• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkFloatingPoint_DEFINED
9 #define SkFloatingPoint_DEFINED
10 
11 #include "include/core/SkTypes.h"
12 #include "include/private/SkFloatBits.h"
13 #include "include/private/SkSafe_math.h"
14 #include <float.h>
15 #include <math.h>
16 #include <cmath>
17 #include <cstring>
18 #include <limits>
19 
20 
21 #if defined(SK_LEGACY_FLOAT_RSQRT)
22 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
23     #include <xmmintrin.h>
24 #elif defined(SK_ARM_HAS_NEON)
25     #include <arm_neon.h>
26 #endif
27 #endif
28 
29 // For _POSIX_VERSION
30 #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
31 #include <unistd.h>
32 #endif
33 
34 constexpr float SK_FloatSqrt2 = 1.41421356f;
35 constexpr float SK_FloatPI    = 3.14159265f;
36 constexpr double SK_DoublePI  = 3.14159265358979323846264338327950288;
37 
38 // C++98 cmath std::pow seems to be the earliest portable way to get float pow.
39 // However, on Linux including cmath undefines isfinite.
40 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608
sk_float_pow(float base,float exp)41 static inline float sk_float_pow(float base, float exp) {
42     return powf(base, exp);
43 }
44 
45 #define sk_float_sqrt(x)        sqrtf(x)
46 #define sk_float_sin(x)         sinf(x)
47 #define sk_float_cos(x)         cosf(x)
48 #define sk_float_tan(x)         tanf(x)
49 #define sk_float_floor(x)       floorf(x)
50 #define sk_float_ceil(x)        ceilf(x)
51 #define sk_float_trunc(x)       truncf(x)
52 #ifdef SK_BUILD_FOR_MAC
53 #    define sk_float_acos(x)    static_cast<float>(acos(x))
54 #    define sk_float_asin(x)    static_cast<float>(asin(x))
55 #else
56 #    define sk_float_acos(x)    acosf(x)
57 #    define sk_float_asin(x)    asinf(x)
58 #endif
59 #define sk_float_atan2(y,x)     atan2f(y,x)
60 #define sk_float_abs(x)         fabsf(x)
61 #define sk_float_copysign(x, y) copysignf(x, y)
62 #define sk_float_mod(x,y)       fmodf(x,y)
63 #define sk_float_exp(x)         expf(x)
64 #define sk_float_log(x)         logf(x)
65 
sk_float_degrees_to_radians(float degrees)66 constexpr float sk_float_degrees_to_radians(float degrees) {
67     return degrees * (SK_FloatPI / 180);
68 }
69 
sk_float_radians_to_degrees(float radians)70 constexpr float sk_float_radians_to_degrees(float radians) {
71     return radians * (180 / SK_FloatPI);
72 }
73 
74 #define sk_float_round(x) sk_float_floor((x) + 0.5f)
75 
76 // can't find log2f on android, but maybe that just a tool bug?
77 #ifdef SK_BUILD_FOR_ANDROID
sk_float_log2(float x)78     static inline float sk_float_log2(float x) {
79         const double inv_ln_2 = 1.44269504088896;
80         return (float)(log(x) * inv_ln_2);
81     }
82 #else
83     #define sk_float_log2(x)        log2f(x)
84 #endif
85 
sk_float_isfinite(float x)86 static inline bool sk_float_isfinite(float x) {
87     return SkFloatBits_IsFinite(SkFloat2Bits(x));
88 }
89 
sk_floats_are_finite(float a,float b)90 static inline bool sk_floats_are_finite(float a, float b) {
91     return sk_float_isfinite(a) && sk_float_isfinite(b);
92 }
93 
94 // warning: comparing floating point with == or != is unsafe
95 // storing and comparing against same constants ok.
