1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 *
21 * Fixes:
22 * Alan Cox : Numerous verify_area() calls
23 * Alan Cox : Set the ACK bit on a reset
24 * Alan Cox : Stopped it crashing if it closed while
25 * sk->inuse=1 and was trying to connect
26 * (tcp_err()).
27 * Alan Cox : All icmp error handling was broken
28 * pointers passed where wrong and the
29 * socket was looked up backwards. Nobody
30 * tested any icmp error code obviously.
31 * Alan Cox : tcp_err() now handled properly. It
32 * wakes people on errors. poll
33 * behaves and the icmp error race
34 * has gone by moving it into sock.c
35 * Alan Cox : tcp_send_reset() fixed to work for
36 * everything not just packets for
37 * unknown sockets.
38 * Alan Cox : tcp option processing.
39 * Alan Cox : Reset tweaked (still not 100%) [Had
40 * syn rule wrong]
41 * Herp Rosmanith : More reset fixes
42 * Alan Cox : No longer acks invalid rst frames.
43 * Acking any kind of RST is right out.
44 * Alan Cox : Sets an ignore me flag on an rst
45 * receive otherwise odd bits of prattle
46 * escape still
47 * Alan Cox : Fixed another acking RST frame bug.
48 * Should stop LAN workplace lockups.
49 * Alan Cox : Some tidyups using the new skb list
50 * facilities
51 * Alan Cox : sk->keepopen now seems to work
52 * Alan Cox : Pulls options out correctly on accepts
53 * Alan Cox : Fixed assorted sk->rqueue->next errors
54 * Alan Cox : PSH doesn't end a TCP read. Switched a
55 * bit to skb ops.
56 * Alan Cox : Tidied tcp_data to avoid a potential
57 * nasty.
58 * Alan Cox : Added some better commenting, as the
59 * tcp is hard to follow
60 * Alan Cox : Removed incorrect check for 20 * psh
61 * Michael O'Reilly : ack < copied bug fix.
62 * Johannes Stille : Misc tcp fixes (not all in yet).
63 * Alan Cox : FIN with no memory -> CRASH
64 * Alan Cox : Added socket option proto entries.
65 * Also added awareness of them to accept.
66 * Alan Cox : Added TCP options (SOL_TCP)
67 * Alan Cox : Switched wakeup calls to callbacks,
68 * so the kernel can layer network
69 * sockets.
70 * Alan Cox : Use ip_tos/ip_ttl settings.
71 * Alan Cox : Handle FIN (more) properly (we hope).
72 * Alan Cox : RST frames sent on unsynchronised
73 * state ack error.
74 * Alan Cox : Put in missing check for SYN bit.
75 * Alan Cox : Added tcp_select_window() aka NET2E
76 * window non shrink trick.
77 * Alan Cox : Added a couple of small NET2E timer
78 * fixes
79 * Charles Hedrick : TCP fixes
80 * Toomas Tamm : TCP window fixes
81 * Alan Cox : Small URG fix to rlogin ^C ack fight
82 * Charles Hedrick : Rewrote most of it to actually work
83 * Linus : Rewrote tcp_read() and URG handling
84 * completely
85 * Gerhard Koerting: Fixed some missing timer handling
86 * Matthew Dillon : Reworked TCP machine states as per RFC
87 * Gerhard Koerting: PC/TCP workarounds
88 * Adam Caldwell : Assorted timer/timing errors
89 * Matthew Dillon : Fixed another RST bug
90 * Alan Cox : Move to kernel side addressing changes.
91 * Alan Cox : Beginning work on TCP fastpathing
92 * (not yet usable)
93 * Arnt Gulbrandsen: Turbocharged tcp_check() routine.
94 * Alan Cox : TCP fast path debugging
95 * Alan Cox : Window clamping
96 * Michael Riepe : Bug in tcp_check()
97 * Matt Dillon : More TCP improvements and RST bug fixes
98 * Matt Dillon : Yet more small nasties remove from the
99 * TCP code (Be very nice to this man if
100 * tcp finally works 100%) 8)
101 * Alan Cox : BSD accept semantics.
102 * Alan Cox : Reset on closedown bug.
103 * Peter De Schrijver : ENOTCONN check missing in tcp_sendto().
104 * Michael Pall : Handle poll() after URG properly in
105 * all cases.
106 * Michael Pall : Undo the last fix in tcp_read_urg()
107 * (multi URG PUSH broke rlogin).
108 * Michael Pall : Fix the multi URG PUSH problem in
109 * tcp_readable(), poll() after URG
110 * works now.
111 * Michael Pall : recv(...,MSG_OOB) never blocks in the
112 * BSD api.
113 * Alan Cox : Changed the semantics of sk->socket to
114 * fix a race and a signal problem with
115 * accept() and async I/O.
116 * Alan Cox : Relaxed the rules on tcp_sendto().
117 * Yury Shevchuk : Really fixed accept() blocking problem.
118 * Craig I. Hagan : Allow for BSD compatible TIME_WAIT for
119 * clients/servers which listen in on
120 * fixed ports.
121 * Alan Cox : Cleaned the above up and shrank it to
122 * a sensible code size.
123 * Alan Cox : Self connect lockup fix.
124 * Alan Cox : No connect to multicast.
125 * Ross Biro : Close unaccepted children on master
126 * socket close.
127 * Alan Cox : Reset tracing code.
128 * Alan Cox : Spurious resets on shutdown.
129 * Alan Cox : Giant 15 minute/60 second timer error
130 * Alan Cox : Small whoops in polling before an
131 * accept.
132 * Alan Cox : Kept the state trace facility since
133 * it's handy for debugging.
134 * Alan Cox : More reset handler fixes.
135 * Alan Cox : Started rewriting the code based on
136 * the RFC's for other useful protocol
137 * references see: Comer, KA9Q NOS, and
138 * for a reference on the difference
139 * between specifications and how BSD
140 * works see the 4.4lite source.
141 * A.N.Kuznetsov : Don't time wait on completion of tidy
142 * close.
143 * Linus Torvalds : Fin/Shutdown & copied_seq changes.
144 * Linus Torvalds : Fixed BSD port reuse to work first syn
145 * Alan Cox : Reimplemented timers as per the RFC
146 * and using multiple timers for sanity.
147 * Alan Cox : Small bug fixes, and a lot of new
148 * comments.
149 * Alan Cox : Fixed dual reader crash by locking
150 * the buffers (much like datagram.c)
151 * Alan Cox : Fixed stuck sockets in probe. A probe
152 * now gets fed up of retrying without
153 * (even a no space) answer.
154 * Alan Cox : Extracted closing code better
155 * Alan Cox : Fixed the closing state machine to
156 * resemble the RFC.
157 * Alan Cox : More 'per spec' fixes.
158 * Jorge Cwik : Even faster checksumming.
159 * Alan Cox : tcp_data() doesn't ack illegal PSH
160 * only frames. At least one pc tcp stack
161 * generates them.
162 * Alan Cox : Cache last socket.
163 * Alan Cox : Per route irtt.
164 * Matt Day : poll()->select() match BSD precisely on error
165 * Alan Cox : New buffers
166 * Marc Tamsky : Various sk->prot->retransmits and
167 * sk->retransmits misupdating fixed.
168 * Fixed tcp_write_timeout: stuck close,
169 * and TCP syn retries gets used now.
170 * Mark Yarvis : In tcp_read_wakeup(), don't send an
171 * ack if state is TCP_CLOSED.
172 * Alan Cox : Look up device on a retransmit - routes may
173 * change. Doesn't yet cope with MSS shrink right
174 * but it's a start!
175 * Marc Tamsky : Closing in closing fixes.
176 * Mike Shaver : RFC1122 verifications.
177 * Alan Cox : rcv_saddr errors.
178 * Alan Cox : Block double connect().
179 * Alan Cox : Small hooks for enSKIP.
180 * Alexey Kuznetsov: Path MTU discovery.
181 * Alan Cox : Support soft errors.
182 * Alan Cox : Fix MTU discovery pathological case
183 * when the remote claims no mtu!
184 * Marc Tamsky : TCP_CLOSE fix.
185 * Colin (G3TNE) : Send a reset on syn ack replies in
186 * window but wrong (fixes NT lpd problems)
187 * Pedro Roque : Better TCP window handling, delayed ack.
188 * Joerg Reuter : No modification of locked buffers in
189 * tcp_do_retransmit()
190 * Eric Schenk : Changed receiver side silly window
191 * avoidance algorithm to BSD style
192 * algorithm. This doubles throughput
193 * against machines running Solaris,
194 * and seems to result in general
195 * improvement.
196 * Stefan Magdalinski : adjusted tcp_readable() to fix FIONREAD
197 * Willy Konynenberg : Transparent proxying support.
198 * Mike McLagan : Routing by source
199 * Keith Owens : Do proper merging with partial SKB's in
200 * tcp_do_sendmsg to avoid burstiness.
201 * Eric Schenk : Fix fast close down bug with
202 * shutdown() followed by close().
203 * Andi Kleen : Make poll agree with SIGIO
204 * Salvatore Sanfilippo : Support SO_LINGER with linger == 1 and
205 * lingertime == 0 (RFC 793 ABORT Call)
206 * Hirokazu Takahashi : Use copy_from_user() instead of
207 * csum_and_copy_from_user() if possible.
208 *
209 * Description of States:
210 *
211 * TCP_SYN_SENT sent a connection request, waiting for ack
212 *
213 * TCP_SYN_RECV received a connection request, sent ack,
214 * waiting for final ack in three-way handshake.
215 *
216 * TCP_ESTABLISHED connection established
217 *
218 * TCP_FIN_WAIT1 our side has shutdown, waiting to complete
219 * transmission of remaining buffered data
220 *
221 * TCP_FIN_WAIT2 all buffered data sent, waiting for remote
222 * to shutdown
223 *
224 * TCP_CLOSING both sides have shutdown but we still have
225 * data we have to finish sending
226 *
227 * TCP_TIME_WAIT timeout to catch resent junk before entering
228 * closed, can only be entered from FIN_WAIT2
229 * or CLOSING. Required because the other end
230 * may not have gotten our last ACK causing it
231 * to retransmit the data packet (which we ignore)
232 *
233 * TCP_CLOSE_WAIT remote side has shutdown and is waiting for
234 * us to finish writing our data and to shutdown
235 * (we have to close() to move on to LAST_ACK)
236 *
237 * TCP_LAST_ACK out side has shutdown after remote has
238 * shutdown. There may still be data in our
239 * buffer that we have to finish sending
240 *
241 * TCP_CLOSE socket is finished
242 */
243
244 #define pr_fmt(fmt) "TCP: " fmt
245
246 #include <crypto/hash.h>
247 #include <linux/kernel.h>
248 #include <linux/module.h>
249 #include <linux/types.h>
250 #include <linux/fcntl.h>
251 #include <linux/poll.h>
252 #include <linux/inet_diag.h>
253 #include <linux/init.h>
254 #include <linux/fs.h>
255 #include <linux/skbuff.h>
256 #include <linux/scatterlist.h>
257 #include <linux/splice.h>
258 #include <linux/net.h>
259 #include <linux/socket.h>
260 #include <linux/random.h>
261 #include <linux/memblock.h>
262 #include <linux/highmem.h>
263 #include <linux/swap.h>
264 #include <linux/cache.h>
265 #include <linux/err.h>
266 #include <linux/time.h>
267 #include <linux/slab.h>
268 #include <linux/errqueue.h>
269 #include <linux/static_key.h>
270
271 #include <net/icmp.h>
272 #include <net/inet_common.h>
273 #include <net/tcp.h>
274 #include <net/mptcp.h>
275 #include <net/xfrm.h>
276 #include <net/ip.h>
277 #include <net/sock.h>
278
279 #include <linux/uaccess.h>
280 #include <asm/ioctls.h>
281 #include <net/busy_poll.h>
282 #ifdef CONFIG_LOWPOWER_PROTOCOL
283 #include <net/lowpower_protocol.h>
284 #endif /* CONFIG_LOWPOWER_PROTOCOL */
285
286 DEFINE_PER_CPU(unsigned int, tcp_orphan_count);
287 EXPORT_PER_CPU_SYMBOL_GPL(tcp_orphan_count);
288
289 long sysctl_tcp_mem[3] __read_mostly;
290 EXPORT_SYMBOL(sysctl_tcp_mem);
291
292 atomic_long_t tcp_memory_allocated; /* Current allocated memory. */
293 EXPORT_SYMBOL(tcp_memory_allocated);
294
295 #if IS_ENABLED(CONFIG_SMC)
296 DEFINE_STATIC_KEY_FALSE(tcp_have_smc);
297 EXPORT_SYMBOL(tcp_have_smc);
298 #endif
299
300 /*
301 * Current number of TCP sockets.
302 */
303 struct percpu_counter tcp_sockets_allocated;
304 EXPORT_SYMBOL(tcp_sockets_allocated);
305
306 /*
307 * TCP splice context
308 */
309 struct tcp_splice_state {
310 struct pipe_inode_info *pipe;
311 size_t len;
312 unsigned int flags;
313 };
314
315 /*
316 * Pressure flag: try to collapse.
317 * Technical note: it is used by multiple contexts non atomically.
318 * All the __sk_mem_schedule() is of this nature: accounting
319 * is strict, actions are advisory and have some latency.
320 */
321 unsigned long tcp_memory_pressure __read_mostly;
322 EXPORT_SYMBOL_GPL(tcp_memory_pressure);
323
324 DEFINE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
325 EXPORT_SYMBOL(tcp_rx_skb_cache_key);
326
327 DEFINE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
328
tcp_enter_memory_pressure(struct sock * sk)329 void tcp_enter_memory_pressure(struct sock *sk)
330 {
331 unsigned long val;
332
333 if (READ_ONCE(tcp_memory_pressure))
334 return;
335 val = jiffies;
336
337 if (!val)
338 val--;
339 if (!cmpxchg(&tcp_memory_pressure, 0, val))
340 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURES);
341 }
342 EXPORT_SYMBOL_GPL(tcp_enter_memory_pressure);
343
tcp_leave_memory_pressure(struct sock * sk)344 void tcp_leave_memory_pressure(struct sock *sk)
345 {
346 unsigned long val;
347
348 if (!READ_ONCE(tcp_memory_pressure))
349 return;
350 val = xchg(&tcp_memory_pressure, 0);
351 if (val)
352 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPMEMORYPRESSURESCHRONO,
353 jiffies_to_msecs(jiffies - val));
354 }
355 EXPORT_SYMBOL_GPL(tcp_leave_memory_pressure);
356
357 /* Convert seconds to retransmits based on initial and max timeout */
secs_to_retrans(int seconds,int timeout,int rto_max)358 static u8 secs_to_retrans(int seconds, int timeout, int rto_max)
359 {
360 u8 res = 0;
361
362 if (seconds > 0) {
363 int period = timeout;
364
365 res = 1;
366 while (seconds > period && res < 255) {
367 res++;
368 timeout <<= 1;
369 if (timeout > rto_max)
370 timeout = rto_max;
371 period += timeout;
372 }
373 }
374 return res;
375 }
376
377 /* Convert retransmits to seconds based on initial and max timeout */
retrans_to_secs(u8 retrans,int timeout,int rto_max)378 static int retrans_to_secs(u8 retrans, int timeout, int rto_max)
379 {
380 int period = 0;
381
382 if (retrans > 0) {
383 period = timeout;
384 while (--retrans) {
385 timeout <<= 1;
386 if (timeout > rto_max)
387 timeout = rto_max;
388 period += timeout;
389 }
390 }
391 return period;
392 }
393
tcp_compute_delivery_rate(const struct tcp_sock * tp)394 static u64 tcp_compute_delivery_rate(const struct tcp_sock *tp)
395 {
396 u32 rate = READ_ONCE(tp->rate_delivered);
397 u32 intv = READ_ONCE(tp->rate_interval_us);
398 u64 rate64 = 0;
399
400 if (rate && intv) {
401 rate64 = (u64)rate * tp->mss_cache * USEC_PER_SEC;
402 do_div(rate64, intv);
403 }
404 return rate64;
405 }
406
407 /* Address-family independent initialization for a tcp_sock.
408 *
409 * NOTE: A lot of things set to zero explicitly by call to
410 * sk_alloc() so need not be done here.
411 */
tcp_init_sock(struct sock * sk)412 void tcp_init_sock(struct sock *sk)
413 {
414 struct inet_connection_sock *icsk = inet_csk(sk);
415 struct tcp_sock *tp = tcp_sk(sk);
416
417 tp->out_of_order_queue = RB_ROOT;
418 sk->tcp_rtx_queue = RB_ROOT;
419 tcp_init_xmit_timers(sk);
420 INIT_LIST_HEAD(&tp->tsq_node);
421 INIT_LIST_HEAD(&tp->tsorted_sent_queue);
422
423 icsk->icsk_rto = TCP_TIMEOUT_INIT;
424 icsk->icsk_rto_min = TCP_RTO_MIN;
425 icsk->icsk_delack_max = TCP_DELACK_MAX;
426 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
427 minmax_reset(&tp->rtt_min, tcp_jiffies32, ~0U);
428
429 /* So many TCP implementations out there (incorrectly) count the
430 * initial SYN frame in their delayed-ACK and congestion control
431 * algorithms that we must have the following bandaid to talk
432 * efficiently to them. -DaveM
433 */
434 tp->snd_cwnd = TCP_INIT_CWND;
435
436 /* There's a bubble in the pipe until at least the first ACK. */
437 tp->app_limited = ~0U;
438 tp->rate_app_limited = 1;
439
440 /* See draft-stevens-tcpca-spec-01 for discussion of the
441 * initialization of these values.
442 */
443 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
444 tp->snd_cwnd_clamp = ~0;
445 tp->mss_cache = TCP_MSS_DEFAULT;
446
447 tp->reordering = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering);
448 tcp_assign_congestion_control(sk);
449
450 tp->tsoffset = 0;
451 tp->rack.reo_wnd_steps = 1;
452
453 sk->sk_write_space = sk_stream_write_space;
454 sock_set_flag(sk, SOCK_USE_WRITE_QUEUE);
455
456 icsk->icsk_sync_mss = tcp_sync_mss;
457
458 WRITE_ONCE(sk->sk_sndbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[1]));
459 WRITE_ONCE(sk->sk_rcvbuf, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[1]));
460
461 sk_sockets_allocated_inc(sk);
462 sk->sk_route_forced_caps = NETIF_F_GSO;
463 #ifdef CONFIG_TCP_NB_URC
464 icsk->icsk_nb_urc_enabled = 0;
465 icsk->icsk_nb_urc_rto = TCP_TIMEOUT_INIT;
466 tp->tcp_retries2 = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retries2);
467 #endif /* CONFIG_TCP_NB_URC */
468 }
469 EXPORT_SYMBOL(tcp_init_sock);
470
tcp_tx_timestamp(struct sock * sk,u16 tsflags)471 static void tcp_tx_timestamp(struct sock *sk, u16 tsflags)
472 {
473 struct sk_buff *skb = tcp_write_queue_tail(sk);
474
475 if (tsflags && skb) {
476 struct skb_shared_info *shinfo = skb_shinfo(skb);
477 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
478
479 sock_tx_timestamp(sk, tsflags, &shinfo->tx_flags);
480 if (tsflags & SOF_TIMESTAMPING_TX_ACK)
481 tcb->txstamp_ack = 1;
482 if (tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
483 shinfo->tskey = TCP_SKB_CB(skb)->seq + skb->len - 1;
484 }
485 }
486
tcp_stream_is_readable(const struct tcp_sock * tp,int target,struct sock * sk)487 static inline bool tcp_stream_is_readable(const struct tcp_sock *tp,
488 int target, struct sock *sk)
489 {
490 int avail = READ_ONCE(tp->rcv_nxt) - READ_ONCE(tp->copied_seq);
491
492 if (avail > 0) {
493 if (avail >= target)
494 return true;
495 if (tcp_rmem_pressure(sk))
496 return true;
497 if (tcp_receive_window(tp) <= inet_csk(sk)->icsk_ack.rcv_mss)
498 return true;
499 }
500 if (sk->sk_prot->stream_memory_read)
501 return sk->sk_prot->stream_memory_read(sk);
502 return false;
503 }
504
505 /*
506 * Wait for a TCP event.
507 *
508 * Note that we don't need to lock the socket, as the upper poll layers
509 * take care of normal races (between the test and the event) and we don't
510 * go look at any of the socket buffers directly.
511 */
tcp_poll(struct file * file,struct socket * sock,poll_table * wait)512 __poll_t tcp_poll(struct file *file, struct socket *sock, poll_table *wait)
513 {
514 __poll_t mask;
515 struct sock *sk = sock->sk;
516 const struct tcp_sock *tp = tcp_sk(sk);
517 u8 shutdown;
518 int state;
519
520 sock_poll_wait(file, sock, wait);
521
522 state = inet_sk_state_load(sk);
523 if (state == TCP_LISTEN)
524 return inet_csk_listen_poll(sk);
525
526 /* Socket is not locked. We are protected from async events
527 * by poll logic and correct handling of state changes
528 * made by other threads is impossible in any case.
529 */
530
531 mask = 0;
532
533 /*
534 * EPOLLHUP is certainly not done right. But poll() doesn't
535 * have a notion of HUP in just one direction, and for a
536 * socket the read side is more interesting.
537 *
538 * Some poll() documentation says that EPOLLHUP is incompatible
539 * with the EPOLLOUT/POLLWR flags, so somebody should check this
540 * all. But careful, it tends to be safer to return too many
541 * bits than too few, and you can easily break real applications
542 * if you don't tell them that something has hung up!
543 *
544 * Check-me.
545 *
546 * Check number 1. EPOLLHUP is _UNMASKABLE_ event (see UNIX98 and
547 * our fs/select.c). It means that after we received EOF,
548 * poll always returns immediately, making impossible poll() on write()
549 * in state CLOSE_WAIT. One solution is evident --- to set EPOLLHUP
550 * if and only if shutdown has been made in both directions.
