1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the TCP module.
8 *
9 * Version: @(#)tcp.h 1.0.5 05/23/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14 #ifndef _TCP_H
15 #define _TCP_H
16
17 #define FASTRETRANS_DEBUG 1
18
19 #include <linux/list.h>
20 #include <linux/tcp.h>
21 #include <linux/bug.h>
22 #include <linux/slab.h>
23 #include <linux/cache.h>
24 #include <linux/percpu.h>
25 #include <linux/skbuff.h>
26 #include <linux/kref.h>
27 #include <linux/ktime.h>
28 #include <linux/indirect_call_wrapper.h>
29
30 #include <net/inet_connection_sock.h>
31 #include <net/inet_timewait_sock.h>
32 #include <net/inet_hashtables.h>
33 #include <net/checksum.h>
34 #include <net/request_sock.h>
35 #include <net/sock_reuseport.h>
36 #include <net/sock.h>
37 #include <net/snmp.h>
38 #include <net/ip.h>
39 #include <net/tcp_states.h>
40 #include <net/inet_ecn.h>
41 #include <net/dst.h>
42 #include <net/mptcp.h>
43 #ifdef CONFIG_NEWIP
44 #include <linux/nip.h> /* NIP */
45 #endif
46 #include <linux/seq_file.h>
47 #include <linux/memcontrol.h>
48 #include <linux/bpf-cgroup.h>
49 #include <linux/siphash.h>
50
51 extern struct inet_hashinfo tcp_hashinfo;
52
53 DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
54 int tcp_orphan_count_sum(void);
55
56 void tcp_time_wait(struct sock *sk, int state, int timeo);
57
58 #define MAX_TCP_HEADER L1_CACHE_ALIGN(128 + MAX_HEADER)
59 #define MAX_TCP_OPTION_SPACE 40
60 #define TCP_MIN_SND_MSS 48
61 #define TCP_MIN_GSO_SIZE (TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
62
63 /*
64 * Never offer a window over 32767 without using window scaling. Some
65 * poor stacks do signed 16bit maths!
66 */
67 #define MAX_TCP_WINDOW 32767U
68
69 /* Minimal accepted MSS. It is (60+60+8) - (20+20). */
70 #define TCP_MIN_MSS 88U
71
72 /* The initial MTU to use for probing */
73 #define TCP_BASE_MSS 1024
74
75 /* probing interval, default to 10 minutes as per RFC4821 */
76 #define TCP_PROBE_INTERVAL 600
77
78 /* Specify interval when tcp mtu probing will stop */
79 #define TCP_PROBE_THRESHOLD 8
80
81 /* After receiving this amount of duplicate ACKs fast retransmit starts. */
82 #define TCP_FASTRETRANS_THRESH 3
83
84 /* Maximal number of ACKs sent quickly to accelerate slow-start. */
85 #define TCP_MAX_QUICKACKS 16U
86
87 /* Maximal number of window scale according to RFC1323 */
88 #define TCP_MAX_WSCALE 14U
89
90 /* urg_data states */
91 #define TCP_URG_VALID 0x0100
92 #define TCP_URG_NOTYET 0x0200
93 #define TCP_URG_READ 0x0400
94
95 #define TCP_RETR1 3 /*
96 * This is how many retries it does before it
97 * tries to figure out if the gateway is
98 * down. Minimal RFC value is 3; it corresponds
99 * to ~3sec-8min depending on RTO.
100 */
101
102 #define TCP_RETR2 15 /*
103 * This should take at least
104 * 90 minutes to time out.
105 * RFC1122 says that the limit is 100 sec.
106 * 15 is ~13-30min depending on RTO.
107 */
108
109 #define TCP_SYN_RETRIES 6 /* This is how many retries are done
110 * when active opening a connection.
111 * RFC1122 says the minimum retry MUST
112 * be at least 180secs. Nevertheless
113 * this value is corresponding to
114 * 63secs of retransmission with the
115 * current initial RTO.
116 */
117
118 #define TCP_SYNACK_RETRIES 5 /* This is how may retries are done
119 * when passive opening a connection.
120 * This is corresponding to 31secs of
121 * retransmission with the current
122 * initial RTO.
123 */
124
125 #define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
126 * state, about 60 seconds */
127 #define TCP_FIN_TIMEOUT TCP_TIMEWAIT_LEN
128 /* BSD style FIN_WAIT2 deadlock breaker.
129 * It used to be 3min, new value is 60sec,
130 * to combine FIN-WAIT-2 timeout with
131 * TIME-WAIT timer.
132 */
133 #define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
134
135 #define TCP_DELACK_MAX ((unsigned)(HZ/5)) /* maximal time to delay before sending an ACK */
136 #if HZ >= 100
137 #define TCP_DELACK_MIN ((unsigned)(HZ/25)) /* minimal time to delay before sending an ACK */
138 #define TCP_ATO_MIN ((unsigned)(HZ/25))
139 #else
140 #define TCP_DELACK_MIN 4U
141 #define TCP_ATO_MIN 4U
142 #endif
143 #define TCP_RTO_MAX ((unsigned)(120*HZ))
144 #define TCP_RTO_MIN ((unsigned)(HZ/5))
145 #define TCP_TIMEOUT_MIN (2U) /* Min timeout for TCP timers in jiffies */
146 #define TCP_TIMEOUT_INIT ((unsigned)(1*HZ)) /* RFC6298 2.1 initial RTO value */
147 #define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ)) /* RFC 1122 initial RTO value, now
148 * used as a fallback RTO for the
149 * initial data transmission if no
150 * valid RTT sample has been acquired,
151 * most likely due to retrans in 3WHS.
152 */
153
154 #define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
155 * for local resources.
156 */
157 #define TCP_KEEPALIVE_TIME (120*60*HZ) /* two hours */
158 #define TCP_KEEPALIVE_PROBES 9 /* Max of 9 keepalive probes */
159 #define TCP_KEEPALIVE_INTVL (75*HZ)
160
161 #define MAX_TCP_KEEPIDLE 32767
162 #define MAX_TCP_KEEPINTVL 32767
163 #define MAX_TCP_KEEPCNT 127
164 #define MAX_TCP_SYNCNT 127
165
166 #define TCP_SYNQ_INTERVAL (HZ/5) /* Period of SYNACK timer */
167
168 #define TCP_PAWS_24DAYS (60 * 60 * 24 * 24)
169 #define TCP_PAWS_MSL 60 /* Per-host timestamps are invalidated
170 * after this time. It should be equal
171 * (or greater than) TCP_TIMEWAIT_LEN
172 * to provide reliability equal to one
173 * provided by timewait state.
174 */
175 #define TCP_PAWS_WINDOW 1 /* Replay window for per-host
176 * timestamps. It must be less than
177 * minimal timewait lifetime.
178 */
179 /*
180 * TCP option
181 */
182
183 #define TCPOPT_NOP 1 /* Padding */
184 #define TCPOPT_EOL 0 /* End of options */
185 #define TCPOPT_MSS 2 /* Segment size negotiating */
186 #define TCPOPT_WINDOW 3 /* Window scaling */
187 #define TCPOPT_SACK_PERM 4 /* SACK Permitted */
188 #define TCPOPT_SACK 5 /* SACK Block */
189 #define TCPOPT_TIMESTAMP 8 /* Better RTT estimations/PAWS */
190 #define TCPOPT_MD5SIG 19 /* MD5 Signature (RFC2385) */
191 #define TCPOPT_MPTCP 30 /* Multipath TCP (RFC6824) */
192 #define TCPOPT_FASTOPEN 34 /* Fast open (RFC7413) */
193 #define TCPOPT_EXP 254 /* Experimental */
194 /* Magic number to be after the option value for sharing TCP
195 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
196 */
197 #define TCPOPT_FASTOPEN_MAGIC 0xF989
198 #define TCPOPT_SMC_MAGIC 0xE2D4C3D9
199
200 /*
201 * TCP option lengths
202 */
203
204 #define TCPOLEN_MSS 4
205 #define TCPOLEN_WINDOW 3
206 #define TCPOLEN_SACK_PERM 2
207 #define TCPOLEN_TIMESTAMP 10
208 #define TCPOLEN_MD5SIG 18
209 #define TCPOLEN_FASTOPEN_BASE 2
210 #define TCPOLEN_EXP_FASTOPEN_BASE 4
211 #define TCPOLEN_EXP_SMC_BASE 6
212
213 /* But this is what stacks really send out. */
214 #define TCPOLEN_TSTAMP_ALIGNED 12
215 #define TCPOLEN_WSCALE_ALIGNED 4
216 #define TCPOLEN_SACKPERM_ALIGNED 4
217 #define TCPOLEN_SACK_BASE 2
218 #define TCPOLEN_SACK_BASE_ALIGNED 4
219 #define TCPOLEN_SACK_PERBLOCK 8
220 #define TCPOLEN_MD5SIG_ALIGNED 20
221 #define TCPOLEN_MSS_ALIGNED 4
222 #define TCPOLEN_EXP_SMC_BASE_ALIGNED 8
223
224 /* Flags in tp->nonagle */
225 #define TCP_NAGLE_OFF 1 /* Nagle's algo is disabled */
226 #define TCP_NAGLE_CORK 2 /* Socket is corked */
227 #define TCP_NAGLE_PUSH 4 /* Cork is overridden for already queued data */
228
229 /* TCP thin-stream limits */
230 #define TCP_THIN_LINEAR_RETRIES 6 /* After 6 linear retries, do exp. backoff */
231
232 /* TCP initial congestion window as per rfc6928 */
233 #define TCP_INIT_CWND 10
234
235 /* Bit Flags for sysctl_tcp_fastopen */
236 #define TFO_CLIENT_ENABLE 1
237 #define TFO_SERVER_ENABLE 2
238 #define TFO_CLIENT_NO_COOKIE 4 /* Data in SYN w/o cookie option */
239
240 /* Accept SYN data w/o any cookie option */
241 #define TFO_SERVER_COOKIE_NOT_REQD 0x200
242
243 /* Force enable TFO on all listeners, i.e., not requiring the
244 * TCP_FASTOPEN socket option.
245 */
246 #define TFO_SERVER_WO_SOCKOPT1 0x400
247
248
249 /* sysctl variables for tcp */
250 extern int sysctl_tcp_max_orphans;
251 extern long sysctl_tcp_mem[3];
252
253 #define TCP_RACK_LOSS_DETECTION 0x1 /* Use RACK to detect losses */
254 #define TCP_RACK_STATIC_REO_WND 0x2 /* Use static RACK reo wnd */
255 #define TCP_RACK_NO_DUPTHRESH 0x4 /* Do not use DUPACK threshold in RACK */
256
257 extern atomic_long_t tcp_memory_allocated;
258 extern struct percpu_counter tcp_sockets_allocated;
259 extern unsigned long tcp_memory_pressure;
260
261 /* optimized version of sk_under_memory_pressure() for TCP sockets */
tcp_under_memory_pressure(const struct sock * sk)262 static inline bool tcp_under_memory_pressure(const struct sock *sk)
263 {
264 if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
265 mem_cgroup_under_socket_pressure(sk->sk_memcg))
266 return true;
267
268 return READ_ONCE(tcp_memory_pressure);
269 }
270 /*
271 * The next routines deal with comparing 32 bit unsigned ints
272 * and worry about wraparound (automatic with unsigned arithmetic).