96 #if defined(__clang__)
97 #pragma clang diagnostic ignored "-Wfloat-equal"
98 #elif defined(__GNUC__)
99 #pragma GCC diagnostic ignored "-Wfloat-equal"
100 #endif
sk_floats_are_finite(const float array[],int count)101 static inline bool sk_floats_are_finite(const float array[], int count) {
102     float prod = 0;
103     for (int i = 0; i < count; ++i) {
104         prod *= array[i];
105     }
106     // At this point, prod will either be NaN or 0
107     return prod == 0;   // if prod is NaN, this check will return false
108 }
109 
sk_float_isinf(float x)110 static inline bool sk_float_isinf(float x) {
111     return SkFloatBits_IsInf(SkFloat2Bits(x));
112 }
113 
sk_float_isnan(float x)114 static inline bool sk_float_isnan(float x) {
115     return !(x == x);
116 }
117 
118 #define sk_double_isnan(a)          sk_float_isnan(a)
119 
120 #define SK_MaxS32FitsInFloat    2147483520
121 #define SK_MinS32FitsInFloat    -SK_MaxS32FitsInFloat
122 
123 #define SK_MaxS64FitsInFloat    (SK_MaxS64 >> (63-24) << (63-24))   // 0x7fffff8000000000
124 #define SK_MinS64FitsInFloat    -SK_MaxS64FitsInFloat
125 
126 /**
127  *  Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN.
128  */
sk_float_saturate2int(float x)129 static inline int sk_float_saturate2int(float x) {
130     x = x < SK_MaxS32FitsInFloat ? x : SK_MaxS32FitsInFloat;
131     x = x > SK_MinS32FitsInFloat ? x : SK_MinS32FitsInFloat;
132     return (int)x;
133 }
134 
135 /**
136  *  Return the closest int for the given double. Returns SK_MaxS32 for NaN.
137  */
sk_double_saturate2int(double x)138 static inline int sk_double_saturate2int(double x) {
139     x = x < SK_MaxS32 ? x : SK_MaxS32;
140     x = x > SK_MinS32 ? x : SK_MinS32;
141     return (int)x;
142 }
143 
144 /**
145  *  Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN.
146  */
sk_float_saturate2int64(float x)147 static inline int64_t sk_float_saturate2int64(float x) {
148     x = x < SK_MaxS64FitsInFloat ? x : SK_MaxS64FitsInFloat;
149     x = x > SK_MinS64FitsInFloat ? x : SK_MinS64FitsInFloat;
150     return (int64_t)x;
151 }
152 
153 #define sk_float_floor2int(x)   sk_float_saturate2int(sk_float_floor(x))
154 #define sk_float_round2int(x)   sk_float_saturate2int(sk_float_floor((x) + 0.5f))
155 #define sk_float_ceil2int(x)    sk_float_saturate2int(sk_float_ceil(x))
156 
157 #define sk_float_floor2int_no_saturate(x)   (int)sk_float_floor(x)
158 #define sk_float_round2int_no_saturate(x)   (int)sk_float_floor((x) + 0.5f)
159 #define sk_float_ceil2int_no_saturate(x)    (int)sk_float_ceil(x)
160 
161 #define sk_double_floor(x)          floor(x)
162 #define sk_double_round(x)          floor((x) + 0.5)
163 #define sk_double_ceil(x)           ceil(x)
164 #define sk_double_floor2int(x)      (int)floor(x)
165 #define sk_double_round2int(x)      (int)floor((x) + 0.5)
166 #define sk_double_ceil2int(x)       (int)ceil(x)
167 
168 // Cast double to float, ignoring any warning about too-large finite values being cast to float.
169 // Clang thinks this is undefined, but it's actually implementation defined to return either
170 // the largest float or infinity (one of the two bracketing representable floats).  Good enough!
171 SK_ATTRIBUTE(no_sanitize("float-cast-overflow"))
sk_double_to_float(double x)172 static inline float sk_double_to_float(double x) {
173     return static_cast<float>(x);
174 }
175 
176 #define SK_FloatNaN                 std::numeric_limits<float>::quiet_NaN()
177 #define SK_FloatInfinity            (+std::numeric_limits<float>::infinity())
178 #define SK_FloatNegativeInfinity    (-std::numeric_limits<float>::infinity())
179 
180 #define SK_DoubleNaN                std::numeric_limits<double>::quiet_NaN()
181 
182 // Returns false if any of the floats are outside of [0...1]
183 // Returns true if count is 0
184 bool sk_floats_are_unit(const float array[], size_t count);
185 
186 #if defined(SK_LEGACY_FLOAT_RSQRT)
sk_float_rsqrt_portable(float x)187 static inline float sk_float_rsqrt_portable(float x) {
188     // Get initial estimate.
