
7265 cpu_maps_update_begin();
7266
7267 cpumask_andnot(&avail_cpus, cpu_online_mask, cpu_isolated_mask);
7268
7269 if (cpu < 0 || cpu >= nr_cpu_ids || !cpu_possible(cpu) ||
7270 !cpu_online(cpu) || cpu >= NR_CPUS) {
7271 ret_code = -EINVAL;
7272 goto out;
7273 }
7274
7275 rq = cpu_rq(cpu);
7276
7277 if (++cpu_isolation_vote[cpu] > 1)
7278 goto out;
7279
7280 /* We cannot isolate ALL cpus in the system */
7281 if (cpumask_weight(&avail_cpus) == 1) {
7282 --cpu_isolation_vote[cpu];
7283 ret_code = -EINVAL;
7284 goto out;
7285 }
7286
7287 /*
7288 * There is a race between watchdog being enabled by hotplug and
7289 * core isolation disabling the watchdog. When a CPU is hotplugged in
7290 * and the hotplug lock has been released the watchdog thread might
7291 * not have run yet to enable the watchdog.
7292 * We have to wait for the watchdog to be enabled before proceeding.
7293 */
7294 if (!watchdog_configured(cpu)) {
7295 msleep(20);
7296 if (!watchdog_configured(cpu)) {
7297 --cpu_isolation_vote[cpu];
7298 ret_code = -EBUSY;
7299 goto out;
7300 }
7301 }
7302
7303 set_cpu_isolated(cpu, true);
7304 cpumask_clear_cpu(cpu, &avail_cpus);
7305
7306 /* Migrate timers */
7307 smp_call_function_any(&avail_cpus, hrtimer_quiesce_cpu, &cpu, 1);
7308 smp_call_function_any(&avail_cpus, timer_quiesce_cpu, &cpu, 1);
7309
7310 watchdog_disable(cpu);
7311 irq_lock_sparse();
7312 stop_cpus(cpumask_of(cpu), do_isolation_work_cpu_stop, 0);
7313 irq_unlock_sparse();
7314
7315 calc_load_migrate(rq);
7316 update_max_interval();
7317 sched_update_group_capacities(cpu);
7318
7319 out:
7320 cpu_maps_update_done();
7321 trace_sched_isolate(cpu, cpumask_bits(cpu_isolated_mask)[0],
7322 start_time, 1);
7323 return ret_code;
7324 }
7325
7326 /*
7327 * Note: The client calling sched_isolate_cpu() is repsonsible for ONLY
7328 * calling sched_unisolate_cpu() on a CPU that the client previously isolated.
7329 * Client is also responsible for unisolating when a core goes offline
7330 * (after CPU is marked offline).
7331 */
sched_unisolate_cpu_unlocked(int cpu)7332 int sched_unisolate_cpu_unlocked(int cpu)
7333 {
7334 int ret_code = 0;
7335 u64 start_time = 0;
7336
7337 if (cpu < 0 || cpu >= nr_cpu_ids || !cpu_possible(cpu)
7338 || cpu >= NR_CPUS) {
7339 ret_code = -EINVAL;
7340 goto out;
7341 }
7342
7343 if (trace_sched_isolate_enabled())
7344 start_time = sched_clock();
7345
7346 if (!cpu_isolation_vote[cpu]) {
7347 ret_code = -EINVAL;
7348 goto out;
7349 }
7350
7351 if (--cpu_isolation_vote[cpu])
7352 goto out;
7353
7354 set_cpu_isolated(cpu, false);
7355 update_max_interval();
7356 sched_update_group_capacities(cpu);
7357
7358 if (cpu_online(cpu)) {
7359 stop_cpus(cpumask_of(cpu), do_unisolation_work_cpu_stop, 0);
7360
7361 /* Kick CPU to immediately do load balancing */
7362 if (!atomic_fetch_or(NOHZ_KICK_MASK, nohz_flags(cpu)))
7363 smp_send_reschedule(cpu);
7364 }
7365
7366 out:
7367 trace_sched_isolate(cpu, cpumask_bits(cpu_isolated_mask)[0],
7368 start_time, 0);
7369 return ret_code;
7370 }
7371
sched_unisolate_cpu(int cpu)7372 int sched_unisolate_cpu(int cpu)
7373 {
7374 int ret_code;
7375
7376 cpu_maps_update_begin();
7377 ret_code = sched_unisolate_cpu_unlocked(cpu);
7378 cpu_maps_update_done();
7379 return ret_code;
7380 }
7381
7382 #endif /* CONFIG_CPU_ISOLATION_OPT */
7383
7384 #endif /* CONFIG_HOTPLUG_CPU */
7385
set_rq_online(struct rq * rq)7386 void set_rq_online(struct rq *rq)
7387 {
7388 if (!rq->online) {
7389 const struct sched_class *class;
7390
7391 cpumask_set_cpu(rq->cpu, rq->rd->online);
7392 rq->online = 1;
7393
7394 for_each_class(class) {
7395 if (class->rq_online)
7396 class->rq_online(rq);
7397 }
7398 }
7399 }
7400
set_rq_offline(struct rq * rq)7401 void set_rq_offline(struct rq *rq)
7402 {
7403 if (rq->online) {
7404 const struct sched_class *class;
7405
7406 for_each_class(class) {
7407 if (class->rq_offline)
7408 class->rq_offline(rq);
7409 }
7410
7411 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7412 rq->online = 0;
7413 }
7414 }
7415
7416 /*
7417 * used to mark begin/end of suspend/resume:
7418 */
7419 static int num_cpus_frozen;
7420
7421 /*
7422 * Update cpusets according to cpu_active mask. If cpusets are
7423 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7424 * around partition_sched_domains().
7425 *
7426 * If we come here as part of a suspend/resume, don't touch cpusets because we
7427 * want to restore it back to its original state upon resume anyway.
7428 */
cpuset_cpu_active(void)7429 static void cpuset_cpu_active(void)
7430 {
7431 if (cpuhp_tasks_frozen) {
7432 /*
7433 * num_cpus_frozen tracks how many CPUs are involved in suspend
7434 * resume sequence. As long as this is not the last online
7435 * operation in the resume sequence, just build a single sched
7436 * domain, ignoring cpusets.
7437 */
7438 partition_sched_domains(1, NULL, NULL);
7439 if (--num_cpus_frozen)
7440 return;
7441 /*
7442 * This is the last CPU online operation. So fall through and
7443 * restore the original sched domains by considering the
7444 * cpuset configurations.
7445 */
7446 cpuset_force_rebuild();
7447 }
7448 cpuset_update_active_cpus();
7449 }
7450
cpuset_cpu_inactive(unsigned int cpu)7451 static int cpuset_cpu_inactive(unsigned int cpu)
7452 {
7453 if (!cpuhp_tasks_frozen) {
7454 int ret = dl_bw_check_overflow(cpu);
7455
7456 if (ret)
7457 return ret;
7458 cpuset_update_active_cpus();
7459 } else {
7460 num_cpus_frozen++;
7461 partition_sched_domains(1, NULL, NULL);
7462 }
7463 return 0;
7464 }
7465
sched_cpu_activate(unsigned int cpu)7466 int sched_cpu_activate(unsigned int cpu)
7467 {
7468 struct rq *rq = cpu_rq(cpu);
7469 struct rq_flags rf;
7470
7471 #ifdef CONFIG_SCHED_SMT
7472 /*
7473 * When going up, increment the number of cores with SMT present.
7474 */
7475 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7476 static_branch_inc_cpuslocked(&sched_smt_present);
7477 #endif
7478 set_cpu_active(cpu, true);
7479
7480 if (sched_smp_initialized) {
7481 sched_domains_numa_masks_set(cpu);
7482 cpuset_cpu_active();
7483 }
7484
7485 /*
7486 * Put the rq online, if not already. This happens:
7487 *
7488 * 1) In the early boot process, because we build the real domains
7489 * after all CPUs have been brought up.
7490 *
7491 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the
7492 * domains.
7493 */
7494 rq_lock_irqsave(rq, &rf);
7495 if (rq->rd) {
7496 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7497 set_rq_online(rq);
7498 }
7499 rq_unlock_irqrestore(rq, &rf);
7500
7501 return 0;
7502 }
7503
sched_cpu_deactivate(unsigned int cpu)7504 int sched_cpu_deactivate(unsigned int cpu)
7505 {
7506 int ret;
7507
7508 set_cpu_active(cpu, false);
7509 /*
7510 * We've cleared cpu_active_mask, wait for all preempt-disabled and RCU
7511 * users of this state to go away such that all new such users will
7512 * observe it.
7513 *
7514 * Do sync before park smpboot threads to take care the rcu boost case.
