1 /*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41 #include <linux/bio.h>
42
43 #include "udf_i.h"
44 #include "udf_sb.h"
45
46 #define EXTENT_MERGE_SIZE 5
47
48 #define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52 #define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53 FE_PERM_O_DELETE)
54
55 static umode_t udf_convert_permissions(struct fileEntry *);
56 static int udf_update_inode(struct inode *, int);
57 static int udf_sync_inode(struct inode *inode);
58 static int udf_alloc_i_data(struct inode *inode, size_t size);
59 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60 static int udf_insert_aext(struct inode *, struct extent_position,
61 struct kernel_lb_addr, uint32_t);
62 static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63 struct kernel_long_ad *, int *);
64 static void udf_prealloc_extents(struct inode *, int, int,
65 struct kernel_long_ad *, int *);
66 static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67 static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68 int, struct extent_position *);
69 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
__udf_clear_extent_cache(struct inode * inode)71 static void __udf_clear_extent_cache(struct inode *inode)
72 {
73 struct udf_inode_info *iinfo = UDF_I(inode);
74
75 if (iinfo->cached_extent.lstart != -1) {
76 brelse(iinfo->cached_extent.epos.bh);
77 iinfo->cached_extent.lstart = -1;
78 }
79 }
80
81 /* Invalidate extent cache */
udf_clear_extent_cache(struct inode * inode)82 static void udf_clear_extent_cache(struct inode *inode)
83 {
84 struct udf_inode_info *iinfo = UDF_I(inode);
85
86 spin_lock(&iinfo->i_extent_cache_lock);
87 __udf_clear_extent_cache(inode);
88 spin_unlock(&iinfo->i_extent_cache_lock);
89 }
90
91 /* Return contents of extent cache */
udf_read_extent_cache(struct inode * inode,loff_t bcount,loff_t * lbcount,struct extent_position * pos)92 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93 loff_t *lbcount, struct extent_position *pos)
94 {
95 struct udf_inode_info *iinfo = UDF_I(inode);
96 int ret = 0;
97
98 spin_lock(&iinfo->i_extent_cache_lock);
99 if ((iinfo->cached_extent.lstart <= bcount) &&
100 (iinfo->cached_extent.lstart != -1)) {
101 /* Cache hit */
102 *lbcount = iinfo->cached_extent.lstart;
103 memcpy(pos, &iinfo->cached_extent.epos,
104 sizeof(struct extent_position));
105 if (pos->bh)
106 get_bh(pos->bh);
107 ret = 1;
108 }
109 spin_unlock(&iinfo->i_extent_cache_lock);
110 return ret;
111 }
112
113 /* Add extent to extent cache */
udf_update_extent_cache(struct inode * inode,loff_t estart,struct extent_position * pos)114 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115 struct extent_position *pos)
116 {
117 struct udf_inode_info *iinfo = UDF_I(inode);
118
119 spin_lock(&iinfo->i_extent_cache_lock);
120 /* Invalidate previously cached extent */
121 __udf_clear_extent_cache(inode);
122 if (pos->bh)
123 get_bh(pos->bh);
124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125 iinfo->cached_extent.lstart = estart;
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129 break;
130 case ICBTAG_FLAG_AD_LONG:
131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132 break;
133 }
134 spin_unlock(&iinfo->i_extent_cache_lock);
135 }
136
udf_evict_inode(struct inode * inode)137 void udf_evict_inode(struct inode *inode)
138 {
139 struct udf_inode_info *iinfo = UDF_I(inode);
140 int want_delete = 0;
141
142 if (!is_bad_inode(inode)) {
143 if (!inode->i_nlink) {
144 want_delete = 1;
145 udf_setsize(inode, 0);
146 udf_update_inode(inode, IS_SYNC(inode));
147 }
148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149 inode->i_size != iinfo->i_lenExtents) {
150 udf_warn(inode->i_sb,
151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152 inode->i_ino, inode->i_mode,
153 (unsigned long long)inode->i_size,
154 (unsigned long long)iinfo->i_lenExtents);
155 }
156 }
157 truncate_inode_pages_final(&inode->i_data);
158 invalidate_inode_buffers(inode);
159 clear_inode(inode);
160 kfree(iinfo->i_data);
161 iinfo->i_data = NULL;
162 udf_clear_extent_cache(inode);
163 if (want_delete) {
164 udf_free_inode(inode);
165 }
166 }
167
udf_write_failed(struct address_space * mapping,loff_t to)168 static void udf_write_failed(struct address_space *mapping, loff_t to)
169 {
170 struct inode *inode = mapping->host;
171 struct udf_inode_info *iinfo = UDF_I(inode);
172 loff_t isize = inode->i_size;
173
174 if (to > isize) {
175 truncate_pagecache(inode, isize);
176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177 down_write(&iinfo->i_data_sem);
178 udf_clear_extent_cache(inode);
179 udf_truncate_extents(inode);
180 up_write(&iinfo->i_data_sem);
181 }
182 }
183 }
184
udf_writepage(struct page * page,struct writeback_control * wbc)185 static int udf_writepage(struct page *page, struct writeback_control *wbc)
186 {
187 return block_write_full_page(page, udf_get_block, wbc);
188 }
189
udf_writepages(struct address_space * mapping,struct writeback_control * wbc)190 static int udf_writepages(struct address_space *mapping,
191 struct writeback_control *wbc)
192 {
193 return mpage_writepages(mapping, wbc, udf_get_block);
194 }
195
udf_readpage(struct file * file,struct page * page)196 static int udf_readpage(struct file *file, struct page *page)
197 {
198 return mpage_readpage(page, udf_get_block);
199 }
200
udf_readahead(struct readahead_control * rac)201 static void udf_readahead(struct readahead_control *rac)
202 {
203 mpage_readahead(rac, udf_get_block);
204 }
205
udf_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)206 static int udf_write_begin(struct file *file, struct address_space *mapping,
207 loff_t pos, unsigned len, unsigned flags,
208 struct page **pagep, void **fsdata)
209 {
210 int ret;
211
212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213 if (unlikely(ret))
214 udf_write_failed(mapping, pos + len);
215 return ret;
216 }
217
udf_direct_IO(struct kiocb * iocb,struct iov_iter * iter)218 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219 {
220 struct file *file = iocb->ki_filp;
221 struct address_space *mapping = file->f_mapping;
222 struct inode *inode = mapping->host;
223 size_t count = iov_iter_count(iter);
224 ssize_t ret;
225
226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 udf_write_failed(mapping, iocb->ki_pos + count);
229 return ret;
230 }
231
udf_bmap(struct address_space * mapping,sector_t block)232 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233 {
234 return generic_block_bmap(mapping, block, udf_get_block);
235 }
236
237 const struct address_space_operations udf_aops = {
238 .readpage = udf_readpage,
239 .readahead = udf_readahead,
240 .writepage = udf_writepage,
241 .writepages = udf_writepages,
242 .write_begin = udf_write_begin,
243 .write_end = generic_write_end,
244 .direct_IO = udf_direct_IO,
245 .bmap = udf_bmap,
246 };
247
248 /*
249 * Expand file stored in ICB to a normal one-block-file
250 *
251 * This function requires i_data_sem for writing and releases it.
252 * This function requires i_mutex held
253 */
udf_expand_file_adinicb(struct inode * inode)254 int udf_expand_file_adinicb(struct inode *inode)
255 {
256 struct page *page;
257 char *kaddr;
258 struct udf_inode_info *iinfo = UDF_I(inode);
259 int err;
260
261 WARN_ON_ONCE(!inode_is_locked(inode));
262 if (!iinfo->i_lenAlloc) {
263 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
264 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
265 else
266 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
267 /* from now on we have normal address_space methods */
268 inode->i_data.a_ops = &udf_aops;
269 up_write(&iinfo->i_data_sem);
270 mark_inode_dirty(inode);
271 return 0;
272 }
273 /*
274 * Release i_data_sem so that we can lock a page - page lock ranks
275 * above i_data_sem. i_mutex still protects us against file changes.
