• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #ifndef SkTemplates_DEFINED
9 #define SkTemplates_DEFINED
10 
11 #include "include/core/SkTypes.h"
12 #include "include/private/SkMalloc.h"
13 #include "include/private/SkTLogic.h"
14 
15 #include <string.h>
16 #include <array>
17 #include <cstddef>
18 #include <memory>
19 #include <new>
20 #include <type_traits>
21 #include <utility>
22 
23 /** \file SkTemplates.h
24 
25     This file contains light-weight template classes for type-safe and exception-safe
26     resource management.
27 */
28 
29 /**
30  *  Marks a local variable as known to be unused (to avoid warnings).
31  *  Note that this does *not* prevent the local variable from being optimized away.
32  */
sk_ignore_unused_variable(const T &)33 template<typename T> inline void sk_ignore_unused_variable(const T&) { }
34 
35 /**
36  *  Returns a pointer to a D which comes immediately after S[count].
37  */
38 template <typename D, typename S> static D* SkTAfter(S* ptr, size_t count = 1) {
39     return reinterpret_cast<D*>(ptr + count);
40 }
41 
42 /**
43  *  Returns a pointer to a D which comes byteOffset bytes after S.
44  */
SkTAddOffset(S * ptr,ptrdiff_t byteOffset)45 template <typename D, typename S> static D* SkTAddOffset(S* ptr, ptrdiff_t byteOffset) {
46     // The intermediate char* has the same cv-ness as D as this produces better error messages.
47     // This relies on the fact that reinterpret_cast can add constness, but cannot remove it.
48     return reinterpret_cast<D*>(reinterpret_cast<sknonstd::same_cv_t<char, D>*>(ptr) + byteOffset);
49 }
50 
51 // TODO: when C++17 the language is available, use template <auto P>
52 template <typename T, T* P> struct SkFunctionWrapper {
53     template <typename... Args>
54     auto operator()(Args&&... args) const -> decltype(P(std::forward<Args>(args)...)) {
55         return P(std::forward<Args>(args)...);
56     }
57 };
58 
59 /** \class SkAutoTCallVProc
60 
61     Call a function when this goes out of scope. The template uses two
62     parameters, the object, and a function that is to be called in the destructor.
63     If release() is called, the object reference is set to null. If the object
64     reference is null when the destructor is called, we do not call the
65     function.
66 */
67 template <typename T, void (*P)(T*)> class SkAutoTCallVProc
68     : public std::unique_ptr<T, SkFunctionWrapper<std::remove_pointer_t<decltype(P)>, P>> {
69     using inherited = std::unique_ptr<T, SkFunctionWrapper<std::remove_pointer_t<decltype(P)>, P>>;
70 public:
71     using inherited::inherited;
72     SkAutoTCallVProc(const SkAutoTCallVProc&) = delete;
SkAutoTCallVProc(SkAutoTCallVProc && that)73     SkAutoTCallVProc(SkAutoTCallVProc&& that) : inherited(std::move(that)) {}
74 
75     operator T*() const { return this->get(); }
76 };
77 
78 /** Allocate an array of T elements, and free the array in the destructor
79  */
80 template <typename T> class SkAutoTArray  {
81 public:
SkAutoTArray()82     SkAutoTArray() {}
83     /** Allocate count number of T elements
84      */
SkAutoTArray(int count)85     explicit SkAutoTArray(int count) {
86         SkASSERT(count >= 0);
87         if (count) {
88             fArray.reset(new T[count]);
89         }
90         SkDEBUGCODE(fCount = count;)
91     }
92 
SkAutoTArray(SkAutoTArray && other)93     SkAutoTArray(SkAutoTArray&& other) : fArray(std::move(other.fArray)) {
94         SkDEBUGCODE(fCount = other.fCount; other.fCount = 0;)
95     }
96     SkAutoTArray& operator=(SkAutoTArray&& other) {
97         if (this != &other) {
98             fArray = std::move(other.fArray);
99             SkDEBUGCODE(fCount = other.fCount; other.fCount = 0;)
100         }
101         return *this;
102     }
103 
104     /** Reallocates given a new count. Reallocation occurs even if new count equals old count.