7515 */
7516 synchronize_rcu();
7517
7518 #ifdef CONFIG_SCHED_SMT
7519 /*
7520 * When going down, decrement the number of cores with SMT present.
7521 */
7522 if (cpumask_weight(cpu_smt_mask(cpu)) == 2)
7523 static_branch_dec_cpuslocked(&sched_smt_present);
7524 #endif
7525
7526 if (!sched_smp_initialized)
7527 return 0;
7528
7529 ret = cpuset_cpu_inactive(cpu);
7530 if (ret) {
7531 set_cpu_active(cpu, true);
7532 return ret;
7533 }
7534 sched_domains_numa_masks_clear(cpu);
7535 return 0;
7536 }
7537
sched_rq_cpu_starting(unsigned int cpu)7538 static void sched_rq_cpu_starting(unsigned int cpu)
7539 {
7540 struct rq *rq = cpu_rq(cpu);
7541 unsigned long flags;
7542
7543 raw_spin_lock_irqsave(&rq->lock, flags);
7544 set_window_start(rq);
7545 raw_spin_unlock_irqrestore(&rq->lock, flags);
7546
7547 rq->calc_load_update = calc_load_update;
7548 update_max_interval();
7549 }
7550
sched_cpu_starting(unsigned int cpu)7551 int sched_cpu_starting(unsigned int cpu)
7552 {
7553 sched_rq_cpu_starting(cpu);
7554 sched_tick_start(cpu);
7555 clear_eas_migration_request(cpu);
7556 return 0;
7557 }
7558
7559 #ifdef CONFIG_HOTPLUG_CPU
sched_cpu_dying(unsigned int cpu)7560 int sched_cpu_dying(unsigned int cpu)
7561 {
7562 struct rq *rq = cpu_rq(cpu);
7563 struct rq_flags rf;
7564
7565 /* Handle pending wakeups and then migrate everything off */
7566 sched_tick_stop(cpu);
7567
7568 rq_lock_irqsave(rq, &rf);
7569
7570 if (rq->rd) {
7571 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7572 set_rq_offline(rq);
7573 }
7574 migrate_tasks(rq, &rf, true);
7575 BUG_ON(rq->nr_running != 1);
7576 rq_unlock_irqrestore(rq, &rf);
7577
7578 clear_eas_migration_request(cpu);
7579
7580 calc_load_migrate(rq);
7581 update_max_interval();
7582 nohz_balance_exit_idle(rq);
7583 hrtick_clear(rq);
7584 return 0;
7585 }
7586 #endif
7587
sched_init_smp(void)7588 void __init sched_init_smp(void)
7589 {
7590 sched_init_numa();
7591
7592 /*
7593 * There's no userspace yet to cause hotplug operations; hence all the
7594 * CPU masks are stable and all blatant races in the below code cannot
7595 * happen.
7596 */
7597 mutex_lock(&sched_domains_mutex);
7598 sched_init_domains(cpu_active_mask);
7599 mutex_unlock(&sched_domains_mutex);
7600
7601 update_cluster_topology();
7602
7603 /* Move init over to a non-isolated CPU */
7604 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_FLAG_DOMAIN)) < 0)
7605 BUG();
7606 sched_init_granularity();
7607
7608 init_sched_rt_class();
7609 init_sched_dl_class();
7610
7611 sched_smp_initialized = true;
7612 }
7613
migration_init(void)7614 static int __init migration_init(void)
7615 {
7616 sched_cpu_starting(smp_processor_id());
7617 return 0;
7618 }
7619 early_initcall(migration_init);
7620
7621 #else
sched_init_smp(void)7622 void __init sched_init_smp(void)
7623 {
7624 sched_init_granularity();
7625 }
7626 #endif /* CONFIG_SMP */
7627
in_sched_functions(unsigned long addr)7628 int in_sched_functions(unsigned long addr)
7629 {
7630 return in_lock_functions(addr) ||
7631 (addr >= (unsigned long)__sched_text_start
7632 && addr < (unsigned long)__sched_text_end);
7633 }
7634
7635 #ifdef CONFIG_CGROUP_SCHED
7636 /*
7637 * Default task group.
7638 * Every task in system belongs to this group at bootup.
7639 */
7640 struct task_group root_task_group;
7641 LIST_HEAD(task_groups);
7642
7643 /* Cacheline aligned slab cache for task_group */
7644 static struct kmem_cache *task_group_cache __read_mostly;
7645 #endif
7646
7647 DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
7648 DECLARE_PER_CPU(cpumask_var_t, select_idle_mask);
7649
sched_init(void)7650 void __init sched_init(void)
7651 {
7652 unsigned long ptr = 0;
7653 int i;
7654
7655 /* Make sure the linker didn't screw up */
7656 BUG_ON(&idle_sched_class + 1 != &fair_sched_class ||
7657 &fair_sched_class + 1 != &rt_sched_class ||
7658 &rt_sched_class + 1 != &dl_sched_class);
7659 #ifdef CONFIG_SMP
7660 BUG_ON(&dl_sched_class + 1 != &stop_sched_class);
7661 #endif
7662
7663 wait_bit_init();
7664
7665 init_clusters();
7666
7667 #ifdef CONFIG_FAIR_GROUP_SCHED
7668 ptr += 2 * nr_cpu_ids * sizeof(void **);
7669 #endif
7670 #ifdef CONFIG_RT_GROUP_SCHED
7671 ptr += 2 * nr_cpu_ids * sizeof(void **);
7672 #endif
7673 if (ptr) {
7674 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT);
7675
7676 #ifdef CONFIG_FAIR_GROUP_SCHED
7677 root_task_group.se = (struct sched_entity **)ptr;
7678 ptr += nr_cpu_ids * sizeof(void **);
7679
7680 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
7681 ptr += nr_cpu_ids * sizeof(void **);
7682
7683 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
7684 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
7685 #endif /* CONFIG_FAIR_GROUP_SCHED */
7686 #ifdef CONFIG_RT_GROUP_SCHED
7687 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
7688 ptr += nr_cpu_ids * sizeof(void **);
7689
7690 root_task_group.rt_rq = (struct rt_rq **)ptr;
7691 ptr += nr_cpu_ids * sizeof(void **);
7692
7693 #endif /* CONFIG_RT_GROUP_SCHED */
7694 }
7695 #ifdef CONFIG_CPUMASK_OFFSTACK
7696 for_each_possible_cpu(i) {
7697 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7698 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7699 per_cpu(select_idle_mask, i) = (cpumask_var_t)kzalloc_node(
7700 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
7701 }
7702 #endif /* CONFIG_CPUMASK_OFFSTACK */
7703
7704 init_rt_bandwidth(&def_rt_bandwidth, global_rt_period(), global_rt_runtime());
7705 init_dl_bandwidth(&def_dl_bandwidth, global_rt_period(), global_rt_runtime());
7706
7707 #ifdef CONFIG_SMP
7708 init_defrootdomain();
7709 #endif
7710
7711 #ifdef CONFIG_RT_GROUP_SCHED
7712 init_rt_bandwidth(&root_task_group.rt_bandwidth,
7713 global_rt_period(), global_rt_runtime());
7714 #endif /* CONFIG_RT_GROUP_SCHED */
7715
7716 #ifdef CONFIG_CGROUP_SCHED
7717 task_group_cache = KMEM_CACHE(task_group, 0);
7718
7719 list_add(&root_task_group.list, &task_groups);
7720 INIT_LIST_HEAD(&root_task_group.children);
7721 INIT_LIST_HEAD(&root_task_group.siblings);
7722 autogroup_init(&init_task);
7723 #endif /* CONFIG_CGROUP_SCHED */
7724
7725 for_each_possible_cpu(i) {
7726 struct rq *rq;
7727
7728 rq = cpu_rq(i);
7729 raw_spin_lock_init(&rq->lock);
7730 rq->nr_running = 0;
7731 rq->calc_load_active = 0;
7732 rq->calc_load_update = jiffies + LOAD_FREQ;
7733 init_cfs_rq(&rq->cfs);
7734 init_rt_rq(&rq->rt);
7735 init_dl_rq(&rq->dl);
7736 #ifdef CONFIG_FAIR_GROUP_SCHED
7737 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7738 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
7739 /*
7740 * How much CPU bandwidth does root_task_group get?
7741 *
7742 * In case of task-groups formed thr' the cgroup filesystem, it
7743 * gets 100% of the CPU resources in the system. This overall
7744 * system CPU resource is divided among the tasks of
7745 * root_task_group and its child task-groups in a fair manner,
7746 * based on each entity's (task or task-group's) weight
7747 * (se->load.weight).