276 */
277 up_write(&iinfo->i_data_sem);
278
279 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
280 if (!page)
281 return -ENOMEM;
282
283 if (!PageUptodate(page)) {
284 kaddr = kmap_atomic(page);
285 memset(kaddr + iinfo->i_lenAlloc, 0x00,
286 PAGE_SIZE - iinfo->i_lenAlloc);
287 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
288 iinfo->i_lenAlloc);
289 flush_dcache_page(page);
290 SetPageUptodate(page);
291 kunmap_atomic(kaddr);
292 }
293 down_write(&iinfo->i_data_sem);
294 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
295 iinfo->i_lenAlloc);
296 iinfo->i_lenAlloc = 0;
297 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
298 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
299 else
300 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
301 /* from now on we have normal address_space methods */
302 inode->i_data.a_ops = &udf_aops;
303 set_page_dirty(page);
304 unlock_page(page);
305 up_write(&iinfo->i_data_sem);
306 err = filemap_fdatawrite(inode->i_mapping);
307 if (err) {
308 /* Restore everything back so that we don't lose data... */
309 lock_page(page);
310 down_write(&iinfo->i_data_sem);
311 kaddr = kmap_atomic(page);
312 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
313 kunmap_atomic(kaddr);
314 unlock_page(page);
315 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
316 inode->i_data.a_ops = &udf_adinicb_aops;
317 iinfo->i_lenAlloc = inode->i_size;
318 up_write(&iinfo->i_data_sem);
319 }
320 put_page(page);
321 mark_inode_dirty(inode);
322
323 return err;
324 }
325
udf_expand_dir_adinicb(struct inode * inode,udf_pblk_t * block,int * err)326 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
327 udf_pblk_t *block, int *err)
328 {
329 udf_pblk_t newblock;
330 struct buffer_head *dbh = NULL;
331 struct kernel_lb_addr eloc;
332 uint8_t alloctype;
333 struct extent_position epos;
334
335 struct udf_fileident_bh sfibh, dfibh;
336 loff_t f_pos = udf_ext0_offset(inode);
337 int size = udf_ext0_offset(inode) + inode->i_size;
338 struct fileIdentDesc cfi, *sfi, *dfi;
339 struct udf_inode_info *iinfo = UDF_I(inode);
340
341 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
342 alloctype = ICBTAG_FLAG_AD_SHORT;
343 else
344 alloctype = ICBTAG_FLAG_AD_LONG;
345
346 if (!inode->i_size) {
347 iinfo->i_alloc_type = alloctype;
348 mark_inode_dirty(inode);
349 return NULL;
350 }
351
352 /* alloc block, and copy data to it */
353 *block = udf_new_block(inode->i_sb, inode,
354 iinfo->i_location.partitionReferenceNum,
355 iinfo->i_location.logicalBlockNum, err);
356 if (!(*block))
357 return NULL;
358 newblock = udf_get_pblock(inode->i_sb, *block,
359 iinfo->i_location.partitionReferenceNum,
360 0);
361 if (!newblock)
362 return NULL;
363 dbh = udf_tgetblk(inode->i_sb, newblock);
364 if (!dbh)
365 return NULL;
366 lock_buffer(dbh);
367 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
368 set_buffer_uptodate(dbh);
369 unlock_buffer(dbh);
370 mark_buffer_dirty_inode(dbh, inode);
371
372 sfibh.soffset = sfibh.eoffset =
373 f_pos & (inode->i_sb->s_blocksize - 1);
374 sfibh.sbh = sfibh.ebh = NULL;
375 dfibh.soffset = dfibh.eoffset = 0;
376 dfibh.sbh = dfibh.ebh = dbh;
377 while (f_pos < size) {
378 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
379 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
380 NULL, NULL, NULL);
381 if (!sfi) {
382 brelse(dbh);
383 return NULL;
384 }
385 iinfo->i_alloc_type = alloctype;
386 sfi->descTag.tagLocation = cpu_to_le32(*block);
387 dfibh.soffset = dfibh.eoffset;
388 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
389 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
390 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
391 sfi->fileIdent +
392 le16_to_cpu(sfi->lengthOfImpUse))) {
393 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
394 brelse(dbh);
395 return NULL;
396 }
397 }
398 mark_buffer_dirty_inode(dbh, inode);
399
400 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
401 iinfo->i_lenAlloc = 0;
402 eloc.logicalBlockNum = *block;
403 eloc.partitionReferenceNum =
404 iinfo->i_location.partitionReferenceNum;
405 iinfo->i_lenExtents = inode->i_size;
406 epos.bh = NULL;
407 epos.block = iinfo->i_location;
408 epos.offset = udf_file_entry_alloc_offset(inode);
409 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
410 /* UniqueID stuff */
411
412 brelse(epos.bh);
413 mark_inode_dirty(inode);
414 return dbh;
415 }
416
udf_get_block(struct inode * inode,sector_t block,struct buffer_head * bh_result,int create)417 static int udf_get_block(struct inode *inode, sector_t block,
418 struct buffer_head *bh_result, int create)
419 {
420 int err, new;
421 sector_t phys = 0;
422 struct udf_inode_info *iinfo;
423
424 if (!create) {
425 phys = udf_block_map(inode, block);
426 if (phys)
427 map_bh(bh_result, inode->i_sb, phys);
428 return 0;
429 }
430
431 err = -EIO;
432 new = 0;
433 iinfo = UDF_I(inode);
434
435 down_write(&iinfo->i_data_sem);
436 if (block == iinfo->i_next_alloc_block + 1) {
437 iinfo->i_next_alloc_block++;
438 iinfo->i_next_alloc_goal++;
439 }
440
441 /*
442 * Block beyond EOF and prealloc extents? Just discard preallocation
443 * as it is not useful and complicates things.
444 */
445 if (((loff_t)block) << inode->i_blkbits >= iinfo->i_lenExtents)
446 udf_discard_prealloc(inode);
447 udf_clear_extent_cache(inode);
448 phys = inode_getblk(inode, block, &err, &new);
449 if (!phys)
450 goto abort;
451
452 if (new)
453 set_buffer_new(bh_result);
454 map_bh(bh_result, inode->i_sb, phys);
455
456 abort:
457 up_write(&iinfo->i_data_sem);
458 return err;
459 }
460
udf_getblk(struct inode * inode,udf_pblk_t block,int create,int * err)461 static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
462 int create, int *err)
463 {
464 struct buffer_head *bh;
465 struct buffer_head dummy;
466
467 dummy.b_state = 0;
468 dummy.b_blocknr = -1000;
469 *err = udf_get_block(inode, block, &dummy, create);
470 if (!*err && buffer_mapped(&dummy)) {
471 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
472 if (buffer_new(&dummy)) {
473 lock_buffer(bh);
474 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
475 set_buffer_uptodate(bh);
476 unlock_buffer(bh);
477 mark_buffer_dirty_inode(bh, inode);
478 }
479 return bh;
480 }
481
482 return NULL;
483 }
484
485 /* Extend the file with new blocks totaling 'new_block_bytes',
486 * return the number of extents added
487 */
udf_do_extend_file(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,loff_t new_block_bytes)488 static int udf_do_extend_file(struct inode *inode,
489 struct extent_position *last_pos,
490 struct kernel_long_ad *last_ext,
491 loff_t new_block_bytes)
492 {
493 uint32_t add;
494 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
495 struct super_block *sb = inode->i_sb;
496 struct udf_inode_info *iinfo;
497 int err;
498
499 /* The previous extent is fake and we should not extend by anything
500 * - there's nothing to do... */
501 if (!new_block_bytes && fake)
502 return 0;
503
504 iinfo = UDF_I(inode);
505 /* Round the last extent up to a multiple of block size */
506 if (last_ext->extLength & (sb->s_blocksize - 1)) {
507 last_ext->extLength =
508 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
509 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
510 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
511 iinfo->i_lenExtents =
512 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
513 ~(sb->s_blocksize - 1);
514 }
515
516 /* Can we merge with the previous extent? */
517 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
518 EXT_NOT_RECORDED_NOT_ALLOCATED) {
519 add = (1 << 30) - sb->s_blocksize -
520 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
521 if (add > new_block_bytes)
522 add = new_block_bytes;
523 new_block_bytes -= add;
524 last_ext->extLength += add;
525 }
526
527 if (fake) {
528 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
529 last_ext->extLength, 1);
530 if (err < 0)
531 goto out_err;
532 count++;
533 } else {
534 struct kernel_lb_addr tmploc;
535 uint32_t tmplen;
536
537 udf_write_aext(inode, last_pos, &last_ext->extLocation,
538 last_ext->extLength, 1);
539
540 /*
541 * We've rewritten the last extent. If we are going to add
542 * more extents, we may need to enter possible following
543 * empty indirect extent.
544 */
545 if (new_block_bytes)
546 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
547 }
548
549 /* Managed to do everything necessary? */
550 if (!new_block_bytes)
551 goto out;
552
553 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
554 last_ext->extLocation.logicalBlockNum = 0;
555 last_ext->extLocation.partitionReferenceNum = 0;
556 add = (1 << 30) - sb->s_blocksize;
557 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
558
559 /* Create enough extents to cover the whole hole */
560 while (new_block_bytes > add) {
561 new_block_bytes -= add;
562 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
563 last_ext->extLength, 1);
564 if (err)
565 goto out_err;
566 count++;
567 }
568 if (new_block_bytes) {
569 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
570 new_block_bytes;
571 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
572 last_ext->extLength, 1);
573 if (err)
574 goto out_err;
575 count++;
576 }
577
578 out:
579 /* last_pos should point to the last written extent... */
580 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
581 last_pos->offset -= sizeof(struct short_ad);
582 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
583 last_pos->offset -= sizeof(struct long_ad);
584 else
585 return -EIO;
586
587 return count;
588 out_err:
589 /* Remove extents we've created so far */
590 udf_clear_extent_cache(inode);
591 udf_truncate_extents(inode);
592 return err;
593 }
594
595 /* Extend the final block of the file to final_block_len bytes */
udf_do_extend_final_block(struct inode * inode,struct extent_position * last_pos,struct kernel_long_ad * last_ext,uint32_t new_elen)596 static void udf_do_extend_final_block(struct inode *inode,
597 struct extent_position *last_pos,
598 struct kernel_long_ad *last_ext,
599 uint32_t new_elen)
600 {
601 uint32_t added_bytes;
602
603 /*
604 * Extent already large enough? It may be already rounded up to block
605 * size...
