1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fscrypt.h>
16 #include <linux/fsnotify.h>
17 #include <linux/mount.h>
18 #include <linux/posix_acl.h>
19 #include <linux/prefetch.h>
20 #include <linux/buffer_head.h> /* for inode_has_buffers */
21 #include <linux/ratelimit.h>
22 #include <linux/list_lru.h>
23 #include <linux/iversion.h>
24 #include <linux/xpm.h>
25 #include <trace/events/writeback.h>
26 #include "internal.h"
27
28 /*
29 * Inode locking rules:
30 *
31 * inode->i_lock protects:
32 * inode->i_state, inode->i_hash, __iget()
33 * Inode LRU list locks protect:
34 * inode->i_sb->s_inode_lru, inode->i_lru
35 * inode->i_sb->s_inode_list_lock protects:
36 * inode->i_sb->s_inodes, inode->i_sb_list
37 * bdi->wb.list_lock protects:
38 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
39 * inode_hash_lock protects:
40 * inode_hashtable, inode->i_hash
41 *
42 * Lock ordering:
43 *
44 * inode->i_sb->s_inode_list_lock
45 * inode->i_lock
46 * Inode LRU list locks
47 *
48 * bdi->wb.list_lock
49 * inode->i_lock
50 *
51 * inode_hash_lock
52 * inode->i_sb->s_inode_list_lock
53 * inode->i_lock
54 *
55 * iunique_lock
56 * inode_hash_lock
57 */
58
59 static unsigned int i_hash_mask __read_mostly;
60 static unsigned int i_hash_shift __read_mostly;
61 static struct hlist_head *inode_hashtable __read_mostly;
62 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
63
64 /*
65 * Empty aops. Can be used for the cases where the user does not
66 * define any of the address_space operations.
67 */
68 const struct address_space_operations empty_aops = {
69 };
70 EXPORT_SYMBOL(empty_aops);
71
72 /*
73 * Statistics gathering..
74 */
75 struct inodes_stat_t inodes_stat;
76
77 static DEFINE_PER_CPU(unsigned long, nr_inodes);
78 static DEFINE_PER_CPU(unsigned long, nr_unused);
79
80 static struct kmem_cache *inode_cachep __read_mostly;
81
get_nr_inodes(void)82 static long get_nr_inodes(void)
83 {
84 int i;
85 long sum = 0;
86 for_each_possible_cpu(i)
87 sum += per_cpu(nr_inodes, i);
88 return sum < 0 ? 0 : sum;
89 }
90
get_nr_inodes_unused(void)91 static inline long get_nr_inodes_unused(void)
92 {
93 int i;
94 long sum = 0;
95 for_each_possible_cpu(i)
96 sum += per_cpu(nr_unused, i);
97 return sum < 0 ? 0 : sum;
98 }
99
get_nr_dirty_inodes(void)100 long get_nr_dirty_inodes(void)
101 {
102 /* not actually dirty inodes, but a wild approximation */
103 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
104 return nr_dirty > 0 ? nr_dirty : 0;
105 }
106
107 /*
108 * Handle nr_inode sysctl
109 */
110 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)111 int proc_nr_inodes(struct ctl_table *table, int write,
112 void *buffer, size_t *lenp, loff_t *ppos)
113 {
114 inodes_stat.nr_inodes = get_nr_inodes();
115 inodes_stat.nr_unused = get_nr_inodes_unused();
116 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
117 }
118 #endif
119
no_open(struct inode * inode,struct file * file)120 static int no_open(struct inode *inode, struct file *file)
121 {
122 return -ENXIO;
123 }
124
125 /**
126 * inode_init_always - perform inode structure initialisation
127 * @sb: superblock inode belongs to
128 * @inode: inode to initialise
129 *
130 * These are initializations that need to be done on every inode
131 * allocation as the fields are not initialised by slab allocation.
132 */
inode_init_always(struct super_block * sb,struct inode * inode)133 int inode_init_always(struct super_block *sb, struct inode *inode)
134 {
135 static const struct inode_operations empty_iops;
136 static const struct file_operations no_open_fops = {.open = no_open};
137 struct address_space *const mapping = &inode->i_data;
138
139 inode->i_sb = sb;
140 inode->i_blkbits = sb->s_blocksize_bits;
141 inode->i_flags = 0;
142 atomic64_set(&inode->i_sequence, 0);
143 atomic_set(&inode->i_count, 1);
144 inode->i_op = &empty_iops;
145 inode->i_fop = &no_open_fops;
146 inode->__i_nlink = 1;
147 inode->i_opflags = 0;
148 if (sb->s_xattr)
149 inode->i_opflags |= IOP_XATTR;
150 i_uid_write(inode, 0);
151 i_gid_write(inode, 0);
152 atomic_set(&inode->i_writecount, 0);
153 inode->i_size = 0;
154 inode->i_write_hint = WRITE_LIFE_NOT_SET;
155 inode->i_blocks = 0;
156 inode->i_bytes = 0;
157 inode->i_generation = 0;
158 inode->i_pipe = NULL;
159 inode->i_bdev = NULL;
160 inode->i_cdev = NULL;
161 inode->i_link = NULL;
162 inode->i_dir_seq = 0;
163 inode->i_rdev = 0;
164 inode->dirtied_when = 0;
165
166 #ifdef CONFIG_CGROUP_WRITEBACK
167 inode->i_wb_frn_winner = 0;
168 inode->i_wb_frn_avg_time = 0;
169 inode->i_wb_frn_history = 0;
170 #endif
171
172 spin_lock_init(&inode->i_lock);
173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174
175 init_rwsem(&inode->i_rwsem);
176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177
178 atomic_set(&inode->i_dio_count, 0);
179
180 mapping->a_ops = &empty_aops;
181 mapping->host = inode;
182 mapping->flags = 0;
183 if (sb->s_type->fs_flags & FS_THP_SUPPORT)
184 __set_bit(AS_THP_SUPPORT, &mapping->flags);
185 mapping->wb_err = 0;
186 atomic_set(&mapping->i_mmap_writable, 0);
187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
188 atomic_set(&mapping->nr_thps, 0);
189 #endif
190 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
191 mapping->private_data = NULL;
192 mapping->writeback_index = 0;
193 inode->i_private = NULL;
194 inode->i_mapping = mapping;
195 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
196 #ifdef CONFIG_FS_POSIX_ACL
197 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
198 #endif
199
200 #ifdef CONFIG_FSNOTIFY
201 inode->i_fsnotify_mask = 0;
202 #endif
203 inode->i_flctx = NULL;
204
205 if (unlikely(security_inode_alloc(inode)))
206 return -ENOMEM;
207 this_cpu_inc(nr_inodes);
208
209 return 0;
210 }
211 EXPORT_SYMBOL(inode_init_always);
212
free_inode_nonrcu(struct inode * inode)213 void free_inode_nonrcu(struct inode *inode)
214 {
215 kmem_cache_free(inode_cachep, inode);
216 }
217 EXPORT_SYMBOL(free_inode_nonrcu);
218
i_callback(struct rcu_head * head)219 static void i_callback(struct rcu_head *head)
220 {
221 struct inode *inode = container_of(head, struct inode, i_rcu);
222 if (inode->free_inode)
223 inode->free_inode(inode);
224 else
225 free_inode_nonrcu(inode);
226 }
227
alloc_inode(struct super_block * sb)228 static struct inode *alloc_inode(struct super_block *sb)
229 {
230 const struct super_operations *ops = sb->s_op;
231 struct inode *inode;
232
233 if (ops->alloc_inode)
234 inode = ops->alloc_inode(sb);
235 else
236 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
237
238 if (!inode)
239 return NULL;
240
241 if (unlikely(inode_init_always(sb, inode))) {
242 if (ops->destroy_inode) {
243 ops->destroy_inode(inode);
244 if (!ops->free_inode)
245 return NULL;
246 }
247 inode->free_inode = ops->free_inode;
248 i_callback(&inode->i_rcu);
249 return NULL;
250 }
251
252 return inode;
253 }
254
__destroy_inode(struct inode * inode)255 void __destroy_inode(struct inode *inode)
256 {
257 BUG_ON(inode_has_buffers(inode));
258 inode_detach_wb(inode);
259 security_inode_free(inode);
260 fsnotify_inode_delete(inode);
261 locks_free_lock_context(inode);
262 xpm_delete_cache_node_hook(inode);
263 if (!inode->i_nlink) {
264 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
265 atomic_long_dec(&inode->i_sb->s_remove_count);
266 }
267
268 #ifdef CONFIG_FS_POSIX_ACL
269 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
270 posix_acl_release(inode->i_acl);
271 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
272 posix_acl_release(inode->i_default_acl);
273 #endif
274 this_cpu_dec(nr_inodes);
275 }
276 EXPORT_SYMBOL(__destroy_inode);
277
destroy_inode(struct inode * inode)278 static void destroy_inode(struct inode *inode)
279 {
280 const struct super_operations *ops = inode->i_sb->s_op;
281
282 BUG_ON(!list_empty(&inode->i_lru));
283 __destroy_inode(inode);
284 if (ops->destroy_inode) {
285 ops->destroy_inode(inode);
286 if (!ops->free_inode)
287 return;
288 }
289 inode->free_inode = ops->free_inode;
290 call_rcu(&inode->i_rcu, i_callback);
291 }
292
293 /**
294 * drop_nlink - directly drop an inode's link count
295 * @inode: inode
296 *
297 * This is a low-level filesystem helper to replace any
298 * direct filesystem manipulation of i_nlink. In cases
299 * where we are attempting to track writes to the
300 * filesystem, a decrement to zero means an imminent
301 * write when the file is truncated and actually unlinked
302 * on the filesystem.
303 */
drop_nlink(struct inode * inode)304 void drop_nlink(struct inode *inode)
305 {
306 WARN_ON(inode->i_nlink == 0);
307 inode->__i_nlink--;
308 if (!inode->i_nlink)
309 atomic_long_inc(&inode->i_sb->s_remove_count);
310 }
311 EXPORT_SYMBOL(drop_nlink);
312
313 /**
314 * clear_nlink - directly zero an inode's link count
315 * @inode: inode
316 *
317 * This is a low-level filesystem helper to replace any
318 * direct filesystem manipulation of i_nlink. See
319 * drop_nlink() for why we care about i_nlink hitting zero.
