• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the AF_INET socket handler.
8  *
9  * Version:	@(#)sock.h	1.0.4	05/13/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Florian La Roche <flla@stud.uni-sb.de>
15  *
16  * Fixes:
17  *		Alan Cox	:	Volatiles in skbuff pointers. See
18  *					skbuff comments. May be overdone,
19  *					better to prove they can be removed
20  *					than the reverse.
21  *		Alan Cox	:	Added a zapped field for tcp to note
22  *					a socket is reset and must stay shut up
23  *		Alan Cox	:	New fields for options
24  *	Pauline Middelink	:	identd support
25  *		Alan Cox	:	Eliminate low level recv/recvfrom
26  *		David S. Miller	:	New socket lookup architecture.
27  *              Steve Whitehouse:       Default routines for sock_ops
28  *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29  *              			protinfo be just a void pointer, as the
30  *              			protocol specific parts were moved to
31  *              			respective headers and ipv4/v6, etc now
32  *              			use private slabcaches for its socks
33  *              Pedro Hortas	:	New flags field for socket options
34  */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37 
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h>	/* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/filter.h>
60 #include <linux/rculist_nulls.h>
61 #include <linux/poll.h>
62 #include <linux/sockptr.h>
63 
64 #include <linux/atomic.h>
65 #include <linux/refcount.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #ifdef CONFIG_NEWIP
72 #include <uapi/linux/nip_addr.h>
73 #endif
74 
75 /*
76  * This structure really needs to be cleaned up.
77  * Most of it is for TCP, and not used by any of
78  * the other protocols.
79  */
80 
81 /* Define this to get the SOCK_DBG debugging facility. */
82 #define SOCK_DEBUGGING
83 #ifdef SOCK_DEBUGGING
84 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
85 					printk(KERN_DEBUG msg); } while (0)
86 #else
87 /* Validate arguments and do nothing */
88 static inline __printf(2, 3)
SOCK_DEBUG(const struct sock * sk,const char * msg,...)89 void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
90 {
91 }
92 #endif
93 
94 /* This is the per-socket lock.  The spinlock provides a synchronization
95  * between user contexts and software interrupt processing, whereas the
96  * mini-semaphore synchronizes multiple users amongst themselves.
97  */
98 typedef struct {
99 	spinlock_t		slock;
100 	int			owned;
101 	wait_queue_head_t	wq;
102 	/*
103 	 * We express the mutex-alike socket_lock semantics
104 	 * to the lock validator by explicitly managing
105 	 * the slock as a lock variant (in addition to
106 	 * the slock itself):
107 	 */
108 #ifdef CONFIG_DEBUG_LOCK_ALLOC
109 	struct lockdep_map dep_map;
110 #endif
111 } socket_lock_t;
112 
113 struct sock;
114 struct proto;
115 struct net;
116 
117 typedef __u32 __bitwise __portpair;
118 typedef __u64 __bitwise __addrpair;
119 
120 /**
121  *	struct sock_common - minimal network layer representation of sockets
122  *	@skc_daddr: Foreign IPv4 addr
123  *	@skc_rcv_saddr: Bound local IPv4 addr
124  *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
125  *	@skc_hash: hash value used with various protocol lookup tables
126  *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
127  *	@skc_dport: placeholder for inet_dport/tw_dport
128  *	@skc_num: placeholder for inet_num/tw_num
129  *	@skc_portpair: __u32 union of @skc_dport & @skc_num
130  *	@skc_family: network address family
131  *	@skc_state: Connection state
132  *	@skc_reuse: %SO_REUSEADDR setting
133  *	@skc_reuseport: %SO_REUSEPORT setting
134  *	@skc_ipv6only: socket is IPV6 only
135  *	@skc_net_refcnt: socket is using net ref counting
136  *	@skc_bound_dev_if: bound device index if != 0
137  *	@skc_bind_node: bind hash linkage for various protocol lookup tables
138  *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
139  *	@skc_prot: protocol handlers inside a network family
140  *	@skc_net: reference to the network namespace of this socket
141  *	@skc_v6_daddr: IPV6 destination address
142  *	@skc_v6_rcv_saddr: IPV6 source address
143  *	@skc_cookie: socket's cookie value
144  *	@skc_node: main hash linkage for various protocol lookup tables
145  *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
146  *	@skc_tx_queue_mapping: tx queue number for this connection
147  *	@skc_rx_queue_mapping: rx queue number for this connection
148  *	@skc_flags: place holder for sk_flags
149  *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
150  *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
151  *	@skc_listener: connection request listener socket (aka rsk_listener)
152  *		[union with @skc_flags]
153  *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
154  *		[union with @skc_flags]
155  *	@skc_incoming_cpu: record/match cpu processing incoming packets
156  *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
157  *		[union with @skc_incoming_cpu]
158  *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
159  *		[union with @skc_incoming_cpu]
160  *	@skc_refcnt: reference count
161  *
162  *	This is the minimal network layer representation of sockets, the header
163  *	for struct sock and struct inet_timewait_sock.
164  */
165 struct sock_common {
166 	union {
167 		__addrpair	skc_addrpair;
168 		struct {
169 			__be32	skc_daddr;
170 			__be32	skc_rcv_saddr;
171 		};
172 	};
173 	union  {
174 		unsigned int	skc_hash;
175 		__u16		skc_u16hashes[2];
176 	};
177 	/* skc_dport && skc_num must be grouped as well */
178 	union {
179 		__portpair	skc_portpair;
180 		struct {
181 			__be16	skc_dport;
182 			__u16	skc_num;
183 		};
184 	};
185 
186 	unsigned short		skc_family;
187 	volatile unsigned char	skc_state;
188 	unsigned char		skc_reuse:4;
189 	unsigned char		skc_reuseport:1;
190 	unsigned char		skc_ipv6only:1;
191 	unsigned char		skc_net_refcnt:1;
192 	int			skc_bound_dev_if;
193 	union {
194 		struct hlist_node	skc_bind_node;
195 		struct hlist_node	skc_portaddr_node;
196 	};
197 	struct proto		*skc_prot;
198 	possible_net_t		skc_net;
199 
200 #if IS_ENABLED(CONFIG_IPV6)
201 	struct in6_addr		skc_v6_daddr;
202 	struct in6_addr		skc_v6_rcv_saddr;
203 #endif
204 
205 #if IS_ENABLED(CONFIG_NEWIP)
206 	struct nip_addr		nip_daddr;	/* NIP */
207 	struct nip_addr		nip_rcv_saddr;	/* NIP */
208 #endif
209 
210 	atomic64_t		skc_cookie;
211 
212 	/* following fields are padding to force
213 	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
214 	 * assuming IPV6 is enabled. We use this padding differently
215 	 * for different kind of 'sockets'
216 	 */
217 	union {
218 		unsigned long	skc_flags;
219 		struct sock	*skc_listener; /* request_sock */
220 		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
221 	};
222 	/*
223 	 * fields between dontcopy_begin/dontcopy_end
224 	 * are not copied in sock_copy()
225 	 */
226 	/* private: */
227 	int			skc_dontcopy_begin[0];
228 	/* public: */
229 	union {
230 		struct hlist_node	skc_node;
231 		struct hlist_nulls_node skc_nulls_node;
232 	};
233 	unsigned short		skc_tx_queue_mapping;
234 #ifdef CONFIG_XPS
235 	unsigned short		skc_rx_queue_mapping;
236 #endif
237 	union {
238 		int		skc_incoming_cpu;
239 		u32		skc_rcv_wnd;
240 		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
241 	};
242 
243 	refcount_t		skc_refcnt;
244 	/* private: */
245 	int                     skc_dontcopy_end[0];
246 	union {
247 		u32		skc_rxhash;
248 		u32		skc_window_clamp;
249 		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
250 	};
251 	/* public: */
252 };
253 
254 struct bpf_local_storage;
255 
256 /**
257   *	struct sock - network layer representation of sockets
258   *	@__sk_common: shared layout with inet_timewait_sock
259   *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
260   *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
261   *	@sk_lock:	synchronizer
262   *	@sk_kern_sock: True if sock is using kernel lock classes
263   *	@sk_rcvbuf: size of receive buffer in bytes
264   *	@sk_wq: sock wait queue and async head
265   *	@sk_rx_dst: receive input route used by early demux
266   *	@sk_dst_cache: destination cache
267   *	@sk_dst_pending_confirm: need to confirm neighbour
268   *	@sk_policy: flow policy
269   *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
270   *	@sk_receive_queue: incoming packets
271   *	@sk_wmem_alloc: transmit queue bytes committed
272   *	@sk_tsq_flags: TCP Small Queues flags
273   *	@sk_write_queue: Packet sending queue
274   *	@sk_omem_alloc: "o" is "option" or "other"
275   *	@sk_wmem_queued: persistent queue size
276   *	@sk_forward_alloc: space allocated forward
277   *	@sk_napi_id: id of the last napi context to receive data for sk
278   *	@sk_ll_usec: usecs to busypoll when there is no data
279   *	@sk_allocation: allocation mode
280   *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
281   *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
282   *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
283   *	@sk_sndbuf: size of send buffer in bytes
284   *	@__sk_flags_offset: empty field used to determine location of bitfield
285   *	@sk_padding: unused element for alignment
286   *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
287   *	@sk_no_check_rx: allow zero checksum in RX packets
288   *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
289   *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
290   *	@sk_route_forced_caps: static, forced route capabilities
291   *		(set in tcp_init_sock())
292   *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
293   *	@sk_gso_max_size: Maximum GSO segment size to build
294   *	@sk_gso_max_segs: Maximum number of GSO segments
295   *	@sk_pacing_shift: scaling factor for TCP Small Queues
296   *	@sk_lingertime: %SO_LINGER l_linger setting
297   *	@sk_backlog: always used with the per-socket spinlock held
298   *	@sk_callback_lock: used with the callbacks in the end of this struct
299   *	@sk_error_queue: rarely used
300   *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
301   *			  IPV6_ADDRFORM for instance)
302   *	@sk_err: last error
303   *	@sk_err_soft: errors that don't cause failure but are the cause of a
304   *		      persistent failure not just 'timed out'
305   *	@sk_drops: raw/udp drops counter
306   *	@sk_ack_backlog: current listen backlog
307   *	@sk_max_ack_backlog: listen backlog set in listen()
308   *	@sk_uid: user id of owner
309   *	@sk_priority: %SO_PRIORITY setting
310   *	@sk_type: socket type (%SOCK_STREAM, etc)
311   *	@sk_protocol: which protocol this socket belongs in this network family
312   *	@sk_peer_pid: &struct pid for this socket's peer
313   *	@sk_peer_cred: %SO_PEERCRED setting
314   *	@sk_rcvlowat: %SO_RCVLOWAT setting
315   *	@sk_rcvtimeo: %SO_RCVTIMEO setting
316   *	@sk_sndtimeo: %SO_SNDTIMEO setting
317   *	@sk_txhash: computed flow hash for use on transmit
318   *	@sk_filter: socket filtering instructions
319   *	@sk_timer: sock cleanup timer
320   *	@sk_stamp: time stamp of last packet received
321   *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
322   *	@sk_tsflags: SO_TIMESTAMPING socket options
323   *	@sk_tskey: counter to disambiguate concurrent tstamp requests
324   *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
325   *	@sk_socket: Identd and reporting IO signals
326   *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
327   *	@sk_frag: cached page frag
328   *	@sk_peek_off: current peek_offset value
329   *	@sk_send_head: front of stuff to transmit
330   *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331   *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
332   *	@sk_security: used by security modules
333   *	@sk_mark: generic packet mark
334   *	@sk_cgrp_data: cgroup data for this cgroup
335   *	@sk_memcg: this socket's memory cgroup association
336   *	@sk_write_pending: a write to stream socket waits to start
337   *	@sk_wait_pending: number of threads blocked on this socket
338   *	@sk_state_change: callback to indicate change in the state of the sock
339   *	@sk_data_ready: callback to indicate there is data to be processed
340   *	@sk_write_space: callback to indicate there is bf sending space available
341   *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
342   *	@sk_backlog_rcv: callback to process the backlog
343   *	@sk_validate_xmit_skb: ptr to an optional validate function
344   *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
345   *	@sk_reuseport_cb: reuseport group container
346   *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
347   *	@sk_rcu: used during RCU grace period
348   *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
349   *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
350   *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
351   *	@sk_txtime_unused: unused txtime flags
352   */
353 struct sock {
354 	/*
355 	 * Now struct inet_timewait_sock also uses sock_common, so please just
356 	 * don't add nothing before this first member (__sk_common) --acme
357 	 */
358 	struct sock_common	__sk_common;
359 #define sk_node			__sk_common.skc_node
360 #define sk_nulls_node		__sk_common.skc_nulls_node
361 #define sk_refcnt		__sk_common.skc_refcnt
362 #define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
363 #ifdef CONFIG_XPS
364 #define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
365 #endif
366 
367 #define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
368 #define sk_dontcopy_end		__sk_common.skc_dontcopy_end
369 #define sk_hash			__sk_common.skc_hash
370 #define sk_portpair		__sk_common.skc_portpair
371 #define sk_num			__sk_common.skc_num
372 #define sk_dport		__sk_common.skc_dport
373 #define sk_addrpair		__sk_common.skc_addrpair
374 #define sk_daddr		__sk_common.skc_daddr
375 #define sk_rcv_saddr		__sk_common.skc_rcv_saddr
376 #define sk_family		__sk_common.skc_family
377 #define sk_state		__sk_common.skc_state
378 #define sk_reuse		__sk_common.skc_reuse
379 #define sk_reuseport		__sk_common.skc_reuseport
380 #define sk_ipv6only		__sk_common.skc_ipv6only
381 #define sk_net_refcnt		__sk_common.skc_net_refcnt
382 #define sk_bound_dev_if		__sk_common.skc_bound_dev_if
383 #define sk_bind_node		__sk_common.skc_bind_node
384 #define sk_prot			__sk_common.skc_prot
385 #define sk_net			__sk_common.skc_net
386 #define sk_v6_daddr		__sk_common.skc_v6_daddr
387 #define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
388 #define sk_cookie		__sk_common.skc_cookie
389 #define sk_incoming_cpu		__sk_common.skc_incoming_cpu
390 #define sk_flags		__sk_common.skc_flags
391 #define sk_rxhash		__sk_common.skc_rxhash
392 
393 	socket_lock_t		sk_lock;
394 	atomic_t		sk_drops;
395 	int			sk_rcvlowat;
396 	struct sk_buff_head	sk_error_queue;
397 	struct sk_buff		*sk_rx_skb_cache;
398 	struct sk_buff_head	sk_receive_queue;
399 	/*
400 	 * The backlog queue is special, it is always used with
401 	 * the per-socket spinlock held and requires low latency
402 	 * access. Therefore we special case it's implementation.