105      */
106     void reset(int count = 0) { *this = SkAutoTArray(count); }
107 
108     /** Return the array of T elements. Will be NULL if count == 0
109      */
get()110     T* get() const { return fArray.get(); }
111 
112     /** Return the nth element in the array
113      */
114     T&  operator[](int index) const {
115         SkASSERT((unsigned)index < (unsigned)fCount);
116         return fArray[index];
117     }
118 
119     /** Aliases matching other types, like std::vector. */
data()120     const T* data() const { return fArray.get(); }
data()121     T* data() { return fArray.get(); }
122 
123 private:
124     std::unique_ptr<T[]> fArray;
125     SkDEBUGCODE(int fCount = 0;)
126 };
127 
128 /** Wraps SkAutoTArray, with room for kCountRequested elements preallocated.
129  */
130 template <int kCountRequested, typename T> class SkAutoSTArray {
131 public:
132     SkAutoSTArray(SkAutoSTArray&&) = delete;
133     SkAutoSTArray(const SkAutoSTArray&) = delete;
134     SkAutoSTArray& operator=(SkAutoSTArray&&) = delete;
135     SkAutoSTArray& operator=(const SkAutoSTArray&) = delete;
136 
137     /** Initialize with no objects */
SkAutoSTArray()138     SkAutoSTArray() {
139         fArray = nullptr;
140         fCount = 0;
141     }
142 
143     /** Allocate count number of T elements
144      */
SkAutoSTArray(int count)145     SkAutoSTArray(int count) {
146         fArray = nullptr;
147         fCount = 0;
148         this->reset(count);
149     }
150 
~SkAutoSTArray()151     ~SkAutoSTArray() {
152         this->reset(0);
153     }
154 
155     /** Destroys previous objects in the array and default constructs count number of objects */
reset(int count)156     void reset(int count) {
157         T* start = fArray;
158         T* iter = start + fCount;
159         while (iter > start) {
160             (--iter)->~T();
161         }
162 
163         SkASSERT(count >= 0);
164         if (fCount != count) {
165             if (fCount > kCount) {
166                 // 'fArray' was allocated last time so free it now
167                 SkASSERT((T*) fStorage != fArray);
168                 sk_free(fArray);
169             }
170 
171             if (count > kCount) {
172                 fArray = (T*) sk_malloc_throw(count, sizeof(T));
173             } else if (count > 0) {
174                 fArray = (T*) fStorage;
175             } else {
176                 fArray = nullptr;
177             }
178 
179             fCount = count;
180         }
181 
182         iter = fArray;
183         T* stop = fArray + count;
184         while (iter < stop) {
185             new (iter++) T;
186         }
187     }
188 
189     /** Return the number of T elements in the array
190      */
count()191     int count() const { return fCount; }
192 
193     /** Return the array of T elements. Will be NULL if count == 0
194      */
get()195     T* get() const { return fArray; }
196 
begin()197     T* begin() { return fArray; }
198 
begin()199     const T* begin() const { return fArray; }
200 
end()201     T* end() { return fArray + fCount; }
202 
end()203     const T* end() const { return fArray + fCount; }
204 
205     /** Return the nth element in the array
206      */
207     T&  operator[](int index) const {
208         SkASSERT(index < fCount);
209         return fArray[index];
210     }
211 
212     /** Aliases matching other types, like std::vector. */
data()213     const T* data() const { return fArray; }
data()214     T* data() { return fArray; }
size()215     size_t size() const { return fCount; }
216 
217 private:
218 #if defined(SK_BUILD_FOR_GOOGLE3)
219     // Stack frame size is limited for SK_BUILD_FOR_GOOGLE3. 4k is less than the actual max, but some functions
220     // have multiple large stack allocations.
221     static const int kMaxBytes = 4 * 1024;
222     static const int kCount = kCountRequested * sizeof(T) > kMaxBytes
223         ? kMaxBytes / sizeof(T)
224         : kCountRequested;
225 #else
226     static const int kCount = kCountRequested;
227 #endif
228 
229     int     fCount;
230     T*      fArray;
231     // since we come right after fArray, fStorage should be properly aligned
232     char    fStorage[kCount * sizeof(T)];
233 };
234 
235 /** Manages an array of T elements, freeing the array in the destructor.
236  *  Does NOT call any constructors/destructors on T (T must be POD).
