1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * The User Datagram Protocol (UDP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
12 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
13 * Hirokazu Takahashi, <taka@valinux.co.jp>
14 *
15 * Fixes:
16 * Alan Cox : verify_area() calls
17 * Alan Cox : stopped close while in use off icmp
18 * messages. Not a fix but a botch that
19 * for udp at least is 'valid'.
20 * Alan Cox : Fixed icmp handling properly
21 * Alan Cox : Correct error for oversized datagrams
22 * Alan Cox : Tidied select() semantics.
23 * Alan Cox : udp_err() fixed properly, also now
24 * select and read wake correctly on errors
25 * Alan Cox : udp_send verify_area moved to avoid mem leak
26 * Alan Cox : UDP can count its memory
27 * Alan Cox : send to an unknown connection causes
28 * an ECONNREFUSED off the icmp, but
29 * does NOT close.
30 * Alan Cox : Switched to new sk_buff handlers. No more backlog!
31 * Alan Cox : Using generic datagram code. Even smaller and the PEEK
32 * bug no longer crashes it.
33 * Fred Van Kempen : Net2e support for sk->broadcast.
34 * Alan Cox : Uses skb_free_datagram
35 * Alan Cox : Added get/set sockopt support.
36 * Alan Cox : Broadcasting without option set returns EACCES.
37 * Alan Cox : No wakeup calls. Instead we now use the callbacks.
38 * Alan Cox : Use ip_tos and ip_ttl
39 * Alan Cox : SNMP Mibs
40 * Alan Cox : MSG_DONTROUTE, and 0.0.0.0 support.
41 * Matt Dillon : UDP length checks.
42 * Alan Cox : Smarter af_inet used properly.
43 * Alan Cox : Use new kernel side addressing.
44 * Alan Cox : Incorrect return on truncated datagram receive.
45 * Arnt Gulbrandsen : New udp_send and stuff
46 * Alan Cox : Cache last socket
47 * Alan Cox : Route cache
48 * Jon Peatfield : Minor efficiency fix to sendto().
49 * Mike Shaver : RFC1122 checks.
50 * Alan Cox : Nonblocking error fix.
51 * Willy Konynenberg : Transparent proxying support.
52 * Mike McLagan : Routing by source
53 * David S. Miller : New socket lookup architecture.
54 * Last socket cache retained as it
55 * does have a high hit rate.
56 * Olaf Kirch : Don't linearise iovec on sendmsg.
57 * Andi Kleen : Some cleanups, cache destination entry
58 * for connect.
59 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
60 * Melvin Smith : Check msg_name not msg_namelen in sendto(),
61 * return ENOTCONN for unconnected sockets (POSIX)
62 * Janos Farkas : don't deliver multi/broadcasts to a different
63 * bound-to-device socket
64 * Hirokazu Takahashi : HW checksumming for outgoing UDP
65 * datagrams.
66 * Hirokazu Takahashi : sendfile() on UDP works now.
67 * Arnaldo C. Melo : convert /proc/net/udp to seq_file
68 * YOSHIFUJI Hideaki @USAGI and: Support IPV6_V6ONLY socket option, which
69 * Alexey Kuznetsov: allow both IPv4 and IPv6 sockets to bind
70 * a single port at the same time.
71 * Derek Atkins <derek@ihtfp.com>: Add Encapulation Support
72 * James Chapman : Add L2TP encapsulation type.
