1 //===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the BasicBlock class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "llvm/IR/BasicBlock.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/IR/CFG.h"
17 #include "llvm/IR/Constants.h"
18 #include "llvm/IR/Instructions.h"
19 #include "llvm/IR/IntrinsicInst.h"
20 #include "llvm/IR/LLVMContext.h"
21 #include "llvm/IR/Type.h"
22 #include <algorithm>
23
24 using namespace llvm;
25
getValueSymbolTable()26 ValueSymbolTable *BasicBlock::getValueSymbolTable() {
27 if (Function *F = getParent())
28 return F->getValueSymbolTable();
29 return nullptr;
30 }
31
getContext() const32 LLVMContext &BasicBlock::getContext() const {
33 return getType()->getContext();
34 }
35
36 // Explicit instantiation of SymbolTableListTraits since some of the methods
37 // are not in the public header file...
38 template class llvm::SymbolTableListTraits<Instruction>;
39
BasicBlock(LLVMContext & C,const Twine & Name,Function * NewParent,BasicBlock * InsertBefore)40 BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
41 BasicBlock *InsertBefore)
42 : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {
43
44 if (NewParent)
45 insertInto(NewParent, InsertBefore);
46 else
47 assert(!InsertBefore &&
48 "Cannot insert block before another block with no function!");
49
50 setName(Name);
51 }
52
insertInto(Function * NewParent,BasicBlock * InsertBefore)53 void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
54 assert(NewParent && "Expected a parent");
55 assert(!Parent && "Already has a parent");
56
57 if (InsertBefore)
58 NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
59 else
60 NewParent->getBasicBlockList().push_back(this);
61 }
62
~BasicBlock()63 BasicBlock::~BasicBlock() {
64 // If the address of the block is taken and it is being deleted (e.g. because
65 // it is dead), this means that there is either a dangling constant expr
66 // hanging off the block, or an undefined use of the block (source code
67 // expecting the address of a label to keep the block alive even though there
68 // is no indirect branch). Handle these cases by zapping the BlockAddress
69 // nodes. There are no other possible uses at this point.
70 if (hasAddressTaken()) {
71 assert(!use_empty() && "There should be at least one blockaddress!");
72 Constant *Replacement =
73 ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
74 while (!use_empty()) {
75 BlockAddress *BA = cast<BlockAddress>(user_back());
76 BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
77 BA->getType()));
78 BA->destroyConstant();
79 }
80 }
81
82 assert(getParent() == nullptr && "BasicBlock still linked into the program!");
83 dropAllReferences();
84 InstList.clear();
85 }
86
setParent(Function * parent)87 void BasicBlock::setParent(Function *parent) {
88 // Set Parent=parent, updating instruction symtab entries as appropriate.
89 InstList.setSymTabObject(&Parent, parent);
90 }
91
92 iterator_range<filter_iterator<BasicBlock::const_iterator,
93 std::function<bool(const Instruction &)>>>
instructionsWithoutDebug() const94 BasicBlock::instructionsWithoutDebug() const {
95 std::function<bool(const Instruction &)> Fn = [](const Instruction &I) {
96 return !isa<DbgInfoIntrinsic>(I);
97 };
98 return make_filter_range(*this, Fn);
99 }
100
101 iterator_range<filter_iterator<BasicBlock::iterator,
102 std::function<bool(Instruction &)>>>
instructionsWithoutDebug()103 BasicBlock::instructionsWithoutDebug() {
104 std::function<bool(Instruction &)> Fn = [](Instruction &I) {
105 return !isa<DbgInfoIntrinsic>(I);
106 };
107 return make_filter_range(*this, Fn);
108 }
109
110 filter_iterator<BasicBlock::const_iterator,
111 std::function<bool(const Instruction &)>>::difference_type
sizeWithoutDebug() const112 BasicBlock::sizeWithoutDebug() const {
113 return std::distance(instructionsWithoutDebug().begin(),
114 instructionsWithoutDebug().end());
115 }
116
removeFromParent()117 void BasicBlock::removeFromParent() {
118 getParent()->getBasicBlockList().remove(getIterator());
119 }
120
eraseFromParent()121 iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
122 return getParent()->getBasicBlockList().erase(getIterator());
123 }
124
125 /// Unlink this basic block from its current function and
126 /// insert it into the function that MovePos lives in, right before MovePos.
moveBefore(BasicBlock * MovePos)127 void BasicBlock::moveBefore(BasicBlock *MovePos) {
128 MovePos->getParent()->getBasicBlockList().splice(
129 MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
130 }
131
132 /// Unlink this basic block from its current function and
133 /// insert it into the function that MovePos lives in, right after MovePos.