551 * Actually, it is interesting to look how Solaris and DUX
552 * solve this dilemma. I would prefer, if EPOLLHUP were maskable,
553 * then we could set it on SND_SHUTDOWN. BTW examples given
554 * in Stevens' books assume exactly this behaviour, it explains
555 * why EPOLLHUP is incompatible with EPOLLOUT. --ANK
556 *
557 * NOTE. Check for TCP_CLOSE is added. The goal is to prevent
558 * blocking on fresh not-connected or disconnected socket. --ANK
559 */
560 shutdown = READ_ONCE(sk->sk_shutdown);
561 if (shutdown == SHUTDOWN_MASK || state == TCP_CLOSE)
562 mask |= EPOLLHUP;
563 if (shutdown & RCV_SHUTDOWN)
564 mask |= EPOLLIN | EPOLLRDNORM | EPOLLRDHUP;
565
566 /* Connected or passive Fast Open socket? */
567 if (state != TCP_SYN_SENT &&
568 (state != TCP_SYN_RECV || rcu_access_pointer(tp->fastopen_rsk))) {
569 int target = sock_rcvlowat(sk, 0, INT_MAX);
570
571 if (READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq) &&
572 !sock_flag(sk, SOCK_URGINLINE) &&
573 tp->urg_data)
574 target++;
575
576 if (tcp_stream_is_readable(tp, target, sk))
577 mask |= EPOLLIN | EPOLLRDNORM;
578
579 if (!(shutdown & SEND_SHUTDOWN)) {
580 if (__sk_stream_is_writeable(sk, 1)) {
581 mask |= EPOLLOUT | EPOLLWRNORM;
582 } else { /* send SIGIO later */
583 sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
584 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
585
586 /* Race breaker. If space is freed after
587 * wspace test but before the flags are set,
588 * IO signal will be lost. Memory barrier
589 * pairs with the input side.
590 */
591 smp_mb__after_atomic();
592 if (__sk_stream_is_writeable(sk, 1))
593 mask |= EPOLLOUT | EPOLLWRNORM;
594 }
595 } else
596 mask |= EPOLLOUT | EPOLLWRNORM;
597
598 if (tp->urg_data & TCP_URG_VALID)
599 mask |= EPOLLPRI;
600 } else if (state == TCP_SYN_SENT && inet_sk(sk)->defer_connect) {
601 /* Active TCP fastopen socket with defer_connect
602 * Return EPOLLOUT so application can call write()
603 * in order for kernel to generate SYN+data
604 */
605 mask |= EPOLLOUT | EPOLLWRNORM;
606 }
607 /* This barrier is coupled with smp_wmb() in tcp_reset() */
608 smp_rmb();
609 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
610 mask |= EPOLLERR;
611
612 return mask;
613 }
614 EXPORT_SYMBOL(tcp_poll);
615
tcp_ioctl(struct sock * sk,int cmd,unsigned long arg)616 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg)
617 {
618 struct tcp_sock *tp = tcp_sk(sk);
619 int answ;
620 bool slow;
621
622 switch (cmd) {
623 case SIOCINQ:
624 if (sk->sk_state == TCP_LISTEN)
625 return -EINVAL;
626
627 slow = lock_sock_fast(sk);
628 answ = tcp_inq(sk);
629 unlock_sock_fast(sk, slow);
630 break;
631 case SIOCATMARK:
632 answ = tp->urg_data &&
633 READ_ONCE(tp->urg_seq) == READ_ONCE(tp->copied_seq);
634 break;
635 case SIOCOUTQ:
636 if (sk->sk_state == TCP_LISTEN)
637 return -EINVAL;
638
639 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
640 answ = 0;
641 else
642 answ = READ_ONCE(tp->write_seq) - tp->snd_una;
643 break;
644 case SIOCOUTQNSD:
645 if (sk->sk_state == TCP_LISTEN)
646 return -EINVAL;
647
648 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))
649 answ = 0;
650 else
651 answ = READ_ONCE(tp->write_seq) -
652 READ_ONCE(tp->snd_nxt);
653 break;
654 default:
655 return -ENOIOCTLCMD;
656 }
657
658 return put_user(answ, (int __user *)arg);
659 }
660 EXPORT_SYMBOL(tcp_ioctl);
661
tcp_mark_push(struct tcp_sock * tp,struct sk_buff * skb)662 static inline void tcp_mark_push(struct tcp_sock *tp, struct sk_buff *skb)
663 {
664 TCP_SKB_CB(skb)->tcp_flags |= TCPHDR_PSH;
665 tp->pushed_seq = tp->write_seq;
666 }
667
forced_push(const struct tcp_sock * tp)668 static inline bool forced_push(const struct tcp_sock *tp)
669 {
670 return after(tp->write_seq, tp->pushed_seq + (tp->max_window >> 1));
671 }
672
skb_entail(struct sock * sk,struct sk_buff * skb)673 static void skb_entail(struct sock *sk, struct sk_buff *skb)
674 {
675 struct tcp_sock *tp = tcp_sk(sk);
676 struct tcp_skb_cb *tcb = TCP_SKB_CB(skb);
677
678 skb->csum = 0;
679 tcb->seq = tcb->end_seq = tp->write_seq;
680 tcb->tcp_flags = TCPHDR_ACK;
681 tcb->sacked = 0;
682 __skb_header_release(skb);
683 tcp_add_write_queue_tail(sk, skb);
684 sk_wmem_queued_add(sk, skb->truesize);
685 sk_mem_charge(sk, skb->truesize);
686 if (tp->nonagle & TCP_NAGLE_PUSH)
687 tp->nonagle &= ~TCP_NAGLE_PUSH;
688
689 tcp_slow_start_after_idle_check(sk);
690 }
691
tcp_mark_urg(struct tcp_sock * tp,int flags)692 static inline void tcp_mark_urg(struct tcp_sock *tp, int flags)
693 {
694 if (flags & MSG_OOB)
695 tp->snd_up = tp->write_seq;
696 }
697
698 /* If a not yet filled skb is pushed, do not send it if
699 * we have data packets in Qdisc or NIC queues :
700 * Because TX completion will happen shortly, it gives a chance
701 * to coalesce future sendmsg() payload into this skb, without
702 * need for a timer, and with no latency trade off.
703 * As packets containing data payload have a bigger truesize
704 * than pure acks (dataless) packets, the last checks prevent
705 * autocorking if we only have an ACK in Qdisc/NIC queues,
706 * or if TX completion was delayed after we processed ACK packet.
707 */
tcp_should_autocork(struct sock * sk,struct sk_buff * skb,int size_goal)708 static bool tcp_should_autocork(struct sock *sk, struct sk_buff *skb,
709 int size_goal)
710 {
711 return skb->len < size_goal &&
712 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_autocorking) &&
713 !tcp_rtx_queue_empty(sk) &&
714 refcount_read(&sk->sk_wmem_alloc) > skb->truesize;
715 }
716
tcp_push(struct sock * sk,int flags,int mss_now,int nonagle,int size_goal)717 void tcp_push(struct sock *sk, int flags, int mss_now,
718 int nonagle, int size_goal)
719 {
720 struct tcp_sock *tp = tcp_sk(sk);
721 struct sk_buff *skb;
722
723 skb = tcp_write_queue_tail(sk);
724 if (!skb)
725 return;
726 if (!(flags & MSG_MORE) || forced_push(tp))
727 tcp_mark_push(tp, skb);
728
729 tcp_mark_urg(tp, flags);
730
731 if (tcp_should_autocork(sk, skb, size_goal)) {
732
733 /* avoid atomic op if TSQ_THROTTLED bit is already set */
734 if (!test_bit(TSQ_THROTTLED, &sk->sk_tsq_flags)) {
735 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPAUTOCORKING);
736 set_bit(TSQ_THROTTLED, &sk->sk_tsq_flags);
737 }
738 /* It is possible TX completion already happened
739 * before we set TSQ_THROTTLED.
740 */
741 if (refcount_read(&sk->sk_wmem_alloc) > skb->truesize)
742 return;
743 }
744
745 if (flags & MSG_MORE)
746 nonagle = TCP_NAGLE_CORK;
747
748 __tcp_push_pending_frames(sk, mss_now, nonagle);
749 }
750
tcp_splice_data_recv(read_descriptor_t * rd_desc,struct sk_buff * skb,unsigned int offset,size_t len)751 static int tcp_splice_data_recv(read_descriptor_t *rd_desc, struct sk_buff *skb,
752 unsigned int offset, size_t len)
753 {
754 struct tcp_splice_state *tss = rd_desc->arg.data;
755 int ret;
756
757 ret = skb_splice_bits(skb, skb->sk, offset, tss->pipe,
758 min(rd_desc->count, len), tss->flags);
759 if (ret > 0)
760 rd_desc->count -= ret;
761 return ret;
762 }
763
__tcp_splice_read(struct sock * sk,struct tcp_splice_state * tss)764 static int __tcp_splice_read(struct sock *sk, struct tcp_splice_state *tss)
765 {
766 /* Store TCP splice context information in read_descriptor_t. */
767 read_descriptor_t rd_desc = {
768 .arg.data = tss,
769 .count = tss->len,
770 };
771
772 return tcp_read_sock(sk, &rd_desc, tcp_splice_data_recv);
773 }
774
775 /**
776 * tcp_splice_read - splice data from TCP socket to a pipe
777 * @sock: socket to splice from
778 * @ppos: position (not valid)
779 * @pipe: pipe to splice to
780 * @len: number of bytes to splice
781 * @flags: splice modifier flags
782 *
783 * Description:
784 * Will read pages from given socket and fill them into a pipe.
785 *
786 **/
tcp_splice_read(struct socket * sock,loff_t * ppos,struct pipe_inode_info * pipe,size_t len,unsigned int flags)787 ssize_t tcp_splice_read(struct socket *sock, loff_t *ppos,
788 struct pipe_inode_info *pipe, size_t len,
789 unsigned int flags)
790 {
791 struct sock *sk = sock->sk;
792 struct tcp_splice_state tss = {
793 .pipe = pipe,
794 .len = len,
795 .flags = flags,
796 };
797 long timeo;
798 ssize_t spliced;
799 int ret;
800
801 sock_rps_record_flow(sk);
802 /*
803 * We can't seek on a socket input
804 */
805 if (unlikely(*ppos))
806 return -ESPIPE;
807
808 ret = spliced = 0;
809
810 lock_sock(sk);
811
812 timeo = sock_rcvtimeo(sk, sock->file->f_flags & O_NONBLOCK);
813 while (tss.len) {
814 ret = __tcp_splice_read(sk, &tss);
815 if (ret < 0)
816 break;
817 else if (!ret) {
818 if (spliced)
819 break;
820 if (sock_flag(sk, SOCK_DONE))
821 break;
822 if (sk->sk_err) {
823 ret = sock_error(sk);
824 break;
825 }
826 if (sk->sk_shutdown & RCV_SHUTDOWN)
827 break;
828 if (sk->sk_state == TCP_CLOSE) {
829 /*
830 * This occurs when user tries to read
831 * from never connected socket.
832 */
833 ret = -ENOTCONN;
834 break;
835 }
836 if (!timeo) {
837 ret = -EAGAIN;
838 break;
839 }
840 /* if __tcp_splice_read() got nothing while we have
841 * an skb in receive queue, we do not want to loop.
842 * This might happen with URG data.
843 */
844 if (!skb_queue_empty(&sk->sk_receive_queue))
845 break;
846 sk_wait_data(sk, &timeo, NULL);
847 if (signal_pending(current)) {
848 ret = sock_intr_errno(timeo);
849 break;
850 }
851 continue;
852 }
853 tss.len -= ret;
854 spliced += ret;
855
856 if (!timeo)
857 break;
858 release_sock(sk);
859 lock_sock(sk);
860
861 if (sk->sk_err || sk->sk_state == TCP_CLOSE ||
862 (sk->sk_shutdown & RCV_SHUTDOWN) ||
863 signal_pending(current))
864 break;
865 }
866
867 release_sock(sk);
868
869 if (spliced)
870 return spliced;
871
872 return ret;
873 }
874 EXPORT_SYMBOL(tcp_splice_read);
875
sk_stream_alloc_skb(struct sock * sk,int size,gfp_t gfp,bool force_schedule)876 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
877 bool force_schedule)
878 {
879 struct sk_buff *skb;
880
881 if (likely(!size)) {
882 skb = sk->sk_tx_skb_cache;
883 if (skb) {
884 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
885 sk->sk_tx_skb_cache = NULL;
886 pskb_trim(skb, 0);
887 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
888 skb_shinfo(skb)->tx_flags = 0;
889 memset(TCP_SKB_CB(skb), 0, sizeof(struct tcp_skb_cb));
890 return skb;
891 }
892 }
893 /* The TCP header must be at least 32-bit aligned. */
894 size = ALIGN(size, 4);
895
896 if (unlikely(tcp_under_memory_pressure(sk)))
897 sk_mem_reclaim_partial(sk);
898
899 skb = alloc_skb_fclone(size + sk->sk_prot->max_header, gfp);
900 if (likely(skb)) {
901 bool mem_scheduled;
902
903 if (force_schedule) {
904 mem_scheduled = true;
905 sk_forced_mem_schedule(sk, skb->truesize);
906 } else {
907 mem_scheduled = sk_wmem_schedule(sk, skb->truesize);
908 }
909 if (likely(mem_scheduled)) {
910 skb_reserve(skb, sk->sk_prot->max_header);
911 /*
912 * Make sure that we have exactly size bytes
913 * available to the caller, no more, no less.
914 */
915 skb->reserved_tailroom = skb->end - skb->tail - size;
916 INIT_LIST_HEAD(&skb->tcp_tsorted_anchor);
917 return skb;
918 }
919 __kfree_skb(skb);
920 } else {
921 sk->sk_prot->enter_memory_pressure(sk);
922 sk_stream_moderate_sndbuf(sk);
923 }
924 return NULL;
925 }
926
tcp_xmit_size_goal(struct sock * sk,u32 mss_now,int large_allowed)927 static unsigned int tcp_xmit_size_goal(struct sock *sk, u32 mss_now,
928 int large_allowed)
929 {
930 struct tcp_sock *tp = tcp_sk(sk);
931 u32 new_size_goal, size_goal;
932
933 if (!large_allowed)
934 return mss_now;
935
936 /* Note : tcp_tso_autosize() will eventually split this later */
937 new_size_goal = sk->sk_gso_max_size - 1 - MAX_TCP_HEADER;
938 new_size_goal = tcp_bound_to_half_wnd(tp, new_size_goal);
939
940 /* We try hard to avoid divides here */
941 size_goal = tp->gso_segs * mss_now;
942 if (unlikely(new_size_goal < size_goal ||
943 new_size_goal >= size_goal + mss_now)) {
944 tp->gso_segs = min_t(u16, new_size_goal / mss_now,
945 sk->sk_gso_max_segs);
946 size_goal = tp->gso_segs * mss_now;
947 }
948
949 return max(size_goal, mss_now);
950 }
951
tcp_send_mss(struct sock * sk,int * size_goal,int flags)952 int tcp_send_mss(struct sock *sk, int *size_goal, int flags)
953 {
954 int mss_now;
955
956 mss_now = tcp_current_mss(sk);
957 *size_goal = tcp_xmit_size_goal(sk, mss_now, !(flags & MSG_OOB));
958
959 return mss_now;
960 }
961
962 /* In some cases, both sendpage() and sendmsg() could have added
963 * an skb to the write queue, but failed adding payload on it.
964 * We need to remove it to consume less memory, but more
965 * importantly be able to generate EPOLLOUT for Edge Trigger epoll()
966 * users.
967 */
tcp_remove_empty_skb(struct sock * sk,struct sk_buff * skb)968 static void tcp_remove_empty_skb(struct sock *sk, struct sk_buff *skb)
969 {
970 if (skb && TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
971 tcp_unlink_write_queue(skb, sk);
972 if (tcp_write_queue_empty(sk))
973 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
974 sk_wmem_free_skb(sk, skb);
975 }
976 }
977
do_tcp_sendpages(struct sock * sk,struct page * page,int offset,size_t size,int flags)978 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
979 size_t size, int flags)
980 {
981 struct tcp_sock *tp = tcp_sk(sk);
982 int mss_now, size_goal;
983 int err;
984 ssize_t copied;
985 long timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
986
987 if (IS_ENABLED(CONFIG_DEBUG_VM) &&
988 WARN_ONCE(!sendpage_ok(page),
989 "page must not be a Slab one and have page_count > 0"))
990 return -EINVAL;
991
992 /* Wait for a connection to finish. One exception is TCP Fast Open
993 * (passive side) where data is allowed to be sent before a connection
994 * is fully established.
995 */
996 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
997 !tcp_passive_fastopen(sk)) {
998 err = sk_stream_wait_connect(sk, &timeo);
999 if (err != 0)
1000 goto out_err;
1001 }
1002
1003 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1004
1005 mss_now = tcp_send_mss(sk, &size_goal, flags);
1006 copied = 0;
1007
1008 err = -EPIPE;
1009 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1010 goto out_err;
1011
1012 while (size > 0) {
1013 struct sk_buff *skb = tcp_write_queue_tail(sk);
1014 int copy, i;
1015 bool can_coalesce;
1016
1017 if (!skb || (copy = size_goal - skb->len) <= 0 ||
1018 !tcp_skb_can_collapse_to(skb)) {
1019 new_segment:
1020 if (!sk_stream_memory_free(sk))
1021 goto wait_for_space;
1022
1023 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1024 tcp_rtx_and_write_queues_empty(sk));
1025 if (!skb)
1026 goto wait_for_space;
1027
1028 #ifdef CONFIG_TLS_DEVICE
1029 skb->decrypted = !!(flags & MSG_SENDPAGE_DECRYPTED);
1030 #endif
1031 skb_entail(sk, skb);
1032 copy = size_goal;
1033 }
1034
1035 if (copy > size)
1036 copy = size;
1037
1038 i = skb_shinfo(skb)->nr_frags;
1039 can_coalesce = skb_can_coalesce(skb, i, page, offset);
1040 if (!can_coalesce && i >= sysctl_max_skb_frags) {
1041 tcp_mark_push(tp, skb);
1042 goto new_segment;
1043 }
1044 if (!sk_wmem_schedule(sk, copy))
1045 goto wait_for_space;
1046
1047 if (can_coalesce) {
1048 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1049 } else {
1050 get_page(page);
1051 skb_fill_page_desc(skb, i, page, offset, copy);
1052 }
1053
1054 if (!(flags & MSG_NO_SHARED_FRAGS))
1055 skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
1056
1057 skb->len += copy;
1058 skb->data_len += copy;
1059 skb->truesize += copy;
1060 sk_wmem_queued_add(sk, copy);
1061 sk_mem_charge(sk, copy);
1062 skb->ip_summed = CHECKSUM_PARTIAL;
1063 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1064 TCP_SKB_CB(skb)->end_seq += copy;
1065 tcp_skb_pcount_set(skb, 0);
1066
1067 if (!copied)
1068 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1069
1070 copied += copy;
1071 offset += copy;
1072 size -= copy;
1073 if (!size)
1074 goto out;
1075
1076 if (skb->len < size_goal || (flags & MSG_OOB))
1077 continue;
1078
1079 if (forced_push(tp)) {
1080 tcp_mark_push(tp, skb);
1081 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1082 } else if (skb == tcp_send_head(sk))
1083 tcp_push_one(sk, mss_now);
1084 continue;
1085
1086 wait_for_space:
1087 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1088 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1089 TCP_NAGLE_PUSH, size_goal);
1090
1091 err = sk_stream_wait_memory(sk, &timeo);
1092 if (err != 0)
1093 goto do_error;
1094
1095 mss_now = tcp_send_mss(sk, &size_goal, flags);
1096 }
1097
1098 out:
1099 if (copied) {
1100 tcp_tx_timestamp(sk, sk->sk_tsflags);
1101 if (!(flags & MSG_SENDPAGE_NOTLAST))
1102 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1103 }
1104 return copied;
1105
1106 do_error:
1107 tcp_remove_empty_skb(sk, tcp_write_queue_tail(sk));
1108 if (copied)
1109 goto out;
1110 out_err:
1111 /* make sure we wake any epoll edge trigger waiter */
1112 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1113 sk->sk_write_space(sk);
1114 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1115 }
1116 return sk_stream_error(sk, flags, err);
1117 }
1118 EXPORT_SYMBOL_GPL(do_tcp_sendpages);
1119
tcp_sendpage_locked(struct sock * sk,struct page * page,int offset,size_t size,int flags)1120 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
1121 size_t size, int flags)
1122 {
1123 if (!(sk->sk_route_caps & NETIF_F_SG))
1124 return sock_no_sendpage_locked(sk, page, offset, size, flags);
1125
1126 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1127
1128 return do_tcp_sendpages(sk, page, offset, size, flags);
1129 }
1130 EXPORT_SYMBOL_GPL(tcp_sendpage_locked);
1131
tcp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1132 int tcp_sendpage(struct sock *sk, struct page *page, int offset,
1133 size_t size, int flags)
1134 {
1135 int ret;
1136
1137 lock_sock(sk);
1138 ret = tcp_sendpage_locked(sk, page, offset, size, flags);
1139 release_sock(sk);
1140
1141 return ret;
1142 }
1143 EXPORT_SYMBOL(tcp_sendpage);
1144
tcp_free_fastopen_req(struct tcp_sock * tp)1145 void tcp_free_fastopen_req(struct tcp_sock *tp)
1146 {
1147 if (tp->fastopen_req) {
1148 kfree(tp->fastopen_req);
1149 tp->fastopen_req = NULL;
1150 }
1151 }
1152
tcp_sendmsg_fastopen(struct sock * sk,struct msghdr * msg,int * copied,size_t size,struct ubuf_info * uarg)1153 static int tcp_sendmsg_fastopen(struct sock *sk, struct msghdr *msg,
1154 int *copied, size_t size,
1155 struct ubuf_info *uarg)
1156 {
1157 struct tcp_sock *tp = tcp_sk(sk);
1158 struct inet_sock *inet = inet_sk(sk);
1159 struct sockaddr *uaddr = msg->msg_name;
1160 int err, flags;
1161
1162 if (!(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fastopen) &
1163 TFO_CLIENT_ENABLE) ||
1164 (uaddr && msg->msg_namelen >= sizeof(uaddr->sa_family) &&
1165 uaddr->sa_family == AF_UNSPEC))
1166 return -EOPNOTSUPP;
1167 if (tp->fastopen_req)
1168 return -EALREADY; /* Another Fast Open is in progress */
1169
1170 tp->fastopen_req = kzalloc(sizeof(struct tcp_fastopen_request),
1171 sk->sk_allocation);
1172 if (unlikely(!tp->fastopen_req))
1173 return -ENOBUFS;
1174 tp->fastopen_req->data = msg;
1175 tp->fastopen_req->size = size;
1176 tp->fastopen_req->uarg = uarg;
1177
1178 if (inet->defer_connect) {
1179 err = tcp_connect(sk);
1180 /* Same failure procedure as in tcp_v4/6_connect */
1181 if (err) {
1182 tcp_set_state(sk, TCP_CLOSE);
1183 inet->inet_dport = 0;
1184 sk->sk_route_caps = 0;
1185 }
1186 }
1187 flags = (msg->msg_flags & MSG_DONTWAIT) ? O_NONBLOCK : 0;
1188 err = __inet_stream_connect(sk->sk_socket, uaddr,
1189 msg->msg_namelen, flags, 1);
1190 /* fastopen_req could already be freed in __inet_stream_connect
1191 * if the connection times out or gets rst
1192 */
1193 if (tp->fastopen_req) {
1194 *copied = tp->fastopen_req->copied;
1195 tcp_free_fastopen_req(tp);
1196 inet->defer_connect = 0;
1197 }
1198 return err;
1199 }
1200
tcp_sendmsg_locked(struct sock * sk,struct msghdr * msg,size_t size)1201 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size)
1202 {
1203 struct tcp_sock *tp = tcp_sk(sk);
1204 struct ubuf_info *uarg = NULL;
1205 struct sk_buff *skb;
1206 struct sockcm_cookie sockc;
1207 int flags, err, copied = 0;
1208 int mss_now = 0, size_goal, copied_syn = 0;
1209 int process_backlog = 0;
1210 bool zc = false;
1211 long timeo;
1212
1213 flags = msg->msg_flags;
1214
1215 if (flags & MSG_ZEROCOPY && size && sock_flag(sk, SOCK_ZEROCOPY)) {
1216 skb = tcp_write_queue_tail(sk);
1217 uarg = sock_zerocopy_realloc(sk, size, skb_zcopy(skb));
1218 if (!uarg) {
1219 err = -ENOBUFS;
1220 goto out_err;
1221 }
1222
1223 zc = sk->sk_route_caps & NETIF_F_SG;
1224 if (!zc)
1225 uarg->zerocopy = 0;
1226 }
1227
1228 if (unlikely(flags & MSG_FASTOPEN || inet_sk(sk)->defer_connect) &&
1229 !tp->repair) {
1230 err = tcp_sendmsg_fastopen(sk, msg, &copied_syn, size, uarg);
1231 if (err == -EINPROGRESS && copied_syn > 0)
1232 goto out;
1233 else if (err)
1234 goto out_err;
1235 }
1236
1237 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
1238
1239 tcp_rate_check_app_limited(sk); /* is sending application-limited? */
1240
1241 /* Wait for a connection to finish. One exception is TCP Fast Open
1242 * (passive side) where data is allowed to be sent before a connection
1243 * is fully established.
