1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/tcp.h>
3 #include <net/tcp.h>
4
tcp_rack_sent_after(u64 t1,u64 t2,u32 seq1,u32 seq2)5 static bool tcp_rack_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
6 {
7 return t1 > t2 || (t1 == t2 && after(seq1, seq2));
8 }
9
tcp_rack_reo_wnd(const struct sock * sk)10 static u32 tcp_rack_reo_wnd(const struct sock *sk)
11 {
12 struct tcp_sock *tp = tcp_sk(sk);
13
14 if (!tp->reord_seen) {
15 /* If reordering has not been observed, be aggressive during
16 * the recovery or starting the recovery by DUPACK threshold.
17 */
18 if (inet_csk(sk)->icsk_ca_state >= TCP_CA_Recovery)
19 return 0;
20
21 if (tp->sacked_out >= tp->reordering &&
22 !(READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
23 TCP_RACK_NO_DUPTHRESH))
24 return 0;
25 }
26
27 /* To be more reordering resilient, allow min_rtt/4 settling delay.
28 * Use min_rtt instead of the smoothed RTT because reordering is
29 * often a path property and less related to queuing or delayed ACKs.
30 * Upon receiving DSACKs, linearly increase the window up to the
31 * smoothed RTT.
32 */
33 return min((tcp_min_rtt(tp) >> 2) * tp->rack.reo_wnd_steps,
34 tp->srtt_us >> 3);
35 }
36
tcp_rack_skb_timeout(struct tcp_sock * tp,struct sk_buff * skb,u32 reo_wnd)37 s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb, u32 reo_wnd)
38 {
39 return tp->rack.rtt_us + reo_wnd -
40 tcp_stamp_us_delta(tp->tcp_mstamp, tcp_skb_timestamp_us(skb));
41 }
42
43 /* RACK loss detection (IETF draft draft-ietf-tcpm-rack-01):
44 *
45 * Marks a packet lost, if some packet sent later has been (s)acked.
46 * The underlying idea is similar to the traditional dupthresh and FACK
47 * but they look at different metrics:
48 *
49 * dupthresh: 3 OOO packets delivered (packet count)
50 * FACK: sequence delta to highest sacked sequence (sequence space)
51 * RACK: sent time delta to the latest delivered packet (time domain)
52 *
53 * The advantage of RACK is it applies to both original and retransmitted
54 * packet and therefore is robust against tail losses. Another advantage
55 * is being more resilient to reordering by simply allowing some
56 * "settling delay", instead of tweaking the dupthresh.
57 *
58 * When tcp_rack_detect_loss() detects some packets are lost and we
59 * are not already in the CA_Recovery state, either tcp_rack_reo_timeout()
60 * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will
61 * make us enter the CA_Recovery state.
62 */
tcp_rack_detect_loss(struct sock * sk,u32 * reo_timeout)63 static void tcp_rack_detect_loss(struct sock *sk, u32 *reo_timeout)
64 {
65 struct tcp_sock *tp = tcp_sk(sk);
66 struct sk_buff *skb, *n;
67 u32 reo_wnd;
68
69 *reo_timeout = 0;
70 reo_wnd = tcp_rack_reo_wnd(sk);
71 list_for_each_entry_safe(skb, n, &tp->tsorted_sent_queue,
72 tcp_tsorted_anchor) {
73 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
74 s32 remaining;
75
76 /* Skip ones marked lost but not yet retransmitted */
77 if ((scb->sacked & TCPCB_LOST) &&
78 !(scb->sacked & TCPCB_SACKED_RETRANS))
79 continue;
80
81 if (!tcp_rack_sent_after(tp->rack.mstamp,
82 tcp_skb_timestamp_us(skb),
83 tp->rack.end_seq, scb->end_seq))
84 break;
85
86 /* A packet is lost if it has not been s/acked beyond
87 * the recent RTT plus the reordering window.
88 */
89 remaining = tcp_rack_skb_timeout(tp, skb, reo_wnd);
90 if (remaining <= 0) {
91 tcp_mark_skb_lost(sk, skb);
92 list_del_init(&skb->tcp_tsorted_anchor);
93 } else {
94 /* Record maximum wait time */
95 *reo_timeout = max_t(u32, *reo_timeout, remaining);
96 }
97 }
98 }
99
tcp_rack_mark_lost(struct sock * sk)100 bool tcp_rack_mark_lost(struct sock *sk)
101 {
102 struct tcp_sock *tp = tcp_sk(sk);
103 u32 timeout;
104
105 if (!tp->rack.advanced)
106 return false;
107
108 /* Reset the advanced flag to avoid unnecessary queue scanning */
109 tp->rack.advanced = 0;
110 tcp_rack_detect_loss(sk, &timeout);
111 if (timeout) {
112 timeout = usecs_to_jiffies(timeout) + TCP_TIMEOUT_MIN;
113 inet_csk_reset_xmit_timer(sk, ICSK_TIME_REO_TIMEOUT,
114 timeout, inet_csk(sk)->icsk_rto);
115 }
116 return !!timeout;
117 }
118
119 /* Record the most recently (re)sent time among the (s)acked packets
120 * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from
121 * draft-cheng-tcpm-rack-00.txt
122 */
tcp_rack_advance(struct tcp_sock * tp,u8 sacked,u32 end_seq,u64 xmit_time)123 void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
124 u64 xmit_time)
125 {
126 u32 rtt_us;
127
128 rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, xmit_time);
129 if (rtt_us < tcp_min_rtt(tp) && (sacked & TCPCB_RETRANS)) {
130 /* If the sacked packet was retransmitted, it's ambiguous
131 * whether the retransmission or the original (or the prior
132 * retransmission) was sacked.
