• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2001-2011 Michael Niedermayer <michaelni@gmx.at>
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include <stdint.h>
22 #include <stdio.h>
23 #include <string.h>
24 
25 #include "libavutil/avassert.h"
26 #include "libavutil/bswap.h"
27 #include "libavutil/common.h"
28 #include "libavutil/cpu.h"
29 #include "libavutil/intreadwrite.h"
30 #include "libavutil/mem_internal.h"
31 #include "libavutil/pixdesc.h"
32 #include "config.h"
33 #include "swscale_internal.h"
34 #include "swscale.h"
35 
36 DECLARE_ALIGNED(8, const uint8_t, ff_dither_8x8_128)[9][8] = {
37     {  36, 68,  60, 92,  34, 66,  58, 90, },
38     { 100,  4, 124, 28,  98,  2, 122, 26, },
39     {  52, 84,  44, 76,  50, 82,  42, 74, },
40     { 116, 20, 108, 12, 114, 18, 106, 10, },
41     {  32, 64,  56, 88,  38, 70,  62, 94, },
42     {  96,  0, 120, 24, 102,  6, 126, 30, },
43     {  48, 80,  40, 72,  54, 86,  46, 78, },
44     { 112, 16, 104,  8, 118, 22, 110, 14, },
45     {  36, 68,  60, 92,  34, 66,  58, 90, },
46 };
47 
48 DECLARE_ALIGNED(8, static const uint8_t, sws_pb_64)[8] = {
49     64, 64, 64, 64, 64, 64, 64, 64
50 };
51 
fillPlane(uint8_t * plane,int stride,int width,int height,int y,uint8_t val)52 static av_always_inline void fillPlane(uint8_t *plane, int stride, int width,
53                                        int height, int y, uint8_t val)
54 {
55     int i;
56     uint8_t *ptr = plane + stride * y;
57     for (i = 0; i < height; i++) {
58         memset(ptr, val, width);
59         ptr += stride;
60     }
61 }
62 
hScale16To19_c(SwsContext * c,int16_t * _dst,int dstW,const uint8_t * _src,const int16_t * filter,const int32_t * filterPos,int filterSize)63 static void hScale16To19_c(SwsContext *c, int16_t *_dst, int dstW,
64                            const uint8_t *_src, const int16_t *filter,
65                            const int32_t *filterPos, int filterSize)
66 {
67     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat);
68     int i;
69     int32_t *dst        = (int32_t *) _dst;
70     const uint16_t *src = (const uint16_t *) _src;
71     int bits            = desc->comp[0].depth - 1;
72     int sh              = bits - 4;
73 
74     if ((isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8) && desc->comp[0].depth<16) {
75         sh = 9;
76     } else if (desc->flags & AV_PIX_FMT_FLAG_FLOAT) { /* float input are process like uint 16bpc */
77         sh = 16 - 1 - 4;
78     }
79 
80     for (i = 0; i < dstW; i++) {
81         int j;
82         int srcPos = filterPos[i];
83         int val    = 0;
84 
85         for (j = 0; j < filterSize; j++) {
86             val += src[srcPos + j] * filter[filterSize * i + j];
87         }
88         // filter=14 bit, input=16 bit, output=30 bit, >> 11 makes 19 bit
89         dst[i] = FFMIN(val >> sh, (1 << 19) - 1);
90     }
91 }
92 
hScale16To15_c(SwsContext * c,int16_t * dst,int dstW,const uint8_t * _src,const int16_t * filter,const int32_t * filterPos,int filterSize)93 static void hScale16To15_c(SwsContext *c, int16_t *dst, int dstW,
94                            const uint8_t *_src, const int16_t *filter,
95                            const int32_t *filterPos, int filterSize)
96 {
97     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat);
98     int i;
99     const uint16_t *src = (const uint16_t *) _src;
100     int sh              = desc->comp[0].depth - 1;
101 
102     if (sh<15) {
103         sh = isAnyRGB(c->srcFormat) || c->srcFormat==AV_PIX_FMT_PAL8 ? 13 : (desc->comp[0].depth - 1);
104     } else if (desc->flags & AV_PIX_FMT_FLAG_FLOAT) { /* float input are process like uint 16bpc */
105         sh = 16 - 1;
106     }
107 
108     for (i = 0; i < dstW; i++) {
109         int j;
110         int srcPos = filterPos[i];
111         int val    = 0;
112 
113         for (j = 0; j < filterSize; j++) {
114             val += src[srcPos + j] * filter[filterSize * i + j];
115         }
116         // filter=14 bit, input=16 bit, output=30 bit, >> 15 makes 15 bit
117         dst[i] = FFMIN(val >> sh, (1 << 15) - 1);
118     }
119 }
120 
121 // bilinear / bicubic scaling
hScale8To15_c(SwsContext * c,int16_t * dst,int dstW,const uint8_t * src,const int16_t * filter,const int32_t * filterPos,int filterSize)122 static void hScale8To15_c(SwsContext *c, int16_t *dst, int dstW,
123                           const uint8_t *src, const int16_t *filter,
124                           const int32_t *filterPos, int filterSize)
125 {
126     int i;
127     for (i = 0; i < dstW; i++) {
128         int j;
129         int srcPos = filterPos[i];
130         int val    = 0;
131         for (j = 0; j < filterSize; j++) {
132             val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
133         }
134         dst[i] = FFMIN(val >> 7, (1 << 15) - 1); // the cubic equation does overflow ...
135     }
136 }
137 
hScale8To19_c(SwsContext * c,int16_t * _dst,int dstW,const uint8_t * src,const int16_t * filter,const int32_t * filterPos,int filterSize)138 static void hScale8To19_c(SwsContext *c, int16_t *_dst, int dstW,
139                           const uint8_t *src, const int16_t *filter,
140                           const int32_t *filterPos, int filterSize)
141 {
142     int i;
143     int32_t *dst = (int32_t *) _dst;
144     for (i = 0; i < dstW; i++) {
145         int j;
146         int srcPos = filterPos[i];
147         int val    = 0;
148         for (j = 0; j < filterSize; j++) {
149             val += ((int)src[srcPos + j]) * filter[filterSize * i + j];
150         }
151         dst[i] = FFMIN(val >> 3, (1 << 19) - 1); // the cubic equation does overflow ...