1244 */
1245 if (((1 << sk->sk_state) & ~(TCPF_ESTABLISHED | TCPF_CLOSE_WAIT)) &&
1246 !tcp_passive_fastopen(sk)) {
1247 err = sk_stream_wait_connect(sk, &timeo);
1248 if (err != 0)
1249 goto do_error;
1250 }
1251
1252 if (unlikely(tp->repair)) {
1253 if (tp->repair_queue == TCP_RECV_QUEUE) {
1254 copied = tcp_send_rcvq(sk, msg, size);
1255 goto out_nopush;
1256 }
1257
1258 err = -EINVAL;
1259 if (tp->repair_queue == TCP_NO_QUEUE)
1260 goto out_err;
1261
1262 /* 'common' sending to sendq */
1263 }
1264
1265 sockcm_init(&sockc, sk);
1266 if (msg->msg_controllen) {
1267 err = sock_cmsg_send(sk, msg, &sockc);
1268 if (unlikely(err)) {
1269 err = -EINVAL;
1270 goto out_err;
1271 }
1272 }
1273
1274 /* This should be in poll */
1275 sk_clear_bit(SOCKWQ_ASYNC_NOSPACE, sk);
1276
1277 /* Ok commence sending. */
1278 copied = 0;
1279
1280 restart:
1281 mss_now = tcp_send_mss(sk, &size_goal, flags);
1282
1283 err = -EPIPE;
1284 if (sk->sk_err || (sk->sk_shutdown & SEND_SHUTDOWN))
1285 goto do_error;
1286
1287 while (msg_data_left(msg)) {
1288 int copy = 0;
1289
1290 skb = tcp_write_queue_tail(sk);
1291 if (skb)
1292 copy = size_goal - skb->len;
1293
1294 if (copy <= 0 || !tcp_skb_can_collapse_to(skb)) {
1295 bool first_skb;
1296
1297 new_segment:
1298 if (!sk_stream_memory_free(sk))
1299 goto wait_for_space;
1300
1301 if (unlikely(process_backlog >= 16)) {
1302 process_backlog = 0;
1303 if (sk_flush_backlog(sk))
1304 goto restart;
1305 }
1306 first_skb = tcp_rtx_and_write_queues_empty(sk);
1307 skb = sk_stream_alloc_skb(sk, 0, sk->sk_allocation,
1308 first_skb);
1309 if (!skb)
1310 goto wait_for_space;
1311
1312 process_backlog++;
1313 skb->ip_summed = CHECKSUM_PARTIAL;
1314
1315 skb_entail(sk, skb);
1316 copy = size_goal;
1317
1318 /* All packets are restored as if they have
1319 * already been sent. skb_mstamp_ns isn't set to
1320 * avoid wrong rtt estimation.
1321 */
1322 if (tp->repair)
1323 TCP_SKB_CB(skb)->sacked |= TCPCB_REPAIRED;
1324 }
1325
1326 /* Try to append data to the end of skb. */
1327 if (copy > msg_data_left(msg))
1328 copy = msg_data_left(msg);
1329
1330 /* Where to copy to? */
1331 if (skb_availroom(skb) > 0 && !zc) {
1332 /* We have some space in skb head. Superb! */
1333 copy = min_t(int, copy, skb_availroom(skb));
1334 err = skb_add_data_nocache(sk, skb, &msg->msg_iter, copy);
1335 if (err)
1336 goto do_fault;
1337 } else if (!zc) {
1338 bool merge = true;
1339 int i = skb_shinfo(skb)->nr_frags;
1340 struct page_frag *pfrag = sk_page_frag(sk);
1341
1342 if (!sk_page_frag_refill(sk, pfrag))
1343 goto wait_for_space;
1344
1345 if (!skb_can_coalesce(skb, i, pfrag->page,
1346 pfrag->offset)) {
1347 if (i >= sysctl_max_skb_frags) {
1348 tcp_mark_push(tp, skb);
1349 goto new_segment;
1350 }
1351 merge = false;
1352 }
1353
1354 copy = min_t(int, copy, pfrag->size - pfrag->offset);
1355
1356 if (!sk_wmem_schedule(sk, copy))
1357 goto wait_for_space;
1358
1359 err = skb_copy_to_page_nocache(sk, &msg->msg_iter, skb,
1360 pfrag->page,
1361 pfrag->offset,
1362 copy);
1363 if (err)
1364 goto do_error;
1365
1366 /* Update the skb. */
1367 if (merge) {
1368 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], copy);
1369 } else {
1370 skb_fill_page_desc(skb, i, pfrag->page,
1371 pfrag->offset, copy);
1372 page_ref_inc(pfrag->page);
1373 }
1374 pfrag->offset += copy;
1375 } else {
1376 if (!sk_wmem_schedule(sk, copy))
1377 goto wait_for_space;
1378
1379 err = skb_zerocopy_iter_stream(sk, skb, msg, copy, uarg);
1380 if (err == -EMSGSIZE || err == -EEXIST) {
1381 tcp_mark_push(tp, skb);
1382 goto new_segment;
1383 }
1384 if (err < 0)
1385 goto do_error;
1386 copy = err;
1387 }
1388
1389 if (!copied)
1390 TCP_SKB_CB(skb)->tcp_flags &= ~TCPHDR_PSH;
1391
1392 WRITE_ONCE(tp->write_seq, tp->write_seq + copy);
1393 TCP_SKB_CB(skb)->end_seq += copy;
1394 tcp_skb_pcount_set(skb, 0);
1395
1396 copied += copy;
1397 if (!msg_data_left(msg)) {
1398 if (unlikely(flags & MSG_EOR))
1399 TCP_SKB_CB(skb)->eor = 1;
1400 goto out;
1401 }
1402
1403 if (skb->len < size_goal || (flags & MSG_OOB) || unlikely(tp->repair))
1404 continue;
1405
1406 if (forced_push(tp)) {
1407 tcp_mark_push(tp, skb);
1408 __tcp_push_pending_frames(sk, mss_now, TCP_NAGLE_PUSH);
1409 } else if (skb == tcp_send_head(sk))
1410 tcp_push_one(sk, mss_now);
1411 continue;
1412
1413 wait_for_space:
1414 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1415 if (copied)
1416 tcp_push(sk, flags & ~MSG_MORE, mss_now,
1417 TCP_NAGLE_PUSH, size_goal);
1418
1419 err = sk_stream_wait_memory(sk, &timeo);
1420 if (err != 0)
1421 goto do_error;
1422
1423 mss_now = tcp_send_mss(sk, &size_goal, flags);
1424 }
1425
1426 out:
1427 if (copied) {
1428 tcp_tx_timestamp(sk, sockc.tsflags);
1429 tcp_push(sk, flags, mss_now, tp->nonagle, size_goal);
1430 }
1431 out_nopush:
1432 sock_zerocopy_put(uarg);
1433 return copied + copied_syn;
1434
1435 do_error:
1436 skb = tcp_write_queue_tail(sk);
1437 do_fault:
1438 tcp_remove_empty_skb(sk, skb);
1439
1440 if (copied + copied_syn)
1441 goto out;
1442 out_err:
1443 sock_zerocopy_put_abort(uarg, true);
1444 err = sk_stream_error(sk, flags, err);
1445 /* make sure we wake any epoll edge trigger waiter */
1446 if (unlikely(tcp_rtx_and_write_queues_empty(sk) && err == -EAGAIN)) {
1447 sk->sk_write_space(sk);
1448 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
1449 }
1450 return err;
1451 }
1452 EXPORT_SYMBOL_GPL(tcp_sendmsg_locked);
1453
tcp_sendmsg(struct sock * sk,struct msghdr * msg,size_t size)1454 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1455 {
1456 int ret;
1457
1458 lock_sock(sk);
1459 ret = tcp_sendmsg_locked(sk, msg, size);
1460 release_sock(sk);
1461
1462 return ret;
1463 }
1464 EXPORT_SYMBOL(tcp_sendmsg);
1465
1466 /*
1467 * Handle reading urgent data. BSD has very simple semantics for
1468 * this, no blocking and very strange errors 8)
1469 */
1470
tcp_recv_urg(struct sock * sk,struct msghdr * msg,int len,int flags)1471 static int tcp_recv_urg(struct sock *sk, struct msghdr *msg, int len, int flags)
1472 {
1473 struct tcp_sock *tp = tcp_sk(sk);
1474
1475 /* No URG data to read. */
1476 if (sock_flag(sk, SOCK_URGINLINE) || !tp->urg_data ||
1477 tp->urg_data == TCP_URG_READ)
1478 return -EINVAL; /* Yes this is right ! */
1479
1480 if (sk->sk_state == TCP_CLOSE && !sock_flag(sk, SOCK_DONE))
1481 return -ENOTCONN;
1482
1483 if (tp->urg_data & TCP_URG_VALID) {
1484 int err = 0;
1485 char c = tp->urg_data;
1486
1487 if (!(flags & MSG_PEEK))
1488 tp->urg_data = TCP_URG_READ;
1489
1490 /* Read urgent data. */
1491 msg->msg_flags |= MSG_OOB;
1492
1493 if (len > 0) {
1494 if (!(flags & MSG_TRUNC))
1495 err = memcpy_to_msg(msg, &c, 1);
1496 len = 1;
1497 } else
1498 msg->msg_flags |= MSG_TRUNC;
1499
1500 return err ? -EFAULT : len;
1501 }
1502
1503 if (sk->sk_state == TCP_CLOSE || (sk->sk_shutdown & RCV_SHUTDOWN))
1504 return 0;
1505
1506 /* Fixed the recv(..., MSG_OOB) behaviour. BSD docs and
1507 * the available implementations agree in this case:
1508 * this call should never block, independent of the
1509 * blocking state of the socket.
1510 * Mike <pall@rz.uni-karlsruhe.de>
1511 */
1512 return -EAGAIN;
1513 }
1514
tcp_peek_sndq(struct sock * sk,struct msghdr * msg,int len)1515 static int tcp_peek_sndq(struct sock *sk, struct msghdr *msg, int len)
1516 {
1517 struct sk_buff *skb;
1518 int copied = 0, err = 0;
1519
1520 /* XXX -- need to support SO_PEEK_OFF */
1521
1522 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
1523 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1524 if (err)
1525 return err;
1526 copied += skb->len;
1527 }
1528
1529 skb_queue_walk(&sk->sk_write_queue, skb) {
1530 err = skb_copy_datagram_msg(skb, 0, msg, skb->len);
1531 if (err)
1532 break;
1533
1534 copied += skb->len;
1535 }
1536
1537 return err ?: copied;
1538 }
1539
1540 /* Clean up the receive buffer for full frames taken by the user,
1541 * then send an ACK if necessary. COPIED is the number of bytes
1542 * tcp_recvmsg has given to the user so far, it speeds up the
1543 * calculation of whether or not we must ACK for the sake of
1544 * a window update.
1545 */
tcp_cleanup_rbuf(struct sock * sk,int copied)1546 void tcp_cleanup_rbuf(struct sock *sk, int copied)
1547 {
1548 struct tcp_sock *tp = tcp_sk(sk);
1549 bool time_to_ack = false;
1550
1551 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
1552
1553 WARN(skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq),
1554 "cleanup rbuf bug: copied %X seq %X rcvnxt %X\n",
1555 tp->copied_seq, TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt);
1556
1557 if (inet_csk_ack_scheduled(sk)) {
1558 const struct inet_connection_sock *icsk = inet_csk(sk);
1559 __u16 rcv_mss = icsk->icsk_ack.rcv_mss;
1560 #ifdef CONFIG_LOWPOWER_PROTOCOL
1561 rcv_mss *= tcp_ack_num(sk);
1562 #endif /* CONFIG_LOWPOWER_PROTOCOL */
1563
1564 if (/* Once-per-two-segments ACK was not sent by tcp_input.c */
1565 tp->rcv_nxt - tp->rcv_wup > rcv_mss ||
1566 /*
1567 * If this read emptied read buffer, we send ACK, if
1568 * connection is not bidirectional, user drained
1569 * receive buffer and there was a small segment
1570 * in queue.
1571 */
1572 (copied > 0 &&
1573 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED2) ||
1574 ((icsk->icsk_ack.pending & ICSK_ACK_PUSHED) &&
1575 !inet_csk_in_pingpong_mode(sk))) &&
1576 !atomic_read(&sk->sk_rmem_alloc)))
1577 time_to_ack = true;
1578 }
1579
1580 /* We send an ACK if we can now advertise a non-zero window
1581 * which has been raised "significantly".
1582 *
1583 * Even if window raised up to infinity, do not send window open ACK
1584 * in states, where we will not receive more. It is useless.
1585 */
1586 if (copied > 0 && !time_to_ack && !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1587 __u32 rcv_window_now = tcp_receive_window(tp);
1588
1589 /* Optimize, __tcp_select_window() is not cheap. */
1590 if (2*rcv_window_now <= tp->window_clamp) {
1591 __u32 new_window = __tcp_select_window(sk);
1592
1593 /* Send ACK now, if this read freed lots of space
1594 * in our buffer. Certainly, new_window is new window.
1595 * We can advertise it now, if it is not less than current one.
1596 * "Lots" means "at least twice" here.
1597 */
1598 if (new_window && new_window >= 2 * rcv_window_now)
1599 time_to_ack = true;
1600 }
1601 }
1602 if (time_to_ack)
1603 tcp_send_ack(sk);
1604 }
1605
tcp_recv_skb(struct sock * sk,u32 seq,u32 * off)1606 static struct sk_buff *tcp_recv_skb(struct sock *sk, u32 seq, u32 *off)
1607 {
1608 struct sk_buff *skb;
1609 u32 offset;
1610
1611 while ((skb = skb_peek(&sk->sk_receive_queue)) != NULL) {
1612 offset = seq - TCP_SKB_CB(skb)->seq;
1613 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
1614 pr_err_once("%s: found a SYN, please report !\n", __func__);
1615 offset--;
1616 }
1617 if (offset < skb->len || (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)) {
1618 *off = offset;
1619 return skb;
1620 }
1621 /* This looks weird, but this can happen if TCP collapsing
1622 * splitted a fat GRO packet, while we released socket lock
1623 * in skb_splice_bits()
1624 */
1625 sk_eat_skb(sk, skb);
1626 }
1627 return NULL;
1628 }
1629
1630 /*
1631 * This routine provides an alternative to tcp_recvmsg() for routines
1632 * that would like to handle copying from skbuffs directly in 'sendfile'
1633 * fashion.
1634 * Note:
1635 * - It is assumed that the socket was locked by the caller.
1636 * - The routine does not block.
1637 * - At present, there is no support for reading OOB data
1638 * or for 'peeking' the socket using this routine
1639 * (although both would be easy to implement).
1640 */
tcp_read_sock(struct sock * sk,read_descriptor_t * desc,sk_read_actor_t recv_actor)1641 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
1642 sk_read_actor_t recv_actor)
1643 {
1644 struct sk_buff *skb;
1645 struct tcp_sock *tp = tcp_sk(sk);
1646 u32 seq = tp->copied_seq;
1647 u32 offset;
1648 int copied = 0;
1649
1650 if (sk->sk_state == TCP_LISTEN)
1651 return -ENOTCONN;
1652 while ((skb = tcp_recv_skb(sk, seq, &offset)) != NULL) {
1653 if (offset < skb->len) {
1654 int used;
1655 size_t len;
1656
1657 len = skb->len - offset;
1658 /* Stop reading if we hit a patch of urgent data */
1659 if (tp->urg_data) {
1660 u32 urg_offset = tp->urg_seq - seq;
1661 if (urg_offset < len)
1662 len = urg_offset;
1663 if (!len)
1664 break;
1665 }
1666 used = recv_actor(desc, skb, offset, len);
1667 if (used <= 0) {
1668 if (!copied)
1669 copied = used;
1670 break;
1671 }
1672 if (WARN_ON_ONCE(used > len))
1673 used = len;
1674 seq += used;
1675 copied += used;
1676 offset += used;
1677
1678 /* If recv_actor drops the lock (e.g. TCP splice
1679 * receive) the skb pointer might be invalid when
1680 * getting here: tcp_collapse might have deleted it
1681 * while aggregating skbs from the socket queue.
1682 */
1683 skb = tcp_recv_skb(sk, seq - 1, &offset);
1684 if (!skb)
1685 break;
1686 /* TCP coalescing might have appended data to the skb.