403 	 * Note : rmem_alloc is in this structure to fill a hole
404 	 * on 64bit arches, not because its logically part of
405 	 * backlog.
406 	 */
407 	struct {
408 		atomic_t	rmem_alloc;
409 		int		len;
410 		struct sk_buff	*head;
411 		struct sk_buff	*tail;
412 	} sk_backlog;
413 #define sk_rmem_alloc sk_backlog.rmem_alloc
414 
415 	int			sk_forward_alloc;
416 #ifdef CONFIG_NET_RX_BUSY_POLL
417 	unsigned int		sk_ll_usec;
418 	/* ===== mostly read cache line ===== */
419 	unsigned int		sk_napi_id;
420 #endif
421 	int			sk_rcvbuf;
422 	int			sk_wait_pending;
423 
424 	struct sk_filter __rcu	*sk_filter;
425 	union {
426 		struct socket_wq __rcu	*sk_wq;
427 		/* private: */
428 		struct socket_wq	*sk_wq_raw;
429 		/* public: */
430 	};
431 #ifdef CONFIG_XFRM
432 	struct xfrm_policy __rcu *sk_policy[2];
433 #endif
434 	struct dst_entry __rcu	*sk_rx_dst;
435 	struct dst_entry __rcu	*sk_dst_cache;
436 	atomic_t		sk_omem_alloc;
437 	int			sk_sndbuf;
438 
439 	/* ===== cache line for TX ===== */
440 	int			sk_wmem_queued;
441 	refcount_t		sk_wmem_alloc;
442 	unsigned long		sk_tsq_flags;
443 	union {
444 		struct sk_buff	*sk_send_head;
445 		struct rb_root	tcp_rtx_queue;
446 	};
447 	struct sk_buff		*sk_tx_skb_cache;
448 	struct sk_buff_head	sk_write_queue;
449 	__s32			sk_peek_off;
450 	int			sk_write_pending;
451 	__u32			sk_dst_pending_confirm;
452 	u32			sk_pacing_status; /* see enum sk_pacing */
453 	long			sk_sndtimeo;
454 	struct timer_list	sk_timer;
455 	__u32			sk_priority;
456 	__u32			sk_mark;
457 	unsigned long		sk_pacing_rate; /* bytes per second */
458 	unsigned long		sk_max_pacing_rate;
459 	struct page_frag	sk_frag;
460 	netdev_features_t	sk_route_caps;
461 	netdev_features_t	sk_route_nocaps;
462 	netdev_features_t	sk_route_forced_caps;
463 	int			sk_gso_type;
464 	unsigned int		sk_gso_max_size;
465 	gfp_t			sk_allocation;
466 	__u32			sk_txhash;
467 
468 	/*
469 	 * Because of non atomicity rules, all
470 	 * changes are protected by socket lock.
471 	 */
472 	u8			sk_padding : 1,
473 				sk_kern_sock : 1,
474 				sk_no_check_tx : 1,
475 				sk_no_check_rx : 1,
476 				sk_userlocks : 4;
477 	u8			sk_pacing_shift;
478 	u16			sk_type;
479 	u16			sk_protocol;
480 	u16			sk_gso_max_segs;
481 	unsigned long	        sk_lingertime;
482 	struct proto		*sk_prot_creator;
483 	rwlock_t		sk_callback_lock;
484 	int			sk_err,
485 				sk_err_soft;
486 	u32			sk_ack_backlog;
487 	u32			sk_max_ack_backlog;
488 	kuid_t			sk_uid;
489 	spinlock_t		sk_peer_lock;
490 	struct pid		*sk_peer_pid;
491 	const struct cred	*sk_peer_cred;
492 
493 	long			sk_rcvtimeo;
494 	ktime_t			sk_stamp;
495 #if BITS_PER_LONG==32
496 	seqlock_t		sk_stamp_seq;
497 #endif
498 	u16			sk_tsflags;
499 	u8			sk_shutdown;
500 	u32			sk_tskey;
501 	atomic_t		sk_zckey;
502 
503 	u8			sk_clockid;
504 	u8			sk_txtime_deadline_mode : 1,
505 				sk_txtime_report_errors : 1,
506 				sk_txtime_unused : 6;
507 
508 	struct socket		*sk_socket;
509 	void			*sk_user_data;
510 #ifdef CONFIG_SECURITY
511 	void			*sk_security;
512 #endif
513 	struct sock_cgroup_data	sk_cgrp_data;
514 	struct mem_cgroup	*sk_memcg;
515 	void			(*sk_state_change)(struct sock *sk);
516 	void			(*sk_data_ready)(struct sock *sk);
517 	void			(*sk_write_space)(struct sock *sk);
518 	void			(*sk_error_report)(struct sock *sk);
519 	int			(*sk_backlog_rcv)(struct sock *sk,
520 						  struct sk_buff *skb);
521 #ifdef CONFIG_SOCK_VALIDATE_XMIT
522 	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
523 							struct net_device *dev,
524 							struct sk_buff *skb);
525 #endif
526 	void                    (*sk_destruct)(struct sock *sk);
527 	struct sock_reuseport __rcu	*sk_reuseport_cb;
528 #ifdef CONFIG_BPF_SYSCALL
529 	struct bpf_local_storage __rcu	*sk_bpf_storage;
530 #endif
531 	struct rcu_head		sk_rcu;
532 };
533 
534 enum sk_pacing {
535 	SK_PACING_NONE		= 0,
536 	SK_PACING_NEEDED	= 1,
537 	SK_PACING_FQ		= 2,
538 };
539 
540 /* flag bits in sk_user_data
541  *
542  * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
543  *   not be suitable for copying when cloning the socket. For instance,
544  *   it can point to a reference counted object. sk_user_data bottom
545  *   bit is set if pointer must not be copied.
546  *
547  * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
548  *   managed/owned by a BPF reuseport array. This bit should be set
549  *   when sk_user_data's sk is added to the bpf's reuseport_array.
550  *
551  * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
552  *   sk_user_data points to psock type. This bit should be set
553  *   when sk_user_data is assigned to a psock object.
554  */
555 #define SK_USER_DATA_NOCOPY	1UL
556 #define SK_USER_DATA_BPF	2UL
557 #define SK_USER_DATA_PSOCK	4UL
558 #define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
559 				  SK_USER_DATA_PSOCK)
560 
561 /**
562  * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
563  * @sk: socket
564  */
sk_user_data_is_nocopy(const struct sock * sk)565 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
566 {
567 	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
568 }
569 
570 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
571 
572 /**
573  * __rcu_dereference_sk_user_data_with_flags - return the pointer
574  * only if argument flags all has been set in sk_user_data. Otherwise
575  * return NULL
576  *
577  * @sk: socket
578  * @flags: flag bits
579  */
580 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)581 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
582 					  uintptr_t flags)
583 {
584 	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
585 
586 	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
587 
588 	if ((sk_user_data & flags) == flags)
589 		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
590 	return NULL;
591 }
592 
593 #define rcu_dereference_sk_user_data(sk)				\
594 	__rcu_dereference_sk_user_data_with_flags(sk, 0)
595 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
596 ({									\
597 	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
598 		  __tmp2 = (uintptr_t)(flags);				\
599 	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
600 	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
601 	rcu_assign_pointer(__sk_user_data((sk)),			\
602 			   __tmp1 | __tmp2);				\
603 })
604 #define rcu_assign_sk_user_data(sk, ptr)				\
605 	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
606 
607 /*
608  * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
609  * or not whether his port will be reused by someone else. SK_FORCE_REUSE
610  * on a socket means that the socket will reuse everybody else's port
611  * without looking at the other's sk_reuse value.