606 */
607 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
608 return;
609 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
610 last_ext->extLength += added_bytes;
611 UDF_I(inode)->i_lenExtents += added_bytes;
612
613 udf_write_aext(inode, last_pos, &last_ext->extLocation,
614 last_ext->extLength, 1);
615 }
616
udf_extend_file(struct inode * inode,loff_t newsize)617 static int udf_extend_file(struct inode *inode, loff_t newsize)
618 {
619
620 struct extent_position epos;
621 struct kernel_lb_addr eloc;
622 uint32_t elen;
623 int8_t etype;
624 struct super_block *sb = inode->i_sb;
625 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
626 loff_t new_elen;
627 int adsize;
628 struct udf_inode_info *iinfo = UDF_I(inode);
629 struct kernel_long_ad extent;
630 int err = 0;
631 bool within_last_ext;
632
633 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
634 adsize = sizeof(struct short_ad);
635 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
636 adsize = sizeof(struct long_ad);
637 else
638 BUG();
639
640 /*
641 * When creating hole in file, just don't bother with preserving
642 * preallocation. It likely won't be very useful anyway.
643 */
644 udf_discard_prealloc(inode);
645
646 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
647 within_last_ext = (etype != -1);
648 /* We don't expect extents past EOF... */
649 WARN_ON_ONCE(within_last_ext &&
650 elen > ((loff_t)offset + 1) << inode->i_blkbits);
651
652 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
653 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
654 /* File has no extents at all or has empty last
655 * indirect extent! Create a fake extent... */
656 extent.extLocation.logicalBlockNum = 0;
657 extent.extLocation.partitionReferenceNum = 0;
658 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
659 } else {
660 epos.offset -= adsize;
661 etype = udf_next_aext(inode, &epos, &extent.extLocation,
662 &extent.extLength, 0);
663 extent.extLength |= etype << 30;
664 }
665
666 new_elen = ((loff_t)offset << inode->i_blkbits) |
667 (newsize & (sb->s_blocksize - 1));
668
669 /* File has extent covering the new size (could happen when extending
670 * inside a block)?
671 */
672 if (within_last_ext) {
673 /* Extending file within the last file block */
674 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
675 } else {
676 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
677 }
678
679 if (err < 0)
680 goto out;
681 err = 0;
682 iinfo->i_lenExtents = newsize;
683 out:
684 brelse(epos.bh);
685 return err;
686 }
687
inode_getblk(struct inode * inode,sector_t block,int * err,int * new)688 static sector_t inode_getblk(struct inode *inode, sector_t block,
689 int *err, int *new)
690 {
691 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
692 struct extent_position prev_epos, cur_epos, next_epos;
693 int count = 0, startnum = 0, endnum = 0;
694 uint32_t elen = 0, tmpelen;
695 struct kernel_lb_addr eloc, tmpeloc;
696 int c = 1;
697 loff_t lbcount = 0, b_off = 0;
698 udf_pblk_t newblocknum, newblock;
699 sector_t offset = 0;
700 int8_t etype;
701 struct udf_inode_info *iinfo = UDF_I(inode);
702 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
703 int lastblock = 0;
704 bool isBeyondEOF;
705
706 *err = 0;
707 *new = 0;
708 prev_epos.offset = udf_file_entry_alloc_offset(inode);
709 prev_epos.block = iinfo->i_location;
710 prev_epos.bh = NULL;
711 cur_epos = next_epos = prev_epos;
712 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
713
714 /* find the extent which contains the block we are looking for.
715 alternate between laarr[0] and laarr[1] for locations of the
716 current extent, and the previous extent */
717 do {
718 if (prev_epos.bh != cur_epos.bh) {
719 brelse(prev_epos.bh);
720 get_bh(cur_epos.bh);
721 prev_epos.bh = cur_epos.bh;
722 }
723 if (cur_epos.bh != next_epos.bh) {
724 brelse(cur_epos.bh);
725 get_bh(next_epos.bh);
726 cur_epos.bh = next_epos.bh;
727 }
728
729 lbcount += elen;
730
731 prev_epos.block = cur_epos.block;
732 cur_epos.block = next_epos.block;
733
734 prev_epos.offset = cur_epos.offset;
735 cur_epos.offset = next_epos.offset;
736
737 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
738 if (etype == -1)
739 break;
740
741 c = !c;
742
743 laarr[c].extLength = (etype << 30) | elen;
744 laarr[c].extLocation = eloc;
745
746 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
747 pgoal = eloc.logicalBlockNum +
748 ((elen + inode->i_sb->s_blocksize - 1) >>
749 inode->i_sb->s_blocksize_bits);
750
751 count++;
752 } while (lbcount + elen <= b_off);
753
754 b_off -= lbcount;
755 offset = b_off >> inode->i_sb->s_blocksize_bits;
756 /*
757 * Move prev_epos and cur_epos into indirect extent if we are at
758 * the pointer to it
759 */
760 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
761 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
762
763 /* if the extent is allocated and recorded, return the block
764 if the extent is not a multiple of the blocksize, round up */
765
766 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
767 if (elen & (inode->i_sb->s_blocksize - 1)) {
768 elen = EXT_RECORDED_ALLOCATED |
769 ((elen + inode->i_sb->s_blocksize - 1) &
770 ~(inode->i_sb->s_blocksize - 1));
771 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
772 }
773 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
774 goto out_free;
775 }
776
777 /* Are we beyond EOF and preallocated extent? */
778 if (etype == -1) {
779 int ret;
780 loff_t hole_len;
781
782 isBeyondEOF = true;
783 if (count) {
784 if (c)
785 laarr[0] = laarr[1];
786 startnum = 1;
787 } else {
788 /* Create a fake extent when there's not one */
789 memset(&laarr[0].extLocation, 0x00,
790 sizeof(struct kernel_lb_addr));
791 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
792 /* Will udf_do_extend_file() create real extent from
793 a fake one? */
794 startnum = (offset > 0);
795 }
796 /* Create extents for the hole between EOF and offset */
797 hole_len = (loff_t)offset << inode->i_blkbits;
798 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
799 if (ret < 0) {
800 *err = ret;
801 newblock = 0;
802 goto out_free;
803 }
804 c = 0;
805 offset = 0;
806 count += ret;
807 /*
808 * Is there any real extent? - otherwise we overwrite the fake
809 * one...
810 */
811 if (count)
812 c = !c;
813 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
814 inode->i_sb->s_blocksize;
815 memset(&laarr[c].extLocation, 0x00,
816 sizeof(struct kernel_lb_addr));
817 count++;
818 endnum = c + 1;
819 lastblock = 1;
820 } else {
821 isBeyondEOF = false;
822 endnum = startnum = ((count > 2) ? 2 : count);
823
824 /* if the current extent is in position 0,
825 swap it with the previous */
826 if (!c && count != 1) {
827 laarr[2] = laarr[0];
828 laarr[0] = laarr[1];
829 laarr[1] = laarr[2];
830 c = 1;
831 }
832
833 /* if the current block is located in an extent,
834 read the next extent */
835 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
836 if (etype != -1) {
837 laarr[c + 1].extLength = (etype << 30) | elen;
838 laarr[c + 1].extLocation = eloc;
839 count++;
840 startnum++;
841 endnum++;
842 } else
843 lastblock = 1;
844 }
845
846 /* if the current extent is not recorded but allocated, get the
847 * block in the extent corresponding to the requested block */
848 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
849 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
850 else { /* otherwise, allocate a new block */
851 if (iinfo->i_next_alloc_block == block)
852 goal = iinfo->i_next_alloc_goal;
853
854 if (!goal) {
855 if (!(goal = pgoal)) /* XXX: what was intended here? */
856 goal = iinfo->i_location.logicalBlockNum + 1;
857 }
858
859 newblocknum = udf_new_block(inode->i_sb, inode,
860 iinfo->i_location.partitionReferenceNum,
861 goal, err);
862 if (!newblocknum) {
863 *err = -ENOSPC;
864 newblock = 0;
865 goto out_free;
866 }
867 if (isBeyondEOF)
868 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
869 }
870
871 /* if the extent the requsted block is located in contains multiple
872 * blocks, split the extent into at most three extents. blocks prior
873 * to requested block, requested block, and blocks after requested
874 * block */
875 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
876
877 /* We preallocate blocks only for regular files. It also makes sense
878 * for directories but there's a problem when to drop the
879 * preallocation. We might use some delayed work for that but I feel
880 * it's overengineering for a filesystem like UDF. */
881 if (S_ISREG(inode->i_mode))
882 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
883
884 /* merge any continuous blocks in laarr */
885 udf_merge_extents(inode, laarr, &endnum);
886
887 /* write back the new extents, inserting new extents if the new number
888 * of extents is greater than the old number, and deleting extents if
889 * the new number of extents is less than the old number */
890 *err = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
891 if (*err < 0)
892 goto out_free;
893
894 newblock = udf_get_pblock(inode->i_sb, newblocknum,
895 iinfo->i_location.partitionReferenceNum, 0);
896 if (!newblock) {
897 *err = -EIO;
898 goto out_free;
899 }
900 *new = 1;
901 iinfo->i_next_alloc_block = block;
902 iinfo->i_next_alloc_goal = newblocknum;
903 inode->i_ctime = current_time(inode);
904
905 if (IS_SYNC(inode))
906 udf_sync_inode(inode);
907 else
908 mark_inode_dirty(inode);
909 out_free:
910 brelse(prev_epos.bh);
911 brelse(cur_epos.bh);
912 brelse(next_epos.bh);
913 return newblock;
914 }
915
udf_split_extents(struct inode * inode,int * c,int offset,udf_pblk_t newblocknum,struct kernel_long_ad * laarr,int * endnum)916 static void udf_split_extents(struct inode *inode, int *c, int offset,
917 udf_pblk_t newblocknum,
918 struct kernel_long_ad *laarr, int *endnum)
919 {
920 unsigned long blocksize = inode->i_sb->s_blocksize;
921 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
922
923 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
924 (laarr[*c].extLength >> 30) ==
925 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
926 int curr = *c;
927 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
928 blocksize - 1) >> blocksize_bits;
929 int8_t etype = (laarr[curr].extLength >> 30);
930
931 if (blen == 1)
932 ;
933 else if (!offset || blen == offset + 1) {
934 laarr[curr + 2] = laarr[curr + 1];
935 laarr[curr + 1] = laarr[curr];
936 } else {
937 laarr[curr + 3] = laarr[curr + 1];
938 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
939 }
940
941 if (offset) {
942 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
943 udf_free_blocks(inode->i_sb, inode,
944 &laarr[curr].extLocation,
945 0, offset);
946 laarr[curr].extLength =
947 EXT_NOT_RECORDED_NOT_ALLOCATED |
948 (offset << blocksize_bits);
949 laarr[curr].extLocation.logicalBlockNum = 0;
950 laarr[curr].extLocation.