1687 * Try to splice more frags
1688 */
1689 if (offset + 1 != skb->len)
1690 continue;
1691 }
1692 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN) {
1693 sk_eat_skb(sk, skb);
1694 ++seq;
1695 break;
1696 }
1697 sk_eat_skb(sk, skb);
1698 if (!desc->count)
1699 break;
1700 WRITE_ONCE(tp->copied_seq, seq);
1701 }
1702 WRITE_ONCE(tp->copied_seq, seq);
1703
1704 tcp_rcv_space_adjust(sk);
1705
1706 /* Clean up data we have read: This will do ACK frames. */
1707 if (copied > 0) {
1708 tcp_recv_skb(sk, seq, &offset);
1709 tcp_cleanup_rbuf(sk, copied);
1710 }
1711 return copied;
1712 }
1713 EXPORT_SYMBOL(tcp_read_sock);
1714
tcp_peek_len(struct socket * sock)1715 int tcp_peek_len(struct socket *sock)
1716 {
1717 return tcp_inq(sock->sk);
1718 }
1719 EXPORT_SYMBOL(tcp_peek_len);
1720
1721 /* Make sure sk_rcvbuf is big enough to satisfy SO_RCVLOWAT hint */
tcp_set_rcvlowat(struct sock * sk,int val)1722 int tcp_set_rcvlowat(struct sock *sk, int val)
1723 {
1724 int cap;
1725
1726 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1727 cap = sk->sk_rcvbuf >> 1;
1728 else
1729 cap = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]) >> 1;
1730 val = min(val, cap);
1731 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
1732
1733 /* Check if we need to signal EPOLLIN right now */
1734 tcp_data_ready(sk);
1735
1736 if (sk->sk_userlocks & SOCK_RCVBUF_LOCK)
1737 return 0;
1738
1739 val <<= 1;
1740 if (val > sk->sk_rcvbuf) {
1741 WRITE_ONCE(sk->sk_rcvbuf, val);
1742 tcp_sk(sk)->window_clamp = tcp_win_from_space(sk, val);
1743 }
1744 return 0;
1745 }
1746 EXPORT_SYMBOL(tcp_set_rcvlowat);
1747
1748 #ifdef CONFIG_MMU
1749 static const struct vm_operations_struct tcp_vm_ops = {
1750 };
1751
tcp_mmap(struct file * file,struct socket * sock,struct vm_area_struct * vma)1752 int tcp_mmap(struct file *file, struct socket *sock,
1753 struct vm_area_struct *vma)
1754 {
1755 if (vma->vm_flags & (VM_WRITE | VM_EXEC))
1756 return -EPERM;
1757 vma->vm_flags &= ~(VM_MAYWRITE | VM_MAYEXEC);
1758
1759 /* Instruct vm_insert_page() to not mmap_read_lock(mm) */
1760 vma->vm_flags |= VM_MIXEDMAP;
1761
1762 vma->vm_ops = &tcp_vm_ops;
1763 return 0;
1764 }
1765 EXPORT_SYMBOL(tcp_mmap);
1766
skb_advance_to_frag(struct sk_buff * skb,u32 offset_skb,u32 * offset_frag)1767 static skb_frag_t *skb_advance_to_frag(struct sk_buff *skb, u32 offset_skb,
1768 u32 *offset_frag)
1769 {
1770 skb_frag_t *frag;
1771
1772 if (unlikely(offset_skb >= skb->len))
1773 return NULL;
1774
1775 offset_skb -= skb_headlen(skb);
1776 if ((int)offset_skb < 0 || skb_has_frag_list(skb))
1777 return NULL;
1778
1779 frag = skb_shinfo(skb)->frags;
1780 while (offset_skb) {
1781 if (skb_frag_size(frag) > offset_skb) {
1782 *offset_frag = offset_skb;
1783 return frag;
1784 }
1785 offset_skb -= skb_frag_size(frag);
1786 ++frag;
1787 }
1788 *offset_frag = 0;
1789 return frag;
1790 }
1791
tcp_copy_straggler_data(struct tcp_zerocopy_receive * zc,struct sk_buff * skb,u32 copylen,u32 * offset,u32 * seq)1792 static int tcp_copy_straggler_data(struct tcp_zerocopy_receive *zc,
1793 struct sk_buff *skb, u32 copylen,
1794 u32 *offset, u32 *seq)
1795 {
1796 unsigned long copy_address = (unsigned long)zc->copybuf_address;
1797 struct msghdr msg = {};
1798 struct iovec iov;
1799 int err;
1800
1801 if (copy_address != zc->copybuf_address)
1802 return -EINVAL;
1803
1804 err = import_single_range(READ, (void __user *)copy_address,
1805 copylen, &iov, &msg.msg_iter);
1806 if (err)
1807 return err;
1808 err = skb_copy_datagram_msg(skb, *offset, &msg, copylen);
1809 if (err)
1810 return err;
1811 zc->recv_skip_hint -= copylen;
1812 *offset += copylen;
1813 *seq += copylen;
1814 return (__s32)copylen;
1815 }
1816
tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive * zc,struct sock * sk,struct sk_buff * skb,u32 * seq,s32 copybuf_len)1817 static int tcp_zerocopy_handle_leftover_data(struct tcp_zerocopy_receive *zc,
1818 struct sock *sk,
1819 struct sk_buff *skb,
1820 u32 *seq,
1821 s32 copybuf_len)
1822 {
1823 u32 offset, copylen = min_t(u32, copybuf_len, zc->recv_skip_hint);
1824
1825 if (!copylen)
1826 return 0;
1827 /* skb is null if inq < PAGE_SIZE. */
1828 if (skb)
1829 offset = *seq - TCP_SKB_CB(skb)->seq;
1830 else
1831 skb = tcp_recv_skb(sk, *seq, &offset);
1832
1833 zc->copybuf_len = tcp_copy_straggler_data(zc, skb, copylen, &offset,
1834 seq);
1835 return zc->copybuf_len < 0 ? 0 : copylen;
1836 }
1837
tcp_zerocopy_vm_insert_batch(struct vm_area_struct * vma,struct page ** pages,unsigned long pages_to_map,unsigned long * insert_addr,u32 * length_with_pending,u32 * seq,struct tcp_zerocopy_receive * zc)1838 static int tcp_zerocopy_vm_insert_batch(struct vm_area_struct *vma,
1839 struct page **pages,
1840 unsigned long pages_to_map,
1841 unsigned long *insert_addr,
1842 u32 *length_with_pending,
1843 u32 *seq,
1844 struct tcp_zerocopy_receive *zc)
1845 {
1846 unsigned long pages_remaining = pages_to_map;
1847 int bytes_mapped;
1848 int ret;
1849
1850 ret = vm_insert_pages(vma, *insert_addr, pages, &pages_remaining);
1851 bytes_mapped = PAGE_SIZE * (pages_to_map - pages_remaining);
1852 /* Even if vm_insert_pages fails, it may have partially succeeded in
1853 * mapping (some but not all of the pages).
1854 */
1855 *seq += bytes_mapped;
1856 *insert_addr += bytes_mapped;
1857 if (ret) {
1858 /* But if vm_insert_pages did fail, we have to unroll some state
1859 * we speculatively touched before.
1860 */
1861 const int bytes_not_mapped = PAGE_SIZE * pages_remaining;
1862 *length_with_pending -= bytes_not_mapped;
1863 zc->recv_skip_hint += bytes_not_mapped;
1864 }
1865 return ret;
1866 }
1867
tcp_zerocopy_receive(struct sock * sk,struct tcp_zerocopy_receive * zc)1868 static int tcp_zerocopy_receive(struct sock *sk,
1869 struct tcp_zerocopy_receive *zc)
1870 {
1871 u32 length = 0, offset, vma_len, avail_len, aligned_len, copylen = 0;
1872 unsigned long address = (unsigned long)zc->address;
1873 s32 copybuf_len = zc->copybuf_len;
1874 struct tcp_sock *tp = tcp_sk(sk);
1875 #define PAGE_BATCH_SIZE 8
1876 struct page *pages[PAGE_BATCH_SIZE];
1877 const skb_frag_t *frags = NULL;
1878 struct vm_area_struct *vma;
1879 struct sk_buff *skb = NULL;
1880 unsigned long pg_idx = 0;
1881 unsigned long curr_addr;
1882 u32 seq = tp->copied_seq;
1883 int inq = tcp_inq(sk);
1884 int ret;
1885
1886 zc->copybuf_len = 0;
1887
1888 if (address & (PAGE_SIZE - 1) || address != zc->address)
1889 return -EINVAL;
1890
1891 if (sk->sk_state == TCP_LISTEN)
1892 return -ENOTCONN;
1893
1894 sock_rps_record_flow(sk);
1895
1896 mmap_read_lock(current->mm);
1897
1898 vma = find_vma(current->mm, address);
1899 if (!vma || vma->vm_start > address || vma->vm_ops != &tcp_vm_ops) {
1900 mmap_read_unlock(current->mm);
1901 return -EINVAL;
1902 }
1903 vma_len = min_t(unsigned long, zc->length, vma->vm_end - address);
1904 avail_len = min_t(u32, vma_len, inq);
1905 aligned_len = avail_len & ~(PAGE_SIZE - 1);
1906 if (aligned_len) {
1907 zap_page_range(vma, address, aligned_len);
1908 zc->length = aligned_len;
1909 zc->recv_skip_hint = 0;
1910 } else {
1911 zc->length = avail_len;
1912 zc->recv_skip_hint = avail_len;
1913 }
1914 ret = 0;
1915 curr_addr = address;
1916 while (length + PAGE_SIZE <= zc->length) {
1917 if (zc->recv_skip_hint < PAGE_SIZE) {
1918 u32 offset_frag;
1919
1920 /* If we're here, finish the current batch. */
1921 if (pg_idx) {
1922 ret = tcp_zerocopy_vm_insert_batch(vma, pages,
1923 pg_idx,
1924 &curr_addr,
1925 &length,
1926 &seq, zc);
1927 if (ret)
1928 goto out;
1929 pg_idx = 0;
1930 }
1931 if (skb) {
1932 if (zc->recv_skip_hint > 0)
1933 break;
1934 skb = skb->next;
1935 offset = seq - TCP_SKB_CB(skb)->seq;
1936 } else {
1937 skb = tcp_recv_skb(sk, seq, &offset);
1938 }
1939 zc->recv_skip_hint = skb->len - offset;
1940 frags = skb_advance_to_frag(skb, offset, &offset_frag);
1941 if (!frags || offset_frag)
1942 break;
1943 }
1944 if (skb_frag_size(frags) != PAGE_SIZE || skb_frag_off(frags)) {
1945 int remaining = zc->recv_skip_hint;
1946
1947 while (remaining && (skb_frag_size(frags) != PAGE_SIZE ||
1948 skb_frag_off(frags))) {
1949 remaining -= skb_frag_size(frags);
1950 frags++;
1951 }
1952 zc->recv_skip_hint -= remaining;
1953 break;
1954 }
1955 pages[pg_idx] = skb_frag_page(frags);
1956 pg_idx++;
1957 length += PAGE_SIZE;
1958 zc->recv_skip_hint -= PAGE_SIZE;
1959 frags++;
1960 if (pg_idx == PAGE_BATCH_SIZE) {
1961 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1962 &curr_addr, &length,
1963 &seq, zc);
1964 if (ret)
1965 goto out;
1966 pg_idx = 0;
1967 }
1968 }
1969 if (pg_idx) {
1970 ret = tcp_zerocopy_vm_insert_batch(vma, pages, pg_idx,
1971 &curr_addr, &length, &seq,
1972 zc);
1973 }
1974 out:
1975 mmap_read_unlock(current->mm);
1976 /* Try to copy straggler data. */
1977 if (!ret)
1978 copylen = tcp_zerocopy_handle_leftover_data(zc, sk, skb, &seq,
1979 copybuf_len);
1980
1981 if (length + copylen) {
1982 WRITE_ONCE(tp->copied_seq, seq);
1983 tcp_rcv_space_adjust(sk);
1984
1985 /* Clean up data we have read: This will do ACK frames. */
1986 tcp_recv_skb(sk, seq, &offset);
1987 tcp_cleanup_rbuf(sk, length + copylen);
1988 ret = 0;
1989 if (length == zc->length)
1990 zc->recv_skip_hint = 0;
1991 } else {
1992 if (!zc->recv_skip_hint && sock_flag(sk, SOCK_DONE))
1993 ret = -EIO;
1994 }
1995 zc->length = length;
1996 return ret;
1997 }
1998 #endif
1999
tcp_update_recv_tstamps(struct sk_buff * skb,struct scm_timestamping_internal * tss)2000 static void tcp_update_recv_tstamps(struct sk_buff *skb,
2001 struct scm_timestamping_internal *tss)
2002 {
2003 if (skb->tstamp)
2004 tss->ts[0] = ktime_to_timespec64(skb->tstamp);
2005 else
2006 tss->ts[0] = (struct timespec64) {0};
2007
2008 if (skb_hwtstamps(skb)->hwtstamp)
2009 tss->ts[2] = ktime_to_timespec64(skb_hwtstamps(skb)->hwtstamp);
2010 else
2011 tss->ts[2] = (struct timespec64) {0};
2012 }
2013
2014 /* Similar to __sock_recv_timestamp, but does not require an skb */
tcp_recv_timestamp(struct msghdr * msg,const struct sock * sk,struct scm_timestamping_internal * tss)2015 static void tcp_recv_timestamp(struct msghdr *msg, const struct sock *sk,
2016 struct scm_timestamping_internal *tss)
2017 {
2018 int new_tstamp = sock_flag(sk, SOCK_TSTAMP_NEW);
2019 bool has_timestamping = false;
2020
2021 if (tss->ts[0].tv_sec || tss->ts[0].tv_nsec) {
2022 if (sock_flag(sk, SOCK_RCVTSTAMP)) {
2023 if (sock_flag(sk, SOCK_RCVTSTAMPNS)) {
2024 if (new_tstamp) {
2025 struct __kernel_timespec kts = {
2026 .tv_sec = tss->ts[0].tv_sec,
2027 .tv_nsec = tss->ts[0].tv_nsec,
2028 };
2029 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_NEW,
2030 sizeof(kts), &kts);
2031 } else {
2032 struct __kernel_old_timespec ts_old = {
2033 .tv_sec = tss->ts[0].tv_sec,
2034 .tv_nsec = tss->ts[0].tv_nsec,
2035 };
2036 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMPNS_OLD,
2037 sizeof(ts_old), &ts_old);
2038 }
2039 } else {
2040 if (new_tstamp) {
2041 struct __kernel_sock_timeval stv = {
2042 .tv_sec = tss->ts[0].tv_sec,
2043 .tv_usec = tss->ts[0].tv_nsec / 1000,
2044 };
2045 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_NEW,
2046 sizeof(stv), &stv);
2047 } else {
2048 struct __kernel_old_timeval tv = {
2049 .tv_sec = tss->ts[0].tv_sec,
2050 .tv_usec = tss->ts[0].tv_nsec / 1000,
2051 };
2052 put_cmsg(msg, SOL_SOCKET, SO_TIMESTAMP_OLD,
2053 sizeof(tv), &tv);
2054 }
2055 }
2056 }
2057
2058 if (sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE)
2059 has_timestamping = true;
2060 else
2061 tss->ts[0] = (struct timespec64) {0};
2062 }
2063
2064 if (tss->ts[2].tv_sec || tss->ts[2].tv_nsec) {
2065 if (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)
2066 has_timestamping = true;
2067 else
2068 tss->ts[2] = (struct timespec64) {0};
2069 }
2070
2071 if (has_timestamping) {
2072 tss->ts[1] = (struct timespec64) {0};
2073 if (sock_flag(sk, SOCK_TSTAMP_NEW))
2074 put_cmsg_scm_timestamping64(msg, tss);
2075 else
2076 put_cmsg_scm_timestamping(msg, tss);
2077 }
2078 }
2079
tcp_inq_hint(struct sock * sk)2080 static int tcp_inq_hint(struct sock *sk)
2081 {
2082 const struct tcp_sock *tp = tcp_sk(sk);
2083 u32 copied_seq = READ_ONCE(tp->copied_seq);
2084 u32 rcv_nxt = READ_ONCE(tp->rcv_nxt);
2085 int inq;
2086
2087 inq = rcv_nxt - copied_seq;
2088 if (unlikely(inq < 0 || copied_seq != READ_ONCE(tp->copied_seq))) {
2089 lock_sock(sk);
2090 inq = tp->rcv_nxt - tp->copied_seq;
2091 release_sock(sk);
2092 }
2093 /* After receiving a FIN, tell the user-space to continue reading
2094 * by returning a non-zero inq.
2095 */
2096 if (inq == 0 && sock_flag(sk, SOCK_DONE))
2097 inq = 1;
2098 return inq;
2099 }
2100
2101 /*
2102 * This routine copies from a sock struct into the user buffer.
2103 *
2104 * Technical note: in 2.3 we work on _locked_ socket, so that
2105 * tricks with *seq access order and skb->users are not required.
2106 * Probably, code can be easily improved even more.
2107 */
2108
tcp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int nonblock,int flags,int * addr_len)2109 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
2110 int flags, int *addr_len)
2111 {
2112 struct tcp_sock *tp = tcp_sk(sk);
2113 int copied = 0;
2114 u32 peek_seq;
2115 u32 *seq;
2116 unsigned long used;
2117 int err, inq;
2118 int target; /* Read at least this many bytes */
2119 long timeo;
2120 struct sk_buff *skb, *last;
2121 u32 urg_hole = 0;
2122 struct scm_timestamping_internal tss;
2123 int cmsg_flags;
2124
2125 if (unlikely(flags & MSG_ERRQUEUE))
2126 return inet_recv_error(sk, msg, len, addr_len);
2127
2128 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue) &&
2129 (sk->sk_state == TCP_ESTABLISHED))
2130 sk_busy_loop(sk, nonblock);
2131
2132 lock_sock(sk);
2133
2134 err = -ENOTCONN;
2135 if (sk->sk_state == TCP_LISTEN)
2136 goto out;
2137
2138 cmsg_flags = tp->recvmsg_inq ? 1 : 0;
2139 timeo = sock_rcvtimeo(sk, nonblock);
2140
2141 /* Urgent data needs to be handled specially. */
2142 if (flags & MSG_OOB)
2143 goto recv_urg;
2144
2145 if (unlikely(tp->repair)) {
2146 err = -EPERM;
2147 if (!(flags & MSG_PEEK))
2148 goto out;
2149
2150 if (tp->repair_queue == TCP_SEND_QUEUE)
2151 goto recv_sndq;
2152
2153 err = -EINVAL;
2154 if (tp->repair_queue == TCP_NO_QUEUE)
2155 goto out;
2156
2157 /* 'common' recv queue MSG_PEEK-ing */
2158 }
2159
2160 seq = &tp->copied_seq;
2161 if (flags & MSG_PEEK) {
2162 peek_seq = tp->copied_seq;
2163 seq = &peek_seq;
2164 }
2165
2166 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2167
2168 do {
2169 u32 offset;
2170
2171 /* Are we at urgent data? Stop if we have read anything or have SIGURG pending. */
2172 if (tp->urg_data && tp->urg_seq == *seq) {
2173 if (copied)
2174 break;
2175 if (signal_pending(current)) {
2176 copied = timeo ? sock_intr_errno(timeo) : -EAGAIN;
2177 break;
2178 }
2179 }
2180
2181 /* Next get a buffer. */
2182
2183 last = skb_peek_tail(&sk->sk_receive_queue);
2184 skb_queue_walk(&sk->sk_receive_queue, skb) {
2185 last = skb;
2186 /* Now that we have two receive queues this
2187 * shouldn't happen.
2188 */
2189 if (WARN(before(*seq, TCP_SKB_CB(skb)->seq),
2190 "TCP recvmsg seq # bug: copied %X, seq %X, rcvnxt %X, fl %X\n",
2191 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt,
2192 flags))
2193 break;
2194
2195 offset = *seq - TCP_SKB_CB(skb)->seq;
2196 if (unlikely(TCP_SKB_CB(skb)->tcp_flags & TCPHDR_SYN)) {
2197 pr_err_once("%s: found a SYN, please report !\n", __func__);
2198 offset--;
2199 }
2200 if (offset < skb->len)
2201 goto found_ok_skb;
2202 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2203 goto found_fin_ok;
2204 WARN(!(flags & MSG_PEEK),
2205 "TCP recvmsg seq # bug 2: copied %X, seq %X, rcvnxt %X, fl %X\n",
2206 *seq, TCP_SKB_CB(skb)->seq, tp->rcv_nxt, flags);
2207 }
2208
2209 /* Well, if we have backlog, try to process it now yet. */
2210
2211 if (copied >= target && !READ_ONCE(sk->sk_backlog.tail))
2212 break;
2213
2214 if (copied) {
2215 if (sk->sk_err ||
2216 sk->sk_state == TCP_CLOSE ||
2217 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2218 !timeo ||
2219 signal_pending(current))
2220 break;
2221 } else {
2222 if (sock_flag(sk, SOCK_DONE))
2223 break;
2224
2225 if (sk->sk_err) {
2226 copied = sock_error(sk);
2227 break;
2228 }
2229
2230 if (sk->sk_shutdown & RCV_SHUTDOWN)
2231 break;
2232
2233 if (sk->sk_state == TCP_CLOSE) {
2234 /* This occurs when user tries to read
2235 * from never connected socket.
2236 */
2237 copied = -ENOTCONN;
2238 break;
2239 }
2240
2241 if (!timeo) {
2242 copied = -EAGAIN;
2243 break;
2244 }
2245
2246 if (signal_pending(current)) {
2247 copied = sock_intr_errno(timeo);
2248 break;
2249 }
2250 }
2251
2252 tcp_cleanup_rbuf(sk, copied);
2253
2254 if (copied >= target) {
2255 /* Do not sleep, just process backlog. */
2256 release_sock(sk);
2257 lock_sock(sk);
2258 } else {
2259 sk_wait_data(sk, &timeo, last);
2260 }
2261
2262 if ((flags & MSG_PEEK) &&
2263 (peek_seq - copied - urg_hole != tp->copied_seq)) {
2264 net_dbg_ratelimited("TCP(%s:%d): Application bug, race in MSG_PEEK\n",
2265 current->comm,
2266 task_pid_nr(current));
2267 peek_seq = tp->copied_seq;
2268 }
2269 continue;
2270
2271 found_ok_skb:
2272 /* Ok so how much can we use? */
2273 used = skb->len - offset;
2274 if (len < used)
2275 used = len;
2276
2277 /* Do we have urgent data here? */
2278 if (tp->urg_data) {
2279 u32 urg_offset = tp->urg_seq - *seq;
2280 if (urg_offset < used) {
2281 if (!urg_offset) {
2282 if (!sock_flag(sk, SOCK_URGINLINE)) {
2283 WRITE_ONCE(*seq, *seq + 1);
2284 urg_hole++;
2285 offset++;
2286 used--;
2287 if (!used)
2288 goto skip_copy;
2289 }
2290 } else
2291 used = urg_offset;
2292 }
2293 }
2294
2295 if (!(flags & MSG_TRUNC)) {
2296 err = skb_copy_datagram_msg(skb, offset, msg, used);
2297 if (err) {
2298 /* Exception. Bailout! */
2299 if (!copied)
2300 copied = -EFAULT;
2301 break;
2302 }
2303 }
2304
2305 WRITE_ONCE(*seq, *seq + used);
2306 copied += used;
2307 len -= used;
2308
2309 tcp_rcv_space_adjust(sk);
2310
2311 skip_copy:
2312 if (tp->urg_data && after(tp->copied_seq, tp->urg_seq)) {
2313 tp->urg_data = 0;
2314 tcp_fast_path_check(sk);
2315 }
2316
2317 if (TCP_SKB_CB(skb)->has_rxtstamp) {
2318 tcp_update_recv_tstamps(skb, &tss);
2319 cmsg_flags |= 2;
2320 }
2321
2322 if (used + offset < skb->len)
2323 continue;
2324
2325 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2326 goto found_fin_ok;
2327 if (!(flags & MSG_PEEK))
2328 sk_eat_skb(sk, skb);
2329 continue;
2330
2331 found_fin_ok:
2332 /* Process the FIN. */
2333 WRITE_ONCE(*seq, *seq + 1);
2334 if (!(flags & MSG_PEEK))
2335 sk_eat_skb(sk, skb);
2336 break;
2337 } while (len > 0);
2338
2339 /* According to UNIX98, msg_name/msg_namelen are ignored
2340 * on connected socket. I was just happy when found this 8) --ANK
2341 */
2342
2343 /* Clean up data we have read: This will do ACK frames. */
2344 tcp_cleanup_rbuf(sk, copied);
2345
2346 release_sock(sk);
2347
2348 if (cmsg_flags) {
2349 if (cmsg_flags & 2)
2350 tcp_recv_timestamp(msg, sk, &tss);
2351 if (cmsg_flags & 1) {
2352 inq = tcp_inq_hint(sk);
2353 put_cmsg(msg, SOL_TCP, TCP_CM_INQ, sizeof(inq), &inq);
2354 }
2355 }
2356
2357 return copied;
2358
2359 out:
2360 release_sock(sk);
2361 return err;
2362
2363 recv_urg:
2364 err = tcp_recv_urg(sk, msg, len, flags);
2365 goto out;
2366
2367 recv_sndq:
2368 err = tcp_peek_sndq(sk, msg, len);
2369 goto out;
2370 }
2371 EXPORT_SYMBOL(tcp_recvmsg);
2372
tcp_set_state(struct sock * sk,int state)2373 void tcp_set_state(struct sock *sk, int state)
2374 {
2375 int oldstate = sk->sk_state;
2376
2377 /* We defined a new enum for TCP states that are exported in BPF
2378 * so as not force the internal TCP states to be frozen. The
2379 * following checks will detect if an internal state value ever
2380 * differs from the BPF value. If this ever happens, then we will
2381 * need to remap the internal value to the BPF value before calling
2382 * tcp_call_bpf_2arg.
