1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #ifdef CONFIG_NEWIP
72 #include <uapi/linux/nip_addr.h>
73 #endif
74
75 /*
76 * This structure really needs to be cleaned up.
77 * Most of it is for TCP, and not used by any of
78 * the other protocols.
79 */
80
81 /* Define this to get the SOCK_DBG debugging facility. */
82 #define SOCK_DEBUGGING
83 #ifdef SOCK_DEBUGGING
84 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
85 printk(KERN_DEBUG msg); } while (0)
86 #else
87 /* Validate arguments and do nothing */
88 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)89 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
90 {
91 }
92 #endif
93
94 /* This is the per-socket lock. The spinlock provides a synchronization
95 * between user contexts and software interrupt processing, whereas the
96 * mini-semaphore synchronizes multiple users amongst themselves.
97 */
98 typedef struct {
99 spinlock_t slock;
100 int owned;
101 wait_queue_head_t wq;
102 /*
103 * We express the mutex-alike socket_lock semantics
104 * to the lock validator by explicitly managing
105 * the slock as a lock variant (in addition to
106 * the slock itself):
107 */
108 #ifdef CONFIG_DEBUG_LOCK_ALLOC
109 struct lockdep_map dep_map;
110 #endif
111 } socket_lock_t;
112
113 struct sock;
114 struct proto;
115 struct net;
116
117 typedef __u32 __bitwise __portpair;
118 typedef __u64 __bitwise __addrpair;
119
120 /**
121 * struct sock_common - minimal network layer representation of sockets
122 * @skc_daddr: Foreign IPv4 addr
123 * @skc_rcv_saddr: Bound local IPv4 addr
124 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
125 * @skc_hash: hash value used with various protocol lookup tables
126 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
127 * @skc_dport: placeholder for inet_dport/tw_dport
128 * @skc_num: placeholder for inet_num/tw_num
129 * @skc_portpair: __u32 union of @skc_dport & @skc_num
130 * @skc_family: network address family
131 * @skc_state: Connection state
132 * @skc_reuse: %SO_REUSEADDR setting
133 * @skc_reuseport: %SO_REUSEPORT setting
134 * @skc_ipv6only: socket is IPV6 only
135 * @skc_net_refcnt: socket is using net ref counting
136 * @skc_bound_dev_if: bound device index if != 0
137 * @skc_bind_node: bind hash linkage for various protocol lookup tables
138 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
139 * @skc_prot: protocol handlers inside a network family
140 * @skc_net: reference to the network namespace of this socket
141 * @skc_v6_daddr: IPV6 destination address
142 * @skc_v6_rcv_saddr: IPV6 source address
143 * @skc_cookie: socket's cookie value
144 * @skc_node: main hash linkage for various protocol lookup tables
145 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
146 * @skc_tx_queue_mapping: tx queue number for this connection
147 * @skc_rx_queue_mapping: rx queue number for this connection
148 * @skc_flags: place holder for sk_flags
149 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
150 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
151 * @skc_listener: connection request listener socket (aka rsk_listener)
152 * [union with @skc_flags]
153 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
154 * [union with @skc_flags]
155 * @skc_incoming_cpu: record/match cpu processing incoming packets
156 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
157 * [union with @skc_incoming_cpu]
158 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
159 * [union with @skc_incoming_cpu]
160 * @skc_refcnt: reference count
161 *
162 * This is the minimal network layer representation of sockets, the header
163 * for struct sock and struct inet_timewait_sock.
164 */
165 struct sock_common {
166 union {
167 __addrpair skc_addrpair;
168 struct {
169 __be32 skc_daddr;
170 __be32 skc_rcv_saddr;
171 };
172 };
173 union {
174 unsigned int skc_hash;
175 __u16 skc_u16hashes[2];
176 };
177 /* skc_dport && skc_num must be grouped as well */
178 union {
179 __portpair skc_portpair;
180 struct {
181 __be16 skc_dport;
182 __u16 skc_num;
183 };
184 };
185
186 unsigned short skc_family;
187 volatile unsigned char skc_state;
188 unsigned char skc_reuse:4;
189 unsigned char skc_reuseport:1;
190 unsigned char skc_ipv6only:1;
191 unsigned char skc_net_refcnt:1;
192 int skc_bound_dev_if;
193 union {
194 struct hlist_node skc_bind_node;
195 struct hlist_node skc_portaddr_node;
196 };
197 struct proto *skc_prot;
198 possible_net_t skc_net;
199
200 #if IS_ENABLED(CONFIG_IPV6)
201 struct in6_addr skc_v6_daddr;
202 struct in6_addr skc_v6_rcv_saddr;
203 #endif
204
205 #if IS_ENABLED(CONFIG_NEWIP)
206 struct nip_addr nip_daddr; /* NIP */
207 struct nip_addr nip_rcv_saddr; /* NIP */
208 #endif
209
210 atomic64_t skc_cookie;
211
212 /* following fields are padding to force
213 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
214 * assuming IPV6 is enabled. We use this padding differently
215 * for different kind of 'sockets'
216 */
217 union {
218 unsigned long skc_flags;
219 struct sock *skc_listener; /* request_sock */
220 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
221 };
222 /*
223 * fields between dontcopy_begin/dontcopy_end
224 * are not copied in sock_copy()
225 */
226 /* private: */
227 int skc_dontcopy_begin[0];
228 /* public: */
229 union {
230 struct hlist_node skc_node;
231 struct hlist_nulls_node skc_nulls_node;
232 };
233 unsigned short skc_tx_queue_mapping;
234 #ifdef CONFIG_XPS
235 unsigned short skc_rx_queue_mapping;
236 #endif
237 union {
238 int skc_incoming_cpu;
239 u32 skc_rcv_wnd;
240 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
241 };
242
243 refcount_t skc_refcnt;
244 /* private: */
245 int skc_dontcopy_end[0];
246 union {
247 u32 skc_rxhash;
248 u32 skc_window_clamp;
249 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
250 };
251 /* public: */
252 };
253
254 struct bpf_local_storage;
255
256 /**
257 * struct sock - network layer representation of sockets
258 * @__sk_common: shared layout with inet_timewait_sock
259 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
260 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
261 * @sk_lock: synchronizer
262 * @sk_kern_sock: True if sock is using kernel lock classes
263 * @sk_rcvbuf: size of receive buffer in bytes
264 * @sk_wq: sock wait queue and async head
265 * @sk_rx_dst: receive input route used by early demux
266 * @sk_dst_cache: destination cache
267 * @sk_dst_pending_confirm: need to confirm neighbour
268 * @sk_policy: flow policy
269 * @sk_rx_skb_cache: cache copy of recently accessed RX skb
270 * @sk_receive_queue: incoming packets
271 * @sk_wmem_alloc: transmit queue bytes committed
272 * @sk_tsq_flags: TCP Small Queues flags
273 * @sk_write_queue: Packet sending queue
274 * @sk_omem_alloc: "o" is "option" or "other"
275 * @sk_wmem_queued: persistent queue size
276 * @sk_forward_alloc: space allocated forward
277 * @sk_napi_id: id of the last napi context to receive data for sk
278 * @sk_ll_usec: usecs to busypoll when there is no data
279 * @sk_allocation: allocation mode
280 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
281 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
282 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
283 * @sk_sndbuf: size of send buffer in bytes
284 * @__sk_flags_offset: empty field used to determine location of bitfield
285 * @sk_padding: unused element for alignment
286 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
287 * @sk_no_check_rx: allow zero checksum in RX packets
288 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
289 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
290 * @sk_route_forced_caps: static, forced route capabilities
291 * (set in tcp_init_sock())
292 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
293 * @sk_gso_max_size: Maximum GSO segment size to build
294 * @sk_gso_max_segs: Maximum number of GSO segments
295 * @sk_pacing_shift: scaling factor for TCP Small Queues
296 * @sk_lingertime: %SO_LINGER l_linger setting
297 * @sk_backlog: always used with the per-socket spinlock held
298 * @sk_callback_lock: used with the callbacks in the end of this struct
299 * @sk_error_queue: rarely used
300 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
301 * IPV6_ADDRFORM for instance)
302 * @sk_err: last error
303 * @sk_err_soft: errors that don't cause failure but are the cause of a
304 * persistent failure not just 'timed out'
305 * @sk_drops: raw/udp drops counter
306 * @sk_ack_backlog: current listen backlog
307 * @sk_max_ack_backlog: listen backlog set in listen()
308 * @sk_uid: user id of owner
309 * @sk_priority: %SO_PRIORITY setting
310 * @sk_type: socket type (%SOCK_STREAM, etc)
311 * @sk_protocol: which protocol this socket belongs in this network family
312 * @sk_peer_pid: &struct pid for this socket's peer
313 * @sk_peer_cred: %SO_PEERCRED setting
314 * @sk_rcvlowat: %SO_RCVLOWAT setting
315 * @sk_rcvtimeo: %SO_RCVTIMEO setting
316 * @sk_sndtimeo: %SO_SNDTIMEO setting
317 * @sk_txhash: computed flow hash for use on transmit
318 * @sk_filter: socket filtering instructions
319 * @sk_timer: sock cleanup timer
320 * @sk_stamp: time stamp of last packet received
321 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
322 * @sk_tsflags: SO_TIMESTAMPING socket options
323 * @sk_tskey: counter to disambiguate concurrent tstamp requests
324 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
325 * @sk_socket: Identd and reporting IO signals
326 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
327 * @sk_frag: cached page frag
328 * @sk_peek_off: current peek_offset value
329 * @sk_send_head: front of stuff to transmit
330 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331 * @sk_tx_skb_cache: cache copy of recently accessed TX skb
332 * @sk_security: used by security modules
333 * @sk_mark: generic packet mark
334 * @sk_cgrp_data: cgroup data for this cgroup
335 * @sk_memcg: this socket's memory cgroup association
336 * @sk_write_pending: a write to stream socket waits to start
337 * @sk_wait_pending: number of threads blocked on this socket
338 * @sk_state_change: callback to indicate change in the state of the sock
339 * @sk_data_ready: callback to indicate there is data to be processed
340 * @sk_write_space: callback to indicate there is bf sending space available
341 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
342 * @sk_backlog_rcv: callback to process the backlog
343 * @sk_validate_xmit_skb: ptr to an optional validate function
344 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
345 * @sk_reuseport_cb: reuseport group container
346 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
347 * @sk_rcu: used during RCU grace period
348 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
349 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
350 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
351 * @sk_txtime_unused: unused txtime flags
352 */
353 struct sock {
354 /*
355 * Now struct inet_timewait_sock also uses sock_common, so please just
356 * don't add nothing before this first member (__sk_common) --acme
357 */
358 struct sock_common __sk_common;
359 #define sk_node __sk_common.skc_node
360 #define sk_nulls_node __sk_common.skc_nulls_node
361 #define sk_refcnt __sk_common.skc_refcnt
362 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
363 #ifdef CONFIG_XPS
364 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
365 #endif
366
367 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
368 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
369 #define sk_hash __sk_common.skc_hash
370 #define sk_portpair __sk_common.skc_portpair
371 #define sk_num __sk_common.skc_num
372 #define sk_dport __sk_common.skc_dport
373 #define sk_addrpair __sk_common.skc_addrpair
374 #define sk_daddr __sk_common.skc_daddr
375 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
376 #define sk_family __sk_common.skc_family
377 #define sk_state __sk_common.skc_state
378 #define sk_reuse __sk_common.skc_reuse
379 #define sk_reuseport __sk_common.skc_reuseport
380 #define sk_ipv6only __sk_common.skc_ipv6only
381 #define sk_net_refcnt __sk_common.skc_net_refcnt
382 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
383 #define sk_bind_node __sk_common.skc_bind_node
384 #define sk_prot __sk_common.skc_prot
385 #define sk_net __sk_common.skc_net
386 #define sk_v6_daddr __sk_common.skc_v6_daddr
387 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
388 #define sk_cookie __sk_common.skc_cookie
389 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
390 #define sk_flags __sk_common.skc_flags
391 #define sk_rxhash __sk_common.skc_rxhash
392
393 socket_lock_t sk_lock;
394 atomic_t sk_drops;
395 int sk_rcvlowat;
396 struct sk_buff_head sk_error_queue;
397 struct sk_buff *sk_rx_skb_cache;
398 struct sk_buff_head sk_receive_queue;
399 /*
400 * The backlog queue is special, it is always used with
401 * the per-socket spinlock held and requires low latency
402 * access. Therefore we special case it's implementation.