951 partitionReferenceNum = 0;
952 } else
953 laarr[curr].extLength = (etype << 30) |
954 (offset << blocksize_bits);
955 curr++;
956 (*c)++;
957 (*endnum)++;
958 }
959
960 laarr[curr].extLocation.logicalBlockNum = newblocknum;
961 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
962 laarr[curr].extLocation.partitionReferenceNum =
963 UDF_I(inode)->i_location.partitionReferenceNum;
964 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
965 blocksize;
966 curr++;
967
968 if (blen != offset + 1) {
969 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
970 laarr[curr].extLocation.logicalBlockNum +=
971 offset + 1;
972 laarr[curr].extLength = (etype << 30) |
973 ((blen - (offset + 1)) << blocksize_bits);
974 curr++;
975 (*endnum)++;
976 }
977 }
978 }
979
udf_prealloc_extents(struct inode * inode,int c,int lastblock,struct kernel_long_ad * laarr,int * endnum)980 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
981 struct kernel_long_ad *laarr,
982 int *endnum)
983 {
984 int start, length = 0, currlength = 0, i;
985
986 if (*endnum >= (c + 1)) {
987 if (!lastblock)
988 return;
989 else
990 start = c;
991 } else {
992 if ((laarr[c + 1].extLength >> 30) ==
993 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
994 start = c + 1;
995 length = currlength =
996 (((laarr[c + 1].extLength &
997 UDF_EXTENT_LENGTH_MASK) +
998 inode->i_sb->s_blocksize - 1) >>
999 inode->i_sb->s_blocksize_bits);
1000 } else
1001 start = c;
1002 }
1003
1004 for (i = start + 1; i <= *endnum; i++) {
1005 if (i == *endnum) {
1006 if (lastblock)
1007 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1008 } else if ((laarr[i].extLength >> 30) ==
1009 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1010 length += (((laarr[i].extLength &
1011 UDF_EXTENT_LENGTH_MASK) +
1012 inode->i_sb->s_blocksize - 1) >>
1013 inode->i_sb->s_blocksize_bits);
1014 } else
1015 break;
1016 }
1017
1018 if (length) {
1019 int next = laarr[start].extLocation.logicalBlockNum +
1020 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1021 inode->i_sb->s_blocksize - 1) >>
1022 inode->i_sb->s_blocksize_bits);
1023 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1024 laarr[start].extLocation.partitionReferenceNum,
1025 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1026 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1027 currlength);
1028 if (numalloc) {
1029 if (start == (c + 1))
1030 laarr[start].extLength +=
1031 (numalloc <<
1032 inode->i_sb->s_blocksize_bits);
1033 else {
1034 memmove(&laarr[c + 2], &laarr[c + 1],
1035 sizeof(struct long_ad) * (*endnum - (c + 1)));
1036 (*endnum)++;
1037 laarr[c + 1].extLocation.logicalBlockNum = next;
1038 laarr[c + 1].extLocation.partitionReferenceNum =
1039 laarr[c].extLocation.
1040 partitionReferenceNum;
1041 laarr[c + 1].extLength =
1042 EXT_NOT_RECORDED_ALLOCATED |
1043 (numalloc <<
1044 inode->i_sb->s_blocksize_bits);
1045 start = c + 1;
1046 }
1047
1048 for (i = start + 1; numalloc && i < *endnum; i++) {
1049 int elen = ((laarr[i].extLength &
1050 UDF_EXTENT_LENGTH_MASK) +
1051 inode->i_sb->s_blocksize - 1) >>
1052 inode->i_sb->s_blocksize_bits;
1053
1054 if (elen > numalloc) {
1055 laarr[i].extLength -=
1056 (numalloc <<
1057 inode->i_sb->s_blocksize_bits);
1058 numalloc = 0;
1059 } else {
1060 numalloc -= elen;
1061 if (*endnum > (i + 1))
1062 memmove(&laarr[i],
1063 &laarr[i + 1],
1064 sizeof(struct long_ad) *
1065 (*endnum - (i + 1)));
1066 i--;
1067 (*endnum)--;
1068 }
1069 }
1070 UDF_I(inode)->i_lenExtents +=
1071 numalloc << inode->i_sb->s_blocksize_bits;
1072 }
1073 }
1074 }
1075
udf_merge_extents(struct inode * inode,struct kernel_long_ad * laarr,int * endnum)1076 static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1077 int *endnum)
1078 {
1079 int i;
1080 unsigned long blocksize = inode->i_sb->s_blocksize;
1081 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1082
1083 for (i = 0; i < (*endnum - 1); i++) {
1084 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1085 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1086
1087 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1088 (((li->extLength >> 30) ==
1089 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1090 ((lip1->extLocation.logicalBlockNum -
1091 li->extLocation.logicalBlockNum) ==
1092 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1093 blocksize - 1) >> blocksize_bits)))) {
1094
1095 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1096 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1097 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1098 li->extLength = lip1->extLength +
1099 (((li->extLength &
1100 UDF_EXTENT_LENGTH_MASK) +
1101 blocksize - 1) & ~(blocksize - 1));
1102 if (*endnum > (i + 2))
1103 memmove(&laarr[i + 1], &laarr[i + 2],
1104 sizeof(struct long_ad) *
1105 (*endnum - (i + 2)));
1106 i--;
1107 (*endnum)--;
1108 }
1109 } else if (((li->extLength >> 30) ==
1110 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1111 ((lip1->extLength >> 30) ==
1112 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1113 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1114 ((li->extLength &
1115 UDF_EXTENT_LENGTH_MASK) +
1116 blocksize - 1) >> blocksize_bits);
1117 li->extLocation.logicalBlockNum = 0;
1118 li->extLocation.partitionReferenceNum = 0;
1119
1120 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1121 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1122 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1123 lip1->extLength = (lip1->extLength -
1124 (li->extLength &
1125 UDF_EXTENT_LENGTH_MASK) +
1126 UDF_EXTENT_LENGTH_MASK) &
1127 ~(blocksize - 1);
1128 li->extLength = (li->extLength &
1129 UDF_EXTENT_FLAG_MASK) +
1130 (UDF_EXTENT_LENGTH_MASK + 1) -
1131 blocksize;
1132 } else {
1133 li->extLength = lip1->extLength +
1134 (((li->extLength &
1135 UDF_EXTENT_LENGTH_MASK) +
1136 blocksize - 1) & ~(blocksize - 1));
1137 if (*endnum > (i + 2))
1138 memmove(&laarr[i + 1], &laarr[i + 2],
1139 sizeof(struct long_ad) *
1140 (*endnum - (i + 2)));
1141 i--;
1142 (*endnum)--;
1143 }
1144 } else if ((li->extLength >> 30) ==
1145 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1146 udf_free_blocks(inode->i_sb, inode,
1147 &li->extLocation, 0,
1148 ((li->extLength &
1149 UDF_EXTENT_LENGTH_MASK) +
1150 blocksize - 1) >> blocksize_bits);
1151 li->extLocation.logicalBlockNum = 0;
1152 li->extLocation.partitionReferenceNum = 0;
1153 li->extLength = (li->extLength &
1154 UDF_EXTENT_LENGTH_MASK) |
1155 EXT_NOT_RECORDED_NOT_ALLOCATED;
1156 }
1157 }
1158 }
1159
udf_update_extents(struct inode * inode,struct kernel_long_ad * laarr,int startnum,int endnum,struct extent_position * epos)1160 static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1161 int startnum, int endnum,
1162 struct extent_position *epos)
1163 {
1164 int start = 0, i;
1165 struct kernel_lb_addr tmploc;
1166 uint32_t tmplen;
1167 int err;
1168
1169 if (startnum > endnum) {
1170 for (i = 0; i < (startnum - endnum); i++)
1171 udf_delete_aext(inode, *epos);
1172 } else if (startnum < endnum) {
1173 for (i = 0; i < (endnum - startnum); i++) {
1174 err = udf_insert_aext(inode, *epos,
1175 laarr[i].extLocation,
1176 laarr[i].extLength);
1177 /*
1178 * If we fail here, we are likely corrupting the extent
1179 * list and leaking blocks. At least stop early to
1180 * limit the damage.