320 */
clear_nlink(struct inode * inode)321 void clear_nlink(struct inode *inode)
322 {
323 if (inode->i_nlink) {
324 inode->__i_nlink = 0;
325 atomic_long_inc(&inode->i_sb->s_remove_count);
326 }
327 }
328 EXPORT_SYMBOL(clear_nlink);
329
330 /**
331 * set_nlink - directly set an inode's link count
332 * @inode: inode
333 * @nlink: new nlink (should be non-zero)
334 *
335 * This is a low-level filesystem helper to replace any
336 * direct filesystem manipulation of i_nlink.
337 */
set_nlink(struct inode * inode,unsigned int nlink)338 void set_nlink(struct inode *inode, unsigned int nlink)
339 {
340 if (!nlink) {
341 clear_nlink(inode);
342 } else {
343 /* Yes, some filesystems do change nlink from zero to one */
344 if (inode->i_nlink == 0)
345 atomic_long_dec(&inode->i_sb->s_remove_count);
346
347 inode->__i_nlink = nlink;
348 }
349 }
350 EXPORT_SYMBOL(set_nlink);
351
352 /**
353 * inc_nlink - directly increment an inode's link count
354 * @inode: inode
355 *
356 * This is a low-level filesystem helper to replace any
357 * direct filesystem manipulation of i_nlink. Currently,
358 * it is only here for parity with dec_nlink().
359 */
inc_nlink(struct inode * inode)360 void inc_nlink(struct inode *inode)
361 {
362 if (unlikely(inode->i_nlink == 0)) {
363 WARN_ON(!(inode->i_state & I_LINKABLE));
364 atomic_long_dec(&inode->i_sb->s_remove_count);
365 }
366
367 inode->__i_nlink++;
368 }
369 EXPORT_SYMBOL(inc_nlink);
370
__address_space_init_once(struct address_space * mapping)371 static void __address_space_init_once(struct address_space *mapping)
372 {
373 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
374 init_rwsem(&mapping->i_mmap_rwsem);
375 INIT_LIST_HEAD(&mapping->private_list);
376 spin_lock_init(&mapping->private_lock);
377 mapping->i_mmap = RB_ROOT_CACHED;
378 }
379
address_space_init_once(struct address_space * mapping)380 void address_space_init_once(struct address_space *mapping)
381 {
382 memset(mapping, 0, sizeof(*mapping));
383 __address_space_init_once(mapping);
384 }
385 EXPORT_SYMBOL(address_space_init_once);
386
387 /*
388 * These are initializations that only need to be done
389 * once, because the fields are idempotent across use
390 * of the inode, so let the slab aware of that.
391 */
inode_init_once(struct inode * inode)392 void inode_init_once(struct inode *inode)
393 {
394 memset(inode, 0, sizeof(*inode));
395 INIT_HLIST_NODE(&inode->i_hash);
396 INIT_LIST_HEAD(&inode->i_devices);
397 INIT_LIST_HEAD(&inode->i_io_list);
398 INIT_LIST_HEAD(&inode->i_wb_list);
399 INIT_LIST_HEAD(&inode->i_lru);
400 __address_space_init_once(&inode->i_data);
401 i_size_ordered_init(inode);
402 }
403 EXPORT_SYMBOL(inode_init_once);
404
init_once(void * foo)405 static void init_once(void *foo)
406 {
407 struct inode *inode = (struct inode *) foo;
408
409 inode_init_once(inode);
410 }
411
412 /*
413 * inode->i_lock must be held
414 */
__iget(struct inode * inode)415 void __iget(struct inode *inode)
416 {
417 atomic_inc(&inode->i_count);
418 }
419
420 /*
421 * get additional reference to inode; caller must already hold one.
422 */
ihold(struct inode * inode)423 void ihold(struct inode *inode)
424 {
425 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
426 }
427 EXPORT_SYMBOL(ihold);
428
inode_lru_list_add(struct inode * inode)429 static void inode_lru_list_add(struct inode *inode)
430 {
431 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
432 this_cpu_inc(nr_unused);
433 else
434 inode->i_state |= I_REFERENCED;
435 }
436
437 /*
438 * Add inode to LRU if needed (inode is unused and clean).
439 *
440 * Needs inode->i_lock held.
441 */
inode_add_lru(struct inode * inode)442 void inode_add_lru(struct inode *inode)
443 {
444 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
445 I_FREEING | I_WILL_FREE)) &&
446 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
447 inode_lru_list_add(inode);
448 }
449
450
inode_lru_list_del(struct inode * inode)451 static void inode_lru_list_del(struct inode *inode)
452 {
453
454 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
455 this_cpu_dec(nr_unused);
456 }
457
458 /**
459 * inode_sb_list_add - add inode to the superblock list of inodes
460 * @inode: inode to add
461 */
inode_sb_list_add(struct inode * inode)462 void inode_sb_list_add(struct inode *inode)
463 {
464 spin_lock(&inode->i_sb->s_inode_list_lock);
465 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
466 spin_unlock(&inode->i_sb->s_inode_list_lock);
467 }
468 EXPORT_SYMBOL_GPL(inode_sb_list_add);
469
inode_sb_list_del(struct inode * inode)470 static inline void inode_sb_list_del(struct inode *inode)
471 {
472 if (!list_empty(&inode->i_sb_list)) {
473 spin_lock(&inode->i_sb->s_inode_list_lock);
474 list_del_init(&inode->i_sb_list);
475 spin_unlock(&inode->i_sb->s_inode_list_lock);
476 }
477 }
478
hash(struct super_block * sb,unsigned long hashval)479 static unsigned long hash(struct super_block *sb, unsigned long hashval)
480 {
481 unsigned long tmp;
482
483 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
484 L1_CACHE_BYTES;
485 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
486 return tmp & i_hash_mask;
487 }
488
489 /**
490 * __insert_inode_hash - hash an inode
491 * @inode: unhashed inode
492 * @hashval: unsigned long value used to locate this object in the
493 * inode_hashtable.
494 *
495 * Add an inode to the inode hash for this superblock.
496 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)497 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
498 {
499 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
500
501 spin_lock(&inode_hash_lock);
502 spin_lock(&inode->i_lock);
503 hlist_add_head_rcu(&inode->i_hash, b);
504 spin_unlock(&inode->i_lock);
505 spin_unlock(&inode_hash_lock);
506 }
507 EXPORT_SYMBOL(__insert_inode_hash);
508
509 /**
510 * __remove_inode_hash - remove an inode from the hash
511 * @inode: inode to unhash
512 *
513 * Remove an inode from the superblock.
514 */
__remove_inode_hash(struct inode * inode)515 void __remove_inode_hash(struct inode *inode)
516 {
517 spin_lock(&inode_hash_lock);
518 spin_lock(&inode->i_lock);
519 hlist_del_init_rcu(&inode->i_hash);
520 spin_unlock(&inode->i_lock);
521 spin_unlock(&inode_hash_lock);
522 }
523 EXPORT_SYMBOL(__remove_inode_hash);
524
clear_inode(struct inode * inode)525 void clear_inode(struct inode *inode)
526 {
527 /*
528 * We have to cycle the i_pages lock here because reclaim can be in the
529 * process of removing the last page (in __delete_from_page_cache())
530 * and we must not free the mapping under it.
531 */
532 xa_lock_irq(&inode->i_data.i_pages);
533 BUG_ON(inode->i_data.nrpages);
534 BUG_ON(inode->i_data.nrexceptional);
535 xa_unlock_irq(&inode->i_data.i_pages);
536 BUG_ON(!list_empty(&inode->i_data.private_list));
537 BUG_ON(!(inode->i_state & I_FREEING));
538 BUG_ON(inode->i_state & I_CLEAR);
539 BUG_ON(!list_empty(&inode->i_wb_list));
540 /* don't need i_lock here, no concurrent mods to i_state */
541 inode->i_state = I_FREEING | I_CLEAR;
542 }
543 EXPORT_SYMBOL(clear_inode);
544
545 /*
546 * Free the inode passed in, removing it from the lists it is still connected
547 * to. We remove any pages still attached to the inode and wait for any IO that
548 * is still in progress before finally destroying the inode.
549 *
550 * An inode must already be marked I_FREEING so that we avoid the inode being
551 * moved back onto lists if we race with other code that manipulates the lists
552 * (e.g. writeback_single_inode). The caller is responsible for setting this.
553 *
554 * An inode must already be removed from the LRU list before being evicted from
555 * the cache. This should occur atomically with setting the I_FREEING state
556 * flag, so no inodes here should ever be on the LRU when being evicted.
557 */
evict(struct inode * inode)558 static void evict(struct inode *inode)
559 {
560 const struct super_operations *op = inode->i_sb->s_op;
561
562 BUG_ON(!(inode->i_state & I_FREEING));
563 BUG_ON(!list_empty(&inode->i_lru));
564
565 if (!list_empty(&inode->i_io_list))
566 inode_io_list_del(inode);
567
568 inode_sb_list_del(inode);
569
570 /*
571 * Wait for flusher thread to be done with the inode so that filesystem
572 * does not start destroying it while writeback is still running. Since
573 * the inode has I_FREEING set, flusher thread won't start new work on
574 * the inode. We just have to wait for running writeback to finish.
575 */
576 inode_wait_for_writeback(inode);
577
578 if (op->evict_inode) {
579 op->evict_inode(inode);
580 } else {
581 truncate_inode_pages_final(&inode->i_data);
582 clear_inode(inode);
583 }
584 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
585 bd_forget(inode);
586 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
587 cd_forget(inode);
588
589 remove_inode_hash(inode);
590
591 spin_lock(&inode->i_lock);
592 wake_up_bit(&inode->i_state, __I_NEW);
593 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
594 spin_unlock(&inode->i_lock);
595
596 destroy_inode(inode);
597 }
598
599 /*
600 * dispose_list - dispose of the contents of a local list
601 * @head: the head of the list to free
602 *
603 * Dispose-list gets a local list with local inodes in it, so it doesn't
604 * need to worry about list corruption and SMP locks.