152     }
153 }
154 
155 // FIXME all pal and rgb srcFormats could do this conversion as well
156 // FIXME all scalers more complex than bilinear could do half of this transform
chrRangeToJpeg_c(int16_t * dstU,int16_t * dstV,int width)157 static void chrRangeToJpeg_c(int16_t *dstU, int16_t *dstV, int width)
158 {
159     int i;
160     for (i = 0; i < width; i++) {
161         dstU[i] = (FFMIN(dstU[i], 30775) * 4663 - 9289992) >> 12; // -264
162         dstV[i] = (FFMIN(dstV[i], 30775) * 4663 - 9289992) >> 12; // -264
163     }
164 }
165 
chrRangeFromJpeg_c(int16_t * dstU,int16_t * dstV,int width)166 static void chrRangeFromJpeg_c(int16_t *dstU, int16_t *dstV, int width)
167 {
168     int i;
169     for (i = 0; i < width; i++) {
170         dstU[i] = (dstU[i] * 1799 + 4081085) >> 11; // 1469
171         dstV[i] = (dstV[i] * 1799 + 4081085) >> 11; // 1469
172     }
173 }
174 
lumRangeToJpeg_c(int16_t * dst,int width)175 static void lumRangeToJpeg_c(int16_t *dst, int width)
176 {
177     int i;
178     for (i = 0; i < width; i++)
179         dst[i] = (FFMIN(dst[i], 30189) * 19077 - 39057361) >> 14;
180 }
181 
lumRangeFromJpeg_c(int16_t * dst,int width)182 static void lumRangeFromJpeg_c(int16_t *dst, int width)
183 {
184     int i;
185     for (i = 0; i < width; i++)
186         dst[i] = (dst[i] * 14071 + 33561947) >> 14;
187 }
188 
chrRangeToJpeg16_c(int16_t * _dstU,int16_t * _dstV,int width)189 static void chrRangeToJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
190 {
191     int i;
192     int32_t *dstU = (int32_t *) _dstU;
193     int32_t *dstV = (int32_t *) _dstV;
194     for (i = 0; i < width; i++) {
195         dstU[i] = (FFMIN(dstU[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
196         dstV[i] = (FFMIN(dstV[i], 30775 << 4) * 4663 - (9289992 << 4)) >> 12; // -264
197     }
198 }
199 
chrRangeFromJpeg16_c(int16_t * _dstU,int16_t * _dstV,int width)200 static void chrRangeFromJpeg16_c(int16_t *_dstU, int16_t *_dstV, int width)
201 {
202     int i;
203     int32_t *dstU = (int32_t *) _dstU;
204     int32_t *dstV = (int32_t *) _dstV;
205     for (i = 0; i < width; i++) {
206         dstU[i] = (dstU[i] * 1799 + (4081085 << 4)) >> 11; // 1469
207         dstV[i] = (dstV[i] * 1799 + (4081085 << 4)) >> 11; // 1469
208     }
209 }
210 
lumRangeToJpeg16_c(int16_t * _dst,int width)211 static void lumRangeToJpeg16_c(int16_t *_dst, int width)
212 {
213     int i;
214     int32_t *dst = (int32_t *) _dst;
215     for (i = 0; i < width; i++) {
216         dst[i] = ((int)(FFMIN(dst[i], 30189 << 4) * 4769U - (39057361 << 2))) >> 12;
217     }
218 }
219 
lumRangeFromJpeg16_c(int16_t * _dst,int width)220 static void lumRangeFromJpeg16_c(int16_t *_dst, int width)
221 {
222     int i;
223     int32_t *dst = (int32_t *) _dst;
224     for (i = 0; i < width; i++)
225         dst[i] = (dst[i]*(14071/4) + (33561947<<4)/4)>>12;
226 }
227 
228 
229 #define DEBUG_SWSCALE_BUFFERS 0
230 #define DEBUG_BUFFERS(...)                      \
231     if (DEBUG_SWSCALE_BUFFERS)                  \
232         av_log(c, AV_LOG_DEBUG, __VA_ARGS__)
233 
swscale(SwsContext * c,const uint8_t * src[],int srcStride[],int srcSliceY,int srcSliceH,uint8_t * dst[],int dstStride[],int dstSliceY,int dstSliceH)234 static int swscale(SwsContext *c, const uint8_t *src[],
235                    int srcStride[], int srcSliceY, int srcSliceH,
236                    uint8_t *dst[], int dstStride[],
237                    int dstSliceY, int dstSliceH)
238 {
239     const int scale_dst = dstSliceY > 0 || dstSliceH < c->dstH;
240 
241     /* load a few things into local vars to make the code more readable?
242      * and faster */
243     const int dstW                   = c->dstW;
244     int dstH                         = c->dstH;
245 
246     const enum AVPixelFormat dstFormat = c->dstFormat;
247     const int flags                  = c->flags;
248     int32_t *vLumFilterPos           = c->vLumFilterPos;
249     int32_t *vChrFilterPos           = c->vChrFilterPos;
250 
251     const int vLumFilterSize         = c->vLumFilterSize;
252     const int vChrFilterSize         = c->vChrFilterSize;
253 
254     yuv2planar1_fn yuv2plane1        = c->yuv2plane1;
255     yuv2planarX_fn yuv2planeX        = c->yuv2planeX;
256     yuv2interleavedX_fn yuv2nv12cX   = c->yuv2nv12cX;
257     yuv2packed1_fn yuv2packed1       = c->yuv2packed1;
258     yuv2packed2_fn yuv2packed2       = c->yuv2packed2;
259     yuv2packedX_fn yuv2packedX       = c->yuv2packedX;
260     yuv2anyX_fn yuv2anyX             = c->yuv2anyX;
261     const int chrSrcSliceY           =                srcSliceY >> c->chrSrcVSubSample;
262     const int chrSrcSliceH           = AV_CEIL_RSHIFT(srcSliceH,   c->chrSrcVSubSample);
263     int should_dither                = isNBPS(c->srcFormat) ||
264                                        is16BPS(c->srcFormat);
265     int lastDstY;
266 
267     /* vars which will change and which we need to store back in the context */
268     int dstY         = c->dstY;
269     int lastInLumBuf = c->lastInLumBuf;
270     int lastInChrBuf = c->lastInChrBuf;
271 
272     int lumStart = 0;
273     int lumEnd = c->descIndex[0];
274     int chrStart = lumEnd;
275     int chrEnd = c->descIndex[1];
276     int vStart = chrEnd;
277     int vEnd = c->numDesc;
278     SwsSlice *src_slice = &c->slice[lumStart];
279     SwsSlice *hout_slice = &c->slice[c->numSlice-2];
280     SwsSlice *vout_slice = &c->slice[c->numSlice-1];
281     SwsFilterDescriptor *desc = c->desc;
282 
283     int needAlpha = c->needAlpha;
284 
285     int hasLumHoles = 1;
286     int hasChrHoles = 1;
287 
288     if (isPacked(c->srcFormat)) {
289         src[1] =
290         src[2] =
291         src[3] = src[0];
292         srcStride[1] =
293         srcStride[2] =
294         srcStride[3] = srcStride[0];
295     }
296     srcStride[1] *= 1 << c->vChrDrop;
297     srcStride[2] *= 1 << c->vChrDrop;
298 
299     DEBUG_BUFFERS("swscale() %p[%d] %p[%d] %p[%d] %p[%d] -> %p[%d] %p[%d] %p[%d] %p[%d]\n",
300                   src[0], srcStride[0], src[1], srcStride[1],
301                   src[2], srcStride[2], src[3], srcStride[3],
302                   dst[0], dstStride[0], dst[1], dstStride[1],
303                   dst[2], dstStride[2], dst[3], dstStride[3]);
304     DEBUG_BUFFERS("srcSliceY: %d srcSliceH: %d dstY: %d dstH: %d\n",
305                   srcSliceY, srcSliceH, dstY, dstH);
306     DEBUG_BUFFERS("vLumFilterSize: %d vChrFilterSize: %d\n",
307                   vLumFilterSize, vChrFilterSize);
308 
309     if (dstStride[0]&15 || dstStride[1]&15 ||
310         dstStride[2]&15 || dstStride[3]&15) {
311         SwsContext *const ctx = c->parent ? c->parent : c;