1181 */
1182 if (err < 0)
1183 return err;
1184 udf_next_aext(inode, epos, &laarr[i].extLocation,
1185 &laarr[i].extLength, 1);
1186 start++;
1187 }
1188 }
1189
1190 for (i = start; i < endnum; i++) {
1191 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1192 udf_write_aext(inode, epos, &laarr[i].extLocation,
1193 laarr[i].extLength, 1);
1194 }
1195 return 0;
1196 }
1197
udf_bread(struct inode * inode,udf_pblk_t block,int create,int * err)1198 struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1199 int create, int *err)
1200 {
1201 struct buffer_head *bh = NULL;
1202
1203 bh = udf_getblk(inode, block, create, err);
1204 if (!bh)
1205 return NULL;
1206
1207 if (buffer_uptodate(bh))
1208 return bh;
1209
1210 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1211
1212 wait_on_buffer(bh);
1213 if (buffer_uptodate(bh))
1214 return bh;
1215
1216 brelse(bh);
1217 *err = -EIO;
1218 return NULL;
1219 }
1220
udf_setsize(struct inode * inode,loff_t newsize)1221 int udf_setsize(struct inode *inode, loff_t newsize)
1222 {
1223 int err;
1224 struct udf_inode_info *iinfo;
1225 unsigned int bsize = i_blocksize(inode);
1226
1227 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1228 S_ISLNK(inode->i_mode)))
1229 return -EINVAL;
1230 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1231 return -EPERM;
1232
1233 iinfo = UDF_I(inode);
1234 if (newsize > inode->i_size) {
1235 down_write(&iinfo->i_data_sem);
1236 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1237 if (bsize <
1238 (udf_file_entry_alloc_offset(inode) + newsize)) {
1239 err = udf_expand_file_adinicb(inode);
1240 if (err)
1241 return err;
1242 down_write(&iinfo->i_data_sem);
1243 } else {
1244 iinfo->i_lenAlloc = newsize;
1245 goto set_size;
1246 }
1247 }
1248 err = udf_extend_file(inode, newsize);
1249 if (err) {
1250 up_write(&iinfo->i_data_sem);
1251 return err;
1252 }
1253 set_size:
1254 up_write(&iinfo->i_data_sem);
1255 truncate_setsize(inode, newsize);
1256 } else {
1257 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1258 down_write(&iinfo->i_data_sem);
1259 udf_clear_extent_cache(inode);
1260 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1261 0x00, bsize - newsize -
1262 udf_file_entry_alloc_offset(inode));
1263 iinfo->i_lenAlloc = newsize;
1264 truncate_setsize(inode, newsize);
1265 up_write(&iinfo->i_data_sem);
1266 goto update_time;
1267 }
1268 err = block_truncate_page(inode->i_mapping, newsize,
1269 udf_get_block);
1270 if (err)
1271 return err;
1272 truncate_setsize(inode, newsize);
1273 down_write(&iinfo->i_data_sem);
1274 udf_clear_extent_cache(inode);
1275 err = udf_truncate_extents(inode);
1276 up_write(&iinfo->i_data_sem);
1277 if (err)
1278 return err;
1279 }
1280 update_time:
1281 inode->i_mtime = inode->i_ctime = current_time(inode);
1282 if (IS_SYNC(inode))
1283 udf_sync_inode(inode);
1284 else
1285 mark_inode_dirty(inode);
1286 return 0;
1287 }
1288
1289 /*
1290 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1291 * arbitrary - just that we hopefully don't limit any real use of rewritten
1292 * inode on write-once media but avoid looping for too long on corrupted media.
1293 */
1294 #define UDF_MAX_ICB_NESTING 1024
1295
udf_read_inode(struct inode * inode,bool hidden_inode)1296 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1297 {
1298 struct buffer_head *bh = NULL;
1299 struct fileEntry *fe;
1300 struct extendedFileEntry *efe;
1301 uint16_t ident;
1302 struct udf_inode_info *iinfo = UDF_I(inode);
1303 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1304 struct kernel_lb_addr *iloc = &iinfo->i_location;
1305 unsigned int link_count;
1306 unsigned int indirections = 0;
1307 int bs = inode->i_sb->s_blocksize;
1308 int ret = -EIO;
1309 uint32_t uid, gid;
1310
1311 reread:
1312 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1313 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1314 iloc->partitionReferenceNum, sbi->s_partitions);
1315 return -EIO;
1316 }
1317
1318 if (iloc->logicalBlockNum >=
1319 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1320 udf_debug("block=%u, partition=%u out of range\n",
1321 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1322 return -EIO;
1323 }
1324
1325 /*
1326 * Set defaults, but the inode is still incomplete!
1327 * Note: get_new_inode() sets the following on a new inode:
1328 * i_sb = sb
1329 * i_no = ino
1330 * i_flags = sb->s_flags
1331 * i_state = 0
1332 * clean_inode(): zero fills and sets
1333 * i_count = 1
1334 * i_nlink = 1
1335 * i_op = NULL;
1336 */
1337 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1338 if (!bh) {
1339 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1340 return -EIO;
1341 }
1342
1343 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1344 ident != TAG_IDENT_USE) {
1345 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1346 inode->i_ino, ident);
1347 goto out;
1348 }
1349
1350 fe = (struct fileEntry *)bh->b_data;
1351 efe = (struct extendedFileEntry *)bh->b_data;
1352
1353 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1354 struct buffer_head *ibh;
1355
1356 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1357 if (ident == TAG_IDENT_IE && ibh) {
1358 struct kernel_lb_addr loc;
1359 struct indirectEntry *ie;
1360
1361 ie = (struct indirectEntry *)ibh->b_data;
1362 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1363
1364 if (ie->indirectICB.extLength) {
1365 brelse(ibh);
1366 memcpy(&iinfo->i_location, &loc,
1367 sizeof(struct kernel_lb_addr));
1368 if (++indirections > UDF_MAX_ICB_NESTING) {
1369 udf_err(inode->i_sb,
1370 "too many ICBs in ICB hierarchy"
1371 " (max %d supported)\n",
1372 UDF_MAX_ICB_NESTING);
1373 goto out;
1374 }
1375 brelse(bh);
1376 goto reread;
1377 }
1378 }
1379 brelse(ibh);
1380 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1381 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1382 le16_to_cpu(fe->icbTag.strategyType));
1383 goto out;
1384 }
1385 if (fe->icbTag.strategyType == cpu_to_le16(4))
1386 iinfo->i_strat4096 = 0;
1387 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1388 iinfo->i_strat4096 = 1;
1389
1390 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1391 ICBTAG_FLAG_AD_MASK;
1392 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1393 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1394 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1395 ret = -EIO;
1396 goto out;
1397 }
1398 iinfo->i_hidden = hidden_inode;
1399 iinfo->i_unique = 0;
1400 iinfo->i_lenEAttr = 0;
1401 iinfo->i_lenExtents = 0;
1402 iinfo->i_lenAlloc = 0;
1403 iinfo->i_next_alloc_block = 0;
1404 iinfo->i_next_alloc_goal = 0;
1405 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1406 iinfo->i_efe = 1;
1407 iinfo->i_use = 0;
1408 ret = udf_alloc_i_data(inode, bs -
1409 sizeof(struct extendedFileEntry));
1410 if (ret)
1411 goto out;
1412 memcpy(iinfo->i_data,
1413 bh->b_data + sizeof(struct extendedFileEntry),
1414 bs - sizeof(struct extendedFileEntry));
1415 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1416 iinfo->i_efe = 0;
1417 iinfo->i_use = 0;
1418 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1419 if (ret)
1420 goto out;
1421 memcpy(iinfo->i_data,
1422 bh->b_data + sizeof(struct fileEntry),
1423 bs - sizeof(struct fileEntry));
1424 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1425 iinfo->i_efe = 0;
1426 iinfo->i_use = 1;
1427 iinfo->i_lenAlloc = le32_to_cpu(
1428 ((struct unallocSpaceEntry *)bh->b_data)->
1429 lengthAllocDescs);
1430 ret = udf_alloc_i_data(inode, bs -
1431 sizeof(struct unallocSpaceEntry));
1432 if (ret)
1433 goto out;
1434 memcpy(iinfo->i_data,
1435 bh->b_data + sizeof(struct unallocSpaceEntry),
1436 bs - sizeof(struct unallocSpaceEntry));
1437 return 0;
1438 }
1439
1440 ret = -EIO;
1441 read_lock(&sbi->s_cred_lock);
1442 uid = le32_to_cpu(fe->uid);
1443 if (uid == UDF_INVALID_ID ||
1444 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1445 inode->i_uid = sbi->s_uid;
1446 else
1447 i_uid_write(inode, uid);
1448
1449 gid = le32_to_cpu(fe->gid);
1450 if (gid == UDF_INVALID_ID ||
1451 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1452 inode->i_gid = sbi->s_gid;
1453 else
1454 i_gid_write(inode, gid);
1455
1456 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1457 sbi->s_fmode != UDF_INVALID_MODE)
1458 inode->i_mode = sbi->s_fmode;
1459 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1460 sbi->s_dmode != UDF_INVALID_MODE)
1461 inode->i_mode = sbi->s_dmode;
1462 else
1463 inode->i_mode = udf_convert_permissions(fe);
1464 inode->i_mode &= ~sbi->s_umask;
1465 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1466
1467 read_unlock(&sbi->s_cred_lock);
1468
1469 link_count = le16_to_cpu(fe->fileLinkCount);
1470 if (!link_count) {
1471 if (!hidden_inode) {
1472 ret = -ESTALE;
1473 goto out;
1474 }
1475 link_count = 1;
1476 }
1477 set_nlink(inode, link_count);
1478
1479 inode->i_size = le64_to_cpu(fe->informationLength);
1480 iinfo->i_lenExtents = inode->i_size;
1481
1482 if (iinfo->i_efe == 0) {
1483 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1484 (inode->i_sb->s_blocksize_bits - 9);
1485
1486 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1487 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1488 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1489
1490 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1491 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1492 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1493 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1494 iinfo->i_streamdir = 0;
1495 iinfo->i_lenStreams = 0;
1496 } else {
