1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11 #define pr_fmt(fmt) "LSM: " fmt
12
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32
33 #define MAX_LSM_EVM_XATTR 2
34
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37
38 /*
39 * These are descriptions of the reasons that can be passed to the
40 * security_locked_down() LSM hook. Placing this array here allows
41 * all security modules to use the same descriptions for auditing
42 * purposes.
43 */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 [LOCKDOWN_NONE] = "none",
46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 [LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 [LOCKDOWN_HIBERNATION] = "hibernation",
51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 [LOCKDOWN_IOPORT] = "raw io port access",
53 [LOCKDOWN_MSR] = "raw MSR access",
54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 [LOCKDOWN_DEBUGFS] = "debugfs access",
60 [LOCKDOWN_XMON_WR] = "xmon write access",
61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
63 [LOCKDOWN_INTEGRITY_MAX] = "integrity",
64 [LOCKDOWN_KCORE] = "/proc/kcore access",
65 [LOCKDOWN_KPROBES] = "use of kprobes",
66 [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
67 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
68 [LOCKDOWN_PERF] = "unsafe use of perf",
69 [LOCKDOWN_TRACEFS] = "use of tracefs",
70 [LOCKDOWN_XMON_RW] = "xmon read and write access",
71 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
72 };
73
74 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
75 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
76
77 static struct kmem_cache *lsm_file_cache;
78 static struct kmem_cache *lsm_inode_cache;
79
80 char *lsm_names;
81 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
82
83 /* Boot-time LSM user choice */
84 static __initdata const char *chosen_lsm_order;
85 static __initdata const char *chosen_major_lsm;
86
87 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
88
89 /* Ordered list of LSMs to initialize. */
90 static __initdata struct lsm_info **ordered_lsms;
91 static __initdata struct lsm_info *exclusive;
92
93 static __initdata bool debug;
94 #define init_debug(...) \
95 do { \
96 if (debug) \
97 pr_info(__VA_ARGS__); \
98 } while (0)
99
is_enabled(struct lsm_info * lsm)100 static bool __init is_enabled(struct lsm_info *lsm)
101 {
102 if (!lsm->enabled)
103 return false;
104
105 return *lsm->enabled;
106 }
107
108 /* Mark an LSM's enabled flag. */
109 static int lsm_enabled_true __initdata = 1;
110 static int lsm_enabled_false __initdata = 0;
set_enabled(struct lsm_info * lsm,bool enabled)111 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
112 {
113 /*
114 * When an LSM hasn't configured an enable variable, we can use
115 * a hard-coded location for storing the default enabled state.
116 */
117 if (!lsm->enabled) {
118 if (enabled)
119 lsm->enabled = &lsm_enabled_true;
120 else
121 lsm->enabled = &lsm_enabled_false;
122 } else if (lsm->enabled == &lsm_enabled_true) {
123 if (!enabled)
124 lsm->enabled = &lsm_enabled_false;
125 } else if (lsm->enabled == &lsm_enabled_false) {
126 if (enabled)
127 lsm->enabled = &lsm_enabled_true;
128 } else {
129 *lsm->enabled = enabled;
130 }
131 }
132
133 /* Is an LSM already listed in the ordered LSMs list? */
exists_ordered_lsm(struct lsm_info * lsm)134 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
135 {
136 struct lsm_info **check;
137
138 for (check = ordered_lsms; *check; check++)
139 if (*check == lsm)
140 return true;
141
142 return false;
143 }
144
145 /* Append an LSM to the list of ordered LSMs to initialize. */
146 static int last_lsm __initdata;
append_ordered_lsm(struct lsm_info * lsm,const char * from)147 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
148 {
149 /* Ignore duplicate selections. */
150 if (exists_ordered_lsm(lsm))
151 return;
152
153 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
154 return;
155
156 /* Enable this LSM, if it is not already set. */
157 if (!lsm->enabled)
158 lsm->enabled = &lsm_enabled_true;
159 ordered_lsms[last_lsm++] = lsm;
160
161 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
162 is_enabled(lsm) ? "en" : "dis");
163 }
164
165 /* Is an LSM allowed to be initialized? */
lsm_allowed(struct lsm_info * lsm)166 static bool __init lsm_allowed(struct lsm_info *lsm)
167 {
168 /* Skip if the LSM is disabled. */
169 if (!is_enabled(lsm))
170 return false;
171
172 /* Not allowed if another exclusive LSM already initialized. */
173 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
174 init_debug("exclusive disabled: %s\n", lsm->name);
175 return false;
176 }
177
178 return true;
179 }
180
lsm_set_blob_size(int * need,int * lbs)181 static void __init lsm_set_blob_size(int *need, int *lbs)
182 {
183 int offset;
184
185 if (*need > 0) {
186 offset = *lbs;
187 *lbs += *need;
188 *need = offset;
189 }
190 }
191
lsm_set_blob_sizes(struct lsm_blob_sizes * needed)192 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
193 {
194 if (!needed)
195 return;
196
197 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
198 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
199 /*
200 * The inode blob gets an rcu_head in addition to
201 * what the modules might need.
202 */
203 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
204 blob_sizes.lbs_inode = sizeof(struct rcu_head);
205 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
206 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
207 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
208 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209 }
210
211 /* Prepare LSM for initialization. */
prepare_lsm(struct lsm_info * lsm)212 static void __init prepare_lsm(struct lsm_info *lsm)
213 {
214 int enabled = lsm_allowed(lsm);
215
216 /* Record enablement (to handle any following exclusive LSMs). */
217 set_enabled(lsm, enabled);
218
219 /* If enabled, do pre-initialization work. */
220 if (enabled) {
221 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222 exclusive = lsm;
223 init_debug("exclusive chosen: %s\n", lsm->name);
224 }
225
226 lsm_set_blob_sizes(lsm->blobs);
227 }
228 }
229
230 /* Initialize a given LSM, if it is enabled. */
initialize_lsm(struct lsm_info * lsm)231 static void __init initialize_lsm(struct lsm_info *lsm)
232 {
233 if (is_enabled(lsm)) {
234 int ret;
235
236 init_debug("initializing %s\n", lsm->name);
237 ret = lsm->init();
238 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239 }
240 }
241
242 /* Populate ordered LSMs list from comma-separated LSM name list. */
ordered_lsm_parse(const char * order,const char * origin)243 static void __init ordered_lsm_parse(const char *order, const char *origin)
244 {
245 struct lsm_info *lsm;
246 char *sep, *name, *next;
247
248 /* LSM_ORDER_FIRST is always first. */
249 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250 if (lsm->order == LSM_ORDER_FIRST)
251 append_ordered_lsm(lsm, "first");
252 }
253
254 /* Process "security=", if given. */
255 if (chosen_major_lsm) {
256 struct lsm_info *major;
257
258 /*
259 * To match the original "security=" behavior, this
260 * explicitly does NOT fallback to another Legacy Major
261 * if the selected one was separately disabled: disable
262 * all non-matching Legacy Major LSMs.
263 */
264 for (major = __start_lsm_info; major < __end_lsm_info;
265 major++) {
266 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267 strcmp(major->name, chosen_major_lsm) != 0) {
268 set_enabled(major, false);
269 init_debug("security=%s disabled: %s\n",
270 chosen_major_lsm, major->name);
271 }
272 }
273 }
274
275 sep = kstrdup(order, GFP_KERNEL);
276 next = sep;
277 /* Walk the list, looking for matching LSMs. */
278 while ((name = strsep(&next, ",")) != NULL) {
279 bool found = false;
280
281 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282 if (lsm->order == LSM_ORDER_MUTABLE &&
283 strcmp(lsm->name, name) == 0) {
284 append_ordered_lsm(lsm, origin);
285 found = true;
286 }
287 }
288
289 if (!found)
290 init_debug("%s ignored: %s\n", origin, name);
291 }
292
293 /* Process "security=", if given. */
294 if (chosen_major_lsm) {
295 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296 if (exists_ordered_lsm(lsm))
297 continue;
298 if (strcmp(lsm->name, chosen_major_lsm) == 0)
299 append_ordered_lsm(lsm, "security=");
300 }
301 }
302
303 /* Disable all LSMs not in the ordered list. */
304 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305 if (exists_ordered_lsm(lsm))
306 continue;
307 set_enabled(lsm, false);
308 init_debug("%s disabled: %s\n", origin, lsm->name);
309 }
310
311 kfree(sep);
312 }
313
314 static void __init lsm_early_cred(struct cred *cred);
315 static void __init lsm_early_task(struct task_struct *task);
316
317 static int lsm_append(const char *new, char **result);
318
ordered_lsm_init(void)319 static void __init ordered_lsm_init(void)
320 {
321 struct lsm_info **lsm;
322
323 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324 GFP_KERNEL);
325
326 if (chosen_lsm_order) {
327 if (chosen_major_lsm) {
328 pr_info("security= is ignored because it is superseded by lsm=\n");
329 chosen_major_lsm = NULL;
330 }
331 ordered_lsm_parse(chosen_lsm_order, "cmdline");
332 } else
333 ordered_lsm_parse(builtin_lsm_order, "builtin");
334
335 for (lsm = ordered_lsms; *lsm; lsm++)
336 prepare_lsm(*lsm);
337
338 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
339 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
340 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
341 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
342 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
343 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
344
345 /*
346 * Create any kmem_caches needed for blobs
347 */
348 if (blob_sizes.lbs_file)
349 lsm_file_cache = kmem_cache_create("lsm_file_cache",
350 blob_sizes.lbs_file, 0,
351 SLAB_PANIC, NULL);
352 if (blob_sizes.lbs_inode)
353 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
354 blob_sizes.lbs_inode, 0,
355 SLAB_PANIC, NULL);
356
357 lsm_early_cred((struct cred *) current->cred);
358 lsm_early_task(current);
359 for (lsm = ordered_lsms; *lsm; lsm++)
360 initialize_lsm(*lsm);
361
362 kfree(ordered_lsms);
363 }
364
early_security_init(void)365 int __init early_security_init(void)
366 {
367 int i;
368 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
369 struct lsm_info *lsm;
370
371 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
372 i++)
373 INIT_HLIST_HEAD(&list[i]);
374
375 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
376 if (!lsm->enabled)
377 lsm->enabled = &lsm_enabled_true;
378 prepare_lsm(lsm);
379 initialize_lsm(lsm);
380 }
381
382 return 0;
383 }
384
385 /**
386 * security_init - initializes the security framework
387 *
388 * This should be called early in the kernel initialization sequence.