273 */
274
before(__u32 seq1,__u32 seq2)275 static inline bool before(__u32 seq1, __u32 seq2)
276 {
277 return (__s32)(seq1-seq2) < 0;
278 }
279 #define after(seq2, seq1) before(seq1, seq2)
280
281 /* is s2<=s1<=s3 ? */
between(__u32 seq1,__u32 seq2,__u32 seq3)282 static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
283 {
284 return seq3 - seq2 >= seq1 - seq2;
285 }
286
tcp_out_of_memory(struct sock * sk)287 static inline bool tcp_out_of_memory(struct sock *sk)
288 {
289 if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
290 sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
291 return true;
292 return false;
293 }
294
295 void sk_forced_mem_schedule(struct sock *sk, int size);
296
297 bool tcp_check_oom(struct sock *sk, int shift);
298
299
300 extern struct proto tcp_prot;
301
302 #define TCP_INC_STATS(net, field) SNMP_INC_STATS((net)->mib.tcp_statistics, field)
303 #define __TCP_INC_STATS(net, field) __SNMP_INC_STATS((net)->mib.tcp_statistics, field)
304 #define TCP_DEC_STATS(net, field) SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
305 #define TCP_ADD_STATS(net, field, val) SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
306
307 void tcp_tasklet_init(void);
308
309 int tcp_v4_err(struct sk_buff *skb, u32);
310
311 void tcp_shutdown(struct sock *sk, int how);
312
313 int tcp_v4_early_demux(struct sk_buff *skb);
314 int tcp_v4_rcv(struct sk_buff *skb);
315
316 int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
317 int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
318 int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
319 int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
320 int flags);
321 int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
322 size_t size, int flags);
323 ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
324 size_t size, int flags);
325 int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
326 void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
327 int size_goal);
328 void tcp_release_cb(struct sock *sk);
329 void tcp_wfree(struct sk_buff *skb);
330 void tcp_write_timer_handler(struct sock *sk);
331 void tcp_delack_timer_handler(struct sock *sk);
332 int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
333 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
334 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
335 void tcp_rcv_space_adjust(struct sock *sk);
336 int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
337 void tcp_twsk_destructor(struct sock *sk);
338 ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
339 struct pipe_inode_info *pipe, size_t len,
340 unsigned int flags);
341
tcp_dec_quickack_mode(struct sock * sk,const unsigned int pkts)342 static inline void tcp_dec_quickack_mode(struct sock *sk,
343 const unsigned int pkts)
344 {
345 struct inet_connection_sock *icsk = inet_csk(sk);
346
347 if (icsk->icsk_ack.quick) {
348 if (pkts >= icsk->icsk_ack.quick) {
349 icsk->icsk_ack.quick = 0;
350 /* Leaving quickack mode we deflate ATO. */
351 icsk->icsk_ack.ato = TCP_ATO_MIN;
352 } else
353 icsk->icsk_ack.quick -= pkts;
354 }
355 }
356
357 #define TCP_ECN_OK 1
358 #define TCP_ECN_QUEUE_CWR 2
359 #define TCP_ECN_DEMAND_CWR 4
360 #define TCP_ECN_SEEN 8
361
362 enum tcp_tw_status {
363 TCP_TW_SUCCESS = 0,
364 TCP_TW_RST = 1,
365 TCP_TW_ACK = 2,
366 TCP_TW_SYN = 3
367 };
368
369
370 enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
371 struct sk_buff *skb,
372 const struct tcphdr *th);
373 struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
374 struct request_sock *req, bool fastopen,
375 bool *lost_race);
376 int tcp_child_process(struct sock *parent, struct sock *child,
377 struct sk_buff *skb);
378 void tcp_enter_loss(struct sock *sk);
379 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
380 void tcp_clear_retrans(struct tcp_sock *tp);
381 void tcp_update_metrics(struct sock *sk);
382 void tcp_init_metrics(struct sock *sk);
383 void tcp_metrics_init(void);
384 bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
385 void __tcp_close(struct sock *sk, long timeout);
386 void tcp_close(struct sock *sk, long timeout);
387 void tcp_init_sock(struct sock *sk);
388 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
389 __poll_t tcp_poll(struct file *file, struct socket *sock,
390 struct poll_table_struct *wait);
391 int tcp_getsockopt(struct sock *sk, int level, int optname,
392 char __user *optval, int __user *optlen);
393 bool tcp_bpf_bypass_getsockopt(int level, int optname);
394 int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
395 unsigned int optlen);
396 void tcp_set_keepalive(struct sock *sk, int val);
397 void tcp_syn_ack_timeout(const struct request_sock *req);
398 int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
399 int flags, int *addr_len);
400 int tcp_set_rcvlowat(struct sock *sk, int val);
401 void tcp_data_ready(struct sock *sk);
402 #ifdef CONFIG_MMU
403 int tcp_mmap(struct file *file, struct socket *sock,
404 struct vm_area_struct *vma);
405 #endif
406 void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
407 struct tcp_options_received *opt_rx,
408 int estab, struct tcp_fastopen_cookie *foc);
409 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
410
411 /*
412 * BPF SKB-less helpers
413 */
414 u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
415 struct tcphdr *th, u32 *cookie);
416 u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
417 struct tcphdr *th, u32 *cookie);
418 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
419 const struct tcp_request_sock_ops *af_ops,
420 struct sock *sk, struct tcphdr *th);
421 /*
422 * TCP v4 functions exported for the inet6 API
423 */
424
425 void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
426 void tcp_v4_mtu_reduced(struct sock *sk);
427 void tcp_req_err(struct sock *sk, u32 seq, bool abort);
428 void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
429 int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
430 struct sock *tcp_create_openreq_child(const struct sock *sk,
431 struct request_sock *req,
432 struct sk_buff *skb);
433 void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
434 struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
435 struct request_sock *req,
436 struct dst_entry *dst,
437 struct request_sock *req_unhash,
438 bool *own_req);
439 int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
440 int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
441 int tcp_connect(struct sock *sk);
442 enum tcp_synack_type {
443 TCP_SYNACK_NORMAL,
444 TCP_SYNACK_FASTOPEN,
445 TCP_SYNACK_COOKIE,
446 };
447 struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
448 struct request_sock *req,
449 struct tcp_fastopen_cookie *foc,
450 enum tcp_synack_type synack_type,
451 struct sk_buff *syn_skb);
452 int tcp_disconnect(struct sock *sk, int flags);
453
454 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
455 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
456 void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
457
458 /* From syncookies.c */
459 struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
460 struct request_sock *req,
461 struct dst_entry *dst, u32 tsoff);
462 int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
463 u32 cookie);
464 struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
465 struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
466 const struct tcp_request_sock_ops *af_ops,
467 struct sock *sk, struct sk_buff *skb);
468 #ifdef CONFIG_SYN_COOKIES
469
470 /* Syncookies use a monotonic timer which increments every 60 seconds.
471 * This counter is used both as a hash input and partially encoded into
472 * the cookie value. A cookie is only validated further if the delta
473 * between the current counter value and the encoded one is less than this,
474 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
475 * the counter advances immediately after a cookie is generated).
476 */
477 #define MAX_SYNCOOKIE_AGE 2
478 #define TCP_SYNCOOKIE_PERIOD (60 * HZ)
479 #define TCP_SYNCOOKIE_VALID (MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
480
481 /* syncookies: remember time of last synqueue overflow
482 * But do not dirty this field too often (once per second is enough)
483 * It is racy as we do not hold a lock, but race is very minor.
484 */
tcp_synq_overflow(const struct sock * sk)485 static inline void tcp_synq_overflow(const struct sock *sk)
486 {
487 unsigned int last_overflow;
488 unsigned int now = jiffies;
489
490 if (sk->sk_reuseport) {
491 struct sock_reuseport *reuse;
492
493 reuse = rcu_dereference(sk->sk_reuseport_cb);
494 if (likely(reuse)) {
495 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
496 if (!time_between32(now, last_overflow,
497 last_overflow + HZ))
498 WRITE_ONCE(reuse->synq_overflow_ts, now);
499 return;
500 }
501 }
502
503 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
504 if (!time_between32(now, last_overflow, last_overflow + HZ))
505 WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
506 }
507
508 /* syncookies: no recent synqueue overflow on this listening socket? */
tcp_synq_no_recent_overflow(const struct sock * sk)509 static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
510 {
511 unsigned int last_overflow;
512 unsigned int now = jiffies;
513
514 if (sk->sk_reuseport) {
515 struct sock_reuseport *reuse;
516
517 reuse = rcu_dereference(sk->sk_reuseport_cb);
518 if (likely(reuse)) {
519 last_overflow = READ_ONCE(reuse->synq_overflow_ts);
520 return !time_between32(now, last_overflow - HZ,
521 last_overflow +
522 TCP_SYNCOOKIE_VALID);
523 }
524 }
525
526 last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
527
528 /* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
529 * then we're under synflood. However, we have to use
530 * 'last_overflow - HZ' as lower bound. That's because a concurrent
531 * tcp_synq_overflow() could update .ts_recent_stamp after we read
532 * jiffies but before we store .ts_recent_stamp into last_overflow,
533 * which could lead to rejecting a valid syncookie.