612  */
613 
614 #define SK_NO_REUSE	0
615 #define SK_CAN_REUSE	1
616 #define SK_FORCE_REUSE	2
617 
618 int sk_set_peek_off(struct sock *sk, int val);
619 
sk_peek_offset(struct sock * sk,int flags)620 static inline int sk_peek_offset(struct sock *sk, int flags)
621 {
622 	if (unlikely(flags & MSG_PEEK)) {
623 		return READ_ONCE(sk->sk_peek_off);
624 	}
625 
626 	return 0;
627 }
628 
sk_peek_offset_bwd(struct sock * sk,int val)629 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
630 {
631 	s32 off = READ_ONCE(sk->sk_peek_off);
632 
633 	if (unlikely(off >= 0)) {
634 		off = max_t(s32, off - val, 0);
635 		WRITE_ONCE(sk->sk_peek_off, off);
636 	}
637 }
638 
sk_peek_offset_fwd(struct sock * sk,int val)639 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
640 {
641 	sk_peek_offset_bwd(sk, -val);
642 }
643 
644 /*
645  * Hashed lists helper routines
646  */
sk_entry(const struct hlist_node * node)647 static inline struct sock *sk_entry(const struct hlist_node *node)
648 {
649 	return hlist_entry(node, struct sock, sk_node);
650 }
651 
__sk_head(const struct hlist_head * head)652 static inline struct sock *__sk_head(const struct hlist_head *head)
653 {
654 	return hlist_entry(head->first, struct sock, sk_node);
655 }
656 
sk_head(const struct hlist_head * head)657 static inline struct sock *sk_head(const struct hlist_head *head)
658 {
659 	return hlist_empty(head) ? NULL : __sk_head(head);
660 }
661 
__sk_nulls_head(const struct hlist_nulls_head * head)662 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
663 {
664 	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
665 }
666 
sk_nulls_head(const struct hlist_nulls_head * head)667 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
668 {
669 	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
670 }
671 
sk_next(const struct sock * sk)672 static inline struct sock *sk_next(const struct sock *sk)
673 {
674 	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
675 }
676 
sk_nulls_next(const struct sock * sk)677 static inline struct sock *sk_nulls_next(const struct sock *sk)
678 {
679 	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
680 		hlist_nulls_entry(sk->sk_nulls_node.next,
681 				  struct sock, sk_nulls_node) :
682 		NULL;
683 }
684 
sk_unhashed(const struct sock * sk)685 static inline bool sk_unhashed(const struct sock *sk)
686 {
687 	return hlist_unhashed(&sk->sk_node);
688 }
689 
sk_hashed(const struct sock * sk)690 static inline bool sk_hashed(const struct sock *sk)
691 {
692 	return !sk_unhashed(sk);
693 }
694 
sk_node_init(struct hlist_node * node)695 static inline void sk_node_init(struct hlist_node *node)
696 {
697 	node->pprev = NULL;
698 }
699 
sk_nulls_node_init(struct hlist_nulls_node * node)700 static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
701 {
702 	node->pprev = NULL;
703 }
704 
__sk_del_node(struct sock * sk)705 static inline void __sk_del_node(struct sock *sk)
706 {
707 	__hlist_del(&sk->sk_node);
708 }
709 
710 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)711 static inline bool __sk_del_node_init(struct sock *sk)
712 {
713 	if (sk_hashed(sk)) {
714 		__sk_del_node(sk);
715 		sk_node_init(&sk->sk_node);
716 		return true;
717 	}
718 	return false;
719 }
720 
721 /* Grab socket reference count. This operation is valid only
722    when sk is ALREADY grabbed f.e. it is found in hash table
723    or a list and the lookup is made under lock preventing hash table
724    modifications.
725  */
726 
sock_hold(struct sock * sk)727 static __always_inline void sock_hold(struct sock *sk)
728 {
729 	refcount_inc(&sk->sk_refcnt);
730 }
731 
732 /* Ungrab socket in the context, which assumes that socket refcnt
733    cannot hit zero, f.e. it is true in context of any socketcall.
734  */
__sock_put(struct sock * sk)735 static __always_inline void __sock_put(struct sock *sk)
736 {
737 	refcount_dec(&sk->sk_refcnt);
738 }
739 
sk_del_node_init(struct sock * sk)740 static inline bool sk_del_node_init(struct sock *sk)
741 {
742 	bool rc = __sk_del_node_init(sk);
743 
744 	if (rc) {
745 		/* paranoid for a while -acme */
746 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
747 		__sock_put(sk);
748 	}
749 	return rc;
750 }
751 #define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
752 
__sk_nulls_del_node_init_rcu(struct sock * sk)753 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
754 {
755 	if (sk_hashed(sk)) {
756 		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
757 		return true;
758 	}
759 	return false;
760 }
761 
sk_nulls_del_node_init_rcu(struct sock * sk)762 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
763 {
764 	bool rc = __sk_nulls_del_node_init_rcu(sk);
765 
766 	if (rc) {
767 		/* paranoid for a while -acme */
768 		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
769 		__sock_put(sk);
770 	}
771 	return rc;
772 }
773 
__sk_add_node(struct sock * sk,struct hlist_head * list)774 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
775 {
776 	hlist_add_head(&sk->sk_node, list);
777 }
778 
sk_add_node(struct sock * sk,struct hlist_head * list)779 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
780 {
781 	sock_hold(sk);
782 	__sk_add_node(sk, list);
783 }
784 
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)785 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
786 {
787 	sock_hold(sk);
788 	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
789 	    sk->sk_family == AF_INET6)
790 		hlist_add_tail_rcu(&sk->sk_node, list);
791 	else
792 		hlist_add_head_rcu(&sk->sk_node, list);
793 }
794 
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)795 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
796 {
797 	sock_hold(sk);
798 	hlist_add_tail_rcu(&sk->sk_node, list);
799 }
800 
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)801 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
802 {
803 	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
804 }
805 
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)806 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
807 {
808 	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
809 }
810 
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)811 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
812 {
813 	sock_hold(sk);
814 	__sk_nulls_add_node_rcu(sk, list);
815 }
816 
__sk_del_bind_node(struct sock * sk)817 static inline void __sk_del_bind_node(struct sock *sk)
818 {
819 	__hlist_del(&sk->sk_bind_node);
820 }
821 
sk_add_bind_node(struct sock * sk,struct hlist_head * list)822 static inline void sk_add_bind_node(struct sock *sk,
823 					struct hlist_head *list)
824 {
825 	hlist_add_head(&sk->sk_bind_node, list);
826 }
827 
828 #define sk_for_each(__sk, list) \
829 	hlist_for_each_entry(__sk, list, sk_node)
830 #define sk_for_each_rcu(__sk, list) \
831 	hlist_for_each_entry_rcu(__sk, list, sk_node)
832 #define sk_nulls_for_each(__sk, node, list) \
833 	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
834 #define sk_nulls_for_each_rcu(__sk, node, list) \
835 	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
836 #define sk_for_each_from(__sk) \
837 	hlist_for_each_entry_from(__sk, sk_node)
838 #define sk_nulls_for_each_from(__sk, node) \
839 	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
840 		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
841 #define sk_for_each_safe(__sk, tmp, list) \
842 	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
843 #define sk_for_each_bound(__sk, list) \
844 	hlist_for_each_entry(__sk, list, sk_bind_node)
845 
846 /**
847  * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
848  * @tpos:	the type * to use as a loop cursor.
849  * @pos:	the &struct hlist_node to use as a loop cursor.
850  * @head:	the head for your list.
851  * @offset:	offset of hlist_node within the struct.
852  *
853  */
854 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
855 	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
856 	     pos != NULL &&						       \
857 		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
858 	     pos = rcu_dereference(hlist_next_rcu(pos)))
859 
sk_user_ns(struct sock * sk)860 static inline struct user_namespace *sk_user_ns(struct sock *sk)
861 {
862 	/* Careful only use this in a context where these parameters
863 	 * can not change and must all be valid, such as recvmsg from
864 	 * userspace.
865 	 */
866 	return sk->sk_socket->file->f_cred->user_ns;
867 }
868 
869 /* Sock flags */
870 enum sock_flags {
871 	SOCK_DEAD,
872 	SOCK_DONE,
873 	SOCK_URGINLINE,
874 	SOCK_KEEPOPEN,
875 	SOCK_LINGER,
876 	SOCK_DESTROY,
877 	SOCK_BROADCAST,
878 	SOCK_TIMESTAMP,
879 	SOCK_ZAPPED,
880 	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
881 	SOCK_DBG, /* %SO_DEBUG setting */
882 	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
883 	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
884 	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
885 	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
886 	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
887 	SOCK_FASYNC, /* fasync() active */
888 	SOCK_RXQ_OVFL,
889 	SOCK_ZEROCOPY, /* buffers from userspace */
890 	SOCK_WIFI_STATUS, /* push wifi status to userspace */
891 	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
892 		     * Will use last 4 bytes of packet sent from
893 		     * user-space instead.
894 		     */
895 	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
896 	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
897 	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
898 	SOCK_TXTIME,
899 	SOCK_XDP, /* XDP is attached */
900 	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
901 };
902 
903 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
904 
sock_copy_flags(struct sock * nsk,struct sock * osk)905 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
906 {
907 	nsk->sk_flags = osk->sk_flags;
908 }
909 
sock_set_flag(struct sock * sk,enum sock_flags flag)910 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
911 {
912 	__set_bit(flag, &sk->sk_flags);
913 }
914 
sock_reset_flag(struct sock * sk,enum sock_flags flag)915 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
916 {
917 	__clear_bit(flag, &sk->sk_flags);
918 }
919 
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)920 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
921 				     int valbool)
922 {
923 	if (valbool)
924 		sock_set_flag(sk, bit);
925 	else
926 		sock_reset_flag(sk, bit);
927 }
928 
sock_flag(const struct sock * sk,enum sock_flags flag)929 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
930 {
931 	return test_bit(flag, &sk->sk_flags);
932 }
933 
934 #ifdef CONFIG_NET
935 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)936 static inline int sk_memalloc_socks(void)
937 {
938 	return static_branch_unlikely(&memalloc_socks_key);
939 }
940 
941 void __receive_sock(struct file *file);
942 #else
943 
sk_memalloc_socks(void)944 static inline int sk_memalloc_socks(void)
945 {
946 	return 0;
947 }
948 
__receive_sock(struct file * file)949 static inline void __receive_sock(struct file *file)
950 { }
951 #endif
952 
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)953 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
954 {
955 	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
956 }
957 
sk_acceptq_removed(struct sock * sk)958 static inline void sk_acceptq_removed(struct sock *sk)
959 {
960 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
961 }
962 
sk_acceptq_added(struct sock * sk)963 static inline void sk_acceptq_added(struct sock *sk)
964 {
965 	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
966 }
967 
sk_acceptq_is_full(const struct sock * sk)968 static inline bool sk_acceptq_is_full(const struct sock *sk)
969 {
970 	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
971 }
972 
973 /*
974  * Compute minimal free write space needed to queue new packets.
975  */
sk_stream_min_wspace(const struct sock * sk)976 static inline int sk_stream_min_wspace(const struct sock *sk)
977 {
978 	return READ_ONCE(sk->sk_wmem_queued) >> 1;
979 }
980 
sk_stream_wspace(const struct sock * sk)981 static inline int sk_stream_wspace(const struct sock *sk)
982 {
983 	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
984 }
985 
sk_wmem_queued_add(struct sock * sk,int val)986 static inline void sk_wmem_queued_add(struct sock *sk, int val)
987 {
988 	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
989 }
990 
991 void sk_stream_write_space(struct sock *sk);
992 
993 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)994 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
995 {
996 	/* dont let skb dst not refcounted, we are going to leave rcu lock */
997 	skb_dst_force(skb);
998 
999 	if (!sk->sk_backlog.tail)
1000 		WRITE_ONCE(sk->sk_backlog.head, skb);
1001 	else
1002 		sk->sk_backlog.tail->next = skb;
1003 
1004 	WRITE_ONCE(sk->sk_backlog.tail, skb);
1005 	skb->next = NULL;
1006 }
1007 
1008 /*
1009  * Take into account size of receive queue and backlog queue
1010  * Do not take into account this skb truesize,
1011  * to allow even a single big packet to come.