312         if (flags & SWS_PRINT_INFO &&
313             !atomic_exchange_explicit(&ctx->stride_unaligned_warned, 1, memory_order_relaxed)) {
314             av_log(c, AV_LOG_WARNING,
315                    "Warning: dstStride is not aligned!\n"
316                    "         ->cannot do aligned memory accesses anymore\n");
317         }
318     }
319 
320 #if ARCH_X86
321     if (   (uintptr_t)dst[0]&15 || (uintptr_t)dst[1]&15 || (uintptr_t)dst[2]&15
322         || (uintptr_t)src[0]&15 || (uintptr_t)src[1]&15 || (uintptr_t)src[2]&15
323         || dstStride[0]&15 || dstStride[1]&15 || dstStride[2]&15 || dstStride[3]&15
324         || srcStride[0]&15 || srcStride[1]&15 || srcStride[2]&15 || srcStride[3]&15
325     ) {
326         SwsContext *const ctx = c->parent ? c->parent : c;
327         int cpu_flags = av_get_cpu_flags();
328         if (flags & SWS_PRINT_INFO && HAVE_MMXEXT && (cpu_flags & AV_CPU_FLAG_SSE2) &&
329             !atomic_exchange_explicit(&ctx->stride_unaligned_warned,1, memory_order_relaxed)) {
330             av_log(c, AV_LOG_WARNING, "Warning: data is not aligned! This can lead to a speed loss\n");
331         }
332     }
333 #endif
334 
335     if (scale_dst) {
336         dstY         = dstSliceY;
337         dstH         = dstY + dstSliceH;
338         lastInLumBuf = -1;
339         lastInChrBuf = -1;
340     } else if (srcSliceY == 0) {
341         /* Note the user might start scaling the picture in the middle so this
342          * will not get executed. This is not really intended but works
343          * currently, so people might do it. */
344         dstY         = 0;
345         lastInLumBuf = -1;
346         lastInChrBuf = -1;
347     }
348 
349     if (!should_dither) {
350         c->chrDither8 = c->lumDither8 = sws_pb_64;
351     }
352     lastDstY = dstY;
353 
354     ff_init_vscale_pfn(c, yuv2plane1, yuv2planeX, yuv2nv12cX,
355                    yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, c->use_mmx_vfilter);
356 
357     ff_init_slice_from_src(src_slice, (uint8_t**)src, srcStride, c->srcW,
358             srcSliceY, srcSliceH, chrSrcSliceY, chrSrcSliceH, 1);
359 
360     ff_init_slice_from_src(vout_slice, (uint8_t**)dst, dstStride, c->dstW,
361             dstY, dstSliceH, dstY >> c->chrDstVSubSample,
362             AV_CEIL_RSHIFT(dstSliceH, c->chrDstVSubSample), scale_dst);
363     if (srcSliceY == 0) {
364         hout_slice->plane[0].sliceY = lastInLumBuf + 1;
365         hout_slice->plane[1].sliceY = lastInChrBuf + 1;
366         hout_slice->plane[2].sliceY = lastInChrBuf + 1;
367         hout_slice->plane[3].sliceY = lastInLumBuf + 1;
368 
369         hout_slice->plane[0].sliceH =
370         hout_slice->plane[1].sliceH =
371         hout_slice->plane[2].sliceH =
372         hout_slice->plane[3].sliceH = 0;
373         hout_slice->width = dstW;
374     }
375 
376     for (; dstY < dstH; dstY++) {
377         const int chrDstY = dstY >> c->chrDstVSubSample;
378         int use_mmx_vfilter= c->use_mmx_vfilter;
379 
380         // First line needed as input
381         const int firstLumSrcY  = FFMAX(1 - vLumFilterSize, vLumFilterPos[dstY]);
382         const int firstLumSrcY2 = FFMAX(1 - vLumFilterSize, vLumFilterPos[FFMIN(dstY | ((1 << c->chrDstVSubSample) - 1), c->dstH - 1)]);
383         // First line needed as input
384         const int firstChrSrcY  = FFMAX(1 - vChrFilterSize, vChrFilterPos[chrDstY]);
385 
386         // Last line needed as input
387         int lastLumSrcY  = FFMIN(c->srcH,    firstLumSrcY  + vLumFilterSize) - 1;
388         int lastLumSrcY2 = FFMIN(c->srcH,    firstLumSrcY2 + vLumFilterSize) - 1;
389         int lastChrSrcY  = FFMIN(c->chrSrcH, firstChrSrcY  + vChrFilterSize) - 1;
390         int enough_lines;
391 
392         int i;
393         int posY, cPosY, firstPosY, lastPosY, firstCPosY, lastCPosY;
394 
395         // handle holes (FAST_BILINEAR & weird filters)
396         if (firstLumSrcY > lastInLumBuf) {
397 
398             hasLumHoles = lastInLumBuf != firstLumSrcY - 1;
399             if (hasLumHoles) {
400                 hout_slice->plane[0].sliceY = firstLumSrcY;
401                 hout_slice->plane[3].sliceY = firstLumSrcY;
402                 hout_slice->plane[0].sliceH =
403                 hout_slice->plane[3].sliceH = 0;
404             }
405 
406             lastInLumBuf = firstLumSrcY - 1;
407         }
408         if (firstChrSrcY > lastInChrBuf) {
409 
410             hasChrHoles = lastInChrBuf != firstChrSrcY - 1;
411             if (hasChrHoles) {
412                 hout_slice->plane[1].sliceY = firstChrSrcY;
413                 hout_slice->plane[2].sliceY = firstChrSrcY;
414                 hout_slice->plane[1].sliceH =
415                 hout_slice->plane[2].sliceH = 0;
416             }
417 
418             lastInChrBuf = firstChrSrcY - 1;
419         }
420 
421         DEBUG_BUFFERS("dstY: %d\n", dstY);
422         DEBUG_BUFFERS("\tfirstLumSrcY: %d lastLumSrcY: %d lastInLumBuf: %d\n",
423                       firstLumSrcY, lastLumSrcY, lastInLumBuf);
424         DEBUG_BUFFERS("\tfirstChrSrcY: %d lastChrSrcY: %d lastInChrBuf: %d\n",
425                       firstChrSrcY, lastChrSrcY, lastInChrBuf);
426 
427         // Do we have enough lines in this slice to output the dstY line
428         enough_lines = lastLumSrcY2 < srcSliceY + srcSliceH &&
429                        lastChrSrcY < AV_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample);
430 
431         if (!enough_lines) {
432             lastLumSrcY = srcSliceY + srcSliceH - 1;
433             lastChrSrcY = chrSrcSliceY + chrSrcSliceH - 1;
434             DEBUG_BUFFERS("buffering slice: lastLumSrcY %d lastChrSrcY %d\n",
435                           lastLumSrcY, lastChrSrcY);
436         }
437 
438         av_assert0((lastLumSrcY - firstLumSrcY + 1) <= hout_slice->plane[0].available_lines);
439         av_assert0((lastChrSrcY - firstChrSrcY + 1) <= hout_slice->plane[1].available_lines);
440 
441 
442         posY = hout_slice->plane[0].sliceY + hout_slice->plane[0].sliceH;
443         if (posY <= lastLumSrcY && !hasLumHoles) {
444             firstPosY = FFMAX(firstLumSrcY, posY);
445             lastPosY = FFMIN(firstLumSrcY + hout_slice->plane[0].available_lines - 1, srcSliceY + srcSliceH - 1);
446         } else {
447             firstPosY = posY;
448             lastPosY = lastLumSrcY;
449         }
450 
451         cPosY = hout_slice->plane[1].sliceY + hout_slice->plane[1].sliceH;
452         if (cPosY <= lastChrSrcY && !hasChrHoles) {
453             firstCPosY = FFMAX(firstChrSrcY, cPosY);