534 */
535 return !time_between32(now, last_overflow - HZ,
536 last_overflow + TCP_SYNCOOKIE_VALID);
537 }
538
tcp_cookie_time(void)539 static inline u32 tcp_cookie_time(void)
540 {
541 u64 val = get_jiffies_64();
542
543 do_div(val, TCP_SYNCOOKIE_PERIOD);
544 return val;
545 }
546
547 u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
548 u16 *mssp);
549 __u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
550 u64 cookie_init_timestamp(struct request_sock *req, u64 now);
551 bool cookie_timestamp_decode(const struct net *net,
552 struct tcp_options_received *opt);
553 bool cookie_ecn_ok(const struct tcp_options_received *opt,
554 const struct net *net, const struct dst_entry *dst);
555
556 /* From net/ipv6/syncookies.c */
557 int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
558 u32 cookie);
559 struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
560
561 u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
562 const struct tcphdr *th, u16 *mssp);
563 __u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
564 #endif
565 /* tcp_output.c */
566
567 void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
568 int nonagle);
569 int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
570 int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
571 void tcp_retransmit_timer(struct sock *sk);
572 void tcp_xmit_retransmit_queue(struct sock *);
573 void tcp_simple_retransmit(struct sock *);
574 void tcp_enter_recovery(struct sock *sk, bool ece_ack);
575 int tcp_trim_head(struct sock *, struct sk_buff *, u32);
576 enum tcp_queue {
577 TCP_FRAG_IN_WRITE_QUEUE,
578 TCP_FRAG_IN_RTX_QUEUE,
579 };
580 int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
581 struct sk_buff *skb, u32 len,
582 unsigned int mss_now, gfp_t gfp);
583
584 void tcp_send_probe0(struct sock *);
585 void tcp_send_partial(struct sock *);
586 int tcp_write_wakeup(struct sock *, int mib);
587 void tcp_send_fin(struct sock *sk);
588 void tcp_send_active_reset(struct sock *sk, gfp_t priority);
589 int tcp_send_synack(struct sock *);
590 void tcp_push_one(struct sock *, unsigned int mss_now);
591 void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
592 void tcp_send_ack(struct sock *sk);
593 void tcp_send_delayed_ack(struct sock *sk);
594 void tcp_send_loss_probe(struct sock *sk);
595 bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
596 void tcp_skb_collapse_tstamp(struct sk_buff *skb,
597 const struct sk_buff *next_skb);
598
599 /* tcp_input.c */
600 void tcp_rearm_rto(struct sock *sk);
601 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
602 void tcp_reset(struct sock *sk);
603 void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
604 void tcp_fin(struct sock *sk);
605 void tcp_check_space(struct sock *sk);
606
607 /* tcp_timer.c */
608 void tcp_init_xmit_timers(struct sock *);
tcp_clear_xmit_timers(struct sock * sk)609 static inline void tcp_clear_xmit_timers(struct sock *sk)
610 {
611 if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
612 __sock_put(sk);
613
614 if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
615 __sock_put(sk);
616
617 inet_csk_clear_xmit_timers(sk);
618 }
619
620 unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
621 unsigned int tcp_current_mss(struct sock *sk);
622 u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
623
624 /* Bound MSS / TSO packet size with the half of the window */
tcp_bound_to_half_wnd(struct tcp_sock * tp,int pktsize)625 static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
626 {
627 int cutoff;
628
629 /* When peer uses tiny windows, there is no use in packetizing
630 * to sub-MSS pieces for the sake of SWS or making sure there
631 * are enough packets in the pipe for fast recovery.
632 *
633 * On the other hand, for extremely large MSS devices, handling
634 * smaller than MSS windows in this way does make sense.
635 */
636 if (tp->max_window > TCP_MSS_DEFAULT)
637 cutoff = (tp->max_window >> 1);
638 else
639 cutoff = tp->max_window;
640
641 if (cutoff && pktsize > cutoff)
642 return max_t(int, cutoff, 68U - tp->tcp_header_len);
643 else
644 return pktsize;
645 }
646
647 /* tcp.c */
648 void tcp_get_info(struct sock *, struct tcp_info *);
649
650 /* Read 'sendfile()'-style from a TCP socket */
651 int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
652 sk_read_actor_t recv_actor);
653
654 void tcp_initialize_rcv_mss(struct sock *sk);
655
656 int tcp_mtu_to_mss(struct sock *sk, int pmtu);
657 int tcp_mss_to_mtu(struct sock *sk, int mss);
658 void tcp_mtup_init(struct sock *sk);
659
tcp_bound_rto(const struct sock * sk)660 static inline void tcp_bound_rto(const struct sock *sk)
661 {
662 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
663 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
664 }
665
__tcp_set_rto(const struct tcp_sock * tp)666 static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
667 {
668 return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
669 }
670
__tcp_fast_path_on(struct tcp_sock * tp,u32 snd_wnd)671 static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
672 {
673 /* mptcp hooks are only on the slow path */
674 if (sk_is_mptcp((struct sock *)tp))
675 return;
676
677 tp->pred_flags = htonl((tp->tcp_header_len << 26) |
678 ntohl(TCP_FLAG_ACK) |
679 snd_wnd);
680 }
681
tcp_fast_path_on(struct tcp_sock * tp)682 static inline void tcp_fast_path_on(struct tcp_sock *tp)
683 {
684 __tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
685 }
686
tcp_fast_path_check(struct sock * sk)687 static inline void tcp_fast_path_check(struct sock *sk)
688 {
689 struct tcp_sock *tp = tcp_sk(sk);
690
691 if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
692 tp->rcv_wnd &&
693 atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
694 !tp->urg_data)
695 tcp_fast_path_on(tp);
696 }
697
698 /* Compute the actual rto_min value */
tcp_rto_min(struct sock * sk)699 static inline u32 tcp_rto_min(struct sock *sk)
700 {
701 const struct dst_entry *dst = __sk_dst_get(sk);
702 u32 rto_min = inet_csk(sk)->icsk_rto_min;
703
704 if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
705 rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
706 return rto_min;
707 }
708
tcp_rto_min_us(struct sock * sk)709 static inline u32 tcp_rto_min_us(struct sock *sk)
710 {
711 return jiffies_to_usecs(tcp_rto_min(sk));
712 }
713
tcp_ca_dst_locked(const struct dst_entry * dst)714 static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
715 {
716 return dst_metric_locked(dst, RTAX_CC_ALGO);
717 }
718
719 /* Minimum RTT in usec. ~0 means not available. */
tcp_min_rtt(const struct tcp_sock * tp)720 static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
721 {
722 return minmax_get(&tp->rtt_min);
723 }
724
725 /* Compute the actual receive window we are currently advertising.
726 * Rcv_nxt can be after the window if our peer push more data
727 * than the offered window.
728 */
tcp_receive_window(const struct tcp_sock * tp)729 static inline u32 tcp_receive_window(const struct tcp_sock *tp)
730 {
731 s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
732
733 if (win < 0)
734 win = 0;
735 return (u32) win;
736 }
737
738 /* Choose a new window, without checks for shrinking, and without
739 * scaling applied to the result. The caller does these things
740 * if necessary. This is a "raw" window selection.
741 */
742 u32 __tcp_select_window(struct sock *sk);
743
744 void tcp_send_window_probe(struct sock *sk);
745
746 /* TCP uses 32bit jiffies to save some space.
747 * Note that this is different from tcp_time_stamp, which
748 * historically has been the same until linux-4.13.
749 */
750 #define tcp_jiffies32 ((u32)jiffies)
751
752 /*
753 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
754 * It is no longer tied to jiffies, but to 1 ms clock.
755 * Note: double check if you want to use tcp_jiffies32 instead of this.
756 */
757 #define TCP_TS_HZ 1000
758
tcp_clock_ns(void)759 static inline u64 tcp_clock_ns(void)
760 {
761 return ktime_get_ns();
762 }
763
tcp_clock_us(void)764 static inline u64 tcp_clock_us(void)
765 {
766 return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
767 }
768
769 /* This should only be used in contexts where tp->tcp_mstamp is up to date */
tcp_time_stamp(const struct tcp_sock * tp)770 static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
771 {
772 return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
773 }
774
775 /* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
tcp_ns_to_ts(u64 ns)776 static inline u32 tcp_ns_to_ts(u64 ns)
777 {
778 return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
779 }
780
781 /* Could use tcp_clock_us() / 1000, but this version uses a single divide */
tcp_time_stamp_raw(void)782 static inline u32 tcp_time_stamp_raw(void)
783 {
784 return tcp_ns_to_ts(tcp_clock_ns());
785 }
786
787 void tcp_mstamp_refresh(struct tcp_sock *tp);
788
tcp_stamp_us_delta(u64 t1,u64 t0)789 static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
790 {
791 return max_t(s64, t1 - t0, 0);
792 }
793
tcp_skb_timestamp(const struct sk_buff * skb)794 static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
795 {
796 return tcp_ns_to_ts(skb->skb_mstamp_ns);
797 }
798
799 /* provide the departure time in us unit */
tcp_skb_timestamp_us(const struct sk_buff * skb)800 static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
801 {
802 return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
803 }
804
805
806 #define tcp_flag_byte(th) (((u_int8_t *)th)[13])
807
808 #define TCPHDR_FIN 0x01
809 #define TCPHDR_SYN 0x02
810 #define TCPHDR_RST 0x04
811 #define TCPHDR_PSH 0x08
812 #define TCPHDR_ACK 0x10
813 #define TCPHDR_URG 0x20
814 #define TCPHDR_ECE 0x40
815 #define TCPHDR_CWR 0x80
816
817 #define TCPHDR_SYN_ECN (TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
818
819 /* This is what the send packet queuing engine uses to pass
820 * TCP per-packet control information to the transmission code.
821 * We also store the host-order sequence numbers in here too.
822 * This is 44 bytes if IPV6 is enabled.
