• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/swapfile.c
4  *
5  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
6  *  Swap reorganised 29.12.95, Stephen Tweedie
7  */
8 
9 #include <linux/mm.h>
10 #include <linux/sched/mm.h>
11 #include <linux/sched/task.h>
12 #include <linux/hugetlb.h>
13 #include <linux/mman.h>
14 #include <linux/slab.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/swap.h>
17 #include <linux/vmalloc.h>
18 #include <linux/pagemap.h>
19 #include <linux/namei.h>
20 #include <linux/shmem_fs.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/writeback.h>
24 #include <linux/proc_fs.h>
25 #include <linux/seq_file.h>
26 #include <linux/init.h>
27 #include <linux/ksm.h>
28 #include <linux/rmap.h>
29 #include <linux/security.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mutex.h>
32 #include <linux/capability.h>
33 #include <linux/syscalls.h>
34 #include <linux/memcontrol.h>
35 #include <linux/poll.h>
36 #include <linux/oom.h>
37 #include <linux/frontswap.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46 #include <linux/zswapd.h>
47 
48 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
49 				 unsigned char);
50 static void free_swap_count_continuations(struct swap_info_struct *);
51 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
52 
53 DEFINE_SPINLOCK(swap_lock);
54 static unsigned int nr_swapfiles;
55 atomic_long_t nr_swap_pages;
56 /*
57  * Some modules use swappable objects and may try to swap them out under
58  * memory pressure (via the shrinker). Before doing so, they may wish to
59  * check to see if any swap space is available.
60  */
61 EXPORT_SYMBOL_GPL(nr_swap_pages);
62 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
63 long total_swap_pages;
64 static int least_priority = -1;
65 
66 static const char Bad_file[] = "Bad swap file entry ";
67 static const char Unused_file[] = "Unused swap file entry ";
68 static const char Bad_offset[] = "Bad swap offset entry ";
69 static const char Unused_offset[] = "Unused swap offset entry ";
70 
71 /*
72  * all active swap_info_structs
73  * protected with swap_lock, and ordered by priority.
74  */
75 PLIST_HEAD(swap_active_head);
76 
77 /*
78  * all available (active, not full) swap_info_structs
79  * protected with swap_avail_lock, ordered by priority.
80  * This is used by get_swap_page() instead of swap_active_head
81  * because swap_active_head includes all swap_info_structs,
82  * but get_swap_page() doesn't need to look at full ones.
83  * This uses its own lock instead of swap_lock because when a
84  * swap_info_struct changes between not-full/full, it needs to
85  * add/remove itself to/from this list, but the swap_info_struct->lock
86  * is held and the locking order requires swap_lock to be taken
87  * before any swap_info_struct->lock.
88  */
89 static struct plist_head *swap_avail_heads;
90 static DEFINE_SPINLOCK(swap_avail_lock);
91 
92 struct swap_info_struct *swap_info[MAX_SWAPFILES];
93 
94 static DEFINE_MUTEX(swapon_mutex);
95 
96 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
97 /* Activity counter to indicate that a swapon or swapoff has occurred */
98 static atomic_t proc_poll_event = ATOMIC_INIT(0);
99 
100 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
101 
swap_type_to_swap_info(int type)102 static struct swap_info_struct *swap_type_to_swap_info(int type)
103 {
104 	if (type >= READ_ONCE(nr_swapfiles))
105 		return NULL;
106 
107 	smp_rmb();	/* Pairs with smp_wmb in alloc_swap_info. */
108 	return READ_ONCE(swap_info[type]);
109 }
110 
swap_count(unsigned char ent)111 static inline unsigned char swap_count(unsigned char ent)
112 {
113 	return ent & ~SWAP_HAS_CACHE;	/* may include COUNT_CONTINUED flag */
114 }
115 
116 /* Reclaim the swap entry anyway if possible */
117 #define TTRS_ANYWAY		0x1
118 /*
119  * Reclaim the swap entry if there are no more mappings of the
120  * corresponding page
121  */
122 #define TTRS_UNMAPPED		0x2
123 /* Reclaim the swap entry if swap is getting full*/
124 #define TTRS_FULL		0x4
125 
126 /* returns 1 if swap entry is freed */
__try_to_reclaim_swap(struct swap_info_struct * si,unsigned long offset,unsigned long flags)127 static int __try_to_reclaim_swap(struct swap_info_struct *si,
128 				 unsigned long offset, unsigned long flags)
129 {
130 	swp_entry_t entry = swp_entry(si->type, offset);
131 	struct page *page;
132 	int ret = 0;
133 
134 	page = find_get_page(swap_address_space(entry), offset);
135 	if (!page)
136 		return 0;
137 	/*
138 	 * When this function is called from scan_swap_map_slots() and it's
139 	 * called by vmscan.c at reclaiming pages. So, we hold a lock on a page,
140 	 * here. We have to use trylock for avoiding deadlock. This is a special
141 	 * case and you should use try_to_free_swap() with explicit lock_page()
142 	 * in usual operations.
143 	 */
144 	if (trylock_page(page)) {
145 		if ((flags & TTRS_ANYWAY) ||
146 		    ((flags & TTRS_UNMAPPED) && !page_mapped(page)) ||
147 		    ((flags & TTRS_FULL) && mem_cgroup_swap_full(page)))
148 			ret = try_to_free_swap(page);
149 		unlock_page(page);
150 	}
151 	put_page(page);
152 	return ret;
153 }
154 
first_se(struct swap_info_struct * sis)155 static inline struct swap_extent *first_se(struct swap_info_struct *sis)
156 {
157 	struct rb_node *rb = rb_first(&sis->swap_extent_root);
158 	return rb_entry(rb, struct swap_extent, rb_node);
159 }
160 
next_se(struct swap_extent * se)161 static inline struct swap_extent *next_se(struct swap_extent *se)
162 {
163 	struct rb_node *rb = rb_next(&se->rb_node);
164 	return rb ? rb_entry(rb, struct swap_extent, rb_node) : NULL;
165 }
166 
167 /*
168  * swapon tell device that all the old swap contents can be discarded,
169  * to allow the swap device to optimize its wear-levelling.
170  */
discard_swap(struct swap_info_struct * si)171 static int discard_swap(struct swap_info_struct *si)
172 {
173 	struct swap_extent *se;
174 	sector_t start_block;
175 	sector_t nr_blocks;
176 	int err = 0;
177 
178 	/* Do not discard the swap header page! */
179 	se = first_se(si);
180 	start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
181 	nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
182 	if (nr_blocks) {
183 		err = blkdev_issue_discard(si->bdev, start_block,
184 				nr_blocks, GFP_KERNEL, 0);
185 		if (err)
186 			return err;
187 		cond_resched();
188 	}
189 
190 	for (se = next_se(se); se; se = next_se(se)) {
191 		start_block = se->start_block << (PAGE_SHIFT - 9);
192 		nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
193 
194 		err = blkdev_issue_discard(si->bdev, start_block,
195 				nr_blocks, GFP_KERNEL, 0);
196 		if (err)
197 			break;
198 
199 		cond_resched();
200 	}
201 	return err;		/* That will often be -EOPNOTSUPP */
202 }
203 
204 static struct swap_extent *
offset_to_swap_extent(struct swap_info_struct * sis,unsigned long offset)205 offset_to_swap_extent(struct swap_info_struct *sis, unsigned long offset)
206 {
207 	struct swap_extent *se;
208 	struct rb_node *rb;
209 
210 	rb = sis->swap_extent_root.rb_node;
211 	while (rb) {
212 		se = rb_entry(rb, struct swap_extent, rb_node);
213 		if (offset < se->start_page)
214 			rb = rb->rb_left;
215 		else if (offset >= se->start_page + se->nr_pages)
216 			rb = rb->rb_right;
217 		else
218 			return se;
219 	}
220 	/* It *must* be present */
221 	BUG();
222 }
223 
swap_page_sector(struct page * page)224 sector_t swap_page_sector(struct page *page)
225 {
226 	struct swap_info_struct *sis = page_swap_info(page);
227 	struct swap_extent *se;
228 	sector_t sector;
229 	pgoff_t offset;
230 
231 	offset = __page_file_index(page);
232 	se = offset_to_swap_extent(sis, offset);
233 	sector = se->start_block + (offset - se->start_page);
234 	return sector << (PAGE_SHIFT - 9);
235 }
236 
237 /*
238  * swap allocation tell device that a cluster of swap can now be discarded,
239  * to allow the swap device to optimize its wear-levelling.
240  */
discard_swap_cluster(struct swap_info_struct * si,pgoff_t start_page,pgoff_t nr_pages)241 static void discard_swap_cluster(struct swap_info_struct *si,
242 				 pgoff_t start_page, pgoff_t nr_pages)
243 {
244 	struct swap_extent *se = offset_to_swap_extent(si, start_page);
245 
246 	while (nr_pages) {
247 		pgoff_t offset = start_page - se->start_page;
248 		sector_t start_block = se->start_block + offset;
249 		sector_t nr_blocks = se->nr_pages - offset;
250 
251 		if (nr_blocks > nr_pages)
252 			nr_blocks = nr_pages;
253 		start_page += nr_blocks;
254 		nr_pages -= nr_blocks;
255 
256 		start_block <<= PAGE_SHIFT - 9;
257 		nr_blocks <<= PAGE_SHIFT - 9;
258 		if (blkdev_issue_discard(si->bdev, start_block,
259 					nr_blocks, GFP_NOIO, 0))
260 			break;
261 
262 		se = next_se(se);
263 	}
264 }
265 
266 #ifdef CONFIG_THP_SWAP
267 #define SWAPFILE_CLUSTER	HPAGE_PMD_NR
268 
269 #define swap_entry_size(size)	(size)
270 #else
271 #define SWAPFILE_CLUSTER	256
272 
273 /*
274  * Define swap_entry_size() as constant to let compiler to optimize
275  * out some code if !CONFIG_THP_SWAP
276  */
277 #define swap_entry_size(size)	1
278 #endif
279 #define LATENCY_LIMIT		256
280 
cluster_set_flag(struct swap_cluster_info * info,unsigned int flag)281 static inline void cluster_set_flag(struct swap_cluster_info *info,
282 	unsigned int flag)
283 {
284 	info->flags = flag;
285 }
286 
cluster_count(struct swap_cluster_info * info)287 static inline unsigned int cluster_count(struct swap_cluster_info *info)
288 {
289 	return info->data;
290 }
291 
cluster_set_count(struct swap_cluster_info * info,unsigned int c)292 static inline void cluster_set_count(struct swap_cluster_info *info,
293 				     unsigned int c)
294 {
295 	info->data = c;
296 }
297 
cluster_set_count_flag(struct swap_cluster_info * info,unsigned int c,unsigned int f)298 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
299 					 unsigned int c, unsigned int f)
300 {
301 	info->flags = f;
302 	info->data = c;
303 }
304 
cluster_next(struct swap_cluster_info * info)305 static inline unsigned int cluster_next(struct swap_cluster_info *info)
306 {
307 	return info->data;
308 }
309 
cluster_set_next(struct swap_cluster_info * info,unsigned int n)310 static inline void cluster_set_next(struct swap_cluster_info *info,
311 				    unsigned int n)
312 {
313 	info->data = n;
314 }
315 
cluster_set_next_flag(struct swap_cluster_info * info,unsigned int n,unsigned int f)316 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
317 					 unsigned int n, unsigned int f)
318 {
319 	info->flags = f;
320 	info->data = n;
321 }
322 
cluster_is_free(struct swap_cluster_info * info)323 static inline bool cluster_is_free(struct swap_cluster_info *info)
324 {
325 	return info->flags & CLUSTER_FLAG_FREE;
326 }
327 
cluster_is_null(struct swap_cluster_info * info)328 static inline bool cluster_is_null(struct swap_cluster_info *info)
329 {
330 	return info->flags & CLUSTER_FLAG_NEXT_NULL;
331 }
332 
cluster_set_null(struct swap_cluster_info * info)333 static inline void cluster_set_null(struct swap_cluster_info *info)
334 {
335 	info->flags = CLUSTER_FLAG_NEXT_NULL;
336 	info->data = 0;
337 }
338 
cluster_is_huge(struct swap_cluster_info * info)339 static inline bool cluster_is_huge(struct swap_cluster_info *info)
340 {
341 	if (IS_ENABLED(CONFIG_THP_SWAP))
342 		return info->flags & CLUSTER_FLAG_HUGE;
343 	return false;
344 }
345 
cluster_clear_huge(struct swap_cluster_info * info)346 static inline void cluster_clear_huge(struct swap_cluster_info *info)
347 {
348 	info->flags &= ~CLUSTER_FLAG_HUGE;
349 }
350 
lock_cluster(struct swap_info_struct * si,unsigned long offset)351 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
352 						     unsigned long offset)
353 {
354 	struct swap_cluster_info *ci;
355 
356 	ci = si->cluster_info;
357 	if (ci) {
358 		ci += offset / SWAPFILE_CLUSTER;
359 		spin_lock(&ci->lock);
360 	}
361 	return ci;
362 }
363 
unlock_cluster(struct swap_cluster_info * ci)364 static inline void unlock_cluster(struct swap_cluster_info *ci)
365 {
366 	if (ci)
367 		spin_unlock(&ci->lock);
368 }
369 
370 /*
371  * Determine the locking method in use for this device.  Return
372  * swap_cluster_info if SSD-style cluster-based locking is in place.
373  */
lock_cluster_or_swap_info(struct swap_info_struct * si,unsigned long offset)374 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
375 		struct swap_info_struct *si, unsigned long offset)
376 {
377 	struct swap_cluster_info *ci;
378 
379 	/* Try to use fine-grained SSD-style locking if available: */
380 	ci = lock_cluster(si, offset);
381 	/* Otherwise, fall back to traditional, coarse locking: */
382 	if (!ci)
383 		spin_lock(&si->lock);
384 
385 	return ci;
386 }
387 
unlock_cluster_or_swap_info(struct swap_info_struct * si,struct swap_cluster_info * ci)388 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
389 					       struct swap_cluster_info *ci)
390 {
391 	if (ci)
392 		unlock_cluster(ci);
393 	else
394 		spin_unlock(&si->lock);
395 }
396 
cluster_list_empty(struct swap_cluster_list * list)397 static inline bool cluster_list_empty(struct swap_cluster_list *list)
398 {
399 	return cluster_is_null(&list->head);
400 }
401 
cluster_list_first(struct swap_cluster_list * list)402 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
403 {
404 	return cluster_next(&list->head);
405 }
406 
cluster_list_init(struct swap_cluster_list * list)407 static void cluster_list_init(struct swap_cluster_list *list)
408 {
409 	cluster_set_null(&list->head);
410 	cluster_set_null(&list->tail);
411 }
412 
cluster_list_add_tail(struct swap_cluster_list * list,struct swap_cluster_info * ci,unsigned int idx)413 static void cluster_list_add_tail(struct swap_cluster_list *list,
414 				  struct swap_cluster_info *ci,
415 				  unsigned int idx)
416 {
417 	if (cluster_list_empty(list)) {
418 		cluster_set_next_flag(&list->head, idx, 0);
419 		cluster_set_next_flag(&list->tail, idx, 0);
420 	} else {
421 		struct swap_cluster_info *ci_tail;
422 		unsigned int tail = cluster_next(&list->tail);
423 
424 		/*
425 		 * Nested cluster lock, but both cluster locks are
426 		 * only acquired when we held swap_info_struct->lock
427 		 */
428 		ci_tail = ci + tail;
429 		spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
430 		cluster_set_next(ci_tail, idx);
431 		spin_unlock(&ci_tail->lock);
432 		cluster_set_next_flag(&list->tail, idx, 0);
433 	}
434 }
435 
cluster_list_del_first(struct swap_cluster_list * list,struct swap_cluster_info * ci)436 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
437 					   struct swap_cluster_info *ci)
438 {
439 	unsigned int idx;
440 
441 	idx = cluster_next(&list->head);
442 	if (cluster_next(&list->tail) == idx) {
443 		cluster_set_null(&list->head);
444 		cluster_set_null(&list->tail);
445 	} else
446 		cluster_set_next_flag(&list->head,
447 				      cluster_next(&ci[idx]), 0);
448 
449 	return idx;
450 }
451 
452 /* Add a cluster to discard list and schedule it to do discard */
swap_cluster_schedule_discard(struct swap_info_struct * si,unsigned int idx)453 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
454 		unsigned int idx)
455 {
456 	/*
457 	 * If scan_swap_map() can't find a free cluster, it will check
458 	 * si->swap_map directly. To make sure the discarding cluster isn't
459 	 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
460 	 * will be cleared after discard
461 	 */
462 	memset(si->swap_map + idx * SWAPFILE_CLUSTER,
463 			SWAP_MAP_BAD, SWAPFILE_CLUSTER);
464 
465 	cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
466 
467 	schedule_work(&si->discard_work);
468 }
469 
__free_cluster(struct swap_info_struct * si,unsigned long idx)470 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
471 {
472 	struct swap_cluster_info *ci = si->cluster_info;
473 
474 	cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
475 	cluster_list_add_tail(&si->free_clusters, ci, idx);
476 }
477 
478 /*
479  * Doing discard actually. After a cluster discard is finished, the cluster
480  * will be added to free cluster list. caller should hold si->lock.