403 * Note : rmem_alloc is in this structure to fill a hole
404 * on 64bit arches, not because its logically part of
405 * backlog.
406 */
407 struct {
408 atomic_t rmem_alloc;
409 int len;
410 struct sk_buff *head;
411 struct sk_buff *tail;
412 } sk_backlog;
413 #define sk_rmem_alloc sk_backlog.rmem_alloc
414
415 int sk_forward_alloc;
416 #ifdef CONFIG_NET_RX_BUSY_POLL
417 unsigned int sk_ll_usec;
418 /* ===== mostly read cache line ===== */
419 unsigned int sk_napi_id;
420 #endif
421 int sk_rcvbuf;
422 int sk_wait_pending;
423
424 struct sk_filter __rcu *sk_filter;
425 union {
426 struct socket_wq __rcu *sk_wq;
427 /* private: */
428 struct socket_wq *sk_wq_raw;
429 /* public: */
430 };
431 #ifdef CONFIG_XFRM
432 struct xfrm_policy __rcu *sk_policy[2];
433 #endif
434 struct dst_entry __rcu *sk_rx_dst;
435 struct dst_entry __rcu *sk_dst_cache;
436 atomic_t sk_omem_alloc;
437 int sk_sndbuf;
438
439 /* ===== cache line for TX ===== */
440 int sk_wmem_queued;
441 refcount_t sk_wmem_alloc;
442 unsigned long sk_tsq_flags;
443 union {
444 struct sk_buff *sk_send_head;
445 struct rb_root tcp_rtx_queue;
446 };
447 struct sk_buff *sk_tx_skb_cache;
448 struct sk_buff_head sk_write_queue;
449 __s32 sk_peek_off;
450 int sk_write_pending;
451 __u32 sk_dst_pending_confirm;
452 u32 sk_pacing_status; /* see enum sk_pacing */
453 long sk_sndtimeo;
454 struct timer_list sk_timer;
455 __u32 sk_priority;
456 __u32 sk_mark;
457 unsigned long sk_pacing_rate; /* bytes per second */
458 unsigned long sk_max_pacing_rate;
459 struct page_frag sk_frag;
460 netdev_features_t sk_route_caps;
461 netdev_features_t sk_route_nocaps;
462 netdev_features_t sk_route_forced_caps;
463 int sk_gso_type;
464 unsigned int sk_gso_max_size;
465 gfp_t sk_allocation;
466 __u32 sk_txhash;
467
468 /*
469 * Because of non atomicity rules, all
470 * changes are protected by socket lock.
471 */
472 u8 sk_padding : 1,
473 sk_kern_sock : 1,
474 sk_no_check_tx : 1,
475 sk_no_check_rx : 1,
476 sk_userlocks : 4;
477 u8 sk_pacing_shift;
478 u16 sk_type;
479 u16 sk_protocol;
480 u16 sk_gso_max_segs;
481 unsigned long sk_lingertime;
482 struct proto *sk_prot_creator;
483 rwlock_t sk_callback_lock;
484 int sk_err,
485 sk_err_soft;
486 u32 sk_ack_backlog;
487 u32 sk_max_ack_backlog;
488 kuid_t sk_uid;
489 spinlock_t sk_peer_lock;
490 struct pid *sk_peer_pid;
491 const struct cred *sk_peer_cred;
492
493 long sk_rcvtimeo;
494 ktime_t sk_stamp;
495 #if BITS_PER_LONG==32
496 seqlock_t sk_stamp_seq;
497 #endif
498 u16 sk_tsflags;
499 u8 sk_shutdown;
500 u32 sk_tskey;
501 atomic_t sk_zckey;
502
503 u8 sk_clockid;
504 u8 sk_txtime_deadline_mode : 1,
505 sk_txtime_report_errors : 1,
506 sk_txtime_unused : 6;
507
508 struct socket *sk_socket;
509 void *sk_user_data;
510 #ifdef CONFIG_SECURITY
511 void *sk_security;
512 #endif
513 struct sock_cgroup_data sk_cgrp_data;
514 struct mem_cgroup *sk_memcg;
515 void (*sk_state_change)(struct sock *sk);
516 void (*sk_data_ready)(struct sock *sk);
517 void (*sk_write_space)(struct sock *sk);
518 void (*sk_error_report)(struct sock *sk);
519 int (*sk_backlog_rcv)(struct sock *sk,
520 struct sk_buff *skb);
521 #ifdef CONFIG_SOCK_VALIDATE_XMIT
522 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
523 struct net_device *dev,
524 struct sk_buff *skb);
525 #endif
526 void (*sk_destruct)(struct sock *sk);
527 struct sock_reuseport __rcu *sk_reuseport_cb;
528 #ifdef CONFIG_BPF_SYSCALL
529 struct bpf_local_storage __rcu *sk_bpf_storage;
530 #endif
531 struct rcu_head sk_rcu;
532 };
533
534 enum sk_pacing {
535 SK_PACING_NONE = 0,
536 SK_PACING_NEEDED = 1,
537 SK_PACING_FQ = 2,
538 };
539
540 /* flag bits in sk_user_data
541 *
542 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
543 * not be suitable for copying when cloning the socket. For instance,
544 * it can point to a reference counted object. sk_user_data bottom
545 * bit is set if pointer must not be copied.
546 *
547 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
548 * managed/owned by a BPF reuseport array. This bit should be set
549 * when sk_user_data's sk is added to the bpf's reuseport_array.
550 *
551 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
552 * sk_user_data points to psock type. This bit should be set
553 * when sk_user_data is assigned to a psock object.
554 */
555 #define SK_USER_DATA_NOCOPY 1UL
556 #define SK_USER_DATA_BPF 2UL
557 #define SK_USER_DATA_PSOCK 4UL
558 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
559 SK_USER_DATA_PSOCK)
560
561 /**
562 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
563 * @sk: socket
564 */
sk_user_data_is_nocopy(const struct sock * sk)565 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
566 {
567 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
568 }
569
570 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
571
572 /**
573 * __rcu_dereference_sk_user_data_with_flags - return the pointer
574 * only if argument flags all has been set in sk_user_data. Otherwise
575 * return NULL
576 *
577 * @sk: socket
578 * @flags: flag bits
579 */
580 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)581 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
582 uintptr_t flags)
583 {
584 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
585
586 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
587
588 if ((sk_user_data & flags) == flags)
589 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
590 return NULL;
591 }
592
593 #define rcu_dereference_sk_user_data(sk) \
594 __rcu_dereference_sk_user_data_with_flags(sk, 0)
595 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
596 ({ \
597 uintptr_t __tmp1 = (uintptr_t)(ptr), \
598 __tmp2 = (uintptr_t)(flags); \
599 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
600 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
601 rcu_assign_pointer(__sk_user_data((sk)), \
602 __tmp1 | __tmp2); \
603 })
604 #define rcu_assign_sk_user_data(sk, ptr) \
605 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
606
607 /*
608 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
609 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
610 * on a socket means that the socket will reuse everybody else's port
611 * without looking at the other's sk_reuse value.
612 */
613
614 #define SK_NO_REUSE 0
615 #define SK_CAN_REUSE 1
616 #define SK_FORCE_REUSE 2
617
618 int sk_set_peek_off(struct sock *sk, int val);
619
sk_peek_offset(struct sock * sk,int flags)620 static inline int sk_peek_offset(struct sock *sk, int flags)
621 {
622 if (unlikely(flags & MSG_PEEK)) {
623 return READ_ONCE(sk->sk_peek_off);
624 }
625
626 return 0;
627 }
628
sk_peek_offset_bwd(struct sock * sk,int val)629 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
630 {
631 s32 off = READ_ONCE(sk->sk_peek_off);
632
633 if (unlikely(off >= 0)) {
634 off = max_t(s32, off - val, 0);
635 WRITE_ONCE(sk->sk_peek_off, off);
636 }
637 }
638
sk_peek_offset_fwd(struct sock * sk,int val)639 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
640 {
641 sk_peek_offset_bwd(sk, -val);
642 }
643
644 /*
645 * Hashed lists helper routines
646 */
sk_entry(const struct hlist_node * node)647 static inline struct sock *sk_entry(const struct hlist_node *node)
648 {
649 return hlist_entry(node, struct sock, sk_node);
650 }
651
__sk_head(const struct hlist_head * head)652 static inline struct sock *__sk_head(const struct hlist_head *head)
653 {
654 return hlist_entry(head->first, struct sock, sk_node);
655 }
656
sk_head(const struct hlist_head * head)657 static inline struct sock *sk_head(const struct hlist_head *head)
658 {
659 return hlist_empty(head) ? NULL : __sk_head(head);
660 }
661
__sk_nulls_head(const struct hlist_nulls_head * head)662 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
663 {
664 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
665 }
666
sk_nulls_head(const struct hlist_nulls_head * head)667 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
668 {
669 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
670 }
671
sk_next(const struct sock * sk)672 static inline struct sock *sk_next(const struct sock *sk)
673 {
674 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
675 }
676
sk_nulls_next(const struct sock * sk)677 static inline struct sock *sk_nulls_next(const struct sock *sk)
678 {
679 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
680 hlist_nulls_entry(sk->sk_nulls_node.next,
681 struct sock, sk_nulls_node) :
682 NULL;
683 }
684
sk_unhashed(const struct sock * sk)685 static inline bool sk_unhashed(const struct sock *sk)
686 {
687 return hlist_unhashed(&sk->sk_node);
688 }
689
sk_hashed(const struct sock * sk)690 static inline bool sk_hashed(const struct sock *sk)
691 {
692 return !sk_unhashed(sk);
693 }
694
sk_node_init(struct hlist_node * node)695 static inline void sk_node_init(struct hlist_node *node)
696 {
697 node->pprev = NULL;
698 }
699
sk_nulls_node_init(struct hlist_nulls_node * node)700 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
701 {
702 node->pprev = NULL;
703 }
704
__sk_del_node(struct sock * sk)705 static inline void __sk_del_node(struct sock *sk)
706 {
707 __hlist_del(&sk->sk_node);
708 }
709
710 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)711 static inline bool __sk_del_node_init(struct sock *sk)
712 {
713 if (sk_hashed(sk)) {
714 __sk_del_node(sk);
715 sk_node_init(&sk->sk_node);
716 return true;
717 }
718 return false;
719 }
720
721 /* Grab socket reference count. This operation is valid only
722 when sk is ALREADY grabbed f.e. it is found in hash table
723 or a list and the lookup is made under lock preventing hash table
724 modifications.