133 *
134 * If the original is lost, there is no ambiguity. Otherwise
135 * we assume the original can be delayed up to aRTT + min_rtt.
136 * the aRTT term is bounded by the fast recovery or timeout,
137 * so it's at least one RTT (i.e., retransmission is at least
138 * an RTT later).
139 */
140 return;
141 }
142 tp->rack.advanced = 1;
143 tp->rack.rtt_us = rtt_us;
144 if (tcp_rack_sent_after(xmit_time, tp->rack.mstamp,
145 end_seq, tp->rack.end_seq)) {
146 tp->rack.mstamp = xmit_time;
147 tp->rack.end_seq = end_seq;
148 }
149 }
150
151 /* We have waited long enough to accommodate reordering. Mark the expired
152 * packets lost and retransmit them.
153 */
tcp_rack_reo_timeout(struct sock * sk)154 void tcp_rack_reo_timeout(struct sock *sk)
155 {
156 struct tcp_sock *tp = tcp_sk(sk);
157 u32 timeout, prior_inflight;
158
159 prior_inflight = tcp_packets_in_flight(tp);
160 tcp_rack_detect_loss(sk, &timeout);
161 if (prior_inflight != tcp_packets_in_flight(tp)) {
162 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Recovery) {
163 tcp_enter_recovery(sk, false);
164 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
165 tcp_cwnd_reduction(sk, 1, 0);
166 }
167 tcp_xmit_retransmit_queue(sk);
168 }
169 if (inet_csk(sk)->icsk_pending != ICSK_TIME_RETRANS)
170 tcp_rearm_rto(sk);
171 }
172
173 /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries.
174 *
175 * If DSACK is received, increment reo_wnd by min_rtt/4 (upper bounded
176 * by srtt), since there is possibility that spurious retransmission was
177 * due to reordering delay longer than reo_wnd.
178 *
179 * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16)
180 * no. of successful recoveries (accounts for full DSACK-based loss
181 * recovery undo). After that, reset it to default (min_rtt/4).
182 *
183 * At max, reo_wnd is incremented only once per rtt. So that the new
184 * DSACK on which we are reacting, is due to the spurious retx (approx)
185 * after the reo_wnd has been updated last time.
186 *
187 * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than
188 * absolute value to account for change in rtt.
189 */
tcp_rack_update_reo_wnd(struct sock * sk,struct rate_sample * rs)190 void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs)
191 {
192 struct tcp_sock *tp = tcp_sk(sk);
193
194 if ((READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
195 TCP_RACK_STATIC_REO_WND) ||
196 !rs->prior_delivered)
197 return;
198
199 /* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */
200 if (before(rs->prior_delivered, tp->rack.last_delivered))
201 tp->rack.dsack_seen = 0;
202
203 /* Adjust the reo_wnd if update is pending */
204 if (tp->rack.dsack_seen) {
205 tp->rack.reo_wnd_steps = min_t(u32, 0xFF,
206 tp->rack.reo_wnd_steps + 1);
207 tp->rack.dsack_seen = 0;
208 tp->rack.last_delivered = tp->delivered;
209 tp->rack.reo_wnd_persist = TCP_RACK_RECOVERY_THRESH;
210 } else if (!tp->rack.reo_wnd_persist) {
211 tp->rack.reo_wnd_steps = 1;
212 }
213 }
214
215 /* RFC6582 NewReno recovery for non-SACK connection. It simply retransmits
216 * the next unacked packet upon receiving
217 * a) three or more DUPACKs to start the fast recovery
218 * b) an ACK acknowledging new data during the fast recovery.
219 */
tcp_newreno_mark_lost(struct sock * sk,bool snd_una_advanced)220 void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced)
221 {
222 const u8 state = inet_csk(sk)->icsk_ca_state;
223 struct tcp_sock *tp = tcp_sk(sk);
224
225 if ((state < TCP_CA_Recovery && tp->sacked_out >= tp->reordering) ||
226 (state == TCP_CA_Recovery && snd_una_advanced)) {
227 struct sk_buff *skb = tcp_rtx_queue_head(sk);
228 u32 mss;
229
230 if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST)
231 return;
232
233 mss = tcp_skb_mss(skb);
234 if (tcp_skb_pcount(skb) > 1 && skb->len > mss)
235 tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
236 mss, mss, GFP_ATOMIC);
237
238 tcp_mark_skb_lost(sk, skb);
239 }
240 }
241