1012  */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1013 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1014 {
1015 	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1016 
1017 	return qsize > limit;
1018 }
1019 
1020 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1021 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1022 					      unsigned int limit)
1023 {
1024 	if (sk_rcvqueues_full(sk, limit))
1025 		return -ENOBUFS;
1026 
1027 	/*
1028 	 * If the skb was allocated from pfmemalloc reserves, only
1029 	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1030 	 * helping free memory
1031 	 */
1032 	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1033 		return -ENOMEM;
1034 
1035 	__sk_add_backlog(sk, skb);
1036 	sk->sk_backlog.len += skb->truesize;
1037 	return 0;
1038 }
1039 
1040 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1041 
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1042 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1043 {
1044 	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1045 		return __sk_backlog_rcv(sk, skb);
1046 
1047 	return sk->sk_backlog_rcv(sk, skb);
1048 }
1049 
sk_incoming_cpu_update(struct sock * sk)1050 static inline void sk_incoming_cpu_update(struct sock *sk)
1051 {
1052 	int cpu = raw_smp_processor_id();
1053 
1054 	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1055 		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1056 }
1057 
sock_rps_record_flow_hash(__u32 hash)1058 static inline void sock_rps_record_flow_hash(__u32 hash)
1059 {
1060 #ifdef CONFIG_RPS
1061 	struct rps_sock_flow_table *sock_flow_table;
1062 
1063 	rcu_read_lock();
1064 	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1065 	rps_record_sock_flow(sock_flow_table, hash);
1066 	rcu_read_unlock();
1067 #endif
1068 }
1069 
sock_rps_record_flow(const struct sock * sk)1070 static inline void sock_rps_record_flow(const struct sock *sk)
1071 {
1072 #ifdef CONFIG_RPS
1073 	if (static_branch_unlikely(&rfs_needed)) {
1074 		/* Reading sk->sk_rxhash might incur an expensive cache line
1075 		 * miss.
1076 		 *
1077 		 * TCP_ESTABLISHED does cover almost all states where RFS
1078 		 * might be useful, and is cheaper [1] than testing :
1079 		 *	IPv4: inet_sk(sk)->inet_daddr
1080 		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1081 		 * OR	an additional socket flag
1082 		 * [1] : sk_state and sk_prot are in the same cache line.
1083 		 */
1084 		if (sk->sk_state == TCP_ESTABLISHED) {
1085 			/* This READ_ONCE() is paired with the WRITE_ONCE()
1086 			 * from sock_rps_save_rxhash() and sock_rps_reset_rxhash().
1087 			 */
1088 			sock_rps_record_flow_hash(READ_ONCE(sk->sk_rxhash));
1089 		}
1090 	}
1091 #endif
1092 }
1093 
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1094 static inline void sock_rps_save_rxhash(struct sock *sk,
1095 					const struct sk_buff *skb)
1096 {
1097 #ifdef CONFIG_RPS
1098 	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1099 	 * here, and another one in sock_rps_record_flow().
1100 	 */
1101 	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1102 		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1103 #endif
1104 }
1105 
sock_rps_reset_rxhash(struct sock * sk)1106 static inline void sock_rps_reset_rxhash(struct sock *sk)
1107 {
1108 #ifdef CONFIG_RPS
1109 	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1110 	WRITE_ONCE(sk->sk_rxhash, 0);
1111 #endif
1112 }
1113 
1114 #define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1115 	({	int __rc;						\
1116 		__sk->sk_wait_pending++;				\
1117 		release_sock(__sk);					\
1118 		__rc = __condition;					\
1119 		if (!__rc) {						\
1120 			*(__timeo) = wait_woken(__wait,			\
1121 						TASK_INTERRUPTIBLE,	\
1122 						*(__timeo));		\
1123 		}							\
1124 		sched_annotate_sleep();					\
1125 		lock_sock(__sk);					\
1126 		__sk->sk_wait_pending--;				\
1127 		__rc = __condition;					\
1128 		__rc;							\
1129 	})
1130 
1131 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1132 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1133 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1134 int sk_stream_error(struct sock *sk, int flags, int err);
1135 void sk_stream_kill_queues(struct sock *sk);
1136 void sk_set_memalloc(struct sock *sk);
1137 void sk_clear_memalloc(struct sock *sk);
1138 
1139 void __sk_flush_backlog(struct sock *sk);
1140 
sk_flush_backlog(struct sock * sk)1141 static inline bool sk_flush_backlog(struct sock *sk)
1142 {
1143 	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1144 		__sk_flush_backlog(sk);
1145 		return true;
1146 	}
1147 	return false;
1148 }
1149 
1150 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1151 
1152 struct request_sock_ops;
1153 struct timewait_sock_ops;
1154 struct inet_hashinfo;
1155 struct raw_hashinfo;
1156 struct smc_hashinfo;
1157 struct module;
1158 
1159 /*
1160  * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1161  * un-modified. Special care is taken when initializing object to zero.
1162  */
sk_prot_clear_nulls(struct sock * sk,int size)1163 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1164 {
1165 	if (offsetof(struct sock, sk_node.next) != 0)
1166 		memset(sk, 0, offsetof(struct sock, sk_node.next));
1167 	memset(&sk->sk_node.pprev, 0,
1168 	       size - offsetof(struct sock, sk_node.pprev));
1169 }
1170 
1171 /* Networking protocol blocks we attach to sockets.
1172  * socket layer -> transport layer interface
1173  */
1174 struct proto {
1175 	void			(*close)(struct sock *sk,
1176 					long timeout);
1177 	int			(*pre_connect)(struct sock *sk,
1178 					struct sockaddr *uaddr,
1179 					int addr_len);
1180 	int			(*connect)(struct sock *sk,
1181 					struct sockaddr *uaddr,
1182 					int addr_len);
1183 	int			(*disconnect)(struct sock *sk, int flags);
1184 
1185 	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1186 					  bool kern);
1187 
1188 	int			(*ioctl)(struct sock *sk, int cmd,
1189 					 unsigned long arg);
1190 	int			(*init)(struct sock *sk);
1191 	void			(*destroy)(struct sock *sk);
1192 	void			(*shutdown)(struct sock *sk, int how);
1193 	int			(*setsockopt)(struct sock *sk, int level,
1194 					int optname, sockptr_t optval,
1195 					unsigned int optlen);
1196 	int			(*getsockopt)(struct sock *sk, int level,
1197 					int optname, char __user *optval,
1198 					int __user *option);
1199 	void			(*keepalive)(struct sock *sk, int valbool);
1200 #ifdef CONFIG_COMPAT
1201 	int			(*compat_ioctl)(struct sock *sk,
1202 					unsigned int cmd, unsigned long arg);
1203 #endif
1204 	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1205 					   size_t len);
1206 	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1207 					   size_t len, int noblock, int flags,
1208 					   int *addr_len);
1209 	int			(*sendpage)(struct sock *sk, struct page *page,
1210 					int offset, size_t size, int flags);
1211 	int			(*bind)(struct sock *sk,
1212 					struct sockaddr *addr, int addr_len);
1213 	int			(*bind_add)(struct sock *sk,
1214 					struct sockaddr *addr, int addr_len);
1215 
1216 	int			(*backlog_rcv) (struct sock *sk,
1217 						struct sk_buff *skb);
1218 	bool			(*bpf_bypass_getsockopt)(int level,
1219 							 int optname);
1220 
1221 	void		(*release_cb)(struct sock *sk);
1222 
1223 	/* Keeping track of sk's, looking them up, and port selection methods. */
1224 	int			(*hash)(struct sock *sk);
1225 	void			(*unhash)(struct sock *sk);
1226 	void			(*rehash)(struct sock *sk);
1227 	int			(*get_port)(struct sock *sk, unsigned short snum);
1228 
1229 	/* Keeping track of sockets in use */
1230 #ifdef CONFIG_PROC_FS
1231 	unsigned int		inuse_idx;
1232 #endif
1233 
1234 	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1235 	bool			(*stream_memory_read)(const struct sock *sk);
1236 	/* Memory pressure */
1237 	void			(*enter_memory_pressure)(struct sock *sk);
1238 	void			(*leave_memory_pressure)(struct sock *sk);
1239 	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1240 	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1241 	/*
1242 	 * Pressure flag: try to collapse.
1243 	 * Technical note: it is used by multiple contexts non atomically.
1244 	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1245 	 * All the __sk_mem_schedule() is of this nature: accounting
1246 	 * is strict, actions are advisory and have some latency.
1247 	 */
1248 	unsigned long		*memory_pressure;
1249 	long			*sysctl_mem;
1250 
1251 	int			*sysctl_wmem;
1252 	int			*sysctl_rmem;
1253 	u32			sysctl_wmem_offset;
1254 	u32			sysctl_rmem_offset;
1255 
1256 	int			max_header;
1257 	bool			no_autobind;
1258 
1259 	struct kmem_cache	*slab;
1260 	unsigned int		obj_size;
1261 	slab_flags_t		slab_flags;
1262 	unsigned int		useroffset;	/* Usercopy region offset */
1263 	unsigned int		usersize;	/* Usercopy region size */
1264 
1265 	unsigned int __percpu	*orphan_count;
1266 
1267 	struct request_sock_ops	*rsk_prot;
1268 	struct timewait_sock_ops *twsk_prot;
1269 
1270 	union {
1271 		struct inet_hashinfo	*hashinfo;
1272 		struct udp_table	*udp_table;
1273 		struct raw_hashinfo	*raw_hash;
1274 		struct smc_hashinfo	*smc_hash;
1275 	} h;
1276 
1277 	struct module		*owner;
1278 
1279 	char			name[32];
1280 
1281 	struct list_head	node;
1282 #ifdef SOCK_REFCNT_DEBUG
1283 	atomic_t		socks;
1284 #endif
1285 	int			(*diag_destroy)(struct sock *sk, int err);
1286 } __randomize_layout;
1287 
1288 int proto_register(struct proto *prot, int alloc_slab);
1289 void proto_unregister(struct proto *prot);
1290 int sock_load_diag_module(int family, int protocol);
1291 
1292 #ifdef SOCK_REFCNT_DEBUG
sk_refcnt_debug_inc(struct sock * sk)1293 static inline void sk_refcnt_debug_inc(struct sock *sk)
1294 {
1295 	atomic_inc(&sk->sk_prot->socks);
1296 }
1297 
sk_refcnt_debug_dec(struct sock * sk)1298 static inline void sk_refcnt_debug_dec(struct sock *sk)
1299 {
1300 	atomic_dec(&sk->sk_prot->socks);
1301 	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1302 	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1303 }
1304 
sk_refcnt_debug_release(const struct sock * sk)1305 static inline void sk_refcnt_debug_release(const struct sock *sk)
1306 {
1307 	if (refcount_read(&sk->sk_refcnt) != 1)
1308 		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1309 		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1310 }
1311 #else /* SOCK_REFCNT_DEBUG */
1312 #define sk_refcnt_debug_inc(sk) do { } while (0)
1313 #define sk_refcnt_debug_dec(sk) do { } while (0)
1314 #define sk_refcnt_debug_release(sk) do { } while (0)
1315 #endif /* SOCK_REFCNT_DEBUG */
1316 
__sk_stream_memory_free(const struct sock * sk,int wake)1317 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1318 {
1319 	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1320 		return false;
1321 
1322 	return sk->sk_prot->stream_memory_free ?