1497 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1498 (inode->i_sb->s_blocksize_bits - 9);
1499
1500 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1501 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1502 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1503 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1504
1505 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1506 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1507 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1508 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1509
1510 /* Named streams */
1511 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1512 iinfo->i_locStreamdir =
1513 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1514 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1515 if (iinfo->i_lenStreams >= inode->i_size)
1516 iinfo->i_lenStreams -= inode->i_size;
1517 else
1518 iinfo->i_lenStreams = 0;
1519 }
1520 inode->i_generation = iinfo->i_unique;
1521
1522 /*
1523 * Sanity check length of allocation descriptors and extended attrs to
1524 * avoid integer overflows
1525 */
1526 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1527 goto out;
1528 /* Now do exact checks */
1529 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1530 goto out;
1531 /* Sanity checks for files in ICB so that we don't get confused later */
1532 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1533 /*
1534 * For file in ICB data is stored in allocation descriptor
1535 * so sizes should match
1536 */
1537 if (iinfo->i_lenAlloc != inode->i_size)
1538 goto out;
1539 /* File in ICB has to fit in there... */
1540 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1541 goto out;
1542 }
1543
1544 switch (fe->icbTag.fileType) {
1545 case ICBTAG_FILE_TYPE_DIRECTORY:
1546 inode->i_op = &udf_dir_inode_operations;
1547 inode->i_fop = &udf_dir_operations;
1548 inode->i_mode |= S_IFDIR;
1549 inc_nlink(inode);
1550 break;
1551 case ICBTAG_FILE_TYPE_REALTIME:
1552 case ICBTAG_FILE_TYPE_REGULAR:
1553 case ICBTAG_FILE_TYPE_UNDEF:
1554 case ICBTAG_FILE_TYPE_VAT20:
1555 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1556 inode->i_data.a_ops = &udf_adinicb_aops;
1557 else
1558 inode->i_data.a_ops = &udf_aops;
1559 inode->i_op = &udf_file_inode_operations;
1560 inode->i_fop = &udf_file_operations;
1561 inode->i_mode |= S_IFREG;
1562 break;
1563 case ICBTAG_FILE_TYPE_BLOCK:
1564 inode->i_mode |= S_IFBLK;
1565 break;
1566 case ICBTAG_FILE_TYPE_CHAR:
1567 inode->i_mode |= S_IFCHR;
1568 break;
1569 case ICBTAG_FILE_TYPE_FIFO:
1570 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1571 break;
1572 case ICBTAG_FILE_TYPE_SOCKET:
1573 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1574 break;
1575 case ICBTAG_FILE_TYPE_SYMLINK:
1576 inode->i_data.a_ops = &udf_symlink_aops;
1577 inode->i_op = &udf_symlink_inode_operations;
1578 inode_nohighmem(inode);
1579 inode->i_mode = S_IFLNK | 0777;
1580 break;
1581 case ICBTAG_FILE_TYPE_MAIN:
1582 udf_debug("METADATA FILE-----\n");
1583 break;
1584 case ICBTAG_FILE_TYPE_MIRROR:
1585 udf_debug("METADATA MIRROR FILE-----\n");
1586 break;
1587 case ICBTAG_FILE_TYPE_BITMAP:
1588 udf_debug("METADATA BITMAP FILE-----\n");
1589 break;
1590 default:
1591 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1592 inode->i_ino, fe->icbTag.fileType);
1593 goto out;
1594 }
1595 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1596 struct deviceSpec *dsea =
1597 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1598 if (dsea) {
1599 init_special_inode(inode, inode->i_mode,
1600 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1601 le32_to_cpu(dsea->minorDeviceIdent)));
1602 /* Developer ID ??? */
1603 } else
1604 goto out;
1605 }
1606 ret = 0;
1607 out:
1608 brelse(bh);
1609 return ret;
1610 }
1611
udf_alloc_i_data(struct inode * inode,size_t size)1612 static int udf_alloc_i_data(struct inode *inode, size_t size)
1613 {
1614 struct udf_inode_info *iinfo = UDF_I(inode);
1615 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1616 if (!iinfo->i_data)
1617 return -ENOMEM;
1618 return 0;
1619 }
1620
udf_convert_permissions(struct fileEntry * fe)1621 static umode_t udf_convert_permissions(struct fileEntry *fe)
1622 {
1623 umode_t mode;
1624 uint32_t permissions;
1625 uint32_t flags;
1626
1627 permissions = le32_to_cpu(fe->permissions);
1628 flags = le16_to_cpu(fe->icbTag.flags);
1629
1630 mode = ((permissions) & 0007) |
1631 ((permissions >> 2) & 0070) |
1632 ((permissions >> 4) & 0700) |
1633 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1634 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1635 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1636
1637 return mode;
1638 }
1639
udf_update_extra_perms(struct inode * inode,umode_t mode)1640 void udf_update_extra_perms(struct inode *inode, umode_t mode)
1641 {
1642 struct udf_inode_info *iinfo = UDF_I(inode);
1643
1644 /*
1645 * UDF 2.01 sec. 3.3.3.3 Note 2:
1646 * In Unix, delete permission tracks write
1647 */
1648 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1649 if (mode & 0200)
1650 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1651 if (mode & 0020)
1652 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1653 if (mode & 0002)
1654 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1655 }
1656
udf_write_inode(struct inode * inode,struct writeback_control * wbc)1657 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1658 {
1659 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1660 }
1661
udf_sync_inode(struct inode * inode)1662 static int udf_sync_inode(struct inode *inode)
1663 {
1664 return udf_update_inode(inode, 1);
1665 }
1666
udf_adjust_time(struct udf_inode_info * iinfo,struct timespec64 time)1667 static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1668 {
1669 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1670 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1671 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1672 iinfo->i_crtime = time;
1673 }
1674
udf_update_inode(struct inode * inode,int do_sync)1675 static int udf_update_inode(struct inode *inode, int do_sync)
1676 {
1677 struct buffer_head *bh = NULL;
1678 struct fileEntry *fe;
1679 struct extendedFileEntry *efe;
1680 uint64_t lb_recorded;
1681 uint32_t udfperms;
1682 uint16_t icbflags;
1683 uint16_t crclen;
1684 int err = 0;
1685 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1686 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1687 struct udf_inode_info *iinfo = UDF_I(inode);
1688
1689 bh = udf_tgetblk(inode->i_sb,
1690 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1691 if (!bh) {
1692 udf_debug("getblk failure\n");
1693 return -EIO;
1694 }
1695
1696 lock_buffer(bh);
1697 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1698 fe = (struct fileEntry *)bh->b_data;
1699 efe = (struct extendedFileEntry *)bh->b_data;
1700
1701 if (iinfo->i_use) {
1702 struct unallocSpaceEntry *use =
1703 (struct unallocSpaceEntry *)bh->b_data;
1704
1705 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1706 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1707 iinfo->i_data, inode->i_sb->s_blocksize -
1708 sizeof(struct unallocSpaceEntry));
1709 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1710 crclen = sizeof(struct unallocSpaceEntry);
1711
1712 goto finish;
1713 }
1714
1715 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1716 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1717 else
1718 fe->uid = cpu_to_le32(i_uid_read(inode));
1719
1720 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1721 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1722 else
1723 fe->gid = cpu_to_le32(i_gid_read(inode));
1724
1725 udfperms = ((inode->i_mode & 0007)) |
1726 ((inode->i_mode & 0070) << 2) |
1727 ((inode->i_mode & 0700) << 4);
1728
1729 udfperms |= iinfo->i_extraPerms;
1730 fe->permissions = cpu_to_le32(udfperms);
1731
1732 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1733 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1734 else {
1735 if (iinfo->i_hidden)
1736 fe->fileLinkCount = cpu_to_le16(0);
1737 else
1738 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1739 }
1740
1741 fe->informationLength = cpu_to_le64(inode->i_size);
1742
1743 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1744 struct regid *eid;
1745 struct deviceSpec *dsea =
1746 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1747 if (!dsea) {
1748 dsea = (struct deviceSpec *)
1749 udf_add_extendedattr(inode,
1750 sizeof(struct deviceSpec) +
1751 sizeof(struct regid), 12, 0x3);
1752 dsea->attrType = cpu_to_le32(12);
1753 dsea->attrSubtype = 1;
1754 dsea->attrLength = cpu_to_le32(
1755 sizeof(struct deviceSpec) +
1756 sizeof(struct regid));
1757 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1758 }
1759 eid = (struct regid *)dsea->impUse;
1760 memset(eid, 0, sizeof(*eid));
1761 strcpy(eid->ident, UDF_ID_DEVELOPER);
1762 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1763 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1764 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1765 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1766 }
1767
1768 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1769 lb_recorded = 0; /* No extents => no blocks! */
1770 else
1771 lb_recorded =
1772 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1773 (blocksize_bits - 9);
1774
1775 if (iinfo->i_efe == 0) {
1776 memcpy(bh->b_data + sizeof(struct fileEntry),
1777 iinfo->i_data,
1778 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1779 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1780