73 */
74
75 #define pr_fmt(fmt) "UDP: " fmt
76
77 #include <linux/uaccess.h>
78 #include <asm/ioctls.h>
79 #include <linux/memblock.h>
80 #include <linux/highmem.h>
81 #include <linux/swap.h>
82 #include <linux/types.h>
83 #include <linux/fcntl.h>
84 #include <linux/module.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/igmp.h>
88 #include <linux/inetdevice.h>
89 #include <linux/in.h>
90 #include <linux/errno.h>
91 #include <linux/timer.h>
92 #include <linux/mm.h>
93 #include <linux/inet.h>
94 #include <linux/netdevice.h>
95 #include <linux/slab.h>
96 #include <net/tcp_states.h>
97 #include <linux/skbuff.h>
98 #include <linux/proc_fs.h>
99 #include <linux/seq_file.h>
100 #include <net/net_namespace.h>
101 #include <net/icmp.h>
102 #include <net/inet_hashtables.h>
103 #include <net/ip_tunnels.h>
104 #include <net/route.h>
105 #include <net/checksum.h>
106 #include <net/xfrm.h>
107 #include <trace/events/udp.h>
108 #include <linux/static_key.h>
109 #include <linux/btf_ids.h>
110 #include <trace/events/skb.h>
111 #include <net/busy_poll.h>
112 #include "udp_impl.h"
113 #include <net/sock_reuseport.h>
114 #include <net/addrconf.h>
115 #include <net/udp_tunnel.h>
116 #if IS_ENABLED(CONFIG_IPV6)
117 #include <net/ipv6_stubs.h>
118 #endif
119
120 struct udp_table udp_table __read_mostly;
121 EXPORT_SYMBOL(udp_table);
122
123 long sysctl_udp_mem[3] __read_mostly;
124 EXPORT_SYMBOL(sysctl_udp_mem);
125
126 atomic_long_t udp_memory_allocated;
127 EXPORT_SYMBOL(udp_memory_allocated);
128
129 #define MAX_UDP_PORTS 65536
130 #define PORTS_PER_CHAIN (MAX_UDP_PORTS / UDP_HTABLE_SIZE_MIN)
131
udp_lib_lport_inuse(struct net * net,__u16 num,const struct udp_hslot * hslot,unsigned long * bitmap,struct sock * sk,unsigned int log)132 static int udp_lib_lport_inuse(struct net *net, __u16 num,
133 const struct udp_hslot *hslot,
134 unsigned long *bitmap,
135 struct sock *sk, unsigned int log)
136 {
137 struct sock *sk2;
138 kuid_t uid = sock_i_uid(sk);
139
140 sk_for_each(sk2, &hslot->head) {
141 if (net_eq(sock_net(sk2), net) &&
142 sk2 != sk &&
143 (bitmap || udp_sk(sk2)->udp_port_hash == num) &&
144 (!sk2->sk_reuse || !sk->sk_reuse) &&
145 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
146 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
147 inet_rcv_saddr_equal(sk, sk2, true)) {
148 if (sk2->sk_reuseport && sk->sk_reuseport &&
149 !rcu_access_pointer(sk->sk_reuseport_cb) &&
150 uid_eq(uid, sock_i_uid(sk2))) {
151 if (!bitmap)
152 return 0;
153 } else {
154 if (!bitmap)
155 return 1;
156 __set_bit(udp_sk(sk2)->udp_port_hash >> log,
157 bitmap);
158 }
159 }
160 }
161 return 0;
162 }
163
164 /*
165 * Note: we still hold spinlock of primary hash chain, so no other writer
166 * can insert/delete a socket with local_port == num
167 */
udp_lib_lport_inuse2(struct net * net,__u16 num,struct udp_hslot * hslot2,struct sock * sk)168 static int udp_lib_lport_inuse2(struct net *net, __u16 num,
169 struct udp_hslot *hslot2,
170 struct sock *sk)