7748 *
7749 * In other words, if root_task_group has 10 tasks of weight
7750 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7751 * then A0's share of the CPU resource is:
7752 *
7753 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7754 *
7755 * We achieve this by letting root_task_group's tasks sit
7756 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
7757 */
7758 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
7759 #endif /* CONFIG_FAIR_GROUP_SCHED */
7760
7761 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7762 #ifdef CONFIG_RT_GROUP_SCHED
7763 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
7764 #endif
7765 #ifdef CONFIG_SMP
7766 rq->sd = NULL;
7767 rq->rd = NULL;
7768 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
7769 rq->balance_callback = NULL;
7770 rq->active_balance = 0;
7771 rq->next_balance = jiffies;
7772 rq->push_cpu = 0;
7773 rq->cpu = i;
7774 rq->online = 0;
7775 rq->idle_stamp = 0;
7776 rq->avg_idle = 2*sysctl_sched_migration_cost;
7777 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
7778 walt_sched_init_rq(rq);
7779
7780 INIT_LIST_HEAD(&rq->cfs_tasks);
7781
7782 rq_attach_root(rq, &def_root_domain);
7783 #ifdef CONFIG_NO_HZ_COMMON
7784 rq->last_blocked_load_update_tick = jiffies;
7785 atomic_set(&rq->nohz_flags, 0);
7786
7787 rq_csd_init(rq, &rq->nohz_csd, nohz_csd_func);
7788 #endif
7789 #endif /* CONFIG_SMP */
7790 hrtick_rq_init(rq);
7791 atomic_set(&rq->nr_iowait, 0);
7792 }
7793
7794 BUG_ON(alloc_related_thread_groups());
7795 set_load_weight(&init_task);
7796
7797 /*
7798 * The boot idle thread does lazy MMU switching as well:
7799 */
7800 mmgrab(&init_mm);
7801 enter_lazy_tlb(&init_mm, current);
7802
7803 /*
7804 * Make us the idle thread. Technically, schedule() should not be
7805 * called from this thread, however somewhere below it might be,
7806 * but because we are the idle thread, we just pick up running again
7807 * when this runqueue becomes "idle".
7808 */
7809 init_idle(current, smp_processor_id());
7810 init_new_task_load(current);
7811
7812 #ifdef CONIG_QOS_CTRL
7813 init_task_qos(current);
7814 #endif
7815
7816 calc_load_update = jiffies + LOAD_FREQ;
7817
7818 #ifdef CONFIG_SMP
7819 idle_thread_set_boot_cpu();
7820 #endif
7821 init_sched_fair_class();
7822
7823 init_schedstats();
7824
7825 psi_init();
7826
7827 init_uclamp();
7828
7829 scheduler_running = 1;
7830 }
7831
7832 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP
preempt_count_equals(int preempt_offset)7833 static inline int preempt_count_equals(int preempt_offset)
7834 {
7835 int nested = preempt_count() + rcu_preempt_depth();
7836
7837 return (nested == preempt_offset);
7838 }
7839
__might_sleep(const char * file,int line,int preempt_offset)7840 void __might_sleep(const char *file, int line, int preempt_offset)
7841 {
7842 /*
7843 * Blocking primitives will set (and therefore destroy) current->state,
7844 * since we will exit with TASK_RUNNING make sure we enter with it,
7845 * otherwise we will destroy state.
7846 */
7847 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
7848 "do not call blocking ops when !TASK_RUNNING; "
7849 "state=%lx set at [<%p>] %pS\n",
7850 current->state,
7851 (void *)current->task_state_change,
7852 (void *)current->task_state_change);
7853
7854 ___might_sleep(file, line, preempt_offset);
7855 }
7856 EXPORT_SYMBOL(__might_sleep);
7857
___might_sleep(const char * file,int line,int preempt_offset)7858 void ___might_sleep(const char *file, int line, int preempt_offset)
7859 {
7860 /* Ratelimiting timestamp: */
7861 static unsigned long prev_jiffy;
7862
7863 unsigned long preempt_disable_ip;
7864
7865 /* WARN_ON_ONCE() by default, no rate limit required: */
7866 rcu_sleep_check();
7867
7868 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7869 !is_idle_task(current) && !current->non_block_count) ||
7870 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING ||
7871 oops_in_progress)
7872 return;
7873
7874 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7875 return;
7876 prev_jiffy = jiffies;
7877
7878 /* Save this before calling printk(), since that will clobber it: */
7879 preempt_disable_ip = get_preempt_disable_ip(current);
7880
7881 printk(KERN_ERR
7882 "BUG: sleeping function called from invalid context at %s:%d\n",
7883 file, line);
7884 printk(KERN_ERR
7885 "in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n",
7886 in_atomic(), irqs_disabled(), current->non_block_count,
7887 current->pid, current->comm);
7888
7889 if (task_stack_end_corrupted(current))
7890 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7891
7892 debug_show_held_locks(current);
7893 if (irqs_disabled())
7894 print_irqtrace_events(current);
7895 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)
7896 && !preempt_count_equals(preempt_offset)) {
7897 pr_err("Preemption disabled at:");
7898 print_ip_sym(KERN_ERR, preempt_disable_ip);
7899 }
7900 dump_stack();
7901 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7902 }
7903 EXPORT_SYMBOL(___might_sleep);
7904
__cant_sleep(const char * file,int line,int preempt_offset)7905 void __cant_sleep(const char *file, int line, int preempt_offset)
7906 {
7907 static unsigned long prev_jiffy;
7908
7909 if (irqs_disabled())
7910 return;
7911
7912 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT))
7913 return;
7914
7915 if (preempt_count() > preempt_offset)
7916 return;
7917
7918 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7919 return;
7920 prev_jiffy = jiffies;
7921
7922 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line);
7923 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7924 in_atomic(), irqs_disabled(),
7925 current->pid, current->comm);
7926
7927 debug_show_held_locks(current);
7928 dump_stack();
7929 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
7930 }
7931 EXPORT_SYMBOL_GPL(__cant_sleep);
7932 #endif
7933
7934 #ifdef CONFIG_MAGIC_SYSRQ
normalize_rt_tasks(void)7935 void normalize_rt_tasks(void)
7936 {
7937 struct task_struct *g, *p;
7938 struct sched_attr attr = {
7939 .sched_policy = SCHED_NORMAL,
7940 };
7941
7942 read_lock(&tasklist_lock);
7943 for_each_process_thread(g, p) {
7944 /*
7945 * Only normalize user tasks:
7946 */
7947 if (p->flags & PF_KTHREAD)
7948 continue;
7949
7950 p->se.exec_start = 0;
7951 schedstat_set(p->se.statistics.wait_start, 0);
7952 schedstat_set(p->se.statistics.sleep_start, 0);
7953 schedstat_set(p->se.statistics.block_start, 0);
7954
7955 if (!dl_task(p) && !rt_task(p)) {
7956 /*
7957 * Renice negative nice level userspace
7958 * tasks back to 0:
7959 */
7960 if (task_nice(p) < 0)
7961 set_user_nice(p, 0);
7962 continue;
7963 }
7964
7965 __sched_setscheduler(p, &attr, false, false);
7966 }
7967 read_unlock(&tasklist_lock);
7968 }
7969
7970 #endif /* CONFIG_MAGIC_SYSRQ */
7971
7972 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7973 /*
7974 * These functions are only useful for the IA64 MCA handling, or kdb.
7975 *
7976 * They can only be called when the whole system has been
7977 * stopped - every CPU needs to be quiescent, and no scheduling
7978 * activity can take place. Using them for anything else would
7979 * be a serious bug, and as a result, they aren't even visible
7980 * under any other configuration.
7981 */
7982
7983 /**
7984 * curr_task - return the current task for a given CPU.
7985 * @cpu: the processor in question.
7986 *
7987 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7988 *
7989 * Return: The current task for @cpu.
7990 */
curr_task(int cpu)7991 struct task_struct *curr_task(int cpu)
7992 {
7993 return cpu_curr(cpu);
7994 }
7995
7996 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7997
7998 #ifdef CONFIG_IA64
7999 /**
8000 * ia64_set_curr_task - set the current task for a given CPU.
8001 * @cpu: the processor in question.
8002 * @p: the task pointer to set.
8003 *
8004 * Description: This function must only be used when non-maskable interrupts
8005 * are serviced on a separate stack. It allows the architecture to switch the
8006 * notion of the current task on a CPU in a non-blocking manner. This function
8007 * must be called with all CPU's synchronized, and interrupts disabled, the
8008 * and caller must save the original value of the current task (see
8009 * curr_task() above) and restore that value before reenabling interrupts and
8010 * re-starting the system.