481 */
swap_do_scheduled_discard(struct swap_info_struct * si)482 static void swap_do_scheduled_discard(struct swap_info_struct *si)
483 {
484 	struct swap_cluster_info *info, *ci;
485 	unsigned int idx;
486 
487 	info = si->cluster_info;
488 
489 	while (!cluster_list_empty(&si->discard_clusters)) {
490 		idx = cluster_list_del_first(&si->discard_clusters, info);
491 		spin_unlock(&si->lock);
492 
493 		discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
494 				SWAPFILE_CLUSTER);
495 
496 		spin_lock(&si->lock);
497 		ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
498 		__free_cluster(si, idx);
499 		memset(si->swap_map + idx * SWAPFILE_CLUSTER,
500 				0, SWAPFILE_CLUSTER);
501 		unlock_cluster(ci);
502 	}
503 }
504 
swap_discard_work(struct work_struct * work)505 static void swap_discard_work(struct work_struct *work)
506 {
507 	struct swap_info_struct *si;
508 
509 	si = container_of(work, struct swap_info_struct, discard_work);
510 
511 	spin_lock(&si->lock);
512 	swap_do_scheduled_discard(si);
513 	spin_unlock(&si->lock);
514 }
515 
alloc_cluster(struct swap_info_struct * si,unsigned long idx)516 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
517 {
518 	struct swap_cluster_info *ci = si->cluster_info;
519 
520 	VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
521 	cluster_list_del_first(&si->free_clusters, ci);
522 	cluster_set_count_flag(ci + idx, 0, 0);
523 }
524 
free_cluster(struct swap_info_struct * si,unsigned long idx)525 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
526 {
527 	struct swap_cluster_info *ci = si->cluster_info + idx;
528 
529 	VM_BUG_ON(cluster_count(ci) != 0);
530 	/*
531 	 * If the swap is discardable, prepare discard the cluster
532 	 * instead of free it immediately. The cluster will be freed
533 	 * after discard.
534 	 */
535 	if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
536 	    (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
537 		swap_cluster_schedule_discard(si, idx);
538 		return;
539 	}
540 
541 	__free_cluster(si, idx);
542 }
543 
544 /*
545  * The cluster corresponding to page_nr will be used. The cluster will be
546  * removed from free cluster list and its usage counter will be increased.
547  */
inc_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)548 static void inc_cluster_info_page(struct swap_info_struct *p,
549 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
550 {
551 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
552 
553 	if (!cluster_info)
554 		return;
555 	if (cluster_is_free(&cluster_info[idx]))
556 		alloc_cluster(p, idx);
557 
558 	VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
559 	cluster_set_count(&cluster_info[idx],
560 		cluster_count(&cluster_info[idx]) + 1);
561 }
562 
563 /*
564  * The cluster corresponding to page_nr decreases one usage. If the usage
565  * counter becomes 0, which means no page in the cluster is in using, we can
566  * optionally discard the cluster and add it to free cluster list.
567  */
dec_cluster_info_page(struct swap_info_struct * p,struct swap_cluster_info * cluster_info,unsigned long page_nr)568 static void dec_cluster_info_page(struct swap_info_struct *p,
569 	struct swap_cluster_info *cluster_info, unsigned long page_nr)
570 {
571 	unsigned long idx = page_nr / SWAPFILE_CLUSTER;
572 
573 	if (!cluster_info)
574 		return;
575 
576 	VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
577 	cluster_set_count(&cluster_info[idx],
578 		cluster_count(&cluster_info[idx]) - 1);
579 
580 	if (cluster_count(&cluster_info[idx]) == 0)
581 		free_cluster(p, idx);
582 }
583 
584 /*
585  * It's possible scan_swap_map() uses a free cluster in the middle of free
586  * cluster list. Avoiding such abuse to avoid list corruption.
587  */
588 static bool
scan_swap_map_ssd_cluster_conflict(struct swap_info_struct * si,unsigned long offset)589 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
590 	unsigned long offset)
591 {
592 	struct percpu_cluster *percpu_cluster;
593 	bool conflict;
594 
595 	offset /= SWAPFILE_CLUSTER;
596 	conflict = !cluster_list_empty(&si->free_clusters) &&
597 		offset != cluster_list_first(&si->free_clusters) &&
598 		cluster_is_free(&si->cluster_info[offset]);
599 
600 	if (!conflict)
601 		return false;
602 
603 	percpu_cluster = this_cpu_ptr(si->percpu_cluster);
604 	cluster_set_null(&percpu_cluster->index);
605 	return true;
606 }
607 
608 /*
609  * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
610  * might involve allocating a new cluster for current CPU too.
611  */
scan_swap_map_try_ssd_cluster(struct swap_info_struct * si,unsigned long * offset,unsigned long * scan_base)612 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
613 	unsigned long *offset, unsigned long *scan_base)
614 {
615 	struct percpu_cluster *cluster;
616 	struct swap_cluster_info *ci;
617 	unsigned long tmp, max;
618 
619 new_cluster:
620 	cluster = this_cpu_ptr(si->percpu_cluster);
621 	if (cluster_is_null(&cluster->index)) {
622 		if (!cluster_list_empty(&si->free_clusters)) {
623 			cluster->index = si->free_clusters.head;
624 			cluster->next = cluster_next(&cluster->index) *
625 					SWAPFILE_CLUSTER;
626 		} else if (!cluster_list_empty(&si->discard_clusters)) {
627 			/*
628 			 * we don't have free cluster but have some clusters in
629 			 * discarding, do discard now and reclaim them, then
630 			 * reread cluster_next_cpu since we dropped si->lock
631 			 */
632 			swap_do_scheduled_discard(si);
633 			*scan_base = this_cpu_read(*si->cluster_next_cpu);
634 			*offset = *scan_base;
635 			goto new_cluster;
636 		} else
637 			return false;
638 	}
639 
640 	/*
641 	 * Other CPUs can use our cluster if they can't find a free cluster,
642 	 * check if there is still free entry in the cluster
643 	 */
644 	tmp = cluster->next;
645 	max = min_t(unsigned long, si->max,
646 		    (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
647 	if (tmp < max) {
648 		ci = lock_cluster(si, tmp);
649 		while (tmp < max) {
650 			if (!si->swap_map[tmp])
651 				break;
652 			tmp++;
653 		}
654 		unlock_cluster(ci);
655 	}
656 	if (tmp >= max) {
657 		cluster_set_null(&cluster->index);
658 		goto new_cluster;
659 	}
660 	cluster->next = tmp + 1;
661 	*offset = tmp;
662 	*scan_base = tmp;
663 	return true;
664 }
665 
__del_from_avail_list(struct swap_info_struct * p)666 static void __del_from_avail_list(struct swap_info_struct *p)
667 {
668 	int nid;
669 
670 	assert_spin_locked(&p->lock);
671 	for_each_node(nid)
672 		plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
673 }
674 
del_from_avail_list(struct swap_info_struct * p)675 static void del_from_avail_list(struct swap_info_struct *p)
676 {
677 	spin_lock(&swap_avail_lock);
678 	__del_from_avail_list(p);
679 	spin_unlock(&swap_avail_lock);
680 }
681 
swap_range_alloc(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)682 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
683 			     unsigned int nr_entries)
684 {
685 	unsigned int end = offset + nr_entries - 1;
686 
687 	if (offset == si->lowest_bit)
688 		si->lowest_bit += nr_entries;
689 	if (end == si->highest_bit)
690 		WRITE_ONCE(si->highest_bit, si->highest_bit - nr_entries);
691 	si->inuse_pages += nr_entries;
692 	if (si->inuse_pages == si->pages) {
693 		si->lowest_bit = si->max;
694 		si->highest_bit = 0;
695 		del_from_avail_list(si);
696 	}
697 }
698 
add_to_avail_list(struct swap_info_struct * p)699 static void add_to_avail_list(struct swap_info_struct *p)
700 {
701 	int nid;
702 
703 	spin_lock(&swap_avail_lock);
704 	for_each_node(nid) {
705 		WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
706 		plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
707 	}
708 	spin_unlock(&swap_avail_lock);
709 }
710 
swap_range_free(struct swap_info_struct * si,unsigned long offset,unsigned int nr_entries)711 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
712 			    unsigned int nr_entries)
713 {
714 	unsigned long begin = offset;
715 	unsigned long end = offset + nr_entries - 1;
716 	void (*swap_slot_free_notify)(struct block_device *, unsigned long);
717 
718 	if (offset < si->lowest_bit)
719 		si->lowest_bit = offset;
720 	if (end > si->highest_bit) {
721 		bool was_full = !si->highest_bit;
722 
723 		WRITE_ONCE(si->highest_bit, end);
724 		if (was_full && (si->flags & SWP_WRITEOK))
725 			add_to_avail_list(si);
726 	}
727 	atomic_long_add(nr_entries, &nr_swap_pages);
728 	si->inuse_pages -= nr_entries;
729 	if (si->flags & SWP_BLKDEV)
730 		swap_slot_free_notify =
731 			si->bdev->bd_disk->fops->swap_slot_free_notify;
732 	else
733 		swap_slot_free_notify = NULL;
734 	while (offset <= end) {
735 		arch_swap_invalidate_page(si->type, offset);
736 		frontswap_invalidate_page(si->type, offset);
737 		if (swap_slot_free_notify)
738 			swap_slot_free_notify(si->bdev, offset);
739 		offset++;
740 	}
741 	clear_shadow_from_swap_cache(si->type, begin, end);
742 }
743 
set_cluster_next(struct swap_info_struct * si,unsigned long next)744 static void set_cluster_next(struct swap_info_struct *si, unsigned long next)
745 {
746 	unsigned long prev;
747 
748 	if (!(si->flags & SWP_SOLIDSTATE)) {
749 		si->cluster_next = next;
750 		return;
751 	}
752 
753 	prev = this_cpu_read(*si->cluster_next_cpu);
754 	/*
755 	 * Cross the swap address space size aligned trunk, choose
756 	 * another trunk randomly to avoid lock contention on swap
757 	 * address space if possible.
758 	 */
759 	if ((prev >> SWAP_ADDRESS_SPACE_SHIFT) !=
760 	    (next >> SWAP_ADDRESS_SPACE_SHIFT)) {
761 		/* No free swap slots available */
762 		if (si->highest_bit <= si->lowest_bit)
763 			return;
764 		next = si->lowest_bit +
765 			prandom_u32_max(si->highest_bit - si->lowest_bit + 1);
766 		next = ALIGN_DOWN(next, SWAP_ADDRESS_SPACE_PAGES);
767 		next = max_t(unsigned int, next, si->lowest_bit);
768 	}
769 	this_cpu_write(*si->cluster_next_cpu, next);
770 }
771 
scan_swap_map_slots(struct swap_info_struct * si,unsigned char usage,int nr,swp_entry_t slots[])772 static int scan_swap_map_slots(struct swap_info_struct *si,
773 			       unsigned char usage, int nr,
774 			       swp_entry_t slots[])
775 {
776 	struct swap_cluster_info *ci;
777 	unsigned long offset;
778 	unsigned long scan_base;
779 	unsigned long last_in_cluster = 0;
780 	int latency_ration = LATENCY_LIMIT;
781 	int n_ret = 0;
782 	bool scanned_many = false;
783 
784 	/*
785 	 * We try to cluster swap pages by allocating them sequentially
786 	 * in swap.  Once we've allocated SWAPFILE_CLUSTER pages this
787 	 * way, however, we resort to first-free allocation, starting
788 	 * a new cluster.  This prevents us from scattering swap pages
789 	 * all over the entire swap partition, so that we reduce
790 	 * overall disk seek times between swap pages.  -- sct
791 	 * But we do now try to find an empty cluster.  -Andrea
792 	 * And we let swap pages go all over an SSD partition.  Hugh
793 	 */
794 
795 	si->flags += SWP_SCANNING;
796 	/*
797 	 * Use percpu scan base for SSD to reduce lock contention on
798 	 * cluster and swap cache.  For HDD, sequential access is more
799 	 * important.
800 	 */
801 	if (si->flags & SWP_SOLIDSTATE)
802 		scan_base = this_cpu_read(*si->cluster_next_cpu);
803 	else
804 		scan_base = si->cluster_next;
805 	offset = scan_base;
806 
807 	/* SSD algorithm */
808 	if (si->cluster_info) {
809 		if (!scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
810 			goto scan;
811 	} else if (unlikely(!si->cluster_nr--)) {
812 		if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
813 			si->cluster_nr = SWAPFILE_CLUSTER - 1;
814 			goto checks;
815 		}
816 
817 		spin_unlock(&si->lock);
818 
819 		/*
820 		 * If seek is expensive, start searching for new cluster from
821 		 * start of partition, to minimize the span of allocated swap.
822 		 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
823 		 * case, just handled by scan_swap_map_try_ssd_cluster() above.
824 		 */
825 		scan_base = offset = si->lowest_bit;
826 		last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
827 
828 		/* Locate the first empty (unaligned) cluster */
829 		for (; last_in_cluster <= si->highest_bit; offset++) {
830 			if (si->swap_map[offset])
831 				last_in_cluster = offset + SWAPFILE_CLUSTER;
832 			else if (offset == last_in_cluster) {
833 				spin_lock(&si->lock);
834 				offset -= SWAPFILE_CLUSTER - 1;
835 				si->cluster_next = offset;
836 				si->cluster_nr = SWAPFILE_CLUSTER - 1;
837 				goto checks;
838 			}
839 			if (unlikely(--latency_ration < 0)) {
840 				cond_resched();
841 				latency_ration = LATENCY_LIMIT;
842 			}
843 		}
844 
845 		offset = scan_base;
846 		spin_lock(&si->lock);
847 		si->cluster_nr = SWAPFILE_CLUSTER - 1;
848 	}
849 
850 checks:
851 	if (si->cluster_info) {
852 		while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
853 		/* take a break if we already got some slots */
854 			if (n_ret)
855 				goto done;
856 			if (!scan_swap_map_try_ssd_cluster(si, &offset,
857 							&scan_base))
858 				goto scan;
859 		}
860 	}
861 	if (!(si->flags & SWP_WRITEOK))
862 		goto no_page;
863 	if (!si->highest_bit)
864 		goto no_page;
865 	if (offset > si->highest_bit)
866 		scan_base = offset = si->lowest_bit;
867 
868 	ci = lock_cluster(si, offset);
869 	/* reuse swap entry of cache-only swap if not busy. */
870 	if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
871 		int swap_was_freed;
872 		unlock_cluster(ci);
873 		spin_unlock(&si->lock);
874 		swap_was_freed = __try_to_reclaim_swap(si, offset, TTRS_ANYWAY);
875 		spin_lock(&si->lock);
876 		/* entry was freed successfully, try to use this again */
877 		if (swap_was_freed)
878 			goto checks;
879 		goto scan; /* check next one */
880 	}
881 
882 	if (si->swap_map[offset]) {
883 		unlock_cluster(ci);
884 		if (!n_ret)
885 			goto scan;
886 		else
887 			goto done;
888 	}
889 	WRITE_ONCE(si->swap_map[offset], usage);
890 	inc_cluster_info_page(si, si->cluster_info, offset);
891 	unlock_cluster(ci);
892 
893 	swap_range_alloc(si, offset, 1);
894 	slots[n_ret++] = swp_entry(si->type, offset);
895 
896 	/* got enough slots or reach max slots? */
897 	if ((n_ret == nr) || (offset >= si->highest_bit))
898 		goto done;
899 
900 	/* search for next available slot */
901 
902 	/* time to take a break? */
903 	if (unlikely(--latency_ration < 0)) {
904 		if (n_ret)
905 			goto done;
906 		spin_unlock(&si->lock);
907 		cond_resched();
908 		spin_lock(&si->lock);
909 		latency_ration = LATENCY_LIMIT;
910 	}
911 
912 	/* try to get more slots in cluster */
913 	if (si->cluster_info) {
914 		if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
915 			goto checks;
916 	} else if (si->cluster_nr && !si->swap_map[++offset]) {
917 		/* non-ssd case, still more slots in cluster? */
918 		--si->cluster_nr;
919 		goto checks;
920 	}
921 
922 	/*
923 	 * Even if there's no free clusters available (fragmented),
924 	 * try to scan a little more quickly with lock held unless we
925 	 * have scanned too many slots already.
926 	 */
927 	if (!scanned_many) {
928 		unsigned long scan_limit;
929 
930 		if (offset < scan_base)
931 			scan_limit = scan_base;
932 		else
933 			scan_limit = si->highest_bit;
934 		for (; offset <= scan_limit && --latency_ration > 0;
935 		     offset++) {
936 			if (!si->swap_map[offset])
937 				goto checks;
938 		}
939 	}
940 
941 done:
942 	set_cluster_next(si, offset + 1);
943 	si->flags -= SWP_SCANNING;
944 	return n_ret;
945 
946 scan:
947 	spin_unlock(&si->lock);
948 	while (++offset <= READ_ONCE(si->highest_bit)) {
949 		if (data_race(!si->swap_map[offset])) {
950 			spin_lock(&si->lock);
951 			goto checks;
952 		}
953 		if (vm_swap_full() &&
954 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
955 			spin_lock(&si->lock);
956 			goto checks;
957 		}
958 		if (unlikely(--latency_ration < 0)) {
959 			cond_resched();
960 			latency_ration = LATENCY_LIMIT;
961 			scanned_many = true;
962 		}
963 	}
964 	offset = si->lowest_bit;
965 	while (offset < scan_base) {
966 		if (data_race(!si->swap_map[offset])) {
967 			spin_lock(&si->lock);
968 			goto checks;
969 		}
970 		if (vm_swap_full() &&
971 		    READ_ONCE(si->swap_map[offset]) == SWAP_HAS_CACHE) {
972 			spin_lock(&si->lock);
973 			goto checks;
974 		}
975 		if (unlikely(--latency_ration < 0)) {
976 			cond_resched();
977 			latency_ration = LATENCY_LIMIT;
978 			scanned_many = true;
979 		}
980 		offset++;
981 	}
982 	spin_lock(&si->lock);
983 
984 no_page:
985 	si->flags -= SWP_SCANNING;
986 	return n_ret;
987 }
988 
swap_alloc_cluster(struct swap_info_struct * si,swp_entry_t * slot)989 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
990 {
991 	unsigned long idx;
992 	struct swap_cluster_info *ci;
993 	unsigned long offset, i;
994 	unsigned char *map;
995 
996 	/*
997 	 * Should not even be attempting cluster allocations when huge
998 	 * page swap is disabled.  Warn and fail the allocation.