823 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
824 */
825 struct tcp_skb_cb {
826 __u32 seq; /* Starting sequence number */
827 __u32 end_seq; /* SEQ + FIN + SYN + datalen */
828 union {
829 /* Note : tcp_tw_isn is used in input path only
830 * (isn chosen by tcp_timewait_state_process())
831 *
832 * tcp_gso_segs/size are used in write queue only,
833 * cf tcp_skb_pcount()/tcp_skb_mss()
834 */
835 __u32 tcp_tw_isn;
836 struct {
837 u16 tcp_gso_segs;
838 u16 tcp_gso_size;
839 };
840 };
841 __u8 tcp_flags; /* TCP header flags. (tcp[13]) */
842
843 __u8 sacked; /* State flags for SACK. */
844 #define TCPCB_SACKED_ACKED 0x01 /* SKB ACK'd by a SACK block */
845 #define TCPCB_SACKED_RETRANS 0x02 /* SKB retransmitted */
846 #define TCPCB_LOST 0x04 /* SKB is lost */
847 #define TCPCB_TAGBITS 0x07 /* All tag bits */
848 #define TCPCB_REPAIRED 0x10 /* SKB repaired (no skb_mstamp_ns) */
849 #define TCPCB_EVER_RETRANS 0x80 /* Ever retransmitted frame */
850 #define TCPCB_RETRANS (TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
851 TCPCB_REPAIRED)
852
853 __u8 ip_dsfield; /* IPv4 tos or IPv6 dsfield */
854 __u8 txstamp_ack:1, /* Record TX timestamp for ack? */
855 eor:1, /* Is skb MSG_EOR marked? */
856 has_rxtstamp:1, /* SKB has a RX timestamp */
857 unused:5;
858 __u32 ack_seq; /* Sequence number ACK'd */
859 union {
860 struct {
861 /* There is space for up to 24 bytes */
862 __u32 in_flight:30,/* Bytes in flight at transmit */
863 is_app_limited:1, /* cwnd not fully used? */
864 unused:1;
865 /* pkts S/ACKed so far upon tx of skb, incl retrans: */
866 __u32 delivered;
867 /* start of send pipeline phase */
868 u64 first_tx_mstamp;
869 /* when we reached the "delivered" count */
870 u64 delivered_mstamp;
871 } tx; /* only used for outgoing skbs */
872 union {
873 struct inet_skb_parm h4;
874 #if IS_ENABLED(CONFIG_IPV6)
875 struct inet6_skb_parm h6;
876 #endif
877 #if IS_ENABLED(CONFIG_NEWIP)
878 struct ninet_skb_parm hnip; /* NIP */
879 #endif
880 } header; /* For incoming skbs */
881 struct {
882 __u32 flags;
883 struct sock *sk_redir;
884 void *data_end;
885 } bpf;
886 };
887 };
888
889 #define TCP_SKB_CB(__skb) ((struct tcp_skb_cb *)&((__skb)->cb[0]))
890
bpf_compute_data_end_sk_skb(struct sk_buff * skb)891 static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
892 {
893 TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
894 }
895
tcp_skb_bpf_ingress(const struct sk_buff * skb)896 static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
897 {
898 return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
899 }
900
tcp_skb_bpf_redirect_fetch(struct sk_buff * skb)901 static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
902 {
903 return TCP_SKB_CB(skb)->bpf.sk_redir;
904 }
905
tcp_skb_bpf_redirect_clear(struct sk_buff * skb)906 static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
907 {
908 TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
909 }
910
911 extern const struct inet_connection_sock_af_ops ipv4_specific;
912
913 #if IS_ENABLED(CONFIG_IPV6)
914 /* This is the variant of inet6_iif() that must be used by TCP,
915 * as TCP moves IP6CB into a different location in skb->cb[]
916 */
tcp_v6_iif(const struct sk_buff * skb)917 static inline int tcp_v6_iif(const struct sk_buff *skb)
918 {
919 return TCP_SKB_CB(skb)->header.h6.iif;
920 }
921
tcp_v6_iif_l3_slave(const struct sk_buff * skb)922 static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
923 {
924 bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
925
926 return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
927 }
928
929 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v6_sdif(const struct sk_buff * skb)930 static inline int tcp_v6_sdif(const struct sk_buff *skb)
931 {
932 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
933 if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
934 return TCP_SKB_CB(skb)->header.h6.iif;
935 #endif
936 return 0;
937 }
938
939 extern const struct inet_connection_sock_af_ops ipv6_specific;
940
941 INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
942 INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
943 void tcp_v6_early_demux(struct sk_buff *skb);
944
945 #endif
946
947 /* TCP_SKB_CB reference means this can not be used from early demux */
tcp_v4_sdif(struct sk_buff * skb)948 static inline int tcp_v4_sdif(struct sk_buff *skb)
949 {
950 #if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
951 if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
952 return TCP_SKB_CB(skb)->header.h4.iif;
953 #endif
954 return 0;
955 }
956
957 /* Due to TSO, an SKB can be composed of multiple actual
958 * packets. To keep these tracked properly, we use this.
959 */
tcp_skb_pcount(const struct sk_buff * skb)960 static inline int tcp_skb_pcount(const struct sk_buff *skb)
961 {
962 return TCP_SKB_CB(skb)->tcp_gso_segs;
963 }
964
tcp_skb_pcount_set(struct sk_buff * skb,int segs)965 static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
966 {
967 TCP_SKB_CB(skb)->tcp_gso_segs = segs;
968 }
969
tcp_skb_pcount_add(struct sk_buff * skb,int segs)970 static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
971 {
972 TCP_SKB_CB(skb)->tcp_gso_segs += segs;
973 }
974
975 /* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
tcp_skb_mss(const struct sk_buff * skb)976 static inline int tcp_skb_mss(const struct sk_buff *skb)
977 {
978 return TCP_SKB_CB(skb)->tcp_gso_size;
979 }
980
tcp_skb_can_collapse_to(const struct sk_buff * skb)981 static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
982 {
983 return likely(!TCP_SKB_CB(skb)->eor);
984 }
985
tcp_skb_can_collapse(const struct sk_buff * to,const struct sk_buff * from)986 static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
987 const struct sk_buff *from)
988 {
989 return likely(tcp_skb_can_collapse_to(to) &&
990 mptcp_skb_can_collapse(to, from));
991 }
992
993 /* Events passed to congestion control interface */
994 enum tcp_ca_event {
995 CA_EVENT_TX_START, /* first transmit when no packets in flight */
996 CA_EVENT_CWND_RESTART, /* congestion window restart */
997 CA_EVENT_COMPLETE_CWR, /* end of congestion recovery */
998 CA_EVENT_LOSS, /* loss timeout */
999 CA_EVENT_ECN_NO_CE, /* ECT set, but not CE marked */
1000 CA_EVENT_ECN_IS_CE, /* received CE marked IP packet */
1001 };
1002
1003 /* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1004 enum tcp_ca_ack_event_flags {
1005 CA_ACK_SLOWPATH = (1 << 0), /* In slow path processing */
1006 CA_ACK_WIN_UPDATE = (1 << 1), /* ACK updated window */
1007 CA_ACK_ECE = (1 << 2), /* ECE bit is set on ack */
1008 };
1009
1010 /*
1011 * Interface for adding new TCP congestion control handlers
1012 */
1013 #define TCP_CA_NAME_MAX 16
1014 #define TCP_CA_MAX 128
1015 #define TCP_CA_BUF_MAX (TCP_CA_NAME_MAX*TCP_CA_MAX)
1016
1017 #define TCP_CA_UNSPEC 0
1018
1019 /* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1020 #define TCP_CONG_NON_RESTRICTED 0x1
1021 /* Requires ECN/ECT set on all packets */
1022 #define TCP_CONG_NEEDS_ECN 0x2
1023 #define TCP_CONG_MASK (TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1024
1025 union tcp_cc_info;
1026
1027 struct ack_sample {
1028 u32 pkts_acked;
1029 s32 rtt_us;
1030 u32 in_flight;
1031 };
1032
1033 /* A rate sample measures the number of (original/retransmitted) data
1034 * packets delivered "delivered" over an interval of time "interval_us".
1035 * The tcp_rate.c code fills in the rate sample, and congestion
1036 * control modules that define a cong_control function to run at the end
1037 * of ACK processing can optionally chose to consult this sample when
1038 * setting cwnd and pacing rate.
1039 * A sample is invalid if "delivered" or "interval_us" is negative.
1040 */
1041 struct rate_sample {
1042 u64 prior_mstamp; /* starting timestamp for interval */
1043 u32 prior_delivered; /* tp->delivered at "prior_mstamp" */
1044 s32 delivered; /* number of packets delivered over interval */
1045 long interval_us; /* time for tp->delivered to incr "delivered" */
1046 u32 snd_interval_us; /* snd interval for delivered packets */
1047 u32 rcv_interval_us; /* rcv interval for delivered packets */
1048 long rtt_us; /* RTT of last (S)ACKed packet (or -1) */
1049 int losses; /* number of packets marked lost upon ACK */
1050 u32 acked_sacked; /* number of packets newly (S)ACKed upon ACK */
1051 u32 prior_in_flight; /* in flight before this ACK */
1052 u32 last_end_seq; /* end_seq of most recently ACKed packet */
1053 bool is_app_limited; /* is sample from packet with bubble in pipe? */
1054 bool is_retrans; /* is sample from retransmission? */
1055 bool is_ack_delayed; /* is this (likely) a delayed ACK? */
1056 };
1057
1058 struct tcp_congestion_ops {
1059 struct list_head list;
1060 u32 key;
1061 u32 flags;
1062
1063 /* initialize private data (optional) */
1064 void (*init)(struct sock *sk);
1065 /* cleanup private data (optional) */
1066 void (*release)(struct sock *sk);
1067
1068 /* return slow start threshold (required) */
1069 u32 (*ssthresh)(struct sock *sk);
1070 /* do new cwnd calculation (required) */
1071 void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1072 /* call before changing ca_state (optional) */
1073 void (*set_state)(struct sock *sk, u8 new_state);
1074 /* call when cwnd event occurs (optional) */
1075 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1076 /* call when ack arrives (optional) */
1077 void (*in_ack_event)(struct sock *sk, u32 flags);
1078 /* new value of cwnd after loss (required) */
1079 u32 (*undo_cwnd)(struct sock *sk);
1080 /* hook for packet ack accounting (optional) */
1081 void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1082 /* override sysctl_tcp_min_tso_segs */
1083 u32 (*min_tso_segs)(struct sock *sk);
1084 /* returns the multiplier used in tcp_sndbuf_expand (optional) */
1085 u32 (*sndbuf_expand)(struct sock *sk);
1086 /* call when packets are delivered to update cwnd and pacing rate,
1087 * after all the ca_state processing. (optional)
1088 */
1089 void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1090 /* get info for inet_diag (optional) */
1091 size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1092 union tcp_cc_info *info);
1093
1094 char name[TCP_CA_NAME_MAX];
1095 struct module *owner;
1096 };
1097
1098 int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1099 void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1100
1101 void tcp_assign_congestion_control(struct sock *sk);
1102 void tcp_init_congestion_control(struct sock *sk);
1103 void tcp_cleanup_congestion_control(struct sock *sk);
1104 int tcp_set_default_congestion_control(struct net *net, const char *name);
1105 void tcp_get_default_congestion_control(struct net *net, char *name);
1106 void tcp_get_available_congestion_control(char *buf, size_t len);
1107 void tcp_get_allowed_congestion_control(char *buf, size_t len);
1108 int tcp_set_allowed_congestion_control(char *allowed);
1109 int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1110 bool cap_net_admin);
1111 u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1112 void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1113
1114 u32 tcp_reno_ssthresh(struct sock *sk);
1115 u32 tcp_reno_undo_cwnd(struct sock *sk);
1116 void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1117 extern struct tcp_congestion_ops tcp_reno;
1118
1119 struct tcp_congestion_ops *tcp_ca_find(const char *name);
1120 struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1121 u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1122 #ifdef CONFIG_INET
1123 char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1124 #else
tcp_ca_get_name_by_key(u32 key,char * buffer)1125 static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1126 {
1127 return NULL;
1128 }
1129 #endif
1130
tcp_ca_needs_ecn(const struct sock * sk)1131 static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1132 {
1133 const struct inet_connection_sock *icsk = inet_csk(sk);
1134
1135 return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1136 }
1137
tcp_set_ca_state(struct sock * sk,const u8 ca_state)1138 static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1139 {
1140 struct inet_connection_sock *icsk = inet_csk(sk);
1141
1142 if (icsk->icsk_ca_ops->set_state)
1143 icsk->icsk_ca_ops->set_state(sk, ca_state);
1144 icsk->icsk_ca_state = ca_state;
1145 }
1146
tcp_ca_event(struct sock * sk,const enum tcp_ca_event event)1147 static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1148 {
1149 const struct inet_connection_sock *icsk = inet_csk(sk);
1150
1151 if (icsk->icsk_ca_ops->cwnd_event)
1152 icsk->icsk_ca_ops->cwnd_event(sk, event);
1153 }
1154
1155 /* From tcp_rate.c */
1156 void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1157 void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1158 struct rate_sample *rs);
1159 void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1160 bool is_sack_reneg, struct rate_sample *rs);
1161 void tcp_rate_check_app_limited(struct sock *sk);
1162
tcp_skb_sent_after(u64 t1,u64 t2,u32 seq1,u32 seq2)1163 static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1164 {
1165 return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1166 }
1167
1168 /* These functions determine how the current flow behaves in respect of SACK
1169 * handling. SACK is negotiated with the peer, and therefore it can vary
1170 * between different flows.
