• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/exec.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 /*
9  * #!-checking implemented by tytso.
10  */
11 /*
12  * Demand-loading implemented 01.12.91 - no need to read anything but
13  * the header into memory. The inode of the executable is put into
14  * "current->executable", and page faults do the actual loading. Clean.
15  *
16  * Once more I can proudly say that linux stood up to being changed: it
17  * was less than 2 hours work to get demand-loading completely implemented.
18  *
19  * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20  * current->executable is only used by the procfs.  This allows a dispatch
21  * table to check for several different types  of binary formats.  We keep
22  * trying until we recognize the file or we run out of supported binary
23  * formats.
24  */
25 
26 #include <linux/kernel_read_file.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/fdtable.h>
30 #include <linux/mm.h>
31 #include <linux/vmacache.h>
32 #include <linux/stat.h>
33 #include <linux/fcntl.h>
34 #include <linux/swap.h>
35 #include <linux/string.h>
36 #include <linux/init.h>
37 #include <linux/sched/mm.h>
38 #include <linux/sched/coredump.h>
39 #include <linux/sched/signal.h>
40 #include <linux/sched/numa_balancing.h>
41 #include <linux/sched/task.h>
42 #include <linux/pagemap.h>
43 #include <linux/perf_event.h>
44 #include <linux/highmem.h>
45 #include <linux/spinlock.h>
46 #include <linux/key.h>
47 #include <linux/personality.h>
48 #include <linux/binfmts.h>
49 #include <linux/utsname.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/module.h>
52 #include <linux/namei.h>
53 #include <linux/mount.h>
54 #include <linux/security.h>
55 #include <linux/syscalls.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/audit.h>
59 #include <linux/tracehook.h>
60 #include <linux/kmod.h>
61 #include <linux/fsnotify.h>
62 #include <linux/fs_struct.h>
63 #include <linux/oom.h>
64 #include <linux/compat.h>
65 #include <linux/vmalloc.h>
66 #include <linux/io_uring.h>
67 
68 #include <linux/uaccess.h>
69 #include <asm/mmu_context.h>
70 #include <asm/tlb.h>
71 
72 #include <trace/events/task.h>
73 #include "internal.h"
74 
75 #include <trace/events/sched.h>
76 #include <linux/hck/lite_hck_ced.h>
77 
78 static int bprm_creds_from_file(struct linux_binprm *bprm);
79 
80 int suid_dumpable = 0;
81 
82 static LIST_HEAD(formats);
83 static DEFINE_RWLOCK(binfmt_lock);
84 
__register_binfmt(struct linux_binfmt * fmt,int insert)85 void __register_binfmt(struct linux_binfmt * fmt, int insert)
86 {
87 	BUG_ON(!fmt);
88 	if (WARN_ON(!fmt->load_binary))
89 		return;
90 	write_lock(&binfmt_lock);
91 	insert ? list_add(&fmt->lh, &formats) :
92 		 list_add_tail(&fmt->lh, &formats);
93 	write_unlock(&binfmt_lock);
94 }
95 
96 EXPORT_SYMBOL(__register_binfmt);
97 
unregister_binfmt(struct linux_binfmt * fmt)98 void unregister_binfmt(struct linux_binfmt * fmt)
99 {
100 	write_lock(&binfmt_lock);
101 	list_del(&fmt->lh);
102 	write_unlock(&binfmt_lock);
103 }
104 
105 EXPORT_SYMBOL(unregister_binfmt);
106 
put_binfmt(struct linux_binfmt * fmt)107 static inline void put_binfmt(struct linux_binfmt * fmt)
108 {
109 	module_put(fmt->module);
110 }
111 
path_noexec(const struct path * path)112 bool path_noexec(const struct path *path)
113 {
114 	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115 	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116 }
117 
118 #ifdef CONFIG_USELIB
119 /*
120  * Note that a shared library must be both readable and executable due to
121  * security reasons.
122  *
123  * Also note that we take the address to load from from the file itself.
124  */
SYSCALL_DEFINE1(uselib,const char __user *,library)125 SYSCALL_DEFINE1(uselib, const char __user *, library)
126 {
127 	struct linux_binfmt *fmt;
128 	struct file *file;
129 	struct filename *tmp = getname(library);
130 	int error = PTR_ERR(tmp);
131 	static const struct open_flags uselib_flags = {
132 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
133 		.acc_mode = MAY_READ | MAY_EXEC,
134 		.intent = LOOKUP_OPEN,
135 		.lookup_flags = LOOKUP_FOLLOW,
136 	};
137 
138 	if (IS_ERR(tmp))
139 		goto out;
140 
141 	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142 	putname(tmp);
143 	error = PTR_ERR(file);
144 	if (IS_ERR(file))
145 		goto out;
146 
147 	/*
148 	 * may_open() has already checked for this, so it should be
149 	 * impossible to trip now. But we need to be extra cautious
150 	 * and check again at the very end too.
151 	 */
152 	error = -EACCES;
153 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154 			 path_noexec(&file->f_path)))
155 		goto exit;
156 
157 	fsnotify_open(file);
158 
159 	error = -ENOEXEC;
160 
161 	read_lock(&binfmt_lock);
162 	list_for_each_entry(fmt, &formats, lh) {
163 		if (!fmt->load_shlib)
164 			continue;
165 		if (!try_module_get(fmt->module))
166 			continue;
167 		read_unlock(&binfmt_lock);
168 		error = fmt->load_shlib(file);
169 		read_lock(&binfmt_lock);
170 		put_binfmt(fmt);
171 		if (error != -ENOEXEC)
172 			break;
173 	}
174 	read_unlock(&binfmt_lock);
175 exit:
176 	fput(file);
177 out:
178   	return error;
179 }
180 #endif /* #ifdef CONFIG_USELIB */
181 
182 #ifdef CONFIG_MMU
183 /*
184  * The nascent bprm->mm is not visible until exec_mmap() but it can
185  * use a lot of memory, account these pages in current->mm temporary
186  * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
187  * change the counter back via acct_arg_size(0).
188  */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)189 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
190 {
191 	struct mm_struct *mm = current->mm;
192 	long diff = (long)(pages - bprm->vma_pages);
193 
194 	if (!mm || !diff)
195 		return;
196 
197 	bprm->vma_pages = pages;
198 	add_mm_counter(mm, MM_ANONPAGES, diff);
199 }
200 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)201 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
202 		int write)
203 {
204 	struct page *page;
205 	int ret;
206 	unsigned int gup_flags = FOLL_FORCE;
207 
208 #ifdef CONFIG_STACK_GROWSUP
209 	if (write) {
210 		ret = expand_downwards(bprm->vma, pos);
211 		if (ret < 0)
212 			return NULL;
213 	}
214 #endif
215 
216 	if (write)
217 		gup_flags |= FOLL_WRITE;
218 
219 	/*
220 	 * We are doing an exec().  'current' is the process
221 	 * doing the exec and bprm->mm is the new process's mm.
222 	 */
223 	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
224 			&page, NULL, NULL);
225 	if (ret <= 0)
226 		return NULL;
227 
228 	if (write)
229 		acct_arg_size(bprm, vma_pages(bprm->vma));
230 
231 	return page;
232 }
233 
put_arg_page(struct page * page)234 static void put_arg_page(struct page *page)
235 {
236 	put_page(page);
237 }
238 
free_arg_pages(struct linux_binprm * bprm)239 static void free_arg_pages(struct linux_binprm *bprm)
240 {
241 }
242 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244 		struct page *page)
245 {
246 	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247 }
248 
__bprm_mm_init(struct linux_binprm * bprm)249 static int __bprm_mm_init(struct linux_binprm *bprm)
250 {
251 	int err;
252 	struct vm_area_struct *vma = NULL;
253 	struct mm_struct *mm = bprm->mm;
254 
255 	bprm->vma = vma = vm_area_alloc(mm);
256 	if (!vma)
257 		return -ENOMEM;
258 	vma_set_anonymous(vma);
259 
260 	if (mmap_write_lock_killable(mm)) {
261 		err = -EINTR;
262 		goto err_free;
263 	}
264 
265 	/*
266 	 * Place the stack at the largest stack address the architecture
267 	 * supports. Later, we'll move this to an appropriate place. We don't
268 	 * use STACK_TOP because that can depend on attributes which aren't
269 	 * configured yet.