2383 */
2384 BUILD_BUG_ON((int)BPF_TCP_ESTABLISHED != (int)TCP_ESTABLISHED);
2385 BUILD_BUG_ON((int)BPF_TCP_SYN_SENT != (int)TCP_SYN_SENT);
2386 BUILD_BUG_ON((int)BPF_TCP_SYN_RECV != (int)TCP_SYN_RECV);
2387 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT1 != (int)TCP_FIN_WAIT1);
2388 BUILD_BUG_ON((int)BPF_TCP_FIN_WAIT2 != (int)TCP_FIN_WAIT2);
2389 BUILD_BUG_ON((int)BPF_TCP_TIME_WAIT != (int)TCP_TIME_WAIT);
2390 BUILD_BUG_ON((int)BPF_TCP_CLOSE != (int)TCP_CLOSE);
2391 BUILD_BUG_ON((int)BPF_TCP_CLOSE_WAIT != (int)TCP_CLOSE_WAIT);
2392 BUILD_BUG_ON((int)BPF_TCP_LAST_ACK != (int)TCP_LAST_ACK);
2393 BUILD_BUG_ON((int)BPF_TCP_LISTEN != (int)TCP_LISTEN);
2394 BUILD_BUG_ON((int)BPF_TCP_CLOSING != (int)TCP_CLOSING);
2395 BUILD_BUG_ON((int)BPF_TCP_NEW_SYN_RECV != (int)TCP_NEW_SYN_RECV);
2396 BUILD_BUG_ON((int)BPF_TCP_MAX_STATES != (int)TCP_MAX_STATES);
2397
2398 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_STATE_CB_FLAG))
2399 tcp_call_bpf_2arg(sk, BPF_SOCK_OPS_STATE_CB, oldstate, state);
2400
2401 switch (state) {
2402 case TCP_ESTABLISHED:
2403 if (oldstate != TCP_ESTABLISHED)
2404 TCP_INC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2405 break;
2406
2407 case TCP_CLOSE:
2408 if (oldstate == TCP_CLOSE_WAIT || oldstate == TCP_ESTABLISHED)
2409 TCP_INC_STATS(sock_net(sk), TCP_MIB_ESTABRESETS);
2410
2411 sk->sk_prot->unhash(sk);
2412 if (inet_csk(sk)->icsk_bind_hash &&
2413 !(sk->sk_userlocks & SOCK_BINDPORT_LOCK))
2414 inet_put_port(sk);
2415 fallthrough;
2416 default:
2417 if (oldstate == TCP_ESTABLISHED)
2418 TCP_DEC_STATS(sock_net(sk), TCP_MIB_CURRESTAB);
2419 }
2420
2421 /* Change state AFTER socket is unhashed to avoid closed
2422 * socket sitting in hash tables.
2423 */
2424 inet_sk_state_store(sk, state);
2425 }
2426 EXPORT_SYMBOL_GPL(tcp_set_state);
2427
2428 /*
2429 * State processing on a close. This implements the state shift for
2430 * sending our FIN frame. Note that we only send a FIN for some
2431 * states. A shutdown() may have already sent the FIN, or we may be
2432 * closed.
2433 */
2434
2435 static const unsigned char new_state[16] = {
2436 /* current state: new state: action: */
2437 [0 /* (Invalid) */] = TCP_CLOSE,
2438 [TCP_ESTABLISHED] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2439 [TCP_SYN_SENT] = TCP_CLOSE,
2440 [TCP_SYN_RECV] = TCP_FIN_WAIT1 | TCP_ACTION_FIN,
2441 [TCP_FIN_WAIT1] = TCP_FIN_WAIT1,
2442 [TCP_FIN_WAIT2] = TCP_FIN_WAIT2,
2443 [TCP_TIME_WAIT] = TCP_CLOSE,
2444 [TCP_CLOSE] = TCP_CLOSE,
2445 [TCP_CLOSE_WAIT] = TCP_LAST_ACK | TCP_ACTION_FIN,
2446 [TCP_LAST_ACK] = TCP_LAST_ACK,
2447 [TCP_LISTEN] = TCP_CLOSE,
2448 [TCP_CLOSING] = TCP_CLOSING,
2449 [TCP_NEW_SYN_RECV] = TCP_CLOSE, /* should not happen ! */
2450 };
2451
tcp_close_state(struct sock * sk)2452 static int tcp_close_state(struct sock *sk)
2453 {
2454 int next = (int)new_state[sk->sk_state];
2455 int ns = next & TCP_STATE_MASK;
2456
2457 tcp_set_state(sk, ns);
2458
2459 return next & TCP_ACTION_FIN;
2460 }
2461
2462 /*
2463 * Shutdown the sending side of a connection. Much like close except
2464 * that we don't receive shut down or sock_set_flag(sk, SOCK_DEAD).
2465 */
2466
tcp_shutdown(struct sock * sk,int how)2467 void tcp_shutdown(struct sock *sk, int how)
2468 {
2469 /* We need to grab some memory, and put together a FIN,
2470 * and then put it into the queue to be sent.
2471 * Tim MacKenzie(tym@dibbler.cs.monash.edu.au) 4 Dec '92.
2472 */
2473 if (!(how & SEND_SHUTDOWN))
2474 return;
2475
2476 /* If we've already sent a FIN, or it's a closed state, skip this. */
2477 if ((1 << sk->sk_state) &
2478 (TCPF_ESTABLISHED | TCPF_SYN_SENT |
2479 TCPF_SYN_RECV | TCPF_CLOSE_WAIT)) {
2480 /* Clear out any half completed packets. FIN if needed. */
2481 if (tcp_close_state(sk))
2482 tcp_send_fin(sk);
2483 }
2484 }
2485 EXPORT_SYMBOL(tcp_shutdown);
2486
tcp_orphan_count_sum(void)2487 int tcp_orphan_count_sum(void)
2488 {
2489 int i, total = 0;
2490
2491 for_each_possible_cpu(i)
2492 total += per_cpu(tcp_orphan_count, i);
2493
2494 return max(total, 0);
2495 }
2496
2497 static int tcp_orphan_cache;
2498 static struct timer_list tcp_orphan_timer;
2499 #define TCP_ORPHAN_TIMER_PERIOD msecs_to_jiffies(100)
2500
tcp_orphan_update(struct timer_list * unused)2501 static void tcp_orphan_update(struct timer_list *unused)
2502 {
2503 WRITE_ONCE(tcp_orphan_cache, tcp_orphan_count_sum());
2504 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
2505 }
2506
tcp_too_many_orphans(int shift)2507 static bool tcp_too_many_orphans(int shift)
2508 {
2509 return READ_ONCE(tcp_orphan_cache) << shift >
2510 READ_ONCE(sysctl_tcp_max_orphans);
2511 }
2512
tcp_check_oom(struct sock * sk,int shift)2513 bool tcp_check_oom(struct sock *sk, int shift)
2514 {
2515 bool too_many_orphans, out_of_socket_memory;
2516
2517 too_many_orphans = tcp_too_many_orphans(shift);
2518 out_of_socket_memory = tcp_out_of_memory(sk);
2519
2520 if (too_many_orphans)
2521 net_info_ratelimited("too many orphaned sockets\n");
2522 if (out_of_socket_memory)
2523 net_info_ratelimited("out of memory -- consider tuning tcp_mem\n");
2524 return too_many_orphans || out_of_socket_memory;
2525 }
2526
__tcp_close(struct sock * sk,long timeout)2527 void __tcp_close(struct sock *sk, long timeout)
2528 {
2529 struct sk_buff *skb;
2530 int data_was_unread = 0;
2531 int state;
2532
2533 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
2534
2535 if (sk->sk_state == TCP_LISTEN) {
2536 tcp_set_state(sk, TCP_CLOSE);
2537
2538 /* Special case. */
2539 inet_csk_listen_stop(sk);
2540
2541 goto adjudge_to_death;
2542 }
2543
2544 /* We need to flush the recv. buffs. We do this only on the
2545 * descriptor close, not protocol-sourced closes, because the
2546 * reader process may not have drained the data yet!
2547 */
2548 while ((skb = __skb_dequeue(&sk->sk_receive_queue)) != NULL) {
2549 u32 len = TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq;
2550
2551 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
2552 len--;
2553 data_was_unread += len;
2554 __kfree_skb(skb);
2555 }
2556
2557 sk_mem_reclaim(sk);
2558
2559 /* If socket has been already reset (e.g. in tcp_reset()) - kill it. */
2560 if (sk->sk_state == TCP_CLOSE)
2561 goto adjudge_to_death;
2562
2563 /* As outlined in RFC 2525, section 2.17, we send a RST here because
2564 * data was lost. To witness the awful effects of the old behavior of
2565 * always doing a FIN, run an older 2.1.x kernel or 2.0.x, start a bulk
2566 * GET in an FTP client, suspend the process, wait for the client to
2567 * advertise a zero window, then kill -9 the FTP client, wheee...
2568 * Note: timeout is always zero in such a case.
2569 */
2570 if (unlikely(tcp_sk(sk)->repair)) {
2571 sk->sk_prot->disconnect(sk, 0);
2572 } else if (data_was_unread) {
2573 /* Unread data was tossed, zap the connection. */
2574 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONCLOSE);
2575 tcp_set_state(sk, TCP_CLOSE);
2576 tcp_send_active_reset(sk, sk->sk_allocation);
2577 } else if (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime) {
2578 /* Check zero linger _after_ checking for unread data. */
2579 sk->sk_prot->disconnect(sk, 0);
2580 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
2581 } else if (tcp_close_state(sk)) {
2582 /* We FIN if the application ate all the data before
2583 * zapping the connection.
2584 */
2585
2586 /* RED-PEN. Formally speaking, we have broken TCP state
2587 * machine. State transitions:
2588 *
2589 * TCP_ESTABLISHED -> TCP_FIN_WAIT1
2590 * TCP_SYN_RECV -> TCP_FIN_WAIT1 (forget it, it's impossible)
2591 * TCP_CLOSE_WAIT -> TCP_LAST_ACK
2592 *
2593 * are legal only when FIN has been sent (i.e. in window),
2594 * rather than queued out of window. Purists blame.
2595 *
2596 * F.e. "RFC state" is ESTABLISHED,
2597 * if Linux state is FIN-WAIT-1, but FIN is still not sent.
2598 *
2599 * The visible declinations are that sometimes
2600 * we enter time-wait state, when it is not required really
2601 * (harmless), do not send active resets, when they are
2602 * required by specs (TCP_ESTABLISHED, TCP_CLOSE_WAIT, when
2603 * they look as CLOSING or LAST_ACK for Linux)
2604 * Probably, I missed some more holelets.
2605 * --ANK
2606 * XXX (TFO) - To start off we don't support SYN+ACK+FIN
2607 * in a single packet! (May consider it later but will
2608 * probably need API support or TCP_CORK SYN-ACK until
2609 * data is written and socket is closed.)
2610 */
2611 tcp_send_fin(sk);
2612 }
2613
2614 sk_stream_wait_close(sk, timeout);
2615
2616 adjudge_to_death:
2617 state = sk->sk_state;
2618 sock_hold(sk);
2619 sock_orphan(sk);
2620
2621 local_bh_disable();
2622 bh_lock_sock(sk);
2623 /* remove backlog if any, without releasing ownership. */
2624 __release_sock(sk);
2625
2626 this_cpu_inc(tcp_orphan_count);
2627
2628 /* Have we already been destroyed by a softirq or backlog? */
2629 if (state != TCP_CLOSE && sk->sk_state == TCP_CLOSE)
2630 goto out;
2631
2632 /* This is a (useful) BSD violating of the RFC. There is a
2633 * problem with TCP as specified in that the other end could
2634 * keep a socket open forever with no application left this end.
2635 * We use a 1 minute timeout (about the same as BSD) then kill
2636 * our end. If they send after that then tough - BUT: long enough
2637 * that we won't make the old 4*rto = almost no time - whoops
2638 * reset mistake.
2639 *
2640 * Nope, it was not mistake. It is really desired behaviour
2641 * f.e. on http servers, when such sockets are useless, but
2642 * consume significant resources. Let's do it with special
2643 * linger2 option. --ANK
2644 */
2645
2646 if (sk->sk_state == TCP_FIN_WAIT2) {
2647 struct tcp_sock *tp = tcp_sk(sk);
2648 if (tp->linger2 < 0) {
2649 tcp_set_state(sk, TCP_CLOSE);
2650 tcp_send_active_reset(sk, GFP_ATOMIC);
2651 __NET_INC_STATS(sock_net(sk),
2652 LINUX_MIB_TCPABORTONLINGER);
2653 } else {
2654 const int tmo = tcp_fin_time(sk);
2655
2656 if (tmo > TCP_TIMEWAIT_LEN) {
2657 inet_csk_reset_keepalive_timer(sk,
2658 tmo - TCP_TIMEWAIT_LEN);
2659 } else {
2660 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
2661 goto out;
2662 }
2663 }
2664 }
2665 if (sk->sk_state != TCP_CLOSE) {
2666 sk_mem_reclaim(sk);
2667 if (tcp_check_oom(sk, 0)) {
2668 tcp_set_state(sk, TCP_CLOSE);
2669 tcp_send_active_reset(sk, GFP_ATOMIC);
2670 __NET_INC_STATS(sock_net(sk),
2671 LINUX_MIB_TCPABORTONMEMORY);
2672 } else if (!check_net(sock_net(sk))) {
2673 /* Not possible to send reset; just close */
2674 tcp_set_state(sk, TCP_CLOSE);
2675 }
2676 }
2677
2678 if (sk->sk_state == TCP_CLOSE) {
2679 struct request_sock *req;
2680
2681 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
2682 lockdep_sock_is_held(sk));
2683 /* We could get here with a non-NULL req if the socket is
2684 * aborted (e.g., closed with unread data) before 3WHS
2685 * finishes.
2686 */
2687 if (req)
2688 reqsk_fastopen_remove(sk, req, false);
2689 inet_csk_destroy_sock(sk);
2690 }
2691 /* Otherwise, socket is reprieved until protocol close. */
2692
2693 out:
2694 bh_unlock_sock(sk);
2695 local_bh_enable();
2696 }
2697
tcp_close(struct sock * sk,long timeout)2698 void tcp_close(struct sock *sk, long timeout)
2699 {
2700 lock_sock(sk);
2701 __tcp_close(sk, timeout);
2702 release_sock(sk);
2703 sock_put(sk);
2704 }
2705 EXPORT_SYMBOL(tcp_close);
2706
2707 /* These states need RST on ABORT according to RFC793 */
2708
tcp_need_reset(int state)2709 static inline bool tcp_need_reset(int state)
2710 {
2711 return (1 << state) &
2712 (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT | TCPF_FIN_WAIT1 |
2713 TCPF_FIN_WAIT2 | TCPF_SYN_RECV);
2714 }
2715
tcp_rtx_queue_purge(struct sock * sk)2716 static void tcp_rtx_queue_purge(struct sock *sk)
2717 {
2718 struct rb_node *p = rb_first(&sk->tcp_rtx_queue);
2719
2720 tcp_sk(sk)->highest_sack = NULL;
2721 while (p) {
2722 struct sk_buff *skb = rb_to_skb(p);
2723
2724 p = rb_next(p);
2725 /* Since we are deleting whole queue, no need to
2726 * list_del(&skb->tcp_tsorted_anchor)
2727 */
2728 tcp_rtx_queue_unlink(skb, sk);
2729 sk_wmem_free_skb(sk, skb);
2730 }
2731 }
2732
tcp_write_queue_purge(struct sock * sk)2733 void tcp_write_queue_purge(struct sock *sk)
2734 {
2735 struct sk_buff *skb;
2736
2737 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
2738 while ((skb = __skb_dequeue(&sk->sk_write_queue)) != NULL) {
2739 tcp_skb_tsorted_anchor_cleanup(skb);
2740 sk_wmem_free_skb(sk, skb);
2741 }
2742 tcp_rtx_queue_purge(sk);
2743 skb = sk->sk_tx_skb_cache;
2744 if (skb) {
2745 __kfree_skb(skb);
2746 sk->sk_tx_skb_cache = NULL;
2747 }
2748 INIT_LIST_HEAD(&tcp_sk(sk)->tsorted_sent_queue);
2749 sk_mem_reclaim(sk);
2750 tcp_clear_all_retrans_hints(tcp_sk(sk));
2751 tcp_sk(sk)->packets_out = 0;
2752 inet_csk(sk)->icsk_backoff = 0;
2753 }
2754
tcp_disconnect(struct sock * sk,int flags)2755 int tcp_disconnect(struct sock *sk, int flags)
2756 {
2757 struct inet_sock *inet = inet_sk(sk);
2758 struct inet_connection_sock *icsk = inet_csk(sk);
2759 struct tcp_sock *tp = tcp_sk(sk);
2760 int old_state = sk->sk_state;
2761 u32 seq;
2762
2763 /* Deny disconnect if other threads are blocked in sk_wait_event()
2764 * or inet_wait_for_connect().