605 */
dispose_list(struct list_head * head)606 static void dispose_list(struct list_head *head)
607 {
608 while (!list_empty(head)) {
609 struct inode *inode;
610
611 inode = list_first_entry(head, struct inode, i_lru);
612 list_del_init(&inode->i_lru);
613
614 evict(inode);
615 cond_resched();
616 }
617 }
618
619 /**
620 * evict_inodes - evict all evictable inodes for a superblock
621 * @sb: superblock to operate on
622 *
623 * Make sure that no inodes with zero refcount are retained. This is
624 * called by superblock shutdown after having SB_ACTIVE flag removed,
625 * so any inode reaching zero refcount during or after that call will
626 * be immediately evicted.
627 */
evict_inodes(struct super_block * sb)628 void evict_inodes(struct super_block *sb)
629 {
630 struct inode *inode, *next;
631 LIST_HEAD(dispose);
632
633 again:
634 spin_lock(&sb->s_inode_list_lock);
635 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
636 if (atomic_read(&inode->i_count))
637 continue;
638
639 spin_lock(&inode->i_lock);
640 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
641 spin_unlock(&inode->i_lock);
642 continue;
643 }
644
645 inode->i_state |= I_FREEING;
646 inode_lru_list_del(inode);
647 spin_unlock(&inode->i_lock);
648 list_add(&inode->i_lru, &dispose);
649
650 /*
651 * We can have a ton of inodes to evict at unmount time given
652 * enough memory, check to see if we need to go to sleep for a
653 * bit so we don't livelock.
654 */
655 if (need_resched()) {
656 spin_unlock(&sb->s_inode_list_lock);
657 cond_resched();
658 dispose_list(&dispose);
659 goto again;
660 }
661 }
662 spin_unlock(&sb->s_inode_list_lock);
663
664 dispose_list(&dispose);
665 }
666 EXPORT_SYMBOL_GPL(evict_inodes);
667
668 /**
669 * invalidate_inodes - attempt to free all inodes on a superblock
670 * @sb: superblock to operate on
671 * @kill_dirty: flag to guide handling of dirty inodes
672 *
673 * Attempts to free all inodes for a given superblock. If there were any
674 * busy inodes return a non-zero value, else zero.
675 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
676 * them as busy.
677 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)678 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
679 {
680 int busy = 0;
681 struct inode *inode, *next;
682 LIST_HEAD(dispose);
683
684 again:
685 spin_lock(&sb->s_inode_list_lock);
686 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
687 spin_lock(&inode->i_lock);
688 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
689 spin_unlock(&inode->i_lock);
690 continue;
691 }
692 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
693 spin_unlock(&inode->i_lock);
694 busy = 1;
695 continue;
696 }
697 if (atomic_read(&inode->i_count)) {
698 spin_unlock(&inode->i_lock);
699 busy = 1;
700 continue;
701 }
702
703 inode->i_state |= I_FREEING;
704 inode_lru_list_del(inode);
705 spin_unlock(&inode->i_lock);
706 list_add(&inode->i_lru, &dispose);
707 if (need_resched()) {
708 spin_unlock(&sb->s_inode_list_lock);
709 cond_resched();
710 dispose_list(&dispose);
711 goto again;
712 }
713 }
714 spin_unlock(&sb->s_inode_list_lock);
715
716 dispose_list(&dispose);
717
718 return busy;
719 }
720
721 /*
722 * Isolate the inode from the LRU in preparation for freeing it.
723 *
724 * Any inodes which are pinned purely because of attached pagecache have their
725 * pagecache removed. If the inode has metadata buffers attached to
726 * mapping->private_list then try to remove them.
727 *
728 * If the inode has the I_REFERENCED flag set, then it means that it has been
729 * used recently - the flag is set in iput_final(). When we encounter such an
730 * inode, clear the flag and move it to the back of the LRU so it gets another
731 * pass through the LRU before it gets reclaimed. This is necessary because of
732 * the fact we are doing lazy LRU updates to minimise lock contention so the
733 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
734 * with this flag set because they are the inodes that are out of order.
735 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)736 static enum lru_status inode_lru_isolate(struct list_head *item,
737 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
738 {
739 struct list_head *freeable = arg;
740 struct inode *inode = container_of(item, struct inode, i_lru);
741
742 /*
743 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
744 * If we fail to get the lock, just skip it.
745 */
746 if (!spin_trylock(&inode->i_lock))
747 return LRU_SKIP;
748
749 /*
750 * Referenced or dirty inodes are still in use. Give them another pass
751 * through the LRU as we canot reclaim them now.
752 */
753 if (atomic_read(&inode->i_count) ||
754 (inode->i_state & ~I_REFERENCED)) {
755 list_lru_isolate(lru, &inode->i_lru);
756 spin_unlock(&inode->i_lock);
757 this_cpu_dec(nr_unused);
758 return LRU_REMOVED;
759 }
760
761 /* recently referenced inodes get one more pass */
762 if (inode->i_state & I_REFERENCED) {
763 inode->i_state &= ~I_REFERENCED;
764 spin_unlock(&inode->i_lock);
765 return LRU_ROTATE;
766 }
767
768 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
769 __iget(inode);
770 spin_unlock(&inode->i_lock);
771 spin_unlock(lru_lock);
772 if (remove_inode_buffers(inode)) {
773 unsigned long reap;
774 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
775 if (current_is_kswapd())
776 __count_vm_events(KSWAPD_INODESTEAL, reap);
777 else
778 __count_vm_events(PGINODESTEAL, reap);
779 if (current->reclaim_state)
780 current->reclaim_state->reclaimed_slab += reap;
781 }
782 iput(inode);
783 spin_lock(lru_lock);
784 return LRU_RETRY;
785 }
786
787 WARN_ON(inode->i_state & I_NEW);
788 inode->i_state |= I_FREEING;
789 list_lru_isolate_move(lru, &inode->i_lru, freeable);
790 spin_unlock(&inode->i_lock);
791
792 this_cpu_dec(nr_unused);
793 return LRU_REMOVED;
794 }
795
796 /*
797 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
798 * This is called from the superblock shrinker function with a number of inodes
799 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
800 * then are freed outside inode_lock by dispose_list().
801 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)802 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
803 {
804 LIST_HEAD(freeable);
805 long freed;
806
807 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
808 inode_lru_isolate, &freeable);
809 dispose_list(&freeable);
810 return freed;
811 }
812
813 static void __wait_on_freeing_inode(struct inode *inode);
814 /*
815 * Called with the inode lock held.
816 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)817 static struct inode *find_inode(struct super_block *sb,
818 struct hlist_head *head,
819 int (*test)(struct inode *, void *),
820 void *data)
821 {
822 struct inode *inode = NULL;
823
824 repeat:
825 hlist_for_each_entry(inode, head, i_hash) {
826 if (inode->i_sb != sb)
827 continue;
828 if (!test(inode, data))
829 continue;
830 spin_lock(&inode->i_lock);
831 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
832 __wait_on_freeing_inode(inode);
833 goto repeat;
834 }
835 if (unlikely(inode->i_state & I_CREATING)) {
836 spin_unlock(&inode->i_lock);
837 return ERR_PTR(-ESTALE);
838 }
839 __iget(inode);
840 spin_unlock(&inode->i_lock);
841 return inode;
842 }
843 return NULL;
844 }
845
846 /*
847 * find_inode_fast is the fast path version of find_inode, see the comment at
848 * iget_locked for details.
849 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)850 static struct inode *find_inode_fast(struct super_block *sb,
851 struct hlist_head *head, unsigned long ino)
852 {
853 struct inode *inode = NULL;
854
855 repeat:
856 hlist_for_each_entry(inode, head, i_hash) {
857 if (inode->i_ino != ino)
858 continue;
859 if (inode->i_sb != sb)
860 continue;
861 spin_lock(&inode->i_lock);
862 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
863 __wait_on_freeing_inode(inode);
864 goto repeat;
865 }
866 if (unlikely(inode->i_state & I_CREATING)) {
867 spin_unlock(&inode->i_lock);
868 return ERR_PTR(-ESTALE);
869 }
870 __iget(inode);
871 spin_unlock(&inode->i_lock);
872 return inode;
873 }
874 return NULL;
875 }
876
877 /*
878 * Each cpu owns a range of LAST_INO_BATCH numbers.
879 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
880 * to renew the exhausted range.
881 *
882 * This does not significantly increase overflow rate because every CPU can
883 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
884 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
885 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
886 * overflow rate by 2x, which does not seem too significant.
887 *
888 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
889 * error if st_ino won't fit in target struct field. Use 32bit counter
890 * here to attempt to avoid that.
891 */
892 #define LAST_INO_BATCH 1024
893 static DEFINE_PER_CPU(unsigned int, last_ino);
894
get_next_ino(void)895 unsigned int get_next_ino(void)
896 {
897 unsigned int *p = &get_cpu_var(last_ino);
898 unsigned int res = *p;
899
900 #ifdef CONFIG_SMP
901 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
902 static atomic_t shared_last_ino;
903 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
904
905 res = next - LAST_INO_BATCH;
906 }
907 #endif
908
909 res++;
910 /* get_next_ino should not provide a 0 inode number */
911 if (unlikely(!res))
912 res++;
913 *p = res;
914 put_cpu_var(last_ino);
915 return res;
916 }
917 EXPORT_SYMBOL(get_next_ino);
918
919 /**
920 * new_inode_pseudo - obtain an inode
921 * @sb: superblock
922 *
923 * Allocates a new inode for given superblock.