1323 		sk->sk_prot->stream_memory_free(sk, wake) : true;
1324 }
1325 
sk_stream_memory_free(const struct sock * sk)1326 static inline bool sk_stream_memory_free(const struct sock *sk)
1327 {
1328 	return __sk_stream_memory_free(sk, 0);
1329 }
1330 
__sk_stream_is_writeable(const struct sock * sk,int wake)1331 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1332 {
1333 	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1334 	       __sk_stream_memory_free(sk, wake);
1335 }
1336 
sk_stream_is_writeable(const struct sock * sk)1337 static inline bool sk_stream_is_writeable(const struct sock *sk)
1338 {
1339 	return __sk_stream_is_writeable(sk, 0);
1340 }
1341 
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1342 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1343 					    struct cgroup *ancestor)
1344 {
1345 #ifdef CONFIG_SOCK_CGROUP_DATA
1346 	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1347 				    ancestor);
1348 #else
1349 	return -ENOTSUPP;
1350 #endif
1351 }
1352 
sk_has_memory_pressure(const struct sock * sk)1353 static inline bool sk_has_memory_pressure(const struct sock *sk)
1354 {
1355 	return sk->sk_prot->memory_pressure != NULL;
1356 }
1357 
sk_under_global_memory_pressure(const struct sock * sk)1358 static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1359 {
1360 	return sk->sk_prot->memory_pressure &&
1361 		!!READ_ONCE(*sk->sk_prot->memory_pressure);
1362 }
1363 
sk_under_memory_pressure(const struct sock * sk)1364 static inline bool sk_under_memory_pressure(const struct sock *sk)
1365 {
1366 	if (!sk->sk_prot->memory_pressure)
1367 		return false;
1368 
1369 	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1370 	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1371 		return true;
1372 
1373 	return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1374 }
1375 
1376 static inline long
sk_memory_allocated(const struct sock * sk)1377 sk_memory_allocated(const struct sock *sk)
1378 {
1379 	return atomic_long_read(sk->sk_prot->memory_allocated);
1380 }
1381 
1382 static inline long
sk_memory_allocated_add(struct sock * sk,int amt)1383 sk_memory_allocated_add(struct sock *sk, int amt)
1384 {
1385 	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1386 }
1387 
1388 static inline void
sk_memory_allocated_sub(struct sock * sk,int amt)1389 sk_memory_allocated_sub(struct sock *sk, int amt)
1390 {
1391 	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1392 }
1393 
sk_sockets_allocated_dec(struct sock * sk)1394 static inline void sk_sockets_allocated_dec(struct sock *sk)
1395 {
1396 	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1397 }
1398 
sk_sockets_allocated_inc(struct sock * sk)1399 static inline void sk_sockets_allocated_inc(struct sock *sk)
1400 {
1401 	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1402 }
1403 
1404 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1405 sk_sockets_allocated_read_positive(struct sock *sk)
1406 {
1407 	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1408 }
1409 
1410 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1411 proto_sockets_allocated_sum_positive(struct proto *prot)
1412 {
1413 	return percpu_counter_sum_positive(prot->sockets_allocated);
1414 }
1415 
1416 static inline long
proto_memory_allocated(struct proto * prot)1417 proto_memory_allocated(struct proto *prot)
1418 {
1419 	return atomic_long_read(prot->memory_allocated);
1420 }
1421 
1422 static inline bool
proto_memory_pressure(struct proto * prot)1423 proto_memory_pressure(struct proto *prot)
1424 {
1425 	if (!prot->memory_pressure)
1426 		return false;
1427 	return !!READ_ONCE(*prot->memory_pressure);
1428 }
1429 
1430 
1431 #ifdef CONFIG_PROC_FS
1432 /* Called with local bh disabled */
1433 void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1434 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1435 int sock_inuse_get(struct net *net);
1436 #else
sock_prot_inuse_add(struct net * net,struct proto * prot,int inc)1437 static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1438 		int inc)
1439 {
1440 }
1441 #endif
1442 
1443 
1444 /* With per-bucket locks this operation is not-atomic, so that
1445  * this version is not worse.
1446  */
__sk_prot_rehash(struct sock * sk)1447 static inline int __sk_prot_rehash(struct sock *sk)
1448 {
1449 	sk->sk_prot->unhash(sk);
1450 	return sk->sk_prot->hash(sk);
1451 }
1452 
1453 /* About 10 seconds */
1454 #define SOCK_DESTROY_TIME (10*HZ)
1455 
1456 /* Sockets 0-1023 can't be bound to unless you are superuser */
1457 #define PROT_SOCK	1024
1458 
1459 #define SHUTDOWN_MASK	3
1460 #define RCV_SHUTDOWN	1
1461 #define SEND_SHUTDOWN	2
1462 
1463 #define SOCK_SNDBUF_LOCK	1
1464 #define SOCK_RCVBUF_LOCK	2
1465 #define SOCK_BINDADDR_LOCK	4
1466 #define SOCK_BINDPORT_LOCK	8
1467 
1468 struct socket_alloc {
1469 	struct socket socket;
1470 	struct inode vfs_inode;
1471 };
1472 
SOCKET_I(struct inode * inode)1473 static inline struct socket *SOCKET_I(struct inode *inode)
1474 {
1475 	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1476 }
1477 
SOCK_INODE(struct socket * socket)1478 static inline struct inode *SOCK_INODE(struct socket *socket)
1479 {
1480 	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1481 }
1482 
1483 /*
1484  * Functions for memory accounting
1485  */
1486 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1487 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1488 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1489 void __sk_mem_reclaim(struct sock *sk, int amount);
1490 
1491 /* We used to have PAGE_SIZE here, but systems with 64KB pages
1492  * do not necessarily have 16x time more memory than 4KB ones.
1493  */
1494 #define SK_MEM_QUANTUM 4096
1495 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1496 #define SK_MEM_SEND	0
1497 #define SK_MEM_RECV	1
1498 
1499 /* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
sk_prot_mem_limits(const struct sock * sk,int index)1500 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1501 {
1502 	long val = READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1503 
1504 #if PAGE_SIZE > SK_MEM_QUANTUM
1505 	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1506 #elif PAGE_SIZE < SK_MEM_QUANTUM
1507 	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1508 #endif
1509 	return val;
1510 }
1511 
sk_mem_pages(int amt)1512 static inline int sk_mem_pages(int amt)
1513 {
1514 	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1515 }
1516 
sk_has_account(struct sock * sk)1517 static inline bool sk_has_account(struct sock *sk)
1518 {
1519 	/* return true if protocol supports memory accounting */
1520 	return !!sk->sk_prot->memory_allocated;
1521 }
1522 
sk_wmem_schedule(struct sock * sk,int size)1523 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1524 {
1525 	int delta;
1526 
1527 	if (!sk_has_account(sk))
1528 		return true;
1529 	delta = size - sk->sk_forward_alloc;
1530 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1531 }
1532 
1533 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1534 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1535 {
1536 	int delta;
1537 
1538 	if (!sk_has_account(sk))
1539 		return true;
1540 	delta = size - sk->sk_forward_alloc;
1541 	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1542 		skb_pfmemalloc(skb);
1543 }
1544 
sk_mem_reclaim(struct sock * sk)1545 static inline void sk_mem_reclaim(struct sock *sk)
1546 {
1547 	if (!sk_has_account(sk))
1548 		return;
1549 	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1550 		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1551 }
1552 
sk_mem_reclaim_partial(struct sock * sk)1553 static inline void sk_mem_reclaim_partial(struct sock *sk)
1554 {
1555 	if (!sk_has_account(sk))
1556 		return;
1557 	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1558 		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1559 }
1560 
sk_mem_charge(struct sock * sk,int size)1561 static inline void sk_mem_charge(struct sock *sk, int size)
1562 {
1563 	if (!sk_has_account(sk))
1564 		return;
1565 	sk->sk_forward_alloc -= size;
1566 }
1567 
sk_mem_uncharge(struct sock * sk,int size)1568 static inline void sk_mem_uncharge(struct sock *sk, int size)
1569 {
1570 	if (!sk_has_account(sk))
1571 		return;
1572 	sk->sk_forward_alloc += size;
1573 
1574 	/* Avoid a possible overflow.
1575 	 * TCP send queues can make this happen, if sk_mem_reclaim()
1576 	 * is not called and more than 2 GBytes are released at once.
1577 	 *
1578 	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1579 	 * no need to hold that much forward allocation anyway.
1580 	 */
1581 	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1582 		__sk_mem_reclaim(sk, 1 << 20);
1583 }
1584 
1585 DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
sk_wmem_free_skb(struct sock * sk,struct sk_buff * skb)1586 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1587 {
1588 	sk_wmem_queued_add(sk, -skb->truesize);
1589 	sk_mem_uncharge(sk, skb->truesize);
1590 	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1591 	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1592 		skb_ext_reset(skb);
1593 		skb_zcopy_clear(skb, true);
1594 		sk->sk_tx_skb_cache = skb;
1595 		return;
1596 	}
1597 	__kfree_skb(skb);
1598 }
1599 
sock_release_ownership(struct sock * sk)1600 static inline void sock_release_ownership(struct sock *sk)
1601 {
1602 	if (sk->sk_lock.owned) {
1603 		sk->sk_lock.owned = 0;
1604 
1605 		/* The sk_lock has mutex_unlock() semantics: */
1606 		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1607 	}
1608 }
1609 
1610 /*
1611  * Macro so as to not evaluate some arguments when
1612  * lockdep is not enabled.
1613  *
1614  * Mark both the sk_lock and the sk_lock.slock as a
1615  * per-address-family lock class.
1616  */
1617 #define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1618 do {									\
1619 	sk->sk_lock.owned = 0;						\
1620 	init_waitqueue_head(&sk->sk_lock.wq);				\
1621 	spin_lock_init(&(sk)->sk_lock.slock);				\
1622 	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1623 			sizeof((sk)->sk_lock));				\
1624 	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1625 				(skey), (sname));				\
1626 	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1627 } while (0)
1628 
1629 #ifdef CONFIG_LOCKDEP
lockdep_sock_is_held(const struct sock * sk)1630 static inline bool lockdep_sock_is_held(const struct sock *sk)
1631 {
1632 	return lockdep_is_held(&sk->sk_lock) ||
1633 	       lockdep_is_held(&sk->sk_lock.slock);
1634 }
1635 #endif
1636 
1637 void lock_sock_nested(struct sock *sk, int subclass);
1638 
lock_sock(struct sock * sk)1639 static inline void lock_sock(struct sock *sk)
1640 {
1641 	lock_sock_nested(sk, 0);
1642 }
1643 
1644 void __release_sock(struct sock *sk);
1645 void release_sock(struct sock *sk);
1646 
1647 /* BH context may only use the following locking interface. */
1648 #define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1649 #define bh_lock_sock_nested(__sk) \
1650 				spin_lock_nested(&((__sk)->sk_lock.slock), \
1651 				SINGLE_DEPTH_NESTING)
1652 #define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1653 
1654 bool lock_sock_fast(struct sock *sk);
1655 /**
1656  * unlock_sock_fast - complement of lock_sock_fast
1657  * @sk: socket
1658  * @slow: slow mode
1659  *
1660  * fast unlock socket for user context.
1661  * If slow mode is on, we call regular release_sock()
1662  */
unlock_sock_fast(struct sock * sk,bool slow)1663 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1664 {
1665 	if (slow)
1666 		release_sock(sk);
1667 	else
1668 		spin_unlock_bh(&sk->sk_lock.slock);
1669 }
1670 
1671 /* Used by processes to "lock" a socket state, so that
1672  * interrupts and bottom half handlers won't change it
1673  * from under us. It essentially blocks any incoming
1674  * packets, so that we won't get any new data or any
1675  * packets that change the state of the socket.
1676  *
1677  * While locked, BH processing will add new packets to
1678  * the backlog queue.  This queue is processed by the
1679  * owner of the socket lock right before it is released.
1680  *
1681  * Since ~2.3.5 it is also exclusive sleep lock serializing
1682  * accesses from user process context.