moveAfter(BasicBlock * MovePos)134 void BasicBlock::moveAfter(BasicBlock *MovePos) {
135 MovePos->getParent()->getBasicBlockList().splice(
136 ++MovePos->getIterator(), getParent()->getBasicBlockList(),
137 getIterator());
138 }
139
getModule() const140 const Module *BasicBlock::getModule() const {
141 return getParent()->getParent();
142 }
143
getTerminator() const144 const Instruction *BasicBlock::getTerminator() const {
145 if (InstList.empty() || !InstList.back().isTerminator())
146 return nullptr;
147 return &InstList.back();
148 }
149
getTerminatingMustTailCall() const150 const CallInst *BasicBlock::getTerminatingMustTailCall() const {
151 if (InstList.empty())
152 return nullptr;
153 const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
154 if (!RI || RI == &InstList.front())
155 return nullptr;
156
157 const Instruction *Prev = RI->getPrevNode();
158 if (!Prev)
159 return nullptr;
160
161 if (Value *RV = RI->getReturnValue()) {
162 if (RV != Prev)
163 return nullptr;
164
165 // Look through the optional bitcast.
166 if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
167 RV = BI->getOperand(0);
168 Prev = BI->getPrevNode();
169 if (!Prev || RV != Prev)
170 return nullptr;
171 }
172 }
173
174 if (auto *CI = dyn_cast<CallInst>(Prev)) {
175 if (CI->isMustTailCall())
176 return CI;
177 }
178 return nullptr;
179 }
180
getTerminatingDeoptimizeCall() const181 const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const {
182 if (InstList.empty())
183 return nullptr;
184 auto *RI = dyn_cast<ReturnInst>(&InstList.back());
185 if (!RI || RI == &InstList.front())
186 return nullptr;
187
188 if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
189 if (Function *F = CI->getCalledFunction())
190 if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
191 return CI;
192
193 return nullptr;
194 }
195
getFirstNonPHI() const196 const Instruction* BasicBlock::getFirstNonPHI() const {
197 for (const Instruction &I : *this)
198 if (!isa<PHINode>(I))
199 return &I;
200 return nullptr;
201 }
202
getFirstNonPHIOrDbg() const203 const Instruction* BasicBlock::getFirstNonPHIOrDbg() const {
204 for (const Instruction &I : *this)
205 if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
206 return &I;
207 return nullptr;
208 }
209
getFirstNonPHIOrDbgOrLifetime() const210 const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const {
211 for (const Instruction &I : *this) {
212 if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
213 continue;
214
215 if (I.isLifetimeStartOrEnd())
216 continue;
217
218 return &I;
219 }
220 return nullptr;
221 }
222
getFirstInsertionPt() const223 BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const {
224 const Instruction *FirstNonPHI = getFirstNonPHI();
225 if (!FirstNonPHI)
226 return end();
227
228 const_iterator InsertPt = FirstNonPHI->getIterator();
229 if (InsertPt->isEHPad()) ++InsertPt;
230 return InsertPt;
231 }
232
dropAllReferences()233 void BasicBlock::dropAllReferences() {
234 for (Instruction &I : *this)
235 I.dropAllReferences();
236 }
237
238 /// If this basic block has a single predecessor block,
239 /// return the block, otherwise return a null pointer.
getSinglePredecessor() const240 const BasicBlock *BasicBlock::getSinglePredecessor() const {
241 const_pred_iterator PI = pred_begin(this), E = pred_end(this);
242 if (PI == E) return nullptr; // No preds.
243 const BasicBlock *ThePred = *PI;
244 ++PI;
245 return (PI == E) ? ThePred : nullptr /*multiple preds*/;
246 }
247
248 /// If this basic block has a unique predecessor block,
249 /// return the block, otherwise return a null pointer.
250 /// Note that unique predecessor doesn't mean single edge, there can be
251 /// multiple edges from the unique predecessor to this block (for example
252 /// a switch statement with multiple cases having the same destination).
getUniquePredecessor() const253 const BasicBlock *BasicBlock::getUniquePredecessor() const {
254 const_pred_iterator PI = pred_begin(this), E = pred_end(this);
255 if (PI == E) return nullptr; // No preds.
256 const BasicBlock *PredBB = *PI;
257 ++PI;
258 for (;PI != E; ++PI) {
259 if (*PI != PredBB)
260 return nullptr;
261 // The same predecessor appears multiple times in the predecessor list.
262 // This is OK.