389 */
security_init(void)390 int __init security_init(void)
391 {
392 struct lsm_info *lsm;
393
394 pr_info("Security Framework initializing\n");
395
396 /*
397 * Append the names of the early LSM modules now that kmalloc() is
398 * available
399 */
400 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
401 if (lsm->enabled)
402 lsm_append(lsm->name, &lsm_names);
403 }
404
405 /* Load LSMs in specified order. */
406 ordered_lsm_init();
407
408 return 0;
409 }
410
411 /* Save user chosen LSM */
choose_major_lsm(char * str)412 static int __init choose_major_lsm(char *str)
413 {
414 chosen_major_lsm = str;
415 return 1;
416 }
417 __setup("security=", choose_major_lsm);
418
419 /* Explicitly choose LSM initialization order. */
choose_lsm_order(char * str)420 static int __init choose_lsm_order(char *str)
421 {
422 chosen_lsm_order = str;
423 return 1;
424 }
425 __setup("lsm=", choose_lsm_order);
426
427 /* Enable LSM order debugging. */
enable_debug(char * str)428 static int __init enable_debug(char *str)
429 {
430 debug = true;
431 return 1;
432 }
433 __setup("lsm.debug", enable_debug);
434
match_last_lsm(const char * list,const char * lsm)435 static bool match_last_lsm(const char *list, const char *lsm)
436 {
437 const char *last;
438
439 if (WARN_ON(!list || !lsm))
440 return false;
441 last = strrchr(list, ',');
442 if (last)
443 /* Pass the comma, strcmp() will check for '\0' */
444 last++;
445 else
446 last = list;
447 return !strcmp(last, lsm);
448 }
449
lsm_append(const char * new,char ** result)450 static int lsm_append(const char *new, char **result)
451 {
452 char *cp;
453
454 if (*result == NULL) {
455 *result = kstrdup(new, GFP_KERNEL);
456 if (*result == NULL)
457 return -ENOMEM;
458 } else {
459 /* Check if it is the last registered name */
460 if (match_last_lsm(*result, new))
461 return 0;
462 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
463 if (cp == NULL)
464 return -ENOMEM;
465 kfree(*result);
466 *result = cp;
467 }
468 return 0;
469 }
470
471 /**
472 * security_add_hooks - Add a modules hooks to the hook lists.
473 * @hooks: the hooks to add
474 * @count: the number of hooks to add
475 * @lsm: the name of the security module
476 *
477 * Each LSM has to register its hooks with the infrastructure.
478 */
security_add_hooks(struct security_hook_list * hooks,int count,char * lsm)479 void __init security_add_hooks(struct security_hook_list *hooks, int count,
480 char *lsm)
481 {
482 int i;
483
484 for (i = 0; i < count; i++) {
485 hooks[i].lsm = lsm;
486 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
487 }
488
489 /*
490 * Don't try to append during early_security_init(), we'll come back
491 * and fix this up afterwards.
492 */
493 if (slab_is_available()) {
494 if (lsm_append(lsm, &lsm_names) < 0)
495 panic("%s - Cannot get early memory.\n", __func__);
496 }
497 }
498
call_blocking_lsm_notifier(enum lsm_event event,void * data)499 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
500 {
501 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
502 event, data);
503 }
504 EXPORT_SYMBOL(call_blocking_lsm_notifier);
505
register_blocking_lsm_notifier(struct notifier_block * nb)506 int register_blocking_lsm_notifier(struct notifier_block *nb)
507 {
508 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
509 nb);
510 }
511 EXPORT_SYMBOL(register_blocking_lsm_notifier);
512
unregister_blocking_lsm_notifier(struct notifier_block * nb)513 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
514 {
515 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
516 nb);
517 }
518 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
519
520 /**
521 * lsm_cred_alloc - allocate a composite cred blob
522 * @cred: the cred that needs a blob
523 * @gfp: allocation type
524 *
525 * Allocate the cred blob for all the modules
526 *
527 * Returns 0, or -ENOMEM if memory can't be allocated.
528 */
lsm_cred_alloc(struct cred * cred,gfp_t gfp)529 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
530 {
531 if (blob_sizes.lbs_cred == 0) {
532 cred->security = NULL;
533 return 0;
534 }
535
536 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
537 if (cred->security == NULL)
538 return -ENOMEM;
539 return 0;
540 }
541
542 /**
543 * lsm_early_cred - during initialization allocate a composite cred blob
544 * @cred: the cred that needs a blob
545 *
546 * Allocate the cred blob for all the modules
547 */
lsm_early_cred(struct cred * cred)548 static void __init lsm_early_cred(struct cred *cred)
549 {
550 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
551
552 if (rc)
553 panic("%s: Early cred alloc failed.\n", __func__);
554 }
555
556 /**
557 * lsm_file_alloc - allocate a composite file blob
558 * @file: the file that needs a blob
559 *
560 * Allocate the file blob for all the modules
561 *
562 * Returns 0, or -ENOMEM if memory can't be allocated.
563 */
lsm_file_alloc(struct file * file)564 static int lsm_file_alloc(struct file *file)
565 {
566 if (!lsm_file_cache) {
567 file->f_security = NULL;
568 return 0;
569 }
570
571 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
572 if (file->f_security == NULL)
573 return -ENOMEM;
574 return 0;
575 }
576
577 /**
578 * lsm_inode_alloc - allocate a composite inode blob
579 * @inode: the inode that needs a blob
580 *
581 * Allocate the inode blob for all the modules
582 *
583 * Returns 0, or -ENOMEM if memory can't be allocated.
584 */
lsm_inode_alloc(struct inode * inode)585 int lsm_inode_alloc(struct inode *inode)
586 {
587 if (!lsm_inode_cache) {
588 inode->i_security = NULL;
589 return 0;
590 }
591
592 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
593 if (inode->i_security == NULL)
594 return -ENOMEM;
595 return 0;
596 }
597
598 /**
599 * lsm_task_alloc - allocate a composite task blob
600 * @task: the task that needs a blob
601 *
602 * Allocate the task blob for all the modules
603 *
604 * Returns 0, or -ENOMEM if memory can't be allocated.
605 */
lsm_task_alloc(struct task_struct * task)606 static int lsm_task_alloc(struct task_struct *task)
607 {
608 if (blob_sizes.lbs_task == 0) {
609 task->security = NULL;
610 return 0;
611 }
612
613 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
614 if (task->security == NULL)
615 return -ENOMEM;
616 return 0;
617 }
618
619 /**
620 * lsm_ipc_alloc - allocate a composite ipc blob
621 * @kip: the ipc that needs a blob
622 *
623 * Allocate the ipc blob for all the modules
624 *
625 * Returns 0, or -ENOMEM if memory can't be allocated.
626 */
lsm_ipc_alloc(struct kern_ipc_perm * kip)627 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
628 {
629 if (blob_sizes.lbs_ipc == 0) {
630 kip->security = NULL;
631 return 0;
632 }
633
634 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
635 if (kip->security == NULL)
636 return -ENOMEM;
637 return 0;
638 }
639
640 /**
641 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
642 * @mp: the msg_msg that needs a blob
643 *
644 * Allocate the ipc blob for all the modules
645 *
646 * Returns 0, or -ENOMEM if memory can't be allocated.
647 */
lsm_msg_msg_alloc(struct msg_msg * mp)648 static int lsm_msg_msg_alloc(struct msg_msg *mp)
649 {
650 if (blob_sizes.lbs_msg_msg == 0) {
651 mp->security = NULL;
652 return 0;
653 }
654
655 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
656 if (mp->security == NULL)
657 return -ENOMEM;
658 return 0;
659 }
660
661 /**
662 * lsm_early_task - during initialization allocate a composite task blob
663 * @task: the task that needs a blob
664 *
665 * Allocate the task blob for all the modules
666 */
lsm_early_task(struct task_struct * task)667 static void __init lsm_early_task(struct task_struct *task)
668 {
669 int rc = lsm_task_alloc(task);
670
671 if (rc)
672 panic("%s: Early task alloc failed.\n", __func__);
673 }
674
675 /*
676 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
677 * can be accessed with:
678 *
679 * LSM_RET_DEFAULT(<hook_name>)
680 *
681 * The macros below define static constants for the default value of each
682 * LSM hook.
683 */
684 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
685 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
686 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
687 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
688 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
689 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
690
691 #include <linux/lsm_hook_defs.h>
692 #undef LSM_HOOK
693
694 /*
695 * Hook list operation macros.
696 *
697 * call_void_hook:
698 * This is a hook that does not return a value.
699 *
700 * call_int_hook:
701 * This is a hook that returns a value.
702 */
703
704 #define call_void_hook(FUNC, ...) \
705 do { \
706 struct security_hook_list *P; \
707 \
708 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
709 P->hook.FUNC(__VA_ARGS__); \
710 } while (0)
711
712 #define call_int_hook(FUNC, IRC, ...) ({ \
713 int RC = IRC; \
714 do { \
715 struct security_hook_list *P; \
716 \
717 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
718 RC = P->hook.FUNC(__VA_ARGS__); \
719 if (RC != 0) \
720 break; \
721 } \
722 } while (0); \
723 RC; \
724 })
725
726 /* Security operations */
727
security_binder_set_context_mgr(const struct cred * mgr)728 int security_binder_set_context_mgr(const struct cred *mgr)
729 {
730 return call_int_hook(binder_set_context_mgr, 0, mgr);
731 }
732
security_binder_transaction(const struct cred * from,const struct cred * to)733 int security_binder_transaction(const struct cred *from,
734 const struct cred *to)
735 {
736 return call_int_hook(binder_transaction, 0, from, to);
737 }
738
security_binder_transfer_binder(const struct cred * from,const struct cred * to)739 int security_binder_transfer_binder(const struct cred *from,
740 const struct cred *to)
741 {
742 return call_int_hook(binder_transfer_binder, 0, from, to);
743 }
744
security_binder_transfer_file(const struct cred * from,const struct cred * to,struct file * file)745 int security_binder_transfer_file(const struct cred *from,
746 const struct cred *to, struct file *file)
747 {
748 return call_int_hook(binder_transfer_file, 0, from, to, file);
749 }
750
security_ptrace_access_check(struct task_struct * child,unsigned int mode)751 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
752 {
753 return call_int_hook(ptrace_access_check, 0, child, mode);
754 }
755
security_ptrace_traceme(struct task_struct * parent)756 int security_ptrace_traceme(struct task_struct *parent)
757 {
758 return call_int_hook(ptrace_traceme, 0, parent);
759 }
760
security_capget(struct task_struct * target,kernel_cap_t * effective,kernel_cap_t * inheritable,kernel_cap_t * permitted)761 int security_capget(struct task_struct *target,
762 kernel_cap_t *effective,
763 kernel_cap_t *inheritable,
764 kernel_cap_t *permitted)
765 {
766 return call_int_hook(capget, 0, target,
767 effective, inheritable, permitted);
768 }
769
security_capset(struct cred * new,const struct cred * old,const kernel_cap_t * effective,const kernel_cap_t * inheritable,const kernel_cap_t * permitted)770 int security_capset(struct cred *new, const struct cred *old,
771 const kernel_cap_t *effective,
772 const kernel_cap_t *inheritable,
773 const kernel_cap_t *permitted)
774 {
775 return call_int_hook(capset, 0, new, old,
776 effective, inheritable, permitted);
777 }
778
security_capable(const struct cred * cred,struct user_namespace * ns,int cap,unsigned int opts)779 int security_capable(const struct cred *cred,
780 struct user_namespace *ns,
781 int cap,
782 unsigned int opts)
783 {
784 return call_int_hook(capable, 0, cred, ns, cap, opts);
785 }
786
security_quotactl(int cmds,int type,int id,struct super_block * sb)787 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
788 {
789 return call_int_hook(quotactl, 0, cmds, type, id, sb);
790 }
791
security_quota_on(struct dentry * dentry)792 int security_quota_on(struct dentry *dentry)
793 {
794 return call_int_hook(quota_on, 0, dentry);
795 }
796
security_syslog(int type)797 int security_syslog(int type)
798 {
799 return call_int_hook(syslog, 0, type);
800 }
801
security_settime64(const struct timespec64 * ts,const struct timezone * tz)802 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
803 {
804 return call_int_hook(settime, 0, ts, tz);
805 }
806
security_vm_enough_memory_mm(struct mm_struct * mm,long pages)807 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
808 {
809 struct security_hook_list *hp;
810 int cap_sys_admin = 1;
811 int rc;
812
813 /*
814 * The module will respond with a positive value if
815 * it thinks the __vm_enough_memory() call should be
816 * made with the cap_sys_admin set. If all of the modules
817 * agree that it should be set it will. If any module
818 * thinks it should not be set it won't.