1171 *
1172 * tcp_is_sack - SACK enabled
1173 * tcp_is_reno - No SACK
1174 */
tcp_is_sack(const struct tcp_sock * tp)1175 static inline int tcp_is_sack(const struct tcp_sock *tp)
1176 {
1177 return likely(tp->rx_opt.sack_ok);
1178 }
1179
tcp_is_reno(const struct tcp_sock * tp)1180 static inline bool tcp_is_reno(const struct tcp_sock *tp)
1181 {
1182 return !tcp_is_sack(tp);
1183 }
1184
tcp_left_out(const struct tcp_sock * tp)1185 static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1186 {
1187 return tp->sacked_out + tp->lost_out;
1188 }
1189
1190 /* This determines how many packets are "in the network" to the best
1191 * of our knowledge. In many cases it is conservative, but where
1192 * detailed information is available from the receiver (via SACK
1193 * blocks etc.) we can make more aggressive calculations.
1194 *
1195 * Use this for decisions involving congestion control, use just
1196 * tp->packets_out to determine if the send queue is empty or not.
1197 *
1198 * Read this equation as:
1199 *
1200 * "Packets sent once on transmission queue" MINUS
1201 * "Packets left network, but not honestly ACKed yet" PLUS
1202 * "Packets fast retransmitted"
1203 */
tcp_packets_in_flight(const struct tcp_sock * tp)1204 static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1205 {
1206 return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1207 }
1208
1209 #define TCP_INFINITE_SSTHRESH 0x7fffffff
1210
tcp_in_slow_start(const struct tcp_sock * tp)1211 static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1212 {
1213 return tp->snd_cwnd < tp->snd_ssthresh;
1214 }
1215
tcp_in_initial_slowstart(const struct tcp_sock * tp)1216 static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1217 {
1218 return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1219 }
1220
tcp_in_cwnd_reduction(const struct sock * sk)1221 static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1222 {
1223 return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1224 (1 << inet_csk(sk)->icsk_ca_state);
1225 }
1226
1227 /* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1228 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1229 * ssthresh.
1230 */
tcp_current_ssthresh(const struct sock * sk)1231 static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1232 {
1233 const struct tcp_sock *tp = tcp_sk(sk);
1234
1235 if (tcp_in_cwnd_reduction(sk))
1236 return tp->snd_ssthresh;
1237 else
1238 return max(tp->snd_ssthresh,
1239 ((tp->snd_cwnd >> 1) +
1240 (tp->snd_cwnd >> 2)));
1241 }
1242
1243 /* Use define here intentionally to get WARN_ON location shown at the caller */
1244 #define tcp_verify_left_out(tp) WARN_ON(tcp_left_out(tp) > tp->packets_out)
1245
1246 void tcp_enter_cwr(struct sock *sk);
1247 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1248
1249 /* The maximum number of MSS of available cwnd for which TSO defers
1250 * sending if not using sysctl_tcp_tso_win_divisor.
1251 */
tcp_max_tso_deferred_mss(const struct tcp_sock * tp)1252 static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1253 {
1254 return 3;
1255 }
1256
1257 /* Returns end sequence number of the receiver's advertised window */
tcp_wnd_end(const struct tcp_sock * tp)1258 static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1259 {
1260 return tp->snd_una + tp->snd_wnd;
1261 }
1262
1263 /* We follow the spirit of RFC2861 to validate cwnd but implement a more
1264 * flexible approach. The RFC suggests cwnd should not be raised unless
1265 * it was fully used previously. And that's exactly what we do in
1266 * congestion avoidance mode. But in slow start we allow cwnd to grow
1267 * as long as the application has used half the cwnd.
1268 * Example :
1269 * cwnd is 10 (IW10), but application sends 9 frames.
1270 * We allow cwnd to reach 18 when all frames are ACKed.
1271 * This check is safe because it's as aggressive as slow start which already
1272 * risks 100% overshoot. The advantage is that we discourage application to
1273 * either send more filler packets or data to artificially blow up the cwnd
1274 * usage, and allow application-limited process to probe bw more aggressively.
1275 */
tcp_is_cwnd_limited(const struct sock * sk)1276 static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1277 {
1278 const struct tcp_sock *tp = tcp_sk(sk);
1279
1280 if (tp->is_cwnd_limited)
1281 return true;
1282
1283 /* If in slow start, ensure cwnd grows to twice what was ACKed. */
1284 if (tcp_in_slow_start(tp))
1285 return tp->snd_cwnd < 2 * tp->max_packets_out;
1286
1287 return false;
1288 }
1289
1290 /* BBR congestion control needs pacing.
1291 * Same remark for SO_MAX_PACING_RATE.
1292 * sch_fq packet scheduler is efficiently handling pacing,
1293 * but is not always installed/used.
1294 * Return true if TCP stack should pace packets itself.
1295 */
tcp_needs_internal_pacing(const struct sock * sk)1296 static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1297 {
1298 return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1299 }
1300
1301 /* Estimates in how many jiffies next packet for this flow can be sent.
1302 * Scheduling a retransmit timer too early would be silly.
1303 */
tcp_pacing_delay(const struct sock * sk)1304 static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1305 {
1306 s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1307
1308 return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1309 }
1310
tcp_reset_xmit_timer(struct sock * sk,const int what,unsigned long when,const unsigned long max_when)1311 static inline void tcp_reset_xmit_timer(struct sock *sk,
1312 const int what,
1313 unsigned long when,
1314 const unsigned long max_when)
1315 {
1316 inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1317 max_when);
1318 }
1319
1320 /* Something is really bad, we could not queue an additional packet,
1321 * because qdisc is full or receiver sent a 0 window, or we are paced.
1322 * We do not want to add fuel to the fire, or abort too early,
1323 * so make sure the timer we arm now is at least 200ms in the future,
1324 * regardless of current icsk_rto value (as it could be ~2ms)
1325 */
tcp_probe0_base(const struct sock * sk)1326 static inline unsigned long tcp_probe0_base(const struct sock *sk)
1327 {
1328 return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1329 }
1330
1331 /* Variant of inet_csk_rto_backoff() used for zero window probes */
tcp_probe0_when(const struct sock * sk,unsigned long max_when)1332 static inline unsigned long tcp_probe0_when(const struct sock *sk,
1333 unsigned long max_when)
1334 {
1335 u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1336
1337 return (unsigned long)min_t(u64, when, max_when);
1338 }
1339
tcp_check_probe_timer(struct sock * sk)1340 static inline void tcp_check_probe_timer(struct sock *sk)
1341 {
1342 if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1343 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1344 tcp_probe0_base(sk), TCP_RTO_MAX);
1345 }
1346
tcp_init_wl(struct tcp_sock * tp,u32 seq)1347 static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1348 {
1349 tp->snd_wl1 = seq;
1350 }
1351
tcp_update_wl(struct tcp_sock * tp,u32 seq)1352 static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1353 {
1354 tp->snd_wl1 = seq;
1355 }
1356
1357 /*
1358 * Calculate(/check) TCP checksum
1359 */
tcp_v4_check(int len,__be32 saddr,__be32 daddr,__wsum base)1360 static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1361 __be32 daddr, __wsum base)
1362 {
1363 return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1364 }
1365
tcp_checksum_complete(struct sk_buff * skb)1366 static inline bool tcp_checksum_complete(struct sk_buff *skb)
1367 {
1368 return !skb_csum_unnecessary(skb) &&
1369 __skb_checksum_complete(skb);
1370 }
1371
1372 bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1373 int tcp_filter(struct sock *sk, struct sk_buff *skb);
1374 void tcp_set_state(struct sock *sk, int state);
1375 void tcp_done(struct sock *sk);
1376 int tcp_abort(struct sock *sk, int err);
1377
tcp_sack_reset(struct tcp_options_received * rx_opt)1378 static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1379 {
1380 rx_opt->dsack = 0;
1381 rx_opt->num_sacks = 0;
1382 }
1383
1384 void tcp_cwnd_restart(struct sock *sk, s32 delta);
1385
tcp_slow_start_after_idle_check(struct sock * sk)1386 static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1387 {
1388 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1389 struct tcp_sock *tp = tcp_sk(sk);
1390 s32 delta;
1391
1392 if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1393 tp->packets_out || ca_ops->cong_control)
1394 return;
1395 delta = tcp_jiffies32 - tp->lsndtime;
1396 if (delta > inet_csk(sk)->icsk_rto)
1397 tcp_cwnd_restart(sk, delta);
1398 }
1399
1400 /* Determine a window scaling and initial window to offer. */
1401 void tcp_select_initial_window(const struct sock *sk, int __space,
1402 __u32 mss, __u32 *rcv_wnd,
1403 __u32 *window_clamp, int wscale_ok,
1404 __u8 *rcv_wscale, __u32 init_rcv_wnd);
1405
tcp_win_from_space(const struct sock * sk,int space)1406 static inline int tcp_win_from_space(const struct sock *sk, int space)
1407 {
1408 int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1409
1410 return tcp_adv_win_scale <= 0 ?
1411 (space>>(-tcp_adv_win_scale)) :
1412 space - (space>>tcp_adv_win_scale);
1413 }
1414
1415 /* Note: caller must be prepared to deal with negative returns */
tcp_space(const struct sock * sk)1416 static inline int tcp_space(const struct sock *sk)
1417 {
1418 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1419 READ_ONCE(sk->sk_backlog.len) -
1420 atomic_read(&sk->sk_rmem_alloc));
1421 }
1422
tcp_full_space(const struct sock * sk)1423 static inline int tcp_full_space(const struct sock *sk)
1424 {
1425 return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1426 }
1427
1428 void tcp_cleanup_rbuf(struct sock *sk, int copied);
1429
1430 /* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1431 * If 87.5 % (7/8) of the space has been consumed, we want to override
1432 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1433 * len/truesize ratio.
1434 */
tcp_rmem_pressure(const struct sock * sk)1435 static inline bool tcp_rmem_pressure(const struct sock *sk)
1436 {
1437 int rcvbuf, threshold;
1438
1439 if (tcp_under_memory_pressure(sk))
1440 return true;
1441
1442 rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1443 threshold = rcvbuf - (rcvbuf >> 3);
1444
1445 return atomic_read(&sk->sk_rmem_alloc) > threshold;
1446 }
1447
1448 extern void tcp_openreq_init_rwin(struct request_sock *req,
1449 const struct sock *sk_listener,
1450 const struct dst_entry *dst);
1451
1452 void tcp_enter_memory_pressure(struct sock *sk);
1453 void tcp_leave_memory_pressure(struct sock *sk);
1454
keepalive_intvl_when(const struct tcp_sock * tp)1455 static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1456 {
1457 struct net *net = sock_net((struct sock *)tp);
1458 int val;
1459
1460 /* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1461 * and do_tcp_setsockopt().