999 	 */
1000 	if (!IS_ENABLED(CONFIG_THP_SWAP)) {
1001 		VM_WARN_ON_ONCE(1);
1002 		return 0;
1003 	}
1004 
1005 	if (cluster_list_empty(&si->free_clusters))
1006 		return 0;
1007 
1008 	idx = cluster_list_first(&si->free_clusters);
1009 	offset = idx * SWAPFILE_CLUSTER;
1010 	ci = lock_cluster(si, offset);
1011 	alloc_cluster(si, idx);
1012 	cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
1013 
1014 	map = si->swap_map + offset;
1015 	for (i = 0; i < SWAPFILE_CLUSTER; i++)
1016 		map[i] = SWAP_HAS_CACHE;
1017 	unlock_cluster(ci);
1018 	swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
1019 	*slot = swp_entry(si->type, offset);
1020 
1021 	return 1;
1022 }
1023 
swap_free_cluster(struct swap_info_struct * si,unsigned long idx)1024 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
1025 {
1026 	unsigned long offset = idx * SWAPFILE_CLUSTER;
1027 	struct swap_cluster_info *ci;
1028 
1029 	ci = lock_cluster(si, offset);
1030 	memset(si->swap_map + offset, 0, SWAPFILE_CLUSTER);
1031 	cluster_set_count_flag(ci, 0, 0);
1032 	free_cluster(si, idx);
1033 	unlock_cluster(ci);
1034 	swap_range_free(si, offset, SWAPFILE_CLUSTER);
1035 }
1036 
scan_swap_map(struct swap_info_struct * si,unsigned char usage)1037 static unsigned long scan_swap_map(struct swap_info_struct *si,
1038 				   unsigned char usage)
1039 {
1040 	swp_entry_t entry;
1041 	int n_ret;
1042 
1043 	n_ret = scan_swap_map_slots(si, usage, 1, &entry);
1044 
1045 	if (n_ret)
1046 		return swp_offset(entry);
1047 	else
1048 		return 0;
1049 
1050 }
1051 
get_swap_pages(int n_goal,swp_entry_t swp_entries[],int entry_size)1052 int get_swap_pages(int n_goal, swp_entry_t swp_entries[], int entry_size)
1053 {
1054 	unsigned long size = swap_entry_size(entry_size);
1055 	struct swap_info_struct *si, *next;
1056 	long avail_pgs;
1057 	int n_ret = 0;
1058 	int node;
1059 
1060 	/* Only single cluster request supported */
1061 	WARN_ON_ONCE(n_goal > 1 && size == SWAPFILE_CLUSTER);
1062 
1063 	spin_lock(&swap_avail_lock);
1064 
1065 	avail_pgs = atomic_long_read(&nr_swap_pages) / size;
1066 	if (avail_pgs <= 0) {
1067 		spin_unlock(&swap_avail_lock);
1068 		goto noswap;
1069 	}
1070 
1071 	n_goal = min3((long)n_goal, (long)SWAP_BATCH, avail_pgs);
1072 
1073 	atomic_long_sub(n_goal * size, &nr_swap_pages);
1074 
1075 start_over:
1076 	node = numa_node_id();
1077 	plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
1078 		/* requeue si to after same-priority siblings */
1079 		plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
1080 		spin_unlock(&swap_avail_lock);
1081 		spin_lock(&si->lock);
1082 		if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
1083 			spin_lock(&swap_avail_lock);
1084 			if (plist_node_empty(&si->avail_lists[node])) {
1085 				spin_unlock(&si->lock);
1086 				goto nextsi;
1087 			}
1088 			WARN(!si->highest_bit,
1089 			     "swap_info %d in list but !highest_bit\n",
1090 			     si->type);
1091 			WARN(!(si->flags & SWP_WRITEOK),
1092 			     "swap_info %d in list but !SWP_WRITEOK\n",
1093 			     si->type);
1094 			__del_from_avail_list(si);
1095 			spin_unlock(&si->lock);
1096 			goto nextsi;
1097 		}
1098 		if (size == SWAPFILE_CLUSTER) {
1099 			if (si->flags & SWP_BLKDEV)
1100 				n_ret = swap_alloc_cluster(si, swp_entries);
1101 		} else
1102 			n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
1103 						    n_goal, swp_entries);
1104 		spin_unlock(&si->lock);
1105 		if (n_ret || size == SWAPFILE_CLUSTER)
1106 			goto check_out;
1107 		pr_debug("scan_swap_map of si %d failed to find offset\n",
1108 			si->type);
1109 		cond_resched();
1110 
1111 		spin_lock(&swap_avail_lock);
1112 nextsi:
1113 		/*
1114 		 * if we got here, it's likely that si was almost full before,
1115 		 * and since scan_swap_map() can drop the si->lock, multiple
1116 		 * callers probably all tried to get a page from the same si
1117 		 * and it filled up before we could get one; or, the si filled
1118 		 * up between us dropping swap_avail_lock and taking si->lock.
1119 		 * Since we dropped the swap_avail_lock, the swap_avail_head
1120 		 * list may have been modified; so if next is still in the
1121 		 * swap_avail_head list then try it, otherwise start over
1122 		 * if we have not gotten any slots.
1123 		 */
1124 		if (plist_node_empty(&next->avail_lists[node]))
1125 			goto start_over;
1126 	}
1127 
1128 	spin_unlock(&swap_avail_lock);
1129 
1130 check_out:
1131 	if (n_ret < n_goal)
1132 		atomic_long_add((long)(n_goal - n_ret) * size,
1133 				&nr_swap_pages);
1134 noswap:
1135 	return n_ret;
1136 }
1137 
1138 /* The only caller of this function is now suspend routine */
get_swap_page_of_type(int type)1139 swp_entry_t get_swap_page_of_type(int type)
1140 {
1141 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1142 	pgoff_t offset;
1143 
1144 	if (!si)
1145 		goto fail;
1146 
1147 	spin_lock(&si->lock);
1148 	if (si->flags & SWP_WRITEOK) {
1149 		/* This is called for allocating swap entry, not cache */
1150 		offset = scan_swap_map(si, 1);
1151 		if (offset) {
1152 			atomic_long_dec(&nr_swap_pages);
1153 			spin_unlock(&si->lock);
1154 			return swp_entry(type, offset);
1155 		}
1156 	}
1157 	spin_unlock(&si->lock);
1158 fail:
1159 	return (swp_entry_t) {0};
1160 }
1161 
__swap_info_get(swp_entry_t entry)1162 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1163 {
1164 	struct swap_info_struct *p;
1165 	unsigned long offset;
1166 
1167 	if (!entry.val)
1168 		goto out;
1169 	p = swp_swap_info(entry);
1170 	if (!p)
1171 		goto bad_nofile;
1172 	if (data_race(!(p->flags & SWP_USED)))
1173 		goto bad_device;
1174 	offset = swp_offset(entry);
1175 	if (offset >= p->max)
1176 		goto bad_offset;
1177 	return p;
1178 
1179 bad_offset:
1180 	pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1181 	goto out;
1182 bad_device:
1183 	pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1184 	goto out;
1185 bad_nofile:
1186 	pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1187 out:
1188 	return NULL;
1189 }
1190 
_swap_info_get(swp_entry_t entry)1191 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1192 {
1193 	struct swap_info_struct *p;
1194 
1195 	p = __swap_info_get(entry);
1196 	if (!p)
1197 		goto out;
1198 	if (data_race(!p->swap_map[swp_offset(entry)]))
1199 		goto bad_free;
1200 	return p;
1201 
1202 bad_free:
1203 	pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1204 out:
1205 	return NULL;
1206 }
1207 
swap_info_get(swp_entry_t entry)1208 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1209 {
1210 	struct swap_info_struct *p;
1211 
1212 	p = _swap_info_get(entry);
1213 	if (p)
1214 		spin_lock(&p->lock);
1215 	return p;
1216 }
1217 
swap_info_get_cont(swp_entry_t entry,struct swap_info_struct * q)1218 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1219 					struct swap_info_struct *q)
1220 {
1221 	struct swap_info_struct *p;
1222 
1223 	p = _swap_info_get(entry);
1224 
1225 	if (p != q) {
1226 		if (q != NULL)
1227 			spin_unlock(&q->lock);
1228 		if (p != NULL)
1229 			spin_lock(&p->lock);
1230 	}
1231 	return p;
1232 }
1233 
__swap_entry_free_locked(struct swap_info_struct * p,unsigned long offset,unsigned char usage)1234 static unsigned char __swap_entry_free_locked(struct swap_info_struct *p,
1235 					      unsigned long offset,
1236 					      unsigned char usage)
1237 {
1238 	unsigned char count;
1239 	unsigned char has_cache;
1240 
1241 	count = p->swap_map[offset];
1242 
1243 	has_cache = count & SWAP_HAS_CACHE;
1244 	count &= ~SWAP_HAS_CACHE;
1245 
1246 	if (usage == SWAP_HAS_CACHE) {
1247 		VM_BUG_ON(!has_cache);
1248 		has_cache = 0;
1249 	} else if (count == SWAP_MAP_SHMEM) {
1250 		/*
1251 		 * Or we could insist on shmem.c using a special
1252 		 * swap_shmem_free() and free_shmem_swap_and_cache()...
1253 		 */
1254 		count = 0;
1255 	} else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1256 		if (count == COUNT_CONTINUED) {
1257 			if (swap_count_continued(p, offset, count))
1258 				count = SWAP_MAP_MAX | COUNT_CONTINUED;
1259 			else
1260 				count = SWAP_MAP_MAX;
1261 		} else
1262 			count--;
1263 	}
1264 
1265 	usage = count | has_cache;
1266 	if (usage)
1267 		WRITE_ONCE(p->swap_map[offset], usage);
1268 	else
1269 		WRITE_ONCE(p->swap_map[offset], SWAP_HAS_CACHE);
1270 
1271 	return usage;
1272 }
1273 
1274 /*
1275  * Check whether swap entry is valid in the swap device.  If so,
1276  * return pointer to swap_info_struct, and keep the swap entry valid
1277  * via preventing the swap device from being swapoff, until
1278  * put_swap_device() is called.  Otherwise return NULL.
1279  *
1280  * The entirety of the RCU read critical section must come before the
1281  * return from or after the call to synchronize_rcu() in
1282  * enable_swap_info() or swapoff().  So if "si->flags & SWP_VALID" is
1283  * true, the si->map, si->cluster_info, etc. must be valid in the
1284  * critical section.
1285  *
1286  * Notice that swapoff or swapoff+swapon can still happen before the
1287  * rcu_read_lock() in get_swap_device() or after the rcu_read_unlock()
1288  * in put_swap_device() if there isn't any other way to prevent
1289  * swapoff, such as page lock, page table lock, etc.  The caller must
1290  * be prepared for that.  For example, the following situation is
1291  * possible.
1292  *
1293  *   CPU1				CPU2
1294  *   do_swap_page()
1295  *     ...				swapoff+swapon
1296  *     __read_swap_cache_async()
1297  *       swapcache_prepare()
1298  *         __swap_duplicate()
1299  *           // check swap_map
1300  *     // verify PTE not changed
1301  *
1302  * In __swap_duplicate(), the swap_map need to be checked before
1303  * changing partly because the specified swap entry may be for another
1304  * swap device which has been swapoff.  And in do_swap_page(), after
1305  * the page is read from the swap device, the PTE is verified not
1306  * changed with the page table locked to check whether the swap device
1307  * has been swapoff or swapoff+swapon.
1308  */
get_swap_device(swp_entry_t entry)1309 struct swap_info_struct *get_swap_device(swp_entry_t entry)
1310 {
1311 	struct swap_info_struct *si;
1312 	unsigned long offset;
1313 
1314 	if (!entry.val)
1315 		goto out;
1316 	si = swp_swap_info(entry);
1317 	if (!si)
1318 		goto bad_nofile;
1319 
1320 	rcu_read_lock();
1321 	if (data_race(!(si->flags & SWP_VALID)))
1322 		goto unlock_out;
1323 	offset = swp_offset(entry);
1324 	if (offset >= si->max)
1325 		goto unlock_out;
1326 
1327 	return si;
1328 bad_nofile:
1329 	pr_err("%s: %s%08lx\n", __func__, Bad_file, entry.val);
1330 out:
1331 	return NULL;
1332 unlock_out:
1333 	rcu_read_unlock();
1334 	return NULL;
1335 }
1336 
__swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1337 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1338 				       swp_entry_t entry)
1339 {
1340 	struct swap_cluster_info *ci;
1341 	unsigned long offset = swp_offset(entry);
1342 	unsigned char usage;
1343 
1344 	ci = lock_cluster_or_swap_info(p, offset);
1345 	usage = __swap_entry_free_locked(p, offset, 1);
1346 	unlock_cluster_or_swap_info(p, ci);
1347 	if (!usage)
1348 		free_swap_slot(entry);
1349 
1350 	return usage;
1351 }
1352 
swap_entry_free(struct swap_info_struct * p,swp_entry_t entry)1353 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1354 {
1355 	struct swap_cluster_info *ci;
1356 	unsigned long offset = swp_offset(entry);
1357 	unsigned char count;
1358 
1359 	ci = lock_cluster(p, offset);
1360 	count = p->swap_map[offset];
1361 	VM_BUG_ON(count != SWAP_HAS_CACHE);
1362 	p->swap_map[offset] = 0;
1363 	dec_cluster_info_page(p, p->cluster_info, offset);
1364 	unlock_cluster(ci);
1365 
1366 	mem_cgroup_uncharge_swap(entry, 1);
1367 	swap_range_free(p, offset, 1);
1368 }
1369 
1370 /*
1371  * Caller has made sure that the swap device corresponding to entry
1372  * is still around or has not been recycled.
1373  */
swap_free(swp_entry_t entry)1374 void swap_free(swp_entry_t entry)
1375 {
1376 	struct swap_info_struct *p;
1377 
1378 	p = _swap_info_get(entry);
1379 	if (p)
1380 		__swap_entry_free(p, entry);
1381 }
1382 
1383 /*
1384  * Called after dropping swapcache to decrease refcnt to swap entries.
1385  */
put_swap_page(struct page * page,swp_entry_t entry)1386 void put_swap_page(struct page *page, swp_entry_t entry)
1387 {
1388 	unsigned long offset = swp_offset(entry);
1389 	unsigned long idx = offset / SWAPFILE_CLUSTER;
1390 	struct swap_cluster_info *ci;
1391 	struct swap_info_struct *si;
1392 	unsigned char *map;
1393 	unsigned int i, free_entries = 0;
1394 	unsigned char val;
1395 	int size = swap_entry_size(thp_nr_pages(page));
1396 
1397 	si = _swap_info_get(entry);
1398 	if (!si)
1399 		return;
1400 
1401 	ci = lock_cluster_or_swap_info(si, offset);
1402 	if (size == SWAPFILE_CLUSTER) {
1403 		VM_BUG_ON(!cluster_is_huge(ci));
1404 		map = si->swap_map + offset;
1405 		for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1406 			val = map[i];
1407 			VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1408 			if (val == SWAP_HAS_CACHE)
1409 				free_entries++;
1410 		}
1411 		cluster_clear_huge(ci);
1412 		if (free_entries == SWAPFILE_CLUSTER) {
1413 			unlock_cluster_or_swap_info(si, ci);
1414 			spin_lock(&si->lock);
1415 			mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1416 			swap_free_cluster(si, idx);
1417 			spin_unlock(&si->lock);
1418 			return;
1419 		}
1420 	}
1421 	for (i = 0; i < size; i++, entry.val++) {
1422 		if (!__swap_entry_free_locked(si, offset + i, SWAP_HAS_CACHE)) {
1423 			unlock_cluster_or_swap_info(si, ci);
1424 			free_swap_slot(entry);
1425 			if (i == size - 1)
1426 				return;
1427 			lock_cluster_or_swap_info(si, offset);
1428 		}
1429 	}
1430 	unlock_cluster_or_swap_info(si, ci);
1431 }
1432 
1433 #ifdef CONFIG_THP_SWAP
split_swap_cluster(swp_entry_t entry)1434 int split_swap_cluster(swp_entry_t entry)
1435 {
1436 	struct swap_info_struct *si;
1437 	struct swap_cluster_info *ci;
1438 	unsigned long offset = swp_offset(entry);
1439 
1440 	si = _swap_info_get(entry);
1441 	if (!si)
1442 		return -EBUSY;
1443 	ci = lock_cluster(si, offset);
1444 	cluster_clear_huge(ci);
1445 	unlock_cluster(ci);
1446 	return 0;
1447 }
1448 #endif
1449 
swp_entry_cmp(const void * ent1,const void * ent2)1450 static int swp_entry_cmp(const void *ent1, const void *ent2)
1451 {
1452 	const swp_entry_t *e1 = ent1, *e2 = ent2;
1453 
1454 	return (int)swp_type(*e1) - (int)swp_type(*e2);
1455 }
1456 
swapcache_free_entries(swp_entry_t * entries,int n)1457 void swapcache_free_entries(swp_entry_t *entries, int n)
1458 {
1459 	struct swap_info_struct *p, *prev;
1460 	int i;
1461 
1462 	if (n <= 0)
1463 		return;
1464 
1465 	prev = NULL;
1466 	p = NULL;
1467 
1468 	/*
1469 	 * Sort swap entries by swap device, so each lock is only taken once.