8011 *
8012 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8013 */
ia64_set_curr_task(int cpu,struct task_struct * p)8014 void ia64_set_curr_task(int cpu, struct task_struct *p)
8015 {
8016 cpu_curr(cpu) = p;
8017 }
8018
8019 #endif
8020
8021 #ifdef CONFIG_CGROUP_SCHED
8022 /* task_group_lock serializes the addition/removal of task groups */
8023 static DEFINE_SPINLOCK(task_group_lock);
8024
alloc_uclamp_sched_group(struct task_group * tg,struct task_group * parent)8025 static inline void alloc_uclamp_sched_group(struct task_group *tg,
8026 struct task_group *parent)
8027 {
8028 #ifdef CONFIG_UCLAMP_TASK_GROUP
8029 enum uclamp_id clamp_id;
8030
8031 for_each_clamp_id(clamp_id) {
8032 uclamp_se_set(&tg->uclamp_req[clamp_id],
8033 uclamp_none(clamp_id), false);
8034 tg->uclamp[clamp_id] = parent->uclamp[clamp_id];
8035 }
8036 #endif
8037 }
8038
sched_free_group(struct task_group * tg)8039 static void sched_free_group(struct task_group *tg)
8040 {
8041 free_fair_sched_group(tg);
8042 free_rt_sched_group(tg);
8043 autogroup_free(tg);
8044 kmem_cache_free(task_group_cache, tg);
8045 }
8046
8047 /* allocate runqueue etc for a new task group */
sched_create_group(struct task_group * parent)8048 struct task_group *sched_create_group(struct task_group *parent)
8049 {
8050 struct task_group *tg;
8051
8052 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
8053 if (!tg)
8054 return ERR_PTR(-ENOMEM);
8055
8056 if (!alloc_fair_sched_group(tg, parent))
8057 goto err;
8058
8059 if (!alloc_rt_sched_group(tg, parent))
8060 goto err;
8061
8062 alloc_uclamp_sched_group(tg, parent);
8063
8064 return tg;
8065
8066 err:
8067 sched_free_group(tg);
8068 return ERR_PTR(-ENOMEM);
8069 }
8070
sched_online_group(struct task_group * tg,struct task_group * parent)8071 void sched_online_group(struct task_group *tg, struct task_group *parent)
8072 {
8073 unsigned long flags;
8074
8075 spin_lock_irqsave(&task_group_lock, flags);
8076 list_add_rcu(&tg->list, &task_groups);
8077
8078 /* Root should already exist: */
8079 WARN_ON(!parent);
8080
8081 tg->parent = parent;
8082 INIT_LIST_HEAD(&tg->children);
8083 list_add_rcu(&tg->siblings, &parent->children);
8084 spin_unlock_irqrestore(&task_group_lock, flags);
8085
8086 online_fair_sched_group(tg);
8087 }
8088
8089 /* rcu callback to free various structures associated with a task group */
sched_free_group_rcu(struct rcu_head * rhp)8090 static void sched_free_group_rcu(struct rcu_head *rhp)
8091 {
8092 /* Now it should be safe to free those cfs_rqs: */
8093 sched_free_group(container_of(rhp, struct task_group, rcu));
8094 }
8095
sched_destroy_group(struct task_group * tg)8096 void sched_destroy_group(struct task_group *tg)
8097 {
8098 /* Wait for possible concurrent references to cfs_rqs complete: */
8099 call_rcu(&tg->rcu, sched_free_group_rcu);
8100 }
8101
sched_offline_group(struct task_group * tg)8102 void sched_offline_group(struct task_group *tg)
8103 {
8104 unsigned long flags;
8105
8106 /* End participation in shares distribution: */
8107 unregister_fair_sched_group(tg);
8108
8109 spin_lock_irqsave(&task_group_lock, flags);
8110 list_del_rcu(&tg->list);
8111 list_del_rcu(&tg->siblings);
8112 spin_unlock_irqrestore(&task_group_lock, flags);
8113 }
8114
sched_change_group(struct task_struct * tsk,int type)8115 static void sched_change_group(struct task_struct *tsk, int type)
8116 {
8117 struct task_group *tg;
8118
8119 /*
8120 * All callers are synchronized by task_rq_lock(); we do not use RCU
8121 * which is pointless here. Thus, we pass "true" to task_css_check()
8122 * to prevent lockdep warnings.
8123 */
8124 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8125 struct task_group, css);
8126 tg = autogroup_task_group(tsk, tg);
8127 tsk->sched_task_group = tg;
8128
8129 #ifdef CONFIG_FAIR_GROUP_SCHED
8130 if (tsk->sched_class->task_change_group)
8131 tsk->sched_class->task_change_group(tsk, type);
8132 else
8133 #endif
8134 set_task_rq(tsk, task_cpu(tsk));
8135 }
8136
8137 /*
8138 * Change task's runqueue when it moves between groups.
8139 *
8140 * The caller of this function should have put the task in its new group by
8141 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect
8142 * its new group.
8143 */
sched_move_task(struct task_struct * tsk)8144 void sched_move_task(struct task_struct *tsk)
8145 {
8146 int queued, running, queue_flags =
8147 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK;
8148 struct rq_flags rf;
8149 struct rq *rq;
8150
8151 rq = task_rq_lock(tsk, &rf);
8152 update_rq_clock(rq);
8153
8154 running = task_current(rq, tsk);
8155 queued = task_on_rq_queued(tsk);
8156
8157 if (queued)
8158 dequeue_task(rq, tsk, queue_flags);
8159 if (running)
8160 put_prev_task(rq, tsk);
8161
8162 sched_change_group(tsk, TASK_MOVE_GROUP);
8163
8164 if (queued)
8165 enqueue_task(rq, tsk, queue_flags);
8166 if (running) {
8167 set_next_task(rq, tsk);
8168 /*
8169 * After changing group, the running task may have joined a
8170 * throttled one but it's still the running task. Trigger a
8171 * resched to make sure that task can still run.
8172 */
8173 resched_curr(rq);
8174 }
8175
8176 task_rq_unlock(rq, tsk, &rf);
8177 }
8178
css_tg(struct cgroup_subsys_state * css)8179 static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
8180 {
8181 return css ? container_of(css, struct task_group, css) : NULL;
8182 }
8183
8184 static struct cgroup_subsys_state *
cpu_cgroup_css_alloc(struct cgroup_subsys_state * parent_css)8185 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8186 {
8187 struct task_group *parent = css_tg(parent_css);
8188 struct task_group *tg;
8189
8190 if (!parent) {
8191 /* This is early initialization for the top cgroup */
8192 return &root_task_group.css;
8193 }
8194
8195 tg = sched_create_group(parent);
8196 if (IS_ERR(tg))
8197 return ERR_PTR(-ENOMEM);
8198
8199 #ifdef CONFIG_SCHED_RTG_CGROUP
8200 tg->colocate = false;
8201 tg->colocate_update_disabled = false;
8202 #endif
8203
8204 return &tg->css;
8205 }
8206
8207 /* Expose task group only after completing cgroup initialization */
cpu_cgroup_css_online(struct cgroup_subsys_state * css)8208 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
8209 {
8210 struct task_group *tg = css_tg(css);
8211 struct task_group *parent = css_tg(css->parent);
8212
8213 if (parent)
8214 sched_online_group(tg, parent);
8215
8216 #ifdef CONFIG_UCLAMP_TASK_GROUP
8217 /* Propagate the effective uclamp value for the new group */
8218 mutex_lock(&uclamp_mutex);
8219 rcu_read_lock();
8220 cpu_util_update_eff(css);
8221 rcu_read_unlock();
8222 mutex_unlock(&uclamp_mutex);
8223 #endif
8224
8225 return 0;
8226 }
8227
cpu_cgroup_css_released(struct cgroup_subsys_state * css)8228 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
8229 {
8230 struct task_group *tg = css_tg(css);
8231
8232 sched_offline_group(tg);
8233 }
8234
cpu_cgroup_css_free(struct cgroup_subsys_state * css)8235 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
8236 {
8237 struct task_group *tg = css_tg(css);
8238
8239 /*
8240 * Relies on the RCU grace period between css_released() and this.
8241 */
8242 sched_free_group(tg);
8243 }
8244
8245 /*
8246 * This is called before wake_up_new_task(), therefore we really only
8247 * have to set its group bits, all the other stuff does not apply.
8248 */
cpu_cgroup_fork(struct task_struct * task)8249 static void cpu_cgroup_fork(struct task_struct *task)
8250 {
8251 struct rq_flags rf;
8252 struct rq *rq;
8253
8254 rq = task_rq_lock(task, &rf);
8255
8256 update_rq_clock(rq);
8257 sched_change_group(task, TASK_SET_GROUP);
8258
8259 task_rq_unlock(rq, task, &rf);
8260 }
8261
cpu_cgroup_can_attach(struct cgroup_taskset * tset)8262 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
8263 {
8264 struct task_struct *task;
8265 struct cgroup_subsys_state *css;
8266 int ret = 0;
8267
8268 cgroup_taskset_for_each(task, css, tset) {
8269 #ifdef CONFIG_RT_GROUP_SCHED
8270 if (!sched_rt_can_attach(css_tg(css), task))
8271 return -EINVAL;
8272 #endif
8273 /*
8274 * Serialize against wake_up_new_task() such that if its
8275 * running, we're sure to observe its full state.