263 }
264 return PredBB;
265 }
266
hasNPredecessors(unsigned N) const267 bool BasicBlock::hasNPredecessors(unsigned N) const {
268 return hasNItems(pred_begin(this), pred_end(this), N);
269 }
270
hasNPredecessorsOrMore(unsigned N) const271 bool BasicBlock::hasNPredecessorsOrMore(unsigned N) const {
272 return hasNItemsOrMore(pred_begin(this), pred_end(this), N);
273 }
274
getSingleSuccessor() const275 const BasicBlock *BasicBlock::getSingleSuccessor() const {
276 succ_const_iterator SI = succ_begin(this), E = succ_end(this);
277 if (SI == E) return nullptr; // no successors
278 const BasicBlock *TheSucc = *SI;
279 ++SI;
280 return (SI == E) ? TheSucc : nullptr /* multiple successors */;
281 }
282
getUniqueSuccessor() const283 const BasicBlock *BasicBlock::getUniqueSuccessor() const {
284 succ_const_iterator SI = succ_begin(this), E = succ_end(this);
285 if (SI == E) return nullptr; // No successors
286 const BasicBlock *SuccBB = *SI;
287 ++SI;
288 for (;SI != E; ++SI) {
289 if (*SI != SuccBB)
290 return nullptr;
291 // The same successor appears multiple times in the successor list.
292 // This is OK.
293 }
294 return SuccBB;
295 }
296
phis()297 iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() {
298 PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin());
299 return make_range<phi_iterator>(P, nullptr);
300 }
301
302 /// This method is used to notify a BasicBlock that the
303 /// specified Predecessor of the block is no longer able to reach it. This is
304 /// actually not used to update the Predecessor list, but is actually used to
305 /// update the PHI nodes that reside in the block. Note that this should be
306 /// called while the predecessor still refers to this block.
307 ///
removePredecessor(BasicBlock * Pred,bool KeepOneInputPHIs)308 void BasicBlock::removePredecessor(BasicBlock *Pred,
309 bool KeepOneInputPHIs) {
310 assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
311 find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
312 "removePredecessor: BB is not a predecessor!");
313
314 if (InstList.empty()) return;
315 PHINode *APN = dyn_cast<PHINode>(&front());
316 if (!APN) return; // Quick exit.
317
318 // If there are exactly two predecessors, then we want to nuke the PHI nodes
319 // altogether. However, we cannot do this, if this in this case:
320 //
321 // Loop:
322 // %x = phi [X, Loop]
323 // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1
324 // br Loop ;; %x2 does not dominate all uses
325 //
326 // This is because the PHI node input is actually taken from the predecessor
327 // basic block. The only case this can happen is with a self loop, so we
328 // check for this case explicitly now.
329 //
330 unsigned max_idx = APN->getNumIncomingValues();
331 assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
332 if (max_idx == 2) {
333 BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);
334
335 // Disable PHI elimination!
336 if (this == Other) max_idx = 3;
337 }
338
339 // <= Two predecessors BEFORE I remove one?
340 if (max_idx <= 2 && !KeepOneInputPHIs) {
341 // Yup, loop through and nuke the PHI nodes
342 while (PHINode *PN = dyn_cast<PHINode>(&front())) {
343 // Remove the predecessor first.
344 PN->removeIncomingValue(Pred, !KeepOneInputPHIs);
345
346 // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
347 if (max_idx == 2) {
348 if (PN->getIncomingValue(0) != PN)
349 PN->replaceAllUsesWith(PN->getIncomingValue(0));
350 else
351 // We are left with an infinite loop with no entries: kill the PHI.
352 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
353 getInstList().pop_front(); // Remove the PHI node
354 }
355
356 // If the PHI node already only had one entry, it got deleted by
357 // removeIncomingValue.
358 }
359 } else {
360 // Okay, now we know that we need to remove predecessor #pred_idx from all
361 // PHI nodes. Iterate over each PHI node fixing them up
362 PHINode *PN;
363 for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
364 ++II;
365 PN->removeIncomingValue(Pred, false);
366 // If all incoming values to the Phi are the same, we can replace the Phi
367 // with that value.
368 Value* PNV = nullptr;
369 if (!KeepOneInputPHIs && (PNV = PN->hasConstantValue()))
370 if (PNV != PN) {
371 PN->replaceAllUsesWith(PNV);
372 PN->eraseFromParent();
373 }
374 }
375 }
376 }
377
canSplitPredecessors() const378 bool BasicBlock::canSplitPredecessors() const {
379 const Instruction *FirstNonPHI = getFirstNonPHI();
380 if (isa<LandingPadInst>(FirstNonPHI))
381 return true;
382 // This is perhaps a little conservative because constructs like
383 // CleanupBlockInst are pretty easy to split. However, SplitBlockPredecessors
384 // cannot handle such things just yet.