237  */
238 template <typename T,
239           typename = std::enable_if_t<std::is_trivially_default_constructible<T>::value &&
240                                       std::is_trivially_destructible<T>::value>>
241 class SkAutoTMalloc  {
242 public:
243     /** Takes ownership of the ptr. The ptr must be a value which can be passed to sk_free. */
fPtr(ptr)244     explicit SkAutoTMalloc(T* ptr = nullptr) : fPtr(ptr) {}
245 
246     /** Allocates space for 'count' Ts. */
SkAutoTMalloc(size_t count)247     explicit SkAutoTMalloc(size_t count)
248         : fPtr(count ? (T*)sk_malloc_throw(count, sizeof(T)) : nullptr) {}
249 
250     SkAutoTMalloc(SkAutoTMalloc&&) = default;
251     SkAutoTMalloc& operator=(SkAutoTMalloc&&) = default;
252 
253     /** Resize the memory area pointed to by the current ptr preserving contents. */
realloc(size_t count)254     void realloc(size_t count) {
255         fPtr.reset(count ? (T*)sk_realloc_throw(fPtr.release(), count * sizeof(T)) : nullptr);
256     }
257 
258     /** Resize the memory area pointed to by the current ptr without preserving contents. */
259     T* reset(size_t count = 0) {
260         fPtr.reset(count ? (T*)sk_malloc_throw(count, sizeof(T)) : nullptr);
261         return this->get();
262     }
263 
get()264     T* get() const { return fPtr.get(); }
265 
266     operator T*() { return fPtr.get(); }
267 
268     operator const T*() const { return fPtr.get(); }
269 
270     T& operator[](int index) { return fPtr.get()[index]; }
271 
272     const T& operator[](int index) const { return fPtr.get()[index]; }
273 
274     /** Aliases matching other types, like std::vector. */
data()275     const T* data() const { return fPtr.get(); }
data()276     T* data() { return fPtr.get(); }
277 
278     /**
279      *  Transfer ownership of the ptr to the caller, setting the internal
280      *  pointer to NULL. Note that this differs from get(), which also returns
281      *  the pointer, but it does not transfer ownership.
282      */
release()283     T* release() { return fPtr.release(); }
284 
285 private:
286     std::unique_ptr<T, SkFunctionWrapper<void(void*), sk_free>> fPtr;
287 };
288 
289 template <size_t kCountRequested,
290           typename T,
291           typename = std::enable_if_t<std::is_trivially_default_constructible<T>::value &&
292                                       std::is_trivially_destructible<T>::value>>
293 class SkAutoSTMalloc {
294 public:
SkAutoSTMalloc()295     SkAutoSTMalloc() : fPtr(fTStorage) {}
296 
SkAutoSTMalloc(size_t count)297     SkAutoSTMalloc(size_t count) {
298         if (count > kCount) {
299             fPtr = (T*)sk_malloc_throw(count, sizeof(T));
300         } else if (count) {
301             fPtr = fTStorage;
302         } else {
303             fPtr = nullptr;
304         }
305     }
306 
307     SkAutoSTMalloc(SkAutoSTMalloc&&) = delete;
308     SkAutoSTMalloc(const SkAutoSTMalloc&) = delete;
309     SkAutoSTMalloc& operator=(SkAutoSTMalloc&&) = delete;
310     SkAutoSTMalloc& operator=(const SkAutoSTMalloc&) = delete;
311 
~SkAutoSTMalloc()312     ~SkAutoSTMalloc() {
313         if (fPtr != fTStorage) {
314             sk_free(fPtr);
315         }
316     }
317 
318     // doesn't preserve contents
reset(size_t count)319     T* reset(size_t count) {
320         if (fPtr != fTStorage) {
321             sk_free(fPtr);
322         }
323         if (count > kCount) {
324             fPtr = (T*)sk_malloc_throw(count, sizeof(T));
325         } else if (count) {
326             fPtr = fTStorage;
327         } else {
328             fPtr = nullptr;
329         }
330         return fPtr;
331     }
332 
get()333     T* get() const { return fPtr; }
334 
335     operator T*() {
336         return fPtr;
337     }
338 
339     operator const T*() const {
340         return fPtr;
341     }
342 
343     T& operator[](int index) {
344         return fPtr[index];
345     }
346 
347     const T& operator[](int index) const {
348         return fPtr[index];
349     }
350 
351     /** Aliases matching other types, like std::vector. */
data()352     const T* data() const { return fPtr; }
data()353     T* data() { return fPtr; }
354 
355     // Reallocs the array, can be used to shrink the allocation.  Makes no attempt to be intelligent
realloc(size_t count)356     void realloc(size_t count) {
357         if (count > kCount) {
358             if (fPtr == fTStorage) {
359                 fPtr = (T*)sk_malloc_throw(count, sizeof(T));
360                 memcpy((void*)fPtr, fTStorage, kCount * sizeof(T));
361             } else {
362                 fPtr = (T*)sk_realloc_throw(fPtr, count, sizeof(T));
363             }
364         } else if (count) {
365             if (fPtr != fTStorage) {
366                 fPtr = (T*)sk_realloc_throw(fPtr, count, sizeof(T));
367             }
368         } else {
369             this->reset(0);
370         }
371     }
372 
373 private:
374     // Since we use uint32_t storage, we might be able to get more elements for free.
