1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 */
5
6 /*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures. Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time. Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c). This
21 * makes for cleaner and more compact code. -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling. No delays, but all
32 * other bits should be there.
33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 * -- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 * -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 * -- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 * -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context. Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched/signal.h>
74 #include <linux/sched/task.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/ppp-ioctl.h>
91 #include <linux/proc_fs.h>
92 #include <linux/init.h>
93 #include <linux/module.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99 #include <linux/serial.h>
100 #include <linux/ratelimit.h>
101 #include <linux/compat.h>
102
103 #include <linux/uaccess.h>
104
105 #include <linux/kbd_kern.h>
106 #include <linux/vt_kern.h>
107 #include <linux/selection.h>
108
109 #include <linux/kmod.h>
110 #include <linux/nsproxy.h>
111 #include "tty.h"
112
113 #undef TTY_DEBUG_HANGUP
114 #ifdef TTY_DEBUG_HANGUP
115 # define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
116 #else
117 # define tty_debug_hangup(tty, f, args...) do { } while (0)
118 #endif
119
120 #define TTY_PARANOIA_CHECK 1
121 #define CHECK_TTY_COUNT 1
122
123 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
124 .c_iflag = ICRNL | IXON,
125 .c_oflag = OPOST | ONLCR,
126 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
127 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
128 ECHOCTL | ECHOKE | IEXTEN,
129 .c_cc = INIT_C_CC,
130 .c_ispeed = 38400,
131 .c_ospeed = 38400,
132 /* .c_line = N_TTY, */
133 };
134
135 EXPORT_SYMBOL(tty_std_termios);
136
137 /* This list gets poked at by procfs and various bits of boot up code. This
138 could do with some rationalisation such as pulling the tty proc function
139 into this file */
140
141 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
142
143 /* Mutex to protect creating and releasing a tty */
144 DEFINE_MUTEX(tty_mutex);
145
146 static ssize_t tty_read(struct kiocb *, struct iov_iter *);
147 static ssize_t tty_write(struct kiocb *, struct iov_iter *);
148 static __poll_t tty_poll(struct file *, poll_table *);
149 static int tty_open(struct inode *, struct file *);
150 #ifdef CONFIG_COMPAT
151 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 unsigned long arg);
153 #else
154 #define tty_compat_ioctl NULL
155 #endif
156 static int __tty_fasync(int fd, struct file *filp, int on);
157 static int tty_fasync(int fd, struct file *filp, int on);
158 static void release_tty(struct tty_struct *tty, int idx);
159
160 /**
161 * free_tty_struct - free a disused tty
162 * @tty: tty struct to free
163 *
164 * Free the write buffers, tty queue and tty memory itself.
165 *
166 * Locking: none. Must be called after tty is definitely unused
167 */
168
free_tty_struct(struct tty_struct * tty)169 static void free_tty_struct(struct tty_struct *tty)
170 {
171 tty_ldisc_deinit(tty);
172 put_device(tty->dev);
173 kfree(tty->write_buf);
174 tty->magic = 0xDEADDEAD;
175 kfree(tty);
176 }
177
file_tty(struct file * file)178 static inline struct tty_struct *file_tty(struct file *file)
179 {
180 return ((struct tty_file_private *)file->private_data)->tty;
181 }
182
tty_alloc_file(struct file * file)183 int tty_alloc_file(struct file *file)
184 {
185 struct tty_file_private *priv;
186
187 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
188 if (!priv)
189 return -ENOMEM;
190
191 file->private_data = priv;
192
193 return 0;
194 }
195
196 /* Associate a new file with the tty structure */
tty_add_file(struct tty_struct * tty,struct file * file)197 void tty_add_file(struct tty_struct *tty, struct file *file)
198 {
199 struct tty_file_private *priv = file->private_data;
200
201 priv->tty = tty;
202 priv->file = file;
203
204 spin_lock(&tty->files_lock);
205 list_add(&priv->list, &tty->tty_files);
206 spin_unlock(&tty->files_lock);
207 }
208
209 /**
210 * tty_free_file - free file->private_data
211 *
212 * This shall be used only for fail path handling when tty_add_file was not
213 * called yet.
214 */
tty_free_file(struct file * file)215 void tty_free_file(struct file *file)
216 {
217 struct tty_file_private *priv = file->private_data;
218
219 file->private_data = NULL;
220 kfree(priv);
221 }
222
223 /* Delete file from its tty */
tty_del_file(struct file * file)224 static void tty_del_file(struct file *file)
225 {
226 struct tty_file_private *priv = file->private_data;
227 struct tty_struct *tty = priv->tty;
228
229 spin_lock(&tty->files_lock);
230 list_del(&priv->list);
231 spin_unlock(&tty->files_lock);
232 tty_free_file(file);
233 }
234
235 /**
236 * tty_name - return tty naming
237 * @tty: tty structure
238 *
239 * Convert a tty structure into a name. The name reflects the kernel
240 * naming policy and if udev is in use may not reflect user space
241 *
242 * Locking: none
243 */
244
tty_name(const struct tty_struct * tty)245 const char *tty_name(const struct tty_struct *tty)
246 {
247 if (!tty) /* Hmm. NULL pointer. That's fun. */
248 return "NULL tty";
249 return tty->name;
250 }
251
252 EXPORT_SYMBOL(tty_name);
253
tty_driver_name(const struct tty_struct * tty)254 const char *tty_driver_name(const struct tty_struct *tty)
255 {
256 if (!tty || !tty->driver)
257 return "";
258 return tty->driver->name;
259 }
260
tty_paranoia_check(struct tty_struct * tty,struct inode * inode,const char * routine)261 static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
262 const char *routine)
263 {
264 #ifdef TTY_PARANOIA_CHECK
265 if (!tty) {
266 pr_warn("(%d:%d): %s: NULL tty\n",
267 imajor(inode), iminor(inode), routine);
268 return 1;
269 }
270 if (tty->magic != TTY_MAGIC) {
271 pr_warn("(%d:%d): %s: bad magic number\n",
272 imajor(inode), iminor(inode), routine);
273 return 1;
274 }
275 #endif
276 return 0;
277 }
278
279 /* Caller must hold tty_lock */
check_tty_count(struct tty_struct * tty,const char * routine)280 static int check_tty_count(struct tty_struct *tty, const char *routine)
281 {
282 #ifdef CHECK_TTY_COUNT
283 struct list_head *p;
284 int count = 0, kopen_count = 0;
285
286 spin_lock(&tty->files_lock);
287 list_for_each(p, &tty->tty_files) {
288 count++;
289 }
290 spin_unlock(&tty->files_lock);
291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 tty->driver->subtype == PTY_TYPE_SLAVE &&
293 tty->link && tty->link->count)
294 count++;
295 if (tty_port_kopened(tty->port))
296 kopen_count++;
297 if (tty->count != (count + kopen_count)) {
298 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
299 routine, tty->count, count, kopen_count);
300 return (count + kopen_count);
301 }
302 #endif
303 return 0;
304 }
305
306 /**
307 * get_tty_driver - find device of a tty
308 * @device: device identifier
309 * @index: returns the index of the tty
310 *
311 * This routine returns a tty driver structure, given a device number
312 * and also passes back the index number.
313 *
314 * Locking: caller must hold tty_mutex
315 */
316
get_tty_driver(dev_t device,int * index)317 static struct tty_driver *get_tty_driver(dev_t device, int *index)
318 {
319 struct tty_driver *p;
320
321 list_for_each_entry(p, &tty_drivers, tty_drivers) {
322 dev_t base = MKDEV(p->major, p->minor_start);
323 if (device < base || device >= base + p->num)
324 continue;
325 *index = device - base;
326 return tty_driver_kref_get(p);
327 }
328 return NULL;
329 }
330
331 /**
332 * tty_dev_name_to_number - return dev_t for device name
333 * @name: user space name of device under /dev
334 * @number: pointer to dev_t that this function will populate
335 *
336 * This function converts device names like ttyS0 or ttyUSB1 into dev_t
337 * like (4, 64) or (188, 1). If no corresponding driver is registered then
338 * the function returns -ENODEV.
339 *
340 * Locking: this acquires tty_mutex to protect the tty_drivers list from
341 * being modified while we are traversing it, and makes sure to
342 * release it before exiting.
343 */
tty_dev_name_to_number(const char * name,dev_t * number)344 int tty_dev_name_to_number(const char *name, dev_t *number)
345 {
346 struct tty_driver *p;
347 int ret;
348 int index, prefix_length = 0;
349 const char *str;
350
351 for (str = name; *str && !isdigit(*str); str++)
352 ;
353
354 if (!*str)
355 return -EINVAL;
356
357 ret = kstrtoint(str, 10, &index);
358 if (ret)
359 return ret;
360
361 prefix_length = str - name;
362 mutex_lock(&tty_mutex);
363
364 list_for_each_entry(p, &tty_drivers, tty_drivers)
365 if (prefix_length == strlen(p->name) && strncmp(name,
366 p->name, prefix_length) == 0) {
367 if (index < p->num) {
368 *number = MKDEV(p->major, p->minor_start + index);
369 goto out;
370 }
371 }
372
373 /* if here then driver wasn't found */
374 ret = -ENODEV;
375 out:
376 mutex_unlock(&tty_mutex);
377 return ret;
378 }
379 EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
380
381 #ifdef CONFIG_CONSOLE_POLL
382
383 /**
384 * tty_find_polling_driver - find device of a polled tty
385 * @name: name string to match
386 * @line: pointer to resulting tty line nr
387 *
388 * This routine returns a tty driver structure, given a name
389 * and the condition that the tty driver is capable of polled
390 * operation.
391 */
tty_find_polling_driver(char * name,int * line)392 struct tty_driver *tty_find_polling_driver(char *name, int *line)
393 {
394 struct tty_driver *p, *res = NULL;
395 int tty_line = 0;
396 int len;
397 char *str, *stp;
398
399 for (str = name; *str; str++)
400 if ((*str >= '0' && *str <= '9') || *str == ',')
401 break;
402 if (!*str)
403 return NULL;
404
405 len = str - name;
406 tty_line = simple_strtoul(str, &str, 10);
407
408 mutex_lock(&tty_mutex);
409 /* Search through the tty devices to look for a match */
410 list_for_each_entry(p, &tty_drivers, tty_drivers) {
411 if (!len || strncmp(name, p->name, len) != 0)
412 continue;
413 stp = str;
414 if (*stp == ',')
415 stp++;
416 if (*stp == '\0')
417 stp = NULL;
418
419 if (tty_line >= 0 && tty_line < p->num && p->ops &&
420 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
421 res = tty_driver_kref_get(p);
422 *line = tty_line;
423 break;
424 }
425 }
426 mutex_unlock(&tty_mutex);
427
428 return res;
429 }
430 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
431 #endif
432
hung_up_tty_read(struct kiocb * iocb,struct iov_iter * to)433 static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
434 {
435 return 0;
436 }
437
hung_up_tty_write(struct kiocb * iocb,struct iov_iter * from)438 static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
439 {
440 return -EIO;
441 }
442
443 /* No kernel lock held - none needed ;) */
hung_up_tty_poll(struct file * filp,poll_table * wait)444 static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
445 {
446 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
447 }
448
hung_up_tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)449 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
450 unsigned long arg)
451 {
452 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
453 }
454
hung_up_tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)455 static long hung_up_tty_compat_ioctl(struct file *file,
456 unsigned int cmd, unsigned long arg)
457 {
458 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
459 }
460
hung_up_tty_fasync(int fd,struct file * file,int on)461 static int hung_up_tty_fasync(int fd, struct file *file, int on)
462 {
463 return -ENOTTY;
464 }
465
tty_show_fdinfo(struct seq_file * m,struct file * file)466 static void tty_show_fdinfo(struct seq_file *m, struct file *file)
467 {
468 struct tty_struct *tty = file_tty(file);
469
470 if (tty && tty->ops && tty->ops->show_fdinfo)
471 tty->ops->show_fdinfo(tty, m);
472 }
473
474 static const struct file_operations tty_fops = {
475 .llseek = no_llseek,
476 .read_iter = tty_read,
477 .write_iter = tty_write,
478 .splice_read = generic_file_splice_read,
479 .splice_write = iter_file_splice_write,
480 .poll = tty_poll,
481 .unlocked_ioctl = tty_ioctl,
482 .compat_ioctl = tty_compat_ioctl,
483 .open = tty_open,
484 .release = tty_release,
485 .fasync = tty_fasync,
486 .show_fdinfo = tty_show_fdinfo,
487 };
488
489 static const struct file_operations console_fops = {
490 .llseek = no_llseek,
491 .read_iter = tty_read,
492 .write_iter = redirected_tty_write,
493 .splice_read = generic_file_splice_read,
494 .splice_write = iter_file_splice_write,
495 .poll = tty_poll,
496 .unlocked_ioctl = tty_ioctl,
497 .compat_ioctl = tty_compat_ioctl,
498 .open = tty_open,
499 .release = tty_release,
500 .fasync = tty_fasync,
501 };
502
503 static const struct file_operations hung_up_tty_fops = {
504 .llseek = no_llseek,
505 .read_iter = hung_up_tty_read,
506 .write_iter = hung_up_tty_write,
507 .poll = hung_up_tty_poll,
508 .unlocked_ioctl = hung_up_tty_ioctl,
509 .compat_ioctl = hung_up_tty_compat_ioctl,
510 .release = tty_release,
511 .fasync = hung_up_tty_fasync,
512 };
513
514 static DEFINE_SPINLOCK(redirect_lock);
515 static struct file *redirect;
516
517 extern void tty_sysctl_init(void);
518
519 /**
520 * tty_wakeup - request more data
521 * @tty: terminal
522 *
523 * Internal and external helper for wakeups of tty. This function
524 * informs the line discipline if present that the driver is ready
525 * to receive more output data.
526 */
527
tty_wakeup(struct tty_struct * tty)528 void tty_wakeup(struct tty_struct *tty)
529 {
530 struct tty_ldisc *ld;
531
532 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
533 ld = tty_ldisc_ref(tty);
534 if (ld) {
535 if (ld->ops->write_wakeup)
536 ld->ops->write_wakeup(tty);
537 tty_ldisc_deref(ld);
538 }
539 }
540 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
541 }
542
543 EXPORT_SYMBOL_GPL(tty_wakeup);
544
545 /**
546 * __tty_hangup - actual handler for hangup events
547 * @tty: tty device
548 *
549 * This can be called by a "kworker" kernel thread. That is process
550 * synchronous but doesn't hold any locks, so we need to make sure we
551 * have the appropriate locks for what we're doing.