385 if (FirstNonPHI->isEHPad())
386 return false;
387 return true;
388 }
389
isLegalToHoistInto() const390 bool BasicBlock::isLegalToHoistInto() const {
391 auto *Term = getTerminator();
392 // No terminator means the block is under construction.
393 if (!Term)
394 return true;
395
396 // If the block has no successors, there can be no instructions to hoist.
397 assert(Term->getNumSuccessors() > 0);
398
399 // Instructions should not be hoisted across exception handling boundaries.
400 return !Term->isExceptionalTerminator();
401 }
402
403 /// This splits a basic block into two at the specified
404 /// instruction. Note that all instructions BEFORE the specified iterator stay
405 /// as part of the original basic block, an unconditional branch is added to
406 /// the new BB, and the rest of the instructions in the BB are moved to the new
407 /// BB, including the old terminator. This invalidates the iterator.
408 ///
409 /// Note that this only works on well formed basic blocks (must have a
410 /// terminator), and 'I' must not be the end of instruction list (which would
411 /// cause a degenerate basic block to be formed, having a terminator inside of
412 /// the basic block).
413 ///
splitBasicBlock(iterator I,const Twine & BBName)414 BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
415 assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
416 assert(I != InstList.end() &&
417 "Trying to get me to create degenerate basic block!");
418
419 BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
420 this->getNextNode());
421
422 // Save DebugLoc of split point before invalidating iterator.
423 DebugLoc Loc = I->getDebugLoc();
424 // Move all of the specified instructions from the original basic block into
425 // the new basic block.
426 New->getInstList().splice(New->end(), this->getInstList(), I, end());
427
428 // Add a branch instruction to the newly formed basic block.
429 BranchInst *BI = BranchInst::Create(New, this);
430 BI->setDebugLoc(Loc);
431
432 // Now we must loop through all of the successors of the New block (which
433 // _were_ the successors of the 'this' block), and update any PHI nodes in
434 // successors. If there were PHI nodes in the successors, then they need to
435 // know that incoming branches will be from New, not from Old (this).
436 //
437 New->replaceSuccessorsPhiUsesWith(this, New);
438 return New;
439 }
440
replacePhiUsesWith(BasicBlock * Old,BasicBlock * New)441 void BasicBlock::replacePhiUsesWith(BasicBlock *Old, BasicBlock *New) {
442 // N.B. This might not be a complete BasicBlock, so don't assume
443 // that it ends with a non-phi instruction.
444 for (iterator II = begin(), IE = end(); II != IE; ++II) {
445 PHINode *PN = dyn_cast<PHINode>(II);
446 if (!PN)
447 break;
448 PN->replaceIncomingBlockWith(Old, New);
449 }
450 }
451
replaceSuccessorsPhiUsesWith(BasicBlock * Old,BasicBlock * New)452 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *Old,
453 BasicBlock *New) {
454 Instruction *TI = getTerminator();
455 if (!TI)
456 // Cope with being called on a BasicBlock that doesn't have a terminator
457 // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
458 return;
459 llvm::for_each(successors(TI), [Old, New](BasicBlock *Succ) {
460 Succ->replacePhiUsesWith(Old, New);
461 });
462 }
463
replaceSuccessorsPhiUsesWith(BasicBlock * New)464 void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
465 this->replaceSuccessorsPhiUsesWith(this, New);
466 }
467
468 /// Return true if this basic block is a landing pad. I.e., it's
469 /// the destination of the 'unwind' edge of an invoke instruction.
isLandingPad() const470 bool BasicBlock::isLandingPad() const {
471 return isa<LandingPadInst>(getFirstNonPHI());
472 }
473
474 /// Return the landingpad instruction associated with the landing pad.
getLandingPadInst() const475 const LandingPadInst *BasicBlock::getLandingPadInst() const {
476 return dyn_cast<LandingPadInst>(getFirstNonPHI());
477 }
478
getIrrLoopHeaderWeight() const479 Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const {
480 const Instruction *TI = getTerminator();
481 if (MDNode *MDIrrLoopHeader =
482 TI->getMetadata(LLVMContext::MD_irr_loop)) {
483 MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0));
484 if (MDName->getString().equals("loop_header_weight")) {
485 auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1));
486 return Optional<uint64_t>(CI->getValue().getZExtValue());
487 }
488 }
489 return Optional<uint64_t>();
490 }
491
skipDebugIntrinsics(BasicBlock::iterator It)492 BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) {
493 while (isa<DbgInfoIntrinsic>(It))
494 ++It;
495 return It;
496 }
497