924 * Inode wont be chained in superblock s_inodes list
925 * This means :
926 * - fs can't be unmount
927 * - quotas, fsnotify, writeback can't work
928 */
new_inode_pseudo(struct super_block * sb)929 struct inode *new_inode_pseudo(struct super_block *sb)
930 {
931 struct inode *inode = alloc_inode(sb);
932
933 if (inode) {
934 spin_lock(&inode->i_lock);
935 inode->i_state = 0;
936 spin_unlock(&inode->i_lock);
937 INIT_LIST_HEAD(&inode->i_sb_list);
938 }
939 return inode;
940 }
941
942 /**
943 * new_inode - obtain an inode
944 * @sb: superblock
945 *
946 * Allocates a new inode for given superblock. The default gfp_mask
947 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
948 * If HIGHMEM pages are unsuitable or it is known that pages allocated
949 * for the page cache are not reclaimable or migratable,
950 * mapping_set_gfp_mask() must be called with suitable flags on the
951 * newly created inode's mapping
952 *
953 */
new_inode(struct super_block * sb)954 struct inode *new_inode(struct super_block *sb)
955 {
956 struct inode *inode;
957
958 spin_lock_prefetch(&sb->s_inode_list_lock);
959
960 inode = new_inode_pseudo(sb);
961 if (inode)
962 inode_sb_list_add(inode);
963 return inode;
964 }
965 EXPORT_SYMBOL(new_inode);
966
967 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)968 void lockdep_annotate_inode_mutex_key(struct inode *inode)
969 {
970 if (S_ISDIR(inode->i_mode)) {
971 struct file_system_type *type = inode->i_sb->s_type;
972
973 /* Set new key only if filesystem hasn't already changed it */
974 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
975 /*
976 * ensure nobody is actually holding i_mutex
977 */
978 // mutex_destroy(&inode->i_mutex);
979 init_rwsem(&inode->i_rwsem);
980 lockdep_set_class(&inode->i_rwsem,
981 &type->i_mutex_dir_key);
982 }
983 }
984 }
985 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
986 #endif
987
988 /**
989 * unlock_new_inode - clear the I_NEW state and wake up any waiters
990 * @inode: new inode to unlock
991 *
992 * Called when the inode is fully initialised to clear the new state of the
993 * inode and wake up anyone waiting for the inode to finish initialisation.
994 */
unlock_new_inode(struct inode * inode)995 void unlock_new_inode(struct inode *inode)
996 {
997 lockdep_annotate_inode_mutex_key(inode);
998 spin_lock(&inode->i_lock);
999 WARN_ON(!(inode->i_state & I_NEW));
1000 inode->i_state &= ~I_NEW & ~I_CREATING;
1001 smp_mb();
1002 wake_up_bit(&inode->i_state, __I_NEW);
1003 spin_unlock(&inode->i_lock);
1004 }
1005 EXPORT_SYMBOL(unlock_new_inode);
1006
discard_new_inode(struct inode * inode)1007 void discard_new_inode(struct inode *inode)
1008 {
1009 lockdep_annotate_inode_mutex_key(inode);
1010 spin_lock(&inode->i_lock);
1011 WARN_ON(!(inode->i_state & I_NEW));
1012 inode->i_state &= ~I_NEW;
1013 smp_mb();
1014 wake_up_bit(&inode->i_state, __I_NEW);
1015 spin_unlock(&inode->i_lock);
1016 iput(inode);
1017 }
1018 EXPORT_SYMBOL(discard_new_inode);
1019
1020 /**
1021 * lock_two_inodes - lock two inodes (may be regular files but also dirs)
1022 *
1023 * Lock any non-NULL argument. The caller must make sure that if he is passing
1024 * in two directories, one is not ancestor of the other. Zero, one or two
1025 * objects may be locked by this function.
1026 *
1027 * @inode1: first inode to lock
1028 * @inode2: second inode to lock
1029 * @subclass1: inode lock subclass for the first lock obtained
1030 * @subclass2: inode lock subclass for the second lock obtained
1031 */
lock_two_inodes(struct inode * inode1,struct inode * inode2,unsigned subclass1,unsigned subclass2)1032 void lock_two_inodes(struct inode *inode1, struct inode *inode2,
1033 unsigned subclass1, unsigned subclass2)
1034 {
1035 if (!inode1 || !inode2) {
1036 /*
1037 * Make sure @subclass1 will be used for the acquired lock.
1038 * This is not strictly necessary (no current caller cares) but
1039 * let's keep things consistent.
1040 */
1041 if (!inode1)
1042 swap(inode1, inode2);
1043 goto lock;
1044 }
1045
1046 /*
1047 * If one object is directory and the other is not, we must make sure
1048 * to lock directory first as the other object may be its child.
1049 */
1050 if (S_ISDIR(inode2->i_mode) == S_ISDIR(inode1->i_mode)) {
1051 if (inode1 > inode2)
1052 swap(inode1, inode2);
1053 } else if (!S_ISDIR(inode1->i_mode))
1054 swap(inode1, inode2);
1055 lock:
1056 if (inode1)
1057 inode_lock_nested(inode1, subclass1);
1058 if (inode2 && inode2 != inode1)
1059 inode_lock_nested(inode2, subclass2);
1060 }
1061
1062 /**
1063 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1064 *
1065 * Lock any non-NULL argument that is not a directory.
1066 * Zero, one or two objects may be locked by this function.
1067 *
1068 * @inode1: first inode to lock
1069 * @inode2: second inode to lock
1070 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1071 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1072 {
1073 if (inode1 > inode2)
1074 swap(inode1, inode2);
1075
1076 if (inode1 && !S_ISDIR(inode1->i_mode))
1077 inode_lock(inode1);
1078 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1079 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1080 }
1081 EXPORT_SYMBOL(lock_two_nondirectories);
1082
1083 /**
1084 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1085 * @inode1: first inode to unlock
1086 * @inode2: second inode to unlock
1087 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1088 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1089 {
1090 if (inode1 && !S_ISDIR(inode1->i_mode))
1091 inode_unlock(inode1);
1092 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1093 inode_unlock(inode2);
1094 }
1095 EXPORT_SYMBOL(unlock_two_nondirectories);
1096
1097 /**
1098 * inode_insert5 - obtain an inode from a mounted file system
1099 * @inode: pre-allocated inode to use for insert to cache
1100 * @hashval: hash value (usually inode number) to get
1101 * @test: callback used for comparisons between inodes
1102 * @set: callback used to initialize a new struct inode
1103 * @data: opaque data pointer to pass to @test and @set
1104 *
1105 * Search for the inode specified by @hashval and @data in the inode cache,
1106 * and if present it is return it with an increased reference count. This is
1107 * a variant of iget5_locked() for callers that don't want to fail on memory
1108 * allocation of inode.
1109 *
1110 * If the inode is not in cache, insert the pre-allocated inode to cache and
1111 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1112 * to fill it in before unlocking it via unlock_new_inode().
1113 *
1114 * Note both @test and @set are called with the inode_hash_lock held, so can't
1115 * sleep.
1116 */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1117 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1118 int (*test)(struct inode *, void *),
1119 int (*set)(struct inode *, void *), void *data)
1120 {
1121 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1122 struct inode *old;
1123 bool creating = inode->i_state & I_CREATING;
1124
1125 again:
1126 spin_lock(&inode_hash_lock);
1127 old = find_inode(inode->i_sb, head, test, data);
1128 if (unlikely(old)) {
1129 /*
1130 * Uhhuh, somebody else created the same inode under us.
1131 * Use the old inode instead of the preallocated one.
1132 */
1133 spin_unlock(&inode_hash_lock);
1134 if (IS_ERR(old))
1135 return NULL;
1136 wait_on_inode(old);
1137 if (unlikely(inode_unhashed(old))) {
1138 iput(old);
1139 goto again;
1140 }
1141 return old;
1142 }
1143
1144 if (set && unlikely(set(inode, data))) {
1145 inode = NULL;
1146 goto unlock;
1147 }
1148
1149 /*
1150 * Return the locked inode with I_NEW set, the
1151 * caller is responsible for filling in the contents
1152 */
1153 spin_lock(&inode->i_lock);
1154 inode->i_state |= I_NEW;
1155 hlist_add_head_rcu(&inode->i_hash, head);
1156 spin_unlock(&inode->i_lock);
1157 if (!creating)
1158 inode_sb_list_add(inode);
1159 unlock:
1160 spin_unlock(&inode_hash_lock);
1161
1162 return inode;
1163 }
1164 EXPORT_SYMBOL(inode_insert5);
1165
1166 /**
1167 * iget5_locked - obtain an inode from a mounted file system
1168 * @sb: super block of file system
1169 * @hashval: hash value (usually inode number) to get
1170 * @test: callback used for comparisons between inodes
1171 * @set: callback used to initialize a new struct inode
1172 * @data: opaque data pointer to pass to @test and @set
1173 *
1174 * Search for the inode specified by @hashval and @data in the inode cache,
1175 * and if present it is return it with an increased reference count. This is
1176 * a generalized version of iget_locked() for file systems where the inode
1177 * number is not sufficient for unique identification of an inode.
1178 *
1179 * If the inode is not in cache, allocate a new inode and return it locked,
1180 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1181 * before unlocking it via unlock_new_inode().
1182 *
1183 * Note both @test and @set are called with the inode_hash_lock held, so can't
1184 * sleep.
1185 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1186 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1187 int (*test)(struct inode *, void *),
1188 int (*set)(struct inode *, void *), void *data)
1189 {
1190 struct inode *inode = ilookup5(sb, hashval, test, data);
1191
1192 if (!inode) {
1193 struct inode *new = alloc_inode(sb);
1194
1195 if (new) {
1196 new->i_state = 0;
1197 inode = inode_insert5(new, hashval, test, set, data);
1198 if (unlikely(inode != new))
1199 destroy_inode(new);
1200 }
1201 }
1202 return inode;
1203 }
1204 EXPORT_SYMBOL(iget5_locked);
1205
1206 /**
1207 * iget_locked - obtain an inode from a mounted file system
1208 * @sb: super block of file system
1209 * @ino: inode number to get
1210 *
1211 * Search for the inode specified by @ino in the inode cache and if present
1212 * return it with an increased reference count. This is for file systems
1213 * where the inode number is sufficient for unique identification of an inode.
1214 *
1215 * If the inode is not in cache, allocate a new inode and return it locked,
1216 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1217 * before unlocking it via unlock_new_inode().
1218 */
iget_locked(struct super_block * sb,unsigned long ino)1219 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1220 {
1221 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1222 struct inode *inode;
1223 again:
1224 spin_lock(&inode_hash_lock);
1225 inode = find_inode_fast(sb, head, ino);
1226 spin_unlock(&inode_hash_lock);
1227 if (inode) {
1228 if (IS_ERR(inode))
1229 return NULL;
1230 wait_on_inode(inode);
1231 if (unlikely(inode_unhashed(inode))) {
1232 iput(inode);
1233 goto again;
1234 }
1235 return inode;
1236 }
1237
1238 inode = alloc_inode(sb);
1239 if (inode) {
1240 struct inode *old;
1241
1242 spin_lock(&inode_hash_lock);
1243 /* We released the lock, so.. */
1244 old = find_inode_fast(sb, head, ino);
1245 if (!old) {
1246 inode->i_ino = ino;
1247 spin_lock(&inode->i_lock);
1248 inode->i_state = I_NEW;
1249 hlist_add_head_rcu(&inode->i_hash, head);
1250 spin_unlock(&inode->i_lock);
1251 inode_sb_list_add(inode);
1252 spin_unlock(&inode_hash_lock);
1253
1254 /* Return the locked inode with I_NEW set, the
1255 * caller is responsible for filling in the contents
1256 */
1257 return inode;
1258 }
1259
1260 /*
1261 * Uhhuh, somebody else created the same inode under
1262 * us. Use the old inode instead of the one we just
1263 * allocated.