2765 */
2766 if (sk->sk_wait_pending)
2767 return -EBUSY;
2768
2769 if (old_state != TCP_CLOSE)
2770 tcp_set_state(sk, TCP_CLOSE);
2771
2772 /* ABORT function of RFC793 */
2773 if (old_state == TCP_LISTEN) {
2774 inet_csk_listen_stop(sk);
2775 } else if (unlikely(tp->repair)) {
2776 sk->sk_err = ECONNABORTED;
2777 } else if (tcp_need_reset(old_state) ||
2778 (tp->snd_nxt != tp->write_seq &&
2779 (1 << old_state) & (TCPF_CLOSING | TCPF_LAST_ACK))) {
2780 /* The last check adjusts for discrepancy of Linux wrt. RFC
2781 * states
2782 */
2783 tcp_send_active_reset(sk, gfp_any());
2784 sk->sk_err = ECONNRESET;
2785 } else if (old_state == TCP_SYN_SENT)
2786 sk->sk_err = ECONNRESET;
2787
2788 tcp_clear_xmit_timers(sk);
2789 __skb_queue_purge(&sk->sk_receive_queue);
2790 if (sk->sk_rx_skb_cache) {
2791 __kfree_skb(sk->sk_rx_skb_cache);
2792 sk->sk_rx_skb_cache = NULL;
2793 }
2794 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
2795 tp->urg_data = 0;
2796 tcp_write_queue_purge(sk);
2797 tcp_fastopen_active_disable_ofo_check(sk);
2798 skb_rbtree_purge(&tp->out_of_order_queue);
2799
2800 inet->inet_dport = 0;
2801
2802 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK))
2803 inet_reset_saddr(sk);
2804
2805 WRITE_ONCE(sk->sk_shutdown, 0);
2806 sock_reset_flag(sk, SOCK_DONE);
2807 tp->srtt_us = 0;
2808 tp->mdev_us = jiffies_to_usecs(TCP_TIMEOUT_INIT);
2809 tp->rcv_rtt_last_tsecr = 0;
2810
2811 seq = tp->write_seq + tp->max_window + 2;
2812 if (!seq)
2813 seq = 1;
2814 WRITE_ONCE(tp->write_seq, seq);
2815
2816 icsk->icsk_backoff = 0;
2817 icsk->icsk_probes_out = 0;
2818 icsk->icsk_probes_tstamp = 0;
2819 icsk->icsk_rto = TCP_TIMEOUT_INIT;
2820 icsk->icsk_rto_min = TCP_RTO_MIN;
2821 icsk->icsk_delack_max = TCP_DELACK_MAX;
2822 #ifdef CONFIG_TCP_NB_URC
2823 icsk->icsk_nb_urc_enabled = 0;
2824 icsk->icsk_nb_urc_rto = TCP_TIMEOUT_INIT;
2825 tp->tcp_retries2 = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retries2);
2826 #endif /* CONFIG_TCP_NB_URC */
2827 tp->snd_ssthresh = TCP_INFINITE_SSTHRESH;
2828 tp->snd_cwnd = TCP_INIT_CWND;
2829 tp->snd_cwnd_cnt = 0;
2830 tp->is_cwnd_limited = 0;
2831 tp->max_packets_out = 0;
2832 tp->window_clamp = 0;
2833 tp->delivered = 0;
2834 tp->delivered_ce = 0;
2835 if (icsk->icsk_ca_ops->release)
2836 icsk->icsk_ca_ops->release(sk);
2837 memset(icsk->icsk_ca_priv, 0, sizeof(icsk->icsk_ca_priv));
2838 icsk->icsk_ca_initialized = 0;
2839 tcp_set_ca_state(sk, TCP_CA_Open);
2840 tp->is_sack_reneg = 0;
2841 tcp_clear_retrans(tp);
2842 tp->total_retrans = 0;
2843 inet_csk_delack_init(sk);
2844 /* Initialize rcv_mss to TCP_MIN_MSS to avoid division by 0
2845 * issue in __tcp_select_window()
2846 */
2847 icsk->icsk_ack.rcv_mss = TCP_MIN_MSS;
2848 memset(&tp->rx_opt, 0, sizeof(tp->rx_opt));
2849 __sk_dst_reset(sk);
2850 dst_release(xchg((__force struct dst_entry **)&sk->sk_rx_dst, NULL));
2851 tcp_saved_syn_free(tp);
2852 tp->compressed_ack = 0;
2853 tp->segs_in = 0;
2854 tp->segs_out = 0;
2855 tp->bytes_sent = 0;
2856 tp->bytes_acked = 0;
2857 tp->bytes_received = 0;
2858 tp->bytes_retrans = 0;
2859 tp->data_segs_in = 0;
2860 tp->data_segs_out = 0;
2861 tp->duplicate_sack[0].start_seq = 0;
2862 tp->duplicate_sack[0].end_seq = 0;
2863 tp->dsack_dups = 0;
2864 tp->reord_seen = 0;
2865 tp->retrans_out = 0;
2866 tp->sacked_out = 0;
2867 tp->tlp_high_seq = 0;
2868 tp->last_oow_ack_time = 0;
2869 /* There's a bubble in the pipe until at least the first ACK. */
2870 tp->app_limited = ~0U;
2871 tp->rate_app_limited = 1;
2872 tp->rack.mstamp = 0;
2873 tp->rack.advanced = 0;
2874 tp->rack.reo_wnd_steps = 1;
2875 tp->rack.last_delivered = 0;
2876 tp->rack.reo_wnd_persist = 0;
2877 tp->rack.dsack_seen = 0;
2878 tp->syn_data_acked = 0;
2879 tp->rx_opt.saw_tstamp = 0;
2880 tp->rx_opt.dsack = 0;
2881 tp->rx_opt.num_sacks = 0;
2882 tp->rcv_ooopack = 0;
2883
2884
2885 /* Clean up fastopen related fields */
2886 tcp_free_fastopen_req(tp);
2887 inet->defer_connect = 0;
2888 tp->fastopen_client_fail = 0;
2889
2890 WARN_ON(inet->inet_num && !icsk->icsk_bind_hash);
2891
2892 if (sk->sk_frag.page) {
2893 put_page(sk->sk_frag.page);
2894 sk->sk_frag.page = NULL;
2895 sk->sk_frag.offset = 0;
2896 }
2897
2898 sk->sk_error_report(sk);
2899 return 0;
2900 }
2901 EXPORT_SYMBOL(tcp_disconnect);
2902
tcp_can_repair_sock(const struct sock * sk)2903 static inline bool tcp_can_repair_sock(const struct sock *sk)
2904 {
2905 return ns_capable(sock_net(sk)->user_ns, CAP_NET_ADMIN) &&
2906 (sk->sk_state != TCP_LISTEN);
2907 }
2908
tcp_repair_set_window(struct tcp_sock * tp,sockptr_t optbuf,int len)2909 static int tcp_repair_set_window(struct tcp_sock *tp, sockptr_t optbuf, int len)
2910 {
2911 struct tcp_repair_window opt;
2912
2913 if (!tp->repair)
2914 return -EPERM;
2915
2916 if (len != sizeof(opt))
2917 return -EINVAL;
2918
2919 if (copy_from_sockptr(&opt, optbuf, sizeof(opt)))
2920 return -EFAULT;
2921
2922 if (opt.max_window < opt.snd_wnd)
2923 return -EINVAL;
2924
2925 if (after(opt.snd_wl1, tp->rcv_nxt + opt.rcv_wnd))
2926 return -EINVAL;
2927
2928 if (after(opt.rcv_wup, tp->rcv_nxt))
2929 return -EINVAL;
2930
2931 tp->snd_wl1 = opt.snd_wl1;
2932 tp->snd_wnd = opt.snd_wnd;
2933 tp->max_window = opt.max_window;
2934
2935 tp->rcv_wnd = opt.rcv_wnd;
2936 tp->rcv_wup = opt.rcv_wup;
2937
2938 return 0;
2939 }
2940
tcp_repair_options_est(struct sock * sk,sockptr_t optbuf,unsigned int len)2941 static int tcp_repair_options_est(struct sock *sk, sockptr_t optbuf,
2942 unsigned int len)
2943 {
2944 struct tcp_sock *tp = tcp_sk(sk);
2945 struct tcp_repair_opt opt;
2946 size_t offset = 0;
2947
2948 while (len >= sizeof(opt)) {
2949 if (copy_from_sockptr_offset(&opt, optbuf, offset, sizeof(opt)))
2950 return -EFAULT;
2951
2952 offset += sizeof(opt);
2953 len -= sizeof(opt);
2954
2955 switch (opt.opt_code) {
2956 case TCPOPT_MSS:
2957 tp->rx_opt.mss_clamp = opt.opt_val;
2958 tcp_mtup_init(sk);
2959 break;
2960 case TCPOPT_WINDOW:
2961 {
2962 u16 snd_wscale = opt.opt_val & 0xFFFF;
2963 u16 rcv_wscale = opt.opt_val >> 16;
2964
2965 if (snd_wscale > TCP_MAX_WSCALE || rcv_wscale > TCP_MAX_WSCALE)
2966 return -EFBIG;
2967
2968 tp->rx_opt.snd_wscale = snd_wscale;
2969 tp->rx_opt.rcv_wscale = rcv_wscale;
2970 tp->rx_opt.wscale_ok = 1;
2971 }
2972 break;
2973 case TCPOPT_SACK_PERM:
2974 if (opt.opt_val != 0)
2975 return -EINVAL;
2976
2977 tp->rx_opt.sack_ok |= TCP_SACK_SEEN;
2978 break;
2979 case TCPOPT_TIMESTAMP:
2980 if (opt.opt_val != 0)
2981 return -EINVAL;
2982
2983 tp->rx_opt.tstamp_ok = 1;
2984 break;
2985 }
2986 }
2987
2988 return 0;
2989 }
2990
2991 DEFINE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2992 EXPORT_SYMBOL(tcp_tx_delay_enabled);
2993
tcp_enable_tx_delay(void)2994 static void tcp_enable_tx_delay(void)
2995 {
2996 if (!static_branch_unlikely(&tcp_tx_delay_enabled)) {
2997 static int __tcp_tx_delay_enabled = 0;
2998
2999 if (cmpxchg(&__tcp_tx_delay_enabled, 0, 1) == 0) {
3000 static_branch_enable(&tcp_tx_delay_enabled);
3001 pr_info("TCP_TX_DELAY enabled\n");
3002 }
3003 }
3004 }
3005
3006 /* When set indicates to always queue non-full frames. Later the user clears
3007 * this option and we transmit any pending partial frames in the queue. This is
3008 * meant to be used alongside sendfile() to get properly filled frames when the
3009 * user (for example) must write out headers with a write() call first and then
3010 * use sendfile to send out the data parts.
3011 *
3012 * TCP_CORK can be set together with TCP_NODELAY and it is stronger than
3013 * TCP_NODELAY.
3014 */
__tcp_sock_set_cork(struct sock * sk,bool on)3015 static void __tcp_sock_set_cork(struct sock *sk, bool on)
3016 {
3017 struct tcp_sock *tp = tcp_sk(sk);
3018
3019 if (on) {
3020 tp->nonagle |= TCP_NAGLE_CORK;
3021 } else {
3022 tp->nonagle &= ~TCP_NAGLE_CORK;
3023 if (tp->nonagle & TCP_NAGLE_OFF)
3024 tp->nonagle |= TCP_NAGLE_PUSH;
3025 tcp_push_pending_frames(sk);
3026 }
3027 }
3028
tcp_sock_set_cork(struct sock * sk,bool on)3029 void tcp_sock_set_cork(struct sock *sk, bool on)
3030 {
3031 lock_sock(sk);
3032 __tcp_sock_set_cork(sk, on);
3033 release_sock(sk);
3034 }
3035 EXPORT_SYMBOL(tcp_sock_set_cork);
3036
3037 /* TCP_NODELAY is weaker than TCP_CORK, so that this option on corked socket is
3038 * remembered, but it is not activated until cork is cleared.
3039 *
3040 * However, when TCP_NODELAY is set we make an explicit push, which overrides
3041 * even TCP_CORK for currently queued segments.
3042 */
__tcp_sock_set_nodelay(struct sock * sk,bool on)3043 static void __tcp_sock_set_nodelay(struct sock *sk, bool on)
3044 {
3045 if (on) {
3046 tcp_sk(sk)->nonagle |= TCP_NAGLE_OFF|TCP_NAGLE_PUSH;
3047 tcp_push_pending_frames(sk);
3048 } else {
3049 tcp_sk(sk)->nonagle &= ~TCP_NAGLE_OFF;
3050 }
3051 }
3052
tcp_sock_set_nodelay(struct sock * sk)3053 void tcp_sock_set_nodelay(struct sock *sk)
3054 {
3055 lock_sock(sk);
3056 __tcp_sock_set_nodelay(sk, true);
3057 release_sock(sk);
3058 }
3059 EXPORT_SYMBOL(tcp_sock_set_nodelay);
3060
__tcp_sock_set_quickack(struct sock * sk,int val)3061 static void __tcp_sock_set_quickack(struct sock *sk, int val)
3062 {
3063 if (!val) {
3064 inet_csk_enter_pingpong_mode(sk);
3065 return;
3066 }
3067
3068 inet_csk_exit_pingpong_mode(sk);
3069 if ((1 << sk->sk_state) & (TCPF_ESTABLISHED | TCPF_CLOSE_WAIT) &&
3070 inet_csk_ack_scheduled(sk)) {
3071 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_PUSHED;
3072 tcp_cleanup_rbuf(sk, 1);
3073 if (!(val & 1))
3074 inet_csk_enter_pingpong_mode(sk);
3075 }
3076 }
3077
tcp_sock_set_quickack(struct sock * sk,int val)3078 void tcp_sock_set_quickack(struct sock *sk, int val)
3079 {
3080 lock_sock(sk);
3081 __tcp_sock_set_quickack(sk, val);
3082 release_sock(sk);
3083 }
3084 EXPORT_SYMBOL(tcp_sock_set_quickack);
3085
tcp_sock_set_syncnt(struct sock * sk,int val)3086 int tcp_sock_set_syncnt(struct sock *sk, int val)
3087 {
3088 if (val < 1 || val > MAX_TCP_SYNCNT)
3089 return -EINVAL;
3090
3091 lock_sock(sk);
3092 WRITE_ONCE(inet_csk(sk)->icsk_syn_retries, val);
3093 release_sock(sk);
3094 return 0;
3095 }
3096 EXPORT_SYMBOL(tcp_sock_set_syncnt);
3097
tcp_sock_set_user_timeout(struct sock * sk,u32 val)3098 void tcp_sock_set_user_timeout(struct sock *sk, u32 val)
3099 {
3100 lock_sock(sk);
3101 WRITE_ONCE(inet_csk(sk)->icsk_user_timeout, val);
3102 release_sock(sk);
3103 }
3104 EXPORT_SYMBOL(tcp_sock_set_user_timeout);
3105
tcp_sock_set_keepidle_locked(struct sock * sk,int val)3106 int tcp_sock_set_keepidle_locked(struct sock *sk, int val)
3107 {
3108 struct tcp_sock *tp = tcp_sk(sk);
3109
3110 if (val < 1 || val > MAX_TCP_KEEPIDLE)
3111 return -EINVAL;
3112
3113 /* Paired with WRITE_ONCE() in keepalive_time_when() */
3114 WRITE_ONCE(tp->keepalive_time, val * HZ);
3115 if (sock_flag(sk, SOCK_KEEPOPEN) &&
3116 !((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))) {
3117 u32 elapsed = keepalive_time_elapsed(tp);
3118
3119 if (tp->keepalive_time > elapsed)
3120 elapsed = tp->keepalive_time - elapsed;
3121 else
3122 elapsed = 0;
3123 inet_csk_reset_keepalive_timer(sk, elapsed);
3124 }
3125
3126 return 0;
3127 }
3128
tcp_sock_set_keepidle(struct sock * sk,int val)3129 int tcp_sock_set_keepidle(struct sock *sk, int val)
3130 {
3131 int err;
3132
3133 lock_sock(sk);
3134 err = tcp_sock_set_keepidle_locked(sk, val);
3135 release_sock(sk);
3136 return err;
3137 }
3138 EXPORT_SYMBOL(tcp_sock_set_keepidle);
3139
tcp_sock_set_keepintvl(struct sock * sk,int val)3140 int tcp_sock_set_keepintvl(struct sock *sk, int val)
3141 {
3142 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3143 return -EINVAL;
3144
3145 lock_sock(sk);
3146 WRITE_ONCE(tcp_sk(sk)->keepalive_intvl, val * HZ);
3147 release_sock(sk);
3148 return 0;
3149 }
3150 EXPORT_SYMBOL(tcp_sock_set_keepintvl);
3151
tcp_sock_set_keepcnt(struct sock * sk,int val)3152 int tcp_sock_set_keepcnt(struct sock *sk, int val)
3153 {
3154 if (val < 1 || val > MAX_TCP_KEEPCNT)
3155 return -EINVAL;
3156
3157 lock_sock(sk);
3158 /* Paired with READ_ONCE() in keepalive_probes() */
3159 WRITE_ONCE(tcp_sk(sk)->keepalive_probes, val);
3160 release_sock(sk);
3161 return 0;
3162 }
3163 EXPORT_SYMBOL(tcp_sock_set_keepcnt);
3164
3165 #ifdef CONFIG_TCP_NB_URC
3166 #define NB_URC_RTO_MS_MIN 200 // 200ms
3167 #define NB_URC_RTO_MS_MAX (120000) // 12s
3168 #define NB_URC_RTO_MS_TO_HZ 1000
3169
tcp_set_nb_urc(struct sock * sk,sockptr_t optval,int optlen)3170 static int tcp_set_nb_urc(struct sock *sk, sockptr_t optval, int optlen)
3171 {
3172 int err = 0;
3173 struct tcp_nb_urc opt = {};
3174 struct inet_connection_sock *icsk = inet_csk(sk);
3175
3176 if (optlen != sizeof(struct tcp_nb_urc)) {
3177 err = -EINVAL;
3178 return err;
3179 }
3180
3181 if (copy_from_sockptr(&opt, optval, sizeof(struct tcp_nb_urc))) {
3182 err = -EINVAL;
3183 return err;
3184 }
3185
3186 if (opt.nb_urc_rto_ms < NB_URC_RTO_MS_MIN || opt.nb_urc_rto_ms > NB_URC_RTO_MS_MAX) {
3187 err = -EINVAL;
3188 return err;
3189 }
3190
3191 icsk->icsk_syn_retries = opt.tcp_syn_retries;
3192 tcp_sk(sk)->tcp_retries2 = opt.tcp_retries2;
3193 icsk->icsk_nb_urc_enabled = opt.nb_urc_enabled;
3194 icsk->icsk_nb_urc_rto = opt.nb_urc_rto_ms * HZ / NB_URC_RTO_MS_TO_HZ;
3195
3196 return err;
3197 }
3198 #endif /* CONFIG_TCP_NB_URC */
3199 /*
3200 * Socket option code for TCP.
3201 */
do_tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3202 static int do_tcp_setsockopt(struct sock *sk, int level, int optname,
3203 sockptr_t optval, unsigned int optlen)
3204 {
3205 struct tcp_sock *tp = tcp_sk(sk);
3206 struct inet_connection_sock *icsk = inet_csk(sk);
3207 struct net *net = sock_net(sk);
3208 int val;
3209 int err = 0;
3210
3211 /* These are data/string values, all the others are ints */
3212 switch (optname) {
3213 case TCP_CONGESTION: {
3214 char name[TCP_CA_NAME_MAX];
3215
3216 if (optlen < 1)
3217 return -EINVAL;
3218
3219 val = strncpy_from_sockptr(name, optval,
3220 min_t(long, TCP_CA_NAME_MAX-1, optlen));
3221 if (val < 0)
3222 return -EFAULT;
3223 name[val] = 0;
3224
3225 lock_sock(sk);
3226 err = tcp_set_congestion_control(sk, name, true,
3227 ns_capable(sock_net(sk)->user_ns,
3228 CAP_NET_ADMIN));
3229 release_sock(sk);
3230 return err;
3231 }
3232 case TCP_ULP: {
3233 char name[TCP_ULP_NAME_MAX];
3234
3235 if (optlen < 1)
3236 return -EINVAL;
3237
3238 val = strncpy_from_sockptr(name, optval,
3239 min_t(long, TCP_ULP_NAME_MAX - 1,
3240 optlen));
3241 if (val < 0)
3242 return -EFAULT;
3243 name[val] = 0;
3244
3245 lock_sock(sk);
3246 err = tcp_set_ulp(sk, name);
3247 release_sock(sk);
3248 return err;
3249 }
3250 case TCP_FASTOPEN_KEY: {
3251 __u8 key[TCP_FASTOPEN_KEY_BUF_LENGTH];
3252 __u8 *backup_key = NULL;
3253
3254 /* Allow a backup key as well to facilitate key rotation
3255 * First key is the active one.
3256 */
3257 if (optlen != TCP_FASTOPEN_KEY_LENGTH &&
3258 optlen != TCP_FASTOPEN_KEY_BUF_LENGTH)
3259 return -EINVAL;
3260
3261 if (copy_from_sockptr(key, optval, optlen))
3262 return -EFAULT;
3263
3264 if (optlen == TCP_FASTOPEN_KEY_BUF_LENGTH)
3265 backup_key = key + TCP_FASTOPEN_KEY_LENGTH;
3266
3267 return tcp_fastopen_reset_cipher(net, sk, key, backup_key);
3268 }
3269 default:
3270 /* fallthru */
3271 break;
3272 }
3273
3274 if (optlen < sizeof(int))
3275 return -EINVAL;
3276
3277 if (copy_from_sockptr(&val, optval, sizeof(val)))
3278 return -EFAULT;
3279
3280 lock_sock(sk);
3281
3282 switch (optname) {
3283 case TCP_MAXSEG:
3284 /* Values greater than interface MTU won't take effect. However
3285 * at the point when this call is done we typically don't yet
3286 * know which interface is going to be used
3287 */
3288 if (val && (val < TCP_MIN_MSS || val > MAX_TCP_WINDOW)) {
3289 err = -EINVAL;
3290 break;
3291 }
3292 tp->rx_opt.user_mss = val;
3293 break;
3294
3295 case TCP_NODELAY:
3296 __tcp_sock_set_nodelay(sk, val);
3297 break;
3298
3299 case TCP_THIN_LINEAR_TIMEOUTS:
3300 if (val < 0 || val > 1)
3301 err = -EINVAL;
3302 else
3303 tp->thin_lto = val;
3304 break;
3305
3306 case TCP_THIN_DUPACK:
3307 if (val < 0 || val > 1)
3308 err = -EINVAL;
3309 break;
3310
3311 case TCP_REPAIR:
3312 if (!tcp_can_repair_sock(sk))
3313 err = -EPERM;
3314 else if (val == TCP_REPAIR_ON) {
3315 tp->repair = 1;
3316 sk->sk_reuse = SK_FORCE_REUSE;
3317 tp->repair_queue = TCP_NO_QUEUE;
3318 } else if (val == TCP_REPAIR_OFF) {
3319 tp->repair = 0;
3320 sk->sk_reuse = SK_NO_REUSE;
3321 tcp_send_window_probe(sk);
3322 } else if (val == TCP_REPAIR_OFF_NO_WP) {
3323 tp->repair = 0;
3324 sk->sk_reuse = SK_NO_REUSE;
3325 } else
3326 err = -EINVAL;
3327
3328 break;
3329
3330 case TCP_REPAIR_QUEUE:
3331 if (!tp->repair)
3332 err = -EPERM;
3333 else if ((unsigned int)val < TCP_QUEUES_NR)
3334 tp->repair_queue = val;
3335 else
3336 err = -EINVAL;
3337 break;
3338
3339 case TCP_QUEUE_SEQ:
3340 if (sk->sk_state != TCP_CLOSE) {
3341 err = -EPERM;
3342 } else if (tp->repair_queue == TCP_SEND_QUEUE) {
3343 if (!tcp_rtx_queue_empty(sk))
3344 err = -EPERM;
3345 else
3346 WRITE_ONCE(tp->write_seq, val);
3347 } else if (tp->repair_queue == TCP_RECV_QUEUE) {
3348 if (tp->rcv_nxt != tp->copied_seq) {
3349 err = -EPERM;
3350 } else {
3351 WRITE_ONCE(tp->rcv_nxt, val);
3352 WRITE_ONCE(tp->copied_seq, val);
3353 }
3354 } else {
3355 err = -EINVAL;
3356 }
3357 break;
3358
3359 case TCP_REPAIR_OPTIONS:
3360 if (!tp->repair)
3361 err = -EINVAL;
3362 else if (sk->sk_state == TCP_ESTABLISHED && !tp->bytes_sent)
3363 err = tcp_repair_options_est(sk, optval, optlen);
3364 else
3365 err = -EPERM;
3366 break;
3367
3368 case TCP_CORK:
3369 __tcp_sock_set_cork(sk, val);
3370 break;
3371
3372 case TCP_KEEPIDLE:
3373 err = tcp_sock_set_keepidle_locked(sk, val);
3374 break;
3375 case TCP_KEEPINTVL:
3376 if (val < 1 || val > MAX_TCP_KEEPINTVL)
3377 err = -EINVAL;
3378 else
3379 WRITE_ONCE(tp->keepalive_intvl, val * HZ);
3380 break;
3381 case TCP_KEEPCNT:
3382 if (val < 1 || val > MAX_TCP_KEEPCNT)
3383 err = -EINVAL;
3384 else
3385 WRITE_ONCE(tp->keepalive_probes, val);
3386 break;
3387 case TCP_SYNCNT:
3388 if (val < 1 || val > MAX_TCP_SYNCNT)
3389 err = -EINVAL;
3390 else
3391 WRITE_ONCE(icsk->icsk_syn_retries, val);
3392 break;
3393
3394 case TCP_SAVE_SYN:
3395 /* 0: disable, 1: enable, 2: start from ether_header */
3396 if (val < 0 || val > 2)
3397 err = -EINVAL;
3398 else
3399 tp->save_syn = val;
3400 break;
3401
3402 case TCP_LINGER2:
3403 if (val < 0)
3404 WRITE_ONCE(tp->linger2, -1);
3405 else if (val > TCP_FIN_TIMEOUT_MAX / HZ)
3406 WRITE_ONCE(tp->linger2, TCP_FIN_TIMEOUT_MAX);
3407 else
3408 WRITE_ONCE(tp->linger2, val * HZ);
3409 break;
3410
3411 case TCP_DEFER_ACCEPT:
3412 /* Translate value in seconds to number of retransmits */
3413 WRITE_ONCE(icsk->icsk_accept_queue.rskq_defer_accept,
3414 secs_to_retrans(val, TCP_TIMEOUT_INIT / HZ,
3415 TCP_RTO_MAX / HZ));
3416 break;
3417
3418 case TCP_WINDOW_CLAMP:
3419 if (!val) {
3420 if (sk->sk_state != TCP_CLOSE) {
3421 err = -EINVAL;
3422 break;
3423 }
3424 tp->window_clamp = 0;
3425 } else
3426 tp->window_clamp = val < SOCK_MIN_RCVBUF / 2 ?