270 	 */
271 	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
272 	vma->vm_end = STACK_TOP_MAX;
273 	vma->vm_start = vma->vm_end - PAGE_SIZE;
274 	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
275 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
276 
277 	err = insert_vm_struct(mm, vma);
278 	if (err)
279 		goto err;
280 
281 	mm->stack_vm = mm->total_vm = 1;
282 	mmap_write_unlock(mm);
283 	bprm->p = vma->vm_end - sizeof(void *);
284 	return 0;
285 err:
286 	mmap_write_unlock(mm);
287 err_free:
288 	bprm->vma = NULL;
289 	vm_area_free(vma);
290 	return err;
291 }
292 
valid_arg_len(struct linux_binprm * bprm,long len)293 static bool valid_arg_len(struct linux_binprm *bprm, long len)
294 {
295 	return len <= MAX_ARG_STRLEN;
296 }
297 
298 #else
299 
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
301 {
302 }
303 
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
305 		int write)
306 {
307 	struct page *page;
308 
309 	page = bprm->page[pos / PAGE_SIZE];
310 	if (!page && write) {
311 		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
312 		if (!page)
313 			return NULL;
314 		bprm->page[pos / PAGE_SIZE] = page;
315 	}
316 
317 	return page;
318 }
319 
put_arg_page(struct page * page)320 static void put_arg_page(struct page *page)
321 {
322 }
323 
free_arg_page(struct linux_binprm * bprm,int i)324 static void free_arg_page(struct linux_binprm *bprm, int i)
325 {
326 	if (bprm->page[i]) {
327 		__free_page(bprm->page[i]);
328 		bprm->page[i] = NULL;
329 	}
330 }
331 
free_arg_pages(struct linux_binprm * bprm)332 static void free_arg_pages(struct linux_binprm *bprm)
333 {
334 	int i;
335 
336 	for (i = 0; i < MAX_ARG_PAGES; i++)
337 		free_arg_page(bprm, i);
338 }
339 
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
341 		struct page *page)
342 {
343 }
344 
__bprm_mm_init(struct linux_binprm * bprm)345 static int __bprm_mm_init(struct linux_binprm *bprm)
346 {
347 	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
348 	return 0;
349 }
350 
valid_arg_len(struct linux_binprm * bprm,long len)351 static bool valid_arg_len(struct linux_binprm *bprm, long len)
352 {
353 	return len <= bprm->p;
354 }
355 
356 #endif /* CONFIG_MMU */
357 
358 /*
359  * Create a new mm_struct and populate it with a temporary stack
360  * vm_area_struct.  We don't have enough context at this point to set the stack
361  * flags, permissions, and offset, so we use temporary values.  We'll update
362  * them later in setup_arg_pages().
363  */
bprm_mm_init(struct linux_binprm * bprm)364 static int bprm_mm_init(struct linux_binprm *bprm)
365 {
366 	int err;
367 	struct mm_struct *mm = NULL;
368 
369 	bprm->mm = mm = mm_alloc();
370 	err = -ENOMEM;
371 	if (!mm)
372 		goto err;
373 
374 	/* Save current stack limit for all calculations made during exec. */
375 	task_lock(current->group_leader);
376 	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
377 	task_unlock(current->group_leader);
378 
379 	err = __bprm_mm_init(bprm);
380 	if (err)
381 		goto err;
382 
383 	return 0;
384 
385 err:
386 	if (mm) {
387 		bprm->mm = NULL;
388 		mmdrop(mm);
389 	}
390 
391 	return err;
392 }
393 
394 struct user_arg_ptr {
395 #ifdef CONFIG_COMPAT
396 	bool is_compat;
397 #endif
398 	union {
399 		const char __user *const __user *native;
400 #ifdef CONFIG_COMPAT
401 		const compat_uptr_t __user *compat;
402 #endif
403 	} ptr;
404 };
405 
get_user_arg_ptr(struct user_arg_ptr argv,int nr)406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
407 {
408 	const char __user *native;
409 
410 #ifdef CONFIG_COMPAT
411 	if (unlikely(argv.is_compat)) {
412 		compat_uptr_t compat;
413 
414 		if (get_user(compat, argv.ptr.compat + nr))
415 			return ERR_PTR(-EFAULT);
416 
417 		return compat_ptr(compat);
418 	}
419 #endif
420 
421 	if (get_user(native, argv.ptr.native + nr))
422 		return ERR_PTR(-EFAULT);
423 
424 	return native;
425 }
426 
427 /*
428  * count() counts the number of strings in array ARGV.
429  */
count(struct user_arg_ptr argv,int max)430 static int count(struct user_arg_ptr argv, int max)
431 {
432 	int i = 0;
433 
434 	if (argv.ptr.native != NULL) {
435 		for (;;) {
436 			const char __user *p = get_user_arg_ptr(argv, i);
437 
438 			if (!p)
439 				break;
440 
441 			if (IS_ERR(p))
442 				return -EFAULT;
443 
444 			if (i >= max)
445 				return -E2BIG;
446 			++i;
447 
448 			if (fatal_signal_pending(current))
449 				return -ERESTARTNOHAND;
450 			cond_resched();
451 		}
452 	}
453 	return i;
454 }
455 
count_strings_kernel(const char * const * argv)456 static int count_strings_kernel(const char *const *argv)
457 {
458 	int i;
459 
460 	if (!argv)
461 		return 0;
462 
463 	for (i = 0; argv[i]; ++i) {
464 		if (i >= MAX_ARG_STRINGS)
465 			return -E2BIG;
466 		if (fatal_signal_pending(current))
467 			return -ERESTARTNOHAND;
468 		cond_resched();
469 	}
470 	return i;
471 }
472 
bprm_stack_limits(struct linux_binprm * bprm)473 static int bprm_stack_limits(struct linux_binprm *bprm)
474 {
475 	unsigned long limit, ptr_size;
476 
477 	/*
478 	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
479 	 * (whichever is smaller) for the argv+env strings.
480 	 * This ensures that:
481 	 *  - the remaining binfmt code will not run out of stack space,
482 	 *  - the program will have a reasonable amount of stack left
483 	 *    to work from.
484 	 */
485 	limit = _STK_LIM / 4 * 3;
486 	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
487 	/*
488 	 * We've historically supported up to 32 pages (ARG_MAX)
489 	 * of argument strings even with small stacks
490 	 */
491 	limit = max_t(unsigned long, limit, ARG_MAX);
492 	/*
493 	 * We must account for the size of all the argv and envp pointers to
494 	 * the argv and envp strings, since they will also take up space in
495 	 * the stack. They aren't stored until much later when we can't
496 	 * signal to the parent that the child has run out of stack space.
497 	 * Instead, calculate it here so it's possible to fail gracefully.
498 	 *
499 	 * In the case of argc = 0, make sure there is space for adding a
500 	 * empty string (which will bump argc to 1), to ensure confused
501 	 * userspace programs don't start processing from argv[1], thinking
502 	 * argc can never be 0, to keep them from walking envp by accident.
503 	 * See do_execveat_common().
504 	 */
505 	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
506 	if (limit <= ptr_size)
507 		return -E2BIG;
508 	limit -= ptr_size;
509 
510 	bprm->argmin = bprm->p - limit;
511 	return 0;
512 }
513 
514 /*
515  * 'copy_strings()' copies argument/environment strings from the old
516  * processes's memory to the new process's stack.  The call to get_user_pages()
517  * ensures the destination page is created and not swapped out.
518  */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)519 static int copy_strings(int argc, struct user_arg_ptr argv,
520 			struct linux_binprm *bprm)
521 {
522 	struct page *kmapped_page = NULL;
523 	char *kaddr = NULL;
524 	unsigned long kpos = 0;
525 	int ret;
526 
527 	while (argc-- > 0) {
528 		const char __user *str;
529 		int len;
530 		unsigned long pos;
531 
532 		ret = -EFAULT;
533 		str = get_user_arg_ptr(argv, argc);
534 		if (IS_ERR(str))
535 			goto out;
536 
537 		len = strnlen_user(str, MAX_ARG_STRLEN);
538 		if (!len)
539 			goto out;
540 
541 		ret = -E2BIG;
542 		if (!valid_arg_len(bprm, len))
543 			goto out;
544 
545 		/* We're going to work our way backwords. */
546 		pos = bprm->p;
547 		str += len;
548 		bprm->p -= len;
549 #ifdef CONFIG_MMU
550 		if (bprm->p < bprm->argmin)
551 			goto out;
552 #endif
553 
554 		while (len > 0) {
555 			int offset, bytes_to_copy;
556 
557 			if (fatal_signal_pending(current)) {
558 				ret = -ERESTARTNOHAND;
559 				goto out;
560 			}
561 			cond_resched();
562 
563 			offset = pos % PAGE_SIZE;
564 			if (offset == 0)
565 				offset = PAGE_SIZE;
566 
567 			bytes_to_copy = offset;
568 			if (bytes_to_copy > len)
569 				bytes_to_copy = len;
570 
571 			offset -= bytes_to_copy;
572 			pos -= bytes_to_copy;
573 			str -= bytes_to_copy;
574 			len -= bytes_to_copy;
575 
576 			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
577 				struct page *page;
578 
579 				page = get_arg_page(bprm, pos, 1);
580 				if (!page) {
581 					ret = -E2BIG;
582 					goto out;
583 				}
584 
585 				if (kmapped_page) {
586 					flush_kernel_dcache_page(kmapped_page);
587 					kunmap(kmapped_page);
588 					put_arg_page(kmapped_page);
589 				}
590 				kmapped_page = page;
591 				kaddr = kmap(kmapped_page);
592 				kpos = pos & PAGE_MASK;
593 				flush_arg_page(bprm, kpos, kmapped_page);
594 			}
595 			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
596 				ret = -EFAULT;
597 				goto out;
598 			}
599 		}
600 	}
601 	ret = 0;
602 out:
603 	if (kmapped_page) {
604 		flush_kernel_dcache_page(kmapped_page);
605 		kunmap(kmapped_page);
606 		put_arg_page(kmapped_page);
607 	}
608 	return ret;
609 }
610 
611 /*
612  * Copy and argument/environment string from the kernel to the processes stack.