725 */
726
sock_hold(struct sock * sk)727 static __always_inline void sock_hold(struct sock *sk)
728 {
729 refcount_inc(&sk->sk_refcnt);
730 }
731
732 /* Ungrab socket in the context, which assumes that socket refcnt
733 cannot hit zero, f.e. it is true in context of any socketcall.
734 */
__sock_put(struct sock * sk)735 static __always_inline void __sock_put(struct sock *sk)
736 {
737 refcount_dec(&sk->sk_refcnt);
738 }
739
sk_del_node_init(struct sock * sk)740 static inline bool sk_del_node_init(struct sock *sk)
741 {
742 bool rc = __sk_del_node_init(sk);
743
744 if (rc) {
745 /* paranoid for a while -acme */
746 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
747 __sock_put(sk);
748 }
749 return rc;
750 }
751 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
752
__sk_nulls_del_node_init_rcu(struct sock * sk)753 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
754 {
755 if (sk_hashed(sk)) {
756 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
757 return true;
758 }
759 return false;
760 }
761
sk_nulls_del_node_init_rcu(struct sock * sk)762 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
763 {
764 bool rc = __sk_nulls_del_node_init_rcu(sk);
765
766 if (rc) {
767 /* paranoid for a while -acme */
768 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
769 __sock_put(sk);
770 }
771 return rc;
772 }
773
__sk_add_node(struct sock * sk,struct hlist_head * list)774 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
775 {
776 hlist_add_head(&sk->sk_node, list);
777 }
778
sk_add_node(struct sock * sk,struct hlist_head * list)779 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
780 {
781 sock_hold(sk);
782 __sk_add_node(sk, list);
783 }
784
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)785 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
786 {
787 sock_hold(sk);
788 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
789 sk->sk_family == AF_INET6)
790 hlist_add_tail_rcu(&sk->sk_node, list);
791 else
792 hlist_add_head_rcu(&sk->sk_node, list);
793 }
794
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)795 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
796 {
797 sock_hold(sk);
798 hlist_add_tail_rcu(&sk->sk_node, list);
799 }
800
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)801 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
802 {
803 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
804 }
805
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)806 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
807 {
808 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
809 }
810
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)811 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
812 {
813 sock_hold(sk);
814 __sk_nulls_add_node_rcu(sk, list);
815 }
816
__sk_del_bind_node(struct sock * sk)817 static inline void __sk_del_bind_node(struct sock *sk)
818 {
819 __hlist_del(&sk->sk_bind_node);
820 }
821
sk_add_bind_node(struct sock * sk,struct hlist_head * list)822 static inline void sk_add_bind_node(struct sock *sk,
823 struct hlist_head *list)
824 {
825 hlist_add_head(&sk->sk_bind_node, list);
826 }
827
828 #define sk_for_each(__sk, list) \
829 hlist_for_each_entry(__sk, list, sk_node)
830 #define sk_for_each_rcu(__sk, list) \
831 hlist_for_each_entry_rcu(__sk, list, sk_node)
832 #define sk_nulls_for_each(__sk, node, list) \
833 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
834 #define sk_nulls_for_each_rcu(__sk, node, list) \
835 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
836 #define sk_for_each_from(__sk) \
837 hlist_for_each_entry_from(__sk, sk_node)
838 #define sk_nulls_for_each_from(__sk, node) \
839 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
840 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
841 #define sk_for_each_safe(__sk, tmp, list) \
842 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
843 #define sk_for_each_bound(__sk, list) \
844 hlist_for_each_entry(__sk, list, sk_bind_node)
845
846 /**
847 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
848 * @tpos: the type * to use as a loop cursor.
849 * @pos: the &struct hlist_node to use as a loop cursor.
850 * @head: the head for your list.
851 * @offset: offset of hlist_node within the struct.
852 *
853 */
854 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
855 for (pos = rcu_dereference(hlist_first_rcu(head)); \
856 pos != NULL && \
857 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
858 pos = rcu_dereference(hlist_next_rcu(pos)))
859
sk_user_ns(struct sock * sk)860 static inline struct user_namespace *sk_user_ns(struct sock *sk)
861 {
862 /* Careful only use this in a context where these parameters
863 * can not change and must all be valid, such as recvmsg from
864 * userspace.
865 */
866 return sk->sk_socket->file->f_cred->user_ns;
867 }
868
869 /* Sock flags */
870 enum sock_flags {
871 SOCK_DEAD,
872 SOCK_DONE,
873 SOCK_URGINLINE,
874 SOCK_KEEPOPEN,
875 SOCK_LINGER,
876 SOCK_DESTROY,
877 SOCK_BROADCAST,
878 SOCK_TIMESTAMP,
879 SOCK_ZAPPED,
880 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
881 SOCK_DBG, /* %SO_DEBUG setting */
882 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
883 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
884 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
885 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
886 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
887 SOCK_FASYNC, /* fasync() active */
888 SOCK_RXQ_OVFL,
889 SOCK_ZEROCOPY, /* buffers from userspace */
890 SOCK_WIFI_STATUS, /* push wifi status to userspace */
891 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
892 * Will use last 4 bytes of packet sent from
893 * user-space instead.
894 */
895 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
896 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
897 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
898 SOCK_TXTIME,
899 SOCK_XDP, /* XDP is attached */
900 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
901 };
902
903 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
904
sock_copy_flags(struct sock * nsk,struct sock * osk)905 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
906 {
907 nsk->sk_flags = osk->sk_flags;
908 }
909
sock_set_flag(struct sock * sk,enum sock_flags flag)910 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
911 {
912 __set_bit(flag, &sk->sk_flags);
913 }
914
sock_reset_flag(struct sock * sk,enum sock_flags flag)915 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
916 {
917 __clear_bit(flag, &sk->sk_flags);
918 }
919
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)920 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
921 int valbool)
922 {
923 if (valbool)
924 sock_set_flag(sk, bit);
925 else
926 sock_reset_flag(sk, bit);
927 }
928
sock_flag(const struct sock * sk,enum sock_flags flag)929 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
930 {
931 return test_bit(flag, &sk->sk_flags);
932 }
933
934 #ifdef CONFIG_NET
935 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)936 static inline int sk_memalloc_socks(void)
937 {
938 return static_branch_unlikely(&memalloc_socks_key);
939 }
940
941 void __receive_sock(struct file *file);
942 #else
943
sk_memalloc_socks(void)944 static inline int sk_memalloc_socks(void)
945 {
946 return 0;
947 }
948
__receive_sock(struct file * file)949 static inline void __receive_sock(struct file *file)
950 { }
951 #endif
952
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)953 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
954 {
955 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
956 }
957
sk_acceptq_removed(struct sock * sk)958 static inline void sk_acceptq_removed(struct sock *sk)
959 {
960 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
961 }
962
sk_acceptq_added(struct sock * sk)963 static inline void sk_acceptq_added(struct sock *sk)
964 {
965 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
966 }
967
sk_acceptq_is_full(const struct sock * sk)968 static inline bool sk_acceptq_is_full(const struct sock *sk)
969 {
970 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
971 }
972
973 /*
974 * Compute minimal free write space needed to queue new packets.
975 */
sk_stream_min_wspace(const struct sock * sk)976 static inline int sk_stream_min_wspace(const struct sock *sk)
977 {
978 return READ_ONCE(sk->sk_wmem_queued) >> 1;
979 }
980
sk_stream_wspace(const struct sock * sk)981 static inline int sk_stream_wspace(const struct sock *sk)
982 {
983 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
984 }
985
sk_wmem_queued_add(struct sock * sk,int val)986 static inline void sk_wmem_queued_add(struct sock *sk, int val)
987 {
988 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
989 }
990
991 void sk_stream_write_space(struct sock *sk);
992
993 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)994 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
995 {
996 /* dont let skb dst not refcounted, we are going to leave rcu lock */
997 skb_dst_force(skb);
998
999 if (!sk->sk_backlog.tail)
1000 WRITE_ONCE(sk->sk_backlog.head, skb);
1001 else
1002 sk->sk_backlog.tail->next = skb;
1003
1004 WRITE_ONCE(sk->sk_backlog.tail, skb);
1005 skb->next = NULL;
1006 }
1007
1008 /*
1009 * Take into account size of receive queue and backlog queue
1010 * Do not take into account this skb truesize,
1011 * to allow even a single big packet to come.
1012 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1013 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1014 {
1015 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1016
1017 return qsize > limit;
1018 }
1019
1020 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1021 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1022 unsigned int limit)
1023 {
1024 if (sk_rcvqueues_full(sk, limit))
1025 return -ENOBUFS;
1026
1027 /*
1028 * If the skb was allocated from pfmemalloc reserves, only
1029 * allow SOCK_MEMALLOC sockets to use it as this socket is
1030 * helping free memory
1031 */
1032 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1033 return -ENOMEM;
1034
1035 __sk_add_backlog(sk, skb);
1036 sk->sk_backlog.len += skb->truesize;
1037 return 0;
1038 }
1039
1040 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1041
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1042 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1043 {
1044 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1045 return __sk_backlog_rcv(sk, skb);
1046
1047 return sk->sk_backlog_rcv(sk, skb);
1048 }
1049
sk_incoming_cpu_update(struct sock * sk)1050 static inline void sk_incoming_cpu_update(struct sock *sk)
1051 {
1052 int cpu = raw_smp_processor_id();
1053
1054 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1055 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1056 }
1057
sock_rps_record_flow_hash(__u32 hash)1058 static inline void sock_rps_record_flow_hash(__u32 hash)
1059 {
1060 #ifdef CONFIG_RPS
1061 struct rps_sock_flow_table *sock_flow_table;
1062
1063 rcu_read_lock();
1064 sock_flow_table = rcu_dereference(rps_sock_flow_table);
1065 rps_record_sock_flow(sock_flow_table, hash);
1066 rcu_read_unlock();
1067 #endif
1068 }
1069
sock_rps_record_flow(const struct sock * sk)1070 static inline void sock_rps_record_flow(const struct sock *sk)
1071 {
1072 #ifdef CONFIG_RPS
1073 if (static_branch_unlikely(&rfs_needed)) {
1074 /* Reading sk->sk_rxhash might incur an expensive cache line
1075 * miss.