171 {
172 struct sock *sk2;
173 kuid_t uid = sock_i_uid(sk);
174 int res = 0;
175
176 spin_lock(&hslot2->lock);
177 udp_portaddr_for_each_entry(sk2, &hslot2->head) {
178 if (net_eq(sock_net(sk2), net) &&
179 sk2 != sk &&
180 (udp_sk(sk2)->udp_port_hash == num) &&
181 (!sk2->sk_reuse || !sk->sk_reuse) &&
182 (!sk2->sk_bound_dev_if || !sk->sk_bound_dev_if ||
183 sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
184 inet_rcv_saddr_equal(sk, sk2, true)) {
185 if (sk2->sk_reuseport && sk->sk_reuseport &&
186 !rcu_access_pointer(sk->sk_reuseport_cb) &&
187 uid_eq(uid, sock_i_uid(sk2))) {
188 res = 0;
189 } else {
190 res = 1;
191 }
192 break;
193 }
194 }
195 spin_unlock(&hslot2->lock);
196 return res;
197 }
198
udp_reuseport_add_sock(struct sock * sk,struct udp_hslot * hslot)199 static int udp_reuseport_add_sock(struct sock *sk, struct udp_hslot *hslot)
200 {
201 struct net *net = sock_net(sk);
202 kuid_t uid = sock_i_uid(sk);
203 struct sock *sk2;
204
205 sk_for_each(sk2, &hslot->head) {
206 if (net_eq(sock_net(sk2), net) &&
207 sk2 != sk &&
208 sk2->sk_family == sk->sk_family &&
209 ipv6_only_sock(sk2) == ipv6_only_sock(sk) &&
210 (udp_sk(sk2)->udp_port_hash == udp_sk(sk)->udp_port_hash) &&
211 (sk2->sk_bound_dev_if == sk->sk_bound_dev_if) &&
212 sk2->sk_reuseport && uid_eq(uid, sock_i_uid(sk2)) &&
213 inet_rcv_saddr_equal(sk, sk2, false)) {
214 return reuseport_add_sock(sk, sk2,
215 inet_rcv_saddr_any(sk));
216 }
217 }
218
219 return reuseport_alloc(sk, inet_rcv_saddr_any(sk));
220 }
221
222 /**
223 * udp_lib_get_port - UDP/-Lite port lookup for IPv4 and IPv6
224 *
225 * @sk: socket struct in question
226 * @snum: port number to look up
227 * @hash2_nulladdr: AF-dependent hash value in secondary hash chains,
228 * with NULL address
229 */
udp_lib_get_port(struct sock * sk,unsigned short snum,unsigned int hash2_nulladdr)230 int udp_lib_get_port(struct sock *sk, unsigned short snum,
231 unsigned int hash2_nulladdr)
232 {
233 struct udp_hslot *hslot, *hslot2;
234 struct udp_table *udptable = sk->sk_prot->h.udp_table;
235 int error = 1;
236 struct net *net = sock_net(sk);
237
238 if (!snum) {
239 int low, high, remaining;
240 unsigned int rand;
241 unsigned short first, last;
242 DECLARE_BITMAP(bitmap, PORTS_PER_CHAIN);
243
244 inet_get_local_port_range(net, &low, &high);
245 remaining = (high - low) + 1;
246
247 rand = prandom_u32();
248 first = reciprocal_scale(rand, remaining) + low;
249 /*
250 * force rand to be an odd multiple of UDP_HTABLE_SIZE
251 */
252 rand = (rand | 1) * (udptable->mask + 1);
253 last = first + udptable->mask + 1;
254 do {
255 hslot = udp_hashslot(udptable, net, first);
256 bitmap_zero(bitmap, PORTS_PER_CHAIN);
257 spin_lock_bh(&hslot->lock);
258 udp_lib_lport_inuse(net, snum, hslot, bitmap, sk,
259 udptable->log);
260
261 snum = first;
262 /*
263 * Iterate on all possible values of snum for this hash.
264 * Using steps of an odd multiple of UDP_HTABLE_SIZE
265 * give us randomization and full range coverage.