613  */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)614 int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
615 {
616 	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
617 	unsigned long pos = bprm->p;
618 
619 	if (len == 0)
620 		return -EFAULT;
621 	if (!valid_arg_len(bprm, len))
622 		return -E2BIG;
623 
624 	/* We're going to work our way backwards. */
625 	arg += len;
626 	bprm->p -= len;
627 	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
628 		return -E2BIG;
629 
630 	while (len > 0) {
631 		unsigned int bytes_to_copy = min_t(unsigned int, len,
632 				min_not_zero(offset_in_page(pos), PAGE_SIZE));
633 		struct page *page;
634 		char *kaddr;
635 
636 		pos -= bytes_to_copy;
637 		arg -= bytes_to_copy;
638 		len -= bytes_to_copy;
639 
640 		page = get_arg_page(bprm, pos, 1);
641 		if (!page)
642 			return -E2BIG;
643 		kaddr = kmap_atomic(page);
644 		flush_arg_page(bprm, pos & PAGE_MASK, page);
645 		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
646 		flush_kernel_dcache_page(page);
647 		kunmap_atomic(kaddr);
648 		put_arg_page(page);
649 	}
650 
651 	return 0;
652 }
653 EXPORT_SYMBOL(copy_string_kernel);
654 
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)655 static int copy_strings_kernel(int argc, const char *const *argv,
656 			       struct linux_binprm *bprm)
657 {
658 	while (argc-- > 0) {
659 		int ret = copy_string_kernel(argv[argc], bprm);
660 		if (ret < 0)
661 			return ret;
662 		if (fatal_signal_pending(current))
663 			return -ERESTARTNOHAND;
664 		cond_resched();
665 	}
666 	return 0;
667 }
668 
669 #ifdef CONFIG_MMU
670 
671 /*
672  * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
673  * the binfmt code determines where the new stack should reside, we shift it to
674  * its final location.  The process proceeds as follows:
675  *
676  * 1) Use shift to calculate the new vma endpoints.
677  * 2) Extend vma to cover both the old and new ranges.  This ensures the
678  *    arguments passed to subsequent functions are consistent.
679  * 3) Move vma's page tables to the new range.
680  * 4) Free up any cleared pgd range.
681  * 5) Shrink the vma to cover only the new range.
682  */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
684 {
685 	struct mm_struct *mm = vma->vm_mm;
686 	unsigned long old_start = vma->vm_start;
687 	unsigned long old_end = vma->vm_end;
688 	unsigned long length = old_end - old_start;
689 	unsigned long new_start = old_start - shift;
690 	unsigned long new_end = old_end - shift;
691 	struct mmu_gather tlb;
692 
693 	BUG_ON(new_start > new_end);
694 
695 	/*
696 	 * ensure there are no vmas between where we want to go
697 	 * and where we are
698 	 */
699 	if (vma != find_vma(mm, new_start))
700 		return -EFAULT;
701 
702 	/*
703 	 * cover the whole range: [new_start, old_end)
704 	 */
705 	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
706 		return -ENOMEM;
707 
708 	/*
709 	 * move the page tables downwards, on failure we rely on
710 	 * process cleanup to remove whatever mess we made.
711 	 */
712 	if (length != move_page_tables(vma, old_start,
713 				       vma, new_start, length, false))
714 		return -ENOMEM;
715 
716 	lru_add_drain();
717 	tlb_gather_mmu(&tlb, mm, old_start, old_end);
718 	if (new_end > old_start) {
719 		/*
720 		 * when the old and new regions overlap clear from new_end.
721 		 */
722 		free_pgd_range(&tlb, new_end, old_end, new_end,
723 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
724 	} else {
725 		/*
726 		 * otherwise, clean from old_start; this is done to not touch
727 		 * the address space in [new_end, old_start) some architectures
728 		 * have constraints on va-space that make this illegal (IA64) -
729 		 * for the others its just a little faster.
730 		 */
731 		free_pgd_range(&tlb, old_start, old_end, new_end,
732 			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
733 	}
734 	tlb_finish_mmu(&tlb, old_start, old_end);
735 
736 	/*
737 	 * Shrink the vma to just the new range.  Always succeeds.
738 	 */
739 	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
740 
741 	return 0;
742 }
743 
744 /*
745  * Finalizes the stack vm_area_struct. The flags and permissions are updated,
746  * the stack is optionally relocated, and some extra space is added.
747  */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)748 int setup_arg_pages(struct linux_binprm *bprm,
749 		    unsigned long stack_top,
750 		    int executable_stack)
751 {
752 	unsigned long ret;
753 	unsigned long stack_shift;
754 	struct mm_struct *mm = current->mm;
755 	struct vm_area_struct *vma = bprm->vma;
756 	struct vm_area_struct *prev = NULL;
757 	unsigned long vm_flags;
758 	unsigned long stack_base;
759 	unsigned long stack_size;
760 	unsigned long stack_expand;
761 	unsigned long rlim_stack;
762 
763 #ifdef CONFIG_STACK_GROWSUP
764 	/* Limit stack size */
765 	stack_base = bprm->rlim_stack.rlim_max;
766 	if (stack_base > STACK_SIZE_MAX)
767 		stack_base = STACK_SIZE_MAX;
768 
769 	/* Add space for stack randomization. */
770 	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
771 
772 	/* Make sure we didn't let the argument array grow too large. */
773 	if (vma->vm_end - vma->vm_start > stack_base)
774 		return -ENOMEM;
775 
776 	stack_base = PAGE_ALIGN(stack_top - stack_base);
777 
778 	stack_shift = vma->vm_start - stack_base;
779 	mm->arg_start = bprm->p - stack_shift;
780 	bprm->p = vma->vm_end - stack_shift;
781 #else
782 	stack_top = arch_align_stack(stack_top);
783 	stack_top = PAGE_ALIGN(stack_top);
784 
785 	if (unlikely(stack_top < mmap_min_addr) ||
786 	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
787 		return -ENOMEM;
788 
789 	stack_shift = vma->vm_end - stack_top;
790 
791 	bprm->p -= stack_shift;
792 	mm->arg_start = bprm->p;
793 #endif
794 
795 	if (bprm->loader)
796 		bprm->loader -= stack_shift;
797 	bprm->exec -= stack_shift;
798 
799 	if (mmap_write_lock_killable(mm))
800 		return -EINTR;
801 
802 	vm_flags = VM_STACK_FLAGS;
803 
804 	/*
805 	 * Adjust stack execute permissions; explicitly enable for
806 	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
807 	 * (arch default) otherwise.
808 	 */
809 	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
810 		vm_flags |= VM_EXEC;
811 	else if (executable_stack == EXSTACK_DISABLE_X)
812 		vm_flags &= ~VM_EXEC;
813 	vm_flags |= mm->def_flags;
814 	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
815 
816 	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
817 			vm_flags);
818 	if (ret)
819 		goto out_unlock;
820 	BUG_ON(prev != vma);
821 
822 	if (unlikely(vm_flags & VM_EXEC)) {
823 		pr_warn_once("process '%pD4' started with executable stack\n",
824 			     bprm->file);
825 	}
826 
827 	/* Move stack pages down in memory. */
828 	if (stack_shift) {
829 		ret = shift_arg_pages(vma, stack_shift);
830 		if (ret)
831 			goto out_unlock;
832 	}
833 
834 	/* mprotect_fixup is overkill to remove the temporary stack flags */
835 	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
836 
837 	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
838 	stack_size = vma->vm_end - vma->vm_start;
839 	/*
840 	 * Align this down to a page boundary as expand_stack
841 	 * will align it up.