189     int i;
190     memcpy(&i, &x, 4);
191     i = 0x5F1FFFF9 - (i>>1);
192     float estimate;
193     memcpy(&estimate, &i, 4);
194 
195     // One step of Newton's method to refine.
196     const float estimate_sq = estimate*estimate;
197     estimate *= 0.703952253f*(2.38924456f-x*estimate_sq);
198     return estimate;
199 }
200 
201 // Fast, approximate inverse square root.
202 // Compare to name-brand "1.0f / sk_float_sqrt(x)".  Should be around 10x faster on SSE, 2x on NEON.
sk_float_rsqrt(float x)203 static inline float sk_float_rsqrt(float x) {
204 // We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got
205 // it at compile time.  This is going to be too fast to productively hide behind a function pointer.
206 //
207 // We do one step of Newton's method to refine the estimates in the NEON and portable paths.  No
208 // refinement is faster, but very innacurate.  Two steps is more accurate, but slower than 1/sqrt.
209 //
210 // Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html
211 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
212     return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x)));
213 #elif defined(SK_ARM_HAS_NEON)
214     // Get initial estimate.
215     const float32x2_t xx = vdup_n_f32(x);  // Clever readers will note we're doing everything 2x.
216     float32x2_t estimate = vrsqrte_f32(xx);
217 
218     // One step of Newton's method to refine.
219     const float32x2_t estimate_sq = vmul_f32(estimate, estimate);
220     estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq));
221     return vget_lane_f32(estimate, 0);  // 1 will work fine too; the answer's in both places.
222 #else
223     return sk_float_rsqrt_portable(x);
224 #endif
225 }
226 #else
227 
sk_float_rsqrt_portable(float x)228 static inline float sk_float_rsqrt_portable(float x) { return 1.0f / sk_float_sqrt(x); }
sk_float_rsqrt(float x)229 static inline float sk_float_rsqrt         (float x) { return 1.0f / sk_float_sqrt(x); }
230 
231 #endif
232 
233 // Returns the log2 of the provided value, were that value to be rounded up to the next power of 2.
234 // Returns 0 if value <= 0:
235 // Never returns a negative number, even if value is NaN.
236 //
237 //     sk_float_nextlog2((-inf..1]) -> 0
238 //     sk_float_nextlog2((1..2]) -> 1
239 //     sk_float_nextlog2((2..4]) -> 2
240 //     sk_float_nextlog2((4..8]) -> 3
241 //     ...
sk_float_nextlog2(float x)242 static inline int sk_float_nextlog2(float x) {
243     uint32_t bits = (uint32_t)SkFloat2Bits(x);
244     bits += (1u << 23) - 1u;  // Increment the exponent for non-powers-of-2.
245     int exp = ((int32_t)bits >> 23) - 127;
246     return exp & ~(exp >> 31);  // Return 0 for negative or denormalized floats, and exponents < 0.
247 }
248 
249 // This is the number of significant digits we can print in a string such that when we read that
250 // string back we get the floating point number we expect.  The minimum value C requires is 6, but
251 // most compilers support 9
252 #ifdef FLT_DECIMAL_DIG
253 #define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG
254 #else
255 #define SK_FLT_DECIMAL_DIG 9
256 #endif
257 
258 // IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not
259 // so we have a helper that suppresses the possible undefined-behavior warnings.
260 
261 SK_ATTRIBUTE(no_sanitize("float-divide-by-zero"))
sk_ieee_float_divide(float numer,float denom)262 static inline float sk_ieee_float_divide(float numer, float denom) {
263     return numer / denom;
264 }
265 
266 SK_ATTRIBUTE(no_sanitize("float-divide-by-zero"))
sk_ieee_double_divide(double numer,double denom)267 static inline double sk_ieee_double_divide(double numer, double denom) {
268     return numer / denom;
269 }
270 
271 // While we clean up divide by zero, we'll replace places that do divide by zero with this TODO.
sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n,float d)272 static inline float sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n, float d) {
273     return sk_ieee_float_divide(n,d);
274 }
275 
sk_fmaf(float f,float m,float a)276 static inline float sk_fmaf(float f, float m, float a) {
277 #if defined(FP_FAST_FMA)
278     return std::fmaf(f,m,a);
279 #else
280     return f*m+a;
281 #endif
282 }
283 
284 #endif
285