1462 */
1463 val = READ_ONCE(tp->keepalive_intvl);
1464
1465 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1466 }
1467
keepalive_time_when(const struct tcp_sock * tp)1468 static inline int keepalive_time_when(const struct tcp_sock *tp)
1469 {
1470 struct net *net = sock_net((struct sock *)tp);
1471 int val;
1472
1473 /* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1474 val = READ_ONCE(tp->keepalive_time);
1475
1476 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1477 }
1478
keepalive_probes(const struct tcp_sock * tp)1479 static inline int keepalive_probes(const struct tcp_sock *tp)
1480 {
1481 struct net *net = sock_net((struct sock *)tp);
1482 int val;
1483
1484 /* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1485 * and do_tcp_setsockopt().
1486 */
1487 val = READ_ONCE(tp->keepalive_probes);
1488
1489 return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1490 }
1491
keepalive_time_elapsed(const struct tcp_sock * tp)1492 static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1493 {
1494 const struct inet_connection_sock *icsk = &tp->inet_conn;
1495
1496 return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1497 tcp_jiffies32 - tp->rcv_tstamp);
1498 }
1499
tcp_fin_time(const struct sock * sk)1500 static inline int tcp_fin_time(const struct sock *sk)
1501 {
1502 int fin_timeout = tcp_sk(sk)->linger2 ? :
1503 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1504 const int rto = inet_csk(sk)->icsk_rto;
1505
1506 if (fin_timeout < (rto << 2) - (rto >> 1))
1507 fin_timeout = (rto << 2) - (rto >> 1);
1508
1509 return fin_timeout;
1510 }
1511
tcp_paws_check(const struct tcp_options_received * rx_opt,int paws_win)1512 static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1513 int paws_win)
1514 {
1515 if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1516 return true;
1517 if (unlikely(!time_before32(ktime_get_seconds(),
1518 rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1519 return true;
1520 /*
1521 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1522 * then following tcp messages have valid values. Ignore 0 value,
1523 * or else 'negative' tsval might forbid us to accept their packets.
1524 */
1525 if (!rx_opt->ts_recent)
1526 return true;
1527 return false;
1528 }
1529
tcp_paws_reject(const struct tcp_options_received * rx_opt,int rst)1530 static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1531 int rst)
1532 {
1533 if (tcp_paws_check(rx_opt, 0))
1534 return false;
1535
1536 /* RST segments are not recommended to carry timestamp,
1537 and, if they do, it is recommended to ignore PAWS because
1538 "their cleanup function should take precedence over timestamps."
1539 Certainly, it is mistake. It is necessary to understand the reasons
1540 of this constraint to relax it: if peer reboots, clock may go
1541 out-of-sync and half-open connections will not be reset.
1542 Actually, the problem would be not existing if all
1543 the implementations followed draft about maintaining clock
1544 via reboots. Linux-2.2 DOES NOT!
1545
1546 However, we can relax time bounds for RST segments to MSL.
1547 */
1548 if (rst && !time_before32(ktime_get_seconds(),
1549 rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1550 return false;
1551 return true;
1552 }
1553
1554 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1555 int mib_idx, u32 *last_oow_ack_time);
1556
tcp_mib_init(struct net * net)1557 static inline void tcp_mib_init(struct net *net)
1558 {
1559 /* See RFC 2012 */
1560 TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1561 TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1562 TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1563 TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1564 }
1565
1566 /* from STCP */
tcp_clear_retrans_hints_partial(struct tcp_sock * tp)1567 static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1568 {
1569 tp->lost_skb_hint = NULL;
1570 }
1571
tcp_clear_all_retrans_hints(struct tcp_sock * tp)1572 static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1573 {
1574 tcp_clear_retrans_hints_partial(tp);
1575 tp->retransmit_skb_hint = NULL;
1576 }
1577
1578 union tcp_md5_addr {
1579 struct in_addr a4;
1580 #if IS_ENABLED(CONFIG_IPV6)
1581 struct in6_addr a6;
1582 #endif
1583 };
1584
1585 /* - key database */
1586 struct tcp_md5sig_key {
1587 struct hlist_node node;
1588 u8 keylen;
1589 u8 family; /* AF_INET or AF_INET6 */
1590 u8 prefixlen;
1591 union tcp_md5_addr addr;
1592 int l3index; /* set if key added with L3 scope */
1593 u8 key[TCP_MD5SIG_MAXKEYLEN];
1594 struct rcu_head rcu;
1595 };
1596
1597 /* - sock block */
1598 struct tcp_md5sig_info {
1599 struct hlist_head head;
1600 struct rcu_head rcu;
1601 };
1602
1603 /* - pseudo header */
1604 struct tcp4_pseudohdr {
1605 __be32 saddr;
1606 __be32 daddr;
1607 __u8 pad;
1608 __u8 protocol;
1609 __be16 len;
1610 };
1611
1612 struct tcp6_pseudohdr {
1613 struct in6_addr saddr;
1614 struct in6_addr daddr;
1615 __be32 len;
1616 __be32 protocol; /* including padding */
1617 };
1618
1619 union tcp_md5sum_block {
1620 struct tcp4_pseudohdr ip4;
1621 #if IS_ENABLED(CONFIG_IPV6)
1622 struct tcp6_pseudohdr ip6;
1623 #endif
1624 };
1625
1626 /* - pool: digest algorithm, hash description and scratch buffer */
1627 struct tcp_md5sig_pool {
1628 struct ahash_request *md5_req;
1629 void *scratch;
1630 };
1631
1632 /* - functions */
1633 int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1634 const struct sock *sk, const struct sk_buff *skb);
1635 int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1636 int family, u8 prefixlen, int l3index,
1637 const u8 *newkey, u8 newkeylen, gfp_t gfp);
1638 int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1639 int family, u8 prefixlen, int l3index);
1640 struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1641 const struct sock *addr_sk);
1642
1643 #ifdef CONFIG_TCP_MD5SIG
1644 #include <linux/jump_label.h>
1645 extern struct static_key_false tcp_md5_needed;
1646 struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1647 const union tcp_md5_addr *addr,
1648 int family);
1649 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1650 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1651 const union tcp_md5_addr *addr, int family)
1652 {
1653 if (!static_branch_unlikely(&tcp_md5_needed))
1654 return NULL;
1655 return __tcp_md5_do_lookup(sk, l3index, addr, family);
1656 }
1657
1658 #define tcp_twsk_md5_key(twsk) ((twsk)->tw_md5_key)
1659 #else
1660 static inline struct tcp_md5sig_key *
tcp_md5_do_lookup(const struct sock * sk,int l3index,const union tcp_md5_addr * addr,int family)1661 tcp_md5_do_lookup(const struct sock *sk, int l3index,
1662 const union tcp_md5_addr *addr, int family)
1663 {
1664 return NULL;
1665 }
1666 #define tcp_twsk_md5_key(twsk) NULL
1667 #endif
1668
1669 bool tcp_alloc_md5sig_pool(void);
1670
1671 struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
tcp_put_md5sig_pool(void)1672 static inline void tcp_put_md5sig_pool(void)
1673 {
1674 local_bh_enable();
1675 }
1676
1677 int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1678 unsigned int header_len);
1679 int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1680 const struct tcp_md5sig_key *key);
1681
1682 /* From tcp_fastopen.c */
1683 void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1684 struct tcp_fastopen_cookie *cookie);
1685 void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1686 struct tcp_fastopen_cookie *cookie, bool syn_lost,
1687 u16 try_exp);
1688 struct tcp_fastopen_request {
1689 /* Fast Open cookie. Size 0 means a cookie request */
1690 struct tcp_fastopen_cookie cookie;
1691 struct msghdr *data; /* data in MSG_FASTOPEN */
1692 size_t size;
1693 int copied; /* queued in tcp_connect() */
1694 struct ubuf_info *uarg;
1695 };
1696 void tcp_free_fastopen_req(struct tcp_sock *tp);
1697 void tcp_fastopen_destroy_cipher(struct sock *sk);
1698 void tcp_fastopen_ctx_destroy(struct net *net);
1699 int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1700 void *primary_key, void *backup_key);
1701 int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1702 u64 *key);
1703 void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1704 struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1705 struct request_sock *req,
1706 struct tcp_fastopen_cookie *foc,
1707 const struct dst_entry *dst);
1708 void tcp_fastopen_init_key_once(struct net *net);
1709 bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1710 struct tcp_fastopen_cookie *cookie);
1711 bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1712 #define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1713 #define TCP_FASTOPEN_KEY_MAX 2
1714 #define TCP_FASTOPEN_KEY_BUF_LENGTH \
1715 (TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1716
1717 /* Fastopen key context */
1718 struct tcp_fastopen_context {
1719 siphash_key_t key[TCP_FASTOPEN_KEY_MAX];
1720 int num;
1721 struct rcu_head rcu;
1722 };
1723
1724 extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1725 void tcp_fastopen_active_disable(struct sock *sk);
1726 bool tcp_fastopen_active_should_disable(struct sock *sk);
1727 void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1728 void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1729
1730 /* Caller needs to wrap with rcu_read_(un)lock() */
1731 static inline
tcp_fastopen_get_ctx(const struct sock * sk)1732 struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1733 {
1734 struct tcp_fastopen_context *ctx;
1735
1736 ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1737 if (!ctx)
1738 ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1739 return ctx;
1740 }
1741
1742 static inline
tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie * foc,const struct tcp_fastopen_cookie * orig)1743 bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1744 const struct tcp_fastopen_cookie *orig)
1745 {
1746 if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1747 orig->len == foc->len &&
1748 !memcmp(orig->val, foc->val, foc->len))
1749 return true;
1750 return false;
1751 }
1752
1753 static inline
tcp_fastopen_context_len(const struct tcp_fastopen_context * ctx)1754 int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1755 {
1756 return ctx->num;
1757 }
1758
1759 /* Latencies incurred by various limits for a sender. They are
1760 * chronograph-like stats that are mutually exclusive.