1076 *
1077 * TCP_ESTABLISHED does cover almost all states where RFS
1078 * might be useful, and is cheaper [1] than testing :
1079 * IPv4: inet_sk(sk)->inet_daddr
1080 * IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1081 * OR an additional socket flag
1082 * [1] : sk_state and sk_prot are in the same cache line.
1083 */
1084 if (sk->sk_state == TCP_ESTABLISHED) {
1085 /* This READ_ONCE() is paired with the WRITE_ONCE()
1086 * from sock_rps_save_rxhash() and sock_rps_reset_rxhash().
1087 */
1088 sock_rps_record_flow_hash(READ_ONCE(sk->sk_rxhash));
1089 }
1090 }
1091 #endif
1092 }
1093
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1094 static inline void sock_rps_save_rxhash(struct sock *sk,
1095 const struct sk_buff *skb)
1096 {
1097 #ifdef CONFIG_RPS
1098 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1099 * here, and another one in sock_rps_record_flow().
1100 */
1101 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1102 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1103 #endif
1104 }
1105
sock_rps_reset_rxhash(struct sock * sk)1106 static inline void sock_rps_reset_rxhash(struct sock *sk)
1107 {
1108 #ifdef CONFIG_RPS
1109 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1110 WRITE_ONCE(sk->sk_rxhash, 0);
1111 #endif
1112 }
1113
1114 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1115 ({ int __rc; \
1116 __sk->sk_wait_pending++; \
1117 release_sock(__sk); \
1118 __rc = __condition; \
1119 if (!__rc) { \
1120 *(__timeo) = wait_woken(__wait, \
1121 TASK_INTERRUPTIBLE, \
1122 *(__timeo)); \
1123 } \
1124 sched_annotate_sleep(); \
1125 lock_sock(__sk); \
1126 __sk->sk_wait_pending--; \
1127 __rc = __condition; \
1128 __rc; \
1129 })
1130
1131 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1132 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1133 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1134 int sk_stream_error(struct sock *sk, int flags, int err);
1135 void sk_stream_kill_queues(struct sock *sk);
1136 void sk_set_memalloc(struct sock *sk);
1137 void sk_clear_memalloc(struct sock *sk);
1138
1139 void __sk_flush_backlog(struct sock *sk);
1140
sk_flush_backlog(struct sock * sk)1141 static inline bool sk_flush_backlog(struct sock *sk)
1142 {
1143 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1144 __sk_flush_backlog(sk);
1145 return true;
1146 }
1147 return false;
1148 }
1149
1150 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1151
1152 struct request_sock_ops;
1153 struct timewait_sock_ops;
1154 struct inet_hashinfo;
1155 struct raw_hashinfo;
1156 struct smc_hashinfo;
1157 struct module;
1158
1159 /*
1160 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1161 * un-modified. Special care is taken when initializing object to zero.
1162 */
sk_prot_clear_nulls(struct sock * sk,int size)1163 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1164 {
1165 if (offsetof(struct sock, sk_node.next) != 0)
1166 memset(sk, 0, offsetof(struct sock, sk_node.next));
1167 memset(&sk->sk_node.pprev, 0,
1168 size - offsetof(struct sock, sk_node.pprev));
1169 }
1170
1171 /* Networking protocol blocks we attach to sockets.
1172 * socket layer -> transport layer interface
1173 */
1174 struct proto {
1175 void (*close)(struct sock *sk,
1176 long timeout);
1177 int (*pre_connect)(struct sock *sk,
1178 struct sockaddr *uaddr,
1179 int addr_len);
1180 int (*connect)(struct sock *sk,
1181 struct sockaddr *uaddr,
1182 int addr_len);
1183 int (*disconnect)(struct sock *sk, int flags);
1184
1185 struct sock * (*accept)(struct sock *sk, int flags, int *err,
1186 bool kern);
1187
1188 int (*ioctl)(struct sock *sk, int cmd,
1189 unsigned long arg);
1190 int (*init)(struct sock *sk);
1191 void (*destroy)(struct sock *sk);
1192 void (*shutdown)(struct sock *sk, int how);
1193 int (*setsockopt)(struct sock *sk, int level,
1194 int optname, sockptr_t optval,
1195 unsigned int optlen);
1196 int (*getsockopt)(struct sock *sk, int level,
1197 int optname, char __user *optval,
1198 int __user *option);
1199 void (*keepalive)(struct sock *sk, int valbool);
1200 #ifdef CONFIG_COMPAT
1201 int (*compat_ioctl)(struct sock *sk,
1202 unsigned int cmd, unsigned long arg);
1203 #endif
1204 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1205 size_t len);
1206 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1207 size_t len, int noblock, int flags,
1208 int *addr_len);
1209 int (*sendpage)(struct sock *sk, struct page *page,
1210 int offset, size_t size, int flags);
1211 int (*bind)(struct sock *sk,
1212 struct sockaddr *addr, int addr_len);
1213 int (*bind_add)(struct sock *sk,
1214 struct sockaddr *addr, int addr_len);
1215
1216 int (*backlog_rcv) (struct sock *sk,
1217 struct sk_buff *skb);
1218 bool (*bpf_bypass_getsockopt)(int level,
1219 int optname);
1220
1221 void (*release_cb)(struct sock *sk);
1222
1223 /* Keeping track of sk's, looking them up, and port selection methods. */
1224 int (*hash)(struct sock *sk);
1225 void (*unhash)(struct sock *sk);
1226 void (*rehash)(struct sock *sk);
1227 int (*get_port)(struct sock *sk, unsigned short snum);
1228
1229 /* Keeping track of sockets in use */
1230 #ifdef CONFIG_PROC_FS
1231 unsigned int inuse_idx;
1232 #endif
1233
1234 bool (*stream_memory_free)(const struct sock *sk, int wake);
1235 bool (*stream_memory_read)(const struct sock *sk);
1236 /* Memory pressure */
1237 void (*enter_memory_pressure)(struct sock *sk);
1238 void (*leave_memory_pressure)(struct sock *sk);
1239 atomic_long_t *memory_allocated; /* Current allocated memory. */
1240 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1241 /*
1242 * Pressure flag: try to collapse.
1243 * Technical note: it is used by multiple contexts non atomically.
1244 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1245 * All the __sk_mem_schedule() is of this nature: accounting
1246 * is strict, actions are advisory and have some latency.
1247 */
1248 unsigned long *memory_pressure;
1249 long *sysctl_mem;
1250
1251 int *sysctl_wmem;
1252 int *sysctl_rmem;
1253 u32 sysctl_wmem_offset;
1254 u32 sysctl_rmem_offset;
1255
1256 int max_header;
1257 bool no_autobind;
1258
1259 struct kmem_cache *slab;
1260 unsigned int obj_size;
1261 slab_flags_t slab_flags;
1262 unsigned int useroffset; /* Usercopy region offset */
1263 unsigned int usersize; /* Usercopy region size */
1264
1265 unsigned int __percpu *orphan_count;
1266
1267 struct request_sock_ops *rsk_prot;
1268 struct timewait_sock_ops *twsk_prot;
1269
1270 union {
1271 struct inet_hashinfo *hashinfo;
1272 struct udp_table *udp_table;
1273 struct raw_hashinfo *raw_hash;
1274 struct smc_hashinfo *smc_hash;
1275 } h;
1276
1277 struct module *owner;
1278
1279 char name[32];
1280
1281 struct list_head node;
1282 #ifdef SOCK_REFCNT_DEBUG
1283 atomic_t socks;
1284 #endif
1285 int (*diag_destroy)(struct sock *sk, int err);
1286 } __randomize_layout;
1287
1288 int proto_register(struct proto *prot, int alloc_slab);
1289 void proto_unregister(struct proto *prot);
1290 int sock_load_diag_module(int family, int protocol);
1291
1292 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1293 static inline void sk_refcnt_debug_inc(struct sock *sk)
1294 {
1295 atomic_inc(&sk->sk_prot->socks);
1296 }
1297
sk_refcnt_debug_dec(struct sock * sk)1298 static inline void sk_refcnt_debug_dec(struct sock *sk)
1299 {
1300 atomic_dec(&sk->sk_prot->socks);
1301 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1302 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1303 }
1304
sk_refcnt_debug_release(const struct sock * sk)1305 static inline void sk_refcnt_debug_release(const struct sock *sk)
1306 {
1307 if (refcount_read(&sk->sk_refcnt) != 1)
1308 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1309 sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1310 }
1311 #else /* SOCK_REFCNT_DEBUG */
1312 #define sk_refcnt_debug_inc(sk) do { } while (0)
1313 #define sk_refcnt_debug_dec(sk) do { } while (0)
1314 #define sk_refcnt_debug_release(sk) do { } while (0)
1315 #endif /* SOCK_REFCNT_DEBUG */
1316
__sk_stream_memory_free(const struct sock * sk,int wake)1317 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1318 {
1319 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1320 return false;
1321
1322 return sk->sk_prot->stream_memory_free ?