1470 	 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1471 	 * so low that it isn't necessary to optimize further.
1472 	 */
1473 	if (nr_swapfiles > 1)
1474 		sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1475 	for (i = 0; i < n; ++i) {
1476 		p = swap_info_get_cont(entries[i], prev);
1477 		if (p)
1478 			swap_entry_free(p, entries[i]);
1479 		prev = p;
1480 	}
1481 	if (p)
1482 		spin_unlock(&p->lock);
1483 }
1484 
1485 /*
1486  * How many references to page are currently swapped out?
1487  * This does not give an exact answer when swap count is continued,
1488  * but does include the high COUNT_CONTINUED flag to allow for that.
1489  */
page_swapcount(struct page * page)1490 int page_swapcount(struct page *page)
1491 {
1492 	int count = 0;
1493 	struct swap_info_struct *p;
1494 	struct swap_cluster_info *ci;
1495 	swp_entry_t entry;
1496 	unsigned long offset;
1497 
1498 	entry.val = page_private(page);
1499 	p = _swap_info_get(entry);
1500 	if (p) {
1501 		offset = swp_offset(entry);
1502 		ci = lock_cluster_or_swap_info(p, offset);
1503 		count = swap_count(p->swap_map[offset]);
1504 		unlock_cluster_or_swap_info(p, ci);
1505 	}
1506 	return count;
1507 }
1508 
__swap_count(swp_entry_t entry)1509 int __swap_count(swp_entry_t entry)
1510 {
1511 	struct swap_info_struct *si;
1512 	pgoff_t offset = swp_offset(entry);
1513 	int count = 0;
1514 
1515 	si = get_swap_device(entry);
1516 	if (si) {
1517 		count = swap_count(si->swap_map[offset]);
1518 		put_swap_device(si);
1519 	}
1520 	return count;
1521 }
1522 
swap_swapcount(struct swap_info_struct * si,swp_entry_t entry)1523 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1524 {
1525 	int count = 0;
1526 	pgoff_t offset = swp_offset(entry);
1527 	struct swap_cluster_info *ci;
1528 
1529 	ci = lock_cluster_or_swap_info(si, offset);
1530 	count = swap_count(si->swap_map[offset]);
1531 	unlock_cluster_or_swap_info(si, ci);
1532 	return count;
1533 }
1534 
1535 /*
1536  * How many references to @entry are currently swapped out?
1537  * This does not give an exact answer when swap count is continued,
1538  * but does include the high COUNT_CONTINUED flag to allow for that.
1539  */
__swp_swapcount(swp_entry_t entry)1540 int __swp_swapcount(swp_entry_t entry)
1541 {
1542 	int count = 0;
1543 	struct swap_info_struct *si;
1544 
1545 	si = get_swap_device(entry);
1546 	if (si) {
1547 		count = swap_swapcount(si, entry);
1548 		put_swap_device(si);
1549 	}
1550 	return count;
1551 }
1552 
1553 /*
1554  * How many references to @entry are currently swapped out?
1555  * This considers COUNT_CONTINUED so it returns exact answer.
1556  */
swp_swapcount(swp_entry_t entry)1557 int swp_swapcount(swp_entry_t entry)
1558 {
1559 	int count, tmp_count, n;
1560 	struct swap_info_struct *p;
1561 	struct swap_cluster_info *ci;
1562 	struct page *page;
1563 	pgoff_t offset;
1564 	unsigned char *map;
1565 
1566 	p = _swap_info_get(entry);
1567 	if (!p)
1568 		return 0;
1569 
1570 	offset = swp_offset(entry);
1571 
1572 	ci = lock_cluster_or_swap_info(p, offset);
1573 
1574 	count = swap_count(p->swap_map[offset]);
1575 	if (!(count & COUNT_CONTINUED))
1576 		goto out;
1577 
1578 	count &= ~COUNT_CONTINUED;
1579 	n = SWAP_MAP_MAX + 1;
1580 
1581 	page = vmalloc_to_page(p->swap_map + offset);
1582 	offset &= ~PAGE_MASK;
1583 	VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1584 
1585 	do {
1586 		page = list_next_entry(page, lru);
1587 		map = kmap_atomic(page);
1588 		tmp_count = map[offset];
1589 		kunmap_atomic(map);
1590 
1591 		count += (tmp_count & ~COUNT_CONTINUED) * n;
1592 		n *= (SWAP_CONT_MAX + 1);
1593 	} while (tmp_count & COUNT_CONTINUED);
1594 out:
1595 	unlock_cluster_or_swap_info(p, ci);
1596 	return count;
1597 }
1598 
swap_page_trans_huge_swapped(struct swap_info_struct * si,swp_entry_t entry)1599 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1600 					 swp_entry_t entry)
1601 {
1602 	struct swap_cluster_info *ci;
1603 	unsigned char *map = si->swap_map;
1604 	unsigned long roffset = swp_offset(entry);
1605 	unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1606 	int i;
1607 	bool ret = false;
1608 
1609 	ci = lock_cluster_or_swap_info(si, offset);
1610 	if (!ci || !cluster_is_huge(ci)) {
1611 		if (swap_count(map[roffset]))
1612 			ret = true;
1613 		goto unlock_out;
1614 	}
1615 	for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1616 		if (swap_count(map[offset + i])) {
1617 			ret = true;
1618 			break;
1619 		}
1620 	}
1621 unlock_out:
1622 	unlock_cluster_or_swap_info(si, ci);
1623 	return ret;
1624 }
1625 
page_swapped(struct page * page)1626 static bool page_swapped(struct page *page)
1627 {
1628 	swp_entry_t entry;
1629 	struct swap_info_struct *si;
1630 
1631 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page)))
1632 		return page_swapcount(page) != 0;
1633 
1634 	page = compound_head(page);
1635 	entry.val = page_private(page);
1636 	si = _swap_info_get(entry);
1637 	if (si)
1638 		return swap_page_trans_huge_swapped(si, entry);
1639 	return false;
1640 }
1641 
page_trans_huge_map_swapcount(struct page * page,int * total_mapcount,int * total_swapcount)1642 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1643 					 int *total_swapcount)
1644 {
1645 	int i, map_swapcount, _total_mapcount, _total_swapcount;
1646 	unsigned long offset = 0;
1647 	struct swap_info_struct *si;
1648 	struct swap_cluster_info *ci = NULL;
1649 	unsigned char *map = NULL;
1650 	int mapcount, swapcount = 0;
1651 
1652 	/* hugetlbfs shouldn't call it */
1653 	VM_BUG_ON_PAGE(PageHuge(page), page);
1654 
1655 	if (!IS_ENABLED(CONFIG_THP_SWAP) || likely(!PageTransCompound(page))) {
1656 		mapcount = page_trans_huge_mapcount(page, total_mapcount);
1657 		if (PageSwapCache(page))
1658 			swapcount = page_swapcount(page);
1659 		if (total_swapcount)
1660 			*total_swapcount = swapcount;
1661 		return mapcount + swapcount;
1662 	}
1663 
1664 	page = compound_head(page);
1665 
1666 	_total_mapcount = _total_swapcount = map_swapcount = 0;
1667 	if (PageSwapCache(page)) {
1668 		swp_entry_t entry;
1669 
1670 		entry.val = page_private(page);
1671 		si = _swap_info_get(entry);
1672 		if (si) {
1673 			map = si->swap_map;
1674 			offset = swp_offset(entry);
1675 		}
1676 	}
1677 	if (map)
1678 		ci = lock_cluster(si, offset);
1679 	for (i = 0; i < HPAGE_PMD_NR; i++) {
1680 		mapcount = atomic_read(&page[i]._mapcount) + 1;
1681 		_total_mapcount += mapcount;
1682 		if (map) {
1683 			swapcount = swap_count(map[offset + i]);
1684 			_total_swapcount += swapcount;
1685 		}
1686 		map_swapcount = max(map_swapcount, mapcount + swapcount);
1687 	}
1688 	unlock_cluster(ci);
1689 	if (PageDoubleMap(page)) {
1690 		map_swapcount -= 1;
1691 		_total_mapcount -= HPAGE_PMD_NR;
1692 	}
1693 	mapcount = compound_mapcount(page);
1694 	map_swapcount += mapcount;
1695 	_total_mapcount += mapcount;
1696 	if (total_mapcount)
1697 		*total_mapcount = _total_mapcount;
1698 	if (total_swapcount)
1699 		*total_swapcount = _total_swapcount;
1700 
1701 	return map_swapcount;
1702 }
1703 
1704 /*
1705  * We can write to an anon page without COW if there are no other references
1706  * to it.  And as a side-effect, free up its swap: because the old content
1707  * on disk will never be read, and seeking back there to write new content
1708  * later would only waste time away from clustering.
1709  *
1710  * NOTE: total_map_swapcount should not be relied upon by the caller if
1711  * reuse_swap_page() returns false, but it may be always overwritten
1712  * (see the other implementation for CONFIG_SWAP=n).
1713  */
reuse_swap_page(struct page * page,int * total_map_swapcount)1714 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1715 {
1716 	int count, total_mapcount, total_swapcount;
1717 
1718 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1719 	if (unlikely(PageKsm(page)))
1720 		return false;
1721 	count = page_trans_huge_map_swapcount(page, &total_mapcount,
1722 					      &total_swapcount);
1723 	if (total_map_swapcount)
1724 		*total_map_swapcount = total_mapcount + total_swapcount;
1725 	if (count == 1 && PageSwapCache(page) &&
1726 	    (likely(!PageTransCompound(page)) ||
1727 	     /* The remaining swap count will be freed soon */
1728 	     total_swapcount == page_swapcount(page))) {
1729 		if (!PageWriteback(page)) {
1730 			page = compound_head(page);
1731 			delete_from_swap_cache(page);
1732 			SetPageDirty(page);
1733 		} else {
1734 			swp_entry_t entry;
1735 			struct swap_info_struct *p;
1736 
1737 			entry.val = page_private(page);
1738 			p = swap_info_get(entry);
1739 			if (p->flags & SWP_STABLE_WRITES) {
1740 				spin_unlock(&p->lock);
1741 				return false;
1742 			}
1743 			spin_unlock(&p->lock);
1744 		}
1745 	}
1746 
1747 	return count <= 1;
1748 }
1749 
1750 /*
1751  * If swap is getting full, or if there are no more mappings of this page,
1752  * then try_to_free_swap is called to free its swap space.
1753  */
try_to_free_swap(struct page * page)1754 int try_to_free_swap(struct page *page)
1755 {
1756 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1757 
1758 	if (!PageSwapCache(page))
1759 		return 0;
1760 	if (PageWriteback(page))
1761 		return 0;
1762 	if (page_swapped(page))
1763 		return 0;
1764 
1765 	/*
1766 	 * Once hibernation has begun to create its image of memory,
1767 	 * there's a danger that one of the calls to try_to_free_swap()
1768 	 * - most probably a call from __try_to_reclaim_swap() while
1769 	 * hibernation is allocating its own swap pages for the image,
1770 	 * but conceivably even a call from memory reclaim - will free
1771 	 * the swap from a page which has already been recorded in the
1772 	 * image as a clean swapcache page, and then reuse its swap for
1773 	 * another page of the image.  On waking from hibernation, the
1774 	 * original page might be freed under memory pressure, then
1775 	 * later read back in from swap, now with the wrong data.
1776 	 *
1777 	 * Hibernation suspends storage while it is writing the image
1778 	 * to disk so check that here.
1779 	 */
1780 	if (pm_suspended_storage())
1781 		return 0;
1782 
1783 	page = compound_head(page);
1784 	delete_from_swap_cache(page);
1785 	SetPageDirty(page);
1786 	return 1;
1787 }
1788 
1789 /*
1790  * Free the swap entry like above, but also try to
1791  * free the page cache entry if it is the last user.
1792  */
free_swap_and_cache(swp_entry_t entry)1793 int free_swap_and_cache(swp_entry_t entry)
1794 {
1795 	struct swap_info_struct *p;
1796 	unsigned char count;
1797 
1798 	if (non_swap_entry(entry))
1799 		return 1;
1800 
1801 	p = _swap_info_get(entry);
1802 	if (p) {
1803 		count = __swap_entry_free(p, entry);
1804 		if (count == SWAP_HAS_CACHE &&
1805 		    !swap_page_trans_huge_swapped(p, entry))
1806 			__try_to_reclaim_swap(p, swp_offset(entry),
1807 					      TTRS_UNMAPPED | TTRS_FULL);
1808 	}
1809 	return p != NULL;
1810 }
1811 
1812 #ifdef CONFIG_HIBERNATION
1813 /*
1814  * Find the swap type that corresponds to given device (if any).
1815  *
1816  * @offset - number of the PAGE_SIZE-sized block of the device, starting
1817  * from 0, in which the swap header is expected to be located.
1818  *
1819  * This is needed for the suspend to disk (aka swsusp).
1820  */
swap_type_of(dev_t device,sector_t offset)1821 int swap_type_of(dev_t device, sector_t offset)
1822 {
1823 	int type;
1824 
1825 	if (!device)
1826 		return -1;
1827 
1828 	spin_lock(&swap_lock);
1829 	for (type = 0; type < nr_swapfiles; type++) {
1830 		struct swap_info_struct *sis = swap_info[type];
1831 
1832 		if (!(sis->flags & SWP_WRITEOK))
1833 			continue;
1834 
1835 		if (device == sis->bdev->bd_dev) {
1836 			struct swap_extent *se = first_se(sis);
1837 
1838 			if (se->start_block == offset) {
1839 				spin_unlock(&swap_lock);
1840 				return type;
1841 			}
1842 		}
1843 	}
1844 	spin_unlock(&swap_lock);
1845 	return -ENODEV;
1846 }
1847 
find_first_swap(dev_t * device)1848 int find_first_swap(dev_t *device)
1849 {
1850 	int type;
1851 
1852 	spin_lock(&swap_lock);
1853 	for (type = 0; type < nr_swapfiles; type++) {
1854 		struct swap_info_struct *sis = swap_info[type];
1855 
1856 		if (!(sis->flags & SWP_WRITEOK))
1857 			continue;
1858 		*device = sis->bdev->bd_dev;
1859 		spin_unlock(&swap_lock);
1860 		return type;
1861 	}
1862 	spin_unlock(&swap_lock);
1863 	return -ENODEV;
1864 }
1865 
1866 /*
1867  * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1868  * corresponding to given index in swap_info (swap type).
1869  */
swapdev_block(int type,pgoff_t offset)1870 sector_t swapdev_block(int type, pgoff_t offset)
1871 {
1872 	struct block_device *bdev;
1873 	struct swap_info_struct *si = swap_type_to_swap_info(type);
1874 
1875 	if (!si || !(si->flags & SWP_WRITEOK))
1876 		return 0;
1877 	return map_swap_entry(swp_entry(type, offset), &bdev);
1878 }
1879 
1880 /*
1881  * Return either the total number of swap pages of given type, or the number
1882  * of free pages of that type (depending on @free)
1883  *
1884  * This is needed for software suspend
1885  */
count_swap_pages(int type,int free)1886 unsigned int count_swap_pages(int type, int free)
1887 {
1888 	unsigned int n = 0;
1889 
1890 	spin_lock(&swap_lock);
1891 	if ((unsigned int)type < nr_swapfiles) {
1892 		struct swap_info_struct *sis = swap_info[type];
1893 
1894 		spin_lock(&sis->lock);
1895 		if (sis->flags & SWP_WRITEOK) {
1896 			n = sis->pages;
1897 			if (free)
1898 				n -= sis->inuse_pages;
1899 		}
1900 		spin_unlock(&sis->lock);
1901 	}
1902 	spin_unlock(&swap_lock);
1903 	return n;
1904 }
1905 #endif /* CONFIG_HIBERNATION */
1906 
pte_same_as_swp(pte_t pte,pte_t swp_pte)1907 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1908 {
1909 	return pte_same(pte_swp_clear_flags(pte), swp_pte);
1910 }
1911 
1912 /*
1913  * No need to decide whether this PTE shares the swap entry with others,
1914  * just let do_wp_page work it out if a write is requested later - to
1915  * force COW, vm_page_prot omits write permission from any private vma.