1781 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1782 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1783 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1784 memset(&(fe->impIdent), 0, sizeof(struct regid));
1785 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1786 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1787 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1788 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1789 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1790 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1791 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1792 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1793 crclen = sizeof(struct fileEntry);
1794 } else {
1795 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1796 iinfo->i_data,
1797 inode->i_sb->s_blocksize -
1798 sizeof(struct extendedFileEntry));
1799 efe->objectSize =
1800 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1801 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1802
1803 if (iinfo->i_streamdir) {
1804 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1805
1806 icb_lad->extLocation =
1807 cpu_to_lelb(iinfo->i_locStreamdir);
1808 icb_lad->extLength =
1809 cpu_to_le32(inode->i_sb->s_blocksize);
1810 }
1811
1812 udf_adjust_time(iinfo, inode->i_atime);
1813 udf_adjust_time(iinfo, inode->i_mtime);
1814 udf_adjust_time(iinfo, inode->i_ctime);
1815
1816 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1817 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1818 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1819 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1820
1821 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1822 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1823 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1824 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1825 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1826 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1827 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1828 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1829 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1830 crclen = sizeof(struct extendedFileEntry);
1831 }
1832
1833 finish:
1834 if (iinfo->i_strat4096) {
1835 fe->icbTag.strategyType = cpu_to_le16(4096);
1836 fe->icbTag.strategyParameter = cpu_to_le16(1);
1837 fe->icbTag.numEntries = cpu_to_le16(2);
1838 } else {
1839 fe->icbTag.strategyType = cpu_to_le16(4);
1840 fe->icbTag.numEntries = cpu_to_le16(1);
1841 }
1842
1843 if (iinfo->i_use)
1844 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1845 else if (S_ISDIR(inode->i_mode))
1846 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1847 else if (S_ISREG(inode->i_mode))
1848 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1849 else if (S_ISLNK(inode->i_mode))
1850 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1851 else if (S_ISBLK(inode->i_mode))
1852 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1853 else if (S_ISCHR(inode->i_mode))
1854 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1855 else if (S_ISFIFO(inode->i_mode))
1856 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1857 else if (S_ISSOCK(inode->i_mode))
1858 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1859
1860 icbflags = iinfo->i_alloc_type |
1861 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1862 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1863 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1864 (le16_to_cpu(fe->icbTag.flags) &
1865 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1866 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1867
1868 fe->icbTag.flags = cpu_to_le16(icbflags);
1869 if (sbi->s_udfrev >= 0x0200)
1870 fe->descTag.descVersion = cpu_to_le16(3);
1871 else
1872 fe->descTag.descVersion = cpu_to_le16(2);
1873 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1874 fe->descTag.tagLocation = cpu_to_le32(
1875 iinfo->i_location.logicalBlockNum);
1876 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1877 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1878 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1879 crclen));
1880 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1881
1882 set_buffer_uptodate(bh);
1883 unlock_buffer(bh);
1884
1885 /* write the data blocks */
1886 mark_buffer_dirty(bh);
1887 if (do_sync) {
1888 sync_dirty_buffer(bh);
1889 if (buffer_write_io_error(bh)) {
1890 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1891 inode->i_ino);
1892 err = -EIO;
1893 }
1894 }
1895 brelse(bh);
1896
1897 return err;
1898 }
1899
__udf_iget(struct super_block * sb,struct kernel_lb_addr * ino,bool hidden_inode)1900 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1901 bool hidden_inode)
1902 {
1903 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1904 struct inode *inode = iget_locked(sb, block);
1905 int err;
1906
1907 if (!inode)
1908 return ERR_PTR(-ENOMEM);
1909
1910 if (!(inode->i_state & I_NEW)) {
1911 if (UDF_I(inode)->i_hidden != hidden_inode) {
1912 iput(inode);
1913 return ERR_PTR(-EFSCORRUPTED);
1914 }
1915 return inode;
1916 }
1917
1918 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1919 err = udf_read_inode(inode, hidden_inode);
1920 if (err < 0) {
1921 iget_failed(inode);
1922 return ERR_PTR(err);
1923 }
1924 unlock_new_inode(inode);
1925
1926 return inode;
1927 }
1928
udf_setup_indirect_aext(struct inode * inode,udf_pblk_t block,struct extent_position * epos)1929 int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1930 struct extent_position *epos)
1931 {
1932 struct super_block *sb = inode->i_sb;
1933 struct buffer_head *bh;
1934 struct allocExtDesc *aed;
1935 struct extent_position nepos;
1936 struct kernel_lb_addr neloc;
1937 int ver, adsize;
1938
1939 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1940 adsize = sizeof(struct short_ad);
1941 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1942 adsize = sizeof(struct long_ad);
1943 else
1944 return -EIO;
1945
1946 neloc.logicalBlockNum = block;
1947 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1948
1949 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1950 if (!bh)
1951 return -EIO;
1952 lock_buffer(bh);
1953 memset(bh->b_data, 0x00, sb->s_blocksize);
1954 set_buffer_uptodate(bh);
1955 unlock_buffer(bh);
1956 mark_buffer_dirty_inode(bh, inode);
1957
1958 aed = (struct allocExtDesc *)(bh->b_data);
1959 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1960 aed->previousAllocExtLocation =
1961 cpu_to_le32(epos->block.logicalBlockNum);
1962 }
1963 aed->lengthAllocDescs = cpu_to_le32(0);
1964 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1965 ver = 3;
1966 else
1967 ver = 2;
1968 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1969 sizeof(struct tag));
1970
1971 nepos.block = neloc;
1972 nepos.offset = sizeof(struct allocExtDesc);
1973 nepos.bh = bh;
1974
1975 /*
1976 * Do we have to copy current last extent to make space for indirect
1977 * one?
1978 */
1979 if (epos->offset + adsize > sb->s_blocksize) {
1980 struct kernel_lb_addr cp_loc;
1981 uint32_t cp_len;
1982 int cp_type;
1983
1984 epos->offset -= adsize;
1985 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1986 cp_len |= ((uint32_t)cp_type) << 30;
1987
1988 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1989 udf_write_aext(inode, epos, &nepos.block,
1990 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1991 } else {
1992 __udf_add_aext(inode, epos, &nepos.block,
1993 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1994 }
1995
1996 brelse(epos->bh);
1997 *epos = nepos;
1998
1999 return 0;
2000 }
2001
2002 /*
2003 * Append extent at the given position - should be the first free one in inode
2004 * / indirect extent. This function assumes there is enough space in the inode
2005 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2006 */
__udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2007 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2008 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2009 {
2010 struct udf_inode_info *iinfo = UDF_I(inode);
2011 struct allocExtDesc *aed;
2012 int adsize;
2013
2014 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2015 adsize = sizeof(struct short_ad);
2016 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2017 adsize = sizeof(struct long_ad);
2018 else
2019 return -EIO;
2020
2021 if (!epos->bh) {
2022 WARN_ON(iinfo->i_lenAlloc !=
2023 epos->offset - udf_file_entry_alloc_offset(inode));
2024 } else {
2025 aed = (struct allocExtDesc *)epos->bh->b_data;
2026 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2027 epos->offset - sizeof(struct allocExtDesc));
2028 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2029 }
2030
2031 udf_write_aext(inode, epos, eloc, elen, inc);
2032
2033 if (!epos->bh) {
2034 iinfo->i_lenAlloc += adsize;
2035 mark_inode_dirty(inode);
2036 } else {
2037 aed = (struct allocExtDesc *)epos->bh->b_data;
2038 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2039 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2040 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2041 udf_update_tag(epos->bh->b_data,
2042 epos->offset + (inc ? 0 : adsize));
2043 else
2044 udf_update_tag(epos->bh->b_data,
2045 sizeof(struct allocExtDesc));
2046 mark_buffer_dirty_inode(epos->bh, inode);
2047 }
2048
2049 return 0;
2050 }
2051
2052 /*
2053 * Append extent at given position - should be the first free one in inode
2054 * / indirect extent. Takes care of allocating and linking indirect blocks.