1323 sk->sk_prot->stream_memory_free(sk, wake) : true;
1324 }
1325
sk_stream_memory_free(const struct sock * sk)1326 static inline bool sk_stream_memory_free(const struct sock *sk)
1327 {
1328 return __sk_stream_memory_free(sk, 0);
1329 }
1330
__sk_stream_is_writeable(const struct sock * sk,int wake)1331 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1332 {
1333 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1334 __sk_stream_memory_free(sk, wake);
1335 }
1336
sk_stream_is_writeable(const struct sock * sk)1337 static inline bool sk_stream_is_writeable(const struct sock *sk)
1338 {
1339 return __sk_stream_is_writeable(sk, 0);
1340 }
1341
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1342 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1343 struct cgroup *ancestor)
1344 {
1345 #ifdef CONFIG_SOCK_CGROUP_DATA
1346 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1347 ancestor);
1348 #else
1349 return -ENOTSUPP;
1350 #endif
1351 }
1352
sk_has_memory_pressure(const struct sock * sk)1353 static inline bool sk_has_memory_pressure(const struct sock *sk)
1354 {
1355 return sk->sk_prot->memory_pressure != NULL;
1356 }
1357
sk_under_global_memory_pressure(const struct sock * sk)1358 static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1359 {
1360 return sk->sk_prot->memory_pressure &&
1361 !!READ_ONCE(*sk->sk_prot->memory_pressure);
1362 }
1363
sk_under_memory_pressure(const struct sock * sk)1364 static inline bool sk_under_memory_pressure(const struct sock *sk)
1365 {
1366 if (!sk->sk_prot->memory_pressure)
1367 return false;
1368
1369 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1370 mem_cgroup_under_socket_pressure(sk->sk_memcg))
1371 return true;
1372
1373 return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1374 }
1375
1376 static inline long
sk_memory_allocated(const struct sock * sk)1377 sk_memory_allocated(const struct sock *sk)
1378 {
1379 return atomic_long_read(sk->sk_prot->memory_allocated);
1380 }
1381
1382 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1383 sk_memory_allocated_add(struct sock *sk, int amt)
1384 {
1385 return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1386 }
1387
1388 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1389 sk_memory_allocated_sub(struct sock *sk, int amt)
1390 {
1391 atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1392 }
1393
sk_sockets_allocated_dec(struct sock * sk)1394 static inline void sk_sockets_allocated_dec(struct sock *sk)
1395 {
1396 percpu_counter_dec(sk->sk_prot->sockets_allocated);
1397 }
1398
sk_sockets_allocated_inc(struct sock * sk)1399 static inline void sk_sockets_allocated_inc(struct sock *sk)
1400 {
1401 percpu_counter_inc(sk->sk_prot->sockets_allocated);
1402 }
1403
1404 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1405 sk_sockets_allocated_read_positive(struct sock *sk)
1406 {
1407 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1408 }
1409
1410 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1411 proto_sockets_allocated_sum_positive(struct proto *prot)
1412 {
1413 return percpu_counter_sum_positive(prot->sockets_allocated);
1414 }
1415
1416 static inline long
proto_memory_allocated(struct proto * prot)1417 proto_memory_allocated(struct proto *prot)
1418 {
1419 return atomic_long_read(prot->memory_allocated);
1420 }
1421
1422 static inline bool
proto_memory_pressure(struct proto * prot)1423 proto_memory_pressure(struct proto *prot)
1424 {
1425 if (!prot->memory_pressure)
1426 return false;
1427 return !!READ_ONCE(*prot->memory_pressure);
1428 }
1429
1430
1431 #ifdef CONFIG_PROC_FS
1432 /* Called with local bh disabled */
1433 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1434 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1435 int sock_inuse_get(struct net *net);
1436 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1437 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1438 int inc)
1439 {
1440 }
1441 #endif
1442
1443
1444 /* With per-bucket locks this operation is not-atomic, so that
1445 * this version is not worse.
1446 */
__sk_prot_rehash(struct sock * sk)1447 static inline int __sk_prot_rehash(struct sock *sk)
1448 {
1449 sk->sk_prot->unhash(sk);
1450 return sk->sk_prot->hash(sk);
1451 }
1452
1453 /* About 10 seconds */
1454 #define SOCK_DESTROY_TIME (10*HZ)
1455
1456 /* Sockets 0-1023 can't be bound to unless you are superuser */
1457 #define PROT_SOCK 1024
1458
1459 #define SHUTDOWN_MASK 3
1460 #define RCV_SHUTDOWN 1
1461 #define SEND_SHUTDOWN 2
1462
1463 #define SOCK_SNDBUF_LOCK 1
1464 #define SOCK_RCVBUF_LOCK 2
1465 #define SOCK_BINDADDR_LOCK 4
1466 #define SOCK_BINDPORT_LOCK 8
1467
1468 struct socket_alloc {
1469 struct socket socket;
1470 struct inode vfs_inode;
1471 };
1472
SOCKET_I(struct inode * inode)1473 static inline struct socket *SOCKET_I(struct inode *inode)
1474 {
1475 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1476 }
1477
SOCK_INODE(struct socket * socket)1478 static inline struct inode *SOCK_INODE(struct socket *socket)
1479 {
1480 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1481 }
1482
1483 /*
1484 * Functions for memory accounting
1485 */
1486 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1487 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1488 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1489 void __sk_mem_reclaim(struct sock *sk, int amount);
1490
1491 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1492 * do not necessarily have 16x time more memory than 4KB ones.
1493 */
1494 #define SK_MEM_QUANTUM 4096
1495 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1496 #define SK_MEM_SEND 0
1497 #define SK_MEM_RECV 1
1498
1499 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1500 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1501 {
1502 long val = READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1503
1504 #if PAGE_SIZE > SK_MEM_QUANTUM
1505 val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1506 #elif PAGE_SIZE < SK_MEM_QUANTUM
1507 val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1508 #endif
1509 return val;
1510 }
1511
sk_mem_pages(int amt)1512 static inline int sk_mem_pages(int amt)
1513 {
1514 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1515 }
1516
sk_has_account(struct sock * sk)1517 static inline bool sk_has_account(struct sock *sk)
1518 {
1519 /* return true if protocol supports memory accounting */
1520 return !!sk->sk_prot->memory_allocated;
1521 }
1522
sk_wmem_schedule(struct sock * sk,int size)1523 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1524 {
1525 int delta;
1526
1527 if (!sk_has_account(sk))
1528 return true;
1529 delta = size - sk->sk_forward_alloc;
1530 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1531 }
1532
1533 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1534 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1535 {
1536 int delta;
1537
1538 if (!sk_has_account(sk))
1539 return true;
1540 delta = size - sk->sk_forward_alloc;
1541 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1542 skb_pfmemalloc(skb);
1543 }
1544
sk_mem_reclaim(struct sock * sk)1545 static inline void sk_mem_reclaim(struct sock *sk)
1546 {
1547 if (!sk_has_account(sk))
1548 return;
1549 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1550 __sk_mem_reclaim(sk, sk->sk_forward_alloc);
1551 }
1552
sk_mem_reclaim_partial(struct sock * sk)1553 static inline void sk_mem_reclaim_partial(struct sock *sk)
1554 {
1555 if (!sk_has_account(sk))
1556 return;
1557 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1558 __sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1559 }
1560
sk_mem_charge(struct sock * sk,int size)1561 static inline void sk_mem_charge(struct sock *sk, int size)
1562 {
1563 if (!sk_has_account(sk))
1564 return;
1565 sk->sk_forward_alloc -= size;
1566 }
1567
sk_mem_uncharge(struct sock * sk,int size)1568 static inline void sk_mem_uncharge(struct sock *sk, int size)
1569 {
1570 if (!sk_has_account(sk))
1571 return;
1572 sk->sk_forward_alloc += size;
1573
1574 /* Avoid a possible overflow.
1575 * TCP send queues can make this happen, if sk_mem_reclaim()
1576 * is not called and more than 2 GBytes are released at once.
1577 *
1578 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1579 * no need to hold that much forward allocation anyway.
1580 */
1581 if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1582 __sk_mem_reclaim(sk, 1 << 20);
1583 }
1584
1585 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1586 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1587 {
1588 sk_wmem_queued_add(sk, -skb->truesize);
1589 sk_mem_uncharge(sk, skb->truesize);
1590 if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1591 !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1592 skb_ext_reset(skb);
1593 skb_zcopy_clear(skb, true);
1594 sk->sk_tx_skb_cache = skb;
1595 return;
1596 }
1597 __kfree_skb(skb);
1598 }
1599
sock_release_ownership(struct sock * sk)1600 static inline void sock_release_ownership(struct sock *sk)
1601 {
1602 if (sk->sk_lock.owned) {
1603 sk->sk_lock.owned = 0;
1604
1605 /* The sk_lock has mutex_unlock() semantics: */
1606 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1607 }
1608 }
1609
1610 /*
1611 * Macro so as to not evaluate some arguments when
1612 * lockdep is not enabled.
1613 *
1614 * Mark both the sk_lock and the sk_lock.slock as a
1615 * per-address-family lock class.
1616 */
1617 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1618 do { \
1619 sk->sk_lock.owned = 0; \
1620 init_waitqueue_head(&sk->sk_lock.wq); \
1621 spin_lock_init(&(sk)->sk_lock.slock); \
1622 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1623 sizeof((sk)->sk_lock)); \
1624 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1625 (skey), (sname)); \
1626 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1627 } while (0)
1628
1629 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * sk)1630 static inline bool lockdep_sock_is_held(const struct sock *sk)
1631 {
1632 return lockdep_is_held(&sk->sk_lock) ||
1633 lockdep_is_held(&sk->sk_lock.slock);
1634 }
1635 #endif
1636
1637 void lock_sock_nested(struct sock *sk, int subclass);
1638
lock_sock(struct sock * sk)1639 static inline void lock_sock(struct sock *sk)
1640 {
1641 lock_sock_nested(sk, 0);
1642 }
1643
1644 void __release_sock(struct sock *sk);
1645 void release_sock(struct sock *sk);
1646
1647 /* BH context may only use the following locking interface. */
1648 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1649 #define bh_lock_sock_nested(__sk) \
1650 spin_lock_nested(&((__sk)->sk_lock.slock), \
1651 SINGLE_DEPTH_NESTING)
1652 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1653
1654 bool lock_sock_fast(struct sock *sk);
1655 /**
1656 * unlock_sock_fast - complement of lock_sock_fast
1657 * @sk: socket
1658 * @slow: slow mode
1659 *
1660 * fast unlock socket for user context.
1661 * If slow mode is on, we call regular release_sock()
1662 */
unlock_sock_fast(struct sock * sk,bool slow)1663 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1664 {
1665 if (slow)
1666 release_sock(sk);
1667 else
1668 spin_unlock_bh(&sk->sk_lock.slock);
1669 }
1670
1671 /* Used by processes to "lock" a socket state, so that
1672 * interrupts and bottom half handlers won't change it
1673 * from under us. It essentially blocks any incoming
1674 * packets, so that we won't get any new data or any
1675 * packets that change the state of the socket.
1676 *
1677 * While locked, BH processing will add new packets to
1678 * the backlog queue. This queue is processed by the
1679 * owner of the socket lock right before it is released.
1680 *
1681 * Since ~2.3.5 it is also exclusive sleep lock serializing
1682 * accesses from user process context.