3427 SOCK_MIN_RCVBUF / 2 : val;
3428 break;
3429
3430 case TCP_QUICKACK:
3431 __tcp_sock_set_quickack(sk, val);
3432 break;
3433
3434 #ifdef CONFIG_TCP_MD5SIG
3435 case TCP_MD5SIG:
3436 case TCP_MD5SIG_EXT:
3437 err = tp->af_specific->md5_parse(sk, optname, optval, optlen);
3438 break;
3439 #endif
3440 case TCP_USER_TIMEOUT:
3441 /* Cap the max time in ms TCP will retry or probe the window
3442 * before giving up and aborting (ETIMEDOUT) a connection.
3443 */
3444 if (val < 0)
3445 err = -EINVAL;
3446 else
3447 WRITE_ONCE(icsk->icsk_user_timeout, val);
3448 break;
3449
3450 case TCP_FASTOPEN:
3451 if (val >= 0 && ((1 << sk->sk_state) & (TCPF_CLOSE |
3452 TCPF_LISTEN))) {
3453 tcp_fastopen_init_key_once(net);
3454
3455 fastopen_queue_tune(sk, val);
3456 } else {
3457 err = -EINVAL;
3458 }
3459 break;
3460 case TCP_FASTOPEN_CONNECT:
3461 if (val > 1 || val < 0) {
3462 err = -EINVAL;
3463 } else if (READ_ONCE(net->ipv4.sysctl_tcp_fastopen) &
3464 TFO_CLIENT_ENABLE) {
3465 if (sk->sk_state == TCP_CLOSE)
3466 tp->fastopen_connect = val;
3467 else
3468 err = -EINVAL;
3469 } else {
3470 err = -EOPNOTSUPP;
3471 }
3472 break;
3473 case TCP_FASTOPEN_NO_COOKIE:
3474 if (val > 1 || val < 0)
3475 err = -EINVAL;
3476 else if (!((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3477 err = -EINVAL;
3478 else
3479 tp->fastopen_no_cookie = val;
3480 break;
3481 case TCP_TIMESTAMP:
3482 if (!tp->repair)
3483 err = -EPERM;
3484 else
3485 tp->tsoffset = val - tcp_time_stamp_raw();
3486 break;
3487 case TCP_REPAIR_WINDOW:
3488 err = tcp_repair_set_window(tp, optval, optlen);
3489 break;
3490 case TCP_NOTSENT_LOWAT:
3491 WRITE_ONCE(tp->notsent_lowat, val);
3492 sk->sk_write_space(sk);
3493 break;
3494 case TCP_INQ:
3495 if (val > 1 || val < 0)
3496 err = -EINVAL;
3497 else
3498 tp->recvmsg_inq = val;
3499 break;
3500 case TCP_TX_DELAY:
3501 if (val)
3502 tcp_enable_tx_delay();
3503 WRITE_ONCE(tp->tcp_tx_delay, val);
3504 break;
3505 #ifdef CONFIG_TCP_NB_URC
3506 case TCP_NB_URC:
3507 err = tcp_set_nb_urc(sk, optval, optlen);
3508 break;
3509 #endif /* CONFIG_TCP_NB_URC */
3510 default:
3511 err = -ENOPROTOOPT;
3512 break;
3513 }
3514
3515 release_sock(sk);
3516 return err;
3517 }
3518
tcp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)3519 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
3520 unsigned int optlen)
3521 {
3522 const struct inet_connection_sock *icsk = inet_csk(sk);
3523
3524 if (level != SOL_TCP)
3525 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
3526 return READ_ONCE(icsk->icsk_af_ops)->setsockopt(sk, level, optname,
3527 optval, optlen);
3528 return do_tcp_setsockopt(sk, level, optname, optval, optlen);
3529 }
3530 EXPORT_SYMBOL(tcp_setsockopt);
3531
tcp_get_info_chrono_stats(const struct tcp_sock * tp,struct tcp_info * info)3532 static void tcp_get_info_chrono_stats(const struct tcp_sock *tp,
3533 struct tcp_info *info)
3534 {
3535 u64 stats[__TCP_CHRONO_MAX], total = 0;
3536 enum tcp_chrono i;
3537
3538 for (i = TCP_CHRONO_BUSY; i < __TCP_CHRONO_MAX; ++i) {
3539 stats[i] = tp->chrono_stat[i - 1];
3540 if (i == tp->chrono_type)
3541 stats[i] += tcp_jiffies32 - tp->chrono_start;
3542 stats[i] *= USEC_PER_SEC / HZ;
3543 total += stats[i];
3544 }
3545
3546 info->tcpi_busy_time = total;
3547 info->tcpi_rwnd_limited = stats[TCP_CHRONO_RWND_LIMITED];
3548 info->tcpi_sndbuf_limited = stats[TCP_CHRONO_SNDBUF_LIMITED];
3549 }
3550
3551 /* Return information about state of tcp endpoint in API format. */
tcp_get_info(struct sock * sk,struct tcp_info * info)3552 void tcp_get_info(struct sock *sk, struct tcp_info *info)
3553 {
3554 const struct tcp_sock *tp = tcp_sk(sk); /* iff sk_type == SOCK_STREAM */
3555 const struct inet_connection_sock *icsk = inet_csk(sk);
3556 unsigned long rate;
3557 u32 now;
3558 u64 rate64;
3559 bool slow;
3560
3561 memset(info, 0, sizeof(*info));
3562 if (sk->sk_type != SOCK_STREAM)
3563 return;
3564
3565 info->tcpi_state = inet_sk_state_load(sk);
3566
3567 /* Report meaningful fields for all TCP states, including listeners */
3568 rate = READ_ONCE(sk->sk_pacing_rate);
3569 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3570 info->tcpi_pacing_rate = rate64;
3571
3572 rate = READ_ONCE(sk->sk_max_pacing_rate);
3573 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3574 info->tcpi_max_pacing_rate = rate64;
3575
3576 info->tcpi_reordering = tp->reordering;
3577 info->tcpi_snd_cwnd = tp->snd_cwnd;
3578
3579 if (info->tcpi_state == TCP_LISTEN) {
3580 /* listeners aliased fields :
3581 * tcpi_unacked -> Number of children ready for accept()
3582 * tcpi_sacked -> max backlog
3583 */
3584 info->tcpi_unacked = READ_ONCE(sk->sk_ack_backlog);
3585 info->tcpi_sacked = READ_ONCE(sk->sk_max_ack_backlog);
3586 return;
3587 }
3588
3589 slow = lock_sock_fast(sk);
3590
3591 info->tcpi_ca_state = icsk->icsk_ca_state;
3592 info->tcpi_retransmits = icsk->icsk_retransmits;
3593 info->tcpi_probes = icsk->icsk_probes_out;
3594 info->tcpi_backoff = icsk->icsk_backoff;
3595
3596 if (tp->rx_opt.tstamp_ok)
3597 info->tcpi_options |= TCPI_OPT_TIMESTAMPS;
3598 if (tcp_is_sack(tp))
3599 info->tcpi_options |= TCPI_OPT_SACK;
3600 if (tp->rx_opt.wscale_ok) {
3601 info->tcpi_options |= TCPI_OPT_WSCALE;
3602 info->tcpi_snd_wscale = tp->rx_opt.snd_wscale;
3603 info->tcpi_rcv_wscale = tp->rx_opt.rcv_wscale;
3604 }
3605
3606 if (tp->ecn_flags & TCP_ECN_OK)
3607 info->tcpi_options |= TCPI_OPT_ECN;
3608 if (tp->ecn_flags & TCP_ECN_SEEN)
3609 info->tcpi_options |= TCPI_OPT_ECN_SEEN;
3610 if (tp->syn_data_acked)
3611 info->tcpi_options |= TCPI_OPT_SYN_DATA;
3612
3613 info->tcpi_rto = jiffies_to_usecs(icsk->icsk_rto);
3614 info->tcpi_ato = jiffies_to_usecs(icsk->icsk_ack.ato);
3615 info->tcpi_snd_mss = tp->mss_cache;
3616 info->tcpi_rcv_mss = icsk->icsk_ack.rcv_mss;
3617
3618 info->tcpi_unacked = tp->packets_out;
3619 info->tcpi_sacked = tp->sacked_out;
3620
3621 info->tcpi_lost = tp->lost_out;
3622 info->tcpi_retrans = tp->retrans_out;
3623
3624 now = tcp_jiffies32;
3625 info->tcpi_last_data_sent = jiffies_to_msecs(now - tp->lsndtime);
3626 info->tcpi_last_data_recv = jiffies_to_msecs(now - icsk->icsk_ack.lrcvtime);
3627 info->tcpi_last_ack_recv = jiffies_to_msecs(now - tp->rcv_tstamp);
3628
3629 info->tcpi_pmtu = icsk->icsk_pmtu_cookie;
3630 info->tcpi_rcv_ssthresh = tp->rcv_ssthresh;
3631 info->tcpi_rtt = tp->srtt_us >> 3;
3632 info->tcpi_rttvar = tp->mdev_us >> 2;
3633 info->tcpi_snd_ssthresh = tp->snd_ssthresh;
3634 info->tcpi_advmss = tp->advmss;
3635
3636 info->tcpi_rcv_rtt = tp->rcv_rtt_est.rtt_us >> 3;
3637 info->tcpi_rcv_space = tp->rcvq_space.space;
3638
3639 info->tcpi_total_retrans = tp->total_retrans;
3640
3641 info->tcpi_bytes_acked = tp->bytes_acked;
3642 info->tcpi_bytes_received = tp->bytes_received;
3643 info->tcpi_notsent_bytes = max_t(int, 0, tp->write_seq - tp->snd_nxt);
3644 tcp_get_info_chrono_stats(tp, info);
3645
3646 info->tcpi_segs_out = tp->segs_out;
3647 info->tcpi_segs_in = tp->segs_in;
3648
3649 info->tcpi_min_rtt = tcp_min_rtt(tp);
3650 info->tcpi_data_segs_in = tp->data_segs_in;
3651 info->tcpi_data_segs_out = tp->data_segs_out;
3652
3653 info->tcpi_delivery_rate_app_limited = tp->rate_app_limited ? 1 : 0;
3654 rate64 = tcp_compute_delivery_rate(tp);
3655 if (rate64)
3656 info->tcpi_delivery_rate = rate64;
3657 info->tcpi_delivered = tp->delivered;
3658 info->tcpi_delivered_ce = tp->delivered_ce;
3659 info->tcpi_bytes_sent = tp->bytes_sent;
3660 info->tcpi_bytes_retrans = tp->bytes_retrans;
3661 info->tcpi_dsack_dups = tp->dsack_dups;
3662 info->tcpi_reord_seen = tp->reord_seen;
3663 info->tcpi_rcv_ooopack = tp->rcv_ooopack;
3664 info->tcpi_snd_wnd = tp->snd_wnd;
3665 info->tcpi_fastopen_client_fail = tp->fastopen_client_fail;
3666 unlock_sock_fast(sk, slow);
3667 }
3668 EXPORT_SYMBOL_GPL(tcp_get_info);
3669
tcp_opt_stats_get_size(void)3670 static size_t tcp_opt_stats_get_size(void)
3671 {
3672 return
3673 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BUSY */
3674 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_RWND_LIMITED */
3675 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_SNDBUF_LIMITED */
3676 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DATA_SEGS_OUT */
3677 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_TOTAL_RETRANS */
3678 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_PACING_RATE */
3679 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_DELIVERY_RATE */
3680 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_CWND */
3681 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORDERING */
3682 nla_total_size(sizeof(u32)) + /* TCP_NLA_MIN_RTT */
3683 nla_total_size(sizeof(u8)) + /* TCP_NLA_RECUR_RETRANS */
3684 nla_total_size(sizeof(u8)) + /* TCP_NLA_DELIVERY_RATE_APP_LMT */
3685 nla_total_size(sizeof(u32)) + /* TCP_NLA_SNDQ_SIZE */
3686 nla_total_size(sizeof(u8)) + /* TCP_NLA_CA_STATE */
3687 nla_total_size(sizeof(u32)) + /* TCP_NLA_SND_SSTHRESH */
3688 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED */
3689 nla_total_size(sizeof(u32)) + /* TCP_NLA_DELIVERED_CE */
3690 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_SENT */
3691 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_BYTES_RETRANS */
3692 nla_total_size(sizeof(u32)) + /* TCP_NLA_DSACK_DUPS */
3693 nla_total_size(sizeof(u32)) + /* TCP_NLA_REORD_SEEN */
3694 nla_total_size(sizeof(u32)) + /* TCP_NLA_SRTT */
3695 nla_total_size(sizeof(u16)) + /* TCP_NLA_TIMEOUT_REHASH */
3696 nla_total_size(sizeof(u32)) + /* TCP_NLA_BYTES_NOTSENT */
3697 nla_total_size_64bit(sizeof(u64)) + /* TCP_NLA_EDT */
3698 0;
3699 }
3700
tcp_get_timestamping_opt_stats(const struct sock * sk,const struct sk_buff * orig_skb)3701 struct sk_buff *tcp_get_timestamping_opt_stats(const struct sock *sk,
3702 const struct sk_buff *orig_skb)
3703 {
3704 const struct tcp_sock *tp = tcp_sk(sk);
3705 struct sk_buff *stats;
3706 struct tcp_info info;
3707 unsigned long rate;
3708 u64 rate64;
3709
3710 stats = alloc_skb(tcp_opt_stats_get_size(), GFP_ATOMIC);
3711 if (!stats)
3712 return NULL;
3713
3714 tcp_get_info_chrono_stats(tp, &info);
3715 nla_put_u64_64bit(stats, TCP_NLA_BUSY,
3716 info.tcpi_busy_time, TCP_NLA_PAD);
3717 nla_put_u64_64bit(stats, TCP_NLA_RWND_LIMITED,
3718 info.tcpi_rwnd_limited, TCP_NLA_PAD);
3719 nla_put_u64_64bit(stats, TCP_NLA_SNDBUF_LIMITED,
3720 info.tcpi_sndbuf_limited, TCP_NLA_PAD);
3721 nla_put_u64_64bit(stats, TCP_NLA_DATA_SEGS_OUT,
3722 tp->data_segs_out, TCP_NLA_PAD);
3723 nla_put_u64_64bit(stats, TCP_NLA_TOTAL_RETRANS,
3724 tp->total_retrans, TCP_NLA_PAD);
3725
3726 rate = READ_ONCE(sk->sk_pacing_rate);
3727 rate64 = (rate != ~0UL) ? rate : ~0ULL;
3728 nla_put_u64_64bit(stats, TCP_NLA_PACING_RATE, rate64, TCP_NLA_PAD);
3729
3730 rate64 = tcp_compute_delivery_rate(tp);
3731 nla_put_u64_64bit(stats, TCP_NLA_DELIVERY_RATE, rate64, TCP_NLA_PAD);
3732
3733 nla_put_u32(stats, TCP_NLA_SND_CWND, tp->snd_cwnd);
3734 nla_put_u32(stats, TCP_NLA_REORDERING, tp->reordering);
3735 nla_put_u32(stats, TCP_NLA_MIN_RTT, tcp_min_rtt(tp));
3736
3737 nla_put_u8(stats, TCP_NLA_RECUR_RETRANS, inet_csk(sk)->icsk_retransmits);
3738 nla_put_u8(stats, TCP_NLA_DELIVERY_RATE_APP_LMT, !!tp->rate_app_limited);
3739 nla_put_u32(stats, TCP_NLA_SND_SSTHRESH, tp->snd_ssthresh);
3740 nla_put_u32(stats, TCP_NLA_DELIVERED, tp->delivered);
3741 nla_put_u32(stats, TCP_NLA_DELIVERED_CE, tp->delivered_ce);
3742
3743 nla_put_u32(stats, TCP_NLA_SNDQ_SIZE, tp->write_seq - tp->snd_una);
3744 nla_put_u8(stats, TCP_NLA_CA_STATE, inet_csk(sk)->icsk_ca_state);
3745
3746 nla_put_u64_64bit(stats, TCP_NLA_BYTES_SENT, tp->bytes_sent,
3747 TCP_NLA_PAD);
3748 nla_put_u64_64bit(stats, TCP_NLA_BYTES_RETRANS, tp->bytes_retrans,
3749 TCP_NLA_PAD);
3750 nla_put_u32(stats, TCP_NLA_DSACK_DUPS, tp->dsack_dups);
3751 nla_put_u32(stats, TCP_NLA_REORD_SEEN, tp->reord_seen);
3752 nla_put_u32(stats, TCP_NLA_SRTT, tp->srtt_us >> 3);
3753 nla_put_u16(stats, TCP_NLA_TIMEOUT_REHASH, tp->timeout_rehash);
3754 nla_put_u32(stats, TCP_NLA_BYTES_NOTSENT,
3755 max_t(int, 0, tp->write_seq - tp->snd_nxt));
3756 nla_put_u64_64bit(stats, TCP_NLA_EDT, orig_skb->skb_mstamp_ns,
3757 TCP_NLA_PAD);
3758
3759 return stats;
3760 }
3761
do_tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)3762 static int do_tcp_getsockopt(struct sock *sk, int level,
3763 int optname, char __user *optval, int __user *optlen)
3764 {
3765 struct inet_connection_sock *icsk = inet_csk(sk);
3766 struct tcp_sock *tp = tcp_sk(sk);
3767 struct net *net = sock_net(sk);
3768 int val, len;
3769
3770 if (get_user(len, optlen))
3771 return -EFAULT;
3772
3773 len = min_t(unsigned int, len, sizeof(int));
3774
3775 if (len < 0)
3776 return -EINVAL;
3777
3778 switch (optname) {
3779 case TCP_MAXSEG:
3780 val = tp->mss_cache;
3781 if (tp->rx_opt.user_mss &&
3782 ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN)))
3783 val = tp->rx_opt.user_mss;
3784 if (tp->repair)
3785 val = tp->rx_opt.mss_clamp;
3786 break;
3787 case TCP_NODELAY:
3788 val = !!(tp->nonagle&TCP_NAGLE_OFF);
3789 break;
3790 case TCP_CORK:
3791 val = !!(tp->nonagle&TCP_NAGLE_CORK);
3792 break;
3793 case TCP_KEEPIDLE:
3794 val = keepalive_time_when(tp) / HZ;
3795 break;
3796 case TCP_KEEPINTVL:
3797 val = keepalive_intvl_when(tp) / HZ;
3798 break;
3799 case TCP_KEEPCNT:
3800 val = keepalive_probes(tp);
3801 break;
3802 case TCP_SYNCNT:
3803 val = READ_ONCE(icsk->icsk_syn_retries) ? :
3804 READ_ONCE(net->ipv4.sysctl_tcp_syn_retries);
3805 break;
3806 case TCP_LINGER2:
3807 val = READ_ONCE(tp->linger2);
3808 if (val >= 0)
3809 val = (val ? : READ_ONCE(net->ipv4.sysctl_tcp_fin_timeout)) / HZ;
3810 break;
3811 case TCP_DEFER_ACCEPT:
3812 val = READ_ONCE(icsk->icsk_accept_queue.rskq_defer_accept);
3813 val = retrans_to_secs(val, TCP_TIMEOUT_INIT / HZ,
3814 TCP_RTO_MAX / HZ);
3815 break;
3816 case TCP_WINDOW_CLAMP:
3817 val = tp->window_clamp;
3818 break;
3819 case TCP_INFO: {
3820 struct tcp_info info;
3821
3822 if (get_user(len, optlen))
3823 return -EFAULT;
3824
3825 tcp_get_info(sk, &info);
3826
3827 len = min_t(unsigned int, len, sizeof(info));
3828 if (put_user(len, optlen))
3829 return -EFAULT;
3830 if (copy_to_user(optval, &info, len))
3831 return -EFAULT;
3832 return 0;
3833 }
3834 case TCP_CC_INFO: {
3835 const struct tcp_congestion_ops *ca_ops;
3836 union tcp_cc_info info;
3837 size_t sz = 0;
3838 int attr;
3839
3840 if (get_user(len, optlen))
3841 return -EFAULT;
3842
3843 ca_ops = icsk->icsk_ca_ops;
3844 if (ca_ops && ca_ops->get_info)
3845 sz = ca_ops->get_info(sk, ~0U, &attr, &info);
3846
3847 len = min_t(unsigned int, len, sz);
3848 if (put_user(len, optlen))
3849 return -EFAULT;
3850 if (copy_to_user(optval, &info, len))
3851 return -EFAULT;
3852 return 0;
3853 }
3854 case TCP_QUICKACK:
3855 val = !inet_csk_in_pingpong_mode(sk);
3856 break;
3857
3858 case TCP_CONGESTION:
3859 if (get_user(len, optlen))
3860 return -EFAULT;
3861 len = min_t(unsigned int, len, TCP_CA_NAME_MAX);
3862 if (put_user(len, optlen))
3863 return -EFAULT;
3864 if (copy_to_user(optval, icsk->icsk_ca_ops->name, len))
3865 return -EFAULT;
3866 return 0;
3867
3868 case TCP_ULP:
3869 if (get_user(len, optlen))
3870 return -EFAULT;
3871 len = min_t(unsigned int, len, TCP_ULP_NAME_MAX);
3872 if (!icsk->icsk_ulp_ops) {
3873 if (put_user(0, optlen))
3874 return -EFAULT;
3875 return 0;
3876 }
3877 if (put_user(len, optlen))
3878 return -EFAULT;
3879 if (copy_to_user(optval, icsk->icsk_ulp_ops->name, len))
3880 return -EFAULT;
3881 return 0;
3882
3883 case TCP_FASTOPEN_KEY: {
3884 u64 key[TCP_FASTOPEN_KEY_BUF_LENGTH / sizeof(u64)];
3885 unsigned int key_len;
3886
3887 if (get_user(len, optlen))
3888 return -EFAULT;
3889
3890 key_len = tcp_fastopen_get_cipher(net, icsk, key) *