1683  */
1684 
sock_owned_by_me(const struct sock * sk)1685 static inline void sock_owned_by_me(const struct sock *sk)
1686 {
1687 #ifdef CONFIG_LOCKDEP
1688 	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1689 #endif
1690 }
1691 
sock_owned_by_user(const struct sock * sk)1692 static inline bool sock_owned_by_user(const struct sock *sk)
1693 {
1694 	sock_owned_by_me(sk);
1695 	return sk->sk_lock.owned;
1696 }
1697 
sock_owned_by_user_nocheck(const struct sock * sk)1698 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1699 {
1700 	return sk->sk_lock.owned;
1701 }
1702 
1703 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1704 static inline bool sock_allow_reclassification(const struct sock *csk)
1705 {
1706 	struct sock *sk = (struct sock *)csk;
1707 
1708 	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1709 }
1710 
1711 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1712 		      struct proto *prot, int kern);
1713 void sk_free(struct sock *sk);
1714 void sk_destruct(struct sock *sk);
1715 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1716 void sk_free_unlock_clone(struct sock *sk);
1717 
1718 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1719 			     gfp_t priority);
1720 void __sock_wfree(struct sk_buff *skb);
1721 void sock_wfree(struct sk_buff *skb);
1722 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1723 			     gfp_t priority);
1724 void skb_orphan_partial(struct sk_buff *skb);
1725 void sock_rfree(struct sk_buff *skb);
1726 void sock_efree(struct sk_buff *skb);
1727 #ifdef CONFIG_INET
1728 void sock_edemux(struct sk_buff *skb);
1729 void sock_pfree(struct sk_buff *skb);
1730 #else
1731 #define sock_edemux sock_efree
1732 #endif
1733 
1734 int sock_setsockopt(struct socket *sock, int level, int op,
1735 		    sockptr_t optval, unsigned int optlen);
1736 
1737 int sock_getsockopt(struct socket *sock, int level, int op,
1738 		    char __user *optval, int __user *optlen);
1739 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1740 		   bool timeval, bool time32);
1741 struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1742 				    int noblock, int *errcode);
1743 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1744 				     unsigned long data_len, int noblock,
1745 				     int *errcode, int max_page_order);
1746 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1747 void sock_kfree_s(struct sock *sk, void *mem, int size);
1748 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1749 void sk_send_sigurg(struct sock *sk);
1750 
1751 struct sockcm_cookie {
1752 	u64 transmit_time;
1753 	u32 mark;
1754 	u16 tsflags;
1755 };
1756 
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1757 static inline void sockcm_init(struct sockcm_cookie *sockc,
1758 			       const struct sock *sk)
1759 {
1760 	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1761 }
1762 
1763 int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1764 		     struct sockcm_cookie *sockc);
1765 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1766 		   struct sockcm_cookie *sockc);
1767 
1768 /*
1769  * Functions to fill in entries in struct proto_ops when a protocol
1770  * does not implement a particular function.
1771  */
1772 int sock_no_bind(struct socket *, struct sockaddr *, int);
1773 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1774 int sock_no_socketpair(struct socket *, struct socket *);
1775 int sock_no_accept(struct socket *, struct socket *, int, bool);
1776 int sock_no_getname(struct socket *, struct sockaddr *, int);
1777 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1778 int sock_no_listen(struct socket *, int);
1779 int sock_no_shutdown(struct socket *, int);
1780 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1781 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1782 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1783 int sock_no_mmap(struct file *file, struct socket *sock,
1784 		 struct vm_area_struct *vma);
1785 ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1786 			 size_t size, int flags);
1787 ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1788 				int offset, size_t size, int flags);
1789 
1790 /*
1791  * Functions to fill in entries in struct proto_ops when a protocol
1792  * uses the inet style.
1793  */
1794 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1795 				  char __user *optval, int __user *optlen);
1796 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1797 			int flags);
1798 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1799 			   sockptr_t optval, unsigned int optlen);
1800 
1801 void sk_common_release(struct sock *sk);
1802 
1803 /*
1804  *	Default socket callbacks and setup code
1805  */
1806 
1807 /* Initialise core socket variables using an explicit uid. */
1808 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1809 
1810 /* Initialise core socket variables.
1811  * Assumes struct socket *sock is embedded in a struct socket_alloc.
1812  */
1813 void sock_init_data(struct socket *sock, struct sock *sk);
1814 
1815 /*
1816  * Socket reference counting postulates.
1817  *
1818  * * Each user of socket SHOULD hold a reference count.
1819  * * Each access point to socket (an hash table bucket, reference from a list,
1820  *   running timer, skb in flight MUST hold a reference count.
1821  * * When reference count hits 0, it means it will never increase back.
1822  * * When reference count hits 0, it means that no references from
1823  *   outside exist to this socket and current process on current CPU
1824  *   is last user and may/should destroy this socket.
1825  * * sk_free is called from any context: process, BH, IRQ. When
1826  *   it is called, socket has no references from outside -> sk_free
1827  *   may release descendant resources allocated by the socket, but
1828  *   to the time when it is called, socket is NOT referenced by any
1829  *   hash tables, lists etc.
1830  * * Packets, delivered from outside (from network or from another process)
1831  *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1832  *   when they sit in queue. Otherwise, packets will leak to hole, when
1833  *   socket is looked up by one cpu and unhasing is made by another CPU.
1834  *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1835  *   (leak to backlog). Packet socket does all the processing inside
1836  *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1837  *   use separate SMP lock, so that they are prone too.
1838  */
1839 
1840 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1841 static inline void sock_put(struct sock *sk)
1842 {
1843 	if (refcount_dec_and_test(&sk->sk_refcnt))
1844 		sk_free(sk);
1845 }
1846 /* Generic version of sock_put(), dealing with all sockets
1847  * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1848  */
1849 void sock_gen_put(struct sock *sk);
1850 
1851 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1852 		     unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1853 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1854 				 const int nested)
1855 {
1856 	return __sk_receive_skb(sk, skb, nested, 1, true);
1857 }
1858 
sk_tx_queue_set(struct sock * sk,int tx_queue)1859 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1860 {
1861 	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1862 	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1863 		return;
1864 	sk->sk_tx_queue_mapping = tx_queue;
1865 }
1866 
1867 #define NO_QUEUE_MAPPING	USHRT_MAX
1868 
sk_tx_queue_clear(struct sock * sk)1869 static inline void sk_tx_queue_clear(struct sock *sk)
1870 {
1871 	sk->sk_tx_queue_mapping = NO_QUEUE_MAPPING;
1872 }
1873 
sk_tx_queue_get(const struct sock * sk)1874 static inline int sk_tx_queue_get(const struct sock *sk)
1875 {
1876 	if (sk && sk->sk_tx_queue_mapping != NO_QUEUE_MAPPING)
1877 		return sk->sk_tx_queue_mapping;
1878 
1879 	return -1;
1880 }
1881 
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)1882 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1883 {
1884 #ifdef CONFIG_XPS
1885 	if (skb_rx_queue_recorded(skb)) {
1886 		u16 rx_queue = skb_get_rx_queue(skb);
1887 
1888 		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1889 			return;
1890 
1891 		sk->sk_rx_queue_mapping = rx_queue;
1892 	}
1893 #endif
1894 }
1895 
sk_rx_queue_clear(struct sock * sk)1896 static inline void sk_rx_queue_clear(struct sock *sk)
1897 {
1898 #ifdef CONFIG_XPS
1899 	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1900 #endif
1901 }
1902 
1903 #ifdef CONFIG_XPS
sk_rx_queue_get(const struct sock * sk)1904 static inline int sk_rx_queue_get(const struct sock *sk)
1905 {
1906 	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1907 		return sk->sk_rx_queue_mapping;
1908 
1909 	return -1;
1910 }
1911 #endif
1912 
sk_set_socket(struct sock * sk,struct socket * sock)1913 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1914 {
1915 	sk->sk_socket = sock;
1916 }
1917 
sk_sleep(struct sock * sk)1918 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1919 {
1920 	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1921 	return &rcu_dereference_raw(sk->sk_wq)->wait;
1922 }
1923 /* Detach socket from process context.
1924  * Announce socket dead, detach it from wait queue and inode.
1925  * Note that parent inode held reference count on this struct sock,
1926  * we do not release it in this function, because protocol
1927  * probably wants some additional cleanups or even continuing
1928  * to work with this socket (TCP).