819 */
820 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
821 rc = hp->hook.vm_enough_memory(mm, pages);
822 if (rc <= 0) {
823 cap_sys_admin = 0;
824 break;
825 }
826 }
827 return __vm_enough_memory(mm, pages, cap_sys_admin);
828 }
829
security_bprm_creds_for_exec(struct linux_binprm * bprm)830 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
831 {
832 return call_int_hook(bprm_creds_for_exec, 0, bprm);
833 }
834
security_bprm_creds_from_file(struct linux_binprm * bprm,struct file * file)835 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
836 {
837 return call_int_hook(bprm_creds_from_file, 0, bprm, file);
838 }
839
security_bprm_check(struct linux_binprm * bprm)840 int security_bprm_check(struct linux_binprm *bprm)
841 {
842 int ret;
843
844 ret = call_int_hook(bprm_check_security, 0, bprm);
845 if (ret)
846 return ret;
847 return ima_bprm_check(bprm);
848 }
849
security_bprm_committing_creds(struct linux_binprm * bprm)850 void security_bprm_committing_creds(struct linux_binprm *bprm)
851 {
852 call_void_hook(bprm_committing_creds, bprm);
853 }
854
security_bprm_committed_creds(struct linux_binprm * bprm)855 void security_bprm_committed_creds(struct linux_binprm *bprm)
856 {
857 call_void_hook(bprm_committed_creds, bprm);
858 }
859
security_fs_context_dup(struct fs_context * fc,struct fs_context * src_fc)860 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
861 {
862 return call_int_hook(fs_context_dup, 0, fc, src_fc);
863 }
864
security_fs_context_parse_param(struct fs_context * fc,struct fs_parameter * param)865 int security_fs_context_parse_param(struct fs_context *fc,
866 struct fs_parameter *param)
867 {
868 struct security_hook_list *hp;
869 int trc;
870 int rc = -ENOPARAM;
871
872 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
873 list) {
874 trc = hp->hook.fs_context_parse_param(fc, param);
875 if (trc == 0)
876 rc = 0;
877 else if (trc != -ENOPARAM)
878 return trc;
879 }
880 return rc;
881 }
882
security_sb_alloc(struct super_block * sb)883 int security_sb_alloc(struct super_block *sb)
884 {
885 return call_int_hook(sb_alloc_security, 0, sb);
886 }
887
security_sb_free(struct super_block * sb)888 void security_sb_free(struct super_block *sb)
889 {
890 call_void_hook(sb_free_security, sb);
891 }
892
security_free_mnt_opts(void ** mnt_opts)893 void security_free_mnt_opts(void **mnt_opts)
894 {
895 if (!*mnt_opts)
896 return;
897 call_void_hook(sb_free_mnt_opts, *mnt_opts);
898 *mnt_opts = NULL;
899 }
900 EXPORT_SYMBOL(security_free_mnt_opts);
901
security_sb_eat_lsm_opts(char * options,void ** mnt_opts)902 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
903 {
904 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
905 }
906 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
907
security_sb_remount(struct super_block * sb,void * mnt_opts)908 int security_sb_remount(struct super_block *sb,
909 void *mnt_opts)
910 {
911 return call_int_hook(sb_remount, 0, sb, mnt_opts);
912 }
913 EXPORT_SYMBOL(security_sb_remount);
914
security_sb_kern_mount(struct super_block * sb)915 int security_sb_kern_mount(struct super_block *sb)
916 {
917 return call_int_hook(sb_kern_mount, 0, sb);
918 }
919
security_sb_show_options(struct seq_file * m,struct super_block * sb)920 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
921 {
922 return call_int_hook(sb_show_options, 0, m, sb);
923 }
924
security_sb_statfs(struct dentry * dentry)925 int security_sb_statfs(struct dentry *dentry)
926 {
927 return call_int_hook(sb_statfs, 0, dentry);
928 }
929
security_sb_mount(const char * dev_name,const struct path * path,const char * type,unsigned long flags,void * data)930 int security_sb_mount(const char *dev_name, const struct path *path,
931 const char *type, unsigned long flags, void *data)
932 {
933 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
934 }
935
security_sb_umount(struct vfsmount * mnt,int flags)936 int security_sb_umount(struct vfsmount *mnt, int flags)
937 {
938 return call_int_hook(sb_umount, 0, mnt, flags);
939 }
940
security_sb_pivotroot(const struct path * old_path,const struct path * new_path)941 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
942 {
943 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
944 }
945
security_sb_set_mnt_opts(struct super_block * sb,void * mnt_opts,unsigned long kern_flags,unsigned long * set_kern_flags)946 int security_sb_set_mnt_opts(struct super_block *sb,
947 void *mnt_opts,
948 unsigned long kern_flags,
949 unsigned long *set_kern_flags)
950 {
951 return call_int_hook(sb_set_mnt_opts,
952 mnt_opts ? -EOPNOTSUPP : 0, sb,
953 mnt_opts, kern_flags, set_kern_flags);
954 }
955 EXPORT_SYMBOL(security_sb_set_mnt_opts);
956
security_sb_clone_mnt_opts(const struct super_block * oldsb,struct super_block * newsb,unsigned long kern_flags,unsigned long * set_kern_flags)957 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
958 struct super_block *newsb,
959 unsigned long kern_flags,
960 unsigned long *set_kern_flags)
961 {
962 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
963 kern_flags, set_kern_flags);
964 }
965 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
966
security_add_mnt_opt(const char * option,const char * val,int len,void ** mnt_opts)967 int security_add_mnt_opt(const char *option, const char *val, int len,
968 void **mnt_opts)
969 {
970 return call_int_hook(sb_add_mnt_opt, -EINVAL,
971 option, val, len, mnt_opts);
972 }
973 EXPORT_SYMBOL(security_add_mnt_opt);
974
security_move_mount(const struct path * from_path,const struct path * to_path)975 int security_move_mount(const struct path *from_path, const struct path *to_path)
976 {
977 return call_int_hook(move_mount, 0, from_path, to_path);
978 }
979
security_path_notify(const struct path * path,u64 mask,unsigned int obj_type)980 int security_path_notify(const struct path *path, u64 mask,
981 unsigned int obj_type)
982 {
983 return call_int_hook(path_notify, 0, path, mask, obj_type);
984 }
985
security_inode_alloc(struct inode * inode)986 int security_inode_alloc(struct inode *inode)
987 {
988 int rc = lsm_inode_alloc(inode);
989
990 if (unlikely(rc))
991 return rc;
992 rc = call_int_hook(inode_alloc_security, 0, inode);
993 if (unlikely(rc))
994 security_inode_free(inode);
995 return rc;
996 }
997
inode_free_by_rcu(struct rcu_head * head)998 static void inode_free_by_rcu(struct rcu_head *head)
999 {
1000 /*
1001 * The rcu head is at the start of the inode blob
1002 */
1003 kmem_cache_free(lsm_inode_cache, head);
1004 }
1005
security_inode_free(struct inode * inode)1006 void security_inode_free(struct inode *inode)
1007 {
1008 integrity_inode_free(inode);
1009 call_void_hook(inode_free_security, inode);
1010 /*
1011 * The inode may still be referenced in a path walk and
1012 * a call to security_inode_permission() can be made
1013 * after inode_free_security() is called. Ideally, the VFS
1014 * wouldn't do this, but fixing that is a much harder
1015 * job. For now, simply free the i_security via RCU, and
1016 * leave the current inode->i_security pointer intact.
1017 * The inode will be freed after the RCU grace period too.