1683 */
1684
sock_owned_by_me(const struct sock * sk)1685 static inline void sock_owned_by_me(const struct sock *sk)
1686 {
1687 #ifdef CONFIG_LOCKDEP
1688 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1689 #endif
1690 }
1691
sock_owned_by_user(const struct sock * sk)1692 static inline bool sock_owned_by_user(const struct sock *sk)
1693 {
1694 sock_owned_by_me(sk);
1695 return sk->sk_lock.owned;
1696 }
1697
sock_owned_by_user_nocheck(const struct sock * sk)1698 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1699 {
1700 return sk->sk_lock.owned;
1701 }
1702
1703 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1704 static inline bool sock_allow_reclassification(const struct sock *csk)
1705 {
1706 struct sock *sk = (struct sock *)csk;
1707
1708 return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1709 }
1710
1711 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1712 struct proto *prot, int kern);
1713 void sk_free(struct sock *sk);
1714 void sk_destruct(struct sock *sk);
1715 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1716 void sk_free_unlock_clone(struct sock *sk);
1717
1718 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1719 gfp_t priority);
1720 void __sock_wfree(struct sk_buff *skb);
1721 void sock_wfree(struct sk_buff *skb);
1722 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1723 gfp_t priority);
1724 void skb_orphan_partial(struct sk_buff *skb);
1725 void sock_rfree(struct sk_buff *skb);
1726 void sock_efree(struct sk_buff *skb);
1727 #ifdef CONFIG_INET
1728 void sock_edemux(struct sk_buff *skb);
1729 void sock_pfree(struct sk_buff *skb);
1730 #else
1731 #define sock_edemux sock_efree
1732 #endif
1733
1734 int sock_setsockopt(struct socket *sock, int level, int op,
1735 sockptr_t optval, unsigned int optlen);
1736
1737 int sock_getsockopt(struct socket *sock, int level, int op,
1738 char __user *optval, int __user *optlen);
1739 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1740 bool timeval, bool time32);
1741 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1742 int noblock, int *errcode);
1743 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1744 unsigned long data_len, int noblock,
1745 int *errcode, int max_page_order);
1746 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1747 void sock_kfree_s(struct sock *sk, void *mem, int size);
1748 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1749 void sk_send_sigurg(struct sock *sk);
1750
1751 struct sockcm_cookie {
1752 u64 transmit_time;
1753 u32 mark;
1754 u16 tsflags;
1755 };
1756
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1757 static inline void sockcm_init(struct sockcm_cookie *sockc,
1758 const struct sock *sk)
1759 {
1760 *sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1761 }
1762
1763 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1764 struct sockcm_cookie *sockc);
1765 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1766 struct sockcm_cookie *sockc);
1767
1768 /*
1769 * Functions to fill in entries in struct proto_ops when a protocol
1770 * does not implement a particular function.
1771 */
1772 int sock_no_bind(struct socket *, struct sockaddr *, int);
1773 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1774 int sock_no_socketpair(struct socket *, struct socket *);
1775 int sock_no_accept(struct socket *, struct socket *, int, bool);
1776 int sock_no_getname(struct socket *, struct sockaddr *, int);
1777 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1778 int sock_no_listen(struct socket *, int);
1779 int sock_no_shutdown(struct socket *, int);
1780 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1781 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1782 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1783 int sock_no_mmap(struct file *file, struct socket *sock,
1784 struct vm_area_struct *vma);
1785 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1786 size_t size, int flags);
1787 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1788 int offset, size_t size, int flags);
1789
1790 /*
1791 * Functions to fill in entries in struct proto_ops when a protocol
1792 * uses the inet style.
1793 */
1794 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1795 char __user *optval, int __user *optlen);
1796 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1797 int flags);
1798 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1799 sockptr_t optval, unsigned int optlen);
1800
1801 void sk_common_release(struct sock *sk);
1802
1803 /*
1804 * Default socket callbacks and setup code
1805 */
1806
1807 /* Initialise core socket variables using an explicit uid. */
1808 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1809
1810 /* Initialise core socket variables.
1811 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1812 */
1813 void sock_init_data(struct socket *sock, struct sock *sk);
1814
1815 /*
1816 * Socket reference counting postulates.
1817 *
1818 * * Each user of socket SHOULD hold a reference count.
1819 * * Each access point to socket (an hash table bucket, reference from a list,
1820 * running timer, skb in flight MUST hold a reference count.
1821 * * When reference count hits 0, it means it will never increase back.
1822 * * When reference count hits 0, it means that no references from
1823 * outside exist to this socket and current process on current CPU
1824 * is last user and may/should destroy this socket.
1825 * * sk_free is called from any context: process, BH, IRQ. When
1826 * it is called, socket has no references from outside -> sk_free
1827 * may release descendant resources allocated by the socket, but
1828 * to the time when it is called, socket is NOT referenced by any
1829 * hash tables, lists etc.
1830 * * Packets, delivered from outside (from network or from another process)
1831 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1832 * when they sit in queue. Otherwise, packets will leak to hole, when
1833 * socket is looked up by one cpu and unhasing is made by another CPU.
1834 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1835 * (leak to backlog). Packet socket does all the processing inside
1836 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1837 * use separate SMP lock, so that they are prone too.
1838 */
1839
1840 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1841 static inline void sock_put(struct sock *sk)
1842 {
1843 if (refcount_dec_and_test(&sk->sk_refcnt))
1844 sk_free(sk);
1845 }
1846 /* Generic version of sock_put(), dealing with all sockets
1847 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1848 */
1849 void sock_gen_put(struct sock *sk);
1850
1851 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1852 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1853 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1854 const int nested)
1855 {
1856 return __sk_receive_skb(sk, skb, nested, 1, true);
1857 }
1858
sk_tx_queue_set(struct sock * sk,int tx_queue)1859 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1860 {
1861 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1862 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1863 return;
1864 sk->sk_tx_queue_mapping = tx_queue;
1865 }
1866
1867 #define NO_QUEUE_MAPPING USHRT_MAX
1868
sk_tx_queue_clear(struct sock * sk)1869 static inline void sk_tx_queue_clear(struct sock *sk)
1870 {
1871 sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1872 }
1873
sk_tx_queue_get(const struct sock * sk)1874 static inline int sk_tx_queue_get(const struct sock *sk)
1875 {
1876 if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1877 return sk->sk_tx_queue_mapping;
1878
1879 return -1;
1880 }
1881
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1882 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1883 {
1884 #ifdef CONFIG_XPS
1885 if (skb_rx_queue_recorded(skb)) {
1886 u16 rx_queue = skb_get_rx_queue(skb);
1887
1888 if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1889 return;
1890
1891 sk->sk_rx_queue_mapping = rx_queue;
1892 }
1893 #endif
1894 }
1895
sk_rx_queue_clear(struct sock * sk)1896 static inline void sk_rx_queue_clear(struct sock *sk)
1897 {
1898 #ifdef CONFIG_XPS
1899 sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1900 #endif
1901 }
1902
1903 #ifdef CONFIG_XPS
sk_rx_queue_get(const struct sock * sk)1904 static inline int sk_rx_queue_get(const struct sock *sk)
1905 {
1906 if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1907 return sk->sk_rx_queue_mapping;
1908
1909 return -1;
1910 }
1911 #endif
1912
sk_set_socket(struct sock * sk,struct socket * sock)1913 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1914 {
1915 sk->sk_socket = sock;
1916 }
1917
sk_sleep(struct sock * sk)1918 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1919 {
1920 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1921 return &rcu_dereference_raw(sk->sk_wq)->wait;
1922 }
1923 /* Detach socket from process context.
1924 * Announce socket dead, detach it from wait queue and inode.
1925 * Note that parent inode held reference count on this struct sock,
1926 * we do not release it in this function, because protocol
1927 * probably wants some additional cleanups or even continuing
1928 * to work with this socket (TCP).
1929 */
sock_orphan(struct sock * sk)1930 static inline void sock_orphan(struct sock *sk)
1931 {
1932 write_lock_bh(&sk->sk_callback_lock);
1933 sock_set_flag(sk, SOCK_DEAD);
1934 sk_set_socket(sk, NULL);
1935 sk->sk_wq = NULL;
1936 write_unlock_bh(&sk->sk_callback_lock);
1937 }
1938
sock_graft(struct sock * sk,struct socket * parent)1939 static inline void sock_graft(struct sock *sk, struct socket *parent)
1940 {
1941 WARN_ON(parent->sk);
1942 write_lock_bh(&sk->sk_callback_lock);
1943 rcu_assign_pointer(sk->sk_wq, &parent->wq);
1944 parent->sk = sk;
1945 sk_set_socket(sk, parent);
1946 sk->sk_uid = SOCK_INODE(parent)->i_uid;
1947 security_sock_graft(sk, parent);
1948 write_unlock_bh(&sk->sk_callback_lock);
1949 }
1950
1951 kuid_t sock_i_uid(struct sock *sk);
1952 unsigned long __sock_i_ino(struct sock *sk);
1953 unsigned long sock_i_ino(struct sock *sk);
1954
sock_net_uid(const struct net * net,const struct sock * sk)1955 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1956 {
1957 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1958 }
1959
net_tx_rndhash(void)1960 static inline u32 net_tx_rndhash(void)
1961 {
1962 u32 v = prandom_u32();
1963
1964 return v ?: 1;
1965 }
1966
sk_set_txhash(struct sock * sk)1967 static inline void sk_set_txhash(struct sock *sk)
1968 {
1969 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1970 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1971 }
1972
sk_rethink_txhash(struct sock * sk)1973 static inline bool sk_rethink_txhash(struct sock *sk)
1974 {
1975 if (sk->sk_txhash) {
1976 sk_set_txhash(sk);
1977 return true;
1978 }
1979 return false;
1980 }
1981
1982 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1983 __sk_dst_get(struct sock *sk)
1984 {
1985 return rcu_dereference_check(sk->sk_dst_cache,
1986 lockdep_sock_is_held(sk));
1987 }
1988
1989 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1990 sk_dst_get(struct sock *sk)
1991 {
1992 struct dst_entry *dst;
1993
1994 rcu_read_lock();
1995 dst = rcu_dereference(sk->sk_dst_cache);
1996 if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1997 dst = NULL;
1998 rcu_read_unlock();
1999 return dst;
2000 }
2001
__dst_negative_advice(struct sock * sk)2002 static inline void __dst_negative_advice(struct sock *sk)
2003 {
2004 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2005
2006 if (dst && dst->ops->negative_advice) {
2007 ndst = dst->ops->negative_advice(dst);
2008
2009 if (ndst != dst) {
2010 rcu_assign_pointer(sk->sk_dst_cache, ndst);
2011 sk_tx_queue_clear(sk);
2012 sk->sk_dst_pending_confirm = 0;
2013 }
2014 }
2015 }
2016
dst_negative_advice(struct sock * sk)2017 static inline void dst_negative_advice(struct sock *sk)
2018 {
2019 sk_rethink_txhash(sk);
2020 __dst_negative_advice(sk);
2021 }
2022