3891 TCP_FASTOPEN_KEY_LENGTH;
3892 len = min_t(unsigned int, len, key_len);
3893 if (put_user(len, optlen))
3894 return -EFAULT;
3895 if (copy_to_user(optval, key, len))
3896 return -EFAULT;
3897 return 0;
3898 }
3899 case TCP_THIN_LINEAR_TIMEOUTS:
3900 val = tp->thin_lto;
3901 break;
3902
3903 case TCP_THIN_DUPACK:
3904 val = 0;
3905 break;
3906
3907 case TCP_REPAIR:
3908 val = tp->repair;
3909 break;
3910
3911 case TCP_REPAIR_QUEUE:
3912 if (tp->repair)
3913 val = tp->repair_queue;
3914 else
3915 return -EINVAL;
3916 break;
3917
3918 case TCP_REPAIR_WINDOW: {
3919 struct tcp_repair_window opt;
3920
3921 if (get_user(len, optlen))
3922 return -EFAULT;
3923
3924 if (len != sizeof(opt))
3925 return -EINVAL;
3926
3927 if (!tp->repair)
3928 return -EPERM;
3929
3930 opt.snd_wl1 = tp->snd_wl1;
3931 opt.snd_wnd = tp->snd_wnd;
3932 opt.max_window = tp->max_window;
3933 opt.rcv_wnd = tp->rcv_wnd;
3934 opt.rcv_wup = tp->rcv_wup;
3935
3936 if (copy_to_user(optval, &opt, len))
3937 return -EFAULT;
3938 return 0;
3939 }
3940 case TCP_QUEUE_SEQ:
3941 if (tp->repair_queue == TCP_SEND_QUEUE)
3942 val = tp->write_seq;
3943 else if (tp->repair_queue == TCP_RECV_QUEUE)
3944 val = tp->rcv_nxt;
3945 else
3946 return -EINVAL;
3947 break;
3948
3949 case TCP_USER_TIMEOUT:
3950 val = READ_ONCE(icsk->icsk_user_timeout);
3951 break;
3952
3953 case TCP_FASTOPEN:
3954 val = READ_ONCE(icsk->icsk_accept_queue.fastopenq.max_qlen);
3955 break;
3956
3957 case TCP_FASTOPEN_CONNECT:
3958 val = tp->fastopen_connect;
3959 break;
3960
3961 case TCP_FASTOPEN_NO_COOKIE:
3962 val = tp->fastopen_no_cookie;
3963 break;
3964
3965 case TCP_TX_DELAY:
3966 val = READ_ONCE(tp->tcp_tx_delay);
3967 break;
3968
3969 case TCP_TIMESTAMP:
3970 val = tcp_time_stamp_raw() + tp->tsoffset;
3971 break;
3972 case TCP_NOTSENT_LOWAT:
3973 val = READ_ONCE(tp->notsent_lowat);
3974 break;
3975 case TCP_INQ:
3976 val = tp->recvmsg_inq;
3977 break;
3978 case TCP_SAVE_SYN:
3979 val = tp->save_syn;
3980 break;
3981 case TCP_SAVED_SYN: {
3982 if (get_user(len, optlen))
3983 return -EFAULT;
3984
3985 lock_sock(sk);
3986 if (tp->saved_syn) {
3987 if (len < tcp_saved_syn_len(tp->saved_syn)) {
3988 if (put_user(tcp_saved_syn_len(tp->saved_syn),
3989 optlen)) {
3990 release_sock(sk);
3991 return -EFAULT;
3992 }
3993 release_sock(sk);
3994 return -EINVAL;
3995 }
3996 len = tcp_saved_syn_len(tp->saved_syn);
3997 if (put_user(len, optlen)) {
3998 release_sock(sk);
3999 return -EFAULT;
4000 }
4001 if (copy_to_user(optval, tp->saved_syn->data, len)) {
4002 release_sock(sk);
4003 return -EFAULT;
4004 }
4005 tcp_saved_syn_free(tp);
4006 release_sock(sk);
4007 } else {
4008 release_sock(sk);
4009 len = 0;
4010 if (put_user(len, optlen))
4011 return -EFAULT;
4012 }
4013 return 0;
4014 }
4015 #ifdef CONFIG_MMU
4016 case TCP_ZEROCOPY_RECEIVE: {
4017 struct tcp_zerocopy_receive zc = {};
4018 int err;
4019
4020 if (get_user(len, optlen))
4021 return -EFAULT;
4022 if (len < 0 ||
4023 len < offsetofend(struct tcp_zerocopy_receive, length))
4024 return -EINVAL;
4025 if (len > sizeof(zc)) {
4026 len = sizeof(zc);
4027 if (put_user(len, optlen))
4028 return -EFAULT;
4029 }
4030 if (copy_from_user(&zc, optval, len))
4031 return -EFAULT;
4032 lock_sock(sk);
4033 err = tcp_zerocopy_receive(sk, &zc);
4034 err = BPF_CGROUP_RUN_PROG_GETSOCKOPT_KERN(sk, level, optname,
4035 &zc, &len, err);
4036 release_sock(sk);
4037 if (len >= offsetofend(struct tcp_zerocopy_receive, err))
4038 goto zerocopy_rcv_sk_err;
4039 switch (len) {
4040 case offsetofend(struct tcp_zerocopy_receive, err):
4041 goto zerocopy_rcv_sk_err;
4042 case offsetofend(struct tcp_zerocopy_receive, inq):
4043 goto zerocopy_rcv_inq;
4044 case offsetofend(struct tcp_zerocopy_receive, length):
4045 default:
4046 goto zerocopy_rcv_out;
4047 }
4048 zerocopy_rcv_sk_err:
4049 if (!err)
4050 zc.err = sock_error(sk);
4051 zerocopy_rcv_inq:
4052 zc.inq = tcp_inq_hint(sk);
4053 zerocopy_rcv_out:
4054 if (!err && copy_to_user(optval, &zc, len))
4055 err = -EFAULT;
4056 return err;
4057 }
4058 #endif
4059 default:
4060 return -ENOPROTOOPT;
4061 }
4062
4063 if (put_user(len, optlen))
4064 return -EFAULT;
4065 if (copy_to_user(optval, &val, len))
4066 return -EFAULT;
4067 return 0;
4068 }
4069
tcp_bpf_bypass_getsockopt(int level,int optname)4070 bool tcp_bpf_bypass_getsockopt(int level, int optname)
4071 {
4072 /* TCP do_tcp_getsockopt has optimized getsockopt implementation
4073 * to avoid extra socket lock for TCP_ZEROCOPY_RECEIVE.
4074 */
4075 if (level == SOL_TCP && optname == TCP_ZEROCOPY_RECEIVE)
4076 return true;
4077
4078 return false;
4079 }
4080 EXPORT_SYMBOL(tcp_bpf_bypass_getsockopt);
4081
tcp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)4082 int tcp_getsockopt(struct sock *sk, int level, int optname, char __user *optval,
4083 int __user *optlen)
4084 {
4085 struct inet_connection_sock *icsk = inet_csk(sk);
4086
4087 if (level != SOL_TCP)
4088 /* Paired with WRITE_ONCE() in do_ipv6_setsockopt() and tcp_v6_connect() */
4089 return READ_ONCE(icsk->icsk_af_ops)->getsockopt(sk, level, optname,
4090 optval, optlen);
4091 return do_tcp_getsockopt(sk, level, optname, optval, optlen);
4092 }
4093 EXPORT_SYMBOL(tcp_getsockopt);
4094
4095 #ifdef CONFIG_TCP_MD5SIG
4096 static DEFINE_PER_CPU(struct tcp_md5sig_pool, tcp_md5sig_pool);
4097 static DEFINE_MUTEX(tcp_md5sig_mutex);
4098 static bool tcp_md5sig_pool_populated = false;
4099
__tcp_alloc_md5sig_pool(void)4100 static void __tcp_alloc_md5sig_pool(void)
4101 {
4102 struct crypto_ahash *hash;
4103 int cpu;
4104
4105 hash = crypto_alloc_ahash("md5", 0, CRYPTO_ALG_ASYNC);
4106 if (IS_ERR(hash))
4107 return;
4108
4109 for_each_possible_cpu(cpu) {
4110 void *scratch = per_cpu(tcp_md5sig_pool, cpu).scratch;
4111 struct ahash_request *req;
4112
4113 if (!scratch) {
4114 scratch = kmalloc_node(sizeof(union tcp_md5sum_block) +
4115 sizeof(struct tcphdr),
4116 GFP_KERNEL,
4117 cpu_to_node(cpu));
4118 if (!scratch)
4119 return;
4120 per_cpu(tcp_md5sig_pool, cpu).scratch = scratch;
4121 }
4122 if (per_cpu(tcp_md5sig_pool, cpu).md5_req)
4123 continue;
4124
4125 req = ahash_request_alloc(hash, GFP_KERNEL);
4126 if (!req)
4127 return;
4128
4129 ahash_request_set_callback(req, 0, NULL, NULL);
4130
4131 per_cpu(tcp_md5sig_pool, cpu).md5_req = req;
4132 }
4133 /* before setting tcp_md5sig_pool_populated, we must commit all writes
4134 * to memory. See smp_rmb() in tcp_get_md5sig_pool()
4135 */
4136 smp_wmb();
4137 /* Paired with READ_ONCE() from tcp_alloc_md5sig_pool()
4138 * and tcp_get_md5sig_pool().
4139 */
4140 WRITE_ONCE(tcp_md5sig_pool_populated, true);
4141 }
4142
tcp_alloc_md5sig_pool(void)4143 bool tcp_alloc_md5sig_pool(void)
4144 {
4145 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4146 if (unlikely(!READ_ONCE(tcp_md5sig_pool_populated))) {
4147 mutex_lock(&tcp_md5sig_mutex);
4148
4149 if (!tcp_md5sig_pool_populated) {
4150 __tcp_alloc_md5sig_pool();
4151 if (tcp_md5sig_pool_populated)
4152 static_branch_inc(&tcp_md5_needed);
4153 }
4154
4155 mutex_unlock(&tcp_md5sig_mutex);
4156 }
4157 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4158 return READ_ONCE(tcp_md5sig_pool_populated);
4159 }
4160 EXPORT_SYMBOL(tcp_alloc_md5sig_pool);
4161
4162
4163 /**
4164 * tcp_get_md5sig_pool - get md5sig_pool for this user
4165 *
4166 * We use percpu structure, so if we succeed, we exit with preemption
4167 * and BH disabled, to make sure another thread or softirq handling
4168 * wont try to get same context.
4169 */
tcp_get_md5sig_pool(void)4170 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void)
4171 {
4172 local_bh_disable();
4173
4174 /* Paired with WRITE_ONCE() from __tcp_alloc_md5sig_pool() */
4175 if (READ_ONCE(tcp_md5sig_pool_populated)) {
4176 /* coupled with smp_wmb() in __tcp_alloc_md5sig_pool() */
4177 smp_rmb();
4178 return this_cpu_ptr(&tcp_md5sig_pool);
4179 }
4180 local_bh_enable();
4181 return NULL;
4182 }
4183 EXPORT_SYMBOL(tcp_get_md5sig_pool);
4184
tcp_md5_hash_skb_data(struct tcp_md5sig_pool * hp,const struct sk_buff * skb,unsigned int header_len)4185 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *hp,
4186 const struct sk_buff *skb, unsigned int header_len)
4187 {
4188 struct scatterlist sg;
4189 const struct tcphdr *tp = tcp_hdr(skb);
4190 struct ahash_request *req = hp->md5_req;
4191 unsigned int i;
4192 const unsigned int head_data_len = skb_headlen(skb) > header_len ?
4193 skb_headlen(skb) - header_len : 0;
4194 const struct skb_shared_info *shi = skb_shinfo(skb);
4195 struct sk_buff *frag_iter;
4196
4197 sg_init_table(&sg, 1);
4198
4199 sg_set_buf(&sg, ((u8 *) tp) + header_len, head_data_len);
4200 ahash_request_set_crypt(req, &sg, NULL, head_data_len);
4201 if (crypto_ahash_update(req))
4202 return 1;
4203
4204 for (i = 0; i < shi->nr_frags; ++i) {
4205 const skb_frag_t *f = &shi->frags[i];
4206 unsigned int offset = skb_frag_off(f);
4207 struct page *page = skb_frag_page(f) + (offset >> PAGE_SHIFT);
4208
4209 sg_set_page(&sg, page, skb_frag_size(f),
4210 offset_in_page(offset));
4211 ahash_request_set_crypt(req, &sg, NULL, skb_frag_size(f));
4212 if (crypto_ahash_update(req))
4213 return 1;
4214 }
4215
4216 skb_walk_frags(skb, frag_iter)
4217 if (tcp_md5_hash_skb_data(hp, frag_iter, 0))
4218 return 1;
4219
4220 return 0;
4221 }
4222 EXPORT_SYMBOL(tcp_md5_hash_skb_data);
4223
tcp_md5_hash_key(struct tcp_md5sig_pool * hp,const struct tcp_md5sig_key * key)4224 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp, const struct tcp_md5sig_key *key)
4225 {
4226 u8 keylen = READ_ONCE(key->keylen); /* paired with WRITE_ONCE() in tcp_md5_do_add */
4227 struct scatterlist sg;
4228
4229 sg_init_one(&sg, key->key, keylen);
4230 ahash_request_set_crypt(hp->md5_req, &sg, NULL, keylen);
4231
4232 /* We use data_race() because tcp_md5_do_add() might change key->key under us */
4233 return data_race(crypto_ahash_update(hp->md5_req));
4234 }
4235 EXPORT_SYMBOL(tcp_md5_hash_key);
4236
4237 #endif
4238
tcp_done(struct sock * sk)4239 void tcp_done(struct sock *sk)
4240 {
4241 struct request_sock *req;
4242
4243 /* We might be called with a new socket, after
4244 * inet_csk_prepare_forced_close() has been called
4245 * so we can not use lockdep_sock_is_held(sk)
4246 */
4247 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk, 1);
4248
4249 if (sk->sk_state == TCP_SYN_SENT || sk->sk_state == TCP_SYN_RECV)
4250 TCP_INC_STATS(sock_net(sk), TCP_MIB_ATTEMPTFAILS);
4251
4252 tcp_set_state(sk, TCP_CLOSE);
4253 tcp_clear_xmit_timers(sk);
4254 if (req)
4255 reqsk_fastopen_remove(sk, req, false);
4256
4257 WRITE_ONCE(sk->sk_shutdown, SHUTDOWN_MASK);
4258
4259 if (!sock_flag(sk, SOCK_DEAD))
4260 sk->sk_state_change(sk);
4261 else
4262 inet_csk_destroy_sock(sk);
4263 }
4264 EXPORT_SYMBOL_GPL(tcp_done);
4265
tcp_abort(struct sock * sk,int err)4266 int tcp_abort(struct sock *sk, int err)
4267 {
4268 if (!sk_fullsock(sk)) {
4269 if (sk->sk_state == TCP_NEW_SYN_RECV) {
4270 struct request_sock *req = inet_reqsk(sk);
4271
4272 local_bh_disable();
4273 inet_csk_reqsk_queue_drop(req->rsk_listener, req);
4274 local_bh_enable();
4275 return 0;
4276 }
4277 return -EOPNOTSUPP;
4278 }
4279
4280 /* Don't race with userspace socket closes such as tcp_close. */
4281 lock_sock(sk);
4282
4283 if (sk->sk_state == TCP_LISTEN) {
4284 tcp_set_state(sk, TCP_CLOSE);
4285 inet_csk_listen_stop(sk);
4286 }
4287
4288 /* Don't race with BH socket closes such as inet_csk_listen_stop. */
4289 local_bh_disable();
4290 bh_lock_sock(sk);
4291
4292 if (!sock_flag(sk, SOCK_DEAD)) {
4293 sk->sk_err = err;
4294 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4295 smp_wmb();
4296 sk->sk_error_report(sk);
4297 if (tcp_need_reset(sk->sk_state))
4298 tcp_send_active_reset(sk, GFP_ATOMIC);
4299 tcp_done(sk);
4300 }
4301
4302 bh_unlock_sock(sk);
4303 local_bh_enable();
4304 tcp_write_queue_purge(sk);
4305 release_sock(sk);
4306 return 0;
4307 }
4308 EXPORT_SYMBOL_GPL(tcp_abort);
4309
4310 extern struct tcp_congestion_ops tcp_reno;
4311
4312 static __initdata unsigned long thash_entries;
set_thash_entries(char * str)4313 static int __init set_thash_entries(char *str)
4314 {
4315 ssize_t ret;
4316
4317 if (!str)
4318 return 0;
4319
4320 ret = kstrtoul(str, 0, &thash_entries);
4321 if (ret)
4322 return 0;
4323
4324 return 1;
4325 }
4326 __setup("thash_entries=", set_thash_entries);
4327
tcp_init_mem(void)4328 static void __init tcp_init_mem(void)
4329 {
4330 unsigned long limit = nr_free_buffer_pages() / 16;
4331
4332 limit = max(limit, 128UL);
4333 sysctl_tcp_mem[0] = limit / 4 * 3; /* 4.68 % */
4334 sysctl_tcp_mem[1] = limit; /* 6.25 % */
4335 sysctl_tcp_mem[2] = sysctl_tcp_mem[0] * 2; /* 9.37 % */
4336 }
4337
tcp_init(void)4338 void __init tcp_init(void)
4339 {
4340 int max_rshare, max_wshare, cnt;
4341 unsigned long limit;
4342 unsigned int i;
4343
4344 BUILD_BUG_ON(TCP_MIN_SND_MSS <= MAX_TCP_OPTION_SPACE);
4345 BUILD_BUG_ON(sizeof(struct tcp_skb_cb) >
4346 sizeof_field(struct sk_buff, cb));
4347
4348 percpu_counter_init(&tcp_sockets_allocated, 0, GFP_KERNEL);
4349
4350 timer_setup(&tcp_orphan_timer, tcp_orphan_update, TIMER_DEFERRABLE);
4351 mod_timer(&tcp_orphan_timer, jiffies + TCP_ORPHAN_TIMER_PERIOD);
4352
4353 inet_hashinfo_init(&tcp_hashinfo);
4354 inet_hashinfo2_init(&tcp_hashinfo, "tcp_listen_portaddr_hash",
4355 thash_entries, 21, /* one slot per 2 MB*/
4356 0, 64 * 1024);
4357 tcp_hashinfo.bind_bucket_cachep =
4358 kmem_cache_create("tcp_bind_bucket",
4359 sizeof(struct inet_bind_bucket), 0,
4360 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
4361
4362 /* Size and allocate the main established and bind bucket
4363 * hash tables.
4364 *
4365 * The methodology is similar to that of the buffer cache.
4366 */
4367 tcp_hashinfo.ehash =
4368 alloc_large_system_hash("TCP established",
4369 sizeof(struct inet_ehash_bucket),
4370 thash_entries,
4371 17, /* one slot per 128 KB of memory */
4372 0,
4373 NULL,
4374 &tcp_hashinfo.ehash_mask,
4375 0,
4376 thash_entries ? 0 : 512 * 1024);
4377 for (i = 0; i <= tcp_hashinfo.ehash_mask; i++)
4378 INIT_HLIST_NULLS_HEAD(&tcp_hashinfo.ehash[i].chain, i);
4379
4380 if (inet_ehash_locks_alloc(&tcp_hashinfo))
4381 panic("TCP: failed to alloc ehash_locks");
4382 tcp_hashinfo.bhash =
4383 alloc_large_system_hash("TCP bind",
4384 sizeof(struct inet_bind_hashbucket),
4385 tcp_hashinfo.ehash_mask + 1,
4386 17, /* one slot per 128 KB of memory */
4387 0,
4388 &tcp_hashinfo.bhash_size,
4389 NULL,
4390 0,
4391 64 * 1024);
4392 tcp_hashinfo.bhash_size = 1U << tcp_hashinfo.bhash_size;
4393 for (i = 0; i < tcp_hashinfo.bhash_size; i++) {
4394 spin_lock_init(&tcp_hashinfo.bhash[i].lock);
4395 INIT_HLIST_HEAD(&tcp_hashinfo.bhash[i].chain);
4396 }
4397
4398
4399 cnt = tcp_hashinfo.ehash_mask + 1;
4400 sysctl_tcp_max_orphans = cnt / 2;
4401
4402 tcp_init_mem();
4403 /* Set per-socket limits to no more than 1/128 the pressure threshold */
4404 limit = nr_free_buffer_pages() << (PAGE_SHIFT - 7);
4405 max_wshare = min(4UL*1024*1024, limit);
4406 max_rshare = min(6UL*1024*1024, limit);
4407
4408 init_net.ipv4.sysctl_tcp_wmem[0] = SK_MEM_QUANTUM;
4409 init_net.ipv4.sysctl_tcp_wmem[1] = 16*1024;
4410 init_net.ipv4.sysctl_tcp_wmem[2] = max(64*1024, max_wshare);
4411
4412 init_net.ipv4.sysctl_tcp_rmem[0] = SK_MEM_QUANTUM;
4413 init_net.ipv4.sysctl_tcp_rmem[1] = 131072;
4414 init_net.ipv4.sysctl_tcp_rmem[2] = max(131072, max_rshare);
4415
4416 pr_info("Hash tables configured (established %u bind %u)\n",
4417 tcp_hashinfo.ehash_mask + 1, tcp_hashinfo.bhash_size);
4418
4419 tcp_v4_init();
4420 tcp_metrics_init();
4421 BUG_ON(tcp_register_congestion_control(&tcp_reno) != 0);
4422 tcp_tasklet_init();
4423 mptcp_init();
4424 }
4425