1916  */
unuse_pte(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,swp_entry_t entry,struct page * page)1917 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1918 		unsigned long addr, swp_entry_t entry, struct page *page)
1919 {
1920 	struct page *swapcache;
1921 	spinlock_t *ptl;
1922 	pte_t *pte;
1923 	int ret = 1;
1924 
1925 	swapcache = page;
1926 	page = ksm_might_need_to_copy(page, vma, addr);
1927 	if (unlikely(!page))
1928 		return -ENOMEM;
1929 
1930 	pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1931 	if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1932 		ret = 0;
1933 		goto out;
1934 	}
1935 
1936 	dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1937 	inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1938 	get_page(page);
1939 	set_pte_at(vma->vm_mm, addr, pte,
1940 		   pte_mkold(mk_pte(page, vma->vm_page_prot)));
1941 	if (page == swapcache) {
1942 		page_add_anon_rmap(page, vma, addr, false);
1943 	} else { /* ksm created a completely new copy */
1944 		page_add_new_anon_rmap(page, vma, addr, false);
1945 		lru_cache_add_inactive_or_unevictable(page, vma);
1946 	}
1947 	swap_free(entry);
1948 out:
1949 	pte_unmap_unlock(pte, ptl);
1950 	if (page != swapcache) {
1951 		unlock_page(page);
1952 		put_page(page);
1953 	}
1954 	return ret;
1955 }
1956 
unuse_pte_range(struct vm_area_struct * vma,pmd_t * pmd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)1957 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1958 			unsigned long addr, unsigned long end,
1959 			unsigned int type, bool frontswap,
1960 			unsigned long *fs_pages_to_unuse)
1961 {
1962 	struct page *page;
1963 	swp_entry_t entry;
1964 	pte_t *pte;
1965 	struct swap_info_struct *si;
1966 	unsigned long offset;
1967 	int ret = 0;
1968 	volatile unsigned char *swap_map;
1969 
1970 	si = swap_info[type];
1971 	pte = pte_offset_map(pmd, addr);
1972 	do {
1973 		struct vm_fault vmf;
1974 
1975 		if (!is_swap_pte(*pte))
1976 			continue;
1977 
1978 		entry = pte_to_swp_entry(*pte);
1979 		if (swp_type(entry) != type)
1980 			continue;
1981 
1982 		offset = swp_offset(entry);
1983 		if (frontswap && !frontswap_test(si, offset))
1984 			continue;
1985 
1986 		pte_unmap(pte);
1987 		swap_map = &si->swap_map[offset];
1988 		page = lookup_swap_cache(entry, vma, addr);
1989 		if (!page) {
1990 			vmf.vma = vma;
1991 			vmf.address = addr;
1992 			vmf.pmd = pmd;
1993 			page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
1994 						&vmf);
1995 		}
1996 		if (!page) {
1997 			if (*swap_map == 0 || *swap_map == SWAP_MAP_BAD)
1998 				goto try_next;
1999 			return -ENOMEM;
2000 		}
2001 
2002 		lock_page(page);
2003 		wait_on_page_writeback(page);
2004 		ret = unuse_pte(vma, pmd, addr, entry, page);
2005 		if (ret < 0) {
2006 			unlock_page(page);
2007 			put_page(page);
2008 			goto out;
2009 		}
2010 
2011 		try_to_free_swap(page);
2012 		unlock_page(page);
2013 		put_page(page);
2014 
2015 		if (*fs_pages_to_unuse && !--(*fs_pages_to_unuse)) {
2016 			ret = FRONTSWAP_PAGES_UNUSED;
2017 			goto out;
2018 		}
2019 try_next:
2020 		pte = pte_offset_map(pmd, addr);
2021 	} while (pte++, addr += PAGE_SIZE, addr != end);
2022 	pte_unmap(pte - 1);
2023 
2024 	ret = 0;
2025 out:
2026 	return ret;
2027 }
2028 
unuse_pmd_range(struct vm_area_struct * vma,pud_t * pud,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2029 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
2030 				unsigned long addr, unsigned long end,
2031 				unsigned int type, bool frontswap,
2032 				unsigned long *fs_pages_to_unuse)
2033 {
2034 	pmd_t *pmd;
2035 	unsigned long next;
2036 	int ret;
2037 
2038 	pmd = pmd_offset(pud, addr);
2039 	do {
2040 		cond_resched();
2041 		next = pmd_addr_end(addr, end);
2042 		if (pmd_none_or_trans_huge_or_clear_bad(pmd))
2043 			continue;
2044 		ret = unuse_pte_range(vma, pmd, addr, next, type,
2045 				      frontswap, fs_pages_to_unuse);
2046 		if (ret)
2047 			return ret;
2048 	} while (pmd++, addr = next, addr != end);
2049 	return 0;
2050 }
2051 
unuse_pud_range(struct vm_area_struct * vma,p4d_t * p4d,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2052 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
2053 				unsigned long addr, unsigned long end,
2054 				unsigned int type, bool frontswap,
2055 				unsigned long *fs_pages_to_unuse)
2056 {
2057 	pud_t *pud;
2058 	unsigned long next;
2059 	int ret;
2060 
2061 	pud = pud_offset(p4d, addr);
2062 	do {
2063 		next = pud_addr_end(addr, end);
2064 		if (pud_none_or_clear_bad(pud))
2065 			continue;
2066 		ret = unuse_pmd_range(vma, pud, addr, next, type,
2067 				      frontswap, fs_pages_to_unuse);
2068 		if (ret)
2069 			return ret;
2070 	} while (pud++, addr = next, addr != end);
2071 	return 0;
2072 }
2073 
unuse_p4d_range(struct vm_area_struct * vma,pgd_t * pgd,unsigned long addr,unsigned long end,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2074 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
2075 				unsigned long addr, unsigned long end,
2076 				unsigned int type, bool frontswap,
2077 				unsigned long *fs_pages_to_unuse)
2078 {
2079 	p4d_t *p4d;
2080 	unsigned long next;
2081 	int ret;
2082 
2083 	p4d = p4d_offset(pgd, addr);
2084 	do {
2085 		next = p4d_addr_end(addr, end);
2086 		if (p4d_none_or_clear_bad(p4d))
2087 			continue;
2088 		ret = unuse_pud_range(vma, p4d, addr, next, type,
2089 				      frontswap, fs_pages_to_unuse);
2090 		if (ret)
2091 			return ret;
2092 	} while (p4d++, addr = next, addr != end);
2093 	return 0;
2094 }
2095 
unuse_vma(struct vm_area_struct * vma,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2096 static int unuse_vma(struct vm_area_struct *vma, unsigned int type,
2097 		     bool frontswap, unsigned long *fs_pages_to_unuse)
2098 {
2099 	pgd_t *pgd;
2100 	unsigned long addr, end, next;
2101 	int ret;
2102 
2103 	addr = vma->vm_start;
2104 	end = vma->vm_end;
2105 
2106 	pgd = pgd_offset(vma->vm_mm, addr);
2107 	do {
2108 		next = pgd_addr_end(addr, end);
2109 		if (pgd_none_or_clear_bad(pgd))
2110 			continue;
2111 		ret = unuse_p4d_range(vma, pgd, addr, next, type,
2112 				      frontswap, fs_pages_to_unuse);
2113 		if (ret)
2114 			return ret;
2115 	} while (pgd++, addr = next, addr != end);
2116 	return 0;
2117 }
2118 
unuse_mm(struct mm_struct * mm,unsigned int type,bool frontswap,unsigned long * fs_pages_to_unuse)2119 static int unuse_mm(struct mm_struct *mm, unsigned int type,
2120 		    bool frontswap, unsigned long *fs_pages_to_unuse)
2121 {
2122 	struct vm_area_struct *vma;
2123 	int ret = 0;
2124 
2125 	mmap_read_lock(mm);
2126 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2127 		if (vma->anon_vma) {
2128 			ret = unuse_vma(vma, type, frontswap,
2129 					fs_pages_to_unuse);
2130 			if (ret)
2131 				break;
2132 		}
2133 		cond_resched();
2134 	}
2135 	mmap_read_unlock(mm);
2136 	return ret;
2137 }
2138 
2139 /*
2140  * Scan swap_map (or frontswap_map if frontswap parameter is true)
2141  * from current position to next entry still in use. Return 0
2142  * if there are no inuse entries after prev till end of the map.
2143  */
find_next_to_unuse(struct swap_info_struct * si,unsigned int prev,bool frontswap)2144 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
2145 					unsigned int prev, bool frontswap)
2146 {
2147 	unsigned int i;
2148 	unsigned char count;
2149 
2150 	/*
2151 	 * No need for swap_lock here: we're just looking
2152 	 * for whether an entry is in use, not modifying it; false
2153 	 * hits are okay, and sys_swapoff() has already prevented new
2154 	 * allocations from this area (while holding swap_lock).
2155 	 */
2156 	for (i = prev + 1; i < si->max; i++) {
2157 		count = READ_ONCE(si->swap_map[i]);
2158 		if (count && swap_count(count) != SWAP_MAP_BAD)
2159 			if (!frontswap || frontswap_test(si, i))
2160 				break;
2161 		if ((i % LATENCY_LIMIT) == 0)
2162 			cond_resched();
2163 	}
2164 
2165 	if (i == si->max)
2166 		i = 0;
2167 
2168 	return i;
2169 }
2170 
2171 /*
2172  * If the boolean frontswap is true, only unuse pages_to_unuse pages;
2173  * pages_to_unuse==0 means all pages; ignored if frontswap is false
2174  */
try_to_unuse(unsigned int type,bool frontswap,unsigned long pages_to_unuse)2175 int try_to_unuse(unsigned int type, bool frontswap,
2176 		 unsigned long pages_to_unuse)
2177 {
2178 	struct mm_struct *prev_mm;
2179 	struct mm_struct *mm;
2180 	struct list_head *p;
2181 	int retval = 0;
2182 	struct swap_info_struct *si = swap_info[type];
2183 	struct page *page;
2184 	swp_entry_t entry;
2185 	unsigned int i;
2186 
2187 	if (!READ_ONCE(si->inuse_pages))
2188 		return 0;
2189 
2190 	if (!frontswap)
2191 		pages_to_unuse = 0;
2192 
2193 retry:
2194 	retval = shmem_unuse(type, frontswap, &pages_to_unuse);
2195 	if (retval)
2196 		goto out;
2197 
2198 	prev_mm = &init_mm;
2199 	mmget(prev_mm);
2200 
2201 	spin_lock(&mmlist_lock);
2202 	p = &init_mm.mmlist;
2203 	while (READ_ONCE(si->inuse_pages) &&
2204 	       !signal_pending(current) &&
2205 	       (p = p->next) != &init_mm.mmlist) {
2206 
2207 		mm = list_entry(p, struct mm_struct, mmlist);
2208 		if (!mmget_not_zero(mm))
2209 			continue;
2210 		spin_unlock(&mmlist_lock);
2211 		mmput(prev_mm);
2212 		prev_mm = mm;
2213 		retval = unuse_mm(mm, type, frontswap, &pages_to_unuse);
2214 
2215 		if (retval) {
2216 			mmput(prev_mm);
2217 			goto out;
2218 		}
2219 
2220 		/*
2221 		 * Make sure that we aren't completely killing
2222 		 * interactive performance.
2223 		 */
2224 		cond_resched();
2225 		spin_lock(&mmlist_lock);
2226 	}
2227 	spin_unlock(&mmlist_lock);
2228 
2229 	mmput(prev_mm);
2230 
2231 	i = 0;
2232 	while (READ_ONCE(si->inuse_pages) &&
2233 	       !signal_pending(current) &&
2234 	       (i = find_next_to_unuse(si, i, frontswap)) != 0) {
2235 
2236 		entry = swp_entry(type, i);
2237 		page = find_get_page(swap_address_space(entry), i);
2238 		if (!page)
2239 			continue;
2240 
2241 		/*
2242 		 * It is conceivable that a racing task removed this page from
2243 		 * swap cache just before we acquired the page lock. The page
2244 		 * might even be back in swap cache on another swap area. But
2245 		 * that is okay, try_to_free_swap() only removes stale pages.
2246 		 */
2247 		lock_page(page);
2248 		wait_on_page_writeback(page);
2249 		try_to_free_swap(page);
2250 		unlock_page(page);
2251 		put_page(page);
2252 
2253 		/*
2254 		 * For frontswap, we just need to unuse pages_to_unuse, if
2255 		 * it was specified. Need not check frontswap again here as
2256 		 * we already zeroed out pages_to_unuse if not frontswap.
2257 		 */
2258 		if (pages_to_unuse && --pages_to_unuse == 0)
2259 			goto out;
2260 	}
2261 
2262 	/*
2263 	 * Lets check again to see if there are still swap entries in the map.
2264 	 * If yes, we would need to do retry the unuse logic again.
2265 	 * Under global memory pressure, swap entries can be reinserted back
2266 	 * into process space after the mmlist loop above passes over them.
2267 	 *
2268 	 * Limit the number of retries? No: when mmget_not_zero() above fails,
2269 	 * that mm is likely to be freeing swap from exit_mmap(), which proceeds
2270 	 * at its own independent pace; and even shmem_writepage() could have
2271 	 * been preempted after get_swap_page(), temporarily hiding that swap.
2272 	 * It's easy and robust (though cpu-intensive) just to keep retrying.
2273 	 */
2274 	if (READ_ONCE(si->inuse_pages)) {
2275 		if (!signal_pending(current))
2276 			goto retry;
2277 		retval = -EINTR;
2278 	}
2279 out:
2280 	return (retval == FRONTSWAP_PAGES_UNUSED) ? 0 : retval;
2281 }
2282 
2283 /*
2284  * After a successful try_to_unuse, if no swap is now in use, we know
2285  * we can empty the mmlist.  swap_lock must be held on entry and exit.
2286  * Note that mmlist_lock nests inside swap_lock, and an mm must be
2287  * added to the mmlist just after page_duplicate - before would be racy.
2288  */
drain_mmlist(void)2289 static void drain_mmlist(void)
2290 {
2291 	struct list_head *p, *next;
2292 	unsigned int type;
2293 
2294 	for (type = 0; type < nr_swapfiles; type++)
2295 		if (swap_info[type]->inuse_pages)
2296 			return;
2297 	spin_lock(&mmlist_lock);
2298 	list_for_each_safe(p, next, &init_mm.mmlist)
2299 		list_del_init(p);
2300 	spin_unlock(&mmlist_lock);
2301 }
2302 
2303 /*
2304  * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2305  * corresponds to page offset for the specified swap entry.
2306  * Note that the type of this function is sector_t, but it returns page offset
2307  * into the bdev, not sector offset.
2308  */
map_swap_entry(swp_entry_t entry,struct block_device ** bdev)2309 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2310 {
2311 	struct swap_info_struct *sis;
2312 	struct swap_extent *se;
2313 	pgoff_t offset;
2314 
2315 	sis = swp_swap_info(entry);
2316 	*bdev = sis->bdev;
2317 
2318 	offset = swp_offset(entry);
2319 	se = offset_to_swap_extent(sis, offset);
2320 	return se->start_block + (offset - se->start_page);
2321 }
2322 
2323 /*
2324  * Returns the page offset into bdev for the specified page's swap entry.
2325  */
map_swap_page(struct page * page,struct block_device ** bdev)2326 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2327 {
2328 	swp_entry_t entry;
2329 	entry.val = page_private(page);
2330 	return map_swap_entry(entry, bdev);
2331 }
2332 
2333 /*
2334  * Free all of a swapdev's extent information
2335  */
destroy_swap_extents(struct swap_info_struct * sis)2336 static void destroy_swap_extents(struct swap_info_struct *sis)
2337 {
2338 	while (!RB_EMPTY_ROOT(&sis->swap_extent_root)) {
2339 		struct rb_node *rb = sis->swap_extent_root.rb_node;
2340 		struct swap_extent *se = rb_entry(rb, struct swap_extent, rb_node);
2341 
2342 		rb_erase(rb, &sis->swap_extent_root);
2343 		kfree(se);
2344 	}
2345 
2346 	if (sis->flags & SWP_ACTIVATED) {
2347 		struct file *swap_file = sis->swap_file;
2348 		struct address_space *mapping = swap_file->f_mapping;
2349 
2350 		sis->flags &= ~SWP_ACTIVATED;
2351 		if (mapping->a_ops->swap_deactivate)
2352 			mapping->a_ops->swap_deactivate(swap_file);
2353 	}
2354 }
2355 
2356 /*
2357  * Add a block range (and the corresponding page range) into this swapdev's
2358  * extent tree.
2359  *
2360  * This function rather assumes that it is called in ascending page order.
2361  */
2362 int
add_swap_extent(struct swap_info_struct * sis,unsigned long start_page,unsigned long nr_pages,sector_t start_block)2363 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2364 		unsigned long nr_pages, sector_t start_block)
2365 {
2366 	struct rb_node **link = &sis->swap_extent_root.rb_node, *parent = NULL;
2367 	struct swap_extent *se;
2368 	struct swap_extent *new_se;
2369 
2370 	/*
2371 	 * place the new node at the right most since the
2372 	 * function is called in ascending page order.
2373 	 */
2374 	while (*link) {
2375 		parent = *link;
2376 		link = &parent->rb_right;
2377 	}
2378 
2379 	if (parent) {
2380 		se = rb_entry(parent, struct swap_extent, rb_node);
2381 		BUG_ON(se->start_page + se->nr_pages != start_page);
2382 		if (se->start_block + se->nr_pages == start_block) {
2383 			/* Merge it */
2384 			se->nr_pages += nr_pages;
2385 			return 0;
2386 		}
2387 	}
2388 
2389 	/* No merge, insert a new extent. */
2390 	new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2391 	if (new_se == NULL)
2392 		return -ENOMEM;
2393 	new_se->start_page = start_page;
2394 	new_se->nr_pages = nr_pages;
2395 	new_se->start_block = start_block;
2396 
2397 	rb_link_node(&new_se->rb_node, parent, link);
2398 	rb_insert_color(&new_se->rb_node, &sis->swap_extent_root);
2399 	return 1;
2400 }
2401 EXPORT_SYMBOL_GPL(add_swap_extent);
2402 
2403 /*
2404  * A `swap extent' is a simple thing which maps a contiguous range of pages
2405  * onto a contiguous range of disk blocks.  An ordered list of swap extents
2406  * is built at swapon time and is then used at swap_writepage/swap_readpage
2407  * time for locating where on disk a page belongs.
2408  *
2409  * If the swapfile is an S_ISBLK block device, a single extent is installed.
2410  * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2411  * swap files identically.
2412  *
2413  * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2414  * extent list operates in PAGE_SIZE disk blocks.  Both S_ISREG and S_ISBLK
2415  * swapfiles are handled *identically* after swapon time.
2416  *
2417  * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2418  * and will parse them into an ordered extent list, in PAGE_SIZE chunks.  If
2419  * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2420  * requirements, they are simply tossed out - we will never use those blocks
2421  * for swapping.
2422  *
2423  * For all swap devices we set S_SWAPFILE across the life of the swapon.  This
2424  * prevents users from writing to the swap device, which will corrupt memory.