1018 */
1019 if (inode->i_security)
1020 call_rcu((struct rcu_head *)inode->i_security,
1021 inode_free_by_rcu);
1022 }
1023
security_dentry_init_security(struct dentry * dentry,int mode,const struct qstr * name,void ** ctx,u32 * ctxlen)1024 int security_dentry_init_security(struct dentry *dentry, int mode,
1025 const struct qstr *name, void **ctx,
1026 u32 *ctxlen)
1027 {
1028 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1029 name, ctx, ctxlen);
1030 }
1031 EXPORT_SYMBOL(security_dentry_init_security);
1032
security_dentry_create_files_as(struct dentry * dentry,int mode,struct qstr * name,const struct cred * old,struct cred * new)1033 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1034 struct qstr *name,
1035 const struct cred *old, struct cred *new)
1036 {
1037 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1038 name, old, new);
1039 }
1040 EXPORT_SYMBOL(security_dentry_create_files_as);
1041
security_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const initxattrs initxattrs,void * fs_data)1042 int security_inode_init_security(struct inode *inode, struct inode *dir,
1043 const struct qstr *qstr,
1044 const initxattrs initxattrs, void *fs_data)
1045 {
1046 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1047 struct xattr *lsm_xattr, *evm_xattr, *xattr;
1048 int ret;
1049
1050 if (unlikely(IS_PRIVATE(inode)))
1051 return 0;
1052
1053 if (!initxattrs)
1054 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1055 dir, qstr, NULL, NULL, NULL);
1056 memset(new_xattrs, 0, sizeof(new_xattrs));
1057 lsm_xattr = new_xattrs;
1058 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1059 &lsm_xattr->name,
1060 &lsm_xattr->value,
1061 &lsm_xattr->value_len);
1062 if (ret)
1063 goto out;
1064
1065 evm_xattr = lsm_xattr + 1;
1066 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1067 if (ret)
1068 goto out;
1069 ret = initxattrs(inode, new_xattrs, fs_data);
1070 out:
1071 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1072 kfree(xattr->value);
1073 return (ret == -EOPNOTSUPP) ? 0 : ret;
1074 }
1075 EXPORT_SYMBOL(security_inode_init_security);
1076
security_old_inode_init_security(struct inode * inode,struct inode * dir,const struct qstr * qstr,const char ** name,void ** value,size_t * len)1077 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1078 const struct qstr *qstr, const char **name,
1079 void **value, size_t *len)
1080 {
1081 if (unlikely(IS_PRIVATE(inode)))
1082 return -EOPNOTSUPP;
1083 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1084 qstr, name, value, len);
1085 }
1086 EXPORT_SYMBOL(security_old_inode_init_security);
1087
1088 #ifdef CONFIG_SECURITY_PATH
security_path_mknod(const struct path * dir,struct dentry * dentry,umode_t mode,unsigned int dev)1089 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1090 unsigned int dev)
1091 {
1092 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1093 return 0;
1094 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1095 }
1096 EXPORT_SYMBOL(security_path_mknod);
1097
security_path_mkdir(const struct path * dir,struct dentry * dentry,umode_t mode)1098 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1099 {
1100 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1101 return 0;
1102 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1103 }
1104 EXPORT_SYMBOL(security_path_mkdir);
1105
security_path_rmdir(const struct path * dir,struct dentry * dentry)1106 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1107 {
1108 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1109 return 0;
1110 return call_int_hook(path_rmdir, 0, dir, dentry);
1111 }
1112
security_path_unlink(const struct path * dir,struct dentry * dentry)1113 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1114 {
1115 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1116 return 0;
1117 return call_int_hook(path_unlink, 0, dir, dentry);
1118 }
1119 EXPORT_SYMBOL(security_path_unlink);
1120
security_path_symlink(const struct path * dir,struct dentry * dentry,const char * old_name)1121 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1122 const char *old_name)
1123 {
1124 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1125 return 0;
1126 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1127 }
1128
security_path_link(struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry)1129 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1130 struct dentry *new_dentry)
1131 {
1132 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1133 return 0;
1134 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1135 }
1136
security_path_rename(const struct path * old_dir,struct dentry * old_dentry,const struct path * new_dir,struct dentry * new_dentry,unsigned int flags)1137 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1138 const struct path *new_dir, struct dentry *new_dentry,
1139 unsigned int flags)
1140 {
1141 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1142 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1143 return 0;
1144
1145 if (flags & RENAME_EXCHANGE) {
1146 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1147 old_dir, old_dentry);
1148 if (err)
1149 return err;
1150 }
1151
1152 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1153 new_dentry);
1154 }
1155 EXPORT_SYMBOL(security_path_rename);
1156
security_path_truncate(const struct path * path)1157 int security_path_truncate(const struct path *path)
1158 {
1159 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1160 return 0;
1161 return call_int_hook(path_truncate, 0, path);
1162 }
1163
security_path_chmod(const struct path * path,umode_t mode)1164 int security_path_chmod(const struct path *path, umode_t mode)
1165 {
1166 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1167 return 0;
1168 return call_int_hook(path_chmod, 0, path, mode);
1169 }
1170
security_path_chown(const struct path * path,kuid_t uid,kgid_t gid)1171 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1172 {
1173 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1174 return 0;
1175 return call_int_hook(path_chown, 0, path, uid, gid);
1176 }
1177
security_path_chroot(const struct path * path)1178 int security_path_chroot(const struct path *path)
1179 {
1180 return call_int_hook(path_chroot, 0, path);
1181 }
1182 #endif
1183
security_inode_create(struct inode * dir,struct dentry * dentry,umode_t mode)1184 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1185 {
1186 if (unlikely(IS_PRIVATE(dir)))
1187 return 0;
1188 return call_int_hook(inode_create, 0, dir, dentry, mode);
1189 }
1190 EXPORT_SYMBOL_GPL(security_inode_create);
1191
security_inode_link(struct dentry * old_dentry,struct inode * dir,struct dentry * new_dentry)1192 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1193 struct dentry *new_dentry)
1194 {
1195 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1196 return 0;
1197 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1198 }
1199
security_inode_unlink(struct inode * dir,struct dentry * dentry)1200 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1201 {
1202 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1203 return 0;
1204 return call_int_hook(inode_unlink, 0, dir, dentry);
1205 }
1206
security_inode_symlink(struct inode * dir,struct dentry * dentry,const char * old_name)1207 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1208 const char *old_name)
1209 {
1210 if (unlikely(IS_PRIVATE(dir)))
1211 return 0;
1212 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1213 }
1214
security_inode_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1215 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1216 {
1217 if (unlikely(IS_PRIVATE(dir)))
1218 return 0;
1219 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1220 }
1221 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1222
security_inode_rmdir(struct inode * dir,struct dentry * dentry)1223 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1224 {
1225 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1226 return 0;
1227 return call_int_hook(inode_rmdir, 0, dir, dentry);
1228 }
1229
security_inode_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)1230 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1231 {
1232 if (unlikely(IS_PRIVATE(dir)))
1233 return 0;
1234 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1235 }
1236
security_inode_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)1237 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1238 struct inode *new_dir, struct dentry *new_dentry,
1239 unsigned int flags)
1240 {
1241 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1242 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1243 return 0;
1244
1245 if (flags & RENAME_EXCHANGE) {
1246 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1247 old_dir, old_dentry);
1248 if (err)
1249 return err;
1250 }
1251
1252 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1253 new_dir, new_dentry);
1254 }
1255
security_inode_readlink(struct dentry * dentry)1256 int security_inode_readlink(struct dentry *dentry)
1257 {
1258 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1259 return 0;
1260 return call_int_hook(inode_readlink, 0, dentry);
1261 }
1262
security_inode_follow_link(struct dentry * dentry,struct inode * inode,bool rcu)1263 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1264 bool rcu)
1265 {
1266 if (unlikely(IS_PRIVATE(inode)))
1267 return 0;
1268 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1269 }
1270
security_inode_permission(struct inode * inode,int mask)1271 int security_inode_permission(struct inode *inode, int mask)
1272 {
1273 if (unlikely(IS_PRIVATE(inode)))
1274 return 0;
1275 return call_int_hook(inode_permission, 0, inode, mask);
1276 }
1277
security_inode_setattr(struct dentry * dentry,struct iattr * attr)1278 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1279 {
1280 int ret;
1281
1282 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1283 return 0;
1284 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1285 if (ret)
1286 return ret;
1287 return evm_inode_setattr(dentry, attr);
1288 }
1289 EXPORT_SYMBOL_GPL(security_inode_setattr);
1290
security_inode_getattr(const struct path * path)1291 int security_inode_getattr(const struct path *path)
1292 {
1293 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1294 return 0;
1295 return call_int_hook(inode_getattr, 0, path);
1296 }
1297
security_inode_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1298 int security_inode_setxattr(struct dentry *dentry, const char *name,
1299 const void *value, size_t size, int flags)
1300 {
1301 int ret;
1302
1303 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1304 return 0;
1305 /*
1306 * SELinux and Smack integrate the cap call,
1307 * so assume that all LSMs supplying this call do so.
1308 */
1309 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1310 flags);
1311
1312 if (ret == 1)
1313 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1314 if (ret)
1315 return ret;
1316 ret = ima_inode_setxattr(dentry, name, value, size);
1317 if (ret)
1318 return ret;
1319 return evm_inode_setxattr(dentry, name, value, size);
1320 }
1321
security_inode_post_setxattr(struct dentry * dentry,const char * name,const void * value,size_t size,int flags)1322 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1323 const void *value, size_t size, int flags)
1324 {
1325 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1326 return;
1327 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1328 evm_inode_post_setxattr(dentry, name, value, size);
1329 }
1330
security_inode_getxattr(struct dentry * dentry,const char * name)1331 int security_inode_getxattr(struct dentry *dentry, const char *name)
1332 {
1333 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1334 return 0;
1335 return call_int_hook(inode_getxattr, 0, dentry, name);
1336 }
1337
security_inode_listxattr(struct dentry * dentry)1338 int security_inode_listxattr(struct dentry *dentry)
1339 {
1340 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1341 return 0;
1342 return call_int_hook(inode_listxattr, 0, dentry);
1343 }
1344
security_inode_removexattr(struct dentry * dentry,const char * name)1345 int security_inode_removexattr(struct dentry *dentry, const char *name)
1346 {
1347 int ret;
1348
1349 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1350 return 0;
1351 /*
1352 * SELinux and Smack integrate the cap call,
1353 * so assume that all LSMs supplying this call do so.
1354 */
1355 ret = call_int_hook(inode_removexattr, 1, dentry, name);
1356 if (ret == 1)
1357 ret = cap_inode_removexattr(dentry, name);
1358 if (ret)
1359 return ret;
1360 ret = ima_inode_removexattr(dentry, name);
1361 if (ret)
1362 return ret;
1363 return evm_inode_removexattr(dentry, name);
1364 }
1365
security_inode_need_killpriv(struct dentry * dentry)1366 int security_inode_need_killpriv(struct dentry *dentry)
1367 {
1368 return call_int_hook(inode_need_killpriv, 0, dentry);
1369 }
1370
security_inode_killpriv(struct dentry * dentry)1371 int security_inode_killpriv(struct dentry *dentry)
1372 {
1373 return call_int_hook(inode_killpriv, 0, dentry);
1374 }
1375
security_inode_getsecurity(struct inode * inode,const char * name,void ** buffer,bool alloc)1376 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1377 {
1378 struct security_hook_list *hp;
1379 int rc;
1380
1381 if (unlikely(IS_PRIVATE(inode)))
1382 return LSM_RET_DEFAULT(inode_getsecurity);
1383 /*
1384 * Only one module will provide an attribute with a given name.