842 	 */
843 	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
844 #ifdef CONFIG_STACK_GROWSUP
845 	if (stack_size + stack_expand > rlim_stack)
846 		stack_base = vma->vm_start + rlim_stack;
847 	else
848 		stack_base = vma->vm_end + stack_expand;
849 #else
850 	if (stack_size + stack_expand > rlim_stack)
851 		stack_base = vma->vm_end - rlim_stack;
852 	else
853 		stack_base = vma->vm_start - stack_expand;
854 #endif
855 	current->mm->start_stack = bprm->p;
856 	ret = expand_stack(vma, stack_base);
857 	if (ret)
858 		ret = -EFAULT;
859 
860 out_unlock:
861 	mmap_write_unlock(mm);
862 	return ret;
863 }
864 EXPORT_SYMBOL(setup_arg_pages);
865 
866 #else
867 
868 /*
869  * Transfer the program arguments and environment from the holding pages
870  * onto the stack. The provided stack pointer is adjusted accordingly.
871  */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)872 int transfer_args_to_stack(struct linux_binprm *bprm,
873 			   unsigned long *sp_location)
874 {
875 	unsigned long index, stop, sp;
876 	int ret = 0;
877 
878 	stop = bprm->p >> PAGE_SHIFT;
879 	sp = *sp_location;
880 
881 	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
882 		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
883 		char *src = kmap(bprm->page[index]) + offset;
884 		sp -= PAGE_SIZE - offset;
885 		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
886 			ret = -EFAULT;
887 		kunmap(bprm->page[index]);
888 		if (ret)
889 			goto out;
890 	}
891 
892 	*sp_location = sp;
893 
894 out:
895 	return ret;
896 }
897 EXPORT_SYMBOL(transfer_args_to_stack);
898 
899 #endif /* CONFIG_MMU */
900 
do_open_execat(int fd,struct filename * name,int flags)901 static struct file *do_open_execat(int fd, struct filename *name, int flags)
902 {
903 	struct file *file;
904 	int err;
905 	struct open_flags open_exec_flags = {
906 		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
907 		.acc_mode = MAY_EXEC,
908 		.intent = LOOKUP_OPEN,
909 		.lookup_flags = LOOKUP_FOLLOW,
910 	};
911 
912 	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
913 		return ERR_PTR(-EINVAL);
914 	if (flags & AT_SYMLINK_NOFOLLOW)
915 		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
916 	if (flags & AT_EMPTY_PATH)
917 		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
918 
919 	file = do_filp_open(fd, name, &open_exec_flags);
920 	if (IS_ERR(file))
921 		goto out;
922 
923 	/*
924 	 * may_open() has already checked for this, so it should be
925 	 * impossible to trip now. But we need to be extra cautious
926 	 * and check again at the very end too.
927 	 */
928 	err = -EACCES;
929 	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
930 			 path_noexec(&file->f_path)))
931 		goto exit;
932 
933 	err = deny_write_access(file);
934 	if (err)
935 		goto exit;
936 
937 	if (name->name[0] != '\0')
938 		fsnotify_open(file);
939 
940 out:
941 	return file;
942 
943 exit:
944 	fput(file);
945 	return ERR_PTR(err);
946 }
947 
open_exec(const char * name)948 struct file *open_exec(const char *name)
949 {
950 	struct filename *filename = getname_kernel(name);
951 	struct file *f = ERR_CAST(filename);
952 
953 	if (!IS_ERR(filename)) {
954 		f = do_open_execat(AT_FDCWD, filename, 0);
955 		putname(filename);
956 	}
957 	return f;
958 }
959 EXPORT_SYMBOL(open_exec);
960 
961 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
962     defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
964 {
965 	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
966 	if (res > 0)
967 		flush_icache_user_range(addr, addr + len);
968 	return res;
969 }
970 EXPORT_SYMBOL(read_code);
971 #endif
972 
973 /*
974  * Maps the mm_struct mm into the current task struct.
975  * On success, this function returns with exec_update_lock
976  * held for writing.
977  */
exec_mmap(struct mm_struct * mm)978 static int exec_mmap(struct mm_struct *mm)
979 {
980 	struct task_struct *tsk;
981 	struct mm_struct *old_mm, *active_mm;
982 	int ret;
983 
984 	/* Notify parent that we're no longer interested in the old VM */
985 	tsk = current;
986 	old_mm = current->mm;
987 	exec_mm_release(tsk, old_mm);
988 	if (old_mm)
989 		sync_mm_rss(old_mm);
990 
991 	ret = down_write_killable(&tsk->signal->exec_update_lock);
992 	if (ret)
993 		return ret;
994 
995 	if (old_mm) {
996 		/*
997 		 * Make sure that if there is a core dump in progress
998 		 * for the old mm, we get out and die instead of going
999 		 * through with the exec.  We must hold mmap_lock around
1000 		 * checking core_state and changing tsk->mm.
1001 		 */
1002 		mmap_read_lock(old_mm);
1003 		if (unlikely(old_mm->core_state)) {
1004 			mmap_read_unlock(old_mm);
1005 			up_write(&tsk->signal->exec_update_lock);
1006 			return -EINTR;
1007 		}
1008 	}
1009 
1010 	task_lock(tsk);
1011 	membarrier_exec_mmap(mm);
1012 
1013 	local_irq_disable();
1014 	active_mm = tsk->active_mm;
1015 	tsk->active_mm = mm;
1016 	tsk->mm = mm;
1017 	/*
1018 	 * This prevents preemption while active_mm is being loaded and
1019 	 * it and mm are being updated, which could cause problems for
1020 	 * lazy tlb mm refcounting when these are updated by context
1021 	 * switches. Not all architectures can handle irqs off over
1022 	 * activate_mm yet.
1023 	 */
1024 	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1025 		local_irq_enable();
1026 	activate_mm(active_mm, mm);
1027 	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1028 		local_irq_enable();
1029 	tsk->mm->vmacache_seqnum = 0;
1030 	vmacache_flush(tsk);
1031 	task_unlock(tsk);
1032 	if (old_mm) {
1033 		mmap_read_unlock(old_mm);
1034 		BUG_ON(active_mm != old_mm);
1035 		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1036 		mm_update_next_owner(old_mm);
1037 		mmput(old_mm);
1038 		return 0;
1039 	}
1040 	mmdrop(active_mm);
1041 	return 0;
1042 }
1043 
de_thread(struct task_struct * tsk)1044 static int de_thread(struct task_struct *tsk)
1045 {
1046 	struct signal_struct *sig = tsk->signal;
1047 	struct sighand_struct *oldsighand = tsk->sighand;
1048 	spinlock_t *lock = &oldsighand->siglock;
1049 
1050 	if (thread_group_empty(tsk))
1051 		goto no_thread_group;
1052 
1053 	/*
1054 	 * Kill all other threads in the thread group.
1055 	 */
1056 	spin_lock_irq(lock);
1057 	if (signal_group_exit(sig)) {
1058 		/*
1059 		 * Another group action in progress, just
1060 		 * return so that the signal is processed.
1061 		 */
1062 		spin_unlock_irq(lock);
1063 		return -EAGAIN;
1064 	}
1065 
1066 	sig->group_exit_task = tsk;
1067 	sig->notify_count = zap_other_threads(tsk);
1068 	if (!thread_group_leader(tsk))
1069 		sig->notify_count--;
1070 
1071 	while (sig->notify_count) {
1072 		__set_current_state(TASK_KILLABLE);
1073 		spin_unlock_irq(lock);
1074 		schedule();
1075 		if (__fatal_signal_pending(tsk))
1076 			goto killed;
1077 		spin_lock_irq(lock);
1078 	}
1079 	spin_unlock_irq(lock);
1080 
1081 	/*
1082 	 * At this point all other threads have exited, all we have to
1083 	 * do is to wait for the thread group leader to become inactive,
1084 	 * and to assume its PID:
1085 	 */
1086 	if (!thread_group_leader(tsk)) {
1087 		struct task_struct *leader = tsk->group_leader;
1088 
1089 		for (;;) {
1090 			cgroup_threadgroup_change_begin(tsk);
1091 			write_lock_irq(&tasklist_lock);
1092 			/*
1093 			 * Do this under tasklist_lock to ensure that
1094 			 * exit_notify() can't miss ->group_exit_task
1095 			 */
1096 			sig->notify_count = -1;
1097 			if (likely(leader->exit_state))
1098 				break;
1099 			__set_current_state(TASK_KILLABLE);
1100 			write_unlock_irq(&tasklist_lock);
1101 			cgroup_threadgroup_change_end(tsk);
1102 			schedule();
1103 			if (__fatal_signal_pending(tsk))
1104 				goto killed;
1105 		}
1106 
1107 		/*
1108 		 * The only record we have of the real-time age of a
1109 		 * process, regardless of execs it's done, is start_time.