454             lastCPosY = FFMIN(firstChrSrcY + hout_slice->plane[1].available_lines - 1, AV_CEIL_RSHIFT(srcSliceY + srcSliceH, c->chrSrcVSubSample) - 1);
455         } else {
456             firstCPosY = cPosY;
457             lastCPosY = lastChrSrcY;
458         }
459 
460         ff_rotate_slice(hout_slice, lastPosY, lastCPosY);
461 
462         if (posY < lastLumSrcY + 1) {
463             for (i = lumStart; i < lumEnd; ++i)
464                 desc[i].process(c, &desc[i], firstPosY, lastPosY - firstPosY + 1);
465         }
466 
467         lastInLumBuf = lastLumSrcY;
468 
469         if (cPosY < lastChrSrcY + 1) {
470             for (i = chrStart; i < chrEnd; ++i)
471                 desc[i].process(c, &desc[i], firstCPosY, lastCPosY - firstCPosY + 1);
472         }
473 
474         lastInChrBuf = lastChrSrcY;
475 
476         if (!enough_lines)
477             break;  // we can't output a dstY line so let's try with the next slice
478 
479 #if HAVE_MMX_INLINE
480         ff_updateMMXDitherTables(c, dstY);
481 #endif
482         if (should_dither) {
483             c->chrDither8 = ff_dither_8x8_128[chrDstY & 7];
484             c->lumDither8 = ff_dither_8x8_128[dstY    & 7];
485         }
486         if (dstY >= c->dstH - 2) {
487             /* hmm looks like we can't use MMX here without overwriting
488              * this array's tail */
489             ff_sws_init_output_funcs(c, &yuv2plane1, &yuv2planeX, &yuv2nv12cX,
490                                      &yuv2packed1, &yuv2packed2, &yuv2packedX, &yuv2anyX);
491             use_mmx_vfilter= 0;
492             ff_init_vscale_pfn(c, yuv2plane1, yuv2planeX, yuv2nv12cX,
493                            yuv2packed1, yuv2packed2, yuv2packedX, yuv2anyX, use_mmx_vfilter);
494         }
495 
496         for (i = vStart; i < vEnd; ++i)
497             desc[i].process(c, &desc[i], dstY, 1);
498     }
499     if (isPlanar(dstFormat) && isALPHA(dstFormat) && !needAlpha) {
500         int offset = lastDstY - dstSliceY;
501         int length = dstW;
502         int height = dstY - lastDstY;
503 
504         if (is16BPS(dstFormat) || isNBPS(dstFormat)) {
505             const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(dstFormat);
506             fillPlane16(dst[3], dstStride[3], length, height, offset,
507                     1, desc->comp[3].depth,
508                     isBE(dstFormat));
509         } else if (is32BPS(dstFormat)) {
510             const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(dstFormat);
511             fillPlane32(dst[3], dstStride[3], length, height, offset,
512                     1, desc->comp[3].depth,
513                     isBE(dstFormat), desc->flags & AV_PIX_FMT_FLAG_FLOAT);
514         } else
515             fillPlane(dst[3], dstStride[3], length, height, offset, 255);
516     }
517 
518 #if HAVE_MMXEXT_INLINE
519     if (av_get_cpu_flags() & AV_CPU_FLAG_MMXEXT)
520         __asm__ volatile ("sfence" ::: "memory");
521 #endif
522     emms_c();
523 
524     /* store changed local vars back in the context */
525     c->dstY         = dstY;
526     c->lastInLumBuf = lastInLumBuf;
527     c->lastInChrBuf = lastInChrBuf;
528 
529     return dstY - lastDstY;
530 }
531 
ff_sws_init_range_convert(SwsContext * c)532 av_cold void ff_sws_init_range_convert(SwsContext *c)
533 {
534     c->lumConvertRange = NULL;
535     c->chrConvertRange = NULL;
536     if (c->srcRange != c->dstRange && !isAnyRGB(c->dstFormat)) {
537         if (c->dstBpc <= 14) {
538             if (c->srcRange) {
539                 c->lumConvertRange = lumRangeFromJpeg_c;
540                 c->chrConvertRange = chrRangeFromJpeg_c;
541             } else {
542                 c->lumConvertRange = lumRangeToJpeg_c;
543                 c->chrConvertRange = chrRangeToJpeg_c;
544             }
545         } else {
546             if (c->srcRange) {
547                 c->lumConvertRange = lumRangeFromJpeg16_c;
548                 c->chrConvertRange = chrRangeFromJpeg16_c;
549             } else {
550                 c->lumConvertRange = lumRangeToJpeg16_c;
551                 c->chrConvertRange = chrRangeToJpeg16_c;
552             }
553         }
554     }
555 }
556 
sws_init_swscale(SwsContext * c)557 static av_cold void sws_init_swscale(SwsContext *c)
558 {
559     enum AVPixelFormat srcFormat = c->srcFormat;
560 
561     ff_sws_init_output_funcs(c, &c->yuv2plane1, &c->yuv2planeX,
562                              &c->yuv2nv12cX, &c->yuv2packed1,
563                              &c->yuv2packed2, &c->yuv2packedX, &c->yuv2anyX);
564 
565     ff_sws_init_input_funcs(c);
566 
567     if (c->srcBpc == 8) {
568         if (c->dstBpc <= 14) {
569             c->hyScale = c->hcScale = hScale8To15_c;
570             if (c->flags & SWS_FAST_BILINEAR) {
571                 c->hyscale_fast = ff_hyscale_fast_c;
572                 c->hcscale_fast = ff_hcscale_fast_c;
573             }
574         } else {
575             c->hyScale = c->hcScale = hScale8To19_c;
576         }
577     } else {
578         c->hyScale = c->hcScale = c->dstBpc > 14 ? hScale16To19_c
579                                                  : hScale16To15_c;
580     }
581 
582     ff_sws_init_range_convert(c);
583 
584     if (!(isGray(srcFormat) || isGray(c->dstFormat) ||
585           srcFormat == AV_PIX_FMT_MONOBLACK || srcFormat == AV_PIX_FMT_MONOWHITE))
586         c->needs_hcscale = 1;
587 }
588 
ff_sws_init_scale(SwsContext * c)589 void ff_sws_init_scale(SwsContext *c)
590 {
591     sws_init_swscale(c);
592 
593 #if ARCH_PPC
594     ff_sws_init_swscale_ppc(c);
595 #elif ARCH_X86
596     ff_sws_init_swscale_x86(c);
597 #elif ARCH_AARCH64
598     ff_sws_init_swscale_aarch64(c);
599 #elif ARCH_ARM
600     ff_sws_init_swscale_arm(c);
601 #endif
602 }
603 
reset_ptr(const uint8_t * src[],enum AVPixelFormat format)604 static void reset_ptr(const uint8_t *src[], enum AVPixelFormat format)
605 {
606     if (!isALPHA(format))
607         src[3] = NULL;
608     if (!isPlanar(format)) {
609         src[3] = src[2] = NULL;
610 
611         if (!usePal(format))
612             src[1] = NULL;
613     }
614 }
615 
check_image_pointers(const uint8_t * const data[4],enum AVPixelFormat pix_fmt,const int linesizes[4])616 static int check_image_pointers(const uint8_t * const data[4], enum AVPixelFormat pix_fmt,
617                                 const int linesizes[4])
618 {
619     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(pix_fmt);
620     int i;
621 
622     av_assert2(desc);
623 
624     for (i = 0; i < 4; i++) {
625         int plane = desc->comp[i].plane;
626         if (!data[plane] || !linesizes[plane])
627             return 0;
628     }
629 
630     return 1;
631 }