1385 */
1386 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1387 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1388 if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1389 return rc;
1390 }
1391 return LSM_RET_DEFAULT(inode_getsecurity);
1392 }
1393
security_inode_setsecurity(struct inode * inode,const char * name,const void * value,size_t size,int flags)1394 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1395 {
1396 struct security_hook_list *hp;
1397 int rc;
1398
1399 if (unlikely(IS_PRIVATE(inode)))
1400 return LSM_RET_DEFAULT(inode_setsecurity);
1401 /*
1402 * Only one module will provide an attribute with a given name.
1403 */
1404 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1405 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1406 flags);
1407 if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1408 return rc;
1409 }
1410 return LSM_RET_DEFAULT(inode_setsecurity);
1411 }
1412
security_inode_listsecurity(struct inode * inode,char * buffer,size_t buffer_size)1413 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1414 {
1415 if (unlikely(IS_PRIVATE(inode)))
1416 return 0;
1417 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1418 }
1419 EXPORT_SYMBOL(security_inode_listsecurity);
1420
security_inode_getsecid(struct inode * inode,u32 * secid)1421 void security_inode_getsecid(struct inode *inode, u32 *secid)
1422 {
1423 call_void_hook(inode_getsecid, inode, secid);
1424 }
1425
security_inode_copy_up(struct dentry * src,struct cred ** new)1426 int security_inode_copy_up(struct dentry *src, struct cred **new)
1427 {
1428 return call_int_hook(inode_copy_up, 0, src, new);
1429 }
1430 EXPORT_SYMBOL(security_inode_copy_up);
1431
security_inode_copy_up_xattr(const char * name)1432 int security_inode_copy_up_xattr(const char *name)
1433 {
1434 struct security_hook_list *hp;
1435 int rc;
1436
1437 /*
1438 * The implementation can return 0 (accept the xattr), 1 (discard the
1439 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1440 * any other error code incase of an error.
1441 */
1442 hlist_for_each_entry(hp,
1443 &security_hook_heads.inode_copy_up_xattr, list) {
1444 rc = hp->hook.inode_copy_up_xattr(name);
1445 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1446 return rc;
1447 }
1448
1449 return LSM_RET_DEFAULT(inode_copy_up_xattr);
1450 }
1451 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1452
security_kernfs_init_security(struct kernfs_node * kn_dir,struct kernfs_node * kn)1453 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1454 struct kernfs_node *kn)
1455 {
1456 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1457 }
1458
security_file_permission(struct file * file,int mask)1459 int security_file_permission(struct file *file, int mask)
1460 {
1461 int ret;
1462
1463 ret = call_int_hook(file_permission, 0, file, mask);
1464 if (ret)
1465 return ret;
1466
1467 return fsnotify_perm(file, mask);
1468 }
1469
security_file_alloc(struct file * file)1470 int security_file_alloc(struct file *file)
1471 {
1472 int rc = lsm_file_alloc(file);
1473
1474 if (rc)
1475 return rc;
1476 rc = call_int_hook(file_alloc_security, 0, file);
1477 if (unlikely(rc))
1478 security_file_free(file);
1479 return rc;
1480 }
1481
security_file_free(struct file * file)1482 void security_file_free(struct file *file)
1483 {
1484 void *blob;
1485
1486 call_void_hook(file_free_security, file);
1487
1488 blob = file->f_security;
1489 if (blob) {
1490 file->f_security = NULL;
1491 kmem_cache_free(lsm_file_cache, blob);
1492 }
1493 }
1494
security_file_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1495 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1496 {
1497 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1498 }
1499 EXPORT_SYMBOL_GPL(security_file_ioctl);
1500
mmap_prot(struct file * file,unsigned long prot)1501 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1502 {
1503 /*
1504 * Does we have PROT_READ and does the application expect
1505 * it to imply PROT_EXEC? If not, nothing to talk about...
1506 */
1507 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1508 return prot;
1509 if (!(current->personality & READ_IMPLIES_EXEC))
1510 return prot;
1511 /*
1512 * if that's an anonymous mapping, let it.
1513 */
1514 if (!file)
1515 return prot | PROT_EXEC;
1516 /*
1517 * ditto if it's not on noexec mount, except that on !MMU we need
1518 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1519 */
1520 if (!path_noexec(&file->f_path)) {
1521 #ifndef CONFIG_MMU
1522 if (file->f_op->mmap_capabilities) {
1523 unsigned caps = file->f_op->mmap_capabilities(file);
1524 if (!(caps & NOMMU_MAP_EXEC))
1525 return prot;
1526 }
1527 #endif
1528 return prot | PROT_EXEC;
1529 }
1530 /* anything on noexec mount won't get PROT_EXEC */
1531 return prot;
1532 }
1533
security_mmap_file(struct file * file,unsigned long prot,unsigned long flags)1534 int security_mmap_file(struct file *file, unsigned long prot,
1535 unsigned long flags)
1536 {
1537 unsigned long prot_adj = mmap_prot(file, prot);
1538 int ret;
1539
1540 ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags);
1541 if (ret)
1542 return ret;
1543 return ima_file_mmap(file, prot, prot_adj, flags);
1544 }
1545
security_mmap_addr(unsigned long addr)1546 int security_mmap_addr(unsigned long addr)
1547 {
1548 return call_int_hook(mmap_addr, 0, addr);
1549 }
1550
security_file_mprotect(struct vm_area_struct * vma,unsigned long reqprot,unsigned long prot)1551 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1552 unsigned long prot)
1553 {
1554 int ret;
1555
1556 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1557 if (ret)
1558 return ret;
1559 return ima_file_mprotect(vma, prot);
1560 }
1561
security_file_lock(struct file * file,unsigned int cmd)1562 int security_file_lock(struct file *file, unsigned int cmd)
1563 {
1564 return call_int_hook(file_lock, 0, file, cmd);
1565 }
1566
security_file_fcntl(struct file * file,unsigned int cmd,unsigned long arg)1567 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1568 {
1569 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1570 }
1571
security_file_set_fowner(struct file * file)1572 void security_file_set_fowner(struct file *file)
1573 {
1574 call_void_hook(file_set_fowner, file);
1575 }
1576
security_file_send_sigiotask(struct task_struct * tsk,struct fown_struct * fown,int sig)1577 int security_file_send_sigiotask(struct task_struct *tsk,
1578 struct fown_struct *fown, int sig)
1579 {
1580 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1581 }
1582
security_file_receive(struct file * file)1583 int security_file_receive(struct file *file)
1584 {
1585 return call_int_hook(file_receive, 0, file);
1586 }
1587
security_file_open(struct file * file)1588 int security_file_open(struct file *file)
1589 {
1590 int ret;
1591
1592 ret = call_int_hook(file_open, 0, file);
1593 if (ret)
1594 return ret;
1595
1596 return fsnotify_perm(file, MAY_OPEN);
1597 }
1598
security_task_alloc(struct task_struct * task,unsigned long clone_flags)1599 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1600 {
1601 int rc = lsm_task_alloc(task);
1602
1603 if (rc)
1604 return rc;
1605 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1606 if (unlikely(rc))
1607 security_task_free(task);
1608 return rc;
1609 }
1610
security_task_free(struct task_struct * task)1611 void security_task_free(struct task_struct *task)
1612 {
1613 call_void_hook(task_free, task);
1614
1615 kfree(task->security);
1616 task->security = NULL;
1617 }
1618
security_cred_alloc_blank(struct cred * cred,gfp_t gfp)1619 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1620 {
1621 int rc = lsm_cred_alloc(cred, gfp);
1622
1623 if (rc)
1624 return rc;
1625
1626 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1627 if (unlikely(rc))
1628 security_cred_free(cred);
1629 return rc;
1630 }
1631
security_cred_free(struct cred * cred)1632 void security_cred_free(struct cred *cred)
1633 {
1634 /*
1635 * There is a failure case in prepare_creds() that
1636 * may result in a call here with ->security being NULL.
