• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2018 Valve Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24 
25 #include "aco_ir.h"
26 
27 #include <algorithm>
28 #include <map>
29 #include <vector>
30 
31 namespace aco {
32 namespace {
33 
34 struct phi_info_item {
35    Definition def;
36    Operand op;
37 };
38 
39 struct ssa_elimination_ctx {
40    /* The outer vectors should be indexed by block index. The inner vectors store phi information
41     * for each block. */
42    std::vector<std::vector<phi_info_item>> logical_phi_info;
43    std::vector<std::vector<phi_info_item>> linear_phi_info;
44    std::vector<bool> empty_blocks;
45    std::vector<bool> blocks_incoming_exec_used;
46    Program* program;
47 
ssa_elimination_ctxaco::__anon388caa7f0111::ssa_elimination_ctx48    ssa_elimination_ctx(Program* program_)
49        : logical_phi_info(program_->blocks.size()), linear_phi_info(program_->blocks.size()),
50          empty_blocks(program_->blocks.size(), true),
51          blocks_incoming_exec_used(program_->blocks.size(), true), program(program_)
52    {}
53 };
54 
55 void
collect_phi_info(ssa_elimination_ctx & ctx)56 collect_phi_info(ssa_elimination_ctx& ctx)
57 {
58    for (Block& block : ctx.program->blocks) {
59       for (aco_ptr<Instruction>& phi : block.instructions) {
60          if (phi->opcode != aco_opcode::p_phi && phi->opcode != aco_opcode::p_linear_phi)
61             break;
62 
63          for (unsigned i = 0; i < phi->operands.size(); i++) {
64             if (phi->operands[i].isUndefined())
65                continue;
66             if (phi->operands[i].physReg() == phi->definitions[0].physReg())
67                continue;
68 
69             assert(phi->definitions[0].size() == phi->operands[i].size());
70 
71             std::vector<unsigned>& preds =
72                phi->opcode == aco_opcode::p_phi ? block.logical_preds : block.linear_preds;
73             uint32_t pred_idx = preds[i];
74             auto& info_vec = phi->opcode == aco_opcode::p_phi ? ctx.logical_phi_info[pred_idx]
75                                                               : ctx.linear_phi_info[pred_idx];
76             info_vec.push_back({phi->definitions[0], phi->operands[i]});
77             ctx.empty_blocks[pred_idx] = false;
78          }
79       }
80    }
81 }
82 
83 void
insert_parallelcopies(ssa_elimination_ctx & ctx)84 insert_parallelcopies(ssa_elimination_ctx& ctx)
85 {
86    /* insert the parallelcopies from logical phis before p_logical_end */
87    for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) {
88       auto& logical_phi_info = ctx.logical_phi_info[block_idx];
89       if (logical_phi_info.empty())
90          continue;
91 
92       Block& block = ctx.program->blocks[block_idx];
93       unsigned idx = block.instructions.size() - 1;
94       while (block.instructions[idx]->opcode != aco_opcode::p_logical_end) {
95          assert(idx > 0);
96          idx--;
97       }
98 
99       std::vector<aco_ptr<Instruction>>::iterator it = std::next(block.instructions.begin(), idx);
100       aco_ptr<Pseudo_instruction> pc{
101          create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO,
102                                                 logical_phi_info.size(), logical_phi_info.size())};
103       unsigned i = 0;
104       for (auto& phi_info : logical_phi_info) {
105          pc->definitions[i] = phi_info.def;
106          pc->operands[i] = phi_info.op;
107          i++;
108       }
109       /* this shouldn't be needed since we're only copying vgprs */
110       pc->tmp_in_scc = false;
111       block.instructions.insert(it, std::move(pc));
112    }
113 
114    /* insert parallelcopies for the linear phis at the end of blocks just before the branch */
115    for (unsigned block_idx = 0; block_idx < ctx.program->blocks.size(); ++block_idx) {
116       auto& linear_phi_info = ctx.linear_phi_info[block_idx];
117       if (linear_phi_info.empty())
118          continue;
119 
120       Block& block = ctx.program->blocks[block_idx];
121       std::vector<aco_ptr<Instruction>>::iterator it = block.instructions.end();
122       --it;
123       assert((*it)->isBranch());
124       PhysReg scratch_sgpr = (*it)->definitions[0].physReg();
125       aco_ptr<Pseudo_instruction> pc{
126          create_instruction<Pseudo_instruction>(aco_opcode::p_parallelcopy, Format::PSEUDO,
127                                                 linear_phi_info.size(), linear_phi_info.size())};
128       unsigned i = 0;
129       for (auto& phi_info : linear_phi_info) {
130          pc->definitions[i] = phi_info.def;
131          pc->operands[i] = phi_info.op;
132          i++;
133       }
134       pc->tmp_in_scc = block.scc_live_out;
135       pc->scratch_sgpr = scratch_sgpr;
136       block.instructions.insert(it, std::move(pc));
137    }
138 }
139 
140 bool
is_empty_block(Block * block,bool ignore_exec_writes)141 is_empty_block(Block* block, bool ignore_exec_writes)
142 {
143    /* check if this block is empty and the exec mask is not needed */