552 *
553 * The hangup event clears any pending redirections onto the hung up
554 * device. It ensures future writes will error and it does the needed
555 * line discipline hangup and signal delivery. The tty object itself
556 * remains intact.
557 *
558 * Locking:
559 * BTM
560 * redirect lock for undoing redirection
561 * file list lock for manipulating list of ttys
562 * tty_ldiscs_lock from called functions
563 * termios_rwsem resetting termios data
564 * tasklist_lock to walk task list for hangup event
565 * ->siglock to protect ->signal/->sighand
566 */
__tty_hangup(struct tty_struct * tty,int exit_session)567 static void __tty_hangup(struct tty_struct *tty, int exit_session)
568 {
569 struct file *cons_filp = NULL;
570 struct file *filp, *f = NULL;
571 struct tty_file_private *priv;
572 int closecount = 0, n;
573 int refs;
574
575 if (!tty)
576 return;
577
578
579 spin_lock(&redirect_lock);
580 if (redirect && file_tty(redirect) == tty) {
581 f = redirect;
582 redirect = NULL;
583 }
584 spin_unlock(&redirect_lock);
585
586 tty_lock(tty);
587
588 if (test_bit(TTY_HUPPED, &tty->flags)) {
589 tty_unlock(tty);
590 return;
591 }
592
593 /*
594 * Some console devices aren't actually hung up for technical and
595 * historical reasons, which can lead to indefinite interruptible
596 * sleep in n_tty_read(). The following explicitly tells
597 * n_tty_read() to abort readers.
598 */
599 set_bit(TTY_HUPPING, &tty->flags);
600
601 /* inuse_filps is protected by the single tty lock,
602 this really needs to change if we want to flush the
603 workqueue with the lock held */
604 check_tty_count(tty, "tty_hangup");
605
606 spin_lock(&tty->files_lock);
607 /* This breaks for file handles being sent over AF_UNIX sockets ? */
608 list_for_each_entry(priv, &tty->tty_files, list) {
609 filp = priv->file;
610 if (filp->f_op->write_iter == redirected_tty_write)
611 cons_filp = filp;
612 if (filp->f_op->write_iter != tty_write)
613 continue;
614 closecount++;
615 __tty_fasync(-1, filp, 0); /* can't block */
616 filp->f_op = &hung_up_tty_fops;
617 }
618 spin_unlock(&tty->files_lock);
619
620 refs = tty_signal_session_leader(tty, exit_session);
621 /* Account for the p->signal references we killed */
622 while (refs--)
623 tty_kref_put(tty);
624
625 tty_ldisc_hangup(tty, cons_filp != NULL);
626
627 spin_lock_irq(&tty->ctrl_lock);
628 clear_bit(TTY_THROTTLED, &tty->flags);
629 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
630 put_pid(tty->session);
631 put_pid(tty->pgrp);
632 tty->session = NULL;
633 tty->pgrp = NULL;
634 tty->ctrl_status = 0;
635 spin_unlock_irq(&tty->ctrl_lock);
636
637 /*
638 * If one of the devices matches a console pointer, we
639 * cannot just call hangup() because that will cause
640 * tty->count and state->count to go out of sync.
641 * So we just call close() the right number of times.
642 */
643 if (cons_filp) {
644 if (tty->ops->close)
645 for (n = 0; n < closecount; n++)
646 tty->ops->close(tty, cons_filp);
647 } else if (tty->ops->hangup)
648 tty->ops->hangup(tty);
649 /*
650 * We don't want to have driver/ldisc interactions beyond the ones
651 * we did here. The driver layer expects no calls after ->hangup()
652 * from the ldisc side, which is now guaranteed.
653 */
654 set_bit(TTY_HUPPED, &tty->flags);
655 clear_bit(TTY_HUPPING, &tty->flags);
656 tty_unlock(tty);
657
658 if (f)
659 fput(f);
660 }
661
do_tty_hangup(struct work_struct * work)662 static void do_tty_hangup(struct work_struct *work)
663 {
664 struct tty_struct *tty =
665 container_of(work, struct tty_struct, hangup_work);
666
667 __tty_hangup(tty, 0);
668 }
669
670 /**
671 * tty_hangup - trigger a hangup event
672 * @tty: tty to hangup
673 *
674 * A carrier loss (virtual or otherwise) has occurred on this like
675 * schedule a hangup sequence to run after this event.
676 */
677
tty_hangup(struct tty_struct * tty)678 void tty_hangup(struct tty_struct *tty)
679 {
680 tty_debug_hangup(tty, "hangup\n");
681 schedule_work(&tty->hangup_work);
682 }
683
684 EXPORT_SYMBOL(tty_hangup);
685
686 /**
687 * tty_vhangup - process vhangup
688 * @tty: tty to hangup
689 *
690 * The user has asked via system call for the terminal to be hung up.
691 * We do this synchronously so that when the syscall returns the process
692 * is complete. That guarantee is necessary for security reasons.
693 */
694
tty_vhangup(struct tty_struct * tty)695 void tty_vhangup(struct tty_struct *tty)
696 {
697 tty_debug_hangup(tty, "vhangup\n");
698 __tty_hangup(tty, 0);
699 }
700
701 EXPORT_SYMBOL(tty_vhangup);
702
703
704 /**
705 * tty_vhangup_self - process vhangup for own ctty
706 *
707 * Perform a vhangup on the current controlling tty
708 */
709
tty_vhangup_self(void)710 void tty_vhangup_self(void)
711 {
712 struct tty_struct *tty;
713
714 tty = get_current_tty();
715 if (tty) {
716 tty_vhangup(tty);
717 tty_kref_put(tty);
718 }
719 }
720
721 /**
722 * tty_vhangup_session - hangup session leader exit
723 * @tty: tty to hangup
724 *
725 * The session leader is exiting and hanging up its controlling terminal.
726 * Every process in the foreground process group is signalled SIGHUP.
727 *
728 * We do this synchronously so that when the syscall returns the process
729 * is complete. That guarantee is necessary for security reasons.
730 */
731
tty_vhangup_session(struct tty_struct * tty)732 void tty_vhangup_session(struct tty_struct *tty)
733 {
734 tty_debug_hangup(tty, "session hangup\n");
735 __tty_hangup(tty, 1);
736 }
737
738 /**
739 * tty_hung_up_p - was tty hung up
740 * @filp: file pointer of tty
741 *
742 * Return true if the tty has been subject to a vhangup or a carrier
743 * loss
744 */
745
tty_hung_up_p(struct file * filp)746 int tty_hung_up_p(struct file *filp)
747 {
748 return (filp && filp->f_op == &hung_up_tty_fops);
749 }
750
751 EXPORT_SYMBOL(tty_hung_up_p);
752
753 /**
754 * stop_tty - propagate flow control
755 * @tty: tty to stop
756 *
757 * Perform flow control to the driver. May be called
758 * on an already stopped device and will not re-call the driver
759 * method.
760 *
761 * This functionality is used by both the line disciplines for
762 * halting incoming flow and by the driver. It may therefore be
763 * called from any context, may be under the tty atomic_write_lock
764 * but not always.
765 *
766 * Locking:
767 * flow_lock
768 */
769
__stop_tty(struct tty_struct * tty)770 void __stop_tty(struct tty_struct *tty)
771 {
772 if (tty->stopped)
773 return;
774 tty->stopped = 1;
775 if (tty->ops->stop)
776 tty->ops->stop(tty);
777 }
778
stop_tty(struct tty_struct * tty)779 void stop_tty(struct tty_struct *tty)
780 {
781 unsigned long flags;
782
783 spin_lock_irqsave(&tty->flow_lock, flags);
784 __stop_tty(tty);
785 spin_unlock_irqrestore(&tty->flow_lock, flags);
786 }
787 EXPORT_SYMBOL(stop_tty);
788
789 /**
790 * start_tty - propagate flow control
791 * @tty: tty to start
792 *
793 * Start a tty that has been stopped if at all possible. If this
794 * tty was previous stopped and is now being started, the driver
795 * start method is invoked and the line discipline woken.
796 *
797 * Locking:
798 * flow_lock
799 */
800
__start_tty(struct tty_struct * tty)801 void __start_tty(struct tty_struct *tty)
802 {
803 if (!tty->stopped || tty->flow_stopped)
804 return;
805 tty->stopped = 0;
806 if (tty->ops->start)
807 tty->ops->start(tty);
808 tty_wakeup(tty);
809 }
810
start_tty(struct tty_struct * tty)811 void start_tty(struct tty_struct *tty)
812 {
813 unsigned long flags;
814
815 spin_lock_irqsave(&tty->flow_lock, flags);
816 __start_tty(tty);
817 spin_unlock_irqrestore(&tty->flow_lock, flags);
818 }
819 EXPORT_SYMBOL(start_tty);
820
tty_update_time(struct timespec64 * time)821 static void tty_update_time(struct timespec64 *time)
822 {
823 time64_t sec = ktime_get_real_seconds();
824
825 /*
826 * We only care if the two values differ in anything other than the
827 * lower three bits (i.e every 8 seconds). If so, then we can update
828 * the time of the tty device, otherwise it could be construded as a
829 * security leak to let userspace know the exact timing of the tty.
830 */
831 if ((sec ^ time->tv_sec) & ~7)
832 time->tv_sec = sec;
833 }
834
835 /*
836 * Iterate on the ldisc ->read() function until we've gotten all
837 * the data the ldisc has for us.
838 *
839 * The "cookie" is something that the ldisc read function can fill
840 * in to let us know that there is more data to be had.
841 *
842 * We promise to continue to call the ldisc until it stops returning
843 * data or clears the cookie. The cookie may be something that the
844 * ldisc maintains state for and needs to free.
845 */
iterate_tty_read(struct tty_ldisc * ld,struct tty_struct * tty,struct file * file,struct iov_iter * to)846 static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
847 struct file *file, struct iov_iter *to)
848 {
849 int retval = 0;
850 void *cookie = NULL;
851 unsigned long offset = 0;
852 char kernel_buf[64];
853 size_t count = iov_iter_count(to);
854
855 do {
856 int size, copied;
857
858 size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
859 size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
860 if (!size)
861 break;
862
863 if (size < 0) {
864 /* Did we have an earlier error (ie -EFAULT)? */
865 if (retval)
866 break;
867 retval = size;
868
869 /*
870 * -EOVERFLOW means we didn't have enough space
871 * for a whole packet, and we shouldn't return
872 * a partial result.
873 */
874 if (retval == -EOVERFLOW)
875 offset = 0;
876 break;
877 }
878
879 copied = copy_to_iter(kernel_buf, size, to);
880 offset += copied;
881 count -= copied;
882
883 /*
884 * If the user copy failed, we still need to do another ->read()
885 * call if we had a cookie to let the ldisc clear up.
886 *
887 * But make sure size is zeroed.
888 */
889 if (unlikely(copied != size)) {
890 count = 0;
891 retval = -EFAULT;
892 }
893 } while (cookie);
894
895 /* We always clear tty buffer in case they contained passwords */
896 memzero_explicit(kernel_buf, sizeof(kernel_buf));
897 return offset ? offset : retval;
898 }
899
900
901 /**
902 * tty_read - read method for tty device files
903 * @file: pointer to tty file
904 * @buf: user buffer
905 * @count: size of user buffer
906 * @ppos: unused
907 *
908 * Perform the read system call function on this terminal device. Checks
909 * for hung up devices before calling the line discipline method.
910 *
911 * Locking:
912 * Locks the line discipline internally while needed. Multiple
913 * read calls may be outstanding in parallel.
914 */
915
tty_read(struct kiocb * iocb,struct iov_iter * to)916 static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
917 {
918 int i;
919 struct file *file = iocb->ki_filp;
920 struct inode *inode = file_inode(file);
921 struct tty_struct *tty = file_tty(file);
922 struct tty_ldisc *ld;
923
924 if (tty_paranoia_check(tty, inode, "tty_read"))
925 return -EIO;
926 if (!tty || tty_io_error(tty))
927 return -EIO;
928
929 /* We want to wait for the line discipline to sort out in this
930 situation */
931 ld = tty_ldisc_ref_wait(tty);
932 if (!ld)
933 return hung_up_tty_read(iocb, to);
934 i = -EIO;
935 if (ld->ops->read)
936 i = iterate_tty_read(ld, tty, file, to);
937 tty_ldisc_deref(ld);
938
939 if (i > 0)
940 tty_update_time(&inode->i_atime);
941
942 return i;
943 }
944
tty_write_unlock(struct tty_struct * tty)945 void tty_write_unlock(struct tty_struct *tty)
946 {
947 mutex_unlock(&tty->atomic_write_lock);
948 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
949 }
950
tty_write_lock(struct tty_struct * tty,int ndelay)951 int tty_write_lock(struct tty_struct *tty, int ndelay)
952 {
953 if (!mutex_trylock(&tty->atomic_write_lock)) {
954 if (ndelay)
955 return -EAGAIN;
956 if (mutex_lock_interruptible(&tty->atomic_write_lock))
957 return -ERESTARTSYS;
958 }
959 return 0;
960 }
961
962 /*
963 * Split writes up in sane blocksizes to avoid
964 * denial-of-service type attacks
965 */
do_tty_write(ssize_t (* write)(struct tty_struct *,struct file *,const unsigned char *,size_t),struct tty_struct * tty,struct file * file,struct iov_iter * from)966 static inline ssize_t do_tty_write(
967 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
968 struct tty_struct *tty,
969 struct file *file,
970 struct iov_iter *from)
971 {
972 size_t count = iov_iter_count(from);
973 ssize_t ret, written = 0;
974 unsigned int chunk;
975
976 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
977 if (ret < 0)
978 return ret;
979
980 /*
981 * We chunk up writes into a temporary buffer. This
982 * simplifies low-level drivers immensely, since they
983 * don't have locking issues and user mode accesses.
984 *
985 * But if TTY_NO_WRITE_SPLIT is set, we should use a
986 * big chunk-size..