1264 */
1265 spin_unlock(&inode_hash_lock);
1266 destroy_inode(inode);
1267 if (IS_ERR(old))
1268 return NULL;
1269 inode = old;
1270 wait_on_inode(inode);
1271 if (unlikely(inode_unhashed(inode))) {
1272 iput(inode);
1273 goto again;
1274 }
1275 }
1276 return inode;
1277 }
1278 EXPORT_SYMBOL(iget_locked);
1279
1280 /*
1281 * search the inode cache for a matching inode number.
1282 * If we find one, then the inode number we are trying to
1283 * allocate is not unique and so we should not use it.
1284 *
1285 * Returns 1 if the inode number is unique, 0 if it is not.
1286 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1287 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1288 {
1289 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1290 struct inode *inode;
1291
1292 hlist_for_each_entry_rcu(inode, b, i_hash) {
1293 if (inode->i_ino == ino && inode->i_sb == sb)
1294 return 0;
1295 }
1296 return 1;
1297 }
1298
1299 /**
1300 * iunique - get a unique inode number
1301 * @sb: superblock
1302 * @max_reserved: highest reserved inode number
1303 *
1304 * Obtain an inode number that is unique on the system for a given
1305 * superblock. This is used by file systems that have no natural
1306 * permanent inode numbering system. An inode number is returned that
1307 * is higher than the reserved limit but unique.
1308 *
1309 * BUGS:
1310 * With a large number of inodes live on the file system this function
1311 * currently becomes quite slow.
1312 */
iunique(struct super_block * sb,ino_t max_reserved)1313 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1314 {
1315 /*
1316 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1317 * error if st_ino won't fit in target struct field. Use 32bit counter
1318 * here to attempt to avoid that.
1319 */
1320 static DEFINE_SPINLOCK(iunique_lock);
1321 static unsigned int counter;
1322 ino_t res;
1323
1324 rcu_read_lock();
1325 spin_lock(&iunique_lock);
1326 do {
1327 if (counter <= max_reserved)
1328 counter = max_reserved + 1;
1329 res = counter++;
1330 } while (!test_inode_iunique(sb, res));
1331 spin_unlock(&iunique_lock);
1332 rcu_read_unlock();
1333
1334 return res;
1335 }
1336 EXPORT_SYMBOL(iunique);
1337
igrab(struct inode * inode)1338 struct inode *igrab(struct inode *inode)
1339 {
1340 spin_lock(&inode->i_lock);
1341 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1342 __iget(inode);
1343 spin_unlock(&inode->i_lock);
1344 } else {
1345 spin_unlock(&inode->i_lock);
1346 /*
1347 * Handle the case where s_op->clear_inode is not been
1348 * called yet, and somebody is calling igrab
1349 * while the inode is getting freed.
1350 */
1351 inode = NULL;
1352 }
1353 return inode;
1354 }
1355 EXPORT_SYMBOL(igrab);
1356
1357 /**
1358 * ilookup5_nowait - search for an inode in the inode cache
1359 * @sb: super block of file system to search
1360 * @hashval: hash value (usually inode number) to search for
1361 * @test: callback used for comparisons between inodes
1362 * @data: opaque data pointer to pass to @test
1363 *
1364 * Search for the inode specified by @hashval and @data in the inode cache.
1365 * If the inode is in the cache, the inode is returned with an incremented
1366 * reference count.
1367 *
1368 * Note: I_NEW is not waited upon so you have to be very careful what you do
1369 * with the returned inode. You probably should be using ilookup5() instead.
1370 *
1371 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1372 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1373 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1374 int (*test)(struct inode *, void *), void *data)
1375 {
1376 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1377 struct inode *inode;
1378
1379 spin_lock(&inode_hash_lock);
1380 inode = find_inode(sb, head, test, data);
1381 spin_unlock(&inode_hash_lock);
1382
1383 return IS_ERR(inode) ? NULL : inode;
1384 }
1385 EXPORT_SYMBOL(ilookup5_nowait);
1386
1387 /**
1388 * ilookup5 - search for an inode in the inode cache
1389 * @sb: super block of file system to search
1390 * @hashval: hash value (usually inode number) to search for
1391 * @test: callback used for comparisons between inodes
1392 * @data: opaque data pointer to pass to @test
1393 *
1394 * Search for the inode specified by @hashval and @data in the inode cache,
1395 * and if the inode is in the cache, return the inode with an incremented
1396 * reference count. Waits on I_NEW before returning the inode.
1397 * returned with an incremented reference count.
1398 *
1399 * This is a generalized version of ilookup() for file systems where the
1400 * inode number is not sufficient for unique identification of an inode.
1401 *
1402 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1403 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1404 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1405 int (*test)(struct inode *, void *), void *data)
1406 {
1407 struct inode *inode;
1408 again:
1409 inode = ilookup5_nowait(sb, hashval, test, data);
1410 if (inode) {
1411 wait_on_inode(inode);
1412 if (unlikely(inode_unhashed(inode))) {
1413 iput(inode);
1414 goto again;
1415 }
1416 }
1417 return inode;
1418 }
1419 EXPORT_SYMBOL(ilookup5);
1420
1421 /**
1422 * ilookup - search for an inode in the inode cache
1423 * @sb: super block of file system to search
1424 * @ino: inode number to search for
1425 *
1426 * Search for the inode @ino in the inode cache, and if the inode is in the
1427 * cache, the inode is returned with an incremented reference count.
1428 */
ilookup(struct super_block * sb,unsigned long ino)1429 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1430 {
1431 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1432 struct inode *inode;
1433 again:
1434 spin_lock(&inode_hash_lock);
1435 inode = find_inode_fast(sb, head, ino);
1436 spin_unlock(&inode_hash_lock);
1437
1438 if (inode) {
1439 if (IS_ERR(inode))
1440 return NULL;
1441 wait_on_inode(inode);
1442 if (unlikely(inode_unhashed(inode))) {
1443 iput(inode);
1444 goto again;
1445 }
1446 }
1447 return inode;
1448 }
1449 EXPORT_SYMBOL(ilookup);
1450
1451 /**
1452 * find_inode_nowait - find an inode in the inode cache
1453 * @sb: super block of file system to search
1454 * @hashval: hash value (usually inode number) to search for
1455 * @match: callback used for comparisons between inodes
1456 * @data: opaque data pointer to pass to @match
1457 *
1458 * Search for the inode specified by @hashval and @data in the inode
1459 * cache, where the helper function @match will return 0 if the inode
1460 * does not match, 1 if the inode does match, and -1 if the search
1461 * should be stopped. The @match function must be responsible for
1462 * taking the i_lock spin_lock and checking i_state for an inode being
1463 * freed or being initialized, and incrementing the reference count
1464 * before returning 1. It also must not sleep, since it is called with
1465 * the inode_hash_lock spinlock held.
1466 *
1467 * This is a even more generalized version of ilookup5() when the
1468 * function must never block --- find_inode() can block in
1469 * __wait_on_freeing_inode() --- or when the caller can not increment
1470 * the reference count because the resulting iput() might cause an
1471 * inode eviction. The tradeoff is that the @match funtion must be
1472 * very carefully implemented.
1473 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1474 struct inode *find_inode_nowait(struct super_block *sb,
1475 unsigned long hashval,
1476 int (*match)(struct inode *, unsigned long,
1477 void *),
1478 void *data)
1479 {
1480 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1481 struct inode *inode, *ret_inode = NULL;
1482 int mval;
1483
1484 spin_lock(&inode_hash_lock);
1485 hlist_for_each_entry(inode, head, i_hash) {
1486 if (inode->i_sb != sb)
1487 continue;
1488 mval = match(inode, hashval, data);
1489 if (mval == 0)
1490 continue;
1491 if (mval == 1)
1492 ret_inode = inode;
1493 goto out;
1494 }
1495 out:
1496 spin_unlock(&inode_hash_lock);
1497 return ret_inode;
1498 }
1499 EXPORT_SYMBOL(find_inode_nowait);
1500
1501 /**
1502 * find_inode_rcu - find an inode in the inode cache
1503 * @sb: Super block of file system to search
1504 * @hashval: Key to hash
1505 * @test: Function to test match on an inode
1506 * @data: Data for test function
1507 *
1508 * Search for the inode specified by @hashval and @data in the inode cache,
1509 * where the helper function @test will return 0 if the inode does not match
1510 * and 1 if it does. The @test function must be responsible for taking the
1511 * i_lock spin_lock and checking i_state for an inode being freed or being
1512 * initialized.
1513 *
1514 * If successful, this will return the inode for which the @test function
1515 * returned 1 and NULL otherwise.
1516 *
1517 * The @test function is not permitted to take a ref on any inode presented.
1518 * It is also not permitted to sleep.
1519 *
1520 * The caller must hold the RCU read lock.
1521 */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1522 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1523 int (*test)(struct inode *, void *), void *data)
1524 {
1525 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1526 struct inode *inode;
1527
1528 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1529 "suspicious find_inode_rcu() usage");
1530
1531 hlist_for_each_entry_rcu(inode, head, i_hash) {
1532 if (inode->i_sb == sb &&
1533 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1534 test(inode, data))
1535 return inode;
1536 }
1537 return NULL;
1538 }
1539 EXPORT_SYMBOL(find_inode_rcu);
1540
1541 /**
1542 * find_inode_by_rcu - Find an inode in the inode cache
1543 * @sb: Super block of file system to search
1544 * @ino: The inode number to match
1545 *
1546 * Search for the inode specified by @hashval and @data in the inode cache,
1547 * where the helper function @test will return 0 if the inode does not match
1548 * and 1 if it does. The @test function must be responsible for taking the
1549 * i_lock spin_lock and checking i_state for an inode being freed or being
1550 * initialized.