8276 */
8277 raw_spin_lock_irq(&task->pi_lock);
8278 /*
8279 * Avoid calling sched_move_task() before wake_up_new_task()
8280 * has happened. This would lead to problems with PELT, due to
8281 * move wanting to detach+attach while we're not attached yet.
8282 */
8283 if (task->state == TASK_NEW)
8284 ret = -EINVAL;
8285 raw_spin_unlock_irq(&task->pi_lock);
8286
8287 if (ret)
8288 break;
8289 }
8290 return ret;
8291 }
8292
8293 #if defined(CONFIG_UCLAMP_TASK_GROUP) && defined(CONFIG_SCHED_RTG_CGROUP)
schedgp_attach(struct cgroup_taskset * tset)8294 static void schedgp_attach(struct cgroup_taskset *tset)
8295 {
8296 struct task_struct *task;
8297 struct cgroup_subsys_state *css;
8298 bool colocate;
8299 struct task_group *tg;
8300
8301 cgroup_taskset_first(tset, &css);
8302 tg = css_tg(css);
8303
8304 colocate = tg->colocate;
8305
8306 cgroup_taskset_for_each(task, css, tset)
8307 sync_cgroup_colocation(task, colocate);
8308 }
8309 #else
schedgp_attach(struct cgroup_taskset * tset)8310 static void schedgp_attach(struct cgroup_taskset *tset) { }
8311 #endif
cpu_cgroup_attach(struct cgroup_taskset * tset)8312 static void cpu_cgroup_attach(struct cgroup_taskset *tset)
8313 {
8314 struct task_struct *task;
8315 struct cgroup_subsys_state *css;
8316
8317 cgroup_taskset_for_each(task, css, tset)
8318 sched_move_task(task);
8319
8320 schedgp_attach(tset);
8321 }
8322
8323 #ifdef CONFIG_UCLAMP_TASK_GROUP
cpu_util_update_eff(struct cgroup_subsys_state * css)8324 static void cpu_util_update_eff(struct cgroup_subsys_state *css)
8325 {
8326 struct cgroup_subsys_state *top_css = css;
8327 struct uclamp_se *uc_parent = NULL;
8328 struct uclamp_se *uc_se = NULL;
8329 unsigned int eff[UCLAMP_CNT];
8330 enum uclamp_id clamp_id;
8331 unsigned int clamps;
8332
8333 lockdep_assert_held(&uclamp_mutex);
8334 SCHED_WARN_ON(!rcu_read_lock_held());
8335
8336 css_for_each_descendant_pre(css, top_css) {
8337 uc_parent = css_tg(css)->parent
8338 ? css_tg(css)->parent->uclamp : NULL;
8339
8340 for_each_clamp_id(clamp_id) {
8341 /* Assume effective clamps matches requested clamps */
8342 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value;
8343 /* Cap effective clamps with parent's effective clamps */
8344 if (uc_parent &&
8345 eff[clamp_id] > uc_parent[clamp_id].value) {
8346 eff[clamp_id] = uc_parent[clamp_id].value;
8347 }
8348 }
8349 /* Ensure protection is always capped by limit */
8350 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]);
8351
8352 /* Propagate most restrictive effective clamps */
8353 clamps = 0x0;
8354 uc_se = css_tg(css)->uclamp;
8355 for_each_clamp_id(clamp_id) {
8356 if (eff[clamp_id] == uc_se[clamp_id].value)
8357 continue;
8358 uc_se[clamp_id].value = eff[clamp_id];
8359 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]);
8360 clamps |= (0x1 << clamp_id);
8361 }
8362 if (!clamps) {
8363 css = css_rightmost_descendant(css);
8364 continue;
8365 }
8366
8367 /* Immediately update descendants RUNNABLE tasks */
8368 uclamp_update_active_tasks(css);
8369 }
8370 }
8371
8372 /*
8373 * Integer 10^N with a given N exponent by casting to integer the literal "1eN"
8374 * C expression. Since there is no way to convert a macro argument (N) into a
8375 * character constant, use two levels of macros.
8376 */
8377 #define _POW10(exp) ((unsigned int)1e##exp)
8378 #define POW10(exp) _POW10(exp)
8379
8380 struct uclamp_request {
8381 #define UCLAMP_PERCENT_SHIFT 2
8382 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT))
8383 s64 percent;
8384 u64 util;
8385 int ret;
8386 };
8387
8388 static inline struct uclamp_request
capacity_from_percent(char * buf)8389 capacity_from_percent(char *buf)
8390 {
8391 struct uclamp_request req = {
8392 .percent = UCLAMP_PERCENT_SCALE,
8393 .util = SCHED_CAPACITY_SCALE,
8394 .ret = 0,
8395 };
8396
8397 buf = strim(buf);
8398 if (strcmp(buf, "max")) {
8399 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT,
8400 &req.percent);
8401 if (req.ret)
8402 return req;
8403 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) {
8404 req.ret = -ERANGE;
8405 return req;
8406 }
8407
8408 req.util = req.percent << SCHED_CAPACITY_SHIFT;
8409 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE);
8410 }
8411
8412 return req;
8413 }
8414
cpu_uclamp_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off,enum uclamp_id clamp_id)8415 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf,
8416 size_t nbytes, loff_t off,
8417 enum uclamp_id clamp_id)
8418 {
8419 struct uclamp_request req;
8420 struct task_group *tg;
8421
8422 req = capacity_from_percent(buf);
8423 if (req.ret)
8424 return req.ret;
8425
8426 static_branch_enable(&sched_uclamp_used);
8427
8428 mutex_lock(&uclamp_mutex);
8429 rcu_read_lock();
8430
8431 tg = css_tg(of_css(of));
8432 if (tg->uclamp_req[clamp_id].value != req.util)
8433 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false);
8434
8435 /*
8436 * Because of not recoverable conversion rounding we keep track of the
8437 * exact requested value
8438 */
8439 tg->uclamp_pct[clamp_id] = req.percent;
8440
8441 /* Update effective clamps to track the most restrictive value */
8442 cpu_util_update_eff(of_css(of));
8443
8444 rcu_read_unlock();
8445 mutex_unlock(&uclamp_mutex);
8446
8447 return nbytes;
8448 }
8449
cpu_uclamp_min_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8450 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of,
8451 char *buf, size_t nbytes,
8452 loff_t off)
8453 {
8454 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN);
8455 }
8456
cpu_uclamp_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)8457 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of,
8458 char *buf, size_t nbytes,
8459 loff_t off)
8460 {
8461 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX);
8462 }
8463
cpu_uclamp_print(struct seq_file * sf,enum uclamp_id clamp_id)8464 static inline void cpu_uclamp_print(struct seq_file *sf,
8465 enum uclamp_id clamp_id)
8466 {
8467 struct task_group *tg;
8468 u64 util_clamp;
8469 u64 percent;
8470 u32 rem;
8471
8472 rcu_read_lock();
8473 tg = css_tg(seq_css(sf));
8474 util_clamp = tg->uclamp_req[clamp_id].value;
8475 rcu_read_unlock();
8476
8477 if (util_clamp == SCHED_CAPACITY_SCALE) {
8478 seq_puts(sf, "max\n");
8479 return;
8480 }
8481
8482 percent = tg->uclamp_pct[clamp_id];
8483 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem);
8484 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem);
8485 }
8486
cpu_uclamp_min_show(struct seq_file * sf,void * v)8487 static int cpu_uclamp_min_show(struct seq_file *sf, void *v)
8488 {
8489 cpu_uclamp_print(sf, UCLAMP_MIN);
8490 return 0;
8491 }
8492
cpu_uclamp_max_show(struct seq_file * sf,void * v)8493 static int cpu_uclamp_max_show(struct seq_file *sf, void *v)
8494 {
8495 cpu_uclamp_print(sf, UCLAMP_MAX);
8496 return 0;
8497 }
8498
8499 #ifdef CONFIG_SCHED_RTG_CGROUP
sched_colocate_read(struct cgroup_subsys_state * css,struct cftype * cft)8500 static u64 sched_colocate_read(struct cgroup_subsys_state *css,
8501 struct cftype *cft)
8502 {
8503 struct task_group *tg = css_tg(css);
8504
8505 return (u64) tg->colocate;
8506 }
8507
sched_colocate_write(struct cgroup_subsys_state * css,struct cftype * cft,u64 colocate)8508 static int sched_colocate_write(struct cgroup_subsys_state *css,
8509 struct cftype *cft, u64 colocate)
8510 {
8511 struct task_group *tg = css_tg(css);
8512
8513 if (tg->colocate_update_disabled)
8514 return -EPERM;
8515
8516 tg->colocate = !!colocate;
8517 tg->colocate_update_disabled = true;
8518
8519 return 0;
8520 }
8521 #endif /* CONFIG_SCHED_RTG_CGROUP */
8522 #endif /* CONFIG_UCLAMP_TASK_GROUP */
8523
8524 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_shares_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 shareval)8525 static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8526 struct cftype *cftype, u64 shareval)
8527 {
8528 if (shareval > scale_load_down(ULONG_MAX))
8529 shareval = MAX_SHARES;
8530 return sched_group_set_shares(css_tg(css), scale_load(shareval));
8531 }
8532
cpu_shares_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8533 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8534 struct cftype *cft)
8535 {
8536 struct task_group *tg = css_tg(css);
8537
8538 return (u64) scale_load_down(tg->shares);
8539 }
8540
8541 #ifdef CONFIG_CFS_BANDWIDTH
8542 static DEFINE_MUTEX(cfs_constraints_mutex);
8543
8544 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8545 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8546 /* More than 203 days if BW_SHIFT equals 20. */
8547 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC;
8548
8549 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8550
tg_set_cfs_bandwidth(struct task_group * tg,u64 period,u64 quota)8551 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8552 {
8553 int i, ret = 0, runtime_enabled, runtime_was_enabled;
8554 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8555
8556 if (tg == &root_task_group)
8557 return -EINVAL;
8558
8559 /*
8560 * Ensure we have at some amount of bandwidth every period. This is
8561 * to prevent reaching a state of large arrears when throttled via
8562 * entity_tick() resulting in prolonged exit starvation.