1110 		 * All the past CPU time is accumulated in signal_struct
1111 		 * from sister threads now dead.  But in this non-leader
1112 		 * exec, nothing survives from the original leader thread,
1113 		 * whose birth marks the true age of this process now.
1114 		 * When we take on its identity by switching to its PID, we
1115 		 * also take its birthdate (always earlier than our own).
1116 		 */
1117 		tsk->start_time = leader->start_time;
1118 		tsk->start_boottime = leader->start_boottime;
1119 
1120 		BUG_ON(!same_thread_group(leader, tsk));
1121 		/*
1122 		 * An exec() starts a new thread group with the
1123 		 * TGID of the previous thread group. Rehash the
1124 		 * two threads with a switched PID, and release
1125 		 * the former thread group leader:
1126 		 */
1127 
1128 		/* Become a process group leader with the old leader's pid.
1129 		 * The old leader becomes a thread of the this thread group.
1130 		 */
1131 		exchange_tids(tsk, leader);
1132 		transfer_pid(leader, tsk, PIDTYPE_TGID);
1133 		transfer_pid(leader, tsk, PIDTYPE_PGID);
1134 		transfer_pid(leader, tsk, PIDTYPE_SID);
1135 
1136 		list_replace_rcu(&leader->tasks, &tsk->tasks);
1137 		list_replace_init(&leader->sibling, &tsk->sibling);
1138 
1139 		tsk->group_leader = tsk;
1140 		leader->group_leader = tsk;
1141 
1142 		tsk->exit_signal = SIGCHLD;
1143 		leader->exit_signal = -1;
1144 
1145 		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1146 		leader->exit_state = EXIT_DEAD;
1147 
1148 		/*
1149 		 * We are going to release_task()->ptrace_unlink() silently,
1150 		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1151 		 * the tracer wont't block again waiting for this thread.
1152 		 */
1153 		if (unlikely(leader->ptrace))
1154 			__wake_up_parent(leader, leader->parent);
1155 		write_unlock_irq(&tasklist_lock);
1156 		cgroup_threadgroup_change_end(tsk);
1157 
1158 		release_task(leader);
1159 	}
1160 
1161 	sig->group_exit_task = NULL;
1162 	sig->notify_count = 0;
1163 
1164 no_thread_group:
1165 	/* we have changed execution domain */
1166 	tsk->exit_signal = SIGCHLD;
1167 
1168 	BUG_ON(!thread_group_leader(tsk));
1169 	return 0;
1170 
1171 killed:
1172 	/* protects against exit_notify() and __exit_signal() */
1173 	read_lock(&tasklist_lock);
1174 	sig->group_exit_task = NULL;
1175 	sig->notify_count = 0;
1176 	read_unlock(&tasklist_lock);
1177 	return -EAGAIN;
1178 }
1179 
1180 
1181 /*
1182  * This function makes sure the current process has its own signal table,
1183  * so that flush_signal_handlers can later reset the handlers without
1184  * disturbing other processes.  (Other processes might share the signal
1185  * table via the CLONE_SIGHAND option to clone().)
1186  */
unshare_sighand(struct task_struct * me)1187 static int unshare_sighand(struct task_struct *me)
1188 {
1189 	struct sighand_struct *oldsighand = me->sighand;
1190 
1191 	if (refcount_read(&oldsighand->count) != 1) {
1192 		struct sighand_struct *newsighand;
1193 		/*
1194 		 * This ->sighand is shared with the CLONE_SIGHAND
1195 		 * but not CLONE_THREAD task, switch to the new one.
1196 		 */
1197 		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1198 		if (!newsighand)
1199 			return -ENOMEM;
1200 
1201 		refcount_set(&newsighand->count, 1);
1202 
1203 		write_lock_irq(&tasklist_lock);
1204 		spin_lock(&oldsighand->siglock);
1205 		memcpy(newsighand->action, oldsighand->action,
1206 		       sizeof(newsighand->action));
1207 		rcu_assign_pointer(me->sighand, newsighand);
1208 		spin_unlock(&oldsighand->siglock);
1209 		write_unlock_irq(&tasklist_lock);
1210 
1211 		__cleanup_sighand(oldsighand);
1212 	}
1213 	return 0;
1214 }
1215 
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1216 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1217 {
1218 	task_lock(tsk);
1219 	strncpy(buf, tsk->comm, buf_size);
1220 	task_unlock(tsk);
1221 	return buf;
1222 }
1223 EXPORT_SYMBOL_GPL(__get_task_comm);
1224 
1225 /*
1226  * These functions flushes out all traces of the currently running executable
1227  * so that a new one can be started
1228  */
1229 
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1230 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1231 {
1232 	task_lock(tsk);
1233 	trace_task_rename(tsk, buf);
1234 	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1235 	task_unlock(tsk);
1236 	perf_event_comm(tsk, exec);
1237 }
1238 
1239 /*
1240  * Calling this is the point of no return. None of the failures will be
1241  * seen by userspace since either the process is already taking a fatal
1242  * signal (via de_thread() or coredump), or will have SEGV raised
1243  * (after exec_mmap()) by search_binary_handler (see below).
1244  */
begin_new_exec(struct linux_binprm * bprm)1245 int begin_new_exec(struct linux_binprm * bprm)
1246 {
1247 	struct task_struct *me = current;
1248 	struct files_struct *displaced;
1249 	int retval;
1250 
1251 	/* Once we are committed compute the creds */
1252 	retval = bprm_creds_from_file(bprm);
1253 	if (retval)
1254 		return retval;
1255 
1256 	/*
1257 	 * Ensure all future errors are fatal.
1258 	 */
1259 	bprm->point_of_no_return = true;
1260 
1261 	/*
1262 	 * Make this the only thread in the thread group.
1263 	 */
1264 	retval = de_thread(me);
1265 	if (retval)
1266 		goto out;
1267 
1268 	/* Ensure the files table is not shared. */
1269 	retval = unshare_files(&displaced);
1270 	if (retval)
1271 		goto out;
1272 	if (displaced)
1273 		put_files_struct(displaced);
1274 
1275 	/*
1276 	 * Must be called _before_ exec_mmap() as bprm->mm is
1277 	 * not visibile until then. This also enables the update
1278 	 * to be lockless.
1279 	 */
1280 	set_mm_exe_file(bprm->mm, bprm->file);
1281 
1282 	/* If the binary is not readable then enforce mm->dumpable=0 */
1283 	would_dump(bprm, bprm->file);
1284 	if (bprm->have_execfd)
1285 		would_dump(bprm, bprm->executable);
1286 
1287 	/*
1288 	 * Release all of the old mmap stuff
1289 	 */
1290 	acct_arg_size(bprm, 0);
1291 	retval = exec_mmap(bprm->mm);
1292 	if (retval)
1293 		goto out;
1294 
1295 	bprm->mm = NULL;
1296 
1297 #ifdef CONFIG_POSIX_TIMERS
1298 	spin_lock_irq(&me->sighand->siglock);
1299 	posix_cpu_timers_exit(me);
1300 	spin_unlock_irq(&me->sighand->siglock);
1301 	exit_itimers(me);
1302 	flush_itimer_signals();
1303 #endif
1304 
1305 	/*
1306 	 * Make the signal table private.
1307 	 */
1308 	retval = unshare_sighand(me);
1309 	if (retval)
1310 		goto out_unlock;
1311 
1312 	/*
1313 	 * Ensure that the uaccess routines can actually operate on userspace
1314 	 * pointers:
1315 	 */
1316 	force_uaccess_begin();
1317 
1318 	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1319 					PF_NOFREEZE | PF_NO_SETAFFINITY);
1320 	flush_thread();
1321 	me->personality &= ~bprm->per_clear;
1322 
1323 	/*
1324 	 * We have to apply CLOEXEC before we change whether the process is
1325 	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1326 	 * trying to access the should-be-closed file descriptors of a process
1327 	 * undergoing exec(2).
1328 	 */
1329 	do_close_on_exec(me->files);
1330 
1331 	if (bprm->secureexec) {
1332 		/* Make sure parent cannot signal privileged process. */
1333 		me->pdeath_signal = 0;
1334 
1335 		/*
1336 		 * For secureexec, reset the stack limit to sane default to
1337 		 * avoid bad behavior from the prior rlimits. This has to
1338 		 * happen before arch_pick_mmap_layout(), which examines
1339 		 * RLIMIT_STACK, but after the point of no return to avoid
1340 		 * needing to clean up the change on failure.