632 
xyz12Torgb48(struct SwsContext * c,uint16_t * dst,const uint16_t * src,int stride,int h)633 static void xyz12Torgb48(struct SwsContext *c, uint16_t *dst,
634                          const uint16_t *src, int stride, int h)
635 {
636     int xp,yp;
637     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->srcFormat);
638 
639     for (yp=0; yp<h; yp++) {
640         for (xp=0; xp+2<stride; xp+=3) {
641             int x, y, z, r, g, b;
642 
643             if (desc->flags & AV_PIX_FMT_FLAG_BE) {
644                 x = AV_RB16(src + xp + 0);
645                 y = AV_RB16(src + xp + 1);
646                 z = AV_RB16(src + xp + 2);
647             } else {
648                 x = AV_RL16(src + xp + 0);
649                 y = AV_RL16(src + xp + 1);
650                 z = AV_RL16(src + xp + 2);
651             }
652 
653             x = c->xyzgamma[x>>4];
654             y = c->xyzgamma[y>>4];
655             z = c->xyzgamma[z>>4];
656 
657             // convert from XYZlinear to sRGBlinear
658             r = c->xyz2rgb_matrix[0][0] * x +
659                 c->xyz2rgb_matrix[0][1] * y +
660                 c->xyz2rgb_matrix[0][2] * z >> 12;
661             g = c->xyz2rgb_matrix[1][0] * x +
662                 c->xyz2rgb_matrix[1][1] * y +
663                 c->xyz2rgb_matrix[1][2] * z >> 12;
664             b = c->xyz2rgb_matrix[2][0] * x +
665                 c->xyz2rgb_matrix[2][1] * y +
666                 c->xyz2rgb_matrix[2][2] * z >> 12;
667 
668             // limit values to 12-bit depth
669             r = av_clip_uintp2(r, 12);
670             g = av_clip_uintp2(g, 12);
671             b = av_clip_uintp2(b, 12);
672 
673             // convert from sRGBlinear to RGB and scale from 12bit to 16bit
674             if (desc->flags & AV_PIX_FMT_FLAG_BE) {
675                 AV_WB16(dst + xp + 0, c->rgbgamma[r] << 4);
676                 AV_WB16(dst + xp + 1, c->rgbgamma[g] << 4);
677                 AV_WB16(dst + xp + 2, c->rgbgamma[b] << 4);
678             } else {
679                 AV_WL16(dst + xp + 0, c->rgbgamma[r] << 4);
680                 AV_WL16(dst + xp + 1, c->rgbgamma[g] << 4);
681                 AV_WL16(dst + xp + 2, c->rgbgamma[b] << 4);
682             }
683         }
684         src += stride;
685         dst += stride;
686     }
687 }
688 
rgb48Toxyz12(struct SwsContext * c,uint16_t * dst,const uint16_t * src,int stride,int h)689 static void rgb48Toxyz12(struct SwsContext *c, uint16_t *dst,
690                          const uint16_t *src, int stride, int h)
691 {
692     int xp,yp;
693     const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(c->dstFormat);
694 
695     for (yp=0; yp<h; yp++) {
696         for (xp=0; xp+2<stride; xp+=3) {
697             int x, y, z, r, g, b;
698 
699             if (desc->flags & AV_PIX_FMT_FLAG_BE) {
700                 r = AV_RB16(src + xp + 0);
701                 g = AV_RB16(src + xp + 1);
702                 b = AV_RB16(src + xp + 2);
703             } else {
704                 r = AV_RL16(src + xp + 0);
705                 g = AV_RL16(src + xp + 1);
706                 b = AV_RL16(src + xp + 2);
707             }
708 
709             r = c->rgbgammainv[r>>4];
710             g = c->rgbgammainv[g>>4];
711             b = c->rgbgammainv[b>>4];
712 
713             // convert from sRGBlinear to XYZlinear
714             x = c->rgb2xyz_matrix[0][0] * r +
715                 c->rgb2xyz_matrix[0][1] * g +
716                 c->rgb2xyz_matrix[0][2] * b >> 12;
717             y = c->rgb2xyz_matrix[1][0] * r +
718                 c->rgb2xyz_matrix[1][1] * g +
719                 c->rgb2xyz_matrix[1][2] * b >> 12;
720             z = c->rgb2xyz_matrix[2][0] * r +
721                 c->rgb2xyz_matrix[2][1] * g +
722                 c->rgb2xyz_matrix[2][2] * b >> 12;
723 
724             // limit values to 12-bit depth
725             x = av_clip_uintp2(x, 12);
726             y = av_clip_uintp2(y, 12);
727             z = av_clip_uintp2(z, 12);
728 
729             // convert from XYZlinear to X'Y'Z' and scale from 12bit to 16bit
730             if (desc->flags & AV_PIX_FMT_FLAG_BE) {
731                 AV_WB16(dst + xp + 0, c->xyzgammainv[x] << 4);
732                 AV_WB16(dst + xp + 1, c->xyzgammainv[y] << 4);
733                 AV_WB16(dst + xp + 2, c->xyzgammainv[z] << 4);
734             } else {
735                 AV_WL16(dst + xp + 0, c->xyzgammainv[x] << 4);
736                 AV_WL16(dst + xp + 1, c->xyzgammainv[y] << 4);
737                 AV_WL16(dst + xp + 2, c->xyzgammainv[z] << 4);
738             }
739         }
740         src += stride;
741         dst += stride;
742     }
743 }
744 
update_palette(SwsContext * c,const uint32_t * pal)745 static void update_palette(SwsContext *c, const uint32_t *pal)
746 {
747     for (int i = 0; i < 256; i++) {
748         int r, g, b, y, u, v, a = 0xff;
749         if (c->srcFormat == AV_PIX_FMT_PAL8) {
750             uint32_t p = pal[i];
751             a = (p >> 24) & 0xFF;
752             r = (p >> 16) & 0xFF;
753             g = (p >>  8) & 0xFF;
754             b =  p        & 0xFF;
755         } else if (c->srcFormat == AV_PIX_FMT_RGB8) {
756             r = ( i >> 5     ) * 36;
757             g = ((i >> 2) & 7) * 36;
758             b = ( i       & 3) * 85;
759         } else if (c->srcFormat == AV_PIX_FMT_BGR8) {
760             b = ( i >> 6     ) * 85;
761             g = ((i >> 3) & 7) * 36;
762             r = ( i       & 7) * 36;
763         } else if (c->srcFormat == AV_PIX_FMT_RGB4_BYTE) {
764             r = ( i >> 3     ) * 255;
765             g = ((i >> 1) & 3) * 85;
766             b = ( i       & 1) * 255;
767         } else if (c->srcFormat == AV_PIX_FMT_GRAY8 || c->srcFormat == AV_PIX_FMT_GRAY8A) {
768             r = g = b = i;
769         } else {
770             av_assert1(c->srcFormat == AV_PIX_FMT_BGR4_BYTE);
771             b = ( i >> 3     ) * 255;
772             g = ((i >> 1) & 3) * 85;
773             r = ( i       & 1) * 255;
774         }
775 #define RGB2YUV_SHIFT 15
776 #define BY ( (int) (0.114 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
777 #define BV (-(int) (0.081 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
778 #define BU ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
779 #define GY ( (int) (0.587 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
780 #define GV (-(int) (0.419 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
781 #define GU (-(int) (0.331 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
782 #define RY ( (int) (0.299 * 219 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