1929  */
sock_orphan(struct sock * sk)1930 static inline void sock_orphan(struct sock *sk)
1931 {
1932 	write_lock_bh(&sk->sk_callback_lock);
1933 	sock_set_flag(sk, SOCK_DEAD);
1934 	sk_set_socket(sk, NULL);
1935 	sk->sk_wq  = NULL;
1936 	write_unlock_bh(&sk->sk_callback_lock);
1937 }
1938 
sock_graft(struct sock * sk,struct socket * parent)1939 static inline void sock_graft(struct sock *sk, struct socket *parent)
1940 {
1941 	WARN_ON(parent->sk);
1942 	write_lock_bh(&sk->sk_callback_lock);
1943 	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1944 	parent->sk = sk;
1945 	sk_set_socket(sk, parent);
1946 	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1947 	security_sock_graft(sk, parent);
1948 	write_unlock_bh(&sk->sk_callback_lock);
1949 }
1950 
1951 kuid_t sock_i_uid(struct sock *sk);
1952 unsigned long __sock_i_ino(struct sock *sk);
1953 unsigned long sock_i_ino(struct sock *sk);
1954 
sock_net_uid(const struct net * net,const struct sock * sk)1955 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1956 {
1957 	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1958 }
1959 
net_tx_rndhash(void)1960 static inline u32 net_tx_rndhash(void)
1961 {
1962 	u32 v = prandom_u32();
1963 
1964 	return v ?: 1;
1965 }
1966 
sk_set_txhash(struct sock * sk)1967 static inline void sk_set_txhash(struct sock *sk)
1968 {
1969 	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1970 	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1971 }
1972 
sk_rethink_txhash(struct sock * sk)1973 static inline bool sk_rethink_txhash(struct sock *sk)
1974 {
1975 	if (sk->sk_txhash) {
1976 		sk_set_txhash(sk);
1977 		return true;
1978 	}
1979 	return false;
1980 }
1981 
1982 static inline struct dst_entry *
__sk_dst_get(struct sock * sk)1983 __sk_dst_get(struct sock *sk)
1984 {
1985 	return rcu_dereference_check(sk->sk_dst_cache,
1986 				     lockdep_sock_is_held(sk));
1987 }
1988 
1989 static inline struct dst_entry *
sk_dst_get(struct sock * sk)1990 sk_dst_get(struct sock *sk)
1991 {
1992 	struct dst_entry *dst;
1993 
1994 	rcu_read_lock();
1995 	dst = rcu_dereference(sk->sk_dst_cache);
1996 	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
1997 		dst = NULL;
1998 	rcu_read_unlock();
1999 	return dst;
2000 }
2001 
__dst_negative_advice(struct sock * sk)2002 static inline void __dst_negative_advice(struct sock *sk)
2003 {
2004 	struct dst_entry *ndst, *dst = __sk_dst_get(sk);
2005 
2006 	if (dst && dst->ops->negative_advice) {
2007 		ndst = dst->ops->negative_advice(dst);
2008 
2009 		if (ndst != dst) {
2010 			rcu_assign_pointer(sk->sk_dst_cache, ndst);
2011 			sk_tx_queue_clear(sk);
2012 			sk->sk_dst_pending_confirm = 0;
2013 		}
2014 	}
2015 }
2016 
dst_negative_advice(struct sock * sk)2017 static inline void dst_negative_advice(struct sock *sk)
2018 {
2019 	sk_rethink_txhash(sk);
2020 	__dst_negative_advice(sk);
2021 }
2022 
2023 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2024 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2025 {
2026 	struct dst_entry *old_dst;
2027 
2028 	sk_tx_queue_clear(sk);
2029 	sk->sk_dst_pending_confirm = 0;
2030 	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2031 					    lockdep_sock_is_held(sk));
2032 	rcu_assign_pointer(sk->sk_dst_cache, dst);
2033 	dst_release(old_dst);
2034 }
2035 
2036 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2037 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2038 {
2039 	struct dst_entry *old_dst;
2040 
2041 	sk_tx_queue_clear(sk);
2042 	sk->sk_dst_pending_confirm = 0;
2043 	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2044 	dst_release(old_dst);
2045 }
2046 
2047 static inline void
__sk_dst_reset(struct sock * sk)2048 __sk_dst_reset(struct sock *sk)
2049 {
2050 	__sk_dst_set(sk, NULL);
2051 }
2052 
2053 static inline void
sk_dst_reset(struct sock * sk)2054 sk_dst_reset(struct sock *sk)
2055 {
2056 	sk_dst_set(sk, NULL);
2057 }
2058 
2059 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2060 
2061 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2062 
sk_dst_confirm(struct sock * sk)2063 static inline void sk_dst_confirm(struct sock *sk)
2064 {
2065 	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2066 		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2067 }
2068 
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2069 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2070 {
2071 	if (skb_get_dst_pending_confirm(skb)) {
2072 		struct sock *sk = skb->sk;
2073 		unsigned long now = jiffies;
2074 
2075 		/* avoid dirtying neighbour */
2076 		if (READ_ONCE(n->confirmed) != now)
2077 			WRITE_ONCE(n->confirmed, now);
2078 		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2079 			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2080 	}
2081 }
2082 
2083 bool sk_mc_loop(struct sock *sk);
2084 
sk_can_gso(const struct sock * sk)2085 static inline bool sk_can_gso(const struct sock *sk)
2086 {
2087 	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2088 }
2089 
2090 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2091 
sk_nocaps_add(struct sock * sk,netdev_features_t flags)2092 static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2093 {
2094 	sk->sk_route_nocaps |= flags;
2095 	sk->sk_route_caps &= ~flags;
2096 }
2097 
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2098 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2099 					   struct iov_iter *from, char *to,
2100 					   int copy, int offset)
2101 {
2102 	if (skb->ip_summed == CHECKSUM_NONE) {
2103 		__wsum csum = 0;
2104 		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2105 			return -EFAULT;
2106 		skb->csum = csum_block_add(skb->csum, csum, offset);
2107 	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2108 		if (!copy_from_iter_full_nocache(to, copy, from))
2109 			return -EFAULT;
2110 	} else if (!copy_from_iter_full(to, copy, from))
2111 		return -EFAULT;
2112 
2113 	return 0;
2114 }
2115 
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2116 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2117 				       struct iov_iter *from, int copy)
2118 {
2119 	int err, offset = skb->len;
2120 
2121 	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2122 				       copy, offset);
2123 	if (err)
2124 		__skb_trim(skb, offset);
2125 
2126 	return err;
2127 }
2128 
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2129 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2130 					   struct sk_buff *skb,
2131 					   struct page *page,
2132 					   int off, int copy)
2133 {
2134 	int err;
2135 
2136 	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2137 				       copy, skb->len);
2138 	if (err)
2139 		return err;
2140 
2141 	skb->len	     += copy;
2142 	skb->data_len	     += copy;
2143 	skb->truesize	     += copy;
2144 	sk_wmem_queued_add(sk, copy);
2145 	sk_mem_charge(sk, copy);
2146 	return 0;
2147 }
2148 
2149 /**
2150  * sk_wmem_alloc_get - returns write allocations
2151  * @sk: socket
2152  *
2153  * Return: sk_wmem_alloc minus initial offset of one
2154  */
sk_wmem_alloc_get(const struct sock * sk)2155 static inline int sk_wmem_alloc_get(const struct sock *sk)
2156 {
2157 	return refcount_read(&sk->sk_wmem_alloc) - 1;
2158 }
2159 
2160 /**
2161  * sk_rmem_alloc_get - returns read allocations
2162  * @sk: socket
2163  *
2164  * Return: sk_rmem_alloc
2165  */
sk_rmem_alloc_get(const struct sock * sk)2166 static inline int sk_rmem_alloc_get(const struct sock *sk)
2167 {
2168 	return atomic_read(&sk->sk_rmem_alloc);
2169 }
2170 
2171 /**
2172  * sk_has_allocations - check if allocations are outstanding
2173  * @sk: socket
2174  *
2175  * Return: true if socket has write or read allocations
2176  */
sk_has_allocations(const struct sock * sk)2177 static inline bool sk_has_allocations(const struct sock *sk)
2178 {
2179 	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2180 }
2181 
2182 /**
2183  * skwq_has_sleeper - check if there are any waiting processes
2184  * @wq: struct socket_wq
2185  *
2186  * Return: true if socket_wq has waiting processes
2187  *
2188  * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2189  * barrier call. They were added due to the race found within the tcp code.
2190  *
2191  * Consider following tcp code paths::
2192  *
2193  *   CPU1                CPU2
2194  *   sys_select          receive packet
2195  *   ...                 ...
2196  *   __add_wait_queue    update tp->rcv_nxt
2197  *   ...                 ...
2198  *   tp->rcv_nxt check   sock_def_readable
2199  *   ...                 {
2200  *   schedule               rcu_read_lock();
2201  *                          wq = rcu_dereference(sk->sk_wq);
2202  *                          if (wq && waitqueue_active(&wq->wait))
2203  *                              wake_up_interruptible(&wq->wait)
2204  *                          ...
2205  *                       }
2206  *
2207  * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2208  * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2209  * could then endup calling schedule and sleep forever if there are no more
2210  * data on the socket.
2211  *
2212  */
skwq_has_sleeper(struct socket_wq * wq)2213 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2214 {
2215 	return wq && wq_has_sleeper(&wq->wait);
2216 }
2217 
2218 /**
2219  * sock_poll_wait - place memory barrier behind the poll_wait call.
2220  * @filp:           file
2221  * @sock:           socket to wait on
2222  * @p:              poll_table
2223  *
2224  * See the comments in the wq_has_sleeper function.
2225  */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2226 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2227 				  poll_table *p)
2228 {
2229 	if (!poll_does_not_wait(p)) {
2230 		poll_wait(filp, &sock->wq.wait, p);
2231 		/* We need to be sure we are in sync with the
2232 		 * socket flags modification.
2233 		 *
2234 		 * This memory barrier is paired in the wq_has_sleeper.
2235 		 */
2236 		smp_mb();
2237 	}
2238 }
2239 
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2240 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2241 {
2242 	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2243 	u32 txhash = READ_ONCE(sk->sk_txhash);
2244 
2245 	if (txhash) {
2246 		skb->l4_hash = 1;
2247 		skb->hash = txhash;
2248 	}
2249 }
2250 
2251 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2252 
2253 /*
2254  *	Queue a received datagram if it will fit. Stream and sequenced
2255  *	protocols can't normally use this as they need to fit buffers in
2256  *	and play with them.
2257  *
2258  *	Inlined as it's very short and called for pretty much every
2259  *	packet ever received.
2260  */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2261 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2262 {
2263 	skb_orphan(skb);
2264 	skb->sk = sk;
2265 	skb->destructor = sock_rfree;
2266 	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2267 	sk_mem_charge(sk, skb->truesize);
2268 }
2269 
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2270 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2271 {
2272 	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2273 		skb_orphan(skb);
2274 		skb->destructor = sock_efree;
2275 		skb->sk = sk;
2276 		return true;
2277 	}
2278 	return false;
2279 }
2280 
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2281 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2282 {
2283 	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2284 	if (skb) {
2285 		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2286 			skb_set_owner_r(skb, sk);
2287 			return skb;
2288 		}
2289 		__kfree_skb(skb);
2290 	}
2291 	return NULL;
2292 }
2293 
2294 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2295 		    unsigned long expires);
2296 
2297 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2298 
2299 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2300 
2301 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2302 			struct sk_buff *skb, unsigned int flags,
2303 			void (*destructor)(struct sock *sk,
2304 					   struct sk_buff *skb));
2305 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2306 int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2307 
2308 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2309 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2310 
2311 /*
2312  *	Recover an error report and clear atomically
2313  */
2314 
sock_error(struct sock * sk)2315 static inline int sock_error(struct sock *sk)
2316 {
2317 	int err;
2318 
2319 	/* Avoid an atomic operation for the common case.
2320 	 * This is racy since another cpu/thread can change sk_err under us.
2321 	 */
2322 	if (likely(data_race(!sk->sk_err)))
2323 		return 0;
2324 
2325 	err = xchg(&sk->sk_err, 0);
2326 	return -err;
2327 }
2328 
sock_wspace(struct sock * sk)2329 static inline unsigned long sock_wspace(struct sock *sk)
2330 {
2331 	int amt = 0;
2332 
2333 	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2334 		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2335 		if (amt < 0)
2336 			amt = 0;
2337 	}
2338 	return amt;
2339 }
2340 
2341 /* Note:
2342  *  We use sk->sk_wq_raw, from contexts knowing this
2343  *  pointer is not NULL and cannot disappear/change.
2344  */
sk_set_bit(int nr,struct sock * sk)2345 static inline void sk_set_bit(int nr, struct sock *sk)
2346 {
2347 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2348 	    !sock_flag(sk, SOCK_FASYNC))
2349 		return;
2350 
2351 	set_bit(nr, &sk->sk_wq_raw->flags);
2352 }
2353 
sk_clear_bit(int nr,struct sock * sk)2354 static inline void sk_clear_bit(int nr, struct sock *sk)
2355 {
2356 	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2357 	    !sock_flag(sk, SOCK_FASYNC))
2358 		return;
2359 
2360 	clear_bit(nr, &sk->sk_wq_raw->flags);
2361 }
2362 
sk_wake_async(const struct sock * sk,int how,int band)2363 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2364 {
2365 	if (sock_flag(sk, SOCK_FASYNC)) {
2366 		rcu_read_lock();
2367 		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2368 		rcu_read_unlock();
2369 	}
2370 }
2371 
2372 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2373  * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2374  * Note: for send buffers, TCP works better if we can build two skbs at
2375  * minimum.
2376  */
2377 #define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2378 
2379 #define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2380 #define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2381 
sk_stream_moderate_sndbuf(struct sock * sk)2382 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2383 {
2384 	u32 val;
2385 
2386 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2387 		return;
2388 
2389 	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2390 
2391 	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2392 }
2393 
2394 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2395 				    bool force_schedule);
2396 
2397 /**
2398  * sk_page_frag - return an appropriate page_frag
2399  * @sk: socket
2400  *
2401  * Use the per task page_frag instead of the per socket one for
2402  * optimization when we know that we're in process context and own
2403  * everything that's associated with %current.
2404  *
2405  * Both direct reclaim and page faults can nest inside other
2406  * socket operations and end up recursing into sk_page_frag()
2407  * while it's already in use: explicitly avoid task page_frag
2408  * usage if the caller is potentially doing any of them.
2409  * This assumes that page fault handlers use the GFP_NOFS flags.
2410  *
2411  * Return: a per task page_frag if context allows that,
2412  * otherwise a per socket one.