8563 */
8564 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8565 return -EINVAL;
8566
8567 /*
8568 * Likewise, bound things on the otherside by preventing insane quota
8569 * periods. This also allows us to normalize in computing quota
8570 * feasibility.
8571 */
8572 if (period > max_cfs_quota_period)
8573 return -EINVAL;
8574
8575 /*
8576 * Bound quota to defend quota against overflow during bandwidth shift.
8577 */
8578 if (quota != RUNTIME_INF && quota > max_cfs_runtime)
8579 return -EINVAL;
8580
8581 /*
8582 * Prevent race between setting of cfs_rq->runtime_enabled and
8583 * unthrottle_offline_cfs_rqs().
8584 */
8585 get_online_cpus();
8586 mutex_lock(&cfs_constraints_mutex);
8587 ret = __cfs_schedulable(tg, period, quota);
8588 if (ret)
8589 goto out_unlock;
8590
8591 runtime_enabled = quota != RUNTIME_INF;
8592 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
8593 /*
8594 * If we need to toggle cfs_bandwidth_used, off->on must occur
8595 * before making related changes, and on->off must occur afterwards
8596 */
8597 if (runtime_enabled && !runtime_was_enabled)
8598 cfs_bandwidth_usage_inc();
8599 raw_spin_lock_irq(&cfs_b->lock);
8600 cfs_b->period = ns_to_ktime(period);
8601 cfs_b->quota = quota;
8602
8603 __refill_cfs_bandwidth_runtime(cfs_b);
8604
8605 /* Restart the period timer (if active) to handle new period expiry: */
8606 if (runtime_enabled)
8607 start_cfs_bandwidth(cfs_b);
8608
8609 raw_spin_unlock_irq(&cfs_b->lock);
8610
8611 for_each_online_cpu(i) {
8612 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
8613 struct rq *rq = cfs_rq->rq;
8614 struct rq_flags rf;
8615
8616 rq_lock_irq(rq, &rf);
8617 cfs_rq->runtime_enabled = runtime_enabled;
8618 cfs_rq->runtime_remaining = 0;
8619
8620 if (cfs_rq->throttled)
8621 unthrottle_cfs_rq(cfs_rq);
8622 rq_unlock_irq(rq, &rf);
8623 }
8624 if (runtime_was_enabled && !runtime_enabled)
8625 cfs_bandwidth_usage_dec();
8626 out_unlock:
8627 mutex_unlock(&cfs_constraints_mutex);
8628 put_online_cpus();
8629
8630 return ret;
8631 }
8632
tg_set_cfs_quota(struct task_group * tg,long cfs_quota_us)8633 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8634 {
8635 u64 quota, period;
8636
8637 period = ktime_to_ns(tg->cfs_bandwidth.period);
8638 if (cfs_quota_us < 0)
8639 quota = RUNTIME_INF;
8640 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC)
8641 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8642 else
8643 return -EINVAL;
8644
8645 return tg_set_cfs_bandwidth(tg, period, quota);
8646 }
8647
tg_get_cfs_quota(struct task_group * tg)8648 static long tg_get_cfs_quota(struct task_group *tg)
8649 {
8650 u64 quota_us;
8651
8652 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
8653 return -1;
8654
8655 quota_us = tg->cfs_bandwidth.quota;
8656 do_div(quota_us, NSEC_PER_USEC);
8657
8658 return quota_us;
8659 }
8660
tg_set_cfs_period(struct task_group * tg,long cfs_period_us)8661 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8662 {
8663 u64 quota, period;
8664
8665 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC)
8666 return -EINVAL;
8667
8668 period = (u64)cfs_period_us * NSEC_PER_USEC;
8669 quota = tg->cfs_bandwidth.quota;
8670
8671 return tg_set_cfs_bandwidth(tg, period, quota);
8672 }
8673
tg_get_cfs_period(struct task_group * tg)8674 static long tg_get_cfs_period(struct task_group *tg)
8675 {
8676 u64 cfs_period_us;
8677
8678 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
8679 do_div(cfs_period_us, NSEC_PER_USEC);
8680
8681 return cfs_period_us;
8682 }
8683
cpu_cfs_quota_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8684 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8685 struct cftype *cft)
8686 {
8687 return tg_get_cfs_quota(css_tg(css));
8688 }
8689
cpu_cfs_quota_write_s64(struct cgroup_subsys_state * css,struct cftype * cftype,s64 cfs_quota_us)8690 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8691 struct cftype *cftype, s64 cfs_quota_us)
8692 {
8693 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
8694 }
8695
cpu_cfs_period_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8696 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8697 struct cftype *cft)
8698 {
8699 return tg_get_cfs_period(css_tg(css));
8700 }
8701
cpu_cfs_period_write_u64(struct cgroup_subsys_state * css,struct cftype * cftype,u64 cfs_period_us)8702 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8703 struct cftype *cftype, u64 cfs_period_us)
8704 {
8705 return tg_set_cfs_period(css_tg(css), cfs_period_us);
8706 }
8707
8708 struct cfs_schedulable_data {
8709 struct task_group *tg;
8710 u64 period, quota;
8711 };
8712
8713 /*
8714 * normalize group quota/period to be quota/max_period
8715 * note: units are usecs
8716 */
normalize_cfs_quota(struct task_group * tg,struct cfs_schedulable_data * d)8717 static u64 normalize_cfs_quota(struct task_group *tg,
8718 struct cfs_schedulable_data *d)
8719 {
8720 u64 quota, period;
8721
8722 if (tg == d->tg) {
8723 period = d->period;
8724 quota = d->quota;
8725 } else {
8726 period = tg_get_cfs_period(tg);
8727 quota = tg_get_cfs_quota(tg);
8728 }
8729
8730 /* note: these should typically be equivalent */
8731 if (quota == RUNTIME_INF || quota == -1)
8732 return RUNTIME_INF;
8733
8734 return to_ratio(period, quota);
8735 }
8736
tg_cfs_schedulable_down(struct task_group * tg,void * data)8737 static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8738 {
8739 struct cfs_schedulable_data *d = data;
8740 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8741 s64 quota = 0, parent_quota = -1;
8742
8743 if (!tg->parent) {
8744 quota = RUNTIME_INF;
8745 } else {
8746 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
8747
8748 quota = normalize_cfs_quota(tg, d);
8749 parent_quota = parent_b->hierarchical_quota;
8750
8751 /*
8752 * Ensure max(child_quota) <= parent_quota. On cgroup2,