2425  *
2426  * The amount of disk space which a single swap extent represents varies.
2427  * Typically it is in the 1-4 megabyte range.  So we can have hundreds of
2428  * extents in the list.  To avoid much list walking, we cache the previous
2429  * search location in `curr_swap_extent', and start new searches from there.
2430  * This is extremely effective.  The average number of iterations in
2431  * map_swap_page() has been measured at about 0.3 per page.  - akpm.
2432  */
setup_swap_extents(struct swap_info_struct * sis,sector_t * span)2433 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2434 {
2435 	struct file *swap_file = sis->swap_file;
2436 	struct address_space *mapping = swap_file->f_mapping;
2437 	struct inode *inode = mapping->host;
2438 	int ret;
2439 
2440 	if (S_ISBLK(inode->i_mode)) {
2441 		ret = add_swap_extent(sis, 0, sis->max, 0);
2442 		*span = sis->pages;
2443 		return ret;
2444 	}
2445 
2446 	if (mapping->a_ops->swap_activate) {
2447 		ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2448 		if (ret >= 0)
2449 			sis->flags |= SWP_ACTIVATED;
2450 		if (!ret) {
2451 			sis->flags |= SWP_FS_OPS;
2452 			ret = add_swap_extent(sis, 0, sis->max, 0);
2453 			*span = sis->pages;
2454 		}
2455 		return ret;
2456 	}
2457 
2458 	return generic_swapfile_activate(sis, swap_file, span);
2459 }
2460 
swap_node(struct swap_info_struct * p)2461 static int swap_node(struct swap_info_struct *p)
2462 {
2463 	struct block_device *bdev;
2464 
2465 	if (p->bdev)
2466 		bdev = p->bdev;
2467 	else
2468 		bdev = p->swap_file->f_inode->i_sb->s_bdev;
2469 
2470 	return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2471 }
2472 
setup_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info)2473 static void setup_swap_info(struct swap_info_struct *p, int prio,
2474 			    unsigned char *swap_map,
2475 			    struct swap_cluster_info *cluster_info)
2476 {
2477 	int i;
2478 
2479 	if (prio >= 0)
2480 		p->prio = prio;
2481 	else
2482 		p->prio = --least_priority;
2483 	/*
2484 	 * the plist prio is negated because plist ordering is
2485 	 * low-to-high, while swap ordering is high-to-low
2486 	 */
2487 	p->list.prio = -p->prio;
2488 	for_each_node(i) {
2489 		if (p->prio >= 0)
2490 			p->avail_lists[i].prio = -p->prio;
2491 		else {
2492 			if (swap_node(p) == i)
2493 				p->avail_lists[i].prio = 1;
2494 			else
2495 				p->avail_lists[i].prio = -p->prio;
2496 		}
2497 	}
2498 	p->swap_map = swap_map;
2499 	p->cluster_info = cluster_info;
2500 }
2501 
_enable_swap_info(struct swap_info_struct * p)2502 static void _enable_swap_info(struct swap_info_struct *p)
2503 {
2504 	p->flags |= SWP_WRITEOK | SWP_VALID;
2505 	atomic_long_add(p->pages, &nr_swap_pages);
2506 	total_swap_pages += p->pages;
2507 
2508 	assert_spin_locked(&swap_lock);
2509 	/*
2510 	 * both lists are plists, and thus priority ordered.
2511 	 * swap_active_head needs to be priority ordered for swapoff(),
2512 	 * which on removal of any swap_info_struct with an auto-assigned
2513 	 * (i.e. negative) priority increments the auto-assigned priority
2514 	 * of any lower-priority swap_info_structs.
2515 	 * swap_avail_head needs to be priority ordered for get_swap_page(),
2516 	 * which allocates swap pages from the highest available priority
2517 	 * swap_info_struct.
2518 	 */
2519 	plist_add(&p->list, &swap_active_head);
2520 	add_to_avail_list(p);
2521 }
2522 
enable_swap_info(struct swap_info_struct * p,int prio,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long * frontswap_map)2523 static void enable_swap_info(struct swap_info_struct *p, int prio,
2524 				unsigned char *swap_map,
2525 				struct swap_cluster_info *cluster_info,
2526 				unsigned long *frontswap_map)
2527 {
2528 	frontswap_init(p->type, frontswap_map);
2529 	spin_lock(&swap_lock);
2530 	spin_lock(&p->lock);
2531 	setup_swap_info(p, prio, swap_map, cluster_info);
2532 	spin_unlock(&p->lock);
2533 	spin_unlock(&swap_lock);
2534 	/*
2535 	 * Guarantee swap_map, cluster_info, etc. fields are valid
2536 	 * between get/put_swap_device() if SWP_VALID bit is set
2537 	 */
2538 	synchronize_rcu();
2539 	spin_lock(&swap_lock);
2540 	spin_lock(&p->lock);
2541 	_enable_swap_info(p);
2542 	spin_unlock(&p->lock);
2543 	spin_unlock(&swap_lock);
2544 }
2545 
reinsert_swap_info(struct swap_info_struct * p)2546 static void reinsert_swap_info(struct swap_info_struct *p)
2547 {
2548 	spin_lock(&swap_lock);
2549 	spin_lock(&p->lock);
2550 	setup_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2551 	_enable_swap_info(p);
2552 	spin_unlock(&p->lock);
2553 	spin_unlock(&swap_lock);
2554 }
2555 
has_usable_swap(void)2556 bool has_usable_swap(void)
2557 {
2558 	bool ret = true;
2559 
2560 	spin_lock(&swap_lock);
2561 	if (plist_head_empty(&swap_active_head))
2562 		ret = false;
2563 	spin_unlock(&swap_lock);
2564 	return ret;
2565 }
2566 
SYSCALL_DEFINE1(swapoff,const char __user *,specialfile)2567 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2568 {
2569 	struct swap_info_struct *p = NULL;
2570 	unsigned char *swap_map;
2571 	struct swap_cluster_info *cluster_info;
2572 	unsigned long *frontswap_map;
2573 	struct file *swap_file, *victim;
2574 	struct address_space *mapping;
2575 	struct inode *inode;
2576 	struct filename *pathname;
2577 	int err, found = 0;
2578 	unsigned int old_block_size;
2579 
2580 	if (!capable(CAP_SYS_ADMIN))
2581 		return -EPERM;
2582 
2583 	BUG_ON(!current->mm);
2584 
2585 	pathname = getname(specialfile);
2586 	if (IS_ERR(pathname))
2587 		return PTR_ERR(pathname);
2588 
2589 	victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2590 	err = PTR_ERR(victim);
2591 	if (IS_ERR(victim))
2592 		goto out;
2593 
2594 	mapping = victim->f_mapping;
2595 	spin_lock(&swap_lock);
2596 	plist_for_each_entry(p, &swap_active_head, list) {
2597 		if (p->flags & SWP_WRITEOK) {
2598 			if (p->swap_file->f_mapping == mapping) {
2599 				found = 1;
2600 				break;
2601 			}
2602 		}
2603 	}
2604 	if (!found) {
2605 		err = -EINVAL;
2606 		spin_unlock(&swap_lock);
2607 		goto out_dput;
2608 	}
2609 	if (!security_vm_enough_memory_mm(current->mm, p->pages))
2610 		vm_unacct_memory(p->pages);
2611 	else {
2612 		err = -ENOMEM;
2613 		spin_unlock(&swap_lock);
2614 		goto out_dput;
2615 	}
2616 	spin_lock(&p->lock);
2617 	del_from_avail_list(p);
2618 	if (p->prio < 0) {
2619 		struct swap_info_struct *si = p;
2620 		int nid;
2621 
2622 		plist_for_each_entry_continue(si, &swap_active_head, list) {
2623 			si->prio++;
2624 			si->list.prio--;
2625 			for_each_node(nid) {
2626 				if (si->avail_lists[nid].prio != 1)
2627 					si->avail_lists[nid].prio--;
2628 			}
2629 		}
2630 		least_priority++;
2631 	}
2632 	plist_del(&p->list, &swap_active_head);
2633 	atomic_long_sub(p->pages, &nr_swap_pages);
2634 	total_swap_pages -= p->pages;
2635 	p->flags &= ~SWP_WRITEOK;
2636 	spin_unlock(&p->lock);
2637 	spin_unlock(&swap_lock);
2638 
2639 	disable_swap_slots_cache_lock();
2640 
2641 	set_current_oom_origin();
2642 	err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2643 	clear_current_oom_origin();
2644 
2645 	if (err) {
2646 		/* re-insert swap space back into swap_list */
2647 		reinsert_swap_info(p);
2648 		reenable_swap_slots_cache_unlock();
2649 		goto out_dput;
2650 	}
2651 
2652 	reenable_swap_slots_cache_unlock();
2653 
2654 	spin_lock(&swap_lock);
2655 	spin_lock(&p->lock);
2656 	p->flags &= ~SWP_VALID;		/* mark swap device as invalid */
2657 	spin_unlock(&p->lock);
2658 	spin_unlock(&swap_lock);
2659 	/*
2660 	 * wait for swap operations protected by get/put_swap_device()
2661 	 * to complete
2662 	 */
2663 	synchronize_rcu();
2664 
2665 	flush_work(&p->discard_work);
2666 
2667 	destroy_swap_extents(p);
2668 	if (p->flags & SWP_CONTINUED)
2669 		free_swap_count_continuations(p);
2670 
2671 	if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2672 		atomic_dec(&nr_rotate_swap);
2673 
2674 	mutex_lock(&swapon_mutex);
2675 	spin_lock(&swap_lock);
2676 	spin_lock(&p->lock);
2677 	drain_mmlist();
2678 
2679 	/* wait for anyone still in scan_swap_map */
2680 	p->highest_bit = 0;		/* cuts scans short */
2681 	while (p->flags >= SWP_SCANNING) {
2682 		spin_unlock(&p->lock);
2683 		spin_unlock(&swap_lock);
2684 		schedule_timeout_uninterruptible(1);
2685 		spin_lock(&swap_lock);
2686 		spin_lock(&p->lock);
2687 	}
2688 
2689 	swap_file = p->swap_file;
2690 	old_block_size = p->old_block_size;
2691 	p->swap_file = NULL;
2692 	p->max = 0;
2693 	swap_map = p->swap_map;
2694 	p->swap_map = NULL;
2695 	cluster_info = p->cluster_info;
2696 	p->cluster_info = NULL;
2697 	frontswap_map = frontswap_map_get(p);
2698 	spin_unlock(&p->lock);
2699 	spin_unlock(&swap_lock);
2700 	arch_swap_invalidate_area(p->type);
2701 	frontswap_invalidate_area(p->type);
2702 	frontswap_map_set(p, NULL);
2703 	mutex_unlock(&swapon_mutex);
2704 	free_percpu(p->percpu_cluster);
2705 	p->percpu_cluster = NULL;
2706 	free_percpu(p->cluster_next_cpu);
2707 	p->cluster_next_cpu = NULL;
2708 	vfree(swap_map);
2709 	kvfree(cluster_info);
2710 	kvfree(frontswap_map);
2711 	/* Destroy swap account information */
2712 	swap_cgroup_swapoff(p->type);
2713 	exit_swap_address_space(p->type);
2714 
2715 	inode = mapping->host;
2716 	if (S_ISBLK(inode->i_mode)) {
2717 		struct block_device *bdev = I_BDEV(inode);
2718 
2719 		set_blocksize(bdev, old_block_size);
2720 		blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2721 	}
2722 
2723 	inode_lock(inode);
2724 	inode->i_flags &= ~S_SWAPFILE;
2725 	inode_unlock(inode);
2726 	filp_close(swap_file, NULL);
2727 
2728 	/*
2729 	 * Clear the SWP_USED flag after all resources are freed so that swapon
2730 	 * can reuse this swap_info in alloc_swap_info() safely.  It is ok to
2731 	 * not hold p->lock after we cleared its SWP_WRITEOK.
2732 	 */
2733 	spin_lock(&swap_lock);
2734 	p->flags = 0;
2735 	spin_unlock(&swap_lock);
2736 
2737 	err = 0;
2738 	atomic_inc(&proc_poll_event);
2739 	wake_up_interruptible(&proc_poll_wait);
2740 
2741 out_dput:
2742 	filp_close(victim, NULL);
2743 out:
2744 	putname(pathname);
2745 	return err;
2746 }
2747 
2748 #ifdef CONFIG_PROC_FS
swaps_poll(struct file * file,poll_table * wait)2749 static __poll_t swaps_poll(struct file *file, poll_table *wait)
2750 {
2751 	struct seq_file *seq = file->private_data;
2752 
2753 	poll_wait(file, &proc_poll_wait, wait);
2754 
2755 	if (seq->poll_event != atomic_read(&proc_poll_event)) {
2756 		seq->poll_event = atomic_read(&proc_poll_event);
2757 		return EPOLLIN | EPOLLRDNORM | EPOLLERR | EPOLLPRI;
2758 	}
2759 
2760 	return EPOLLIN | EPOLLRDNORM;
2761 }
2762 
2763 /* iterator */
swap_start(struct seq_file * swap,loff_t * pos)2764 static void *swap_start(struct seq_file *swap, loff_t *pos)
2765 {
2766 	struct swap_info_struct *si;
2767 	int type;
2768 	loff_t l = *pos;
2769 
2770 	mutex_lock(&swapon_mutex);
2771 
2772 	if (!l)
2773 		return SEQ_START_TOKEN;
2774 
2775 	for (type = 0; (si = swap_type_to_swap_info(type)); type++) {
2776 		if (!(si->flags & SWP_USED) || !si->swap_map)
2777 			continue;
2778 		if (!--l)
2779 			return si;
2780 	}
2781 
2782 	return NULL;
2783 }
2784 
swap_next(struct seq_file * swap,void * v,loff_t * pos)2785 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2786 {
2787 	struct swap_info_struct *si = v;
2788 	int type;
2789 
2790 	if (v == SEQ_START_TOKEN)
2791 		type = 0;
2792 	else
2793 		type = si->type + 1;
2794 
2795 	++(*pos);
2796 	for (; (si = swap_type_to_swap_info(type)); type++) {
2797 		if (!(si->flags & SWP_USED) || !si->swap_map)
2798 			continue;
2799 		return si;
2800 	}
2801 
2802 	return NULL;
2803 }
2804 
swap_stop(struct seq_file * swap,void * v)2805 static void swap_stop(struct seq_file *swap, void *v)
2806 {
2807 	mutex_unlock(&swapon_mutex);
2808 }
2809 
swap_show(struct seq_file * swap,void * v)2810 static int swap_show(struct seq_file *swap, void *v)
2811 {
2812 	struct swap_info_struct *si = v;
2813 	struct file *file;
2814 	int len;
2815 	unsigned int bytes, inuse;
2816 
2817 	if (si == SEQ_START_TOKEN) {
2818 		seq_puts(swap,"Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2819 		return 0;
2820 	}
2821 
2822 	bytes = si->pages << (PAGE_SHIFT - 10);
2823 	inuse = si->inuse_pages << (PAGE_SHIFT - 10);
2824 
2825 	file = si->swap_file;
2826 	len = seq_file_path(swap, file, " \t\n\\");
2827 	seq_printf(swap, "%*s%s\t%u\t%s%u\t%s%d\n",
2828 			len < 40 ? 40 - len : 1, " ",
2829 			S_ISBLK(file_inode(file)->i_mode) ?
2830 				"partition" : "file\t",
2831 			bytes, bytes < 10000000 ? "\t" : "",
2832 			inuse, inuse < 10000000 ? "\t" : "",
2833 			si->prio);
2834 	return 0;
2835 }
2836 
2837 static const struct seq_operations swaps_op = {
2838 	.start =	swap_start,
2839 	.next =		swap_next,
2840 	.stop =		swap_stop,
2841 	.show =		swap_show
2842 };
2843 
swaps_open(struct inode * inode,struct file * file)2844 static int swaps_open(struct inode *inode, struct file *file)
2845 {
2846 	struct seq_file *seq;
2847 	int ret;
2848 
2849 	ret = seq_open(file, &swaps_op);
2850 	if (ret)
2851 		return ret;
2852 
2853 	seq = file->private_data;
2854 	seq->poll_event = atomic_read(&proc_poll_event);
2855 	return 0;
2856 }
2857 
2858 static const struct proc_ops swaps_proc_ops = {
2859 	.proc_flags	= PROC_ENTRY_PERMANENT,
2860 	.proc_open	= swaps_open,
2861 	.proc_read	= seq_read,
2862 	.proc_lseek	= seq_lseek,
2863 	.proc_release	= seq_release,
2864 	.proc_poll	= swaps_poll,
2865 };
2866 
procswaps_init(void)2867 static int __init procswaps_init(void)
2868 {
2869 	proc_create("swaps", 0, NULL, &swaps_proc_ops);
2870 	return 0;
2871 }
2872 __initcall(procswaps_init);
2873 #endif /* CONFIG_PROC_FS */
2874 
2875 #ifdef MAX_SWAPFILES_CHECK
max_swapfiles_check(void)2876 static int __init max_swapfiles_check(void)
2877 {
2878 	MAX_SWAPFILES_CHECK();
2879 	return 0;
2880 }
2881 late_initcall(max_swapfiles_check);
2882 #endif
2883 
alloc_swap_info(void)2884 static struct swap_info_struct *alloc_swap_info(void)
2885 {
2886 	struct swap_info_struct *p;
2887 	struct swap_info_struct *defer = NULL;
2888 	unsigned int type;
2889 	int i;
2890 
2891 	p = kvzalloc(struct_size(p, avail_lists, nr_node_ids), GFP_KERNEL);
2892 	if (!p)
2893 		return ERR_PTR(-ENOMEM);
2894 
2895 	spin_lock(&swap_lock);
2896 	for (type = 0; type < nr_swapfiles; type++) {
2897 		if (!(swap_info[type]->flags & SWP_USED))
2898 			break;
2899 	}
2900 	if (type >= MAX_SWAPFILES) {
2901 		spin_unlock(&swap_lock);
2902 		kvfree(p);
2903 		return ERR_PTR(-EPERM);
2904 	}
2905 	if (type >= nr_swapfiles) {
2906 		p->type = type;
2907 		WRITE_ONCE(swap_info[type], p);
2908 		/*
2909 		 * Write swap_info[type] before nr_swapfiles, in case a
2910 		 * racing procfs swap_start() or swap_next() is reading them.