987 *
988 * The default chunk-size is 2kB, because the NTTY
989 * layer has problems with bigger chunks. It will
990 * claim to be able to handle more characters than
991 * it actually does.
992 *
993 * FIXME: This can probably go away now except that 64K chunks
994 * are too likely to fail unless switched to vmalloc...
995 */
996 chunk = 2048;
997 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
998 chunk = 65536;
999 if (count < chunk)
1000 chunk = count;
1001
1002 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1003 if (tty->write_cnt < chunk) {
1004 unsigned char *buf_chunk;
1005
1006 if (chunk < 1024)
1007 chunk = 1024;
1008
1009 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1010 if (!buf_chunk) {
1011 ret = -ENOMEM;
1012 goto out;
1013 }
1014 kfree(tty->write_buf);
1015 tty->write_cnt = chunk;
1016 tty->write_buf = buf_chunk;
1017 }
1018
1019 /* Do the write .. */
1020 for (;;) {
1021 size_t size = count;
1022 if (size > chunk)
1023 size = chunk;
1024
1025 ret = -EFAULT;
1026 if (copy_from_iter(tty->write_buf, size, from) != size)
1027 break;
1028
1029 ret = write(tty, file, tty->write_buf, size);
1030 if (ret <= 0)
1031 break;
1032
1033 written += ret;
1034 if (ret > size)
1035 break;
1036
1037 /* FIXME! Have Al check this! */
1038 if (ret != size)
1039 iov_iter_revert(from, size-ret);
1040
1041 count -= ret;
1042 if (!count)
1043 break;
1044 ret = -ERESTARTSYS;
1045 if (signal_pending(current))
1046 break;
1047 cond_resched();
1048 }
1049 if (written) {
1050 tty_update_time(&file_inode(file)->i_mtime);
1051 ret = written;
1052 }
1053 out:
1054 tty_write_unlock(tty);
1055 return ret;
1056 }
1057
1058 /**
1059 * tty_write_message - write a message to a certain tty, not just the console.
1060 * @tty: the destination tty_struct
1061 * @msg: the message to write
1062 *
1063 * This is used for messages that need to be redirected to a specific tty.
1064 * We don't put it into the syslog queue right now maybe in the future if
1065 * really needed.
1066 *
1067 * We must still hold the BTM and test the CLOSING flag for the moment.
1068 */
1069
tty_write_message(struct tty_struct * tty,char * msg)1070 void tty_write_message(struct tty_struct *tty, char *msg)
1071 {
1072 if (tty) {
1073 mutex_lock(&tty->atomic_write_lock);
1074 tty_lock(tty);
1075 if (tty->ops->write && tty->count > 0)
1076 tty->ops->write(tty, msg, strlen(msg));
1077 tty_unlock(tty);
1078 tty_write_unlock(tty);
1079 }
1080 return;
1081 }
1082
1083
1084 /**
1085 * tty_write - write method for tty device file
1086 * @file: tty file pointer
1087 * @buf: user data to write
1088 * @count: bytes to write
1089 * @ppos: unused
1090 *
1091 * Write data to a tty device via the line discipline.
1092 *
1093 * Locking:
1094 * Locks the line discipline as required
1095 * Writes to the tty driver are serialized by the atomic_write_lock
1096 * and are then processed in chunks to the device. The line discipline
1097 * write method will not be invoked in parallel for each device.
1098 */
1099
file_tty_write(struct file * file,struct kiocb * iocb,struct iov_iter * from)1100 static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1101 {
1102 struct tty_struct *tty = file_tty(file);
1103 struct tty_ldisc *ld;
1104 ssize_t ret;
1105
1106 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1107 return -EIO;
1108 if (!tty || !tty->ops->write || tty_io_error(tty))
1109 return -EIO;
1110 /* Short term debug to catch buggy drivers */
1111 if (tty->ops->write_room == NULL)
1112 tty_err(tty, "missing write_room method\n");
1113 ld = tty_ldisc_ref_wait(tty);
1114 if (!ld)
1115 return hung_up_tty_write(iocb, from);
1116 if (!ld->ops->write)
1117 ret = -EIO;
1118 else
1119 ret = do_tty_write(ld->ops->write, tty, file, from);
1120 tty_ldisc_deref(ld);
1121 return ret;
1122 }
1123
tty_write(struct kiocb * iocb,struct iov_iter * from)1124 static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1125 {
1126 return file_tty_write(iocb->ki_filp, iocb, from);
1127 }
1128
redirected_tty_write(struct kiocb * iocb,struct iov_iter * iter)1129 ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1130 {
1131 struct file *p = NULL;
1132
1133 spin_lock(&redirect_lock);
1134 if (redirect)
1135 p = get_file(redirect);
1136 spin_unlock(&redirect_lock);
1137
1138 /*
1139 * We know the redirected tty is just another tty, we can can
1140 * call file_tty_write() directly with that file pointer.
1141 */
1142 if (p) {
1143 ssize_t res;
1144 res = file_tty_write(p, iocb, iter);
1145 fput(p);
1146 return res;
1147 }
1148 return tty_write(iocb, iter);
1149 }
1150
1151 /**
1152 * tty_send_xchar - send priority character
1153 *
1154 * Send a high priority character to the tty even if stopped
1155 *
1156 * Locking: none for xchar method, write ordering for write method.
1157 */
1158
tty_send_xchar(struct tty_struct * tty,char ch)1159 int tty_send_xchar(struct tty_struct *tty, char ch)
1160 {
1161 int was_stopped = tty->stopped;
1162
1163 if (tty->ops->send_xchar) {
1164 down_read(&tty->termios_rwsem);
1165 tty->ops->send_xchar(tty, ch);
1166 up_read(&tty->termios_rwsem);
1167 return 0;
1168 }
1169
1170 if (tty_write_lock(tty, 0) < 0)
1171 return -ERESTARTSYS;
1172
1173 down_read(&tty->termios_rwsem);
1174 if (was_stopped)
1175 start_tty(tty);
1176 tty->ops->write(tty, &ch, 1);
1177 if (was_stopped)
1178 stop_tty(tty);
1179 up_read(&tty->termios_rwsem);
1180 tty_write_unlock(tty);
1181 return 0;
1182 }
1183
1184 static char ptychar[] = "pqrstuvwxyzabcde";
1185
1186 /**
1187 * pty_line_name - generate name for a pty
1188 * @driver: the tty driver in use
1189 * @index: the minor number
1190 * @p: output buffer of at least 6 bytes
1191 *
1192 * Generate a name from a driver reference and write it to the output
1193 * buffer.
1194 *
1195 * Locking: None
1196 */
pty_line_name(struct tty_driver * driver,int index,char * p)1197 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1198 {
1199 int i = index + driver->name_base;
1200 /* ->name is initialized to "ttyp", but "tty" is expected */
1201 sprintf(p, "%s%c%x",
1202 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1203 ptychar[i >> 4 & 0xf], i & 0xf);
1204 }
1205
1206 /**
1207 * tty_line_name - generate name for a tty
1208 * @driver: the tty driver in use
1209 * @index: the minor number
1210 * @p: output buffer of at least 7 bytes
1211 *
1212 * Generate a name from a driver reference and write it to the output
1213 * buffer.
1214 *
1215 * Locking: None
1216 */
tty_line_name(struct tty_driver * driver,int index,char * p)1217 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1218 {
1219 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1220 return sprintf(p, "%s", driver->name);
1221 else
1222 return sprintf(p, "%s%d", driver->name,
1223 index + driver->name_base);
1224 }
1225
1226 /**
1227 * tty_driver_lookup_tty() - find an existing tty, if any
1228 * @driver: the driver for the tty
1229 * @idx: the minor number
1230 *
1231 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1232 * driver lookup() method returns an error.
1233 *
1234 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1235 */
tty_driver_lookup_tty(struct tty_driver * driver,struct file * file,int idx)1236 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1237 struct file *file, int idx)
1238 {
1239 struct tty_struct *tty;
1240
1241 if (driver->ops->lookup) {
1242 if (!file)
1243 tty = ERR_PTR(-EIO);
1244 else
1245 tty = driver->ops->lookup(driver, file, idx);
1246 } else {
1247 if (idx >= driver->num)
1248 return ERR_PTR(-EINVAL);
1249 tty = driver->ttys[idx];
1250 }
1251 if (!IS_ERR(tty))
1252 tty_kref_get(tty);
1253 return tty;
1254 }
1255
1256 /**
1257 * tty_init_termios - helper for termios setup
1258 * @tty: the tty to set up
1259 *
1260 * Initialise the termios structure for this tty. This runs under
1261 * the tty_mutex currently so we can be relaxed about ordering.
1262 */
1263
tty_init_termios(struct tty_struct * tty)1264 void tty_init_termios(struct tty_struct *tty)
1265 {
1266 struct ktermios *tp;
1267 int idx = tty->index;
1268
1269 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1270 tty->termios = tty->driver->init_termios;
1271 else {
1272 /* Check for lazy saved data */
1273 tp = tty->driver->termios[idx];
1274 if (tp != NULL) {
1275 tty->termios = *tp;
1276 tty->termios.c_line = tty->driver->init_termios.c_line;
1277 } else
1278 tty->termios = tty->driver->init_termios;
1279 }
1280 /* Compatibility until drivers always set this */
1281 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1282 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1283 }
1284 EXPORT_SYMBOL_GPL(tty_init_termios);
1285
tty_standard_install(struct tty_driver * driver,struct tty_struct * tty)1286 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1287 {
1288 tty_init_termios(tty);
1289 tty_driver_kref_get(driver);
1290 tty->count++;
1291 driver->ttys[tty->index] = tty;
1292 return 0;
1293 }
1294 EXPORT_SYMBOL_GPL(tty_standard_install);
1295
1296 /**
1297 * tty_driver_install_tty() - install a tty entry in the driver
1298 * @driver: the driver for the tty
1299 * @tty: the tty
1300 *
1301 * Install a tty object into the driver tables. The tty->index field
1302 * will be set by the time this is called. This method is responsible
1303 * for ensuring any need additional structures are allocated and
1304 * configured.
1305 *
1306 * Locking: tty_mutex for now
1307 */
tty_driver_install_tty(struct tty_driver * driver,struct tty_struct * tty)1308 static int tty_driver_install_tty(struct tty_driver *driver,
1309 struct tty_struct *tty)
1310 {
1311 return driver->ops->install ? driver->ops->install(driver, tty) :
1312 tty_standard_install(driver, tty);
1313 }
1314
1315 /**
1316 * tty_driver_remove_tty() - remove a tty from the driver tables
1317 * @driver: the driver for the tty
1318 * @tty: tty to remove
1319 *
1320 * Remvoe a tty object from the driver tables. The tty->index field
1321 * will be set by the time this is called.
1322 *
1323 * Locking: tty_mutex for now
1324 */
tty_driver_remove_tty(struct tty_driver * driver,struct tty_struct * tty)1325 static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1326 {
1327 if (driver->ops->remove)
1328 driver->ops->remove(driver, tty);
1329 else
1330 driver->ttys[tty->index] = NULL;
1331 }
1332
1333 /**
1334 * tty_reopen() - fast re-open of an open tty
1335 * @tty: the tty to open
1336 *
1337 * Return 0 on success, -errno on error.
1338 * Re-opens on master ptys are not allowed and return -EIO.
1339 *
1340 * Locking: Caller must hold tty_lock
1341 */
tty_reopen(struct tty_struct * tty)1342 static int tty_reopen(struct tty_struct *tty)
1343 {
1344 struct tty_driver *driver = tty->driver;
1345 struct tty_ldisc *ld;
1346 int retval = 0;
1347
1348 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1349 driver->subtype == PTY_TYPE_MASTER)
1350 return -EIO;
1351
1352 if (!tty->count)
1353 return -EAGAIN;
1354
1355 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1356 return -EBUSY;
1357
1358 ld = tty_ldisc_ref_wait(tty);
1359 if (ld) {
1360 tty_ldisc_deref(ld);
1361 } else {
1362 retval = tty_ldisc_lock(tty, 5 * HZ);
1363 if (retval)
1364 return retval;
1365
1366 if (!tty->ldisc)
1367 retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1368 tty_ldisc_unlock(tty);
1369 }
1370
1371 if (retval == 0)
1372 tty->count++;
1373
1374 return retval;
1375 }
1376
1377 /**
1378 * tty_init_dev - initialise a tty device
1379 * @driver: tty driver we are opening a device on
1380 * @idx: device index
1381 *
1382 * Prepare a tty device. This may not be a "new" clean device but
1383 * could also be an active device. The pty drivers require special
1384 * handling because of this.
1385 *
1386 * Locking:
1387 * The function is called under the tty_mutex, which
1388 * protects us from the tty struct or driver itself going away.
1389 *
1390 * On exit the tty device has the line discipline attached and
1391 * a reference count of 1. If a pair was created for pty/tty use
1392 * and the other was a pty master then it too has a reference count of 1.
1393 *
1394 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1395 * failed open. The new code protects the open with a mutex, so it's
1396 * really quite straightforward. The mutex locking can probably be
1397 * relaxed for the (most common) case of reopening a tty.
1398 *
1399 * Return: returned tty structure
1400 */
1401
tty_init_dev(struct tty_driver * driver,int idx)1402 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1403 {
1404 struct tty_struct *tty;
1405 int retval;
1406
1407 /*
1408 * First time open is complex, especially for PTY devices.
1409 * This code guarantees that either everything succeeds and the
1410 * TTY is ready for operation, or else the table slots are vacated
1411 * and the allocated memory released. (Except that the termios
1412 * may be retained.)
1413 */
1414
1415 if (!try_module_get(driver->owner))
1416 return ERR_PTR(-ENODEV);
1417
1418 tty = alloc_tty_struct(driver, idx);
1419 if (!tty) {
1420 retval = -ENOMEM;
1421 goto err_module_put;
1422 }
1423
1424 tty_lock(tty);
1425 retval = tty_driver_install_tty(driver, tty);
1426 if (retval < 0)
1427 goto err_free_tty;
1428
1429 if (!tty->port)
1430 tty->port = driver->ports[idx];
1431
1432 if (WARN_RATELIMIT(!tty->port,
1433 "%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1434 __func__, tty->driver->name)) {
1435 retval = -EINVAL;
1436 goto err_release_lock;
1437 }
1438
1439 retval = tty_ldisc_lock(tty, 5 * HZ);
1440 if (retval)
1441 goto err_release_lock;
1442 tty->port->itty = tty;
1443
1444 /*
1445 * Structures all installed ... call the ldisc open routines.