8753 * always take the min. On cgroup1, only inherit when no
8754 * limit is set:
8755 */
8756 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) {
8757 quota = min(quota, parent_quota);
8758 } else {
8759 if (quota == RUNTIME_INF)
8760 quota = parent_quota;
8761 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8762 return -EINVAL;
8763 }
8764 }
8765 cfs_b->hierarchical_quota = quota;
8766
8767 return 0;
8768 }
8769
__cfs_schedulable(struct task_group * tg,u64 period,u64 quota)8770 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8771 {
8772 int ret;
8773 struct cfs_schedulable_data data = {
8774 .tg = tg,
8775 .period = period,
8776 .quota = quota,
8777 };
8778
8779 if (quota != RUNTIME_INF) {
8780 do_div(data.period, NSEC_PER_USEC);
8781 do_div(data.quota, NSEC_PER_USEC);
8782 }
8783
8784 rcu_read_lock();
8785 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8786 rcu_read_unlock();
8787
8788 return ret;
8789 }
8790
cpu_cfs_stat_show(struct seq_file * sf,void * v)8791 static int cpu_cfs_stat_show(struct seq_file *sf, void *v)
8792 {
8793 struct task_group *tg = css_tg(seq_css(sf));
8794 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8795
8796 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8797 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8798 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
8799
8800 if (schedstat_enabled() && tg != &root_task_group) {
8801 u64 ws = 0;
8802 int i;
8803
8804 for_each_possible_cpu(i)
8805 ws += schedstat_val(tg->se[i]->statistics.wait_sum);
8806
8807 seq_printf(sf, "wait_sum %llu\n", ws);
8808 }
8809
8810 return 0;
8811 }
8812 #endif /* CONFIG_CFS_BANDWIDTH */
8813 #endif /* CONFIG_FAIR_GROUP_SCHED */
8814
8815 #ifdef CONFIG_RT_GROUP_SCHED
cpu_rt_runtime_write(struct cgroup_subsys_state * css,struct cftype * cft,s64 val)8816 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8817 struct cftype *cft, s64 val)
8818 {
8819 return sched_group_set_rt_runtime(css_tg(css), val);
8820 }
8821
cpu_rt_runtime_read(struct cgroup_subsys_state * css,struct cftype * cft)8822 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8823 struct cftype *cft)
8824 {
8825 return sched_group_rt_runtime(css_tg(css));
8826 }
8827
cpu_rt_period_write_uint(struct cgroup_subsys_state * css,struct cftype * cftype,u64 rt_period_us)8828 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8829 struct cftype *cftype, u64 rt_period_us)
8830 {
8831 return sched_group_set_rt_period(css_tg(css), rt_period_us);
8832 }
8833
cpu_rt_period_read_uint(struct cgroup_subsys_state * css,struct cftype * cft)8834 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8835 struct cftype *cft)
8836 {
8837 return sched_group_rt_period(css_tg(css));
8838 }
8839 #endif /* CONFIG_RT_GROUP_SCHED */
8840
8841 static struct cftype cpu_legacy_files[] = {
8842 #ifdef CONFIG_FAIR_GROUP_SCHED
8843 {
8844 .name = "shares",
8845 .read_u64 = cpu_shares_read_u64,
8846 .write_u64 = cpu_shares_write_u64,
8847 },
8848 #endif
8849 #ifdef CONFIG_CFS_BANDWIDTH
8850 {
8851 .name = "cfs_quota_us",
8852 .read_s64 = cpu_cfs_quota_read_s64,
8853 .write_s64 = cpu_cfs_quota_write_s64,
8854 },
8855 {
8856 .name = "cfs_period_us",
8857 .read_u64 = cpu_cfs_period_read_u64,
8858 .write_u64 = cpu_cfs_period_write_u64,
8859 },
8860 {
8861 .name = "stat",
8862 .seq_show = cpu_cfs_stat_show,
8863 },
8864 #endif
8865 #ifdef CONFIG_RT_GROUP_SCHED
8866 {
8867 .name = "rt_runtime_us",
8868 .read_s64 = cpu_rt_runtime_read,
8869 .write_s64 = cpu_rt_runtime_write,
8870 },
8871 {
8872 .name = "rt_period_us",
8873 .read_u64 = cpu_rt_period_read_uint,
8874 .write_u64 = cpu_rt_period_write_uint,
8875 },
8876 #endif
8877 #ifdef CONFIG_UCLAMP_TASK_GROUP
8878 {
8879 .name = "uclamp.min",
8880 .flags = CFTYPE_NOT_ON_ROOT,
8881 .seq_show = cpu_uclamp_min_show,
8882 .write = cpu_uclamp_min_write,
8883 },
8884 {
8885 .name = "uclamp.max",
8886 .flags = CFTYPE_NOT_ON_ROOT,
8887 .seq_show = cpu_uclamp_max_show,
8888 .write = cpu_uclamp_max_write,
8889 },
8890 #ifdef CONFIG_SCHED_RTG_CGROUP
8891 {
8892 .name = "uclamp.colocate",
8893 .flags = CFTYPE_NOT_ON_ROOT,
8894 .read_u64 = sched_colocate_read,
8895 .write_u64 = sched_colocate_write,
8896 },
8897 #endif
8898 #endif
8899 { } /* Terminate */
8900 };
8901
cpu_extra_stat_show(struct seq_file * sf,struct cgroup_subsys_state * css)8902 static int cpu_extra_stat_show(struct seq_file *sf,
8903 struct cgroup_subsys_state *css)
8904 {
8905 #ifdef CONFIG_CFS_BANDWIDTH
8906 {
8907 struct task_group *tg = css_tg(css);
8908 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
8909 u64 throttled_usec;
8910
8911 throttled_usec = cfs_b->throttled_time;
8912 do_div(throttled_usec, NSEC_PER_USEC);
8913
8914 seq_printf(sf, "nr_periods %d\n"
8915 "nr_throttled %d\n"
8916 "throttled_usec %llu\n",
8917 cfs_b->nr_periods, cfs_b->nr_throttled,
8918 throttled_usec);
8919 }
8920 #endif
8921 return 0;
8922 }
8923
8924 #ifdef CONFIG_FAIR_GROUP_SCHED
cpu_weight_read_u64(struct cgroup_subsys_state * css,struct cftype * cft)8925 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css,
8926 struct cftype *cft)
8927 {
8928 struct task_group *tg = css_tg(css);
8929 u64 weight = scale_load_down(tg->shares);
8930
8931 return DIV_ROUND_CLOSEST_ULL(weight * CGROUP_WEIGHT_DFL, 1024);
8932 }
8933
cpu_weight_write_u64(struct cgroup_subsys_state * css,struct cftype * cft,u64 weight)8934 static int cpu_weight_write_u64(struct cgroup_subsys_state *css,
8935 struct cftype *cft, u64 weight)
8936 {
8937 /*
8938 * cgroup weight knobs should use the common MIN, DFL and MAX
8939 * values which are 1, 100 and 10000 respectively. While it loses
8940 * a bit of range on both ends, it maps pretty well onto the shares
8941 * value used by scheduler and the round-trip conversions preserve
8942 * the original value over the entire range.