1551 *
1552 * If successful, this will return the inode for which the @test function
1553 * returned 1 and NULL otherwise.
1554 *
1555 * The @test function is not permitted to take a ref on any inode presented.
1556 * It is also not permitted to sleep.
1557 *
1558 * The caller must hold the RCU read lock.
1559 */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1560 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1561 unsigned long ino)
1562 {
1563 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1564 struct inode *inode;
1565
1566 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1567 "suspicious find_inode_by_ino_rcu() usage");
1568
1569 hlist_for_each_entry_rcu(inode, head, i_hash) {
1570 if (inode->i_ino == ino &&
1571 inode->i_sb == sb &&
1572 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1573 return inode;
1574 }
1575 return NULL;
1576 }
1577 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1578
insert_inode_locked(struct inode * inode)1579 int insert_inode_locked(struct inode *inode)
1580 {
1581 struct super_block *sb = inode->i_sb;
1582 ino_t ino = inode->i_ino;
1583 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1584
1585 while (1) {
1586 struct inode *old = NULL;
1587 spin_lock(&inode_hash_lock);
1588 hlist_for_each_entry(old, head, i_hash) {
1589 if (old->i_ino != ino)
1590 continue;
1591 if (old->i_sb != sb)
1592 continue;
1593 spin_lock(&old->i_lock);
1594 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1595 spin_unlock(&old->i_lock);
1596 continue;
1597 }
1598 break;
1599 }
1600 if (likely(!old)) {
1601 spin_lock(&inode->i_lock);
1602 inode->i_state |= I_NEW | I_CREATING;
1603 hlist_add_head_rcu(&inode->i_hash, head);
1604 spin_unlock(&inode->i_lock);
1605 spin_unlock(&inode_hash_lock);
1606 return 0;
1607 }
1608 if (unlikely(old->i_state & I_CREATING)) {
1609 spin_unlock(&old->i_lock);
1610 spin_unlock(&inode_hash_lock);
1611 return -EBUSY;
1612 }
1613 __iget(old);
1614 spin_unlock(&old->i_lock);
1615 spin_unlock(&inode_hash_lock);
1616 wait_on_inode(old);
1617 if (unlikely(!inode_unhashed(old))) {
1618 iput(old);
1619 return -EBUSY;
1620 }
1621 iput(old);
1622 }
1623 }
1624 EXPORT_SYMBOL(insert_inode_locked);
1625
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1626 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1627 int (*test)(struct inode *, void *), void *data)
1628 {
1629 struct inode *old;
1630
1631 inode->i_state |= I_CREATING;
1632 old = inode_insert5(inode, hashval, test, NULL, data);
1633
1634 if (old != inode) {
1635 iput(old);
1636 return -EBUSY;
1637 }
1638 return 0;
1639 }
1640 EXPORT_SYMBOL(insert_inode_locked4);
1641
1642
generic_delete_inode(struct inode * inode)1643 int generic_delete_inode(struct inode *inode)
1644 {
1645 return 1;
1646 }
1647 EXPORT_SYMBOL(generic_delete_inode);
1648
1649 /*
1650 * Called when we're dropping the last reference
1651 * to an inode.
1652 *
1653 * Call the FS "drop_inode()" function, defaulting to
1654 * the legacy UNIX filesystem behaviour. If it tells
1655 * us to evict inode, do so. Otherwise, retain inode
1656 * in cache if fs is alive, sync and evict if fs is
1657 * shutting down.
1658 */
iput_final(struct inode * inode)1659 static void iput_final(struct inode *inode)
1660 {
1661 struct super_block *sb = inode->i_sb;
1662 const struct super_operations *op = inode->i_sb->s_op;
1663 unsigned long state;
1664 int drop;
1665
1666 WARN_ON(inode->i_state & I_NEW);
1667
1668 if (op->drop_inode)
1669 drop = op->drop_inode(inode);
1670 else
1671 drop = generic_drop_inode(inode);
1672
1673 if (!drop &&
1674 !(inode->i_state & I_DONTCACHE) &&
1675 (sb->s_flags & SB_ACTIVE)) {
1676 inode_add_lru(inode);
1677 spin_unlock(&inode->i_lock);
1678 return;
1679 }
1680
1681 state = inode->i_state;
1682 if (!drop) {
1683 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1684 spin_unlock(&inode->i_lock);
1685
1686 write_inode_now(inode, 1);
1687
1688 spin_lock(&inode->i_lock);
1689 state = inode->i_state;
1690 WARN_ON(state & I_NEW);
1691 state &= ~I_WILL_FREE;
1692 }
1693
1694 WRITE_ONCE(inode->i_state, state | I_FREEING);
1695 if (!list_empty(&inode->i_lru))
1696 inode_lru_list_del(inode);
1697 spin_unlock(&inode->i_lock);
1698
1699 evict(inode);
1700 }
1701
1702 /**
1703 * iput - put an inode
1704 * @inode: inode to put
1705 *
1706 * Puts an inode, dropping its usage count. If the inode use count hits
1707 * zero, the inode is then freed and may also be destroyed.
1708 *
1709 * Consequently, iput() can sleep.
1710 */
iput(struct inode * inode)1711 void iput(struct inode *inode)
1712 {
1713 if (!inode)
1714 return;
1715 BUG_ON(inode->i_state & I_CLEAR);
1716 retry:
1717 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1718 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1719 atomic_inc(&inode->i_count);
1720 spin_unlock(&inode->i_lock);
1721 trace_writeback_lazytime_iput(inode);
1722 mark_inode_dirty_sync(inode);
1723 goto retry;
1724 }
1725 iput_final(inode);
1726 }
1727 }
1728 EXPORT_SYMBOL(iput);
1729
1730 #ifdef CONFIG_BLOCK
1731 /**
1732 * bmap - find a block number in a file
1733 * @inode: inode owning the block number being requested
1734 * @block: pointer containing the block to find
1735 *
1736 * Replaces the value in ``*block`` with the block number on the device holding
1737 * corresponding to the requested block number in the file.
1738 * That is, asked for block 4 of inode 1 the function will replace the
1739 * 4 in ``*block``, with disk block relative to the disk start that holds that
1740 * block of the file.
1741 *
1742 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1743 * hole, returns 0 and ``*block`` is also set to 0.
1744 */
bmap(struct inode * inode,sector_t * block)1745 int bmap(struct inode *inode, sector_t *block)
1746 {
1747 if (!inode->i_mapping->a_ops->bmap)
1748 return -EINVAL;
1749
1750 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1751 return 0;
1752 }
1753 EXPORT_SYMBOL(bmap);
1754 #endif
1755
1756 /*
1757 * With relative atime, only update atime if the previous atime is
1758 * earlier than either the ctime or mtime or if at least a day has
1759 * passed since the last atime update.
1760 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1761 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1762 struct timespec64 now)
1763 {
1764
1765 if (!(mnt->mnt_flags & MNT_RELATIME))
1766 return 1;
1767 /*
1768 * Is mtime younger than atime? If yes, update atime:
1769 */
1770 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1771 return 1;
1772 /*
1773 * Is ctime younger than atime? If yes, update atime:
1774 */
1775 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1776 return 1;
1777
1778 /*
1779 * Is the previous atime value older than a day? If yes,
1780 * update atime:
1781 */
1782 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1783 return 1;
1784 /*
1785 * Good, we can skip the atime update:
1786 */
1787 return 0;
1788 }
1789
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1790 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1791 {
1792 int iflags = I_DIRTY_TIME;
1793 bool dirty = false;
1794
1795 if (flags & S_ATIME)
1796 inode->i_atime = *time;
1797 if (flags & S_VERSION)
1798 dirty = inode_maybe_inc_iversion(inode, false);
1799 if (flags & S_CTIME)
1800 inode->i_ctime = *time;
1801 if (flags & S_MTIME)
1802 inode->i_mtime = *time;
1803 if ((flags & (S_ATIME | S_CTIME | S_MTIME)) &&
1804 !(inode->i_sb->s_flags & SB_LAZYTIME))
1805 dirty = true;
1806
1807 if (dirty)
1808 iflags |= I_DIRTY_SYNC;
1809 __mark_inode_dirty(inode, iflags);
1810 return 0;
1811 }
1812 EXPORT_SYMBOL(generic_update_time);
1813
1814 /*
1815 * This does the actual work of updating an inodes time or version. Must have
1816 * had called mnt_want_write() before calling this.
1817 */
inode_update_time(struct inode * inode,struct timespec64 * time,int flags)1818 int inode_update_time(struct inode *inode, struct timespec64 *time, int flags)
1819 {
1820 if (inode->i_op->update_time)
1821 return inode->i_op->update_time(inode, time, flags);
1822 return generic_update_time(inode, time, flags);
1823 }
1824 EXPORT_SYMBOL(inode_update_time);
1825
1826 /**
1827 * touch_atime - update the access time
1828 * @path: the &struct path to update
1829 * @inode: inode to update
1830 *
1831 * Update the accessed time on an inode and mark it for writeback.
1832 * This function automatically handles read only file systems and media,
1833 * as well as the "noatime" flag and inode specific "noatime" markers.
1834 */
atime_needs_update(const struct path * path,struct inode * inode)1835 bool atime_needs_update(const struct path *path, struct inode *inode)
1836 {
1837 struct vfsmount *mnt = path->mnt;
1838 struct timespec64 now;
1839
1840 if (inode->i_flags & S_NOATIME)
1841 return false;
1842
1843 /* Atime updates will likely cause i_uid and i_gid to be written
1844 * back improprely if their true value is unknown to the vfs.
1845 */
1846 if (HAS_UNMAPPED_ID(inode))
1847 return false;
1848
1849 if (IS_NOATIME(inode))
1850 return false;
1851 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1852 return false;
1853
1854 if (mnt->mnt_flags & MNT_NOATIME)
1855 return false;
1856 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1857 return false;
1858
1859 now = current_time(inode);
1860
1861 if (!relatime_need_update(mnt, inode, now))
1862 return false;
1863
1864 if (timespec64_equal(&inode->i_atime, &now))
1865 return false;
1866
1867 return true;
1868 }
1869
touch_atime(const struct path * path)1870 void touch_atime(const struct path *path)
1871 {
1872 struct vfsmount *mnt = path->mnt;
1873 struct inode *inode = d_inode(path->dentry);
1874 struct timespec64 now;
1875
1876 if (!atime_needs_update(path, inode))
1877 return;
1878
1879 if (!sb_start_write_trylock(inode->i_sb))
1880 return;
1881
1882 if (__mnt_want_write(mnt) != 0)
1883 goto skip_update;
1884 /*
1885 * File systems can error out when updating inodes if they need to
1886 * allocate new space to modify an inode (such is the case for
1887 * Btrfs), but since we touch atime while walking down the path we
1888 * really don't care if we failed to update the atime of the file,
1889 * so just ignore the return value.