144    for (aco_ptr<Instruction>& instr : block->instructions) {
145       switch (instr->opcode) {
146       case aco_opcode::p_linear_phi:
147       case aco_opcode::p_phi:
148       case aco_opcode::p_logical_start:
149       case aco_opcode::p_logical_end:
150       case aco_opcode::p_branch: break;
151       case aco_opcode::p_parallelcopy:
152          for (unsigned i = 0; i < instr->definitions.size(); i++) {
153             if (ignore_exec_writes && instr->definitions[i].physReg() == exec)
154                continue;
155             if (instr->definitions[i].physReg() != instr->operands[i].physReg())
156                return false;
157          }
158          break;
159       case aco_opcode::s_andn2_b64:
160       case aco_opcode::s_andn2_b32:
161          if (ignore_exec_writes && instr->definitions[0].physReg() == exec)
162             break;
163          return false;
164       default: return false;
165       }
166    }
167    return true;
168 }
169 
170 void
try_remove_merge_block(ssa_elimination_ctx & ctx,Block * block)171 try_remove_merge_block(ssa_elimination_ctx& ctx, Block* block)
172 {
173    /* check if the successor is another merge block which restores exec */
174    // TODO: divergent loops also restore exec
175    if (block->linear_succs.size() != 1 ||
176        !(ctx.program->blocks[block->linear_succs[0]].kind & block_kind_merge))
177       return;
178 
179    /* check if this block is empty */
180    if (!is_empty_block(block, true))
181       return;
182 
183    /* keep the branch instruction and remove the rest */
184    aco_ptr<Instruction> branch = std::move(block->instructions.back());
185    block->instructions.clear();
186    block->instructions.emplace_back(std::move(branch));
187 }
188 
189 void
try_remove_invert_block(ssa_elimination_ctx & ctx,Block * block)190 try_remove_invert_block(ssa_elimination_ctx& ctx, Block* block)
191 {
192    assert(block->linear_succs.size() == 2);
193    /* only remove this block if the successor got removed as well */
194    if (block->linear_succs[0] != block->linear_succs[1])
195       return;
196 
197    /* check if block is otherwise empty */
198    if (!is_empty_block(block, true))
199       return;
200 
201    unsigned succ_idx = block->linear_succs[0];
202    assert(block->linear_preds.size() == 2);
203    for (unsigned i = 0; i < 2; i++) {
204       Block* pred = &ctx.program->blocks[block->linear_preds[i]];
205       pred->linear_succs[0] = succ_idx;
206       ctx.program->blocks[succ_idx].linear_preds[i] = pred->index;
207 
208       Pseudo_branch_instruction& branch = pred->instructions.back()->branch();
209       assert(branch.isBranch());
210       branch.target[0] = succ_idx;
211       branch.target[1] = succ_idx;
212    }
213 
214    block->instructions.clear();
215    block->linear_preds.clear();
216    block->linear_succs.clear();
217 }
218 
219 void
try_remove_simple_block(ssa_elimination_ctx & ctx,Block * block)220 try_remove_simple_block(ssa_elimination_ctx& ctx, Block* block)
221 {
222    if (!is_empty_block(block, false))
223       return;
224 
225    Block& pred = ctx.program->blocks[block->linear_preds[0]];
226    Block& succ = ctx.program->blocks[block->linear_succs[0]];
227    Pseudo_branch_instruction& branch = pred.instructions.back()->branch();
228    if (branch.opcode == aco_opcode::p_branch) {
229       branch.target[0] = succ.index;
230       branch.target[1] = succ.index;
231    } else if (branch.target[0] == block->index) {
232       branch.target[0] = succ.index;
233    } else if (branch.target[0] == succ.index) {
234       assert(branch.target[1] == block->index);
235       branch.target[1] = succ.index;
236       branch.opcode = aco_opcode::p_branch;
237    } else if (branch.target[1] == block->index) {
238       /* check if there is a fall-through path from block to succ */
239       bool falls_through = block->index < succ.index;
240       for (unsigned j = block->index + 1; falls_through && j < succ.index; j++) {
241          assert(ctx.program->blocks[j].index == j);
242          if (!ctx.program->blocks[j].instructions.empty())
243             falls_through = false;
244       }
245       if (falls_through) {
246          branch.target[1] = succ.index;
247       } else {
248          /* check if there is a fall-through path for the alternative target */
249          if (block->index >= branch.target[0])
250             return;
251          for (unsigned j = block->index + 1; j < branch.target[0]; j++) {
252             if (!ctx.program->blocks[j].instructions.empty())
253                return;
254          }
255 
256          /* This is a (uniform) break or continue block. The branch condition has to be inverted. */
257          if (branch.opcode == aco_opcode::p_cbranch_z)
258             branch.opcode = aco_opcode::p_cbranch_nz;
259          else if (branch.opcode == aco_opcode::p_cbranch_nz)
260             branch.opcode = aco_opcode::p_cbranch_z;
261          else
262             assert(false);
263          /* also invert the linear successors */
264          pred.linear_succs[0] = pred.linear_succs[1];