1637 */
1638 if (unlikely(cred->security == NULL))
1639 return;
1640
1641 call_void_hook(cred_free, cred);
1642
1643 kfree(cred->security);
1644 cred->security = NULL;
1645 }
1646
security_prepare_creds(struct cred * new,const struct cred * old,gfp_t gfp)1647 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1648 {
1649 int rc = lsm_cred_alloc(new, gfp);
1650
1651 if (rc)
1652 return rc;
1653
1654 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1655 if (unlikely(rc))
1656 security_cred_free(new);
1657 return rc;
1658 }
1659
security_transfer_creds(struct cred * new,const struct cred * old)1660 void security_transfer_creds(struct cred *new, const struct cred *old)
1661 {
1662 call_void_hook(cred_transfer, new, old);
1663 }
1664
security_cred_getsecid(const struct cred * c,u32 * secid)1665 void security_cred_getsecid(const struct cred *c, u32 *secid)
1666 {
1667 *secid = 0;
1668 call_void_hook(cred_getsecid, c, secid);
1669 }
1670 EXPORT_SYMBOL(security_cred_getsecid);
1671
security_kernel_act_as(struct cred * new,u32 secid)1672 int security_kernel_act_as(struct cred *new, u32 secid)
1673 {
1674 return call_int_hook(kernel_act_as, 0, new, secid);
1675 }
1676
security_kernel_create_files_as(struct cred * new,struct inode * inode)1677 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1678 {
1679 return call_int_hook(kernel_create_files_as, 0, new, inode);
1680 }
1681
security_kernel_module_request(char * kmod_name)1682 int security_kernel_module_request(char *kmod_name)
1683 {
1684 int ret;
1685
1686 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1687 if (ret)
1688 return ret;
1689 return integrity_kernel_module_request(kmod_name);
1690 }
1691
security_kernel_read_file(struct file * file,enum kernel_read_file_id id,bool contents)1692 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1693 bool contents)
1694 {
1695 int ret;
1696
1697 ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1698 if (ret)
1699 return ret;
1700 return ima_read_file(file, id, contents);
1701 }
1702 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1703
security_kernel_post_read_file(struct file * file,char * buf,loff_t size,enum kernel_read_file_id id)1704 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1705 enum kernel_read_file_id id)
1706 {
1707 int ret;
1708
1709 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1710 if (ret)
1711 return ret;
1712 return ima_post_read_file(file, buf, size, id);
1713 }
1714 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1715
security_kernel_load_data(enum kernel_load_data_id id,bool contents)1716 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1717 {
1718 int ret;
1719
1720 ret = call_int_hook(kernel_load_data, 0, id, contents);
1721 if (ret)
1722 return ret;
1723 return ima_load_data(id, contents);
1724 }
1725 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1726
security_kernel_post_load_data(char * buf,loff_t size,enum kernel_load_data_id id,char * description)1727 int security_kernel_post_load_data(char *buf, loff_t size,
1728 enum kernel_load_data_id id,
1729 char *description)
1730 {
1731 int ret;
1732
1733 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1734 description);
1735 if (ret)
1736 return ret;
1737 return ima_post_load_data(buf, size, id, description);
1738 }
1739 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1740
security_task_fix_setuid(struct cred * new,const struct cred * old,int flags)1741 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1742 int flags)
1743 {
1744 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1745 }
1746
security_task_fix_setgid(struct cred * new,const struct cred * old,int flags)1747 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1748 int flags)
1749 {
1750 return call_int_hook(task_fix_setgid, 0, new, old, flags);
1751 }
1752
security_task_setpgid(struct task_struct * p,pid_t pgid)1753 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1754 {
1755 return call_int_hook(task_setpgid, 0, p, pgid);
1756 }
1757
security_task_getpgid(struct task_struct * p)1758 int security_task_getpgid(struct task_struct *p)
1759 {
1760 return call_int_hook(task_getpgid, 0, p);
1761 }
1762
security_task_getsid(struct task_struct * p)1763 int security_task_getsid(struct task_struct *p)
1764 {
1765 return call_int_hook(task_getsid, 0, p);
1766 }
1767
security_task_getsecid(struct task_struct * p,u32 * secid)1768 void security_task_getsecid(struct task_struct *p, u32 *secid)
1769 {
1770 *secid = 0;
1771 call_void_hook(task_getsecid, p, secid);
1772 }
1773 EXPORT_SYMBOL(security_task_getsecid);
1774
security_task_setnice(struct task_struct * p,int nice)1775 int security_task_setnice(struct task_struct *p, int nice)
1776 {
1777 return call_int_hook(task_setnice, 0, p, nice);
1778 }
1779
security_task_setioprio(struct task_struct * p,int ioprio)1780 int security_task_setioprio(struct task_struct *p, int ioprio)
1781 {
1782 return call_int_hook(task_setioprio, 0, p, ioprio);
1783 }
1784
security_task_getioprio(struct task_struct * p)1785 int security_task_getioprio(struct task_struct *p)
1786 {
1787 return call_int_hook(task_getioprio, 0, p);
1788 }
1789
security_task_prlimit(const struct cred * cred,const struct cred * tcred,unsigned int flags)1790 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1791 unsigned int flags)
1792 {
1793 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1794 }
1795
security_task_setrlimit(struct task_struct * p,unsigned int resource,struct rlimit * new_rlim)1796 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1797 struct rlimit *new_rlim)
1798 {
1799 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1800 }
1801
security_task_setscheduler(struct task_struct * p)1802 int security_task_setscheduler(struct task_struct *p)
1803 {
1804 return call_int_hook(task_setscheduler, 0, p);
1805 }
1806
security_task_getscheduler(struct task_struct * p)1807 int security_task_getscheduler(struct task_struct *p)
1808 {
1809 return call_int_hook(task_getscheduler, 0, p);
1810 }
1811
security_task_movememory(struct task_struct * p)1812 int security_task_movememory(struct task_struct *p)
1813 {
1814 return call_int_hook(task_movememory, 0, p);
1815 }
1816
security_task_kill(struct task_struct * p,struct kernel_siginfo * info,int sig,const struct cred * cred)1817 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1818 int sig, const struct cred *cred)
1819 {
1820 return call_int_hook(task_kill, 0, p, info, sig, cred);
1821 }
1822
security_task_prctl(int option,unsigned long arg2,unsigned long arg3,unsigned long arg4,unsigned long arg5)1823 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1824 unsigned long arg4, unsigned long arg5)
1825 {
1826 int thisrc;
1827 int rc = LSM_RET_DEFAULT(task_prctl);
1828 struct security_hook_list *hp;
1829
1830 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1831 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1832 if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1833 rc = thisrc;
1834 if (thisrc != 0)
1835 break;
1836 }
1837 }
1838 return rc;
1839 }
1840
security_task_to_inode(struct task_struct * p,struct inode * inode)1841 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1842 {
1843 call_void_hook(task_to_inode, p, inode);
1844 }
1845
security_ipc_permission(struct kern_ipc_perm * ipcp,short flag)1846 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1847 {
1848 return call_int_hook(ipc_permission, 0, ipcp, flag);
1849 }
1850
security_ipc_getsecid(struct kern_ipc_perm * ipcp,u32 * secid)1851 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1852 {
1853 *secid = 0;
1854 call_void_hook(ipc_getsecid, ipcp, secid);
1855 }
1856
security_msg_msg_alloc(struct msg_msg * msg)1857 int security_msg_msg_alloc(struct msg_msg *msg)
1858 {
1859 int rc = lsm_msg_msg_alloc(msg);
1860
1861 if (unlikely(rc))
1862 return rc;
1863 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1864 if (unlikely(rc))
1865 security_msg_msg_free(msg);
1866 return rc;
1867 }
1868
security_msg_msg_free(struct msg_msg * msg)1869 void security_msg_msg_free(struct msg_msg *msg)
1870 {
1871 call_void_hook(msg_msg_free_security, msg);
1872 kfree(msg->security);
1873 msg->security = NULL;
1874 }
1875
security_msg_queue_alloc(struct kern_ipc_perm * msq)1876 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1877 {
1878 int rc = lsm_ipc_alloc(msq);
1879
1880 if (unlikely(rc))
1881 return rc;
1882 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1883 if (unlikely(rc))
1884 security_msg_queue_free(msq);
1885 return rc;
1886 }
1887
security_msg_queue_free(struct kern_ipc_perm * msq)1888 void security_msg_queue_free(struct kern_ipc_perm *msq)
1889 {
1890 call_void_hook(msg_queue_free_security, msq);
1891 kfree(msq->security);
1892 msq->security = NULL;
1893 }
1894
security_msg_queue_associate(struct kern_ipc_perm * msq,int msqflg)1895 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1896 {
1897 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1898 }
1899
security_msg_queue_msgctl(struct kern_ipc_perm * msq,int cmd)1900 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1901 {
1902 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1903 }
1904
security_msg_queue_msgsnd(struct kern_ipc_perm * msq,struct msg_msg * msg,int msqflg)1905 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1906 struct msg_msg *msg, int msqflg)
1907 {
1908 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1909 }
1910
security_msg_queue_msgrcv(struct kern_ipc_perm * msq,struct msg_msg * msg,struct task_struct * target,long type,int mode)1911 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1912 struct task_struct *target, long type, int mode)
1913 {
1914 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1915 }
1916
security_shm_alloc(struct kern_ipc_perm * shp)1917 int security_shm_alloc(struct kern_ipc_perm *shp)
1918 {
1919 int rc = lsm_ipc_alloc(shp);
1920
1921 if (unlikely(rc))
1922 return rc;
1923 rc = call_int_hook(shm_alloc_security, 0, shp);
1924 if (unlikely(rc))
1925 security_shm_free(shp);
1926 return rc;
1927 }
1928
security_shm_free(struct kern_ipc_perm * shp)1929 void security_shm_free(struct kern_ipc_perm *shp)
1930 {
1931 call_void_hook(shm_free_security, shp);
1932 kfree(shp->security);
1933 shp->security = NULL;
1934 }
1935
security_shm_associate(struct kern_ipc_perm * shp,int shmflg)1936 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1937 {
1938 return call_int_hook(shm_associate, 0, shp, shmflg);
1939 }
1940
security_shm_shmctl(struct kern_ipc_perm * shp,int cmd)1941 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1942 {
1943 return call_int_hook(shm_shmctl, 0, shp, cmd);
1944 }
1945
security_shm_shmat(struct kern_ipc_perm * shp,char __user * shmaddr,int shmflg)1946 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1947 {
1948 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1949 }
1950
security_sem_alloc(struct kern_ipc_perm * sma)1951 int security_sem_alloc(struct kern_ipc_perm *sma)
1952 {
1953 int rc = lsm_ipc_alloc(sma);
1954
1955 if (unlikely(rc))
1956 return rc;
1957 rc = call_int_hook(sem_alloc_security, 0, sma);
1958 if (unlikely(rc))
1959 security_sem_free(sma);
1960 return rc;
1961 }
1962
security_sem_free(struct kern_ipc_perm * sma)1963 void security_sem_free(struct kern_ipc_perm *sma)
1964 {
1965 call_void_hook(sem_free_security, sma);
1966 kfree(sma->security);
1967 sma->security = NULL;
1968 }
1969
security_sem_associate(struct kern_ipc_perm * sma,int semflg)1970 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1971 {
1972 return call_int_hook(sem_associate, 0, sma, semflg);
1973 }
1974
security_sem_semctl(struct kern_ipc_perm * sma,int cmd)1975 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1976 {
1977 return call_int_hook(sem_semctl, 0, sma, cmd);
1978 }
1979
security_sem_semop(struct kern_ipc_perm * sma,struct sembuf * sops,unsigned nsops,int alter)1980 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1981 unsigned nsops, int alter)
1982 {
1983 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1984 }
1985
security_d_instantiate(struct dentry * dentry,struct inode * inode)1986 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1987 {
1988 if (unlikely(inode && IS_PRIVATE(inode)))
1989 return;
1990 call_void_hook(d_instantiate, dentry, inode);
1991 }
1992 EXPORT_SYMBOL(security_d_instantiate);
1993
security_getprocattr(struct task_struct * p,const char * lsm,char * name,char ** value)1994 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1995 char **value)
1996 {
1997 struct security_hook_list *hp;
1998
1999 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2000 if (lsm != NULL && strcmp(lsm, hp->lsm))
2001 continue;
2002 return hp->hook.getprocattr(p, name, value);
2003 }
2004 return LSM_RET_DEFAULT(getprocattr);
2005 }
2006
security_setprocattr(const char * lsm,const char * name,void * value,size_t size)2007 int security_setprocattr(const char *lsm, const char *name, void *value,
2008 size_t size)
2009 {
2010 struct security_hook_list *hp;
2011
2012 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2013 if (lsm != NULL && strcmp(lsm, hp->lsm))
2014 continue;
2015 return hp->hook.setprocattr(name, value, size);
2016 }
2017 return LSM_RET_DEFAULT(setprocattr);
2018 }
2019
security_netlink_send(struct sock * sk,struct sk_buff * skb)2020 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2021 {
2022 return call_int_hook(netlink_send, 0, sk, skb);
2023 }
2024
security_ismaclabel(const char * name)2025 int security_ismaclabel(const char *name)
2026 {
2027 return call_int_hook(ismaclabel, 0, name);
2028 }
2029 EXPORT_SYMBOL(security_ismaclabel);
2030
security_secid_to_secctx(u32 secid,char ** secdata,u32 * seclen)2031 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2032 {
2033 struct security_hook_list *hp;
2034 int rc;
2035
2036 /*
2037 * Currently, only one LSM can implement secid_to_secctx (i.e this
2038 * LSM hook is not "stackable").