1446 * If we fail here just call release_tty to clean up. No need
1447 * to decrement the use counts, as release_tty doesn't care.
1448 */
1449 retval = tty_ldisc_setup(tty, tty->link);
1450 if (retval)
1451 goto err_release_tty;
1452 tty_ldisc_unlock(tty);
1453 /* Return the tty locked so that it cannot vanish under the caller */
1454 return tty;
1455
1456 err_free_tty:
1457 tty_unlock(tty);
1458 free_tty_struct(tty);
1459 err_module_put:
1460 module_put(driver->owner);
1461 return ERR_PTR(retval);
1462
1463 /* call the tty release_tty routine to clean out this slot */
1464 err_release_tty:
1465 tty_ldisc_unlock(tty);
1466 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1467 retval, idx);
1468 err_release_lock:
1469 tty_unlock(tty);
1470 release_tty(tty, idx);
1471 return ERR_PTR(retval);
1472 }
1473
1474 /**
1475 * tty_save_termios() - save tty termios data in driver table
1476 * @tty: tty whose termios data to save
1477 *
1478 * Locking: Caller guarantees serialisation with tty_init_termios().
1479 */
tty_save_termios(struct tty_struct * tty)1480 void tty_save_termios(struct tty_struct *tty)
1481 {
1482 struct ktermios *tp;
1483 int idx = tty->index;
1484
1485 /* If the port is going to reset then it has no termios to save */
1486 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1487 return;
1488
1489 /* Stash the termios data */
1490 tp = tty->driver->termios[idx];
1491 if (tp == NULL) {
1492 tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1493 if (tp == NULL)
1494 return;
1495 tty->driver->termios[idx] = tp;
1496 }
1497 *tp = tty->termios;
1498 }
1499 EXPORT_SYMBOL_GPL(tty_save_termios);
1500
1501 /**
1502 * tty_flush_works - flush all works of a tty/pty pair
1503 * @tty: tty device to flush works for (or either end of a pty pair)
1504 *
1505 * Sync flush all works belonging to @tty (and the 'other' tty).
1506 */
tty_flush_works(struct tty_struct * tty)1507 static void tty_flush_works(struct tty_struct *tty)
1508 {
1509 flush_work(&tty->SAK_work);
1510 flush_work(&tty->hangup_work);
1511 if (tty->link) {
1512 flush_work(&tty->link->SAK_work);
1513 flush_work(&tty->link->hangup_work);
1514 }
1515 }
1516
1517 /**
1518 * release_one_tty - release tty structure memory
1519 * @work: work of tty we are obliterating
1520 *
1521 * Releases memory associated with a tty structure, and clears out the
1522 * driver table slots. This function is called when a device is no longer
1523 * in use. It also gets called when setup of a device fails.
1524 *
1525 * Locking:
1526 * takes the file list lock internally when working on the list
1527 * of ttys that the driver keeps.
1528 *
1529 * This method gets called from a work queue so that the driver private
1530 * cleanup ops can sleep (needed for USB at least)
1531 */
release_one_tty(struct work_struct * work)1532 static void release_one_tty(struct work_struct *work)
1533 {
1534 struct tty_struct *tty =
1535 container_of(work, struct tty_struct, hangup_work);
1536 struct tty_driver *driver = tty->driver;
1537 struct module *owner = driver->owner;
1538
1539 if (tty->ops->cleanup)
1540 tty->ops->cleanup(tty);
1541
1542 tty->magic = 0;
1543 tty_driver_kref_put(driver);
1544 module_put(owner);
1545
1546 spin_lock(&tty->files_lock);
1547 list_del_init(&tty->tty_files);
1548 spin_unlock(&tty->files_lock);
1549
1550 put_pid(tty->pgrp);
1551 put_pid(tty->session);
1552 free_tty_struct(tty);
1553 }
1554
queue_release_one_tty(struct kref * kref)1555 static void queue_release_one_tty(struct kref *kref)
1556 {
1557 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1558
1559 /* The hangup queue is now free so we can reuse it rather than
1560 waste a chunk of memory for each port */
1561 INIT_WORK(&tty->hangup_work, release_one_tty);
1562 schedule_work(&tty->hangup_work);
1563 }
1564
1565 /**
1566 * tty_kref_put - release a tty kref
1567 * @tty: tty device
1568 *
1569 * Release a reference to a tty device and if need be let the kref
1570 * layer destruct the object for us
1571 */
1572
tty_kref_put(struct tty_struct * tty)1573 void tty_kref_put(struct tty_struct *tty)
1574 {
1575 if (tty)
1576 kref_put(&tty->kref, queue_release_one_tty);
1577 }
1578 EXPORT_SYMBOL(tty_kref_put);
1579
1580 /**
1581 * release_tty - release tty structure memory
1582 *
1583 * Release both @tty and a possible linked partner (think pty pair),
1584 * and decrement the refcount of the backing module.
1585 *
1586 * Locking:
1587 * tty_mutex
1588 * takes the file list lock internally when working on the list
1589 * of ttys that the driver keeps.
1590 *
1591 */
release_tty(struct tty_struct * tty,int idx)1592 static void release_tty(struct tty_struct *tty, int idx)
1593 {
1594 /* This should always be true but check for the moment */
1595 WARN_ON(tty->index != idx);
1596 WARN_ON(!mutex_is_locked(&tty_mutex));
1597 if (tty->ops->shutdown)
1598 tty->ops->shutdown(tty);
1599 tty_save_termios(tty);
1600 tty_driver_remove_tty(tty->driver, tty);
1601 if (tty->port)
1602 tty->port->itty = NULL;
1603 if (tty->link)
1604 tty->link->port->itty = NULL;
1605 if (tty->port)
1606 tty_buffer_cancel_work(tty->port);
1607 if (tty->link)
1608 tty_buffer_cancel_work(tty->link->port);
1609
1610 tty_kref_put(tty->link);
1611 tty_kref_put(tty);
1612 }
1613
1614 /**
1615 * tty_release_checks - check a tty before real release
1616 * @tty: tty to check
1617 * @idx: index of the tty
1618 *
1619 * Performs some paranoid checking before true release of the @tty.
1620 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1621 */
tty_release_checks(struct tty_struct * tty,int idx)1622 static int tty_release_checks(struct tty_struct *tty, int idx)
1623 {
1624 #ifdef TTY_PARANOIA_CHECK
1625 if (idx < 0 || idx >= tty->driver->num) {
1626 tty_debug(tty, "bad idx %d\n", idx);
1627 return -1;
1628 }
1629
1630 /* not much to check for devpts */
1631 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1632 return 0;
1633
1634 if (tty != tty->driver->ttys[idx]) {
1635 tty_debug(tty, "bad driver table[%d] = %p\n",
1636 idx, tty->driver->ttys[idx]);
1637 return -1;
1638 }
1639 if (tty->driver->other) {
1640 struct tty_struct *o_tty = tty->link;
1641
1642 if (o_tty != tty->driver->other->ttys[idx]) {
1643 tty_debug(tty, "bad other table[%d] = %p\n",
1644 idx, tty->driver->other->ttys[idx]);
1645 return -1;
1646 }
1647 if (o_tty->link != tty) {
1648 tty_debug(tty, "bad link = %p\n", o_tty->link);
1649 return -1;
1650 }
1651 }
1652 #endif
1653 return 0;
1654 }
1655
1656 /**
1657 * tty_kclose - closes tty opened by tty_kopen
1658 * @tty: tty device
1659 *
1660 * Performs the final steps to release and free a tty device. It is the
1661 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1662 * flag on tty->port.
1663 */
tty_kclose(struct tty_struct * tty)1664 void tty_kclose(struct tty_struct *tty)
1665 {
1666 /*
1667 * Ask the line discipline code to release its structures
1668 */
1669 tty_ldisc_release(tty);
1670
1671 /* Wait for pending work before tty destruction commmences */
1672 tty_flush_works(tty);
1673
1674 tty_debug_hangup(tty, "freeing structure\n");
1675 /*
1676 * The release_tty function takes care of the details of clearing
1677 * the slots and preserving the termios structure.
1678 */
1679 mutex_lock(&tty_mutex);
1680 tty_port_set_kopened(tty->port, 0);
1681 release_tty(tty, tty->index);
1682 mutex_unlock(&tty_mutex);
1683 }
1684 EXPORT_SYMBOL_GPL(tty_kclose);
1685
1686 /**
1687 * tty_release_struct - release a tty struct
1688 * @tty: tty device
1689 * @idx: index of the tty
1690 *
1691 * Performs the final steps to release and free a tty device. It is
1692 * roughly the reverse of tty_init_dev.
1693 */
tty_release_struct(struct tty_struct * tty,int idx)1694 void tty_release_struct(struct tty_struct *tty, int idx)
1695 {
1696 /*
1697 * Ask the line discipline code to release its structures
1698 */
1699 tty_ldisc_release(tty);
1700
1701 /* Wait for pending work before tty destruction commmences */
1702 tty_flush_works(tty);
1703
1704 tty_debug_hangup(tty, "freeing structure\n");
1705 /*
1706 * The release_tty function takes care of the details of clearing
1707 * the slots and preserving the termios structure.
1708 */
1709 mutex_lock(&tty_mutex);
1710 release_tty(tty, idx);
1711 mutex_unlock(&tty_mutex);
1712 }
1713 EXPORT_SYMBOL_GPL(tty_release_struct);
1714
1715 /**
1716 * tty_release - vfs callback for close
1717 * @inode: inode of tty
1718 * @filp: file pointer for handle to tty
1719 *
1720 * Called the last time each file handle is closed that references
1721 * this tty. There may however be several such references.
1722 *
1723 * Locking:
1724 * Takes bkl. See tty_release_dev
1725 *
1726 * Even releasing the tty structures is a tricky business.. We have
1727 * to be very careful that the structures are all released at the
1728 * same time, as interrupts might otherwise get the wrong pointers.
1729 *
1730 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1731 * lead to double frees or releasing memory still in use.
1732 */
1733
tty_release(struct inode * inode,struct file * filp)1734 int tty_release(struct inode *inode, struct file *filp)
1735 {
1736 struct tty_struct *tty = file_tty(filp);
1737 struct tty_struct *o_tty = NULL;
1738 int do_sleep, final;
1739 int idx;
1740 long timeout = 0;
1741 int once = 1;
1742
1743 if (tty_paranoia_check(tty, inode, __func__))
1744 return 0;
1745
1746 tty_lock(tty);
1747 check_tty_count(tty, __func__);
1748
1749 __tty_fasync(-1, filp, 0);
1750
1751 idx = tty->index;
1752 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1753 tty->driver->subtype == PTY_TYPE_MASTER)
1754 o_tty = tty->link;
1755
1756 if (tty_release_checks(tty, idx)) {
1757 tty_unlock(tty);
1758 return 0;
1759 }
1760
1761 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1762
1763 if (tty->ops->close)
1764 tty->ops->close(tty, filp);
1765
1766 /* If tty is pty master, lock the slave pty (stable lock order) */
1767 tty_lock_slave(o_tty);
1768
1769 /*
1770 * Sanity check: if tty->count is going to zero, there shouldn't be
1771 * any waiters on tty->read_wait or tty->write_wait. We test the
1772 * wait queues and kick everyone out _before_ actually starting to
1773 * close. This ensures that we won't block while releasing the tty
1774 * structure.
1775 *
1776 * The test for the o_tty closing is necessary, since the master and
1777 * slave sides may close in any order. If the slave side closes out
1778 * first, its count will be one, since the master side holds an open.
1779 * Thus this test wouldn't be triggered at the time the slave closed,
1780 * so we do it now.
1781 */
1782 while (1) {
1783 do_sleep = 0;
1784
1785 if (tty->count <= 1) {
1786 if (waitqueue_active(&tty->read_wait)) {
1787 wake_up_poll(&tty->read_wait, EPOLLIN);
1788 do_sleep++;
1789 }
1790 if (waitqueue_active(&tty->write_wait)) {
1791 wake_up_poll(&tty->write_wait, EPOLLOUT);
1792 do_sleep++;
1793 }
1794 }
1795 if (o_tty && o_tty->count <= 1) {
1796 if (waitqueue_active(&o_tty->read_wait)) {
1797 wake_up_poll(&o_tty->read_wait, EPOLLIN);
1798 do_sleep++;
1799 }
1800 if (waitqueue_active(&o_tty->write_wait)) {
1801 wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1802 do_sleep++;
1803 }
1804 }
1805 if (!do_sleep)
1806 break;
1807
1808 if (once) {
1809 once = 0;
1810 tty_warn(tty, "read/write wait queue active!\n");
1811 }
1812 schedule_timeout_killable(timeout);
1813 if (timeout < 120 * HZ)
1814 timeout = 2 * timeout + 1;
1815 else
1816 timeout = MAX_SCHEDULE_TIMEOUT;
1817 }
1818
1819 if (o_tty) {
1820 if (--o_tty->count < 0) {
1821 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1822 o_tty->count = 0;
1823 }
1824 }
1825 if (--tty->count < 0) {
1826 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1827 tty->count = 0;
1828 }
1829
1830 /*
1831 * We've decremented tty->count, so we need to remove this file
1832 * descriptor off the tty->tty_files list; this serves two
1833 * purposes:
1834 * - check_tty_count sees the correct number of file descriptors
1835 * associated with this tty.
1836 * - do_tty_hangup no longer sees this file descriptor as
1837 * something that needs to be handled for hangups.
1838 */
1839 tty_del_file(filp);
1840
1841 /*
1842 * Perform some housekeeping before deciding whether to return.
1843 *
1844 * If _either_ side is closing, make sure there aren't any
1845 * processes that still think tty or o_tty is their controlling
1846 * tty.