265          pred.linear_succs[1] = succ.index;
266          branch.target[1] = branch.target[0];
267          branch.target[0] = succ.index;
268       }
269    } else {
270       assert(false);
271    }
272 
273    if (branch.target[0] == branch.target[1])
274       branch.opcode = aco_opcode::p_branch;
275 
276    for (unsigned i = 0; i < pred.linear_succs.size(); i++)
277       if (pred.linear_succs[i] == block->index)
278          pred.linear_succs[i] = succ.index;
279 
280    for (unsigned i = 0; i < succ.linear_preds.size(); i++)
281       if (succ.linear_preds[i] == block->index)
282          succ.linear_preds[i] = pred.index;
283 
284    block->instructions.clear();
285    block->linear_preds.clear();
286    block->linear_succs.clear();
287 }
288 
289 bool
instr_writes_exec(Instruction * instr)290 instr_writes_exec(Instruction* instr)
291 {
292    for (Definition& def : instr->definitions)
293       if (def.physReg() == exec || def.physReg() == exec_hi)
294          return true;
295 
296    return false;
297 }
298 
299 void
eliminate_useless_exec_writes_in_block(ssa_elimination_ctx & ctx,Block & block)300 eliminate_useless_exec_writes_in_block(ssa_elimination_ctx& ctx, Block& block)
301 {
302    /* Check if any successor needs the outgoing exec mask from the current block. */
303 
304    bool exec_write_used;
305 
306    if (!ctx.logical_phi_info[block.index].empty()) {
307       exec_write_used = true;
308    } else {
309       bool copy_to_exec = false;
310       bool copy_from_exec = false;
311 
312       for (const auto& successor_phi_info : ctx.linear_phi_info[block.index]) {
313          copy_to_exec |= successor_phi_info.def.physReg() == exec;
314          copy_from_exec |= successor_phi_info.op.physReg() == exec;
315       }
316 
317       if (copy_from_exec)
318          exec_write_used = true;
319       else if (copy_to_exec)
320          exec_write_used = false;
321       else
322          /* blocks_incoming_exec_used is initialized to true, so this is correct even for loops. */
323          exec_write_used =
324             std::any_of(block.linear_succs.begin(), block.linear_succs.end(),
325                         [&ctx](int succ_idx) { return ctx.blocks_incoming_exec_used[succ_idx]; });
326    }
327 
328    /* Go through all instructions and eliminate useless exec writes. */
329 
330    for (int i = block.instructions.size() - 1; i >= 0; --i) {
331       aco_ptr<Instruction>& instr = block.instructions[i];
332 
333       /* We already take information from phis into account before the loop, so let's just break on
334        * phis. */
335       if (instr->opcode == aco_opcode::p_linear_phi || instr->opcode == aco_opcode::p_phi)
336          break;
337 
338       /* See if the current instruction needs or writes exec. */
339       bool needs_exec = needs_exec_mask(instr.get());
340       bool writes_exec = instr_writes_exec(instr.get());
341 
342       /* See if we found an unused exec write. */
343       if (writes_exec && !exec_write_used) {
344          instr.reset();
345          continue;
346       }
347 
348       /* For a newly encountered exec write, clear the used flag. */
349       if (writes_exec)
350          exec_write_used = false;
351 
352       /* If the current instruction needs exec, mark it as used. */
353       exec_write_used |= needs_exec;
354    }
355 
356    /* Remember if the current block needs an incoming exec mask from its predecessors. */
357    ctx.blocks_incoming_exec_used[block.index] = exec_write_used;
358 
359    /* Cleanup: remove deleted instructions from the vector. */
360    auto new_end = std::remove(block.instructions.begin(), block.instructions.end(), nullptr);
361    block.instructions.resize(new_end - block.instructions.begin());
362 }
363 
364 void
jump_threading(ssa_elimination_ctx & ctx)365 jump_threading(ssa_elimination_ctx& ctx)
366 {
367    for (int i = ctx.program->blocks.size() - 1; i >= 0; i--) {
368       Block* block = &ctx.program->blocks[i];
369       eliminate_useless_exec_writes_in_block(ctx, *block);
370 
371       if (!ctx.empty_blocks[i])
372          continue;
373 
374       if (block->kind & block_kind_invert) {
375          try_remove_invert_block(ctx, block);
376          continue;
377       }
378 
379       if (block->linear_succs.size() > 1)
380          continue;
381 
382       if (block->kind & block_kind_merge || block->kind & block_kind_loop_exit)
383          try_remove_merge_block(ctx, block);
384 
385       if (block->linear_preds.size() == 1)
386          try_remove_simple_block(ctx, block);
387    }
388 }
389 
390 } /* end namespace */
391 
392 void
ssa_elimination(Program * program)393 ssa_elimination(Program* program)
394 {
395    ssa_elimination_ctx ctx(program);
396 
397    /* Collect information about every phi-instruction */
398    collect_phi_info(ctx);
399 
400    /* eliminate empty blocks */
401    jump_threading(ctx);
402 
403    /* insert parallelcopies from SSA elimination */
404    insert_parallelcopies(ctx);
405 }
406 } // namespace aco
407