2039 */
2040 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2041 rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2042 if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2043 return rc;
2044 }
2045
2046 return LSM_RET_DEFAULT(secid_to_secctx);
2047 }
2048 EXPORT_SYMBOL(security_secid_to_secctx);
2049
security_secctx_to_secid(const char * secdata,u32 seclen,u32 * secid)2050 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2051 {
2052 *secid = 0;
2053 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2054 }
2055 EXPORT_SYMBOL(security_secctx_to_secid);
2056
security_release_secctx(char * secdata,u32 seclen)2057 void security_release_secctx(char *secdata, u32 seclen)
2058 {
2059 call_void_hook(release_secctx, secdata, seclen);
2060 }
2061 EXPORT_SYMBOL(security_release_secctx);
2062
security_inode_invalidate_secctx(struct inode * inode)2063 void security_inode_invalidate_secctx(struct inode *inode)
2064 {
2065 call_void_hook(inode_invalidate_secctx, inode);
2066 }
2067 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2068
security_inode_notifysecctx(struct inode * inode,void * ctx,u32 ctxlen)2069 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2070 {
2071 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2072 }
2073 EXPORT_SYMBOL(security_inode_notifysecctx);
2074
security_inode_setsecctx(struct dentry * dentry,void * ctx,u32 ctxlen)2075 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2076 {
2077 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2078 }
2079 EXPORT_SYMBOL(security_inode_setsecctx);
2080
security_inode_getsecctx(struct inode * inode,void ** ctx,u32 * ctxlen)2081 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2082 {
2083 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2084 }
2085 EXPORT_SYMBOL(security_inode_getsecctx);
2086
2087 #ifdef CONFIG_WATCH_QUEUE
security_post_notification(const struct cred * w_cred,const struct cred * cred,struct watch_notification * n)2088 int security_post_notification(const struct cred *w_cred,
2089 const struct cred *cred,
2090 struct watch_notification *n)
2091 {
2092 return call_int_hook(post_notification, 0, w_cred, cred, n);
2093 }
2094 #endif /* CONFIG_WATCH_QUEUE */
2095
2096 #ifdef CONFIG_KEY_NOTIFICATIONS
security_watch_key(struct key * key)2097 int security_watch_key(struct key *key)
2098 {
2099 return call_int_hook(watch_key, 0, key);
2100 }
2101 #endif
2102
2103 #ifdef CONFIG_SECURITY_NETWORK
2104
security_unix_stream_connect(struct sock * sock,struct sock * other,struct sock * newsk)2105 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2106 {
2107 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2108 }
2109 EXPORT_SYMBOL(security_unix_stream_connect);
2110
security_unix_may_send(struct socket * sock,struct socket * other)2111 int security_unix_may_send(struct socket *sock, struct socket *other)
2112 {
2113 return call_int_hook(unix_may_send, 0, sock, other);
2114 }
2115 EXPORT_SYMBOL(security_unix_may_send);
2116
security_socket_create(int family,int type,int protocol,int kern)2117 int security_socket_create(int family, int type, int protocol, int kern)
2118 {
2119 return call_int_hook(socket_create, 0, family, type, protocol, kern);
2120 }
2121
security_socket_post_create(struct socket * sock,int family,int type,int protocol,int kern)2122 int security_socket_post_create(struct socket *sock, int family,
2123 int type, int protocol, int kern)
2124 {
2125 return call_int_hook(socket_post_create, 0, sock, family, type,
2126 protocol, kern);
2127 }
2128
security_socket_socketpair(struct socket * socka,struct socket * sockb)2129 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2130 {
2131 return call_int_hook(socket_socketpair, 0, socka, sockb);
2132 }
2133 EXPORT_SYMBOL(security_socket_socketpair);
2134
security_socket_bind(struct socket * sock,struct sockaddr * address,int addrlen)2135 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2136 {
2137 return call_int_hook(socket_bind, 0, sock, address, addrlen);
2138 }
2139
security_socket_connect(struct socket * sock,struct sockaddr * address,int addrlen)2140 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2141 {
2142 return call_int_hook(socket_connect, 0, sock, address, addrlen);
2143 }
2144
security_socket_listen(struct socket * sock,int backlog)2145 int security_socket_listen(struct socket *sock, int backlog)
2146 {
2147 return call_int_hook(socket_listen, 0, sock, backlog);
2148 }
2149
security_socket_accept(struct socket * sock,struct socket * newsock)2150 int security_socket_accept(struct socket *sock, struct socket *newsock)
2151 {
2152 return call_int_hook(socket_accept, 0, sock, newsock);
2153 }
2154
security_socket_sendmsg(struct socket * sock,struct msghdr * msg,int size)2155 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2156 {
2157 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2158 }
2159
security_socket_recvmsg(struct socket * sock,struct msghdr * msg,int size,int flags)2160 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2161 int size, int flags)
2162 {
2163 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2164 }
2165
security_socket_getsockname(struct socket * sock)2166 int security_socket_getsockname(struct socket *sock)
2167 {
2168 return call_int_hook(socket_getsockname, 0, sock);
2169 }
2170
security_socket_getpeername(struct socket * sock)2171 int security_socket_getpeername(struct socket *sock)
2172 {
2173 return call_int_hook(socket_getpeername, 0, sock);
2174 }
2175
security_socket_getsockopt(struct socket * sock,int level,int optname)2176 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2177 {
2178 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2179 }
2180
security_socket_setsockopt(struct socket * sock,int level,int optname)2181 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2182 {
2183 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2184 }
2185
security_socket_shutdown(struct socket * sock,int how)2186 int security_socket_shutdown(struct socket *sock, int how)
2187 {
2188 return call_int_hook(socket_shutdown, 0, sock, how);
2189 }
2190
security_sock_rcv_skb(struct sock * sk,struct sk_buff * skb)2191 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2192 {
2193 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2194 }
2195 EXPORT_SYMBOL(security_sock_rcv_skb);
2196
security_socket_getpeersec_stream(struct socket * sock,char __user * optval,int __user * optlen,unsigned len)2197 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2198 int __user *optlen, unsigned len)
2199 {
2200 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2201 optval, optlen, len);
2202 }
2203
security_socket_getpeersec_dgram(struct socket * sock,struct sk_buff * skb,u32 * secid)2204 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2205 {
2206 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2207 skb, secid);
2208 }
2209 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2210
security_sk_alloc(struct sock * sk,int family,gfp_t priority)2211 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2212 {
2213 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2214 }
2215
security_sk_free(struct sock * sk)2216 void security_sk_free(struct sock *sk)
2217 {
2218 call_void_hook(sk_free_security, sk);
2219 }
2220
security_sk_clone(const struct sock * sk,struct sock * newsk)2221 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2222 {
2223 call_void_hook(sk_clone_security, sk, newsk);
2224 }
2225 EXPORT_SYMBOL(security_sk_clone);
2226
security_sk_classify_flow(struct sock * sk,struct flowi_common * flic)2227 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2228 {
2229 call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2230 }
2231 EXPORT_SYMBOL(security_sk_classify_flow);
2232
security_req_classify_flow(const struct request_sock * req,struct flowi_common * flic)2233 void security_req_classify_flow(const struct request_sock *req,
2234 struct flowi_common *flic)
2235 {
2236 call_void_hook(req_classify_flow, req, flic);
2237 }
2238 EXPORT_SYMBOL(security_req_classify_flow);
2239
security_sock_graft(struct sock * sk,struct socket * parent)2240 void security_sock_graft(struct sock *sk, struct socket *parent)
2241 {
2242 call_void_hook(sock_graft, sk, parent);
2243 }
2244 EXPORT_SYMBOL(security_sock_graft);
2245
security_inet_conn_request(struct sock * sk,struct sk_buff * skb,struct request_sock * req)2246 int security_inet_conn_request(struct sock *sk,
2247 struct sk_buff *skb, struct request_sock *req)
2248 {
2249 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2250 }
2251 EXPORT_SYMBOL(security_inet_conn_request);
2252
security_inet_csk_clone(struct sock * newsk,const struct request_sock * req)2253 void security_inet_csk_clone(struct sock *newsk,
2254 const struct request_sock *req)
2255 {
2256 call_void_hook(inet_csk_clone, newsk, req);
2257 }
2258
security_inet_conn_established(struct sock * sk,struct sk_buff * skb)2259 void security_inet_conn_established(struct sock *sk,
2260 struct sk_buff *skb)
2261 {
2262 call_void_hook(inet_conn_established, sk, skb);
2263 }
2264 EXPORT_SYMBOL(security_inet_conn_established);
2265
security_secmark_relabel_packet(u32 secid)2266 int security_secmark_relabel_packet(u32 secid)
2267 {
2268 return call_int_hook(secmark_relabel_packet, 0, secid);
2269 }
2270 EXPORT_SYMBOL(security_secmark_relabel_packet);
2271
security_secmark_refcount_inc(void)2272 void security_secmark_refcount_inc(void)
2273 {
2274 call_void_hook(secmark_refcount_inc);
2275 }
2276 EXPORT_SYMBOL(security_secmark_refcount_inc);
2277
security_secmark_refcount_dec(void)2278 void security_secmark_refcount_dec(void)
2279 {
2280 call_void_hook(secmark_refcount_dec);
2281 }
2282 EXPORT_SYMBOL(security_secmark_refcount_dec);
2283
security_tun_dev_alloc_security(void ** security)2284 int security_tun_dev_alloc_security(void **security)
2285 {
2286 return call_int_hook(tun_dev_alloc_security, 0, security);
2287 }
2288 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2289
security_tun_dev_free_security(void * security)2290 void security_tun_dev_free_security(void *security)
2291 {
2292 call_void_hook(tun_dev_free_security, security);
2293 }
2294 EXPORT_SYMBOL(security_tun_dev_free_security);
2295
security_tun_dev_create(void)2296 int security_tun_dev_create(void)
2297 {
2298 return call_int_hook(tun_dev_create, 0);
2299 }
2300 EXPORT_SYMBOL(security_tun_dev_create);
2301
security_tun_dev_attach_queue(void * security)2302 int security_tun_dev_attach_queue(void *security)
2303 {
2304 return call_int_hook(tun_dev_attach_queue, 0, security);
2305 }
2306 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2307