1341 		 */
1342 		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1343 			bprm->rlim_stack.rlim_cur = _STK_LIM;
1344 	}
1345 
1346 	me->sas_ss_sp = me->sas_ss_size = 0;
1347 
1348 	/*
1349 	 * Figure out dumpability. Note that this checking only of current
1350 	 * is wrong, but userspace depends on it. This should be testing
1351 	 * bprm->secureexec instead.
1352 	 */
1353 	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1354 	    !(uid_eq(current_euid(), current_uid()) &&
1355 	      gid_eq(current_egid(), current_gid())))
1356 		set_dumpable(current->mm, suid_dumpable);
1357 	else
1358 		set_dumpable(current->mm, SUID_DUMP_USER);
1359 
1360 	perf_event_exec();
1361 	__set_task_comm(me, kbasename(bprm->filename), true);
1362 
1363 	/* An exec changes our domain. We are no longer part of the thread
1364 	   group */
1365 	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1366 	flush_signal_handlers(me, 0);
1367 
1368 	/*
1369 	 * install the new credentials for this executable
1370 	 */
1371 	security_bprm_committing_creds(bprm);
1372 
1373 	commit_creds(bprm->cred);
1374 	bprm->cred = NULL;
1375 
1376 	/*
1377 	 * Disable monitoring for regular users
1378 	 * when executing setuid binaries. Must
1379 	 * wait until new credentials are committed
1380 	 * by commit_creds() above
1381 	 */
1382 	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1383 		perf_event_exit_task(me);
1384 	/*
1385 	 * cred_guard_mutex must be held at least to this point to prevent
1386 	 * ptrace_attach() from altering our determination of the task's
1387 	 * credentials; any time after this it may be unlocked.
1388 	 */
1389 	security_bprm_committed_creds(bprm);
1390 
1391 	/* Pass the opened binary to the interpreter. */
1392 	if (bprm->have_execfd) {
1393 		retval = get_unused_fd_flags(0);
1394 		if (retval < 0)
1395 			goto out_unlock;
1396 		fd_install(retval, bprm->executable);
1397 		bprm->executable = NULL;
1398 		bprm->execfd = retval;
1399 	}
1400 	return 0;
1401 
1402 out_unlock:
1403 	up_write(&me->signal->exec_update_lock);
1404 out:
1405 	return retval;
1406 }
1407 EXPORT_SYMBOL(begin_new_exec);
1408 
would_dump(struct linux_binprm * bprm,struct file * file)1409 void would_dump(struct linux_binprm *bprm, struct file *file)
1410 {
1411 	struct inode *inode = file_inode(file);
1412 	if (inode_permission(inode, MAY_READ) < 0) {
1413 		struct user_namespace *old, *user_ns;
1414 		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1415 
1416 		/* Ensure mm->user_ns contains the executable */
1417 		user_ns = old = bprm->mm->user_ns;
1418 		while ((user_ns != &init_user_ns) &&
1419 		       !privileged_wrt_inode_uidgid(user_ns, inode))
1420 			user_ns = user_ns->parent;
1421 
1422 		if (old != user_ns) {
1423 			bprm->mm->user_ns = get_user_ns(user_ns);
1424 			put_user_ns(old);
1425 		}
1426 	}
1427 }
1428 EXPORT_SYMBOL(would_dump);
1429 
setup_new_exec(struct linux_binprm * bprm)1430 void setup_new_exec(struct linux_binprm * bprm)
1431 {
1432 	/* Setup things that can depend upon the personality */
1433 	struct task_struct *me = current;
1434 
1435 	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1436 
1437 	arch_setup_new_exec();
1438 
1439 	/* Set the new mm task size. We have to do that late because it may
1440 	 * depend on TIF_32BIT which is only updated in flush_thread() on
1441 	 * some architectures like powerpc
1442 	 */
1443 	me->mm->task_size = TASK_SIZE;
1444 	up_write(&me->signal->exec_update_lock);
1445 	mutex_unlock(&me->signal->cred_guard_mutex);
1446 }
1447 EXPORT_SYMBOL(setup_new_exec);
1448 
1449 /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1450 void finalize_exec(struct linux_binprm *bprm)
1451 {
1452 	/* Store any stack rlimit changes before starting thread. */
1453 	task_lock(current->group_leader);
1454 	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1455 	task_unlock(current->group_leader);
1456 }
1457 EXPORT_SYMBOL(finalize_exec);
1458 
1459 /*
1460  * Prepare credentials and lock ->cred_guard_mutex.
1461  * setup_new_exec() commits the new creds and drops the lock.
1462  * Or, if exec fails before, free_bprm() should release ->cred and
1463  * and unlock.
1464  */
prepare_bprm_creds(struct linux_binprm * bprm)1465 static int prepare_bprm_creds(struct linux_binprm *bprm)
1466 {
1467 	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1468 		return -ERESTARTNOINTR;
1469 
1470 	bprm->cred = prepare_exec_creds();
1471 	if (likely(bprm->cred))
1472 		return 0;
1473 
1474 	mutex_unlock(&current->signal->cred_guard_mutex);
1475 	return -ENOMEM;
1476 }
1477 
free_bprm(struct linux_binprm * bprm)1478 static void free_bprm(struct linux_binprm *bprm)
1479 {
1480 	if (bprm->mm) {
1481 		acct_arg_size(bprm, 0);
1482 		mmput(bprm->mm);
1483 	}
1484 	free_arg_pages(bprm);
1485 	if (bprm->cred) {
1486 		mutex_unlock(&current->signal->cred_guard_mutex);
1487 		abort_creds(bprm->cred);
1488 	}
1489 	if (bprm->file) {
1490 		allow_write_access(bprm->file);
1491 		fput(bprm->file);
1492 	}
1493 	if (bprm->executable)
1494 		fput(bprm->executable);
1495 	/* If a binfmt changed the interp, free it. */
1496 	if (bprm->interp != bprm->filename)
1497 		kfree(bprm->interp);
1498 	kfree(bprm->fdpath);
1499 	kfree(bprm);
1500 }
1501 
alloc_bprm(int fd,struct filename * filename)1502 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1503 {
1504 	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1505 	int retval = -ENOMEM;
1506 	if (!bprm)
1507 		goto out;
1508 
1509 	if (fd == AT_FDCWD || filename->name[0] == '/') {
1510 		bprm->filename = filename->name;
1511 	} else {
1512 		if (filename->name[0] == '\0')
1513 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1514 		else
1515 			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1516 						  fd, filename->name);
1517 		if (!bprm->fdpath)
1518 			goto out_free;
1519 
1520 		bprm->filename = bprm->fdpath;
1521 	}
1522 	bprm->interp = bprm->filename;
1523 
1524 	retval = bprm_mm_init(bprm);
1525 	if (retval)
1526 		goto out_free;
1527 	return bprm;
1528 
1529 out_free:
1530 	free_bprm(bprm);
1531 out:
1532 	return ERR_PTR(retval);
1533 }
1534 
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1535 int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1536 {
1537 	/* If a binfmt changed the interp, free it first. */
1538 	if (bprm->interp != bprm->filename)
1539 		kfree(bprm->interp);
1540 	bprm->interp = kstrdup(interp, GFP_KERNEL);
1541 	if (!bprm->interp)
1542 		return -ENOMEM;
1543 	return 0;
1544 }
1545 EXPORT_SYMBOL(bprm_change_interp);
1546 
1547 /*
1548  * determine how safe it is to execute the proposed program
1549  * - the caller must hold ->cred_guard_mutex to protect against
1550  *   PTRACE_ATTACH or seccomp thread-sync
1551  */
check_unsafe_exec(struct linux_binprm * bprm)1552 static void check_unsafe_exec(struct linux_binprm *bprm)
1553 {
1554 	struct task_struct *p = current, *t;
1555 	unsigned n_fs;
1556 
1557 	if (p->ptrace)
1558 		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1559 
1560 	/*
1561 	 * This isn't strictly necessary, but it makes it harder for LSMs to
1562 	 * mess up.