2023 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2024 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2025 {
2026 struct dst_entry *old_dst;
2027
2028 sk_tx_queue_clear(sk);
2029 sk->sk_dst_pending_confirm = 0;
2030 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2031 lockdep_sock_is_held(sk));
2032 rcu_assign_pointer(sk->sk_dst_cache, dst);
2033 dst_release(old_dst);
2034 }
2035
2036 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2037 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2038 {
2039 struct dst_entry *old_dst;
2040
2041 sk_tx_queue_clear(sk);
2042 sk->sk_dst_pending_confirm = 0;
2043 old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2044 dst_release(old_dst);
2045 }
2046
2047 static inline void
__sk_dst_reset(struct sock * sk)2048 __sk_dst_reset(struct sock *sk)
2049 {
2050 __sk_dst_set(sk, NULL);
2051 }
2052
2053 static inline void
sk_dst_reset(struct sock * sk)2054 sk_dst_reset(struct sock *sk)
2055 {
2056 sk_dst_set(sk, NULL);
2057 }
2058
2059 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2060
2061 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2062
sk_dst_confirm(struct sock * sk)2063 static inline void sk_dst_confirm(struct sock *sk)
2064 {
2065 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2066 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2067 }
2068
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2069 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2070 {
2071 if (skb_get_dst_pending_confirm(skb)) {
2072 struct sock *sk = skb->sk;
2073 unsigned long now = jiffies;
2074
2075 /* avoid dirtying neighbour */
2076 if (READ_ONCE(n->confirmed) != now)
2077 WRITE_ONCE(n->confirmed, now);
2078 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2079 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2080 }
2081 }
2082
2083 bool sk_mc_loop(struct sock *sk);
2084
sk_can_gso(const struct sock * sk)2085 static inline bool sk_can_gso(const struct sock *sk)
2086 {
2087 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2088 }
2089
2090 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2091
sk_nocaps_add(struct sock * sk,netdev_features_t flags)2092 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2093 {
2094 sk->sk_route_nocaps |= flags;
2095 sk->sk_route_caps &= ~flags;
2096 }
2097
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2098 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2099 struct iov_iter *from, char *to,
2100 int copy, int offset)
2101 {
2102 if (skb->ip_summed == CHECKSUM_NONE) {
2103 __wsum csum = 0;
2104 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2105 return -EFAULT;
2106 skb->csum = csum_block_add(skb->csum, csum, offset);
2107 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2108 if (!copy_from_iter_full_nocache(to, copy, from))
2109 return -EFAULT;
2110 } else if (!copy_from_iter_full(to, copy, from))
2111 return -EFAULT;
2112
2113 return 0;
2114 }
2115
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2116 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2117 struct iov_iter *from, int copy)
2118 {
2119 int err, offset = skb->len;
2120
2121 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2122 copy, offset);
2123 if (err)
2124 __skb_trim(skb, offset);
2125
2126 return err;
2127 }
2128
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2129 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2130 struct sk_buff *skb,
2131 struct page *page,
2132 int off, int copy)
2133 {
2134 int err;
2135
2136 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2137 copy, skb->len);
2138 if (err)
2139 return err;
2140
2141 skb->len += copy;
2142 skb->data_len += copy;
2143 skb->truesize += copy;
2144 sk_wmem_queued_add(sk, copy);
2145 sk_mem_charge(sk, copy);
2146 return 0;
2147 }
2148
2149 /**
2150 * sk_wmem_alloc_get - returns write allocations
2151 * @sk: socket
2152 *
2153 * Return: sk_wmem_alloc minus initial offset of one
2154 */
sk_wmem_alloc_get(const struct sock * sk)2155 static inline int sk_wmem_alloc_get(const struct sock *sk)
2156 {
2157 return refcount_read(&sk->sk_wmem_alloc) - 1;
2158 }
2159
2160 /**
2161 * sk_rmem_alloc_get - returns read allocations
2162 * @sk: socket
2163 *
2164 * Return: sk_rmem_alloc
2165 */
sk_rmem_alloc_get(const struct sock * sk)2166 static inline int sk_rmem_alloc_get(const struct sock *sk)
2167 {
2168 return atomic_read(&sk->sk_rmem_alloc);
2169 }
2170
2171 /**
2172 * sk_has_allocations - check if allocations are outstanding
2173 * @sk: socket
2174 *
2175 * Return: true if socket has write or read allocations
2176 */
sk_has_allocations(const struct sock * sk)2177 static inline bool sk_has_allocations(const struct sock *sk)
2178 {
2179 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2180 }
2181
2182 /**
2183 * skwq_has_sleeper - check if there are any waiting processes
2184 * @wq: struct socket_wq
2185 *
2186 * Return: true if socket_wq has waiting processes
2187 *
2188 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2189 * barrier call. They were added due to the race found within the tcp code.
2190 *
2191 * Consider following tcp code paths::
2192 *
2193 * CPU1 CPU2
2194 * sys_select receive packet
2195 * ... ...
2196 * __add_wait_queue update tp->rcv_nxt
2197 * ... ...
2198 * tp->rcv_nxt check sock_def_readable
2199 * ... {
2200 * schedule rcu_read_lock();
2201 * wq = rcu_dereference(sk->sk_wq);
2202 * if (wq && waitqueue_active(&wq->wait))
2203 * wake_up_interruptible(&wq->wait)
2204 * ...
2205 * }
2206 *
2207 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2208 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2209 * could then endup calling schedule and sleep forever if there are no more
2210 * data on the socket.
2211 *
2212 */
skwq_has_sleeper(struct socket_wq * wq)2213 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2214 {
2215 return wq && wq_has_sleeper(&wq->wait);
2216 }
2217
2218 /**
2219 * sock_poll_wait - place memory barrier behind the poll_wait call.
2220 * @filp: file
2221 * @sock: socket to wait on
2222 * @p: poll_table
2223 *
2224 * See the comments in the wq_has_sleeper function.
2225 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2226 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2227 poll_table *p)
2228 {
2229 if (!poll_does_not_wait(p)) {
2230 poll_wait(filp, &sock->wq.wait, p);
2231 /* We need to be sure we are in sync with the
2232 * socket flags modification.
2233 *
2234 * This memory barrier is paired in the wq_has_sleeper.
2235 */
2236 smp_mb();
2237 }
2238 }
2239
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2240 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2241 {
2242 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2243 u32 txhash = READ_ONCE(sk->sk_txhash);
2244
2245 if (txhash) {
2246 skb->l4_hash = 1;
2247 skb->hash = txhash;
2248 }
2249 }
2250
2251 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2252
2253 /*
2254 * Queue a received datagram if it will fit. Stream and sequenced
2255 * protocols can't normally use this as they need to fit buffers in
2256 * and play with them.
2257 *
2258 * Inlined as it's very short and called for pretty much every
2259 * packet ever received.
2260 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2261 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2262 {
2263 skb_orphan(skb);
2264 skb->sk = sk;
2265 skb->destructor = sock_rfree;
2266 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2267 sk_mem_charge(sk, skb->truesize);
2268 }
2269
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2270 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2271 {
2272 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2273 skb_orphan(skb);
2274 skb->destructor = sock_efree;
2275 skb->sk = sk;
2276 return true;
2277 }
2278 return false;
2279 }
2280
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2281 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2282 {
2283 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2284 if (skb) {
2285 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2286 skb_set_owner_r(skb, sk);
2287 return skb;
2288 }
2289 __kfree_skb(skb);
2290 }
2291 return NULL;
2292 }
2293
2294 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2295 unsigned long expires);
2296
2297 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2298
2299 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2300
2301 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2302 struct sk_buff *skb, unsigned int flags,
2303 void (*destructor)(struct sock *sk,
2304 struct sk_buff *skb));
2305 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2306 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2307
2308 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2309 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2310
2311 /*
2312 * Recover an error report and clear atomically
2313 */
2314
sock_error(struct sock * sk)2315 static inline int sock_error(struct sock *sk)
2316 {
2317 int err;
2318
2319 /* Avoid an atomic operation for the common case.
2320 * This is racy since another cpu/thread can change sk_err under us.
2321 */
2322 if (likely(data_race(!sk->sk_err)))
2323 return 0;
2324
2325 err = xchg(&sk->sk_err, 0);
2326 return -err;
2327 }
2328
sock_wspace(struct sock * sk)2329 static inline unsigned long sock_wspace(struct sock *sk)
2330 {
2331 int amt = 0;
2332
2333 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2334 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2335 if (amt < 0)
2336 amt = 0;
2337 }
2338 return amt;
2339 }
2340
2341 /* Note:
2342 * We use sk->sk_wq_raw, from contexts knowing this
2343 * pointer is not NULL and cannot disappear/change.
2344 */
sk_set_bit(int nr,struct sock * sk)2345 static inline void sk_set_bit(int nr, struct sock *sk)
2346 {
2347 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2348 !sock_flag(sk, SOCK_FASYNC))
2349 return;
2350
2351 set_bit(nr, &sk->sk_wq_raw->flags);
2352 }
2353
sk_clear_bit(int nr,struct sock * sk)2354 static inline void sk_clear_bit(int nr, struct sock *sk)
2355 {
2356 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2357 !sock_flag(sk, SOCK_FASYNC))
2358 return;
2359
2360 clear_bit(nr, &sk->sk_wq_raw->flags);
2361 }
2362
sk_wake_async(const struct sock * sk,int how,int band)2363 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2364 {
2365 if (sock_flag(sk, SOCK_FASYNC)) {
2366 rcu_read_lock();
2367 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2368 rcu_read_unlock();
2369 }
2370 }
2371
2372 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2373 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2374 * Note: for send buffers, TCP works better if we can build two skbs at
2375 * minimum.
2376 */
2377 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2378
2379 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2380 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2381
sk_stream_moderate_sndbuf(struct sock * sk)2382 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2383 {
2384 u32 val;
2385
2386 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2387 return;
2388
2389 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2390
2391 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2392 }
2393
2394 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2395 bool force_schedule);
2396
2397 /**
2398 * sk_page_frag - return an appropriate page_frag
2399 * @sk: socket
2400 *
2401 * Use the per task page_frag instead of the per socket one for
2402 * optimization when we know that we're in process context and own
2403 * everything that's associated with %current.
2404 *
2405 * Both direct reclaim and page faults can nest inside other
2406 * socket operations and end up recursing into sk_page_frag()
2407 * while it's already in use: explicitly avoid task page_frag
2408 * usage if the caller is potentially doing any of them.
2409 * This assumes that page fault handlers use the GFP_NOFS flags.
2410 *
2411 * Return: a per task page_frag if context allows that,
2412 * otherwise a per socket one.