1761 */
1762 enum tcp_chrono {
1763 TCP_CHRONO_UNSPEC,
1764 TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1765 TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1766 TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1767 __TCP_CHRONO_MAX,
1768 };
1769
1770 void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1771 void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1772
1773 /* This helper is needed, because skb->tcp_tsorted_anchor uses
1774 * the same memory storage than skb->destructor/_skb_refdst
1775 */
tcp_skb_tsorted_anchor_cleanup(struct sk_buff * skb)1776 static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1777 {
1778 skb->destructor = NULL;
1779 skb->_skb_refdst = 0UL;
1780 }
1781
1782 #define tcp_skb_tsorted_save(skb) { \
1783 unsigned long _save = skb->_skb_refdst; \
1784 skb->_skb_refdst = 0UL;
1785
1786 #define tcp_skb_tsorted_restore(skb) \
1787 skb->_skb_refdst = _save; \
1788 }
1789
1790 void tcp_write_queue_purge(struct sock *sk);
1791
tcp_rtx_queue_head(const struct sock * sk)1792 static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1793 {
1794 return skb_rb_first(&sk->tcp_rtx_queue);
1795 }
1796
tcp_rtx_queue_tail(const struct sock * sk)1797 static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1798 {
1799 return skb_rb_last(&sk->tcp_rtx_queue);
1800 }
1801
tcp_write_queue_head(const struct sock * sk)1802 static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1803 {
1804 return skb_peek(&sk->sk_write_queue);
1805 }
1806
tcp_write_queue_tail(const struct sock * sk)1807 static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1808 {
1809 return skb_peek_tail(&sk->sk_write_queue);
1810 }
1811
1812 #define tcp_for_write_queue_from_safe(skb, tmp, sk) \
1813 skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1814
tcp_send_head(const struct sock * sk)1815 static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1816 {
1817 return skb_peek(&sk->sk_write_queue);
1818 }
1819
tcp_skb_is_last(const struct sock * sk,const struct sk_buff * skb)1820 static inline bool tcp_skb_is_last(const struct sock *sk,
1821 const struct sk_buff *skb)
1822 {
1823 return skb_queue_is_last(&sk->sk_write_queue, skb);
1824 }
1825
1826 /**
1827 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1828 * @sk: socket
1829 *
1830 * Since the write queue can have a temporary empty skb in it,
1831 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1832 */
tcp_write_queue_empty(const struct sock * sk)1833 static inline bool tcp_write_queue_empty(const struct sock *sk)
1834 {
1835 const struct tcp_sock *tp = tcp_sk(sk);
1836
1837 return tp->write_seq == tp->snd_nxt;
1838 }
1839
tcp_rtx_queue_empty(const struct sock * sk)1840 static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1841 {
1842 return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1843 }
1844
tcp_rtx_and_write_queues_empty(const struct sock * sk)1845 static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1846 {
1847 return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1848 }
1849
tcp_add_write_queue_tail(struct sock * sk,struct sk_buff * skb)1850 static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1851 {
1852 __skb_queue_tail(&sk->sk_write_queue, skb);
1853
1854 /* Queue it, remembering where we must start sending. */
1855 if (sk->sk_write_queue.next == skb)
1856 tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1857 }
1858
1859 /* Insert new before skb on the write queue of sk. */
tcp_insert_write_queue_before(struct sk_buff * new,struct sk_buff * skb,struct sock * sk)1860 static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1861 struct sk_buff *skb,
1862 struct sock *sk)
1863 {
1864 __skb_queue_before(&sk->sk_write_queue, skb, new);
1865 }
1866
tcp_unlink_write_queue(struct sk_buff * skb,struct sock * sk)1867 static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1868 {
1869 tcp_skb_tsorted_anchor_cleanup(skb);
1870 __skb_unlink(skb, &sk->sk_write_queue);
1871 }
1872
1873 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1874
tcp_rtx_queue_unlink(struct sk_buff * skb,struct sock * sk)1875 static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1876 {
1877 tcp_skb_tsorted_anchor_cleanup(skb);
1878 rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1879 }
1880
tcp_rtx_queue_unlink_and_free(struct sk_buff * skb,struct sock * sk)1881 static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1882 {
1883 list_del(&skb->tcp_tsorted_anchor);
1884 tcp_rtx_queue_unlink(skb, sk);
1885 sk_wmem_free_skb(sk, skb);
1886 }
1887
tcp_push_pending_frames(struct sock * sk)1888 static inline void tcp_push_pending_frames(struct sock *sk)
1889 {
1890 if (tcp_send_head(sk)) {
1891 struct tcp_sock *tp = tcp_sk(sk);
1892
1893 __tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1894 }
1895 }
1896
1897 /* Start sequence of the skb just after the highest skb with SACKed
1898 * bit, valid only if sacked_out > 0 or when the caller has ensured
1899 * validity by itself.
1900 */
tcp_highest_sack_seq(struct tcp_sock * tp)1901 static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1902 {
1903 if (!tp->sacked_out)
1904 return tp->snd_una;
1905
1906 if (tp->highest_sack == NULL)
1907 return tp->snd_nxt;
1908
1909 return TCP_SKB_CB(tp->highest_sack)->seq;
1910 }
1911
tcp_advance_highest_sack(struct sock * sk,struct sk_buff * skb)1912 static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1913 {
1914 tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1915 }
1916
tcp_highest_sack(struct sock * sk)1917 static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1918 {
1919 return tcp_sk(sk)->highest_sack;
1920 }
1921
tcp_highest_sack_reset(struct sock * sk)1922 static inline void tcp_highest_sack_reset(struct sock *sk)
1923 {
1924 tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1925 }
1926
1927 /* Called when old skb is about to be deleted and replaced by new skb */
tcp_highest_sack_replace(struct sock * sk,struct sk_buff * old,struct sk_buff * new)1928 static inline void tcp_highest_sack_replace(struct sock *sk,
1929 struct sk_buff *old,
1930 struct sk_buff *new)
1931 {
1932 if (old == tcp_highest_sack(sk))
1933 tcp_sk(sk)->highest_sack = new;
1934 }
1935
1936 /* This helper checks if socket has IP_TRANSPARENT set */
inet_sk_transparent(const struct sock * sk)1937 static inline bool inet_sk_transparent(const struct sock *sk)
1938 {
1939 switch (sk->sk_state) {
1940 case TCP_TIME_WAIT:
1941 return inet_twsk(sk)->tw_transparent;
1942 case TCP_NEW_SYN_RECV:
1943 return inet_rsk(inet_reqsk(sk))->no_srccheck;
1944 }
1945 return inet_sk(sk)->transparent;
1946 }
1947
1948 /* Determines whether this is a thin stream (which may suffer from
1949 * increased latency). Used to trigger latency-reducing mechanisms.
1950 */
tcp_stream_is_thin(struct tcp_sock * tp)1951 static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1952 {
1953 return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1954 }
1955
1956 /* /proc */
1957 enum tcp_seq_states {
1958 TCP_SEQ_STATE_LISTENING,
1959 TCP_SEQ_STATE_ESTABLISHED,
1960 };
1961
1962 void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1963 void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1964 void tcp_seq_stop(struct seq_file *seq, void *v);
1965
1966 struct tcp_seq_afinfo {
1967 sa_family_t family;
1968 };
1969
1970 struct tcp_iter_state {
1971 struct seq_net_private p;
1972 enum tcp_seq_states state;
1973 struct sock *syn_wait_sk;
1974 struct tcp_seq_afinfo *bpf_seq_afinfo;
1975 int bucket, offset, sbucket, num;
1976 loff_t last_pos;
1977 };
1978
1979 extern struct request_sock_ops tcp_request_sock_ops;
1980 extern struct request_sock_ops tcp6_request_sock_ops;
1981
1982 void tcp_v4_destroy_sock(struct sock *sk);
1983
1984 struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1985 netdev_features_t features);
1986 struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1987 INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1988 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1989 INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1990 INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1991 int tcp_gro_complete(struct sk_buff *skb);
1992
1993 void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1994
tcp_notsent_lowat(const struct tcp_sock * tp)1995 static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
1996 {
1997 struct net *net = sock_net((struct sock *)tp);
1998 u32 val;
1999
2000 val = READ_ONCE(tp->notsent_lowat);
2001
2002 return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2003 }
2004
2005 /* @wake is one when sk_stream_write_space() calls us.
2006 * This sends EPOLLOUT only if notsent_bytes is half the limit.
2007 * This mimics the strategy used in sock_def_write_space().
2008 */
tcp_stream_memory_free(const struct sock * sk,int wake)2009 static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
2010 {
2011 const struct tcp_sock *tp = tcp_sk(sk);
2012 u32 notsent_bytes = READ_ONCE(tp->write_seq) -
2013 READ_ONCE(tp->snd_nxt);
2014
2015 return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
2016 }
2017
2018 #ifdef CONFIG_PROC_FS
2019 int tcp4_proc_init(void);
2020 void tcp4_proc_exit(void);
2021 #endif
2022
2023 int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2024 int tcp_conn_request(struct request_sock_ops *rsk_ops,
2025 const struct tcp_request_sock_ops *af_ops,
2026 struct sock *sk, struct sk_buff *skb);
2027
2028 /* TCP af-specific functions */
2029 struct tcp_sock_af_ops {
2030 #ifdef CONFIG_TCP_MD5SIG
2031 struct tcp_md5sig_key *(*md5_lookup) (const struct sock *sk,
2032 const struct sock *addr_sk);
2033 int (*calc_md5_hash)(char *location,
2034 const struct tcp_md5sig_key *md5,
2035 const struct sock *sk,
2036 const struct sk_buff *skb);
2037 int (*md5_parse)(struct sock *sk,
2038 int optname,
2039 sockptr_t optval,
2040 int optlen);
2041 #endif
2042 };
2043
2044 struct tcp_request_sock_ops {
2045 u16 mss_clamp;
2046 #ifdef CONFIG_TCP_MD5SIG
2047 struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2048 const struct sock *addr_sk);
2049 int (*calc_md5_hash) (char *location,
2050 const struct tcp_md5sig_key *md5,
2051 const struct sock *sk,
2052 const struct sk_buff *skb);
2053 #endif
2054 void (*init_req)(struct request_sock *req,
2055 const struct sock *sk_listener,
2056 struct sk_buff *skb);
2057 #ifdef CONFIG_SYN_COOKIES
2058 __u32 (*cookie_init_seq)(const struct sk_buff *skb,
2059 __u16 *mss);
2060 #endif
2061 struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2062 const struct request_sock *req);
2063 u32 (*init_seq)(const struct sk_buff *skb);
2064 u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2065 int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2066 struct flowi *fl, struct request_sock *req,
2067 struct tcp_fastopen_cookie *foc,
2068 enum tcp_synack_type synack_type,
2069 struct sk_buff *syn_skb);
2070 };
2071
2072 extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2073 #if IS_ENABLED(CONFIG_IPV6)
2074 extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2075 #endif
2076
2077 #ifdef CONFIG_SYN_COOKIES
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2078 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2079 const struct sock *sk, struct sk_buff *skb,
2080 __u16 *mss)
2081 {
2082 tcp_synq_overflow(sk);
2083 __NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2084 return ops->cookie_init_seq(skb, mss);
2085 }
2086 #else
cookie_init_sequence(const struct tcp_request_sock_ops * ops,const struct sock * sk,struct sk_buff * skb,__u16 * mss)2087 static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2088 const struct sock *sk, struct sk_buff *skb,
2089 __u16 *mss)
2090 {
2091 return 0;
2092 }
2093 #endif
2094
2095 int tcpv4_offload_init(void);
2096
2097 void tcp_v4_init(void);
2098 void tcp_init(void);
2099
2100 /* tcp_recovery.c */
2101 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2102 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2103 extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2104 u32 reo_wnd);
2105 extern bool tcp_rack_mark_lost(struct sock *sk);
2106 extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2107 u64 xmit_time);
2108 extern void tcp_rack_reo_timeout(struct sock *sk);
2109 extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2110
2111 /* At how many usecs into the future should the RTO fire? */
tcp_rto_delta_us(const struct sock * sk)2112 static inline s64 tcp_rto_delta_us(const struct sock *sk)
2113 {
2114 const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2115 u32 rto = inet_csk(sk)->icsk_rto;
2116 u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2117
2118 return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2119 }
2120
2121 /*
2122 * Save and compile IPv4 options, return a pointer to it
2123 */
tcp_v4_save_options(struct net * net,struct sk_buff * skb)2124 static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2125 struct sk_buff *skb)
2126 {
2127 const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2128 struct ip_options_rcu *dopt = NULL;
2129
2130 if (opt->optlen) {
2131 int opt_size = sizeof(*dopt) + opt->optlen;
2132
2133 dopt = kmalloc(opt_size, GFP_ATOMIC);
2134 if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2135 kfree(dopt);
2136 dopt = NULL;
2137 }
2138 }
2139 return dopt;
2140 }
2141
2142 /* locally generated TCP pure ACKs have skb->truesize == 2
2143 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2144 * This is much faster than dissecting the packet to find out.