266 */
267 do {
268 if (low <= snum && snum <= high &&
269 !test_bit(snum >> udptable->log, bitmap) &&
270 !inet_is_local_reserved_port(net, snum))
271 goto found;
272 snum += rand;
273 } while (snum != first);
274 spin_unlock_bh(&hslot->lock);
275 cond_resched();
276 } while (++first != last);
277 goto fail;
278 } else {
279 hslot = udp_hashslot(udptable, net, snum);
280 spin_lock_bh(&hslot->lock);
281 if (hslot->count > 10) {
282 int exist;
283 unsigned int slot2 = udp_sk(sk)->udp_portaddr_hash ^ snum;
284
285 slot2 &= udptable->mask;
286 hash2_nulladdr &= udptable->mask;
287
288 hslot2 = udp_hashslot2(udptable, slot2);
289 if (hslot->count < hslot2->count)
290 goto scan_primary_hash;
291
292 exist = udp_lib_lport_inuse2(net, snum, hslot2, sk);
293 if (!exist && (hash2_nulladdr != slot2)) {
294 hslot2 = udp_hashslot2(udptable, hash2_nulladdr);
295 exist = udp_lib_lport_inuse2(net, snum, hslot2,
296 sk);
297 }
298 if (exist)
299 goto fail_unlock;
300 else
301 goto found;
302 }
303 scan_primary_hash:
304 if (udp_lib_lport_inuse(net, snum, hslot, NULL, sk, 0))
305 goto fail_unlock;
306 }
307 found:
308 inet_sk(sk)->inet_num = snum;
309 udp_sk(sk)->udp_port_hash = snum;
310 udp_sk(sk)->udp_portaddr_hash ^= snum;
311 if (sk_unhashed(sk)) {
312 if (sk->sk_reuseport &&
313 udp_reuseport_add_sock(sk, hslot)) {
314 inet_sk(sk)->inet_num = 0;
315 udp_sk(sk)->udp_port_hash = 0;
316 udp_sk(sk)->udp_portaddr_hash ^= snum;
317 goto fail_unlock;
318 }
319
320 sk_add_node_rcu(sk, &hslot->head);
321 hslot->count++;
322 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
323
324 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
325 spin_lock(&hslot2->lock);
326 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
327 sk->sk_family == AF_INET6)
328 hlist_add_tail_rcu(&udp_sk(sk)->udp_portaddr_node,
329 &hslot2->head);
330 else
331 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
332 &hslot2->head);
333 hslot2->count++;
334 spin_unlock(&hslot2->lock);
335 }
336 sock_set_flag(sk, SOCK_RCU_FREE);
337 error = 0;
338 fail_unlock:
339 spin_unlock_bh(&hslot->lock);
340 fail:
341 return error;
342 }
343 EXPORT_SYMBOL(udp_lib_get_port);
344
udp_v4_get_port(struct sock * sk,unsigned short snum)345 int udp_v4_get_port(struct sock *sk, unsigned short snum)
346 {
347 unsigned int hash2_nulladdr =
348 ipv4_portaddr_hash(sock_net(sk), htonl(INADDR_ANY), snum);
349 unsigned int hash2_partial =
350 ipv4_portaddr_hash(sock_net(sk), inet_sk(sk)->inet_rcv_saddr, 0);
351
352 /* precompute partial secondary hash */
353 udp_sk(sk)->udp_portaddr_hash = hash2_partial;
354 return udp_lib_get_port(sk, snum, hash2_nulladdr);
355 }
356
compute_score(struct sock * sk,struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum,int dif,int sdif)357 static int compute_score(struct sock *sk, struct net *net,
358 __be32 saddr, __be16 sport,
359 __be32 daddr, unsigned short hnum,
360 int dif, int sdif)
361 {
362 int score;
363 struct inet_sock *inet;
364 bool dev_match;
365
366 if (!net_eq(sock_net(sk), net) ||
367 udp_sk(sk)->udp_port_hash != hnum ||
368 ipv6_only_sock(sk))
369 return -1;
370
371 if (sk->sk_rcv_saddr != daddr)
372 return -1;
373
374 score = (sk->sk_family == PF_INET) ? 2 : 1;
375
376 inet = inet_sk(sk);
377 if (inet->inet_daddr) {
378 if (inet->inet_daddr != saddr)