8943 */
8944 if (weight < CGROUP_WEIGHT_MIN || weight > CGROUP_WEIGHT_MAX)
8945 return -ERANGE;
8946
8947 weight = DIV_ROUND_CLOSEST_ULL(weight * 1024, CGROUP_WEIGHT_DFL);
8948
8949 return sched_group_set_shares(css_tg(css), scale_load(weight));
8950 }
8951
cpu_weight_nice_read_s64(struct cgroup_subsys_state * css,struct cftype * cft)8952 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css,
8953 struct cftype *cft)
8954 {
8955 unsigned long weight = scale_load_down(css_tg(css)->shares);
8956 int last_delta = INT_MAX;
8957 int prio, delta;
8958
8959 /* find the closest nice value to the current weight */
8960 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) {
8961 delta = abs(sched_prio_to_weight[prio] - weight);
8962 if (delta >= last_delta)
8963 break;
8964 last_delta = delta;
8965 }
8966
8967 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO);
8968 }
8969
cpu_weight_nice_write_s64(struct cgroup_subsys_state * css,struct cftype * cft,s64 nice)8970 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css,
8971 struct cftype *cft, s64 nice)
8972 {
8973 unsigned long weight;
8974 int idx;
8975
8976 if (nice < MIN_NICE || nice > MAX_NICE)
8977 return -ERANGE;
8978
8979 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO;
8980 idx = array_index_nospec(idx, 40);
8981 weight = sched_prio_to_weight[idx];
8982
8983 return sched_group_set_shares(css_tg(css), scale_load(weight));
8984 }
8985 #endif
8986
cpu_period_quota_print(struct seq_file * sf,long period,long quota)8987 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf,
8988 long period, long quota)
8989 {
8990 if (quota < 0)
8991 seq_puts(sf, "max");
8992 else
8993 seq_printf(sf, "%ld", quota);
8994
8995 seq_printf(sf, " %ld\n", period);
8996 }
8997
8998 /* caller should put the current value in *@periodp before calling */
cpu_period_quota_parse(char * buf,u64 * periodp,u64 * quotap)8999 static int __maybe_unused cpu_period_quota_parse(char *buf,
9000 u64 *periodp, u64 *quotap)
9001 {
9002 char tok[21]; /* U64_MAX */
9003
9004 if (sscanf(buf, "%20s %llu", tok, periodp) < 1)
9005 return -EINVAL;
9006
9007 *periodp *= NSEC_PER_USEC;
9008
9009 if (sscanf(tok, "%llu", quotap))
9010 *quotap *= NSEC_PER_USEC;
9011 else if (!strcmp(tok, "max"))
9012 *quotap = RUNTIME_INF;
9013 else
9014 return -EINVAL;
9015
9016 return 0;
9017 }
9018
9019 #ifdef CONFIG_CFS_BANDWIDTH
cpu_max_show(struct seq_file * sf,void * v)9020 static int cpu_max_show(struct seq_file *sf, void *v)
9021 {
9022 struct task_group *tg = css_tg(seq_css(sf));
9023
9024 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg));
9025 return 0;
9026 }
9027
cpu_max_write(struct kernfs_open_file * of,char * buf,size_t nbytes,loff_t off)9028 static ssize_t cpu_max_write(struct kernfs_open_file *of,
9029 char *buf, size_t nbytes, loff_t off)
9030 {
9031 struct task_group *tg = css_tg(of_css(of));
9032 u64 period = tg_get_cfs_period(tg);
9033 u64 quota;
9034 int ret;
9035
9036 ret = cpu_period_quota_parse(buf, &period, "a);
9037 if (!ret)
9038 ret = tg_set_cfs_bandwidth(tg, period, quota);
9039 return ret ?: nbytes;
9040 }
9041 #endif
9042
9043 static struct cftype cpu_files[] = {
9044 #ifdef CONFIG_FAIR_GROUP_SCHED
9045 {
9046 .name = "weight",
9047 .flags = CFTYPE_NOT_ON_ROOT,
9048 .read_u64 = cpu_weight_read_u64,
9049 .write_u64 = cpu_weight_write_u64,
9050 },
9051 {
9052 .name = "weight.nice",
9053 .flags = CFTYPE_NOT_ON_ROOT,
9054 .read_s64 = cpu_weight_nice_read_s64,
9055 .write_s64 = cpu_weight_nice_write_s64,
9056 },
9057 #endif
9058 #ifdef CONFIG_CFS_BANDWIDTH
9059 {
9060 .name = "max",
9061 .flags = CFTYPE_NOT_ON_ROOT,
9062 .seq_show = cpu_max_show,
9063 .write = cpu_max_write,
9064 },
9065 #endif
9066 #ifdef CONFIG_UCLAMP_TASK_GROUP
9067 {
9068 .name = "uclamp.min",
9069 .flags = CFTYPE_NOT_ON_ROOT,
9070 .seq_show = cpu_uclamp_min_show,
9071 .write = cpu_uclamp_min_write,
9072 },
9073 {
9074 .name = "uclamp.max",
9075 .flags = CFTYPE_NOT_ON_ROOT,
9076 .seq_show = cpu_uclamp_max_show,
9077 .write = cpu_uclamp_max_write,
9078 },
9079 #endif
9080 { } /* terminate */
9081 };
9082
9083 struct cgroup_subsys cpu_cgrp_subsys = {
9084 .css_alloc = cpu_cgroup_css_alloc,
9085 .css_online = cpu_cgroup_css_online,
9086 .css_released = cpu_cgroup_css_released,
9087 .css_free = cpu_cgroup_css_free,
9088 .css_extra_stat_show = cpu_extra_stat_show,
9089 .fork = cpu_cgroup_fork,
9090 .can_attach = cpu_cgroup_can_attach,
9091 .attach = cpu_cgroup_attach,
9092 .legacy_cftypes = cpu_legacy_files,
9093 .dfl_cftypes = cpu_files,
9094 .early_init = true,
9095 .threaded = true,
9096 };
9097
9098 #endif /* CONFIG_CGROUP_SCHED */
9099
dump_cpu_task(int cpu)9100 void dump_cpu_task(int cpu)
9101 {
9102 pr_info("Task dump for CPU %d:\n", cpu);
9103 sched_show_task(cpu_curr(cpu));
9104 }
9105
9106 /*
9107 * Nice levels are multiplicative, with a gentle 10% change for every
9108 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
9109 * nice 1, it will get ~10% less CPU time than another CPU-bound task
9110 * that remained on nice 0.
9111 *
9112 * The "10% effect" is relative and cumulative: from _any_ nice level,
9113 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
9114 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
9115 * If a task goes up by ~10% and another task goes down by ~10% then
9116 * the relative distance between them is ~25%.)
9117 */
9118 const int sched_prio_to_weight[40] = {
9119 /* -20 */ 88761, 71755, 56483, 46273, 36291,
9120 /* -15 */ 29154, 23254, 18705, 14949, 11916,
9121 /* -10 */ 9548, 7620, 6100, 4904, 3906,
9122 /* -5 */ 3121, 2501, 1991, 1586, 1277,
9123 /* 0 */ 1024, 820, 655, 526, 423,
9124 /* 5 */ 335, 272, 215, 172, 137,
9125 /* 10 */ 110, 87, 70, 56, 45,
9126 /* 15 */ 36, 29, 23, 18, 15,
9127 };
9128
9129 /*
9130 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
9131 *
9132 * In cases where the weight does not change often, we can use the
9133 * precalculated inverse to speed up arithmetics by turning divisions
9134 * into multiplications:
9135 */
9136 const u32 sched_prio_to_wmult[40] = {
9137 /* -20 */ 48388, 59856, 76040, 92818, 118348,
9138 /* -15 */ 147320, 184698, 229616, 287308, 360437,
9139 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
9140 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
9141 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
9142 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
9143 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
9144 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
9145 };
9146
9147 #ifdef CONFIG_SCHED_LATENCY_NICE
9148 /*
9149 * latency weight for wakeup preemption
9150 */
9151 const int sched_latency_to_weight[40] = {
9152 /* -20 */ 1024, 973, 922, 870, 819,
9153 /* -15 */ 768, 717, 666, 614, 563,
9154 /* -10 */ 512, 461, 410, 358, 307,
9155 /* -5 */ 256, 205, 154, 102, 51,
9156 /* 0 */ 0, -51, -102, -154, -205,
9157 /* 5 */ -256, -307, -358, -410, -461,
9158 /* 10 */ -512, -563, -614, -666, -717,
9159 /* 15 */ -768, -819, -870, -922, -973,
9160 };
9161 #endif
9162
call_trace_sched_update_nr_running(struct rq * rq,int count)9163 void call_trace_sched_update_nr_running(struct rq *rq, int count)
9164 {
9165 trace_sched_update_nr_running_tp(rq, count);
9166 }
9167
9168 #ifdef CONFIG_SCHED_WALT
9169 /*
9170 * sched_exit() - Set EXITING_TASK_MARKER in task's ravg.demand field
9171 *
9172 * Stop accounting (exiting) task's future cpu usage
9173 *
9174 * We need this so that reset_all_windows_stats() can function correctly.
9175 * reset_all_window_stats() depends on do_each_thread/for_each_thread task
9176 * iterators to reset *all* task's statistics. Exiting tasks however become
9177 * invisible to those iterators. sched_exit() is called on a exiting task prior
9178 * to being removed from task_list, which will let reset_all_window_stats()
9179 * function correctly.
9180 */
sched_exit(struct task_struct * p)9181 void sched_exit(struct task_struct *p)
9182 {
9183 struct rq_flags rf;
9184 struct rq *rq;
9185 u64 wallclock;
9186
9187 #ifdef CONFIG_SCHED_RTG
9188 sched_set_group_id(p, 0);
9189 #endif
9190
9191 rq = task_rq_lock(p, &rf);
9192
9193 /* rq->curr == p */
9194 wallclock = sched_ktime_clock();
9195 update_task_ravg(rq->curr, rq, TASK_UPDATE, wallclock, 0);
9196 dequeue_task(rq, p, 0);
9197 /*
9198 * task's contribution is already removed from the
9199 * cumulative window demand in dequeue. As the
9200 * task's stats are reset, the next enqueue does
9201 * not change the cumulative window demand.
9202 */
9203 reset_task_stats(p);
9204 p->ravg.mark_start = wallclock;
9205 p->ravg.sum_history[0] = EXITING_TASK_MARKER;
9206
9207 enqueue_task(rq, p, 0);
9208 task_rq_unlock(rq, p, &rf);
9209 free_task_load_ptrs(p);
9210 }
9211 #endif /* CONFIG_SCHED_WALT */
9212