security_tun_dev_attach(struct sock * sk,void * security)2308 int security_tun_dev_attach(struct sock *sk, void *security)
2309 {
2310 return call_int_hook(tun_dev_attach, 0, sk, security);
2311 }
2312 EXPORT_SYMBOL(security_tun_dev_attach);
2313
security_tun_dev_open(void * security)2314 int security_tun_dev_open(void *security)
2315 {
2316 return call_int_hook(tun_dev_open, 0, security);
2317 }
2318 EXPORT_SYMBOL(security_tun_dev_open);
2319
security_sctp_assoc_request(struct sctp_endpoint * ep,struct sk_buff * skb)2320 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2321 {
2322 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2323 }
2324 EXPORT_SYMBOL(security_sctp_assoc_request);
2325
security_sctp_bind_connect(struct sock * sk,int optname,struct sockaddr * address,int addrlen)2326 int security_sctp_bind_connect(struct sock *sk, int optname,
2327 struct sockaddr *address, int addrlen)
2328 {
2329 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2330 address, addrlen);
2331 }
2332 EXPORT_SYMBOL(security_sctp_bind_connect);
2333
security_sctp_sk_clone(struct sctp_endpoint * ep,struct sock * sk,struct sock * newsk)2334 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2335 struct sock *newsk)
2336 {
2337 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2338 }
2339 EXPORT_SYMBOL(security_sctp_sk_clone);
2340
2341 #endif /* CONFIG_SECURITY_NETWORK */
2342
2343 #ifdef CONFIG_SECURITY_INFINIBAND
2344
security_ib_pkey_access(void * sec,u64 subnet_prefix,u16 pkey)2345 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2346 {
2347 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2348 }
2349 EXPORT_SYMBOL(security_ib_pkey_access);
2350
security_ib_endport_manage_subnet(void * sec,const char * dev_name,u8 port_num)2351 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2352 {
2353 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2354 }
2355 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2356
security_ib_alloc_security(void ** sec)2357 int security_ib_alloc_security(void **sec)
2358 {
2359 return call_int_hook(ib_alloc_security, 0, sec);
2360 }
2361 EXPORT_SYMBOL(security_ib_alloc_security);
2362
security_ib_free_security(void * sec)2363 void security_ib_free_security(void *sec)
2364 {
2365 call_void_hook(ib_free_security, sec);
2366 }
2367 EXPORT_SYMBOL(security_ib_free_security);
2368 #endif /* CONFIG_SECURITY_INFINIBAND */
2369
2370 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2371
security_xfrm_policy_alloc(struct xfrm_sec_ctx ** ctxp,struct xfrm_user_sec_ctx * sec_ctx,gfp_t gfp)2372 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2373 struct xfrm_user_sec_ctx *sec_ctx,
2374 gfp_t gfp)
2375 {
2376 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2377 }
2378 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2379
security_xfrm_policy_clone(struct xfrm_sec_ctx * old_ctx,struct xfrm_sec_ctx ** new_ctxp)2380 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2381 struct xfrm_sec_ctx **new_ctxp)
2382 {
2383 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2384 }
2385
security_xfrm_policy_free(struct xfrm_sec_ctx * ctx)2386 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2387 {
2388 call_void_hook(xfrm_policy_free_security, ctx);
2389 }
2390 EXPORT_SYMBOL(security_xfrm_policy_free);
2391
security_xfrm_policy_delete(struct xfrm_sec_ctx * ctx)2392 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2393 {
2394 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2395 }
2396
security_xfrm_state_alloc(struct xfrm_state * x,struct xfrm_user_sec_ctx * sec_ctx)2397 int security_xfrm_state_alloc(struct xfrm_state *x,
2398 struct xfrm_user_sec_ctx *sec_ctx)
2399 {
2400 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2401 }
2402 EXPORT_SYMBOL(security_xfrm_state_alloc);
2403
security_xfrm_state_alloc_acquire(struct xfrm_state * x,struct xfrm_sec_ctx * polsec,u32 secid)2404 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2405 struct xfrm_sec_ctx *polsec, u32 secid)
2406 {
2407 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2408 }
2409
security_xfrm_state_delete(struct xfrm_state * x)2410 int security_xfrm_state_delete(struct xfrm_state *x)
2411 {
2412 return call_int_hook(xfrm_state_delete_security, 0, x);
2413 }
2414 EXPORT_SYMBOL(security_xfrm_state_delete);
2415
security_xfrm_state_free(struct xfrm_state * x)2416 void security_xfrm_state_free(struct xfrm_state *x)
2417 {
2418 call_void_hook(xfrm_state_free_security, x);
2419 }
2420
security_xfrm_policy_lookup(struct xfrm_sec_ctx * ctx,u32 fl_secid,u8 dir)2421 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2422 {
2423 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2424 }
2425
security_xfrm_state_pol_flow_match(struct xfrm_state * x,struct xfrm_policy * xp,const struct flowi_common * flic)2426 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2427 struct xfrm_policy *xp,
2428 const struct flowi_common *flic)
2429 {
2430 struct security_hook_list *hp;
2431 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2432
2433 /*
2434 * Since this function is expected to return 0 or 1, the judgment
2435 * becomes difficult if multiple LSMs supply this call. Fortunately,
2436 * we can use the first LSM's judgment because currently only SELinux
2437 * supplies this call.
2438 *
2439 * For speed optimization, we explicitly break the loop rather than
2440 * using the macro
2441 */
2442 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2443 list) {
2444 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2445 break;
2446 }
2447 return rc;
2448 }
2449
security_xfrm_decode_session(struct sk_buff * skb,u32 * secid)2450 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2451 {
2452 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2453 }
2454
security_skb_classify_flow(struct sk_buff * skb,struct flowi_common * flic)2455 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2456 {
2457 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2458 0);
2459
2460 BUG_ON(rc);
2461 }
2462 EXPORT_SYMBOL(security_skb_classify_flow);
2463
2464 #endif /* CONFIG_SECURITY_NETWORK_XFRM */
2465
2466 #ifdef CONFIG_KEYS
2467
security_key_alloc(struct key * key,const struct cred * cred,unsigned long flags)2468 int security_key_alloc(struct key *key, const struct cred *cred,
2469 unsigned long flags)
2470 {
2471 return call_int_hook(key_alloc, 0, key, cred, flags);
2472 }
2473
security_key_free(struct key * key)2474 void security_key_free(struct key *key)
2475 {
2476 call_void_hook(key_free, key);
2477 }
2478
security_key_permission(key_ref_t key_ref,const struct cred * cred,enum key_need_perm need_perm)2479 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2480 enum key_need_perm need_perm)
2481 {
2482 return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2483 }
2484
security_key_getsecurity(struct key * key,char ** _buffer)2485 int security_key_getsecurity(struct key *key, char **_buffer)
2486 {
2487 *_buffer = NULL;
2488 return call_int_hook(key_getsecurity, 0, key, _buffer);
2489 }
2490
2491 #endif /* CONFIG_KEYS */
2492
2493 #ifdef CONFIG_AUDIT
2494
security_audit_rule_init(u32 field,u32 op,char * rulestr,void ** lsmrule)2495 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2496 {
2497 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2498 }
2499
security_audit_rule_known(struct audit_krule * krule)2500 int security_audit_rule_known(struct audit_krule *krule)
2501 {
2502 return call_int_hook(audit_rule_known, 0, krule);
2503 }
2504
security_audit_rule_free(void * lsmrule)2505 void security_audit_rule_free(void *lsmrule)
2506 {
2507 call_void_hook(audit_rule_free, lsmrule);
2508 }
2509
security_audit_rule_match(u32 secid,u32 field,u32 op,void * lsmrule)2510 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2511 {
2512 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2513 }
2514 #endif /* CONFIG_AUDIT */
2515
2516 #ifdef CONFIG_BPF_SYSCALL
security_bpf(int cmd,union bpf_attr * attr,unsigned int size)2517 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2518 {
2519 return call_int_hook(bpf, 0, cmd, attr, size);
2520 }
security_bpf_map(struct bpf_map * map,fmode_t fmode)2521 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2522 {
2523 return call_int_hook(bpf_map, 0, map, fmode);
2524 }
security_bpf_prog(struct bpf_prog * prog)2525 int security_bpf_prog(struct bpf_prog *prog)
2526 {
2527 return call_int_hook(bpf_prog, 0, prog);
2528 }
security_bpf_map_alloc(struct bpf_map * map)2529 int security_bpf_map_alloc(struct bpf_map *map)
2530 {
2531 return call_int_hook(bpf_map_alloc_security, 0, map);
2532 }
security_bpf_prog_alloc(struct bpf_prog_aux * aux)2533 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2534 {
2535 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2536 }
security_bpf_map_free(struct bpf_map * map)2537 void security_bpf_map_free(struct bpf_map *map)
2538 {
2539 call_void_hook(bpf_map_free_security, map);
2540 }
security_bpf_prog_free(struct bpf_prog_aux * aux)2541 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2542 {
2543 call_void_hook(bpf_prog_free_security, aux);
2544 }
2545 #endif /* CONFIG_BPF_SYSCALL */
2546
security_locked_down(enum lockdown_reason what)2547 int security_locked_down(enum lockdown_reason what)
2548 {
2549 return call_int_hook(locked_down, 0, what);
2550 }
2551 EXPORT_SYMBOL(security_locked_down);
2552
2553 #ifdef CONFIG_PERF_EVENTS
security_perf_event_open(struct perf_event_attr * attr,int type)2554 int security_perf_event_open(struct perf_event_attr *attr, int type)
2555 {
2556 return call_int_hook(perf_event_open, 0, attr, type);
2557 }
2558
security_perf_event_alloc(struct perf_event * event)2559 int security_perf_event_alloc(struct perf_event *event)
2560 {
2561 return call_int_hook(perf_event_alloc, 0, event);
2562 }
2563
security_perf_event_free(struct perf_event * event)2564 void security_perf_event_free(struct perf_event *event)
2565 {
2566 call_void_hook(perf_event_free, event);
2567 }
2568
security_perf_event_read(struct perf_event * event)2569 int security_perf_event_read(struct perf_event *event)
2570 {
2571 return call_int_hook(perf_event_read, 0, event);
2572 }
2573
security_perf_event_write(struct perf_event * event)2574 int security_perf_event_write(struct perf_event *event)
2575 {
2576 return call_int_hook(perf_event_write, 0, event);
2577 }
2578 #endif /* CONFIG_PERF_EVENTS */
2579
2580 #ifdef CONFIG_SECURITY_XPM
security_mmap_region(struct vm_area_struct * vma)2581 int security_mmap_region(struct vm_area_struct *vma)
2582 {
2583 return call_int_hook(mmap_region, 0, vma);
2584 }
2585 #endif
2586