2145 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2146 */
skb_is_tcp_pure_ack(const struct sk_buff * skb)2147 static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2148 {
2149 return skb->truesize == 2;
2150 }
2151
skb_set_tcp_pure_ack(struct sk_buff * skb)2152 static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2153 {
2154 skb->truesize = 2;
2155 }
2156
tcp_inq(struct sock * sk)2157 static inline int tcp_inq(struct sock *sk)
2158 {
2159 struct tcp_sock *tp = tcp_sk(sk);
2160 int answ;
2161
2162 if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2163 answ = 0;
2164 } else if (sock_flag(sk, SOCK_URGINLINE) ||
2165 !tp->urg_data ||
2166 before(tp->urg_seq, tp->copied_seq) ||
2167 !before(tp->urg_seq, tp->rcv_nxt)) {
2168
2169 answ = tp->rcv_nxt - tp->copied_seq;
2170
2171 /* Subtract 1, if FIN was received */
2172 if (answ && sock_flag(sk, SOCK_DONE))
2173 answ--;
2174 } else {
2175 answ = tp->urg_seq - tp->copied_seq;
2176 }
2177
2178 return answ;
2179 }
2180
2181 int tcp_peek_len(struct socket *sock);
2182
tcp_segs_in(struct tcp_sock * tp,const struct sk_buff * skb)2183 static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2184 {
2185 u16 segs_in;
2186
2187 segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2188 tp->segs_in += segs_in;
2189 if (skb->len > tcp_hdrlen(skb))
2190 tp->data_segs_in += segs_in;
2191 }
2192
2193 /*
2194 * TCP listen path runs lockless.
2195 * We forced "struct sock" to be const qualified to make sure
2196 * we don't modify one of its field by mistake.
2197 * Here, we increment sk_drops which is an atomic_t, so we can safely
2198 * make sock writable again.
2199 */
tcp_listendrop(const struct sock * sk)2200 static inline void tcp_listendrop(const struct sock *sk)
2201 {
2202 atomic_inc(&((struct sock *)sk)->sk_drops);
2203 __NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2204 }
2205
2206 enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2207
2208 /*
2209 * Interface for adding Upper Level Protocols over TCP
2210 */
2211
2212 #define TCP_ULP_NAME_MAX 16
2213 #define TCP_ULP_MAX 128
2214 #define TCP_ULP_BUF_MAX (TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2215
2216 struct tcp_ulp_ops {
2217 struct list_head list;
2218
2219 /* initialize ulp */
2220 int (*init)(struct sock *sk);
2221 /* update ulp */
2222 void (*update)(struct sock *sk, struct proto *p,
2223 void (*write_space)(struct sock *sk));
2224 /* cleanup ulp */
2225 void (*release)(struct sock *sk);
2226 /* diagnostic */
2227 int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2228 size_t (*get_info_size)(const struct sock *sk);
2229 /* clone ulp */
2230 void (*clone)(const struct request_sock *req, struct sock *newsk,
2231 const gfp_t priority);
2232
2233 char name[TCP_ULP_NAME_MAX];
2234 struct module *owner;
2235 };
2236 int tcp_register_ulp(struct tcp_ulp_ops *type);
2237 void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2238 int tcp_set_ulp(struct sock *sk, const char *name);
2239 void tcp_get_available_ulp(char *buf, size_t len);
2240 void tcp_cleanup_ulp(struct sock *sk);
2241 void tcp_update_ulp(struct sock *sk, struct proto *p,
2242 void (*write_space)(struct sock *sk));
2243
2244 #define MODULE_ALIAS_TCP_ULP(name) \
2245 __MODULE_INFO(alias, alias_userspace, name); \
2246 __MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2247
2248 struct sk_msg;
2249 struct sk_psock;
2250
2251 #ifdef CONFIG_BPF_STREAM_PARSER
2252 struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2253 void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2254 #else
tcp_bpf_clone(const struct sock * sk,struct sock * newsk)2255 static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2256 {
2257 }
2258 #endif /* CONFIG_BPF_STREAM_PARSER */
2259
2260 #ifdef CONFIG_NET_SOCK_MSG
2261 int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2262 int flags);
2263 int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2264 struct msghdr *msg, int len, int flags);
2265 #endif /* CONFIG_NET_SOCK_MSG */
2266
2267 #ifdef CONFIG_CGROUP_BPF
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2268 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2269 struct sk_buff *skb,
2270 unsigned int end_offset)
2271 {
2272 skops->skb = skb;
2273 skops->skb_data_end = skb->data + end_offset;
2274 }
2275 #else
bpf_skops_init_skb(struct bpf_sock_ops_kern * skops,struct sk_buff * skb,unsigned int end_offset)2276 static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2277 struct sk_buff *skb,
2278 unsigned int end_offset)
2279 {
2280 }
2281 #endif
2282
2283 /* Call BPF_SOCK_OPS program that returns an int. If the return value
2284 * is < 0, then the BPF op failed (for example if the loaded BPF
2285 * program does not support the chosen operation or there is no BPF
2286 * program loaded).
2287 */
2288 #ifdef CONFIG_BPF
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2289 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2290 {
2291 struct bpf_sock_ops_kern sock_ops;
2292 int ret;
2293
2294 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2295 if (sk_fullsock(sk)) {
2296 sock_ops.is_fullsock = 1;
2297 sock_owned_by_me(sk);
2298 }
2299
2300 sock_ops.sk = sk;
2301 sock_ops.op = op;
2302 if (nargs > 0)
2303 memcpy(sock_ops.args, args, nargs * sizeof(*args));
2304
2305 ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2306 if (ret == 0)
2307 ret = sock_ops.reply;
2308 else
2309 ret = -1;
2310 return ret;
2311 }
2312
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2313 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2314 {
2315 u32 args[2] = {arg1, arg2};
2316
2317 return tcp_call_bpf(sk, op, 2, args);
2318 }
2319
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2320 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2321 u32 arg3)
2322 {
2323 u32 args[3] = {arg1, arg2, arg3};
2324
2325 return tcp_call_bpf(sk, op, 3, args);
2326 }
2327
2328 #else
tcp_call_bpf(struct sock * sk,int op,u32 nargs,u32 * args)2329 static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2330 {
2331 return -EPERM;
2332 }
2333
tcp_call_bpf_2arg(struct sock * sk,int op,u32 arg1,u32 arg2)2334 static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2335 {
2336 return -EPERM;
2337 }
2338
tcp_call_bpf_3arg(struct sock * sk,int op,u32 arg1,u32 arg2,u32 arg3)2339 static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2340 u32 arg3)
2341 {
2342 return -EPERM;
2343 }
2344
2345 #endif
2346
tcp_timeout_init(struct sock * sk)2347 static inline u32 tcp_timeout_init(struct sock *sk)
2348 {
2349 int timeout;
2350
2351 timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2352
2353 if (timeout <= 0)
2354 timeout = TCP_TIMEOUT_INIT;
2355 return timeout;
2356 }
2357
tcp_rwnd_init_bpf(struct sock * sk)2358 static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2359 {
2360 int rwnd;
2361
2362 rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2363
2364 if (rwnd < 0)
2365 rwnd = 0;
2366 return rwnd;
2367 }
2368
tcp_bpf_ca_needs_ecn(struct sock * sk)2369 static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2370 {
2371 return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2372 }
2373
tcp_bpf_rtt(struct sock * sk)2374 static inline void tcp_bpf_rtt(struct sock *sk)
2375 {
2376 if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2377 tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2378 }
2379
2380 #if IS_ENABLED(CONFIG_SMC)
2381 extern struct static_key_false tcp_have_smc;
2382 #endif
2383
2384 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2385 void clean_acked_data_enable(struct inet_connection_sock *icsk,
2386 void (*cad)(struct sock *sk, u32 ack_seq));
2387 void clean_acked_data_disable(struct inet_connection_sock *icsk);
2388 void clean_acked_data_flush(void);
2389 #endif
2390
2391 DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
tcp_add_tx_delay(struct sk_buff * skb,const struct tcp_sock * tp)2392 static inline void tcp_add_tx_delay(struct sk_buff *skb,
2393 const struct tcp_sock *tp)
2394 {
2395 if (static_branch_unlikely(&tcp_tx_delay_enabled))
2396 skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2397 }
2398
2399 /* Compute Earliest Departure Time for some control packets
2400 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2401 */
tcp_transmit_time(const struct sock * sk)2402 static inline u64 tcp_transmit_time(const struct sock *sk)
2403 {
2404 if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2405 u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2406 tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2407
2408 return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2409 }
2410 return 0;
2411 }
2412
2413 #ifdef CONFIG_TCP_NB_URC
tcp_get_retries_limit(struct sock * sk)2414 static inline int tcp_get_retries_limit(struct sock *sk)
2415 {
2416 struct tcp_sock *tp = tcp_sk(sk);
2417
2418 if (inet_csk(sk)->icsk_nb_urc_enabled)
2419 return tp->tcp_retries2;
2420
2421 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_retries2);
2422 }
2423 #endif /* CONFIG_TCP_NB_URC */
2424
2425 #endif /* _TCP_H */
2426