1563 	 */
1564 	if (task_no_new_privs(current))
1565 		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1566 
1567 	t = p;
1568 	n_fs = 1;
1569 	spin_lock(&p->fs->lock);
1570 	rcu_read_lock();
1571 	while_each_thread(p, t) {
1572 		if (t->fs == p->fs)
1573 			n_fs++;
1574 	}
1575 	rcu_read_unlock();
1576 
1577 	if (p->fs->users > n_fs)
1578 		bprm->unsafe |= LSM_UNSAFE_SHARE;
1579 	else
1580 		p->fs->in_exec = 1;
1581 	spin_unlock(&p->fs->lock);
1582 }
1583 
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1584 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1585 {
1586 	/* Handle suid and sgid on files */
1587 	struct inode *inode;
1588 	unsigned int mode;
1589 	kuid_t uid;
1590 	kgid_t gid;
1591 
1592 	if (!mnt_may_suid(file->f_path.mnt))
1593 		return;
1594 
1595 	if (task_no_new_privs(current))
1596 		return;
1597 
1598 	inode = file->f_path.dentry->d_inode;
1599 	mode = READ_ONCE(inode->i_mode);
1600 	if (!(mode & (S_ISUID|S_ISGID)))
1601 		return;
1602 
1603 	/* Be careful if suid/sgid is set */
1604 	inode_lock(inode);
1605 
1606 	/* reload atomically mode/uid/gid now that lock held */
1607 	mode = inode->i_mode;
1608 	uid = inode->i_uid;
1609 	gid = inode->i_gid;
1610 	inode_unlock(inode);
1611 
1612 	/* We ignore suid/sgid if there are no mappings for them in the ns */
1613 	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1614 		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1615 		return;
1616 
1617 	if (mode & S_ISUID) {
1618 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1619 		bprm->cred->euid = uid;
1620 	}
1621 
1622 	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1623 		bprm->per_clear |= PER_CLEAR_ON_SETID;
1624 		bprm->cred->egid = gid;
1625 	}
1626 }
1627 
1628 /*
1629  * Compute brpm->cred based upon the final binary.
1630  */
bprm_creds_from_file(struct linux_binprm * bprm)1631 static int bprm_creds_from_file(struct linux_binprm *bprm)
1632 {
1633 	/* Compute creds based on which file? */
1634 	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1635 
1636 	bprm_fill_uid(bprm, file);
1637 	return security_bprm_creds_from_file(bprm, file);
1638 }
1639 
1640 /*
1641  * Fill the binprm structure from the inode.
1642  * Read the first BINPRM_BUF_SIZE bytes
1643  *
1644  * This may be called multiple times for binary chains (scripts for example).
1645  */
prepare_binprm(struct linux_binprm * bprm)1646 static int prepare_binprm(struct linux_binprm *bprm)
1647 {
1648 	loff_t pos = 0;
1649 
1650 	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1651 	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1652 }
1653 
1654 /*
1655  * Arguments are '\0' separated strings found at the location bprm->p
1656  * points to; chop off the first by relocating brpm->p to right after
1657  * the first '\0' encountered.
1658  */
remove_arg_zero(struct linux_binprm * bprm)1659 int remove_arg_zero(struct linux_binprm *bprm)
1660 {
1661 	int ret = 0;
1662 	unsigned long offset;
1663 	char *kaddr;
1664 	struct page *page;
1665 
1666 	if (!bprm->argc)
1667 		return 0;
1668 
1669 	do {
1670 		offset = bprm->p & ~PAGE_MASK;
1671 		page = get_arg_page(bprm, bprm->p, 0);
1672 		if (!page) {
1673 			ret = -EFAULT;
1674 			goto out;
1675 		}
1676 		kaddr = kmap_atomic(page);
1677 
1678 		for (; offset < PAGE_SIZE && kaddr[offset];
1679 				offset++, bprm->p++)
1680 			;
1681 
1682 		kunmap_atomic(kaddr);
1683 		put_arg_page(page);
1684 	} while (offset == PAGE_SIZE);
1685 
1686 	bprm->p++;
1687 	bprm->argc--;
1688 	ret = 0;
1689 
1690 out:
1691 	return ret;
1692 }
1693 EXPORT_SYMBOL(remove_arg_zero);
1694 
1695 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1696 /*
1697  * cycle the list of binary formats handler, until one recognizes the image
1698  */
search_binary_handler(struct linux_binprm * bprm)1699 static int search_binary_handler(struct linux_binprm *bprm)
1700 {
1701 	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1702 	struct linux_binfmt *fmt;
1703 	int retval;
1704 
1705 	retval = prepare_binprm(bprm);
1706 	if (retval < 0)
1707 		return retval;
1708 
1709 	retval = security_bprm_check(bprm);
1710 	if (retval)
1711 		return retval;
1712 
1713 	retval = -ENOENT;
1714  retry:
1715 	read_lock(&binfmt_lock);
1716 	list_for_each_entry(fmt, &formats, lh) {
1717 		if (!try_module_get(fmt->module))
1718 			continue;
1719 		read_unlock(&binfmt_lock);
1720 
1721 		retval = fmt->load_binary(bprm);
1722 
1723 		read_lock(&binfmt_lock);
1724 		put_binfmt(fmt);
1725 		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1726 			read_unlock(&binfmt_lock);
1727 			return retval;
1728 		}
1729 	}
1730 	read_unlock(&binfmt_lock);
1731 
1732 	if (need_retry) {
1733 		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1734 		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1735 			return retval;
1736 		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1737 			return retval;
1738 		need_retry = false;
1739 		goto retry;
1740 	}
1741 
1742 	return retval;
1743 }
1744 
exec_binprm(struct linux_binprm * bprm)1745 static int exec_binprm(struct linux_binprm *bprm)
1746 {
1747 	pid_t old_pid, old_vpid;
1748 	int ret, depth;
1749 
1750 	/* Need to fetch pid before load_binary changes it */
1751 	old_pid = current->pid;
1752 	rcu_read_lock();
1753 	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1754 	rcu_read_unlock();
1755 
1756 	/* This allows 4 levels of binfmt rewrites before failing hard. */
1757 	for (depth = 0;; depth++) {
1758 		struct file *exec;
1759 		if (depth > 5)
1760 			return -ELOOP;
1761 
1762 		ret = search_binary_handler(bprm);
1763 		if (ret < 0)
1764 			return ret;
1765 		if (!bprm->interpreter)
1766 			break;
1767 
1768 		exec = bprm->file;
1769 		bprm->file = bprm->interpreter;
1770 		bprm->interpreter = NULL;
1771 
1772 		allow_write_access(exec);
1773 		if (unlikely(bprm->have_execfd)) {
1774 			if (bprm->executable) {
1775 				fput(exec);
1776 				return -ENOEXEC;
1777 			}
1778 			bprm->executable = exec;
1779 		} else
1780 			fput(exec);
1781 	}
1782 
1783 	audit_bprm(bprm);
1784 	trace_sched_process_exec(current, old_pid, bprm);
1785 	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1786 	proc_exec_connector(current);
1787 	return 0;
1788 }
1789 
1790 /*
1791  * sys_execve() executes a new program.
1792  */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1793 static int bprm_execve(struct linux_binprm *bprm,
1794 		       int fd, struct filename *filename, int flags)
1795 {
1796 	struct file *file;
1797 	int retval;
1798 
1799 	/*
1800 	 * Cancel any io_uring activity across execve
1801 	 */
1802 	io_uring_task_cancel();
1803 
1804 	retval = prepare_bprm_creds(bprm);
1805 	if (retval)
1806 		return retval;
1807 
1808 	check_unsafe_exec(bprm);
1809 	current->in_execve = 1;
1810 
1811 	file = do_open_execat(fd, filename, flags);
1812 	retval = PTR_ERR(file);
1813 	if (IS_ERR(file))
1814 		goto out_unmark;
1815 
1816 	sched_exec();
1817 
1818 	bprm->file = file;
1819 	/*
1820 	 * Record that a name derived from an O_CLOEXEC fd will be
1821 	 * inaccessible after exec.  This allows the code in exec to
1822 	 * choose to fail when the executable is not mmaped into the
1823 	 * interpreter and an open file descriptor is not passed to
1824 	 * the interpreter.  This makes for a better user experience
1825 	 * than having the interpreter start and then immediately fail
1826 	 * when it finds the executable is inaccessible.
1827 	 */
1828 	if (bprm->fdpath && get_close_on_exec(fd))
1829 		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1830 
1831 	/* Set the unchanging part of bprm->cred */
1832 	retval = security_bprm_creds_for_exec(bprm);
1833 	if (retval)
1834 		goto out;
1835 
1836 	retval = exec_binprm(bprm);
1837 	if (retval < 0)
1838 		goto out;
1839 
1840 	/* execve succeeded */
1841 	current->fs->in_exec = 0;
1842 	current->in_execve = 0;
1843 	rseq_execve(current);
1844 	acct_update_integrals(current);
1845 	task_numa_free(current, false);
1846 	CALL_HCK_LITE_HOOK(ced_detection_lhck, current);
1847 	return retval;
1848 
1849 out:
1850 	/*
1851 	 * If past the point of no return ensure the the code never
1852 	 * returns to the userspace process.  Use an existing fatal
1853 	 * signal if present otherwise terminate the process with
1854 	 * SIGSEGV.