379 return -1;
380 score += 4;
381 }
382
383 if (inet->inet_dport) {
384 if (inet->inet_dport != sport)
385 return -1;
386 score += 4;
387 }
388
389 dev_match = udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if,
390 dif, sdif);
391 if (!dev_match)
392 return -1;
393 if (sk->sk_bound_dev_if)
394 score += 4;
395
396 if (READ_ONCE(sk->sk_incoming_cpu) == raw_smp_processor_id())
397 score++;
398 return score;
399 }
400
udp_ehashfn(const struct net * net,const __be32 laddr,const __u16 lport,const __be32 faddr,const __be16 fport)401 static u32 udp_ehashfn(const struct net *net, const __be32 laddr,
402 const __u16 lport, const __be32 faddr,
403 const __be16 fport)
404 {
405 static u32 udp_ehash_secret __read_mostly;
406
407 net_get_random_once(&udp_ehash_secret, sizeof(udp_ehash_secret));
408
409 return __inet_ehashfn(laddr, lport, faddr, fport,
410 udp_ehash_secret + net_hash_mix(net));
411 }
412
lookup_reuseport(struct net * net,struct sock * sk,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,unsigned short hnum)413 static struct sock *lookup_reuseport(struct net *net, struct sock *sk,
414 struct sk_buff *skb,
415 __be32 saddr, __be16 sport,
416 __be32 daddr, unsigned short hnum)
417 {
418 struct sock *reuse_sk = NULL;
419 u32 hash;
420
421 if (sk->sk_reuseport && sk->sk_state != TCP_ESTABLISHED) {
422 hash = udp_ehashfn(net, daddr, hnum, saddr, sport);
423 reuse_sk = reuseport_select_sock(sk, hash, skb,
424 sizeof(struct udphdr));
425 }
426 return reuse_sk;
427 }
428
429 /* called with rcu_read_lock() */
udp4_lib_lookup2(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,unsigned int hnum,int dif,int sdif,struct udp_hslot * hslot2,struct sk_buff * skb)430 static struct sock *udp4_lib_lookup2(struct net *net,
431 __be32 saddr, __be16 sport,
432 __be32 daddr, unsigned int hnum,
433 int dif, int sdif,
434 struct udp_hslot *hslot2,
435 struct sk_buff *skb)
436 {
437 struct sock *sk, *result;
438 int score, badness;
439
440 result = NULL;
441 badness = 0;
442 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
443 score = compute_score(sk, net, saddr, sport,
444 daddr, hnum, dif, sdif);
445 if (score > badness) {
446 badness = score;
447 result = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
448 if (!result) {
449 result = sk;
450 continue;
451 }
452
453 /* Fall back to scoring if group has connections */
454 if (!reuseport_has_conns(sk))
455 return result;
456
457 /* Reuseport logic returned an error, keep original score. */
458 if (IS_ERR(result))
459 continue;
460
461 badness = compute_score(result, net, saddr, sport,
462 daddr, hnum, dif, sdif);
463
464 }
465 }
466 return result;
467 }
468
udp4_lookup_run_bpf(struct net * net,struct udp_table * udptable,struct sk_buff * skb,__be32 saddr,__be16 sport,__be32 daddr,u16 hnum)469 static struct sock *udp4_lookup_run_bpf(struct net *net,
470 struct udp_table *udptable,
471 struct sk_buff *skb,
472 __be32 saddr, __be16 sport,
473 __be32 daddr, u16 hnum)
474 {
475 struct sock *sk, *reuse_sk;
476 bool no_reuseport;
477
478 if (udptable != &udp_table)
479 return NULL; /* only UDP is supported */
480
481 no_reuseport = bpf_sk_lookup_run_v4(net, IPPROTO_UDP,
482 saddr, sport, daddr, hnum, &sk);
483 if (no_reuseport || IS_ERR_OR_NULL(sk))
484 return sk;
485