783 #define RV ( (int) (0.500 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
784 #define RU (-(int) (0.169 * 224 / 255 * (1 << RGB2YUV_SHIFT) + 0.5))
785 
786         y = av_clip_uint8((RY * r + GY * g + BY * b + ( 33 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
787         u = av_clip_uint8((RU * r + GU * g + BU * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
788         v = av_clip_uint8((RV * r + GV * g + BV * b + (257 << (RGB2YUV_SHIFT - 1))) >> RGB2YUV_SHIFT);
789         c->pal_yuv[i]= y + (u<<8) + (v<<16) + ((unsigned)a<<24);
790 
791         switch (c->dstFormat) {
792         case AV_PIX_FMT_BGR32:
793 #if !HAVE_BIGENDIAN
794         case AV_PIX_FMT_RGB24:
795 #endif
796             c->pal_rgb[i]=  r + (g<<8) + (b<<16) + ((unsigned)a<<24);
797             break;
798         case AV_PIX_FMT_BGR32_1:
799 #if HAVE_BIGENDIAN
800         case AV_PIX_FMT_BGR24:
801 #endif
802             c->pal_rgb[i]= a + (r<<8) + (g<<16) + ((unsigned)b<<24);
803             break;
804         case AV_PIX_FMT_RGB32_1:
805 #if HAVE_BIGENDIAN
806         case AV_PIX_FMT_RGB24:
807 #endif
808             c->pal_rgb[i]= a + (b<<8) + (g<<16) + ((unsigned)r<<24);
809             break;
810         case AV_PIX_FMT_RGB32:
811 #if !HAVE_BIGENDIAN
812         case AV_PIX_FMT_BGR24:
813 #endif
814         default:
815             c->pal_rgb[i]=  b + (g<<8) + (r<<16) + ((unsigned)a<<24);
816         }
817     }
818 }
819 
820 static int scale_internal(SwsContext *c,
821                           const uint8_t * const srcSlice[], const int srcStride[],
822                           int srcSliceY, int srcSliceH,
823                           uint8_t *const dstSlice[], const int dstStride[],
824                           int dstSliceY, int dstSliceH);
825 
scale_gamma(SwsContext * c,const uint8_t * const srcSlice[],const int srcStride[],int srcSliceY,int srcSliceH,uint8_t * const dstSlice[],const int dstStride[],int dstSliceY,int dstSliceH)826 static int scale_gamma(SwsContext *c,
827                        const uint8_t * const srcSlice[], const int srcStride[],
828                        int srcSliceY, int srcSliceH,
829                        uint8_t * const dstSlice[], const int dstStride[],
830                        int dstSliceY, int dstSliceH)
831 {
832     int ret = scale_internal(c->cascaded_context[0],
833                              srcSlice, srcStride, srcSliceY, srcSliceH,
834                              c->cascaded_tmp, c->cascaded_tmpStride, 0, c->srcH);
835 
836     if (ret < 0)
837         return ret;
838 
839     if (c->cascaded_context[2])
840         ret = scale_internal(c->cascaded_context[1], (const uint8_t * const *)c->cascaded_tmp,
841                              c->cascaded_tmpStride, srcSliceY, srcSliceH,
842                              c->cascaded1_tmp, c->cascaded1_tmpStride, 0, c->dstH);
843     else
844         ret = scale_internal(c->cascaded_context[1], (const uint8_t * const *)c->cascaded_tmp,
845                              c->cascaded_tmpStride, srcSliceY, srcSliceH,
846                              dstSlice, dstStride, dstSliceY, dstSliceH);
847 
848     if (ret < 0)
849         return ret;
850 
851     if (c->cascaded_context[2]) {
852         ret = scale_internal(c->cascaded_context[2], (const uint8_t * const *)c->cascaded1_tmp,
853                              c->cascaded1_tmpStride, c->cascaded_context[1]->dstY - ret,
854                              c->cascaded_context[1]->dstY,
855                              dstSlice, dstStride, dstSliceY, dstSliceH);
856     }
857     return ret;
858 }
859 
scale_cascaded(SwsContext * c,const uint8_t * const srcSlice[],const int srcStride[],int srcSliceY,int srcSliceH,uint8_t * const dstSlice[],const int dstStride[],int dstSliceY,int dstSliceH)860 static int scale_cascaded(SwsContext *c,
861                           const uint8_t * const srcSlice[], const int srcStride[],
862                           int srcSliceY, int srcSliceH,
863                           uint8_t * const dstSlice[], const int dstStride[],
864                           int dstSliceY, int dstSliceH)
865 {
866     int ret = scale_internal(c->cascaded_context[0],
867                              srcSlice, srcStride, srcSliceY, srcSliceH,
868                              c->cascaded_tmp, c->cascaded_tmpStride,
869                              0, c->cascaded_context[0]->dstH);
870     if (ret < 0)
871         return ret;
872     ret = scale_internal(c->cascaded_context[1],
873                          (const uint8_t * const * )c->cascaded_tmp, c->cascaded_tmpStride,
874                          0, c->cascaded_context[0]->dstH,
875                          dstSlice, dstStride, dstSliceY, dstSliceH);
876     return ret;
877 }
878 
scale_internal(SwsContext * c,const uint8_t * const srcSlice[],const int srcStride[],int srcSliceY,int srcSliceH,uint8_t * const dstSlice[],const int dstStride[],int dstSliceY,int dstSliceH)879 static int scale_internal(SwsContext *c,
880                           const uint8_t * const srcSlice[], const int srcStride[],
881                           int srcSliceY, int srcSliceH,
882                           uint8_t *const dstSlice[], const int dstStride[],
883                           int dstSliceY, int dstSliceH)
884 {
885     const int scale_dst = dstSliceY > 0 || dstSliceH < c->dstH;
886     const int frame_start = scale_dst || !c->sliceDir;
887     int i, ret;
888     const uint8_t *src2[4];
889     uint8_t *dst2[4];
890     int macro_height_src = isBayer(c->srcFormat) ? 2 : (1 << c->chrSrcVSubSample);
891     int macro_height_dst = isBayer(c->dstFormat) ? 2 : (1 << c->chrDstVSubSample);
892     // copy strides, so they can safely be modified
893     int srcStride2[4];
894     int dstStride2[4];
895     int srcSliceY_internal = srcSliceY;
896 
897     if (!srcStride || !dstStride || !dstSlice || !srcSlice) {
898         av_log(c, AV_LOG_ERROR, "One of the input parameters to sws_scale() is NULL, please check the calling code\n");
899         return AVERROR(EINVAL);
900     }
901 
902     if ((srcSliceY  & (macro_height_src - 1)) ||
903         ((srcSliceH & (macro_height_src - 1)) && srcSliceY + srcSliceH != c->srcH) ||
904         srcSliceY + srcSliceH > c->srcH) {
905         av_log(c, AV_LOG_ERROR, "Slice parameters %d, %d are invalid\n", srcSliceY, srcSliceH);
906         return AVERROR(EINVAL);
907     }
908 
909     if ((dstSliceY  & (macro_height_dst - 1)) ||
910         ((dstSliceH & (macro_height_dst - 1)) && dstSliceY + dstSliceH != c->dstH) ||
911         dstSliceY + dstSliceH > c->dstH) {
912         av_log(c, AV_LOG_ERROR, "Slice parameters %d, %d are invalid\n", dstSliceY, dstSliceH);