2413  */
sk_page_frag(struct sock * sk)2414 static inline struct page_frag *sk_page_frag(struct sock *sk)
2415 {
2416 	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2417 	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2418 		return &current->task_frag;
2419 
2420 	return &sk->sk_frag;
2421 }
2422 
2423 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2424 
2425 /*
2426  *	Default write policy as shown to user space via poll/select/SIGIO
2427  */
sock_writeable(const struct sock * sk)2428 static inline bool sock_writeable(const struct sock *sk)
2429 {
2430 	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2431 }
2432 
gfp_any(void)2433 static inline gfp_t gfp_any(void)
2434 {
2435 	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2436 }
2437 
sock_rcvtimeo(const struct sock * sk,bool noblock)2438 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2439 {
2440 	return noblock ? 0 : sk->sk_rcvtimeo;
2441 }
2442 
sock_sndtimeo(const struct sock * sk,bool noblock)2443 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2444 {
2445 	return noblock ? 0 : sk->sk_sndtimeo;
2446 }
2447 
sock_rcvlowat(const struct sock * sk,int waitall,int len)2448 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2449 {
2450 	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2451 
2452 	return v ?: 1;
2453 }
2454 
2455 /* Alas, with timeout socket operations are not restartable.
2456  * Compare this to poll().
2457  */
sock_intr_errno(long timeo)2458 static inline int sock_intr_errno(long timeo)
2459 {
2460 	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2461 }
2462 
2463 struct sock_skb_cb {
2464 	u32 dropcount;
2465 };
2466 
2467 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2468  * using skb->cb[] would keep using it directly and utilize its
2469  * alignement guarantee.
2470  */
2471 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2472 			    sizeof(struct sock_skb_cb)))
2473 
2474 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2475 			    SOCK_SKB_CB_OFFSET))
2476 
2477 #define sock_skb_cb_check_size(size) \
2478 	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2479 
2480 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2481 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2482 {
2483 	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2484 						atomic_read(&sk->sk_drops) : 0;
2485 }
2486 
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2487 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2488 {
2489 	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2490 
2491 	atomic_add(segs, &sk->sk_drops);
2492 }
2493 
sock_read_timestamp(struct sock * sk)2494 static inline ktime_t sock_read_timestamp(struct sock *sk)
2495 {
2496 #if BITS_PER_LONG==32
2497 	unsigned int seq;
2498 	ktime_t kt;
2499 
2500 	do {
2501 		seq = read_seqbegin(&sk->sk_stamp_seq);
2502 		kt = sk->sk_stamp;
2503 	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2504 
2505 	return kt;
2506 #else
2507 	return READ_ONCE(sk->sk_stamp);
2508 #endif
2509 }
2510 
sock_write_timestamp(struct sock * sk,ktime_t kt)2511 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2512 {
2513 #if BITS_PER_LONG==32
2514 	write_seqlock(&sk->sk_stamp_seq);
2515 	sk->sk_stamp = kt;
2516 	write_sequnlock(&sk->sk_stamp_seq);
2517 #else
2518 	WRITE_ONCE(sk->sk_stamp, kt);
2519 #endif
2520 }
2521 
2522 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2523 			   struct sk_buff *skb);
2524 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2525 			     struct sk_buff *skb);
2526 
2527 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2528 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2529 {
2530 	ktime_t kt = skb->tstamp;
2531 	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2532 
2533 	/*
2534 	 * generate control messages if
2535 	 * - receive time stamping in software requested
2536 	 * - software time stamp available and wanted
2537 	 * - hardware time stamps available and wanted
2538 	 */
2539 	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2540 	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2541 	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2542 	    (hwtstamps->hwtstamp &&
2543 	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2544 		__sock_recv_timestamp(msg, sk, skb);
2545 	else
2546 		sock_write_timestamp(sk, kt);
2547 
2548 	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2549 		__sock_recv_wifi_status(msg, sk, skb);
2550 }
2551 
2552 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2553 			      struct sk_buff *skb);
2554 
2555 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_ts_and_drops(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2556 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2557 					  struct sk_buff *skb)
2558 {
2559 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2560 			   (1UL << SOCK_RCVTSTAMP))
2561 #define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2562 			   SOF_TIMESTAMPING_RAW_HARDWARE)
2563 
2564 	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2565 		__sock_recv_ts_and_drops(msg, sk, skb);
2566 	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2567 		sock_write_timestamp(sk, skb->tstamp);
2568 	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2569 		sock_write_timestamp(sk, 0);
2570 }
2571 
2572 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2573 
2574 /**
2575  * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2576  * @sk:		socket sending this packet
2577  * @tsflags:	timestamping flags to use
2578  * @tx_flags:	completed with instructions for time stamping
2579  * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2580  *
2581  * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2582  */
_sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags,__u32 * tskey)2583 static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2584 				      __u8 *tx_flags, __u32 *tskey)
2585 {
2586 	if (unlikely(tsflags)) {
2587 		__sock_tx_timestamp(tsflags, tx_flags);
2588 		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2589 		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2590 			*tskey = sk->sk_tskey++;
2591 	}
2592 	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2593 		*tx_flags |= SKBTX_WIFI_STATUS;
2594 }
2595 
sock_tx_timestamp(struct sock * sk,__u16 tsflags,__u8 * tx_flags)2596 static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2597 				     __u8 *tx_flags)
2598 {
2599 	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2600 }
2601 
skb_setup_tx_timestamp(struct sk_buff * skb,__u16 tsflags)2602 static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2603 {
2604 	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2605 			   &skb_shinfo(skb)->tskey);
2606 }
2607 
2608 DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2609 /**
2610  * sk_eat_skb - Release a skb if it is no longer needed
2611  * @sk: socket to eat this skb from
2612  * @skb: socket buffer to eat
2613  *
2614  * This routine must be called with interrupts disabled or with the socket
2615  * locked so that the sk_buff queue operation is ok.
2616 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2617 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2618 {
2619 	__skb_unlink(skb, &sk->sk_receive_queue);
2620 	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2621 	    !sk->sk_rx_skb_cache) {
2622 		sk->sk_rx_skb_cache = skb;
2623 		skb_orphan(skb);
2624 		return;
2625 	}
2626 	__kfree_skb(skb);
2627 }
2628 
2629 static inline
sock_net(const struct sock * sk)2630 struct net *sock_net(const struct sock *sk)
2631 {
2632 	return read_pnet(&sk->sk_net);
2633 }
2634 
2635 static inline
sock_net_set(struct sock * sk,struct net * net)2636 void sock_net_set(struct sock *sk, struct net *net)
2637 {
2638 	write_pnet(&sk->sk_net, net);
2639 }
2640 
2641 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2642 skb_sk_is_prefetched(struct sk_buff *skb)
2643 {
2644 #ifdef CONFIG_INET
2645 	return skb->destructor == sock_pfree;
2646 #else
2647 	return false;
2648 #endif /* CONFIG_INET */
2649 }
2650 
2651 /* This helper checks if a socket is a full socket,
2652  * ie _not_ a timewait or request socket.
2653  */
sk_fullsock(const struct sock * sk)2654 static inline bool sk_fullsock(const struct sock *sk)
2655 {
2656 	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2657 }
2658 
2659 static inline bool
sk_is_refcounted(struct sock * sk)2660 sk_is_refcounted(struct sock *sk)
2661 {
2662 	/* Only full sockets have sk->sk_flags. */
2663 	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2664 }
2665 
2666 /**
2667  * skb_steal_sock - steal a socket from an sk_buff
2668  * @skb: sk_buff to steal the socket from
2669  * @refcounted: is set to true if the socket is reference-counted
2670  */
2671 static inline struct sock *
skb_steal_sock(struct sk_buff * skb,bool * refcounted)2672 skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2673 {
2674 	if (skb->sk) {
2675 		struct sock *sk = skb->sk;
2676 
2677 		*refcounted = true;
2678 		if (skb_sk_is_prefetched(skb))
2679 			*refcounted = sk_is_refcounted(sk);
2680 		skb->destructor = NULL;
2681 		skb->sk = NULL;
2682 		return sk;
2683 	}
2684 	*refcounted = false;
2685 	return NULL;
2686 }
2687 
2688 /* Checks if this SKB belongs to an HW offloaded socket
2689  * and whether any SW fallbacks are required based on dev.
2690  * Check decrypted mark in case skb_orphan() cleared socket.
2691  */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2692 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2693 						   struct net_device *dev)
2694 {
2695 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2696 	struct sock *sk = skb->sk;
2697 
2698 	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2699 		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2700 #ifdef CONFIG_TLS_DEVICE
2701 	} else if (unlikely(skb->decrypted)) {
2702 		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2703 		kfree_skb(skb);
2704 		skb = NULL;
2705 #endif
2706 	}
2707 #endif
2708 
2709 	return skb;
2710 }
2711 
2712 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2713  * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2714  */
sk_listener(const struct sock * sk)2715 static inline bool sk_listener(const struct sock *sk)
2716 {
2717 	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2718 }
2719 
2720 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2721 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2722 		       int type);
2723 
2724 bool sk_ns_capable(const struct sock *sk,
2725 		   struct user_namespace *user_ns, int cap);
2726 bool sk_capable(const struct sock *sk, int cap);
2727 bool sk_net_capable(const struct sock *sk, int cap);
2728 
2729 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2730 
2731 /* Take into consideration the size of the struct sk_buff overhead in the
2732  * determination of these values, since that is non-constant across
2733  * platforms.  This makes socket queueing behavior and performance
2734  * not depend upon such differences.
2735  */
2736 #define _SK_MEM_PACKETS		256
2737 #define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2738 #define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2739 #define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2740 
2741 extern __u32 sysctl_wmem_max;
2742 extern __u32 sysctl_rmem_max;
2743 
2744 extern int sysctl_tstamp_allow_data;
2745 extern int sysctl_optmem_max;
2746 
2747 extern __u32 sysctl_wmem_default;
2748 extern __u32 sysctl_rmem_default;
2749 
2750 #define SKB_FRAG_PAGE_ORDER	get_order(32768)
2751 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2752 
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2753 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2754 {
2755 	/* Does this proto have per netns sysctl_wmem ? */
2756 	if (proto->sysctl_wmem_offset)
2757 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2758 
2759 	return READ_ONCE(*proto->sysctl_wmem);
2760 }
2761 
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2762 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2763 {
2764 	/* Does this proto have per netns sysctl_rmem ? */
2765 	if (proto->sysctl_rmem_offset)
2766 		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2767 
2768 	return READ_ONCE(*proto->sysctl_rmem);
2769 }
2770 
2771 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2772  * Some wifi drivers need to tweak it to get more chunks.
2773  * They can use this helper from their ndo_start_xmit()
2774  */
sk_pacing_shift_update(struct sock * sk,int val)2775 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2776 {
2777 	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2778 		return;
2779 	WRITE_ONCE(sk->sk_pacing_shift, val);
2780 }
2781 
2782 /* if a socket is bound to a device, check that the given device
2783  * index is either the same or that the socket is bound to an L3
2784  * master device and the given device index is also enslaved to
2785  * that L3 master
2786  */
sk_dev_equal_l3scope(struct sock * sk,int dif)2787 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2788 {
2789 	int mdif;
2790 
2791 	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2792 		return true;
2793 
2794 	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2795 	if (mdif && mdif == sk->sk_bound_dev_if)
2796 		return true;
2797 
2798 	return false;
2799 }
2800 
2801 void sock_def_readable(struct sock *sk);
2802 
2803 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2804 void sock_enable_timestamps(struct sock *sk);
2805 void sock_no_linger(struct sock *sk);
2806 void sock_set_keepalive(struct sock *sk);
2807 void sock_set_priority(struct sock *sk, u32 priority);
2808 void sock_set_rcvbuf(struct sock *sk, int val);
2809 void sock_set_mark(struct sock *sk, u32 val);
2810 void sock_set_reuseaddr(struct sock *sk);
2811 void sock_set_reuseport(struct sock *sk);
2812 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2813 
2814 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2815 
2816 #endif	/* _SOCK_H */
2817