1847 */
1848 if (!tty->count) {
1849 read_lock(&tasklist_lock);
1850 session_clear_tty(tty->session);
1851 if (o_tty)
1852 session_clear_tty(o_tty->session);
1853 read_unlock(&tasklist_lock);
1854 }
1855
1856 /* check whether both sides are closing ... */
1857 final = !tty->count && !(o_tty && o_tty->count);
1858
1859 tty_unlock_slave(o_tty);
1860 tty_unlock(tty);
1861
1862 /* At this point, the tty->count == 0 should ensure a dead tty
1863 cannot be re-opened by a racing opener */
1864
1865 if (!final)
1866 return 0;
1867
1868 tty_debug_hangup(tty, "final close\n");
1869
1870 tty_release_struct(tty, idx);
1871 return 0;
1872 }
1873
1874 /**
1875 * tty_open_current_tty - get locked tty of current task
1876 * @device: device number
1877 * @filp: file pointer to tty
1878 * @return: locked tty of the current task iff @device is /dev/tty
1879 *
1880 * Performs a re-open of the current task's controlling tty.
1881 *
1882 * We cannot return driver and index like for the other nodes because
1883 * devpts will not work then. It expects inodes to be from devpts FS.
1884 */
tty_open_current_tty(dev_t device,struct file * filp)1885 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1886 {
1887 struct tty_struct *tty;
1888 int retval;
1889
1890 if (device != MKDEV(TTYAUX_MAJOR, 0))
1891 return NULL;
1892
1893 tty = get_current_tty();
1894 if (!tty)
1895 return ERR_PTR(-ENXIO);
1896
1897 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1898 /* noctty = 1; */
1899 tty_lock(tty);
1900 tty_kref_put(tty); /* safe to drop the kref now */
1901
1902 retval = tty_reopen(tty);
1903 if (retval < 0) {
1904 tty_unlock(tty);
1905 tty = ERR_PTR(retval);
1906 }
1907 return tty;
1908 }
1909
1910 /**
1911 * tty_lookup_driver - lookup a tty driver for a given device file
1912 * @device: device number
1913 * @filp: file pointer to tty
1914 * @index: index for the device in the @return driver
1915 * @return: driver for this inode (with increased refcount)
1916 *
1917 * If @return is not erroneous, the caller is responsible to decrement the
1918 * refcount by tty_driver_kref_put.
1919 *
1920 * Locking: tty_mutex protects get_tty_driver
1921 */
tty_lookup_driver(dev_t device,struct file * filp,int * index)1922 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1923 int *index)
1924 {
1925 struct tty_driver *driver = NULL;
1926
1927 switch (device) {
1928 #ifdef CONFIG_VT
1929 case MKDEV(TTY_MAJOR, 0): {
1930 extern struct tty_driver *console_driver;
1931 driver = tty_driver_kref_get(console_driver);
1932 *index = fg_console;
1933 break;
1934 }
1935 #endif
1936 case MKDEV(TTYAUX_MAJOR, 1): {
1937 struct tty_driver *console_driver = console_device(index);
1938 if (console_driver) {
1939 driver = tty_driver_kref_get(console_driver);
1940 if (driver && filp) {
1941 /* Don't let /dev/console block */
1942 filp->f_flags |= O_NONBLOCK;
1943 break;
1944 }
1945 }
1946 if (driver)
1947 tty_driver_kref_put(driver);
1948 return ERR_PTR(-ENODEV);
1949 }
1950 default:
1951 driver = get_tty_driver(device, index);
1952 if (!driver)
1953 return ERR_PTR(-ENODEV);
1954 break;
1955 }
1956 return driver;
1957 }
1958
1959 /**
1960 * tty_kopen - open a tty device for kernel
1961 * @device: dev_t of device to open
1962 *
1963 * Opens tty exclusively for kernel. Performs the driver lookup,
1964 * makes sure it's not already opened and performs the first-time
1965 * tty initialization.
1966 *
1967 * Returns the locked initialized &tty_struct
1968 *
1969 * Claims the global tty_mutex to serialize:
1970 * - concurrent first-time tty initialization
1971 * - concurrent tty driver removal w/ lookup
1972 * - concurrent tty removal from driver table
1973 */
tty_kopen(dev_t device)1974 struct tty_struct *tty_kopen(dev_t device)
1975 {
1976 struct tty_struct *tty;
1977 struct tty_driver *driver;
1978 int index = -1;
1979
1980 mutex_lock(&tty_mutex);
1981 driver = tty_lookup_driver(device, NULL, &index);
1982 if (IS_ERR(driver)) {
1983 mutex_unlock(&tty_mutex);
1984 return ERR_CAST(driver);
1985 }
1986
1987 /* check whether we're reopening an existing tty */
1988 tty = tty_driver_lookup_tty(driver, NULL, index);
1989 if (IS_ERR(tty))
1990 goto out;
1991
1992 if (tty) {
1993 /* drop kref from tty_driver_lookup_tty() */
1994 tty_kref_put(tty);
1995 tty = ERR_PTR(-EBUSY);
1996 } else { /* tty_init_dev returns tty with the tty_lock held */
1997 tty = tty_init_dev(driver, index);
1998 if (IS_ERR(tty))
1999 goto out;
2000 tty_port_set_kopened(tty->port, 1);
2001 }
2002 out:
2003 mutex_unlock(&tty_mutex);
2004 tty_driver_kref_put(driver);
2005 return tty;
2006 }
2007 EXPORT_SYMBOL_GPL(tty_kopen);
2008
2009 /**
2010 * tty_open_by_driver - open a tty device
2011 * @device: dev_t of device to open
2012 * @filp: file pointer to tty
2013 *
2014 * Performs the driver lookup, checks for a reopen, or otherwise
2015 * performs the first-time tty initialization.
2016 *
2017 * Returns the locked initialized or re-opened &tty_struct
2018 *
2019 * Claims the global tty_mutex to serialize:
2020 * - concurrent first-time tty initialization
2021 * - concurrent tty driver removal w/ lookup
2022 * - concurrent tty removal from driver table
2023 */
tty_open_by_driver(dev_t device,struct file * filp)2024 static struct tty_struct *tty_open_by_driver(dev_t device,
2025 struct file *filp)
2026 {
2027 struct tty_struct *tty;
2028 struct tty_driver *driver = NULL;
2029 int index = -1;
2030 int retval;
2031
2032 mutex_lock(&tty_mutex);
2033 driver = tty_lookup_driver(device, filp, &index);
2034 if (IS_ERR(driver)) {
2035 mutex_unlock(&tty_mutex);
2036 return ERR_CAST(driver);
2037 }
2038
2039 /* check whether we're reopening an existing tty */
2040 tty = tty_driver_lookup_tty(driver, filp, index);
2041 if (IS_ERR(tty)) {
2042 mutex_unlock(&tty_mutex);
2043 goto out;
2044 }
2045
2046 if (tty) {
2047 if (tty_port_kopened(tty->port)) {
2048 tty_kref_put(tty);
2049 mutex_unlock(&tty_mutex);
2050 tty = ERR_PTR(-EBUSY);
2051 goto out;
2052 }
2053 mutex_unlock(&tty_mutex);
2054 retval = tty_lock_interruptible(tty);
2055 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
2056 if (retval) {
2057 if (retval == -EINTR)
2058 retval = -ERESTARTSYS;
2059 tty = ERR_PTR(retval);
2060 goto out;
2061 }
2062 retval = tty_reopen(tty);
2063 if (retval < 0) {
2064 tty_unlock(tty);
2065 tty = ERR_PTR(retval);
2066 }
2067 } else { /* Returns with the tty_lock held for now */
2068 tty = tty_init_dev(driver, index);
2069 mutex_unlock(&tty_mutex);
2070 }
2071 out:
2072 tty_driver_kref_put(driver);
2073 return tty;
2074 }
2075
2076 /**
2077 * tty_open - open a tty device
2078 * @inode: inode of device file
2079 * @filp: file pointer to tty
2080 *
2081 * tty_open and tty_release keep up the tty count that contains the
2082 * number of opens done on a tty. We cannot use the inode-count, as
2083 * different inodes might point to the same tty.
2084 *
2085 * Open-counting is needed for pty masters, as well as for keeping
2086 * track of serial lines: DTR is dropped when the last close happens.
2087 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2088 *
2089 * The termios state of a pty is reset on first open so that
2090 * settings don't persist across reuse.
2091 *
2092 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2093 * tty->count should protect the rest.
2094 * ->siglock protects ->signal/->sighand
2095 *
2096 * Note: the tty_unlock/lock cases without a ref are only safe due to
2097 * tty_mutex
2098 */
2099
tty_open(struct inode * inode,struct file * filp)2100 static int tty_open(struct inode *inode, struct file *filp)
2101 {
2102 struct tty_struct *tty;
2103 int noctty, retval;
2104 dev_t device = inode->i_rdev;
2105 unsigned saved_flags = filp->f_flags;
2106
2107 nonseekable_open(inode, filp);
2108
2109 retry_open:
2110 retval = tty_alloc_file(filp);
2111 if (retval)
2112 return -ENOMEM;
2113
2114 tty = tty_open_current_tty(device, filp);
2115 if (!tty)
2116 tty = tty_open_by_driver(device, filp);
2117
2118 if (IS_ERR(tty)) {
2119 tty_free_file(filp);
2120 retval = PTR_ERR(tty);
2121 if (retval != -EAGAIN || signal_pending(current))
2122 return retval;
2123 schedule();
2124 goto retry_open;
2125 }
2126
2127 tty_add_file(tty, filp);
2128
2129 check_tty_count(tty, __func__);
2130 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2131
2132 if (tty->ops->open)
2133 retval = tty->ops->open(tty, filp);
2134 else
2135 retval = -ENODEV;
2136 filp->f_flags = saved_flags;
2137
2138 if (retval) {
2139 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2140
2141 tty_unlock(tty); /* need to call tty_release without BTM */
2142 tty_release(inode, filp);
2143 if (retval != -ERESTARTSYS)
2144 return retval;
2145
2146 if (signal_pending(current))
2147 return retval;
2148
2149 schedule();
2150 /*
2151 * Need to reset f_op in case a hangup happened.
2152 */
2153 if (tty_hung_up_p(filp))
2154 filp->f_op = &tty_fops;
2155 goto retry_open;
2156 }
2157 clear_bit(TTY_HUPPED, &tty->flags);
2158
2159 noctty = (filp->f_flags & O_NOCTTY) ||
2160 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2161 device == MKDEV(TTYAUX_MAJOR, 1) ||
2162 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2163 tty->driver->subtype == PTY_TYPE_MASTER);
2164 if (!noctty)
2165 tty_open_proc_set_tty(filp, tty);
2166 tty_unlock(tty);
2167 return 0;
2168 }
2169
2170
2171
2172 /**
2173 * tty_poll - check tty status
2174 * @filp: file being polled
2175 * @wait: poll wait structures to update
2176 *
2177 * Call the line discipline polling method to obtain the poll
2178 * status of the device.
2179 *
2180 * Locking: locks called line discipline but ldisc poll method
2181 * may be re-entered freely by other callers.
2182 */
2183
tty_poll(struct file * filp,poll_table * wait)2184 static __poll_t tty_poll(struct file *filp, poll_table *wait)
2185 {
2186 struct tty_struct *tty = file_tty(filp);
2187 struct tty_ldisc *ld;
2188 __poll_t ret = 0;
2189
2190 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2191 return 0;
2192
2193 ld = tty_ldisc_ref_wait(tty);
2194 if (!ld)
2195 return hung_up_tty_poll(filp, wait);
2196 if (ld->ops->poll)
2197 ret = ld->ops->poll(tty, filp, wait);
2198 tty_ldisc_deref(ld);
2199 return ret;
2200 }
2201
__tty_fasync(int fd,struct file * filp,int on)2202 static int __tty_fasync(int fd, struct file *filp, int on)
2203 {
2204 struct tty_struct *tty = file_tty(filp);
2205 unsigned long flags;
2206 int retval = 0;
2207
2208 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2209 goto out;
2210
2211 retval = fasync_helper(fd, filp, on, &tty->fasync);
2212 if (retval <= 0)
2213 goto out;
2214
2215 if (on) {
2216 enum pid_type type;
2217 struct pid *pid;
2218
2219 spin_lock_irqsave(&tty->ctrl_lock, flags);
2220 if (tty->pgrp) {
2221 pid = tty->pgrp;
2222 type = PIDTYPE_PGID;
2223 } else {
2224 pid = task_pid(current);
2225 type = PIDTYPE_TGID;
2226 }
2227 get_pid(pid);
2228 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2229 __f_setown(filp, pid, type, 0);
2230 put_pid(pid);
2231 retval = 0;
2232 }
2233 out:
2234 return retval;
2235 }
2236
tty_fasync(int fd,struct file * filp,int on)2237 static int tty_fasync(int fd, struct file *filp, int on)
2238 {
2239 struct tty_struct *tty = file_tty(filp);
2240 int retval = -ENOTTY;
2241
2242 tty_lock(tty);
2243 if (!tty_hung_up_p(filp))
2244 retval = __tty_fasync(fd, filp, on);
2245 tty_unlock(tty);
2246
2247 return retval;
2248 }
2249
2250 /**
2251 * tiocsti - fake input character
2252 * @tty: tty to fake input into
2253 * @p: pointer to character
2254 *
2255 * Fake input to a tty device. Does the necessary locking and
2256 * input management.
2257 *
2258 * FIXME: does not honour flow control ??
2259 *
2260 * Locking:
2261 * Called functions take tty_ldiscs_lock
2262 * current->signal->tty check is safe without locks
2263 */
2264
tiocsti(struct tty_struct * tty,char __user * p)2265 static int tiocsti(struct tty_struct *tty, char __user *p)
2266 {
2267 char ch, mbz = 0;
2268 struct tty_ldisc *ld;
2269
2270 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2271 return -EPERM;
2272 if (get_user(ch, p))
2273 return -EFAULT;
2274 tty_audit_tiocsti(tty, ch);
2275 ld = tty_ldisc_ref_wait(tty);
2276 if (!ld)
2277 return -EIO;
2278 tty_buffer_lock_exclusive(tty->port);
2279 if (ld->ops->receive_buf)
2280 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2281 tty_buffer_unlock_exclusive(tty->port);
2282 tty_ldisc_deref(ld);
2283 return 0;
2284 }
2285
2286 /**
2287 * tiocgwinsz - implement window query ioctl
2288 * @tty: tty
2289 * @arg: user buffer for result
2290 *
2291 * Copies the kernel idea of the window size into the user buffer.
2292 *
2293 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2294 * is consistent.