913         return AVERROR(EINVAL);
914     }
915 
916     if (!check_image_pointers(srcSlice, c->srcFormat, srcStride)) {
917         av_log(c, AV_LOG_ERROR, "bad src image pointers\n");
918         return AVERROR(EINVAL);
919     }
920     if (!check_image_pointers((const uint8_t* const*)dstSlice, c->dstFormat, dstStride)) {
921         av_log(c, AV_LOG_ERROR, "bad dst image pointers\n");
922         return AVERROR(EINVAL);
923     }
924 
925     // do not mess up sliceDir if we have a "trailing" 0-size slice
926     if (srcSliceH == 0)
927         return 0;
928 
929     if (c->gamma_flag && c->cascaded_context[0])
930         return scale_gamma(c, srcSlice, srcStride, srcSliceY, srcSliceH,
931                            dstSlice, dstStride, dstSliceY, dstSliceH);
932 
933     if (c->cascaded_context[0] && srcSliceY == 0 && srcSliceH == c->cascaded_context[0]->srcH)
934         return scale_cascaded(c, srcSlice, srcStride, srcSliceY, srcSliceH,
935                               dstSlice, dstStride, dstSliceY, dstSliceH);
936 
937     if (!srcSliceY && (c->flags & SWS_BITEXACT) && c->dither == SWS_DITHER_ED && c->dither_error[0])
938         for (i = 0; i < 4; i++)
939             memset(c->dither_error[i], 0, sizeof(c->dither_error[0][0]) * (c->dstW+2));
940 
941     if (usePal(c->srcFormat))
942         update_palette(c, (const uint32_t *)srcSlice[1]);
943 
944     memcpy(src2,       srcSlice,  sizeof(src2));
945     memcpy(dst2,       dstSlice,  sizeof(dst2));
946     memcpy(srcStride2, srcStride, sizeof(srcStride2));
947     memcpy(dstStride2, dstStride, sizeof(dstStride2));
948 
949     if (frame_start && !scale_dst) {
950         if (srcSliceY != 0 && srcSliceY + srcSliceH != c->srcH) {
951             av_log(c, AV_LOG_ERROR, "Slices start in the middle!\n");
952             return AVERROR(EINVAL);
953         }
954 
955         c->sliceDir = (srcSliceY == 0) ? 1 : -1;
956     } else if (scale_dst)
957         c->sliceDir = 1;
958 
959     if (c->src0Alpha && !c->dst0Alpha && isALPHA(c->dstFormat)) {
960         uint8_t *base;
961         int x,y;
962 
963         av_fast_malloc(&c->rgb0_scratch, &c->rgb0_scratch_allocated,
964                        FFABS(srcStride[0]) * srcSliceH + 32);
965         if (!c->rgb0_scratch)
966             return AVERROR(ENOMEM);
967 
968         base = srcStride[0] < 0 ? c->rgb0_scratch - srcStride[0] * (srcSliceH-1) :
969                                   c->rgb0_scratch;
970         for (y=0; y<srcSliceH; y++){
971             memcpy(base + srcStride[0]*y, src2[0] + srcStride[0]*y, 4*c->srcW);
972             for (x=c->src0Alpha-1; x<4*c->srcW; x+=4) {
973                 base[ srcStride[0]*y + x] = 0xFF;
974             }
975         }
976         src2[0] = base;
977     }
978 
979     if (c->srcXYZ && !(c->dstXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {
980         uint8_t *base;
981 
982         av_fast_malloc(&c->xyz_scratch, &c->xyz_scratch_allocated,
983                        FFABS(srcStride[0]) * srcSliceH + 32);
984         if (!c->xyz_scratch)
985             return AVERROR(ENOMEM);
986 
987         base = srcStride[0] < 0 ? c->xyz_scratch - srcStride[0] * (srcSliceH-1) :
988                                   c->xyz_scratch;
989 
990         xyz12Torgb48(c, (uint16_t*)base, (const uint16_t*)src2[0], srcStride[0]/2, srcSliceH);
991         src2[0] = base;
992     }
993 
994     if (c->sliceDir != 1) {
995         // slices go from bottom to top => we flip the image internally
996         for (i=0; i<4; i++) {
997             srcStride2[i] *= -1;
998             dstStride2[i] *= -1;
999         }
1000 
1001         src2[0] += (srcSliceH - 1) * srcStride[0];
1002         if (!usePal(c->srcFormat))
1003             src2[1] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[1];
1004         src2[2] += ((srcSliceH >> c->chrSrcVSubSample) - 1) * srcStride[2];
1005         src2[3] += (srcSliceH - 1) * srcStride[3];
1006         dst2[0] += ( c->dstH                         - 1) * dstStride[0];
1007         dst2[1] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[1];
1008         dst2[2] += ((c->dstH >> c->chrDstVSubSample) - 1) * dstStride[2];
1009         dst2[3] += ( c->dstH                         - 1) * dstStride[3];
1010 
1011         srcSliceY_internal = c->srcH-srcSliceY-srcSliceH;
1012     }
1013     reset_ptr(src2, c->srcFormat);
1014     reset_ptr((void*)dst2, c->dstFormat);
1015 
1016     if (c->convert_unscaled) {
1017         int offset  = srcSliceY_internal;
1018         int slice_h = srcSliceH;
1019 
1020         // for dst slice scaling, offset the pointers to match the unscaled API
1021         if (scale_dst) {
1022             av_assert0(offset == 0);
1023             for (i = 0; i < 4 && src2[i]; i++) {
1024                 if (!src2[i] || (i > 0 && usePal(c->srcFormat)))
1025                     break;
1026                 src2[i] += (dstSliceY >> ((i == 1 || i == 2) ? c->chrSrcVSubSample : 0)) * srcStride2[i];
1027             }
1028 
1029             for (i = 0; i < 4 && dst2[i]; i++) {
1030                 if (!dst2[i] || (i > 0 && usePal(c->dstFormat)))
1031                     break;
1032                 dst2[i] -= (dstSliceY >> ((i == 1 || i == 2) ? c->chrDstVSubSample : 0)) * dstStride2[i];
1033             }
1034             offset  = dstSliceY;
1035             slice_h = dstSliceH;
1036         }
1037 
1038         ret = c->convert_unscaled(c, src2, srcStride2, offset, slice_h,
1039                                   dst2, dstStride2);
1040         if (scale_dst)
1041             dst2[0] += dstSliceY * dstStride2[0];
1042     } else {
1043         ret = swscale(c, src2, srcStride2, srcSliceY_internal, srcSliceH,
1044                       dst2, dstStride2, dstSliceY, dstSliceH);
1045     }
1046 
1047     if (c->dstXYZ && !(c->srcXYZ && c->srcW==c->dstW && c->srcH==c->dstH)) {
1048         uint16_t *dst16;
1049 
1050         if (scale_dst) {
1051             dst16 = (uint16_t *)dst2[0];
1052         } else {
1053             int dstY = c->dstY ? c->dstY : srcSliceY + srcSliceH;
1054 
1055             av_assert0(dstY >= ret);
1056             av_assert0(ret >= 0);
1057             av_assert0(c->dstH >= dstY);
1058             dst16 = (uint16_t*)(dst2[0] + (dstY - ret) * dstStride2[0]);
1059         }
1060 
1061         /* replace on the same data */
1062         rgb48Toxyz12(c, dst16, dst16, dstStride2[0]/2, ret);
1063     }
1064 
1065     /* reset slice direction at end of frame */
1066     if ((srcSliceY_internal + srcSliceH == c->srcH) || scale_dst)
1067         c->sliceDir = 0;
1068 
1069     return ret;
1070 }
1071 
sws_frame_end(struct SwsContext * c)1072 void sws_frame_end(struct SwsContext *c)