2911 		 * (We never shrink nr_swapfiles, we never free this entry.)
2912 		 */
2913 		smp_wmb();
2914 		WRITE_ONCE(nr_swapfiles, nr_swapfiles + 1);
2915 	} else {
2916 		defer = p;
2917 		p = swap_info[type];
2918 		/*
2919 		 * Do not memset this entry: a racing procfs swap_next()
2920 		 * would be relying on p->type to remain valid.
2921 		 */
2922 	}
2923 	p->swap_extent_root = RB_ROOT;
2924 	plist_node_init(&p->list, 0);
2925 	for_each_node(i)
2926 		plist_node_init(&p->avail_lists[i], 0);
2927 	p->flags = SWP_USED;
2928 	spin_unlock(&swap_lock);
2929 	kvfree(defer);
2930 	spin_lock_init(&p->lock);
2931 	spin_lock_init(&p->cont_lock);
2932 
2933 	return p;
2934 }
2935 
claim_swapfile(struct swap_info_struct * p,struct inode * inode)2936 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2937 {
2938 	int error;
2939 
2940 	if (S_ISBLK(inode->i_mode)) {
2941 		p->bdev = blkdev_get_by_dev(inode->i_rdev,
2942 				   FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2943 		if (IS_ERR(p->bdev)) {
2944 			error = PTR_ERR(p->bdev);
2945 			p->bdev = NULL;
2946 			return error;
2947 		}
2948 		p->old_block_size = block_size(p->bdev);
2949 		error = set_blocksize(p->bdev, PAGE_SIZE);
2950 		if (error < 0)
2951 			return error;
2952 		/*
2953 		 * Zoned block devices contain zones that have a sequential
2954 		 * write only restriction.  Hence zoned block devices are not
2955 		 * suitable for swapping.  Disallow them here.
2956 		 */
2957 		if (blk_queue_is_zoned(p->bdev->bd_disk->queue))
2958 			return -EINVAL;
2959 		p->flags |= SWP_BLKDEV;
2960 	} else if (S_ISREG(inode->i_mode)) {
2961 		p->bdev = inode->i_sb->s_bdev;
2962 	}
2963 
2964 	return 0;
2965 }
2966 
2967 
2968 /*
2969  * Find out how many pages are allowed for a single swap device. There
2970  * are two limiting factors:
2971  * 1) the number of bits for the swap offset in the swp_entry_t type, and
2972  * 2) the number of bits in the swap pte, as defined by the different
2973  * architectures.
2974  *
2975  * In order to find the largest possible bit mask, a swap entry with
2976  * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2977  * decoded to a swp_entry_t again, and finally the swap offset is
2978  * extracted.
2979  *
2980  * This will mask all the bits from the initial ~0UL mask that can't
2981  * be encoded in either the swp_entry_t or the architecture definition
2982  * of a swap pte.
2983  */
generic_max_swapfile_size(void)2984 unsigned long generic_max_swapfile_size(void)
2985 {
2986 	return swp_offset(pte_to_swp_entry(
2987 			swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2988 }
2989 
2990 /* Can be overridden by an architecture for additional checks. */
max_swapfile_size(void)2991 __weak unsigned long max_swapfile_size(void)
2992 {
2993 	return generic_max_swapfile_size();
2994 }
2995 
read_swap_header(struct swap_info_struct * p,union swap_header * swap_header,struct inode * inode)2996 static unsigned long read_swap_header(struct swap_info_struct *p,
2997 					union swap_header *swap_header,
2998 					struct inode *inode)
2999 {
3000 	int i;
3001 	unsigned long maxpages;
3002 	unsigned long swapfilepages;
3003 	unsigned long last_page;
3004 
3005 	if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
3006 		pr_err("Unable to find swap-space signature\n");
3007 		return 0;
3008 	}
3009 
3010 	/* swap partition endianess hack... */
3011 	if (swab32(swap_header->info.version) == 1) {
3012 		swab32s(&swap_header->info.version);
3013 		swab32s(&swap_header->info.last_page);
3014 		swab32s(&swap_header->info.nr_badpages);
3015 		if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3016 			return 0;
3017 		for (i = 0; i < swap_header->info.nr_badpages; i++)
3018 			swab32s(&swap_header->info.badpages[i]);
3019 	}
3020 	/* Check the swap header's sub-version */
3021 	if (swap_header->info.version != 1) {
3022 		pr_warn("Unable to handle swap header version %d\n",
3023 			swap_header->info.version);
3024 		return 0;
3025 	}
3026 
3027 	p->lowest_bit  = 1;
3028 	p->cluster_next = 1;
3029 	p->cluster_nr = 0;
3030 
3031 	maxpages = max_swapfile_size();
3032 	last_page = swap_header->info.last_page;
3033 	if (!last_page) {
3034 		pr_warn("Empty swap-file\n");
3035 		return 0;
3036 	}
3037 	if (last_page > maxpages) {
3038 		pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3039 			maxpages << (PAGE_SHIFT - 10),
3040 			last_page << (PAGE_SHIFT - 10));
3041 	}
3042 	if (maxpages > last_page) {
3043 		maxpages = last_page + 1;
3044 		/* p->max is an unsigned int: don't overflow it */
3045 		if ((unsigned int)maxpages == 0)
3046 			maxpages = UINT_MAX;
3047 	}
3048 	p->highest_bit = maxpages - 1;
3049 
3050 	if (!maxpages)
3051 		return 0;
3052 	swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
3053 	if (swapfilepages && maxpages > swapfilepages) {
3054 		pr_warn("Swap area shorter than signature indicates\n");
3055 		return 0;
3056 	}
3057 	if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
3058 		return 0;
3059 	if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
3060 		return 0;
3061 
3062 	return maxpages;
3063 }
3064 
3065 #define SWAP_CLUSTER_INFO_COLS						\
3066 	DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3067 #define SWAP_CLUSTER_SPACE_COLS						\
3068 	DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3069 #define SWAP_CLUSTER_COLS						\
3070 	max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3071 
setup_swap_map_and_extents(struct swap_info_struct * p,union swap_header * swap_header,unsigned char * swap_map,struct swap_cluster_info * cluster_info,unsigned long maxpages,sector_t * span)3072 static int setup_swap_map_and_extents(struct swap_info_struct *p,
3073 					union swap_header *swap_header,
3074 					unsigned char *swap_map,
3075 					struct swap_cluster_info *cluster_info,
3076 					unsigned long maxpages,
3077 					sector_t *span)
3078 {
3079 	unsigned int j, k;
3080 	unsigned int nr_good_pages;
3081 	int nr_extents;
3082 	unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3083 	unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3084 	unsigned long i, idx;
3085 
3086 	nr_good_pages = maxpages - 1;	/* omit header page */
3087 
3088 	cluster_list_init(&p->free_clusters);
3089 	cluster_list_init(&p->discard_clusters);
3090 
3091 	for (i = 0; i < swap_header->info.nr_badpages; i++) {
3092 		unsigned int page_nr = swap_header->info.badpages[i];
3093 		if (page_nr == 0 || page_nr > swap_header->info.last_page)
3094 			return -EINVAL;
3095 		if (page_nr < maxpages) {
3096 			swap_map[page_nr] = SWAP_MAP_BAD;
3097 			nr_good_pages--;
3098 			/*
3099 			 * Haven't marked the cluster free yet, no list
3100 			 * operation involved
3101 			 */
3102 			inc_cluster_info_page(p, cluster_info, page_nr);
3103 		}
3104 	}
3105 
3106 	/* Haven't marked the cluster free yet, no list operation involved */
3107 	for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3108 		inc_cluster_info_page(p, cluster_info, i);
3109 
3110 	if (nr_good_pages) {
3111 		swap_map[0] = SWAP_MAP_BAD;
3112 		/*
3113 		 * Not mark the cluster free yet, no list
3114 		 * operation involved
3115 		 */
3116 		inc_cluster_info_page(p, cluster_info, 0);
3117 		p->max = maxpages;
3118 		p->pages = nr_good_pages;
3119 		nr_extents = setup_swap_extents(p, span);
3120 		if (nr_extents < 0)
3121 			return nr_extents;
3122 		nr_good_pages = p->pages;
3123 	}
3124 	if (!nr_good_pages) {
3125 		pr_warn("Empty swap-file\n");
3126 		return -EINVAL;
3127 	}
3128 
3129 	if (!cluster_info)
3130 		return nr_extents;
3131 
3132 
3133 	/*
3134 	 * Reduce false cache line sharing between cluster_info and
3135 	 * sharing same address space.
3136 	 */
3137 	for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3138 		j = (k + col) % SWAP_CLUSTER_COLS;
3139 		for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3140 			idx = i * SWAP_CLUSTER_COLS + j;
3141 			if (idx >= nr_clusters)
3142 				continue;
3143 			if (cluster_count(&cluster_info[idx]))
3144 				continue;
3145 			cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3146 			cluster_list_add_tail(&p->free_clusters, cluster_info,
3147 					      idx);
3148 		}
3149 	}
3150 	return nr_extents;
3151 }
3152 
3153 /*
3154  * Helper to sys_swapon determining if a given swap
3155  * backing device queue supports DISCARD operations.
3156  */
swap_discardable(struct swap_info_struct * si)3157 static bool swap_discardable(struct swap_info_struct *si)
3158 {
3159 	struct request_queue *q = bdev_get_queue(si->bdev);
3160 
3161 	if (!q || !blk_queue_discard(q))
3162 		return false;
3163 
3164 	return true;
3165 }
3166 
SYSCALL_DEFINE2(swapon,const char __user *,specialfile,int,swap_flags)3167 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3168 {
3169 	struct swap_info_struct *p;
3170 	struct filename *name;
3171 	struct file *swap_file = NULL;
3172 	struct address_space *mapping;
3173 	int prio;
3174 	int error;
3175 	union swap_header *swap_header;
3176 	int nr_extents;
3177 	sector_t span;
3178 	unsigned long maxpages;
3179 	unsigned char *swap_map = NULL;
3180 	struct swap_cluster_info *cluster_info = NULL;
3181 	unsigned long *frontswap_map = NULL;
3182 	struct page *page = NULL;
3183 	struct inode *inode = NULL;
3184 	bool inced_nr_rotate_swap = false;
3185 
3186 	if (swap_flags & ~SWAP_FLAGS_VALID)
3187 		return -EINVAL;
3188 
3189 	if (!capable(CAP_SYS_ADMIN))
3190 		return -EPERM;
3191 
3192 	if (!swap_avail_heads)
3193 		return -ENOMEM;
3194 
3195 	p = alloc_swap_info();
3196 	if (IS_ERR(p))
3197 		return PTR_ERR(p);
3198 
3199 	INIT_WORK(&p->discard_work, swap_discard_work);
3200 
3201 	name = getname(specialfile);
3202 	if (IS_ERR(name)) {
3203 		error = PTR_ERR(name);
3204 		name = NULL;
3205 		goto bad_swap;
3206 	}
3207 	swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3208 	if (IS_ERR(swap_file)) {
3209 		error = PTR_ERR(swap_file);
3210 		swap_file = NULL;
3211 		goto bad_swap;
3212 	}
3213 
3214 	p->swap_file = swap_file;
3215 	mapping = swap_file->f_mapping;
3216 	inode = mapping->host;
3217 
3218 	error = claim_swapfile(p, inode);
3219 	if (unlikely(error))
3220 		goto bad_swap;
3221 
3222 	inode_lock(inode);
3223 	if (IS_SWAPFILE(inode)) {
3224 		error = -EBUSY;
3225 		goto bad_swap_unlock_inode;
3226 	}
3227 
3228 	/*
3229 	 * Read the swap header.
3230 	 */
3231 	if (!mapping->a_ops->readpage) {
3232 		error = -EINVAL;
3233 		goto bad_swap_unlock_inode;
3234 	}
3235 	page = read_mapping_page(mapping, 0, swap_file);
3236 	if (IS_ERR(page)) {
3237 		error = PTR_ERR(page);
3238 		goto bad_swap_unlock_inode;
3239 	}
3240 	swap_header = kmap(page);
3241 
3242 	maxpages = read_swap_header(p, swap_header, inode);
3243 	if (unlikely(!maxpages)) {
3244 		error = -EINVAL;
3245 		goto bad_swap_unlock_inode;
3246 	}
3247 
3248 	/* OK, set up the swap map and apply the bad block list */
3249 	swap_map = vzalloc(maxpages);
3250 	if (!swap_map) {
3251 		error = -ENOMEM;
3252 		goto bad_swap_unlock_inode;
3253 	}
3254 
3255 	if (p->bdev && blk_queue_stable_writes(p->bdev->bd_disk->queue))
3256 		p->flags |= SWP_STABLE_WRITES;
3257 
3258 	if (p->bdev && p->bdev->bd_disk->fops->rw_page)
3259 		p->flags |= SWP_SYNCHRONOUS_IO;
3260 
3261 	if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3262 		int cpu;
3263 		unsigned long ci, nr_cluster;
3264 
3265 		p->flags |= SWP_SOLIDSTATE;
3266 		p->cluster_next_cpu = alloc_percpu(unsigned int);
3267 		if (!p->cluster_next_cpu) {
3268 			error = -ENOMEM;
3269 			goto bad_swap_unlock_inode;
3270 		}
3271 		/*
3272 		 * select a random position to start with to help wear leveling
3273 		 * SSD
3274 		 */
3275 		for_each_possible_cpu(cpu) {
3276 			per_cpu(*p->cluster_next_cpu, cpu) =
3277 				1 + prandom_u32_max(p->highest_bit);
3278 		}
3279 		nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3280 
3281 		cluster_info = kvcalloc(nr_cluster, sizeof(*cluster_info),
3282 					GFP_KERNEL);
3283 		if (!cluster_info) {
3284 			error = -ENOMEM;
3285 			goto bad_swap_unlock_inode;
3286 		}
3287 
3288 		for (ci = 0; ci < nr_cluster; ci++)
3289 			spin_lock_init(&((cluster_info + ci)->lock));
3290 
3291 		p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3292 		if (!p->percpu_cluster) {
3293 			error = -ENOMEM;
3294 			goto bad_swap_unlock_inode;
3295 		}
3296 		for_each_possible_cpu(cpu) {
3297 			struct percpu_cluster *cluster;
3298 			cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3299 			cluster_set_null(&cluster->index);
3300 		}
3301 	} else {
3302 		atomic_inc(&nr_rotate_swap);
3303 		inced_nr_rotate_swap = true;
3304 	}
3305 
3306 	error = swap_cgroup_swapon(p->type, maxpages);
3307 	if (error)
3308 		goto bad_swap_unlock_inode;
3309 
3310 	nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3311 		cluster_info, maxpages, &span);
3312 	if (unlikely(nr_extents < 0)) {
3313 		error = nr_extents;
3314 		goto bad_swap_unlock_inode;
3315 	}
3316 	/* frontswap enabled? set up bit-per-page map for frontswap */
3317 	if (IS_ENABLED(CONFIG_FRONTSWAP))
3318 		frontswap_map = kvcalloc(BITS_TO_LONGS(maxpages),
3319 					 sizeof(long),
3320 					 GFP_KERNEL);
3321 
3322 	if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3323 		/*
3324 		 * When discard is enabled for swap with no particular
3325 		 * policy flagged, we set all swap discard flags here in
3326 		 * order to sustain backward compatibility with older
3327 		 * swapon(8) releases.
3328 		 */
3329 		p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3330 			     SWP_PAGE_DISCARD);
3331 
3332 		/*
3333 		 * By flagging sys_swapon, a sysadmin can tell us to
3334 		 * either do single-time area discards only, or to just
3335 		 * perform discards for released swap page-clusters.
3336 		 * Now it's time to adjust the p->flags accordingly.
3337 		 */
3338 		if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3339 			p->flags &= ~SWP_PAGE_DISCARD;
3340 		else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3341 			p->flags &= ~SWP_AREA_DISCARD;
3342 
3343 		/* issue a swapon-time discard if it's still required */
3344 		if (p->flags & SWP_AREA_DISCARD) {
3345 			int err = discard_swap(p);
3346 			if (unlikely(err))
3347 				pr_err("swapon: discard_swap(%p): %d\n",
3348 					p, err);
3349 		}
3350 	}
3351 
3352 	error = init_swap_address_space(p->type, maxpages);
3353 	if (error)
3354 		goto bad_swap_unlock_inode;
3355 
3356 	/*
3357 	 * Flush any pending IO and dirty mappings before we start using this
3358 	 * swap device.