2295 */
2296
tiocgwinsz(struct tty_struct * tty,struct winsize __user * arg)2297 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2298 {
2299 int err;
2300
2301 mutex_lock(&tty->winsize_mutex);
2302 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2303 mutex_unlock(&tty->winsize_mutex);
2304
2305 return err ? -EFAULT: 0;
2306 }
2307
2308 /**
2309 * tty_do_resize - resize event
2310 * @tty: tty being resized
2311 * @ws: new dimensions
2312 *
2313 * Update the termios variables and send the necessary signals to
2314 * peform a terminal resize correctly
2315 */
2316
tty_do_resize(struct tty_struct * tty,struct winsize * ws)2317 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2318 {
2319 struct pid *pgrp;
2320
2321 /* Lock the tty */
2322 mutex_lock(&tty->winsize_mutex);
2323 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2324 goto done;
2325
2326 /* Signal the foreground process group */
2327 pgrp = tty_get_pgrp(tty);
2328 if (pgrp)
2329 kill_pgrp(pgrp, SIGWINCH, 1);
2330 put_pid(pgrp);
2331
2332 tty->winsize = *ws;
2333 done:
2334 mutex_unlock(&tty->winsize_mutex);
2335 return 0;
2336 }
2337 EXPORT_SYMBOL(tty_do_resize);
2338
2339 /**
2340 * tiocswinsz - implement window size set ioctl
2341 * @tty: tty side of tty
2342 * @arg: user buffer for result
2343 *
2344 * Copies the user idea of the window size to the kernel. Traditionally
2345 * this is just advisory information but for the Linux console it
2346 * actually has driver level meaning and triggers a VC resize.
2347 *
2348 * Locking:
2349 * Driver dependent. The default do_resize method takes the
2350 * tty termios mutex and ctrl_lock. The console takes its own lock
2351 * then calls into the default method.
2352 */
2353
tiocswinsz(struct tty_struct * tty,struct winsize __user * arg)2354 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2355 {
2356 struct winsize tmp_ws;
2357 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2358 return -EFAULT;
2359
2360 if (tty->ops->resize)
2361 return tty->ops->resize(tty, &tmp_ws);
2362 else
2363 return tty_do_resize(tty, &tmp_ws);
2364 }
2365
2366 /**
2367 * tioccons - allow admin to move logical console
2368 * @file: the file to become console
2369 *
2370 * Allow the administrator to move the redirected console device
2371 *
2372 * Locking: uses redirect_lock to guard the redirect information
2373 */
2374
tioccons(struct file * file)2375 static int tioccons(struct file *file)
2376 {
2377 if (!capable(CAP_SYS_ADMIN))
2378 return -EPERM;
2379 if (file->f_op->write_iter == redirected_tty_write) {
2380 struct file *f;
2381 spin_lock(&redirect_lock);
2382 f = redirect;
2383 redirect = NULL;
2384 spin_unlock(&redirect_lock);
2385 if (f)
2386 fput(f);
2387 return 0;
2388 }
2389 if (file->f_op->write_iter != tty_write)
2390 return -ENOTTY;
2391 if (!(file->f_mode & FMODE_WRITE))
2392 return -EBADF;
2393 if (!(file->f_mode & FMODE_CAN_WRITE))
2394 return -EINVAL;
2395 spin_lock(&redirect_lock);
2396 if (redirect) {
2397 spin_unlock(&redirect_lock);
2398 return -EBUSY;
2399 }
2400 redirect = get_file(file);
2401 spin_unlock(&redirect_lock);
2402 return 0;
2403 }
2404
2405 /**
2406 * tiocsetd - set line discipline
2407 * @tty: tty device
2408 * @p: pointer to user data
2409 *
2410 * Set the line discipline according to user request.
2411 *
2412 * Locking: see tty_set_ldisc, this function is just a helper
2413 */
2414
tiocsetd(struct tty_struct * tty,int __user * p)2415 static int tiocsetd(struct tty_struct *tty, int __user *p)
2416 {
2417 int disc;
2418 int ret;
2419
2420 if (get_user(disc, p))
2421 return -EFAULT;
2422
2423 ret = tty_set_ldisc(tty, disc);
2424
2425 return ret;
2426 }
2427
2428 /**
2429 * tiocgetd - get line discipline
2430 * @tty: tty device
2431 * @p: pointer to user data
2432 *
2433 * Retrieves the line discipline id directly from the ldisc.
2434 *
2435 * Locking: waits for ldisc reference (in case the line discipline
2436 * is changing or the tty is being hungup)
2437 */
2438
tiocgetd(struct tty_struct * tty,int __user * p)2439 static int tiocgetd(struct tty_struct *tty, int __user *p)
2440 {
2441 struct tty_ldisc *ld;
2442 int ret;
2443
2444 ld = tty_ldisc_ref_wait(tty);
2445 if (!ld)
2446 return -EIO;
2447 ret = put_user(ld->ops->num, p);
2448 tty_ldisc_deref(ld);
2449 return ret;
2450 }
2451
2452 /**
2453 * send_break - performed time break
2454 * @tty: device to break on
2455 * @duration: timeout in mS
2456 *
2457 * Perform a timed break on hardware that lacks its own driver level
2458 * timed break functionality.
2459 *
2460 * Locking:
2461 * atomic_write_lock serializes
2462 *
2463 */
2464
send_break(struct tty_struct * tty,unsigned int duration)2465 static int send_break(struct tty_struct *tty, unsigned int duration)
2466 {
2467 int retval;
2468
2469 if (tty->ops->break_ctl == NULL)
2470 return 0;
2471
2472 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2473 retval = tty->ops->break_ctl(tty, duration);
2474 else {
2475 /* Do the work ourselves */
2476 if (tty_write_lock(tty, 0) < 0)
2477 return -EINTR;
2478 retval = tty->ops->break_ctl(tty, -1);
2479 if (retval)
2480 goto out;
2481 if (!signal_pending(current))
2482 msleep_interruptible(duration);
2483 retval = tty->ops->break_ctl(tty, 0);
2484 out:
2485 tty_write_unlock(tty);
2486 if (signal_pending(current))
2487 retval = -EINTR;
2488 }
2489 return retval;
2490 }
2491
2492 /**
2493 * tty_tiocmget - get modem status
2494 * @tty: tty device
2495 * @p: pointer to result
2496 *
2497 * Obtain the modem status bits from the tty driver if the feature
2498 * is supported. Return -ENOTTY if it is not available.
2499 *
2500 * Locking: none (up to the driver)
2501 */
2502
tty_tiocmget(struct tty_struct * tty,int __user * p)2503 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2504 {
2505 int retval = -ENOTTY;
2506
2507 if (tty->ops->tiocmget) {
2508 retval = tty->ops->tiocmget(tty);
2509
2510 if (retval >= 0)
2511 retval = put_user(retval, p);
2512 }
2513 return retval;
2514 }
2515
2516 /**
2517 * tty_tiocmset - set modem status
2518 * @tty: tty device
2519 * @cmd: command - clear bits, set bits or set all
2520 * @p: pointer to desired bits
2521 *
2522 * Set the modem status bits from the tty driver if the feature
2523 * is supported. Return -ENOTTY if it is not available.
2524 *
2525 * Locking: none (up to the driver)
2526 */
2527
tty_tiocmset(struct tty_struct * tty,unsigned int cmd,unsigned __user * p)2528 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2529 unsigned __user *p)
2530 {
2531 int retval;
2532 unsigned int set, clear, val;
2533
2534 if (tty->ops->tiocmset == NULL)
2535 return -ENOTTY;
2536
2537 retval = get_user(val, p);
2538 if (retval)
2539 return retval;
2540 set = clear = 0;
2541 switch (cmd) {
2542 case TIOCMBIS:
2543 set = val;
2544 break;
2545 case TIOCMBIC:
2546 clear = val;
2547 break;
2548 case TIOCMSET:
2549 set = val;
2550 clear = ~val;
2551 break;
2552 }
2553 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2554 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2555 return tty->ops->tiocmset(tty, set, clear);
2556 }
2557
tty_tiocgicount(struct tty_struct * tty,void __user * arg)2558 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2559 {
2560 int retval = -EINVAL;
2561 struct serial_icounter_struct icount;
2562 memset(&icount, 0, sizeof(icount));
2563 if (tty->ops->get_icount)
2564 retval = tty->ops->get_icount(tty, &icount);
2565 if (retval != 0)
2566 return retval;
2567 if (copy_to_user(arg, &icount, sizeof(icount)))
2568 return -EFAULT;
2569 return 0;
2570 }
2571
tty_tiocsserial(struct tty_struct * tty,struct serial_struct __user * ss)2572 static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2573 {
2574 static DEFINE_RATELIMIT_STATE(depr_flags,
2575 DEFAULT_RATELIMIT_INTERVAL,
2576 DEFAULT_RATELIMIT_BURST);
2577 char comm[TASK_COMM_LEN];
2578 struct serial_struct v;
2579 int flags;
2580
2581 if (copy_from_user(&v, ss, sizeof(*ss)))
2582 return -EFAULT;
2583
2584 flags = v.flags & ASYNC_DEPRECATED;
2585
2586 if (flags && __ratelimit(&depr_flags))
2587 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2588 __func__, get_task_comm(comm, current), flags);
2589 if (!tty->ops->set_serial)
2590 return -ENOTTY;
2591 return tty->ops->set_serial(tty, &v);
2592 }
2593
tty_tiocgserial(struct tty_struct * tty,struct serial_struct __user * ss)2594 static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2595 {
2596 struct serial_struct v;
2597 int err;
2598
2599 memset(&v, 0, sizeof(v));
2600 if (!tty->ops->get_serial)
2601 return -ENOTTY;
2602 err = tty->ops->get_serial(tty, &v);
2603 if (!err && copy_to_user(ss, &v, sizeof(v)))
2604 err = -EFAULT;
2605 return err;
2606 }
2607
2608 /*
2609 * if pty, return the slave side (real_tty)
2610 * otherwise, return self
2611 */
tty_pair_get_tty(struct tty_struct * tty)2612 static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2613 {
2614 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2615 tty->driver->subtype == PTY_TYPE_MASTER)
2616 tty = tty->link;
2617 return tty;
2618 }
2619
2620 /*
2621 * Split this up, as gcc can choke on it otherwise..
2622 */
tty_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2623 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2624 {
2625 struct tty_struct *tty = file_tty(file);
2626 struct tty_struct *real_tty;
2627 void __user *p = (void __user *)arg;
2628 int retval;
2629 struct tty_ldisc *ld;
2630
2631 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2632 return -EINVAL;
2633
2634 real_tty = tty_pair_get_tty(tty);
2635
2636 /*
2637 * Factor out some common prep work
2638 */
2639 switch (cmd) {
2640 case TIOCSETD:
2641 case TIOCSBRK:
2642 case TIOCCBRK:
2643 case TCSBRK:
2644 case TCSBRKP:
2645 retval = tty_check_change(tty);
2646 if (retval)
2647 return retval;
2648 if (cmd != TIOCCBRK) {
2649 tty_wait_until_sent(tty, 0);
2650 if (signal_pending(current))
2651 return -EINTR;
2652 }
2653 break;
2654 }
2655
2656 /*
2657 * Now do the stuff.
2658 */
2659 switch (cmd) {
2660 case TIOCSTI:
2661 return tiocsti(tty, p);
2662 case TIOCGWINSZ:
2663 return tiocgwinsz(real_tty, p);
2664 case TIOCSWINSZ:
2665 return tiocswinsz(real_tty, p);
2666 case TIOCCONS:
2667 return real_tty != tty ? -EINVAL : tioccons(file);
2668 case TIOCEXCL:
2669 set_bit(TTY_EXCLUSIVE, &tty->flags);
2670 return 0;
2671 case TIOCNXCL:
2672 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2673 return 0;
2674 case TIOCGEXCL:
2675 {
2676 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2677 return put_user(excl, (int __user *)p);
2678 }
2679 case TIOCGETD:
2680 return tiocgetd(tty, p);
2681 case TIOCSETD:
2682 return tiocsetd(tty, p);
2683 case TIOCVHANGUP:
2684 if (!capable(CAP_SYS_ADMIN))
2685 return -EPERM;
2686 tty_vhangup(tty);
2687 return 0;
2688 case TIOCGDEV:
2689 {
2690 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2691 return put_user(ret, (unsigned int __user *)p);
2692 }
2693 /*
2694 * Break handling
2695 */
2696 case TIOCSBRK: /* Turn break on, unconditionally */
2697 if (tty->ops->break_ctl)
2698 return tty->ops->break_ctl(tty, -1);
2699 return 0;
2700 case TIOCCBRK: /* Turn break off, unconditionally */
2701 if (tty->ops->break_ctl)
2702 return tty->ops->break_ctl(tty, 0);
2703 return 0;
2704 case TCSBRK: /* SVID version: non-zero arg --> no break */
2705 /* non-zero arg means wait for all output data
2706 * to be sent (performed above) but don't send break.
2707 * This is used by the tcdrain() termios function.