1073 {
1074     av_frame_unref(c->frame_src);
1075     av_frame_unref(c->frame_dst);
1076     c->src_ranges.nb_ranges = 0;
1077 }
1078 
sws_frame_start(struct SwsContext * c,AVFrame * dst,const AVFrame * src)1079 int sws_frame_start(struct SwsContext *c, AVFrame *dst, const AVFrame *src)
1080 {
1081     int ret, allocated = 0;
1082 
1083     ret = av_frame_ref(c->frame_src, src);
1084     if (ret < 0)
1085         return ret;
1086 
1087     if (!dst->buf[0]) {
1088         dst->width  = c->dstW;
1089         dst->height = c->dstH;
1090         dst->format = c->dstFormat;
1091 
1092         ret = av_frame_get_buffer(dst, 0);
1093         if (ret < 0)
1094             return ret;
1095         allocated = 1;
1096     }
1097 
1098     ret = av_frame_ref(c->frame_dst, dst);
1099     if (ret < 0) {
1100         if (allocated)
1101             av_frame_unref(dst);
1102 
1103         return ret;
1104     }
1105 
1106     return 0;
1107 }
1108 
sws_send_slice(struct SwsContext * c,unsigned int slice_start,unsigned int slice_height)1109 int sws_send_slice(struct SwsContext *c, unsigned int slice_start,
1110                    unsigned int slice_height)
1111 {
1112     int ret;
1113 
1114     ret = ff_range_add(&c->src_ranges, slice_start, slice_height);
1115     if (ret < 0)
1116         return ret;
1117 
1118     return 0;
1119 }
1120 
sws_receive_slice_alignment(const struct SwsContext * c)1121 unsigned int sws_receive_slice_alignment(const struct SwsContext *c)
1122 {
1123     if (c->slice_ctx)
1124         return c->slice_ctx[0]->dst_slice_align;
1125 
1126     return c->dst_slice_align;
1127 }
1128 
sws_receive_slice(struct SwsContext * c,unsigned int slice_start,unsigned int slice_height)1129 int sws_receive_slice(struct SwsContext *c, unsigned int slice_start,
1130                       unsigned int slice_height)
1131 {
1132     unsigned int align = sws_receive_slice_alignment(c);
1133     uint8_t *dst[4];
1134 
1135     /* wait until complete input has been received */
1136     if (!(c->src_ranges.nb_ranges == 1        &&
1137           c->src_ranges.ranges[0].start == 0 &&
1138           c->src_ranges.ranges[0].len == c->srcH))
1139         return AVERROR(EAGAIN);
1140 
1141     if ((slice_start > 0 || slice_height < c->dstH) &&
1142         (slice_start % align || slice_height % align)) {
1143         av_log(c, AV_LOG_ERROR,
1144                "Incorrectly aligned output: %u/%u not multiples of %u\n",
1145                slice_start, slice_height, align);
1146         return AVERROR(EINVAL);
1147     }
1148 
1149     if (c->slicethread) {
1150         int nb_jobs = c->slice_ctx[0]->dither == SWS_DITHER_ED ? 1 : c->nb_slice_ctx;
1151         int ret = 0;
1152 
1153         c->dst_slice_start  = slice_start;
1154         c->dst_slice_height = slice_height;
1155 
1156         avpriv_slicethread_execute(c->slicethread, nb_jobs, 0);
1157 
1158         for (int i = 0; i < c->nb_slice_ctx; i++) {
1159             if (c->slice_err[i] < 0) {
1160                 ret = c->slice_err[i];
1161                 break;
1162             }
1163         }
1164 
1165         memset(c->slice_err, 0, c->nb_slice_ctx * sizeof(*c->slice_err));
1166 
1167         return ret;
1168     }
1169 
1170     for (int i = 0; i < FF_ARRAY_ELEMS(dst); i++) {
1171         ptrdiff_t offset = c->frame_dst->linesize[i] * (slice_start >> c->chrDstVSubSample);
1172         dst[i] = FF_PTR_ADD(c->frame_dst->data[i], offset);
1173     }
1174 
1175     return scale_internal(c, (const uint8_t * const *)c->frame_src->data,
1176                           c->frame_src->linesize, 0, c->srcH,
1177                           dst, c->frame_dst->linesize, slice_start, slice_height);
1178 }
1179 
sws_scale_frame(struct SwsContext * c,AVFrame * dst,const AVFrame * src)1180 int sws_scale_frame(struct SwsContext *c, AVFrame *dst, const AVFrame *src)
1181 {
1182     int ret;
1183 
1184     ret = sws_frame_start(c, dst, src);
1185     if (ret < 0)
1186         return ret;
1187 
1188     ret = sws_send_slice(c, 0, src->height);
1189     if (ret >= 0)
1190         ret = sws_receive_slice(c, 0, dst->height);
1191 
1192     sws_frame_end(c);
1193 
1194     return ret;
1195 }
1196 
1197 /**
1198  * swscale wrapper, so we don't need to export the SwsContext.
1199  * Assumes planar YUV to be in YUV order instead of YVU.
1200  */
sws_scale(struct SwsContext * c,const uint8_t * const srcSlice[],const int srcStride[],int srcSliceY,int srcSliceH,uint8_t * const dst[],const int dstStride[])1201 int attribute_align_arg sws_scale(struct SwsContext *c,
1202                                   const uint8_t * const srcSlice[],
1203                                   const int srcStride[], int srcSliceY,
1204                                   int srcSliceH, uint8_t *const dst[],
1205                                   const int dstStride[])
1206 {
1207     if (c->nb_slice_ctx)
1208         c = c->slice_ctx[0];
1209 
1210     return scale_internal(c, srcSlice, srcStride, srcSliceY, srcSliceH,
1211                           dst, dstStride, 0, c->dstH);
1212 }
1213 
ff_sws_slice_worker(void * priv,int jobnr,int threadnr,int nb_jobs,int nb_threads)1214 void ff_sws_slice_worker(void *priv, int jobnr, int threadnr,
1215                          int nb_jobs, int nb_threads)
1216 {
1217     SwsContext *parent = priv;
1218     SwsContext      *c = parent->slice_ctx[threadnr];
1219 
1220     const int slice_height = FFALIGN(FFMAX((parent->dst_slice_height + nb_jobs - 1) / nb_jobs, 1),
1221                                      c->dst_slice_align);
1222     const int slice_start  = jobnr * slice_height;
1223     const int slice_end    = FFMIN((jobnr + 1) * slice_height, parent->dst_slice_height);
1224     int err = 0;
1225 
1226     if (slice_end > slice_start) {
1227         uint8_t *dst[4] = { NULL };
1228 
1229         for (int i = 0; i < FF_ARRAY_ELEMS(dst) && parent->frame_dst->data[i]; i++) {
1230             const int vshift = (i == 1 || i == 2) ? c->chrDstVSubSample : 0;
1231             const ptrdiff_t offset = parent->frame_dst->linesize[i] *
1232                 ((slice_start + parent->dst_slice_start) >> vshift);
1233 
1234             dst[i] = parent->frame_dst->data[i] + offset;
1235         }
1236 
1237         err = scale_internal(c, (const uint8_t * const *)parent->frame_src->data,
1238                              parent->frame_src->linesize, 0, c->srcH,
1239                              dst, parent->frame_dst->linesize,
1240                              parent->dst_slice_start + slice_start, slice_end - slice_start);
1241     }
1242 
1243     parent->slice_err[threadnr] = err;
1244 }
1245