1890 * We may also fail on filesystems that have the ability to make parts
1891 * of the fs read only, e.g. subvolumes in Btrfs.
1892 */
1893 now = current_time(inode);
1894 inode_update_time(inode, &now, S_ATIME);
1895 __mnt_drop_write(mnt);
1896 skip_update:
1897 sb_end_write(inode->i_sb);
1898 }
1899 EXPORT_SYMBOL(touch_atime);
1900
1901 /*
1902 * Return mask of changes for notify_change() that need to be done as a
1903 * response to write or truncate. Return 0 if nothing has to be changed.
1904 * Negative value on error (change should be denied).
1905 */
dentry_needs_remove_privs(struct dentry * dentry)1906 int dentry_needs_remove_privs(struct dentry *dentry)
1907 {
1908 struct inode *inode = d_inode(dentry);
1909 int mask = 0;
1910 int ret;
1911
1912 if (IS_NOSEC(inode))
1913 return 0;
1914
1915 mask = setattr_should_drop_suidgid(inode);
1916 ret = security_inode_need_killpriv(dentry);
1917 if (ret < 0)
1918 return ret;
1919 if (ret)
1920 mask |= ATTR_KILL_PRIV;
1921 return mask;
1922 }
1923
__remove_privs(struct dentry * dentry,int kill)1924 static int __remove_privs(struct dentry *dentry, int kill)
1925 {
1926 struct iattr newattrs;
1927
1928 newattrs.ia_valid = ATTR_FORCE | kill;
1929 /*
1930 * Note we call this on write, so notify_change will not
1931 * encounter any conflicting delegations:
1932 */
1933 return notify_change(dentry, &newattrs, NULL);
1934 }
1935
1936 /*
1937 * Remove special file priviledges (suid, capabilities) when file is written
1938 * to or truncated.
1939 */
file_remove_privs(struct file * file)1940 int file_remove_privs(struct file *file)
1941 {
1942 struct dentry *dentry = file_dentry(file);
1943 struct inode *inode = file_inode(file);
1944 int kill;
1945 int error = 0;
1946
1947 /*
1948 * Fast path for nothing security related.
1949 * As well for non-regular files, e.g. blkdev inodes.
1950 * For example, blkdev_write_iter() might get here
1951 * trying to remove privs which it is not allowed to.
1952 */
1953 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1954 return 0;
1955
1956 kill = dentry_needs_remove_privs(dentry);
1957 if (kill < 0)
1958 return kill;
1959 if (kill)
1960 error = __remove_privs(dentry, kill);
1961 if (!error)
1962 inode_has_no_xattr(inode);
1963
1964 return error;
1965 }
1966 EXPORT_SYMBOL(file_remove_privs);
1967
1968 /**
1969 * file_update_time - update mtime and ctime time
1970 * @file: file accessed
1971 *
1972 * Update the mtime and ctime members of an inode and mark the inode
1973 * for writeback. Note that this function is meant exclusively for
1974 * usage in the file write path of filesystems, and filesystems may
1975 * choose to explicitly ignore update via this function with the
1976 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1977 * timestamps are handled by the server. This can return an error for
1978 * file systems who need to allocate space in order to update an inode.
1979 */
1980
file_update_time(struct file * file)1981 int file_update_time(struct file *file)
1982 {
1983 struct inode *inode = file_inode(file);
1984 struct timespec64 now;
1985 int sync_it = 0;
1986 int ret;
1987
1988 /* First try to exhaust all avenues to not sync */
1989 if (IS_NOCMTIME(inode))
1990 return 0;
1991
1992 now = current_time(inode);
1993 if (!timespec64_equal(&inode->i_mtime, &now))
1994 sync_it = S_MTIME;
1995
1996 if (!timespec64_equal(&inode->i_ctime, &now))
1997 sync_it |= S_CTIME;
1998
1999 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
2000 sync_it |= S_VERSION;
2001
2002 if (!sync_it)
2003 return 0;
2004
2005 /* Finally allowed to write? Takes lock. */
2006 if (__mnt_want_write_file(file))
2007 return 0;
2008
2009 ret = inode_update_time(inode, &now, sync_it);
2010 __mnt_drop_write_file(file);
2011
2012 return ret;
2013 }
2014 EXPORT_SYMBOL(file_update_time);
2015
2016 /* Caller must hold the file's inode lock */
file_modified(struct file * file)2017 int file_modified(struct file *file)
2018 {
2019 int err;
2020
2021 /*
2022 * Clear the security bits if the process is not being run by root.
2023 * This keeps people from modifying setuid and setgid binaries.
2024 */
2025 err = file_remove_privs(file);
2026 if (err)
2027 return err;
2028
2029 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2030 return 0;
2031
2032 return file_update_time(file);
2033 }
2034 EXPORT_SYMBOL(file_modified);
2035
inode_needs_sync(struct inode * inode)2036 int inode_needs_sync(struct inode *inode)
2037 {
2038 if (IS_SYNC(inode))
2039 return 1;
2040 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2041 return 1;
2042 return 0;
2043 }
2044 EXPORT_SYMBOL(inode_needs_sync);
2045
2046 /*
2047 * If we try to find an inode in the inode hash while it is being
2048 * deleted, we have to wait until the filesystem completes its
2049 * deletion before reporting that it isn't found. This function waits
2050 * until the deletion _might_ have completed. Callers are responsible
2051 * to recheck inode state.
2052 *
2053 * It doesn't matter if I_NEW is not set initially, a call to
2054 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2055 * will DTRT.
2056 */
__wait_on_freeing_inode(struct inode * inode)2057 static void __wait_on_freeing_inode(struct inode *inode)
2058 {
2059 wait_queue_head_t *wq;
2060 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2061 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2062 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2063 spin_unlock(&inode->i_lock);
2064 spin_unlock(&inode_hash_lock);
2065 schedule();
2066 finish_wait(wq, &wait.wq_entry);
2067 spin_lock(&inode_hash_lock);
2068 }
2069
2070 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2071 static int __init set_ihash_entries(char *str)
2072 {
2073 if (!str)
2074 return 0;
2075 ihash_entries = simple_strtoul(str, &str, 0);
2076 return 1;
2077 }
2078 __setup("ihash_entries=", set_ihash_entries);
2079
2080 /*
2081 * Initialize the waitqueues and inode hash table.
2082 */
inode_init_early(void)2083 void __init inode_init_early(void)
2084 {
2085 /* If hashes are distributed across NUMA nodes, defer
2086 * hash allocation until vmalloc space is available.
2087 */
2088 if (hashdist)
2089 return;
2090
2091 inode_hashtable =
2092 alloc_large_system_hash("Inode-cache",
2093 sizeof(struct hlist_head),
2094 ihash_entries,
2095 14,
2096 HASH_EARLY | HASH_ZERO,
2097 &i_hash_shift,
2098 &i_hash_mask,
2099 0,
2100 0);
2101 }
2102
inode_init(void)2103 void __init inode_init(void)
2104 {
2105 /* inode slab cache */
2106 inode_cachep = kmem_cache_create("inode_cache",
2107 sizeof(struct inode),
2108 0,
2109 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2110 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2111 init_once);
2112
2113 /* Hash may have been set up in inode_init_early */
2114 if (!hashdist)
2115 return;
2116
2117 inode_hashtable =
2118 alloc_large_system_hash("Inode-cache",
2119 sizeof(struct hlist_head),
2120 ihash_entries,
2121 14,
2122 HASH_ZERO,
2123 &i_hash_shift,
2124 &i_hash_mask,
2125 0,
2126 0);
2127 }
2128
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2129 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2130 {
2131 inode->i_mode = mode;
2132 if (S_ISCHR(mode)) {
2133 inode->i_fop = &def_chr_fops;
2134 inode->i_rdev = rdev;
2135 } else if (S_ISBLK(mode)) {
2136 inode->i_fop = &def_blk_fops;
2137 inode->i_rdev = rdev;
2138 } else if (S_ISFIFO(mode))
2139 inode->i_fop = &pipefifo_fops;
2140 else if (S_ISSOCK(mode))
2141 ; /* leave it no_open_fops */
2142 else
2143 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2144 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2145 inode->i_ino);
2146 }
2147 EXPORT_SYMBOL(init_special_inode);
2148
2149 /**
2150 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2151 * @inode: New inode
2152 * @dir: Directory inode
2153 * @mode: mode of the new inode
2154 */
inode_init_owner(struct inode * inode,const struct inode * dir,umode_t mode)2155 void inode_init_owner(struct inode *inode, const struct inode *dir,
2156 umode_t mode)
2157 {
2158 inode->i_uid = current_fsuid();
2159 if (dir && dir->i_mode & S_ISGID) {
2160 inode->i_gid = dir->i_gid;
2161
2162 /* Directories are special, and always inherit S_ISGID */
2163 if (S_ISDIR(mode))
2164 mode |= S_ISGID;
2165 } else
2166 inode->i_gid = current_fsgid();
2167 inode->i_mode = mode;
2168 }
2169 EXPORT_SYMBOL(inode_init_owner);
2170
2171 /**
2172 * inode_owner_or_capable - check current task permissions to inode
2173 * @inode: inode being checked
2174 *
2175 * Return true if current either has CAP_FOWNER in a namespace with the
2176 * inode owner uid mapped, or owns the file.