1855 	 */
1856 	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1857 		force_sigsegv(SIGSEGV);
1858 
1859 out_unmark:
1860 	current->fs->in_exec = 0;
1861 	current->in_execve = 0;
1862 
1863 	return retval;
1864 }
1865 
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1866 static int do_execveat_common(int fd, struct filename *filename,
1867 			      struct user_arg_ptr argv,
1868 			      struct user_arg_ptr envp,
1869 			      int flags)
1870 {
1871 	struct linux_binprm *bprm;
1872 	int retval;
1873 
1874 	if (IS_ERR(filename))
1875 		return PTR_ERR(filename);
1876 
1877 	/*
1878 	 * We move the actual failure in case of RLIMIT_NPROC excess from
1879 	 * set*uid() to execve() because too many poorly written programs
1880 	 * don't check setuid() return code.  Here we additionally recheck
1881 	 * whether NPROC limit is still exceeded.
1882 	 */
1883 	if ((current->flags & PF_NPROC_EXCEEDED) &&
1884 	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1885 		retval = -EAGAIN;
1886 		goto out_ret;
1887 	}
1888 
1889 	/* We're below the limit (still or again), so we don't want to make
1890 	 * further execve() calls fail. */
1891 	current->flags &= ~PF_NPROC_EXCEEDED;
1892 
1893 	bprm = alloc_bprm(fd, filename);
1894 	if (IS_ERR(bprm)) {
1895 		retval = PTR_ERR(bprm);
1896 		goto out_ret;
1897 	}
1898 
1899 	retval = count(argv, MAX_ARG_STRINGS);
1900 	if (retval == 0)
1901 		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1902 			     current->comm, bprm->filename);
1903 	if (retval < 0)
1904 		goto out_free;
1905 	bprm->argc = retval;
1906 
1907 	retval = count(envp, MAX_ARG_STRINGS);
1908 	if (retval < 0)
1909 		goto out_free;
1910 	bprm->envc = retval;
1911 
1912 	retval = bprm_stack_limits(bprm);
1913 	if (retval < 0)
1914 		goto out_free;
1915 
1916 	retval = copy_string_kernel(bprm->filename, bprm);
1917 	if (retval < 0)
1918 		goto out_free;
1919 	bprm->exec = bprm->p;
1920 
1921 	retval = copy_strings(bprm->envc, envp, bprm);
1922 	if (retval < 0)
1923 		goto out_free;
1924 
1925 	retval = copy_strings(bprm->argc, argv, bprm);
1926 	if (retval < 0)
1927 		goto out_free;
1928 
1929 	/*
1930 	 * When argv is empty, add an empty string ("") as argv[0] to
1931 	 * ensure confused userspace programs that start processing
1932 	 * from argv[1] won't end up walking envp. See also
1933 	 * bprm_stack_limits().
1934 	 */
1935 	if (bprm->argc == 0) {
1936 		retval = copy_string_kernel("", bprm);
1937 		if (retval < 0)
1938 			goto out_free;
1939 		bprm->argc = 1;
1940 	}
1941 
1942 	retval = bprm_execve(bprm, fd, filename, flags);
1943 out_free:
1944 	free_bprm(bprm);
1945 
1946 out_ret:
1947 	putname(filename);
1948 	return retval;
1949 }
1950 
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1951 int kernel_execve(const char *kernel_filename,
1952 		  const char *const *argv, const char *const *envp)
1953 {
1954 	struct filename *filename;
1955 	struct linux_binprm *bprm;
1956 	int fd = AT_FDCWD;
1957 	int retval;
1958 
1959 	filename = getname_kernel(kernel_filename);
1960 	if (IS_ERR(filename))
1961 		return PTR_ERR(filename);
1962 
1963 	bprm = alloc_bprm(fd, filename);
1964 	if (IS_ERR(bprm)) {
1965 		retval = PTR_ERR(bprm);
1966 		goto out_ret;
1967 	}
1968 
1969 	retval = count_strings_kernel(argv);
1970 	if (WARN_ON_ONCE(retval == 0))
1971 		retval = -EINVAL;
1972 	if (retval < 0)
1973 		goto out_free;
1974 	bprm->argc = retval;
1975 
1976 	retval = count_strings_kernel(envp);
1977 	if (retval < 0)
1978 		goto out_free;
1979 	bprm->envc = retval;
1980 
1981 	retval = bprm_stack_limits(bprm);
1982 	if (retval < 0)
1983 		goto out_free;
1984 
1985 	retval = copy_string_kernel(bprm->filename, bprm);
1986 	if (retval < 0)
1987 		goto out_free;
1988 	bprm->exec = bprm->p;
1989 
1990 	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1991 	if (retval < 0)
1992 		goto out_free;
1993 
1994 	retval = copy_strings_kernel(bprm->argc, argv, bprm);
1995 	if (retval < 0)
1996 		goto out_free;
1997 
1998 	retval = bprm_execve(bprm, fd, filename, 0);
1999 out_free:
2000 	free_bprm(bprm);
2001 out_ret:
2002 	putname(filename);
2003 	return retval;
2004 }
2005 
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2006 static int do_execve(struct filename *filename,
2007 	const char __user *const __user *__argv,
2008 	const char __user *const __user *__envp)
2009 {
2010 	struct user_arg_ptr argv = { .ptr.native = __argv };
2011 	struct user_arg_ptr envp = { .ptr.native = __envp };
2012 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2013 }
2014 
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2015 static int do_execveat(int fd, struct filename *filename,
2016 		const char __user *const __user *__argv,
2017 		const char __user *const __user *__envp,
2018 		int flags)
2019 {
2020 	struct user_arg_ptr argv = { .ptr.native = __argv };
2021 	struct user_arg_ptr envp = { .ptr.native = __envp };
2022 
2023 	return do_execveat_common(fd, filename, argv, envp, flags);
2024 }
2025 
2026 #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2027 static int compat_do_execve(struct filename *filename,
2028 	const compat_uptr_t __user *__argv,
2029 	const compat_uptr_t __user *__envp)
2030 {
2031 	struct user_arg_ptr argv = {
2032 		.is_compat = true,
2033 		.ptr.compat = __argv,
2034 	};
2035 	struct user_arg_ptr envp = {
2036 		.is_compat = true,
2037 		.ptr.compat = __envp,
2038 	};
2039 	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2040 }
2041 
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2042 static int compat_do_execveat(int fd, struct filename *filename,
2043 			      const compat_uptr_t __user *__argv,
2044 			      const compat_uptr_t __user *__envp,
2045 			      int flags)
2046 {
2047 	struct user_arg_ptr argv = {
2048 		.is_compat = true,
2049 		.ptr.compat = __argv,
2050 	};
2051 	struct user_arg_ptr envp = {
2052 		.is_compat = true,
2053 		.ptr.compat = __envp,
2054 	};
2055 	return do_execveat_common(fd, filename, argv, envp, flags);
2056 }
2057 #endif
2058 
set_binfmt(struct linux_binfmt * new)2059 void set_binfmt(struct linux_binfmt *new)
2060 {
2061 	struct mm_struct *mm = current->mm;
2062 
2063 	if (mm->binfmt)
2064 		module_put(mm->binfmt->module);
2065 
2066 	mm->binfmt = new;
2067 	if (new)
2068 		__module_get(new->module);
2069 }
2070 EXPORT_SYMBOL(set_binfmt);
2071 
2072 /*
2073  * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2074  */
set_dumpable(struct mm_struct * mm,int value)2075 void set_dumpable(struct mm_struct *mm, int value)
2076 {
2077 	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2078 		return;
2079 
2080 	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2081 }
2082 
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2083 SYSCALL_DEFINE3(execve,
2084 		const char __user *, filename,
2085 		const char __user *const __user *, argv,
2086 		const char __user *const __user *, envp)
2087 {
2088 	return do_execve(getname(filename), argv, envp);
2089 }
2090 
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2091 SYSCALL_DEFINE5(execveat,
2092 		int, fd, const char __user *, filename,
2093 		const char __user *const __user *, argv,
2094 		const char __user *const __user *, envp,
2095 		int, flags)
2096 {
2097 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2098 
2099 	return do_execveat(fd,
2100 			   getname_flags(filename, lookup_flags, NULL),
2101 			   argv, envp, flags);
2102 }
2103 
2104 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2105 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2106 	const compat_uptr_t __user *, argv,
2107 	const compat_uptr_t __user *, envp)
2108 {
2109 	return compat_do_execve(getname(filename), argv, envp);
2110 }
2111 
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2112 COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2113 		       const char __user *, filename,
2114 		       const compat_uptr_t __user *, argv,
2115 		       const compat_uptr_t __user *, envp,
2116 		       int,  flags)
2117 {
2118 	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2119 
2120 	return compat_do_execveat(fd,
2121 				  getname_flags(filename, lookup_flags, NULL),
2122 				  argv, envp, flags);
2123 }
2124 #endif
2125