2708 */
2709 if (!arg)
2710 return send_break(tty, 250);
2711 return 0;
2712 case TCSBRKP: /* support for POSIX tcsendbreak() */
2713 return send_break(tty, arg ? arg*100 : 250);
2714
2715 case TIOCMGET:
2716 return tty_tiocmget(tty, p);
2717 case TIOCMSET:
2718 case TIOCMBIC:
2719 case TIOCMBIS:
2720 return tty_tiocmset(tty, cmd, p);
2721 case TIOCGICOUNT:
2722 return tty_tiocgicount(tty, p);
2723 case TCFLSH:
2724 switch (arg) {
2725 case TCIFLUSH:
2726 case TCIOFLUSH:
2727 /* flush tty buffer and allow ldisc to process ioctl */
2728 tty_buffer_flush(tty, NULL);
2729 break;
2730 }
2731 break;
2732 case TIOCSSERIAL:
2733 return tty_tiocsserial(tty, p);
2734 case TIOCGSERIAL:
2735 return tty_tiocgserial(tty, p);
2736 case TIOCGPTPEER:
2737 /* Special because the struct file is needed */
2738 return ptm_open_peer(file, tty, (int)arg);
2739 default:
2740 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2741 if (retval != -ENOIOCTLCMD)
2742 return retval;
2743 }
2744 if (tty->ops->ioctl) {
2745 retval = tty->ops->ioctl(tty, cmd, arg);
2746 if (retval != -ENOIOCTLCMD)
2747 return retval;
2748 }
2749 ld = tty_ldisc_ref_wait(tty);
2750 if (!ld)
2751 return hung_up_tty_ioctl(file, cmd, arg);
2752 retval = -EINVAL;
2753 if (ld->ops->ioctl) {
2754 retval = ld->ops->ioctl(tty, file, cmd, arg);
2755 if (retval == -ENOIOCTLCMD)
2756 retval = -ENOTTY;
2757 }
2758 tty_ldisc_deref(ld);
2759 return retval;
2760 }
2761
2762 #ifdef CONFIG_COMPAT
2763
2764 struct serial_struct32 {
2765 compat_int_t type;
2766 compat_int_t line;
2767 compat_uint_t port;
2768 compat_int_t irq;
2769 compat_int_t flags;
2770 compat_int_t xmit_fifo_size;
2771 compat_int_t custom_divisor;
2772 compat_int_t baud_base;
2773 unsigned short close_delay;
2774 char io_type;
2775 char reserved_char;
2776 compat_int_t hub6;
2777 unsigned short closing_wait; /* time to wait before closing */
2778 unsigned short closing_wait2; /* no longer used... */
2779 compat_uint_t iomem_base;
2780 unsigned short iomem_reg_shift;
2781 unsigned int port_high;
2782 /* compat_ulong_t iomap_base FIXME */
2783 compat_int_t reserved;
2784 };
2785
compat_tty_tiocsserial(struct tty_struct * tty,struct serial_struct32 __user * ss)2786 static int compat_tty_tiocsserial(struct tty_struct *tty,
2787 struct serial_struct32 __user *ss)
2788 {
2789 static DEFINE_RATELIMIT_STATE(depr_flags,
2790 DEFAULT_RATELIMIT_INTERVAL,
2791 DEFAULT_RATELIMIT_BURST);
2792 char comm[TASK_COMM_LEN];
2793 struct serial_struct32 v32;
2794 struct serial_struct v;
2795 int flags;
2796
2797 if (copy_from_user(&v32, ss, sizeof(*ss)))
2798 return -EFAULT;
2799
2800 memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2801 v.iomem_base = compat_ptr(v32.iomem_base);
2802 v.iomem_reg_shift = v32.iomem_reg_shift;
2803 v.port_high = v32.port_high;
2804 v.iomap_base = 0;
2805
2806 flags = v.flags & ASYNC_DEPRECATED;
2807
2808 if (flags && __ratelimit(&depr_flags))
2809 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2810 __func__, get_task_comm(comm, current), flags);
2811 if (!tty->ops->set_serial)
2812 return -ENOTTY;
2813 return tty->ops->set_serial(tty, &v);
2814 }
2815
compat_tty_tiocgserial(struct tty_struct * tty,struct serial_struct32 __user * ss)2816 static int compat_tty_tiocgserial(struct tty_struct *tty,
2817 struct serial_struct32 __user *ss)
2818 {
2819 struct serial_struct32 v32;
2820 struct serial_struct v;
2821 int err;
2822
2823 memset(&v, 0, sizeof(v));
2824 memset(&v32, 0, sizeof(v32));
2825
2826 if (!tty->ops->get_serial)
2827 return -ENOTTY;
2828 err = tty->ops->get_serial(tty, &v);
2829 if (!err) {
2830 memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2831 v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2832 0xfffffff : ptr_to_compat(v.iomem_base);
2833 v32.iomem_reg_shift = v.iomem_reg_shift;
2834 v32.port_high = v.port_high;
2835 if (copy_to_user(ss, &v32, sizeof(v32)))
2836 err = -EFAULT;
2837 }
2838 return err;
2839 }
tty_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)2840 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2841 unsigned long arg)
2842 {
2843 struct tty_struct *tty = file_tty(file);
2844 struct tty_ldisc *ld;
2845 int retval = -ENOIOCTLCMD;
2846
2847 switch (cmd) {
2848 case TIOCOUTQ:
2849 case TIOCSTI:
2850 case TIOCGWINSZ:
2851 case TIOCSWINSZ:
2852 case TIOCGEXCL:
2853 case TIOCGETD:
2854 case TIOCSETD:
2855 case TIOCGDEV:
2856 case TIOCMGET:
2857 case TIOCMSET:
2858 case TIOCMBIC:
2859 case TIOCMBIS:
2860 case TIOCGICOUNT:
2861 case TIOCGPGRP:
2862 case TIOCSPGRP:
2863 case TIOCGSID:
2864 case TIOCSERGETLSR:
2865 case TIOCGRS485:
2866 case TIOCSRS485:
2867 #ifdef TIOCGETP
2868 case TIOCGETP:
2869 case TIOCSETP:
2870 case TIOCSETN:
2871 #endif
2872 #ifdef TIOCGETC
2873 case TIOCGETC:
2874 case TIOCSETC:
2875 #endif
2876 #ifdef TIOCGLTC
2877 case TIOCGLTC:
2878 case TIOCSLTC:
2879 #endif
2880 case TCSETSF:
2881 case TCSETSW:
2882 case TCSETS:
2883 case TCGETS:
2884 #ifdef TCGETS2
2885 case TCGETS2:
2886 case TCSETSF2:
2887 case TCSETSW2:
2888 case TCSETS2:
2889 #endif
2890 case TCGETA:
2891 case TCSETAF:
2892 case TCSETAW:
2893 case TCSETA:
2894 case TIOCGLCKTRMIOS:
2895 case TIOCSLCKTRMIOS:
2896 #ifdef TCGETX
2897 case TCGETX:
2898 case TCSETX:
2899 case TCSETXW:
2900 case TCSETXF:
2901 #endif
2902 case TIOCGSOFTCAR:
2903 case TIOCSSOFTCAR:
2904
2905 case PPPIOCGCHAN:
2906 case PPPIOCGUNIT:
2907 return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2908 case TIOCCONS:
2909 case TIOCEXCL:
2910 case TIOCNXCL:
2911 case TIOCVHANGUP:
2912 case TIOCSBRK:
2913 case TIOCCBRK:
2914 case TCSBRK:
2915 case TCSBRKP:
2916 case TCFLSH:
2917 case TIOCGPTPEER:
2918 case TIOCNOTTY:
2919 case TIOCSCTTY:
2920 case TCXONC:
2921 case TIOCMIWAIT:
2922 case TIOCSERCONFIG:
2923 return tty_ioctl(file, cmd, arg);
2924 }
2925
2926 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2927 return -EINVAL;
2928
2929 switch (cmd) {
2930 case TIOCSSERIAL:
2931 return compat_tty_tiocsserial(tty, compat_ptr(arg));
2932 case TIOCGSERIAL:
2933 return compat_tty_tiocgserial(tty, compat_ptr(arg));
2934 }
2935 if (tty->ops->compat_ioctl) {
2936 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2937 if (retval != -ENOIOCTLCMD)
2938 return retval;
2939 }
2940
2941 ld = tty_ldisc_ref_wait(tty);
2942 if (!ld)
2943 return hung_up_tty_compat_ioctl(file, cmd, arg);
2944 if (ld->ops->compat_ioctl)
2945 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2946 if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2947 retval = ld->ops->ioctl(tty, file,
2948 (unsigned long)compat_ptr(cmd), arg);
2949 tty_ldisc_deref(ld);
2950
2951 return retval;
2952 }
2953 #endif
2954
this_tty(const void * t,struct file * file,unsigned fd)2955 static int this_tty(const void *t, struct file *file, unsigned fd)
2956 {
2957 if (likely(file->f_op->read_iter != tty_read))
2958 return 0;
2959 return file_tty(file) != t ? 0 : fd + 1;
2960 }
2961
2962 /*
2963 * This implements the "Secure Attention Key" --- the idea is to
2964 * prevent trojan horses by killing all processes associated with this
2965 * tty when the user hits the "Secure Attention Key". Required for
2966 * super-paranoid applications --- see the Orange Book for more details.
2967 *
2968 * This code could be nicer; ideally it should send a HUP, wait a few
2969 * seconds, then send a INT, and then a KILL signal. But you then
2970 * have to coordinate with the init process, since all processes associated
2971 * with the current tty must be dead before the new getty is allowed
2972 * to spawn.
2973 *
2974 * Now, if it would be correct ;-/ The current code has a nasty hole -
2975 * it doesn't catch files in flight. We may send the descriptor to ourselves
2976 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2977 *
2978 * Nasty bug: do_SAK is being called in interrupt context. This can
2979 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2980 */
__do_SAK(struct tty_struct * tty)2981 void __do_SAK(struct tty_struct *tty)
2982 {
2983 #ifdef TTY_SOFT_SAK
2984 tty_hangup(tty);
2985 #else
2986 struct task_struct *g, *p;
2987 struct pid *session;
2988 int i;
2989 unsigned long flags;
2990
2991 if (!tty)
2992 return;
2993
2994 spin_lock_irqsave(&tty->ctrl_lock, flags);
2995 session = get_pid(tty->session);
2996 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2997
2998 tty_ldisc_flush(tty);
2999
3000 tty_driver_flush_buffer(tty);
3001
3002 read_lock(&tasklist_lock);
3003 /* Kill the entire session */
3004 do_each_pid_task(session, PIDTYPE_SID, p) {
3005 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3006 task_pid_nr(p), p->comm);
3007 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3008 } while_each_pid_task(session, PIDTYPE_SID, p);
3009
3010 /* Now kill any processes that happen to have the tty open */
3011 do_each_thread(g, p) {
3012 if (p->signal->tty == tty) {
3013 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3014 task_pid_nr(p), p->comm);
3015 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3016 continue;
3017 }
3018 task_lock(p);
3019 i = iterate_fd(p->files, 0, this_tty, tty);
3020 if (i != 0) {
3021 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3022 task_pid_nr(p), p->comm, i - 1);
3023 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3024 }
3025 task_unlock(p);
3026 } while_each_thread(g, p);
3027 read_unlock(&tasklist_lock);
3028 put_pid(session);
3029 #endif
3030 }
3031
do_SAK_work(struct work_struct * work)3032 static void do_SAK_work(struct work_struct *work)
3033 {
3034 struct tty_struct *tty =
3035 container_of(work, struct tty_struct, SAK_work);
3036 __do_SAK(tty);
3037 }
3038
3039 /*
3040 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3041 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3042 * the values which we write to it will be identical to the values which it
3043 * already has. --akpm
3044 */
do_SAK(struct tty_struct * tty)3045 void do_SAK(struct tty_struct *tty)
3046 {
3047 if (!tty)
3048 return;
3049 schedule_work(&tty->SAK_work);
3050 }
3051
3052 EXPORT_SYMBOL(do_SAK);
3053
3054 /* Must put_device() after it's unused! */
tty_get_device(struct tty_struct * tty)3055 static struct device *tty_get_device(struct tty_struct *tty)
3056 {
3057 dev_t devt = tty_devnum(tty);
3058 return class_find_device_by_devt(tty_class, devt);
3059 }
3060
3061
3062 /**
3063 * alloc_tty_struct
3064 *
3065 * This subroutine allocates and initializes a tty structure.
3066 *
3067 * Locking: none - tty in question is not exposed at this point
3068 */
3069
alloc_tty_struct(struct tty_driver * driver,int idx)3070 struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3071 {
3072 struct tty_struct *tty;
3073
3074 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3075 if (!tty)
3076 return NULL;
3077
3078 kref_init(&tty->kref);
3079 tty->magic = TTY_MAGIC;
3080 if (tty_ldisc_init(tty)) {
3081 kfree(tty);
3082 return NULL;
3083 }
3084 tty->session = NULL;
3085 tty->pgrp = NULL;
3086 mutex_init(&tty->legacy_mutex);
3087 mutex_init(&tty->throttle_mutex);
3088 init_rwsem(&tty->termios_rwsem);
3089 mutex_init(&tty->winsize_mutex);
3090 init_ldsem(&tty->ldisc_sem);
3091 init_waitqueue_head(&tty->write_wait);
3092 init_waitqueue_head(&tty->read_wait);
3093 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3094 mutex_init(&tty->atomic_write_lock);
3095 spin_lock_init(&tty->ctrl_lock);
3096 spin_lock_init(&tty->flow_lock);
3097 spin_lock_init(&tty->files_lock);
3098 INIT_LIST_HEAD(&tty->tty_files);
3099 INIT_WORK(&tty->SAK_work, do_SAK_work);
3100
3101 tty->driver = driver;
3102 tty->ops = driver->ops;
3103 tty->index = idx;
3104 tty_line_name(driver, idx, tty->name);
3105 tty->dev = tty_get_device(tty);
3106
3107 return tty;
3108 }
3109
3110 /**
3111 * tty_put_char - write one character to a tty
3112 * @tty: tty
3113 * @ch: character
3114 *
3115 * Write one byte to the tty using the provided put_char method
3116 * if present. Returns the number of characters successfully output.
3117 *
3118 * Note: the specific put_char operation in the driver layer may go
3119 * away soon. Don't call it directly, use this method
3120 */
3121
tty_put_char(struct tty_struct * tty,unsigned char ch)3122 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3123 {
3124 if (tty->ops->put_char)
3125 return tty->ops->put_char(tty, ch);
3126 return tty->ops->write(tty, &ch, 1);
3127 }
3128 EXPORT_SYMBOL_GPL(tty_put_char);
3129
3130 struct class *tty_class;
3131
tty_cdev_add(struct tty_driver * driver,dev_t dev,unsigned int index,unsigned int count)3132 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3133 unsigned int index, unsigned int count)
3134 {
3135 int err;
3136
3137 /* init here, since reused cdevs cause crashes */
3138 driver->cdevs[index] = cdev_alloc();
3139 if (!driver->cdevs[index])
3140 return -ENOMEM;
3141 driver->cdevs[index]->ops = &tty_fops;
3142 driver->cdevs[index]->owner = driver->owner;
3143 err = cdev_add(driver->cdevs[index], dev, count);
3144 if (err)
3145 kobject_put(&driver->cdevs[index]->kobj);
3146 return err;
3147 }
3148
3149 /**
3150 * tty_register_device - register a tty device
3151 * @driver: the tty driver that describes the tty device
3152 * @index: the index in the tty driver for this tty device
3153 * @device: a struct device that is associated with this tty device.