375     static const size_t kCountWithPadding = SkAlign4(kCountRequested*sizeof(T)) / sizeof(T);
376 #if defined(SK_BUILD_FOR_GOOGLE3)
377     // Stack frame size is limited for SK_BUILD_FOR_GOOGLE3. 4k is less than the actual max, but some functions
378     // have multiple large stack allocations.
379     static const size_t kMaxBytes = 4 * 1024;
380     static const size_t kCount = kCountRequested * sizeof(T) > kMaxBytes
381         ? kMaxBytes / sizeof(T)
382         : kCountWithPadding;
383 #else
384     static const size_t kCount = kCountWithPadding;
385 #endif
386 
387     T*          fPtr;
388     union {
389         uint32_t    fStorage32[SkAlign4(kCount*sizeof(T)) >> 2];
390         T           fTStorage[1];   // do NOT want to invoke T::T()
391     };
392 };
393 
394 //////////////////////////////////////////////////////////////////////////////////////////////////
395 
396 /**
397  *  Pass the object and the storage that was offered during SkInPlaceNewCheck, and this will
398  *  safely destroy (and free if it was dynamically allocated) the object.
399  */
SkInPlaceDeleteCheck(T * obj,void * storage)400 template <typename T> void SkInPlaceDeleteCheck(T* obj, void* storage) {
401     if (storage == obj) {
402         obj->~T();
403     } else {
404         delete obj;
405     }
406 }
407 
408 /**
409  *  Allocates T, using storage if it is large enough, and allocating on the heap (via new) if
410  *  storage is not large enough.
411  *
412  *      obj = SkInPlaceNewCheck<Type>(storage, size);
413  *      ...
414  *      SkInPlaceDeleteCheck(obj, storage);
415  */
416 template<typename T, typename... Args>
SkInPlaceNewCheck(void * storage,size_t size,Args &&...args)417 T* SkInPlaceNewCheck(void* storage, size_t size, Args&&... args) {
418     return (sizeof(T) <= size) ? new (storage) T(std::forward<Args>(args)...)
419                                : new T(std::forward<Args>(args)...);
420 }
421 
422 template <int N, typename T> class SkAlignedSTStorage {
423 public:
SkAlignedSTStorage()424     SkAlignedSTStorage() {}
425     SkAlignedSTStorage(SkAlignedSTStorage&&) = delete;
426     SkAlignedSTStorage(const SkAlignedSTStorage&) = delete;
427     SkAlignedSTStorage& operator=(SkAlignedSTStorage&&) = delete;
428     SkAlignedSTStorage& operator=(const SkAlignedSTStorage&) = delete;
429 
430     /**
431      * Returns void* because this object does not initialize the
432      * memory. Use placement new for types that require a constructor.
433      */
get()434     void* get() { return fStorage; }
get()435     const void* get() const { return fStorage; }
436 private:
437     alignas(T) char fStorage[sizeof(T)*N];
438 };
439 
440 using SkAutoFree = std::unique_ptr<void, SkFunctionWrapper<void(void*), sk_free>>;
441 
442 template<typename C, std::size_t... Is>
443 constexpr auto SkMakeArrayFromIndexSequence(C c, std::index_sequence<Is...> is)
444 -> std::array<decltype(c(std::declval<typename decltype(is)::value_type>())), sizeof...(Is)> {
445     return {{ c(Is)... }};
446 }
447 
448 template<size_t N, typename C> constexpr auto SkMakeArray(C c)
449 -> std::array<decltype(c(std::declval<typename std::index_sequence<N>::value_type>())), N> {
450     return SkMakeArrayFromIndexSequence(c, std::make_index_sequence<N>{});
451 }
452 
453 #endif
454