2413 */
sk_page_frag(struct sock * sk)2414 static inline struct page_frag *sk_page_frag(struct sock *sk)
2415 {
2416 if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2417 (__GFP_DIRECT_RECLAIM | __GFP_FS))
2418 return ¤t->task_frag;
2419
2420 return &sk->sk_frag;
2421 }
2422
2423 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2424
2425 /*
2426 * Default write policy as shown to user space via poll/select/SIGIO
2427 */
sock_writeable(const struct sock * sk)2428 static inline bool sock_writeable(const struct sock *sk)
2429 {
2430 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2431 }
2432
gfp_any(void)2433 static inline gfp_t gfp_any(void)
2434 {
2435 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2436 }
2437
sock_rcvtimeo(const struct sock * sk,bool noblock)2438 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2439 {
2440 return noblock ? 0 : sk->sk_rcvtimeo;
2441 }
2442
sock_sndtimeo(const struct sock * sk,bool noblock)2443 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2444 {
2445 return noblock ? 0 : sk->sk_sndtimeo;
2446 }
2447
sock_rcvlowat(const struct sock * sk,int waitall,int len)2448 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2449 {
2450 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2451
2452 return v ?: 1;
2453 }
2454
2455 /* Alas, with timeout socket operations are not restartable.
2456 * Compare this to poll().
2457 */
sock_intr_errno(long timeo)2458 static inline int sock_intr_errno(long timeo)
2459 {
2460 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2461 }
2462
2463 struct sock_skb_cb {
2464 u32 dropcount;
2465 };
2466
2467 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2468 * using skb->cb[] would keep using it directly and utilize its
2469 * alignement guarantee.
2470 */
2471 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2472 sizeof(struct sock_skb_cb)))
2473
2474 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2475 SOCK_SKB_CB_OFFSET))
2476
2477 #define sock_skb_cb_check_size(size) \
2478 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2479
2480 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2481 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2482 {
2483 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2484 atomic_read(&sk->sk_drops) : 0;
2485 }
2486
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2487 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2488 {
2489 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2490
2491 atomic_add(segs, &sk->sk_drops);
2492 }
2493
sock_read_timestamp(struct sock * sk)2494 static inline ktime_t sock_read_timestamp(struct sock *sk)
2495 {
2496 #if BITS_PER_LONG==32
2497 unsigned int seq;
2498 ktime_t kt;
2499
2500 do {
2501 seq = read_seqbegin(&sk->sk_stamp_seq);
2502 kt = sk->sk_stamp;
2503 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2504
2505 return kt;
2506 #else
2507 return READ_ONCE(sk->sk_stamp);
2508 #endif
2509 }
2510
sock_write_timestamp(struct sock * sk,ktime_t kt)2511 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2512 {
2513 #if BITS_PER_LONG==32
2514 write_seqlock(&sk->sk_stamp_seq);
2515 sk->sk_stamp = kt;
2516 write_sequnlock(&sk->sk_stamp_seq);
2517 #else
2518 WRITE_ONCE(sk->sk_stamp, kt);
2519 #endif
2520 }
2521
2522 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2523 struct sk_buff *skb);
2524 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2525 struct sk_buff *skb);
2526
2527 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2528 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2529 {
2530 ktime_t kt = skb->tstamp;
2531 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2532
2533 /*
2534 * generate control messages if
2535 * - receive time stamping in software requested
2536 * - software time stamp available and wanted
2537 * - hardware time stamps available and wanted
2538 */
2539 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2540 (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2541 (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2542 (hwtstamps->hwtstamp &&
2543 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2544 __sock_recv_timestamp(msg, sk, skb);
2545 else
2546 sock_write_timestamp(sk, kt);
2547
2548 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2549 __sock_recv_wifi_status(msg, sk, skb);
2550 }
2551
2552 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2553 struct sk_buff *skb);
2554
2555 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2556 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2557 struct sk_buff *skb)
2558 {
2559 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
2560 (1UL << SOCK_RCVTSTAMP))
2561 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2562 SOF_TIMESTAMPING_RAW_HARDWARE)
2563
2564 if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2565 __sock_recv_ts_and_drops(msg, sk, skb);
2566 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2567 sock_write_timestamp(sk, skb->tstamp);
2568 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2569 sock_write_timestamp(sk, 0);
2570 }
2571
2572 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2573
2574 /**
2575 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2576 * @sk: socket sending this packet
2577 * @tsflags: timestamping flags to use
2578 * @tx_flags: completed with instructions for time stamping
2579 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2580 *
2581 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2582 */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2583 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2584 __u8 *tx_flags, __u32 *tskey)
2585 {
2586 if (unlikely(tsflags)) {
2587 __sock_tx_timestamp(tsflags, tx_flags);
2588 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2589 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2590 *tskey = sk->sk_tskey++;
2591 }
2592 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2593 *tx_flags |= SKBTX_WIFI_STATUS;
2594 }
2595
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2596 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2597 __u8 *tx_flags)
2598 {
2599 _sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2600 }
2601
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2602 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2603 {
2604 _sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2605 &skb_shinfo(skb)->tskey);
2606 }
2607
2608 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2609 /**
2610 * sk_eat_skb - Release a skb if it is no longer needed
2611 * @sk: socket to eat this skb from
2612 * @skb: socket buffer to eat
2613 *
2614 * This routine must be called with interrupts disabled or with the socket
2615 * locked so that the sk_buff queue operation is ok.
2616 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2617 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2618 {
2619 __skb_unlink(skb, &sk->sk_receive_queue);
2620 if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2621 !sk->sk_rx_skb_cache) {
2622 sk->sk_rx_skb_cache = skb;
2623 skb_orphan(skb);
2624 return;
2625 }
2626 __kfree_skb(skb);
2627 }
2628
2629 static inline
sock_net(const struct sock * sk)2630 struct net *sock_net(const struct sock *sk)
2631 {
2632 return read_pnet(&sk->sk_net);
2633 }
2634
2635 static inline
sock_net_set(struct sock * sk,struct net * net)2636 void sock_net_set(struct sock *sk, struct net *net)
2637 {
2638 write_pnet(&sk->sk_net, net);
2639 }
2640
2641 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2642 skb_sk_is_prefetched(struct sk_buff *skb)
2643 {
2644 #ifdef CONFIG_INET
2645 return skb->destructor == sock_pfree;
2646 #else
2647 return false;
2648 #endif /* CONFIG_INET */
2649 }
2650
2651 /* This helper checks if a socket is a full socket,
2652 * ie _not_ a timewait or request socket.
2653 */
sk_fullsock(const struct sock * sk)2654 static inline bool sk_fullsock(const struct sock *sk)
2655 {
2656 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2657 }
2658
2659 static inline bool
sk_is_refcounted(struct sock * sk)2660 sk_is_refcounted(struct sock *sk)
2661 {
2662 /* Only full sockets have sk->sk_flags. */
2663 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2664 }
2665
2666 /**
2667 * skb_steal_sock - steal a socket from an sk_buff
2668 * @skb: sk_buff to steal the socket from
2669 * @refcounted: is set to true if the socket is reference-counted
2670 */
2671 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2672 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2673 {
2674 if (skb->sk) {
2675 struct sock *sk = skb->sk;
2676
2677 *refcounted = true;
2678 if (skb_sk_is_prefetched(skb))
2679 *refcounted = sk_is_refcounted(sk);
2680 skb->destructor = NULL;
2681 skb->sk = NULL;
2682 return sk;
2683 }
2684 *refcounted = false;
2685 return NULL;
2686 }
2687
2688 /* Checks if this SKB belongs to an HW offloaded socket
2689 * and whether any SW fallbacks are required based on dev.
2690 * Check decrypted mark in case skb_orphan() cleared socket.
2691 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2692 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2693 struct net_device *dev)
2694 {
2695 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2696 struct sock *sk = skb->sk;
2697
2698 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2699 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2700 #ifdef CONFIG_TLS_DEVICE
2701 } else if (unlikely(skb->decrypted)) {
2702 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2703 kfree_skb(skb);
2704 skb = NULL;
2705 #endif
2706 }
2707 #endif
2708
2709 return skb;
2710 }
2711
2712 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2713 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2714 */
sk_listener(const struct sock * sk)2715 static inline bool sk_listener(const struct sock *sk)
2716 {
2717 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2718 }
2719
2720 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2721 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2722 int type);
2723
2724 bool sk_ns_capable(const struct sock *sk,
2725 struct user_namespace *user_ns, int cap);
2726 bool sk_capable(const struct sock *sk, int cap);
2727 bool sk_net_capable(const struct sock *sk, int cap);
2728
2729 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2730
2731 /* Take into consideration the size of the struct sk_buff overhead in the
2732 * determination of these values, since that is non-constant across
2733 * platforms. This makes socket queueing behavior and performance
2734 * not depend upon such differences.
2735 */
2736 #define _SK_MEM_PACKETS 256
2737 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2738 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2739 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2740
2741 extern __u32 sysctl_wmem_max;
2742 extern __u32 sysctl_rmem_max;
2743
2744 extern int sysctl_tstamp_allow_data;
2745 extern int sysctl_optmem_max;
2746
2747 extern __u32 sysctl_wmem_default;
2748 extern __u32 sysctl_rmem_default;
2749
2750 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2751 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2752
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2753 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2754 {
2755 /* Does this proto have per netns sysctl_wmem ? */
2756 if (proto->sysctl_wmem_offset)
2757 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2758
2759 return READ_ONCE(*proto->sysctl_wmem);
2760 }
2761
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2762 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2763 {
2764 /* Does this proto have per netns sysctl_rmem ? */
2765 if (proto->sysctl_rmem_offset)
2766 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2767
2768 return READ_ONCE(*proto->sysctl_rmem);
2769 }
2770
2771 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2772 * Some wifi drivers need to tweak it to get more chunks.
2773 * They can use this helper from their ndo_start_xmit()
2774 */
sk_pacing_shift_update(struct sock * sk,int val)2775 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2776 {
2777 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2778 return;
2779 WRITE_ONCE(sk->sk_pacing_shift, val);
2780 }
2781
2782 /* if a socket is bound to a device, check that the given device
2783 * index is either the same or that the socket is bound to an L3
2784 * master device and the given device index is also enslaved to
2785 * that L3 master
2786 */
sk_dev_equal_l3scope(struct sock * sk,int dif)2787 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2788 {
2789 int mdif;
2790
2791 if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2792 return true;
2793
2794 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2795 if (mdif && mdif == sk->sk_bound_dev_if)
2796 return true;
2797
2798 return false;
2799 }
2800
2801 void sock_def_readable(struct sock *sk);
2802
2803 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2804 void sock_enable_timestamps(struct sock *sk);
2805 void sock_no_linger(struct sock *sk);
2806 void sock_set_keepalive(struct sock *sk);
2807 void sock_set_priority(struct sock *sk, u32 priority);
2808 void sock_set_rcvbuf(struct sock *sk, int val);
2809 void sock_set_mark(struct sock *sk, u32 val);
2810 void sock_set_reuseaddr(struct sock *sk);
2811 void sock_set_reuseport(struct sock *sk);
2812 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2813
2814 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2815
2816 #endif /* _SOCK_H */
2817