3154 * This field is optional, if there is no known struct device
3155 * for this tty device it can be set to NULL safely.
3156 *
3157 * Returns a pointer to the struct device for this tty device
3158 * (or ERR_PTR(-EFOO) on error).
3159 *
3160 * This call is required to be made to register an individual tty device
3161 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3162 * that bit is not set, this function should not be called by a tty
3163 * driver.
3164 *
3165 * Locking: ??
3166 */
3167
tty_register_device(struct tty_driver * driver,unsigned index,struct device * device)3168 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3169 struct device *device)
3170 {
3171 return tty_register_device_attr(driver, index, device, NULL, NULL);
3172 }
3173 EXPORT_SYMBOL(tty_register_device);
3174
tty_device_create_release(struct device * dev)3175 static void tty_device_create_release(struct device *dev)
3176 {
3177 dev_dbg(dev, "releasing...\n");
3178 kfree(dev);
3179 }
3180
3181 /**
3182 * tty_register_device_attr - register a tty device
3183 * @driver: the tty driver that describes the tty device
3184 * @index: the index in the tty driver for this tty device
3185 * @device: a struct device that is associated with this tty device.
3186 * This field is optional, if there is no known struct device
3187 * for this tty device it can be set to NULL safely.
3188 * @drvdata: Driver data to be set to device.
3189 * @attr_grp: Attribute group to be set on device.
3190 *
3191 * Returns a pointer to the struct device for this tty device
3192 * (or ERR_PTR(-EFOO) on error).
3193 *
3194 * This call is required to be made to register an individual tty device
3195 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3196 * that bit is not set, this function should not be called by a tty
3197 * driver.
3198 *
3199 * Locking: ??
3200 */
tty_register_device_attr(struct tty_driver * driver,unsigned index,struct device * device,void * drvdata,const struct attribute_group ** attr_grp)3201 struct device *tty_register_device_attr(struct tty_driver *driver,
3202 unsigned index, struct device *device,
3203 void *drvdata,
3204 const struct attribute_group **attr_grp)
3205 {
3206 char name[64];
3207 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3208 struct ktermios *tp;
3209 struct device *dev;
3210 int retval;
3211
3212 if (index >= driver->num) {
3213 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3214 driver->name, index);
3215 return ERR_PTR(-EINVAL);
3216 }
3217
3218 if (driver->type == TTY_DRIVER_TYPE_PTY)
3219 pty_line_name(driver, index, name);
3220 else
3221 tty_line_name(driver, index, name);
3222
3223 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3224 if (!dev)
3225 return ERR_PTR(-ENOMEM);
3226
3227 dev->devt = devt;
3228 dev->class = tty_class;
3229 dev->parent = device;
3230 dev->release = tty_device_create_release;
3231 dev_set_name(dev, "%s", name);
3232 dev->groups = attr_grp;
3233 dev_set_drvdata(dev, drvdata);
3234
3235 dev_set_uevent_suppress(dev, 1);
3236
3237 retval = device_register(dev);
3238 if (retval)
3239 goto err_put;
3240
3241 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3242 /*
3243 * Free any saved termios data so that the termios state is
3244 * reset when reusing a minor number.
3245 */
3246 tp = driver->termios[index];
3247 if (tp) {
3248 driver->termios[index] = NULL;
3249 kfree(tp);
3250 }
3251
3252 retval = tty_cdev_add(driver, devt, index, 1);
3253 if (retval)
3254 goto err_del;
3255 }
3256
3257 dev_set_uevent_suppress(dev, 0);
3258 kobject_uevent(&dev->kobj, KOBJ_ADD);
3259
3260 return dev;
3261
3262 err_del:
3263 device_del(dev);
3264 err_put:
3265 put_device(dev);
3266
3267 return ERR_PTR(retval);
3268 }
3269 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3270
3271 /**
3272 * tty_unregister_device - unregister a tty device
3273 * @driver: the tty driver that describes the tty device
3274 * @index: the index in the tty driver for this tty device
3275 *
3276 * If a tty device is registered with a call to tty_register_device() then
3277 * this function must be called when the tty device is gone.
3278 *
3279 * Locking: ??
3280 */
3281
tty_unregister_device(struct tty_driver * driver,unsigned index)3282 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3283 {
3284 device_destroy(tty_class,
3285 MKDEV(driver->major, driver->minor_start) + index);
3286 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3287 cdev_del(driver->cdevs[index]);
3288 driver->cdevs[index] = NULL;
3289 }
3290 }
3291 EXPORT_SYMBOL(tty_unregister_device);
3292
3293 /**
3294 * __tty_alloc_driver -- allocate tty driver
3295 * @lines: count of lines this driver can handle at most
3296 * @owner: module which is responsible for this driver
3297 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3298 *
3299 * This should not be called directly, some of the provided macros should be
3300 * used instead. Use IS_ERR and friends on @retval.
3301 */
__tty_alloc_driver(unsigned int lines,struct module * owner,unsigned long flags)3302 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3303 unsigned long flags)
3304 {
3305 struct tty_driver *driver;
3306 unsigned int cdevs = 1;
3307 int err;
3308
3309 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3310 return ERR_PTR(-EINVAL);
3311
3312 driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3313 if (!driver)
3314 return ERR_PTR(-ENOMEM);
3315
3316 kref_init(&driver->kref);
3317 driver->magic = TTY_DRIVER_MAGIC;
3318 driver->num = lines;
3319 driver->owner = owner;
3320 driver->flags = flags;
3321
3322 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3323 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3324 GFP_KERNEL);
3325 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3326 GFP_KERNEL);
3327 if (!driver->ttys || !driver->termios) {
3328 err = -ENOMEM;
3329 goto err_free_all;
3330 }
3331 }
3332
3333 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3334 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3335 GFP_KERNEL);
3336 if (!driver->ports) {
3337 err = -ENOMEM;
3338 goto err_free_all;
3339 }
3340 cdevs = lines;
3341 }
3342
3343 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3344 if (!driver->cdevs) {
3345 err = -ENOMEM;
3346 goto err_free_all;
3347 }
3348
3349 return driver;
3350 err_free_all:
3351 kfree(driver->ports);
3352 kfree(driver->ttys);
3353 kfree(driver->termios);
3354 kfree(driver->cdevs);
3355 kfree(driver);
3356 return ERR_PTR(err);
3357 }
3358 EXPORT_SYMBOL(__tty_alloc_driver);
3359
destruct_tty_driver(struct kref * kref)3360 static void destruct_tty_driver(struct kref *kref)
3361 {
3362 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3363 int i;
3364 struct ktermios *tp;
3365
3366 if (driver->flags & TTY_DRIVER_INSTALLED) {
3367 for (i = 0; i < driver->num; i++) {
3368 tp = driver->termios[i];
3369 if (tp) {
3370 driver->termios[i] = NULL;
3371 kfree(tp);
3372 }
3373 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3374 tty_unregister_device(driver, i);
3375 }
3376 proc_tty_unregister_driver(driver);
3377 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3378 cdev_del(driver->cdevs[0]);
3379 }
3380 kfree(driver->cdevs);
3381 kfree(driver->ports);
3382 kfree(driver->termios);
3383 kfree(driver->ttys);
3384 kfree(driver);
3385 }
3386
tty_driver_kref_put(struct tty_driver * driver)3387 void tty_driver_kref_put(struct tty_driver *driver)
3388 {
3389 kref_put(&driver->kref, destruct_tty_driver);
3390 }
3391 EXPORT_SYMBOL(tty_driver_kref_put);
3392
tty_set_operations(struct tty_driver * driver,const struct tty_operations * op)3393 void tty_set_operations(struct tty_driver *driver,
3394 const struct tty_operations *op)
3395 {
3396 driver->ops = op;
3397 };
3398 EXPORT_SYMBOL(tty_set_operations);
3399
put_tty_driver(struct tty_driver * d)3400 void put_tty_driver(struct tty_driver *d)
3401 {
3402 tty_driver_kref_put(d);
3403 }
3404 EXPORT_SYMBOL(put_tty_driver);
3405
3406 /*
3407 * Called by a tty driver to register itself.
3408 */
tty_register_driver(struct tty_driver * driver)3409 int tty_register_driver(struct tty_driver *driver)
3410 {
3411 int error;
3412 int i;
3413 dev_t dev;
3414 struct device *d;
3415
3416 if (!driver->major) {
3417 error = alloc_chrdev_region(&dev, driver->minor_start,
3418 driver->num, driver->name);
3419 if (!error) {
3420 driver->major = MAJOR(dev);
3421 driver->minor_start = MINOR(dev);
3422 }
3423 } else {
3424 dev = MKDEV(driver->major, driver->minor_start);
3425 error = register_chrdev_region(dev, driver->num, driver->name);
3426 }
3427 if (error < 0)
3428 goto err;
3429
3430 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3431 error = tty_cdev_add(driver, dev, 0, driver->num);
3432 if (error)
3433 goto err_unreg_char;
3434 }
3435
3436 mutex_lock(&tty_mutex);
3437 list_add(&driver->tty_drivers, &tty_drivers);
3438 mutex_unlock(&tty_mutex);
3439
3440 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3441 for (i = 0; i < driver->num; i++) {
3442 d = tty_register_device(driver, i, NULL);
3443 if (IS_ERR(d)) {
3444 error = PTR_ERR(d);
3445 goto err_unreg_devs;
3446 }
3447 }
3448 }
3449 proc_tty_register_driver(driver);
3450 driver->flags |= TTY_DRIVER_INSTALLED;
3451 return 0;
3452
3453 err_unreg_devs:
3454 for (i--; i >= 0; i--)
3455 tty_unregister_device(driver, i);
3456
3457 mutex_lock(&tty_mutex);
3458 list_del(&driver->tty_drivers);
3459 mutex_unlock(&tty_mutex);
3460
3461 err_unreg_char:
3462 unregister_chrdev_region(dev, driver->num);
3463 err:
3464 return error;
3465 }
3466 EXPORT_SYMBOL(tty_register_driver);
3467
3468 /*
3469 * Called by a tty driver to unregister itself.
3470 */
tty_unregister_driver(struct tty_driver * driver)3471 int tty_unregister_driver(struct tty_driver *driver)
3472 {
3473 #if 0
3474 /* FIXME */
3475 if (driver->refcount)
3476 return -EBUSY;
3477 #endif
3478 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3479 driver->num);
3480 mutex_lock(&tty_mutex);
3481 list_del(&driver->tty_drivers);
3482 mutex_unlock(&tty_mutex);
3483 return 0;
3484 }
3485
3486 EXPORT_SYMBOL(tty_unregister_driver);
3487
tty_devnum(struct tty_struct * tty)3488 dev_t tty_devnum(struct tty_struct *tty)
3489 {
3490 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3491 }
3492 EXPORT_SYMBOL(tty_devnum);
3493
tty_default_fops(struct file_operations * fops)3494 void tty_default_fops(struct file_operations *fops)
3495 {
3496 *fops = tty_fops;
3497 }
3498
tty_devnode(struct device * dev,umode_t * mode)3499 static char *tty_devnode(struct device *dev, umode_t *mode)
3500 {
3501 if (!mode)
3502 return NULL;
3503 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3504 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3505 *mode = 0666;
3506 return NULL;
3507 }
3508
tty_class_init(void)3509 static int __init tty_class_init(void)
3510 {
3511 tty_class = class_create(THIS_MODULE, "tty");
3512 if (IS_ERR(tty_class))
3513 return PTR_ERR(tty_class);
3514 tty_class->devnode = tty_devnode;
3515 return 0;
3516 }
3517
3518 postcore_initcall(tty_class_init);
3519
3520 /* 3/2004 jmc: why do these devices exist? */
3521 static struct cdev tty_cdev, console_cdev;
3522
show_cons_active(struct device * dev,struct device_attribute * attr,char * buf)3523 static ssize_t show_cons_active(struct device *dev,
3524 struct device_attribute *attr, char *buf)
3525 {
3526 struct console *cs[16];
3527 int i = 0;
3528 struct console *c;
3529 ssize_t count = 0;
3530
3531 console_lock();
3532 for_each_console(c) {
3533 if (!c->device)
3534 continue;
3535 if (!c->write)
3536 continue;
3537 if ((c->flags & CON_ENABLED) == 0)
3538 continue;
3539 cs[i++] = c;
3540 if (i >= ARRAY_SIZE(cs))
3541 break;
3542 }
3543 while (i--) {
3544 int index = cs[i]->index;
3545 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3546
3547 /* don't resolve tty0 as some programs depend on it */
3548 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3549 count += tty_line_name(drv, index, buf + count);
3550 else
3551 count += sprintf(buf + count, "%s%d",
3552 cs[i]->name, cs[i]->index);
3553
3554 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3555 }
3556 console_unlock();
3557
3558 return count;
3559 }
3560 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3561
3562 static struct attribute *cons_dev_attrs[] = {
3563 &dev_attr_active.attr,
3564 NULL
3565 };
3566
3567 ATTRIBUTE_GROUPS(cons_dev);
3568
3569 static struct device *consdev;
3570
console_sysfs_notify(void)3571 void console_sysfs_notify(void)
3572 {
3573 if (consdev)
3574 sysfs_notify(&consdev->kobj, NULL, "active");
3575 }
3576
3577 /*
3578 * Ok, now we can initialize the rest of the tty devices and can count
3579 * on memory allocations, interrupts etc..
3580 */
tty_init(void)3581 int __init tty_init(void)
3582 {
3583 tty_sysctl_init();
3584 cdev_init(&tty_cdev, &tty_fops);
3585 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3586 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3587 panic("Couldn't register /dev/tty driver\n");
3588 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3589
3590 cdev_init(&console_cdev, &console_fops);
3591 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3592 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3593 panic("Couldn't register /dev/console driver\n");
3594 consdev = device_create_with_groups(tty_class, NULL,
3595 MKDEV(TTYAUX_MAJOR, 1), NULL,
3596 cons_dev_groups, "console");
3597 if (IS_ERR(consdev))
3598 consdev = NULL;
3599
3600 #ifdef CONFIG_VT
3601 vty_init(&console_fops);
3602 #endif
3603 return 0;
3604 }
3605
3606