2055 */
udf_add_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2056 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2057 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2058 {
2059 int adsize;
2060 struct super_block *sb = inode->i_sb;
2061
2062 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2063 adsize = sizeof(struct short_ad);
2064 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2065 adsize = sizeof(struct long_ad);
2066 else
2067 return -EIO;
2068
2069 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2070 int err;
2071 udf_pblk_t new_block;
2072
2073 new_block = udf_new_block(sb, NULL,
2074 epos->block.partitionReferenceNum,
2075 epos->block.logicalBlockNum, &err);
2076 if (!new_block)
2077 return -ENOSPC;
2078
2079 err = udf_setup_indirect_aext(inode, new_block, epos);
2080 if (err)
2081 return err;
2082 }
2083
2084 return __udf_add_aext(inode, epos, eloc, elen, inc);
2085 }
2086
udf_write_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t elen,int inc)2087 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2088 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2089 {
2090 int adsize;
2091 uint8_t *ptr;
2092 struct short_ad *sad;
2093 struct long_ad *lad;
2094 struct udf_inode_info *iinfo = UDF_I(inode);
2095
2096 if (!epos->bh)
2097 ptr = iinfo->i_data + epos->offset -
2098 udf_file_entry_alloc_offset(inode) +
2099 iinfo->i_lenEAttr;
2100 else
2101 ptr = epos->bh->b_data + epos->offset;
2102
2103 switch (iinfo->i_alloc_type) {
2104 case ICBTAG_FLAG_AD_SHORT:
2105 sad = (struct short_ad *)ptr;
2106 sad->extLength = cpu_to_le32(elen);
2107 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2108 adsize = sizeof(struct short_ad);
2109 break;
2110 case ICBTAG_FLAG_AD_LONG:
2111 lad = (struct long_ad *)ptr;
2112 lad->extLength = cpu_to_le32(elen);
2113 lad->extLocation = cpu_to_lelb(*eloc);
2114 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2115 adsize = sizeof(struct long_ad);
2116 break;
2117 default:
2118 return;
2119 }
2120
2121 if (epos->bh) {
2122 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2123 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2124 struct allocExtDesc *aed =
2125 (struct allocExtDesc *)epos->bh->b_data;
2126 udf_update_tag(epos->bh->b_data,
2127 le32_to_cpu(aed->lengthAllocDescs) +
2128 sizeof(struct allocExtDesc));
2129 }
2130 mark_buffer_dirty_inode(epos->bh, inode);
2131 } else {
2132 mark_inode_dirty(inode);
2133 }
2134
2135 if (inc)
2136 epos->offset += adsize;
2137 }
2138
2139 /*
2140 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2141 * someone does some weird stuff.
2142 */
2143 #define UDF_MAX_INDIR_EXTS 16
2144
udf_next_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2145 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2146 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2147 {
2148 int8_t etype;
2149 unsigned int indirections = 0;
2150
2151 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2152 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2153 udf_pblk_t block;
2154
2155 if (++indirections > UDF_MAX_INDIR_EXTS) {
2156 udf_err(inode->i_sb,
2157 "too many indirect extents in inode %lu\n",
2158 inode->i_ino);
2159 return -1;
2160 }
2161
2162 epos->block = *eloc;
2163 epos->offset = sizeof(struct allocExtDesc);
2164 brelse(epos->bh);
2165 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2166 epos->bh = udf_tread(inode->i_sb, block);
2167 if (!epos->bh) {
2168 udf_debug("reading block %u failed!\n", block);
2169 return -1;
2170 }
2171 }
2172
2173 return etype;
2174 }
2175
udf_current_aext(struct inode * inode,struct extent_position * epos,struct kernel_lb_addr * eloc,uint32_t * elen,int inc)2176 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2177 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2178 {
2179 int alen;
2180 int8_t etype;
2181 uint8_t *ptr;
2182 struct short_ad *sad;
2183 struct long_ad *lad;
2184 struct udf_inode_info *iinfo = UDF_I(inode);
2185
2186 if (!epos->bh) {
2187 if (!epos->offset)
2188 epos->offset = udf_file_entry_alloc_offset(inode);
2189 ptr = iinfo->i_data + epos->offset -
2190 udf_file_entry_alloc_offset(inode) +
2191 iinfo->i_lenEAttr;
2192 alen = udf_file_entry_alloc_offset(inode) +
2193 iinfo->i_lenAlloc;
2194 } else {
2195 if (!epos->offset)
2196 epos->offset = sizeof(struct allocExtDesc);
2197 ptr = epos->bh->b_data + epos->offset;
2198 alen = sizeof(struct allocExtDesc) +
2199 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2200 lengthAllocDescs);
2201 }
2202
2203 switch (iinfo->i_alloc_type) {
2204 case ICBTAG_FLAG_AD_SHORT:
2205 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2206 if (!sad)
2207 return -1;
2208 etype = le32_to_cpu(sad->extLength) >> 30;
2209 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2210 eloc->partitionReferenceNum =
2211 iinfo->i_location.partitionReferenceNum;
2212 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2213 break;
2214 case ICBTAG_FLAG_AD_LONG:
2215 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2216 if (!lad)
2217 return -1;
2218 etype = le32_to_cpu(lad->extLength) >> 30;
2219 *eloc = lelb_to_cpu(lad->extLocation);
2220 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2221 break;
2222 default:
2223 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2224 return -1;
2225 }
2226
2227 return etype;
2228 }
2229
udf_insert_aext(struct inode * inode,struct extent_position epos,struct kernel_lb_addr neloc,uint32_t nelen)2230 static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2231 struct kernel_lb_addr neloc, uint32_t nelen)
2232 {
2233 struct kernel_lb_addr oeloc;
2234 uint32_t oelen;
2235 int8_t etype;
2236 int err;
2237
2238 if (epos.bh)
2239 get_bh(epos.bh);
2240
2241 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2242 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2243 neloc = oeloc;
2244 nelen = (etype << 30) | oelen;
2245 }
2246 err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2247 brelse(epos.bh);
2248
2249 return err;
2250 }
2251
udf_delete_aext(struct inode * inode,struct extent_position epos)2252 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2253 {
2254 struct extent_position oepos;
2255 int adsize;
2256 int8_t etype;
2257 struct allocExtDesc *aed;
2258 struct udf_inode_info *iinfo;
2259 struct kernel_lb_addr eloc;
2260 uint32_t elen;
2261
2262 if (epos.bh) {
2263 get_bh(epos.bh);
2264 get_bh(epos.bh);
2265 }
2266
2267 iinfo = UDF_I(inode);
2268 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2269 adsize = sizeof(struct short_ad);
2270 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2271 adsize = sizeof(struct long_ad);
2272 else
2273 adsize = 0;
2274
2275 oepos = epos;
2276 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2277 return -1;
2278
2279 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2280 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2281 if (oepos.bh != epos.bh) {
2282 oepos.block = epos.block;
2283 brelse(oepos.bh);
2284 get_bh(epos.bh);
2285 oepos.bh = epos.bh;
2286 oepos.offset = epos.offset - adsize;
2287 }
2288 }
2289 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2290 elen = 0;
2291
2292 if (epos.bh != oepos.bh) {
2293 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2294 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2295 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2296 if (!oepos.bh) {
2297 iinfo->i_lenAlloc -= (adsize * 2);
2298 mark_inode_dirty(inode);
2299 } else {
2300 aed = (struct allocExtDesc *)oepos.bh->b_data;
2301 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2302 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2303 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2304 udf_update_tag(oepos.bh->b_data,
2305 oepos.offset - (2 * adsize));
2306 else
2307 udf_update_tag(oepos.bh->b_data,
2308 sizeof(struct allocExtDesc));
2309 mark_buffer_dirty_inode(oepos.bh, inode);
2310 }
2311 } else {
2312 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2313 if (!oepos.bh) {
2314 iinfo->i_lenAlloc -= adsize;
2315 mark_inode_dirty(inode);
2316 } else {
2317 aed = (struct allocExtDesc *)oepos.bh->b_data;
2318 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2319 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2320 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2321 udf_update_tag(oepos.bh->b_data,
2322 epos.offset - adsize);
2323 else
2324 udf_update_tag(oepos.bh->b_data,
2325 sizeof(struct allocExtDesc));
2326 mark_buffer_dirty_inode(oepos.bh, inode);
2327 }
2328 }
2329
2330 brelse(epos.bh);
2331 brelse(oepos.bh);
2332
2333 return (elen >> 30);
2334 }
2335
inode_bmap(struct inode * inode,sector_t block,struct extent_position * pos,struct kernel_lb_addr * eloc,uint32_t * elen,sector_t * offset)2336 int8_t inode_bmap(struct inode *inode, sector_t block,
2337 struct extent_position *pos, struct kernel_lb_addr *eloc,
2338 uint32_t *elen, sector_t *offset)
2339 {
2340 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2341 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2342 int8_t etype;
2343 struct udf_inode_info *iinfo;
2344
2345 iinfo = UDF_I(inode);
2346 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2347 pos->offset = 0;
2348 pos->block = iinfo->i_location;
2349 pos->bh = NULL;
2350 }
2351 *elen = 0;
2352 do {
2353 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2354 if (etype == -1) {
2355 *offset = (bcount - lbcount) >> blocksize_bits;
2356 iinfo->i_lenExtents = lbcount;
2357 return -1;
2358 }
2359 lbcount += *elen;
2360 } while (lbcount <= bcount);
2361 /* update extent cache */
2362 udf_update_extent_cache(inode, lbcount - *elen, pos);
2363 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2364
2365 return etype;
2366 }
2367
udf_block_map(struct inode * inode,sector_t block)2368 udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2369 {
2370 struct kernel_lb_addr eloc;
2371 uint32_t elen;
2372 sector_t offset;
2373 struct extent_position epos = {};
2374 udf_pblk_t ret;
2375
2376 down_read(&UDF_I(inode)->i_data_sem);
2377
2378 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2379 (EXT_RECORDED_ALLOCATED >> 30))
2380 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2381 else
2382 ret = 0;
2383
2384 up_read(&UDF_I(inode)->i_data_sem);
2385 brelse(epos.bh);
2386
2387 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2388 return udf_fixed_to_variable(ret);
2389 else
2390 return ret;
2391 }
2392