3359 	 */
3360 	inode->i_flags |= S_SWAPFILE;
3361 	error = inode_drain_writes(inode);
3362 	if (error) {
3363 		inode->i_flags &= ~S_SWAPFILE;
3364 		goto free_swap_address_space;
3365 	}
3366 
3367 	mutex_lock(&swapon_mutex);
3368 	prio = -1;
3369 	if (swap_flags & SWAP_FLAG_PREFER)
3370 		prio =
3371 		  (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3372 	enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3373 
3374 	pr_info("Adding %uk swap on %s.  Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3375 		p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3376 		nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3377 		(p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3378 		(p->flags & SWP_DISCARDABLE) ? "D" : "",
3379 		(p->flags & SWP_AREA_DISCARD) ? "s" : "",
3380 		(p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3381 		(frontswap_map) ? "FS" : "");
3382 
3383 	mutex_unlock(&swapon_mutex);
3384 	atomic_inc(&proc_poll_event);
3385 	wake_up_interruptible(&proc_poll_wait);
3386 
3387 	error = 0;
3388 	goto out;
3389 free_swap_address_space:
3390 	exit_swap_address_space(p->type);
3391 bad_swap_unlock_inode:
3392 	inode_unlock(inode);
3393 bad_swap:
3394 	free_percpu(p->percpu_cluster);
3395 	p->percpu_cluster = NULL;
3396 	free_percpu(p->cluster_next_cpu);
3397 	p->cluster_next_cpu = NULL;
3398 	if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3399 		set_blocksize(p->bdev, p->old_block_size);
3400 		blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3401 	}
3402 	inode = NULL;
3403 	destroy_swap_extents(p);
3404 	swap_cgroup_swapoff(p->type);
3405 	spin_lock(&swap_lock);
3406 	p->swap_file = NULL;
3407 	p->flags = 0;
3408 	spin_unlock(&swap_lock);
3409 	vfree(swap_map);
3410 	kvfree(cluster_info);
3411 	kvfree(frontswap_map);
3412 	if (inced_nr_rotate_swap)
3413 		atomic_dec(&nr_rotate_swap);
3414 	if (swap_file)
3415 		filp_close(swap_file, NULL);
3416 out:
3417 	if (page && !IS_ERR(page)) {
3418 		kunmap(page);
3419 		put_page(page);
3420 	}
3421 	if (name)
3422 		putname(name);
3423 	if (inode)
3424 		inode_unlock(inode);
3425 	if (!error)
3426 		enable_swap_slots_cache();
3427 	return error;
3428 }
3429 
si_swapinfo(struct sysinfo * val)3430 void si_swapinfo(struct sysinfo *val)
3431 {
3432 	unsigned int type;
3433 	unsigned long nr_to_be_unused = 0;
3434 
3435 	spin_lock(&swap_lock);
3436 	for (type = 0; type < nr_swapfiles; type++) {
3437 		struct swap_info_struct *si = swap_info[type];
3438 
3439 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3440 			nr_to_be_unused += si->inuse_pages;
3441 	}
3442 	val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3443 	val->totalswap = total_swap_pages + nr_to_be_unused;
3444 	spin_unlock(&swap_lock);
3445 }
3446 
3447 #ifdef CONFIG_HYPERHOLD_ZSWAPD
free_swap_is_low(void)3448 bool free_swap_is_low(void)
3449 {
3450 	unsigned int type;
3451 	unsigned long long freeswap = 0;
3452 	unsigned long nr_to_be_unused = 0;
3453 
3454 	spin_lock(&swap_lock);
3455 	for (type = 0; type < nr_swapfiles; type++) {
3456 		struct swap_info_struct *si = swap_info[type];
3457 
3458 		if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3459 			nr_to_be_unused += si->inuse_pages;
3460 	}
3461 	freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3462 	spin_unlock(&swap_lock);
3463 
3464 	return (freeswap < get_free_swap_threshold());
3465 }
3466 EXPORT_SYMBOL(free_swap_is_low);
3467 #endif
3468 
3469 /*
3470  * Verify that a swap entry is valid and increment its swap map count.
3471  *
3472  * Returns error code in following case.
3473  * - success -> 0
3474  * - swp_entry is invalid -> EINVAL
3475  * - swp_entry is migration entry -> EINVAL
3476  * - swap-cache reference is requested but there is already one. -> EEXIST
3477  * - swap-cache reference is requested but the entry is not used. -> ENOENT
3478  * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3479  */
__swap_duplicate(swp_entry_t entry,unsigned char usage)3480 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3481 {
3482 	struct swap_info_struct *p;
3483 	struct swap_cluster_info *ci;
3484 	unsigned long offset;
3485 	unsigned char count;
3486 	unsigned char has_cache;
3487 	int err = -EINVAL;
3488 
3489 	p = get_swap_device(entry);
3490 	if (!p)
3491 		goto out;
3492 
3493 	offset = swp_offset(entry);
3494 	ci = lock_cluster_or_swap_info(p, offset);
3495 
3496 	count = p->swap_map[offset];
3497 
3498 	/*
3499 	 * swapin_readahead() doesn't check if a swap entry is valid, so the
3500 	 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3501 	 */
3502 	if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3503 		err = -ENOENT;
3504 		goto unlock_out;
3505 	}
3506 
3507 	has_cache = count & SWAP_HAS_CACHE;
3508 	count &= ~SWAP_HAS_CACHE;
3509 	err = 0;
3510 
3511 	if (usage == SWAP_HAS_CACHE) {
3512 
3513 		/* set SWAP_HAS_CACHE if there is no cache and entry is used */
3514 		if (!has_cache && count)
3515 			has_cache = SWAP_HAS_CACHE;
3516 		else if (has_cache)		/* someone else added cache */
3517 			err = -EEXIST;
3518 		else				/* no users remaining */
3519 			err = -ENOENT;
3520 
3521 	} else if (count || has_cache) {
3522 
3523 		if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3524 			count += usage;
3525 		else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3526 			err = -EINVAL;
3527 		else if (swap_count_continued(p, offset, count))
3528 			count = COUNT_CONTINUED;
3529 		else
3530 			err = -ENOMEM;
3531 	} else
3532 		err = -ENOENT;			/* unused swap entry */
3533 
3534 	WRITE_ONCE(p->swap_map[offset], count | has_cache);
3535 
3536 unlock_out:
3537 	unlock_cluster_or_swap_info(p, ci);
3538 out:
3539 	if (p)
3540 		put_swap_device(p);
3541 	return err;
3542 }
3543 
3544 /*
3545  * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3546  * (in which case its reference count is never incremented).
3547  */
swap_shmem_alloc(swp_entry_t entry)3548 void swap_shmem_alloc(swp_entry_t entry)
3549 {
3550 	__swap_duplicate(entry, SWAP_MAP_SHMEM);
3551 }
3552 
3553 /*
3554  * Increase reference count of swap entry by 1.
3555  * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3556  * but could not be atomically allocated.  Returns 0, just as if it succeeded,
3557  * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3558  * might occur if a page table entry has got corrupted.
3559  */
swap_duplicate(swp_entry_t entry)3560 int swap_duplicate(swp_entry_t entry)
3561 {
3562 	int err = 0;
3563 
3564 	while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3565 		err = add_swap_count_continuation(entry, GFP_ATOMIC);
3566 	return err;
3567 }
3568 
3569 /*
3570  * @entry: swap entry for which we allocate swap cache.
3571  *
3572  * Called when allocating swap cache for existing swap entry,
3573  * This can return error codes. Returns 0 at success.
3574  * -EEXIST means there is a swap cache.
3575  * Note: return code is different from swap_duplicate().
3576  */
swapcache_prepare(swp_entry_t entry)3577 int swapcache_prepare(swp_entry_t entry)
3578 {
3579 	return __swap_duplicate(entry, SWAP_HAS_CACHE);
3580 }
3581 
swp_swap_info(swp_entry_t entry)3582 struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3583 {
3584 	return swap_type_to_swap_info(swp_type(entry));
3585 }
3586 
page_swap_info(struct page * page)3587 struct swap_info_struct *page_swap_info(struct page *page)
3588 {
3589 	swp_entry_t entry = { .val = page_private(page) };
3590 	return swp_swap_info(entry);
3591 }
3592 
3593 /*
3594  * out-of-line __page_file_ methods to avoid include hell.
3595  */
__page_file_mapping(struct page * page)3596 struct address_space *__page_file_mapping(struct page *page)
3597 {
3598 	return page_swap_info(page)->swap_file->f_mapping;
3599 }
3600 EXPORT_SYMBOL_GPL(__page_file_mapping);
3601 
__page_file_index(struct page * page)3602 pgoff_t __page_file_index(struct page *page)
3603 {
3604 	swp_entry_t swap = { .val = page_private(page) };
3605 	return swp_offset(swap);
3606 }
3607 EXPORT_SYMBOL_GPL(__page_file_index);
3608 
3609 /*
3610  * add_swap_count_continuation - called when a swap count is duplicated
3611  * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3612  * page of the original vmalloc'ed swap_map, to hold the continuation count
3613  * (for that entry and for its neighbouring PAGE_SIZE swap entries).  Called
3614  * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3615  *
3616  * These continuation pages are seldom referenced: the common paths all work
3617  * on the original swap_map, only referring to a continuation page when the
3618  * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3619  *
3620  * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3621  * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3622  * can be called after dropping locks.
3623  */
add_swap_count_continuation(swp_entry_t entry,gfp_t gfp_mask)3624 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3625 {
3626 	struct swap_info_struct *si;
3627 	struct swap_cluster_info *ci;
3628 	struct page *head;
3629 	struct page *page;
3630 	struct page *list_page;
3631 	pgoff_t offset;
3632 	unsigned char count;
3633 	int ret = 0;
3634 
3635 	/*
3636 	 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3637 	 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3638 	 */
3639 	page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3640 
3641 	si = get_swap_device(entry);
3642 	if (!si) {
3643 		/*
3644 		 * An acceptable race has occurred since the failing
3645 		 * __swap_duplicate(): the swap device may be swapoff
3646 		 */
3647 		goto outer;
3648 	}
3649 	spin_lock(&si->lock);
3650 
3651 	offset = swp_offset(entry);
3652 
3653 	ci = lock_cluster(si, offset);
3654 
3655 	count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3656 
3657 	if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3658 		/*
3659 		 * The higher the swap count, the more likely it is that tasks
3660 		 * will race to add swap count continuation: we need to avoid
3661 		 * over-provisioning.
3662 		 */
3663 		goto out;
3664 	}
3665 
3666 	if (!page) {
3667 		ret = -ENOMEM;
3668 		goto out;
3669 	}
3670 
3671 	/*
3672 	 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3673 	 * no architecture is using highmem pages for kernel page tables: so it
3674 	 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3675 	 */
3676 	head = vmalloc_to_page(si->swap_map + offset);
3677 	offset &= ~PAGE_MASK;
3678 
3679 	spin_lock(&si->cont_lock);
3680 	/*
3681 	 * Page allocation does not initialize the page's lru field,
3682 	 * but it does always reset its private field.
3683 	 */
3684 	if (!page_private(head)) {
3685 		BUG_ON(count & COUNT_CONTINUED);
3686 		INIT_LIST_HEAD(&head->lru);
3687 		set_page_private(head, SWP_CONTINUED);
3688 		si->flags |= SWP_CONTINUED;
3689 	}
3690 
3691 	list_for_each_entry(list_page, &head->lru, lru) {
3692 		unsigned char *map;
3693 
3694 		/*
3695 		 * If the previous map said no continuation, but we've found
3696 		 * a continuation page, free our allocation and use this one.
3697 		 */
3698 		if (!(count & COUNT_CONTINUED))
3699 			goto out_unlock_cont;
3700 
3701 		map = kmap_atomic(list_page) + offset;
3702 		count = *map;
3703 		kunmap_atomic(map);
3704 
3705 		/*
3706 		 * If this continuation count now has some space in it,
3707 		 * free our allocation and use this one.
3708 		 */
3709 		if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3710 			goto out_unlock_cont;
3711 	}
3712 
3713 	list_add_tail(&page->lru, &head->lru);
3714 	page = NULL;			/* now it's attached, don't free it */
3715 out_unlock_cont:
3716 	spin_unlock(&si->cont_lock);
3717 out:
3718 	unlock_cluster(ci);
3719 	spin_unlock(&si->lock);
3720 	put_swap_device(si);
3721 outer:
3722 	if (page)
3723 		__free_page(page);
3724 	return ret;
3725 }
3726 
3727 /*
3728  * swap_count_continued - when the original swap_map count is incremented
3729  * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3730  * into, carry if so, or else fail until a new continuation page is allocated;
3731  * when the original swap_map count is decremented from 0 with continuation,
3732  * borrow from the continuation and report whether it still holds more.
3733  * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3734  * lock.
3735  */
swap_count_continued(struct swap_info_struct * si,pgoff_t offset,unsigned char count)3736 static bool swap_count_continued(struct swap_info_struct *si,
3737 				 pgoff_t offset, unsigned char count)
3738 {
3739 	struct page *head;
3740 	struct page *page;
3741 	unsigned char *map;
3742 	bool ret;
3743 
3744 	head = vmalloc_to_page(si->swap_map + offset);
3745 	if (page_private(head) != SWP_CONTINUED) {
3746 		BUG_ON(count & COUNT_CONTINUED);
3747 		return false;		/* need to add count continuation */
3748 	}
3749 
3750 	spin_lock(&si->cont_lock);
3751 	offset &= ~PAGE_MASK;
3752 	page = list_next_entry(head, lru);
3753 	map = kmap_atomic(page) + offset;
3754 
3755 	if (count == SWAP_MAP_MAX)	/* initial increment from swap_map */
3756 		goto init_map;		/* jump over SWAP_CONT_MAX checks */
3757 
3758 	if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3759 		/*
3760 		 * Think of how you add 1 to 999
3761 		 */
3762 		while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3763 			kunmap_atomic(map);
3764 			page = list_next_entry(page, lru);
3765 			BUG_ON(page == head);
3766 			map = kmap_atomic(page) + offset;
3767 		}
3768 		if (*map == SWAP_CONT_MAX) {
3769 			kunmap_atomic(map);
3770 			page = list_next_entry(page, lru);
3771 			if (page == head) {
3772 				ret = false;	/* add count continuation */
3773 				goto out;
3774 			}
3775 			map = kmap_atomic(page) + offset;
3776 init_map:		*map = 0;		/* we didn't zero the page */
3777 		}
3778 		*map += 1;
3779 		kunmap_atomic(map);
3780 		while ((page = list_prev_entry(page, lru)) != head) {
3781 			map = kmap_atomic(page) + offset;
3782 			*map = COUNT_CONTINUED;
3783 			kunmap_atomic(map);
3784 		}
3785 		ret = true;			/* incremented */
3786 
3787 	} else {				/* decrementing */
3788 		/*
3789 		 * Think of how you subtract 1 from 1000
3790 		 */
3791 		BUG_ON(count != COUNT_CONTINUED);
3792 		while (*map == COUNT_CONTINUED) {
3793 			kunmap_atomic(map);
3794 			page = list_next_entry(page, lru);
3795 			BUG_ON(page == head);
3796 			map = kmap_atomic(page) + offset;
3797 		}
3798 		BUG_ON(*map == 0);
3799 		*map -= 1;
3800 		if (*map == 0)
3801 			count = 0;
3802 		kunmap_atomic(map);
3803 		while ((page = list_prev_entry(page, lru)) != head) {
3804 			map = kmap_atomic(page) + offset;
3805 			*map = SWAP_CONT_MAX | count;
3806 			count = COUNT_CONTINUED;
3807 			kunmap_atomic(map);
3808 		}
3809 		ret = count == COUNT_CONTINUED;
3810 	}
3811 out:
3812 	spin_unlock(&si->cont_lock);
3813 	return ret;
3814 }
3815 
3816 /*
3817  * free_swap_count_continuations - swapoff free all the continuation pages
3818  * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3819  */
free_swap_count_continuations(struct swap_info_struct * si)3820 static void free_swap_count_continuations(struct swap_info_struct *si)
3821 {
3822 	pgoff_t offset;
3823 
3824 	for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3825 		struct page *head;
3826 		head = vmalloc_to_page(si->swap_map + offset);
3827 		if (page_private(head)) {
3828 			struct page *page, *next;
3829 
3830 			list_for_each_entry_safe(page, next, &head->lru, lru) {
3831 				list_del(&page->lru);
3832 				__free_page(page);
3833 			}
3834 		}
3835 	}
3836 }
3837 
3838 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
cgroup_throttle_swaprate(struct page * page,gfp_t gfp_mask)3839 void cgroup_throttle_swaprate(struct page *page, gfp_t gfp_mask)
3840 {
3841 	struct swap_info_struct *si, *next;
3842 	int nid = page_to_nid(page);
3843 
3844 	if (!(gfp_mask & __GFP_IO))
3845 		return;
3846 
3847 	if (!blk_cgroup_congested())
3848 		return;
3849 
3850 	/*
3851 	 * We've already scheduled a throttle, avoid taking the global swap
3852 	 * lock.
3853 	 */
3854 	if (current->throttle_queue)
3855 		return;
3856 
3857 	spin_lock(&swap_avail_lock);
3858 	plist_for_each_entry_safe(si, next, &swap_avail_heads[nid],
3859 				  avail_lists[nid]) {
3860 		if (si->bdev) {
3861 			blkcg_schedule_throttle(bdev_get_queue(si->bdev), true);
3862 			break;
3863 		}
3864 	}
3865 	spin_unlock(&swap_avail_lock);
3866 }
3867 #endif
3868 
swapfile_init(void)3869 static int __init swapfile_init(void)
3870 {
3871 	int nid;
3872 
3873 	swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3874 					 GFP_KERNEL);
3875 	if (!swap_avail_heads) {
3876 		pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3877 		return -ENOMEM;
3878 	}
3879 
3880 	for_each_node(nid)
3881 		plist_head_init(&swap_avail_heads[nid]);
3882 
3883 	return 0;
3884 }
3885 subsys_initcall(swapfile_init);
3886