2177 */
inode_owner_or_capable(const struct inode * inode)2178 bool inode_owner_or_capable(const struct inode *inode)
2179 {
2180 struct user_namespace *ns;
2181
2182 if (uid_eq(current_fsuid(), inode->i_uid))
2183 return true;
2184
2185 ns = current_user_ns();
2186 if (kuid_has_mapping(ns, inode->i_uid) && ns_capable(ns, CAP_FOWNER))
2187 return true;
2188 return false;
2189 }
2190 EXPORT_SYMBOL(inode_owner_or_capable);
2191
2192 /*
2193 * Direct i/o helper functions
2194 */
__inode_dio_wait(struct inode * inode)2195 static void __inode_dio_wait(struct inode *inode)
2196 {
2197 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2198 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2199
2200 do {
2201 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2202 if (atomic_read(&inode->i_dio_count))
2203 schedule();
2204 } while (atomic_read(&inode->i_dio_count));
2205 finish_wait(wq, &q.wq_entry);
2206 }
2207
2208 /**
2209 * inode_dio_wait - wait for outstanding DIO requests to finish
2210 * @inode: inode to wait for
2211 *
2212 * Waits for all pending direct I/O requests to finish so that we can
2213 * proceed with a truncate or equivalent operation.
2214 *
2215 * Must be called under a lock that serializes taking new references
2216 * to i_dio_count, usually by inode->i_mutex.
2217 */
inode_dio_wait(struct inode * inode)2218 void inode_dio_wait(struct inode *inode)
2219 {
2220 if (atomic_read(&inode->i_dio_count))
2221 __inode_dio_wait(inode);
2222 }
2223 EXPORT_SYMBOL(inode_dio_wait);
2224
2225 /*
2226 * inode_set_flags - atomically set some inode flags
2227 *
2228 * Note: the caller should be holding i_mutex, or else be sure that
2229 * they have exclusive access to the inode structure (i.e., while the
2230 * inode is being instantiated). The reason for the cmpxchg() loop
2231 * --- which wouldn't be necessary if all code paths which modify
2232 * i_flags actually followed this rule, is that there is at least one
2233 * code path which doesn't today so we use cmpxchg() out of an abundance
2234 * of caution.
2235 *
2236 * In the long run, i_mutex is overkill, and we should probably look
2237 * at using the i_lock spinlock to protect i_flags, and then make sure
2238 * it is so documented in include/linux/fs.h and that all code follows
2239 * the locking convention!!
2240 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2241 void inode_set_flags(struct inode *inode, unsigned int flags,
2242 unsigned int mask)
2243 {
2244 WARN_ON_ONCE(flags & ~mask);
2245 set_mask_bits(&inode->i_flags, mask, flags);
2246 }
2247 EXPORT_SYMBOL(inode_set_flags);
2248
inode_nohighmem(struct inode * inode)2249 void inode_nohighmem(struct inode *inode)
2250 {
2251 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2252 }
2253 EXPORT_SYMBOL(inode_nohighmem);
2254
2255 /**
2256 * timestamp_truncate - Truncate timespec to a granularity
2257 * @t: Timespec
2258 * @inode: inode being updated
2259 *
2260 * Truncate a timespec to the granularity supported by the fs
2261 * containing the inode. Always rounds down. gran must
2262 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2263 */
timestamp_truncate(struct timespec64 t,struct inode * inode)2264 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2265 {
2266 struct super_block *sb = inode->i_sb;
2267 unsigned int gran = sb->s_time_gran;
2268
2269 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2270 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2271 t.tv_nsec = 0;
2272
2273 /* Avoid division in the common cases 1 ns and 1 s. */
2274 if (gran == 1)
2275 ; /* nothing */
2276 else if (gran == NSEC_PER_SEC)
2277 t.tv_nsec = 0;
2278 else if (gran > 1 && gran < NSEC_PER_SEC)
2279 t.tv_nsec -= t.tv_nsec % gran;
2280 else
2281 WARN(1, "invalid file time granularity: %u", gran);
2282 return t;
2283 }
2284 EXPORT_SYMBOL(timestamp_truncate);
2285
2286 /**
2287 * current_time - Return FS time
2288 * @inode: inode.
2289 *
2290 * Return the current time truncated to the time granularity supported by
2291 * the fs.
2292 *
2293 * Note that inode and inode->sb cannot be NULL.
2294 * Otherwise, the function warns and returns time without truncation.
2295 */
current_time(struct inode * inode)2296 struct timespec64 current_time(struct inode *inode)
2297 {
2298 struct timespec64 now;
2299
2300 ktime_get_coarse_real_ts64(&now);
2301
2302 if (unlikely(!inode->i_sb)) {
2303 WARN(1, "current_time() called with uninitialized super_block in the inode");
2304 return now;
2305 }
2306
2307 return timestamp_truncate(now, inode);
2308 }
2309 EXPORT_SYMBOL(current_time);
2310
2311 /*
2312 * Generic function to check FS_IOC_SETFLAGS values and reject any invalid
2313 * configurations.
2314 *
2315 * Note: the caller should be holding i_mutex, or else be sure that they have
2316 * exclusive access to the inode structure.
2317 */
vfs_ioc_setflags_prepare(struct inode * inode,unsigned int oldflags,unsigned int flags)2318 int vfs_ioc_setflags_prepare(struct inode *inode, unsigned int oldflags,
2319 unsigned int flags)
2320 {
2321 /*
2322 * The IMMUTABLE and APPEND_ONLY flags can only be changed by
2323 * the relevant capability.
2324 *
2325 * This test looks nicer. Thanks to Pauline Middelink
2326 */
2327 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL) &&
2328 !capable(CAP_LINUX_IMMUTABLE))
2329 return -EPERM;
2330
2331 return fscrypt_prepare_setflags(inode, oldflags, flags);
2332 }
2333 EXPORT_SYMBOL(vfs_ioc_setflags_prepare);
2334
2335 /*
2336 * Generic function to check FS_IOC_FSSETXATTR values and reject any invalid
2337 * configurations.
2338 *
2339 * Note: the caller should be holding i_mutex, or else be sure that they have
2340 * exclusive access to the inode structure.
2341 */
vfs_ioc_fssetxattr_check(struct inode * inode,const struct fsxattr * old_fa,struct fsxattr * fa)2342 int vfs_ioc_fssetxattr_check(struct inode *inode, const struct fsxattr *old_fa,
2343 struct fsxattr *fa)
2344 {
2345 /*
2346 * Can't modify an immutable/append-only file unless we have
2347 * appropriate permission.
2348 */
2349 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2350 (FS_XFLAG_IMMUTABLE | FS_XFLAG_APPEND) &&
2351 !capable(CAP_LINUX_IMMUTABLE))
2352 return -EPERM;
2353
2354 /*
2355 * Project Quota ID state is only allowed to change from within the init
2356 * namespace. Enforce that restriction only if we are trying to change
2357 * the quota ID state. Everything else is allowed in user namespaces.
2358 */
2359 if (current_user_ns() != &init_user_ns) {
2360 if (old_fa->fsx_projid != fa->fsx_projid)
2361 return -EINVAL;
2362 if ((old_fa->fsx_xflags ^ fa->fsx_xflags) &
2363 FS_XFLAG_PROJINHERIT)
2364 return -EINVAL;
2365 }
2366
2367 /* Check extent size hints. */
2368 if ((fa->fsx_xflags & FS_XFLAG_EXTSIZE) && !S_ISREG(inode->i_mode))
2369 return -EINVAL;
2370
2371 if ((fa->fsx_xflags & FS_XFLAG_EXTSZINHERIT) &&
2372 !S_ISDIR(inode->i_mode))
2373 return -EINVAL;
2374
2375 if ((fa->fsx_xflags & FS_XFLAG_COWEXTSIZE) &&
2376 !S_ISREG(inode->i_mode) && !S_ISDIR(inode->i_mode))
2377 return -EINVAL;
2378
2379 /*
2380 * It is only valid to set the DAX flag on regular files and
2381 * directories on filesystems.
2382 */
2383 if ((fa->fsx_xflags & FS_XFLAG_DAX) &&
2384 !(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode)))
2385 return -EINVAL;
2386
2387 /* Extent size hints of zero turn off the flags. */
2388 if (fa->fsx_extsize == 0)
2389 fa->fsx_xflags &= ~(FS_XFLAG_EXTSIZE | FS_XFLAG_EXTSZINHERIT);
2390 if (fa->fsx_cowextsize == 0)
2391 fa->fsx_xflags &= ~FS_XFLAG_COWEXTSIZE;
2392
2393 return 0;
2394 }
2395 EXPORT_SYMBOL(vfs_ioc_fssetxattr_check);
2396
2397 /**
2398 * in_group_or_capable - check whether caller is CAP_FSETID privileged
2399 * @inode: inode to check
2400 * @gid: the new/current gid of @inode
2401 *
2402 * Check wether @gid is in the caller's group list or if the caller is
2403 * privileged with CAP_FSETID over @inode. This can be used to determine
2404 * whether the setgid bit can be kept or must be dropped.
2405 *
2406 * Return: true if the caller is sufficiently privileged, false if not.
2407 */
in_group_or_capable(const struct inode * inode,kgid_t gid)2408 bool in_group_or_capable(const struct inode *inode, kgid_t gid)
2409 {
2410 if (in_group_p(gid))
2411 return true;
2412 if (capable_wrt_inode_uidgid(inode, CAP_FSETID))
2413 return true;
2414 return false;
2415 }
2416
2417 /**
2418 * mode_strip_sgid - handle the sgid bit for non-directories
2419 * @dir: parent directory inode
2420 * @mode: mode of the file to be created in @dir
2421 *
2422 * If the @mode of the new file has both the S_ISGID and S_IXGRP bit
2423 * raised and @dir has the S_ISGID bit raised ensure that the caller is
2424 * either in the group of the parent directory or they have CAP_FSETID
2425 * in their user namespace and are privileged over the parent directory.
2426 * In all other cases, strip the S_ISGID bit from @mode.
2427 *
2428 * Return: the new mode to use for the file
2429 */
mode_strip_sgid(const struct inode * dir,umode_t mode)2430 umode_t mode_strip_sgid(const struct inode *dir, umode_t mode)
2431 {
2432 if ((mode & (S_ISGID | S_IXGRP)) != (S_ISGID | S_IXGRP))
2433 return mode;
2434 if (S_ISDIR(mode) || !dir || !(dir->i_mode & S_ISGID))
2435 return mode;
2436 if (in_group_or_capable(dir, dir->i_gid))
2437 return mode;
2438 return mode & ~S_ISGID;
2439 }
2440 EXPORT_SYMBOL(mode_strip_sgid);
2441