486 reuse_sk = lookup_reuseport(net, sk, skb, saddr, sport, daddr, hnum);
487 if (reuse_sk)
488 sk = reuse_sk;
489 return sk;
490 }
491
492 /* UDP is nearly always wildcards out the wazoo, it makes no sense to try
493 * harder than this. -DaveM
494 */
__udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif,int sdif,struct udp_table * udptable,struct sk_buff * skb)495 struct sock *__udp4_lib_lookup(struct net *net, __be32 saddr,
496 __be16 sport, __be32 daddr, __be16 dport, int dif,
497 int sdif, struct udp_table *udptable, struct sk_buff *skb)
498 {
499 unsigned short hnum = ntohs(dport);
500 unsigned int hash2, slot2;
501 struct udp_hslot *hslot2;
502 struct sock *result, *sk;
503
504 hash2 = ipv4_portaddr_hash(net, daddr, hnum);
505 slot2 = hash2 & udptable->mask;
506 hslot2 = &udptable->hash2[slot2];
507
508 /* Lookup connected or non-wildcard socket */
509 result = udp4_lib_lookup2(net, saddr, sport,
510 daddr, hnum, dif, sdif,
511 hslot2, skb);
512 if (!IS_ERR_OR_NULL(result) && result->sk_state == TCP_ESTABLISHED)
513 goto done;
514
515 /* Lookup redirect from BPF */
516 if (static_branch_unlikely(&bpf_sk_lookup_enabled)) {
517 sk = udp4_lookup_run_bpf(net, udptable, skb,
518 saddr, sport, daddr, hnum);
519 if (sk) {
520 result = sk;
521 goto done;
522 }
523 }
524
525 /* Got non-wildcard socket or error on first lookup */
526 if (result)
527 goto done;
528
529 /* Lookup wildcard sockets */
530 hash2 = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum);
531 slot2 = hash2 & udptable->mask;
532 hslot2 = &udptable->hash2[slot2];
533
534 result = udp4_lib_lookup2(net, saddr, sport,
535 htonl(INADDR_ANY), hnum, dif, sdif,
536 hslot2, skb);
537 done:
538 if (IS_ERR(result))
539 return NULL;
540 return result;
541 }
542 EXPORT_SYMBOL_GPL(__udp4_lib_lookup);
543
__udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport,struct udp_table * udptable)544 static inline struct sock *__udp4_lib_lookup_skb(struct sk_buff *skb,
545 __be16 sport, __be16 dport,
546 struct udp_table *udptable)
547 {
548 const struct iphdr *iph = ip_hdr(skb);
549
550 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
551 iph->daddr, dport, inet_iif(skb),
552 inet_sdif(skb), udptable, skb);
553 }
554
udp4_lib_lookup_skb(struct sk_buff * skb,__be16 sport,__be16 dport)555 struct sock *udp4_lib_lookup_skb(struct sk_buff *skb,
556 __be16 sport, __be16 dport)
557 {
558 const struct iphdr *iph = ip_hdr(skb);
559
560 return __udp4_lib_lookup(dev_net(skb->dev), iph->saddr, sport,
561 iph->daddr, dport, inet_iif(skb),
562 inet_sdif(skb), &udp_table, NULL);
563 }
564 EXPORT_SYMBOL_GPL(udp4_lib_lookup_skb);
565
566 /* Must be called under rcu_read_lock().
567 * Does increment socket refcount.
568 */
569 #if IS_ENABLED(CONFIG_NF_TPROXY_IPV4) || IS_ENABLED(CONFIG_NF_SOCKET_IPV4)
udp4_lib_lookup(struct net * net,__be32 saddr,__be16 sport,__be32 daddr,__be16 dport,int dif)570 struct sock *udp4_lib_lookup(struct net *net, __be32 saddr, __be16 sport,
571 __be32 daddr, __be16 dport, int dif)
572 {
573 struct sock *sk;
574
575 sk = __udp4_lib_lookup(net, saddr, sport, daddr, dport,
576 dif, 0, &udp_table, NULL);
577 if (sk && !refcount_inc_not_zero(&sk->sk_refcnt))
578 sk = NULL;
579 return sk;
580 }
581 EXPORT_SYMBOL_GPL(udp4_lib_lookup);
582 #endif
583
__udp_is_mcast_sock(struct net * net,struct sock * sk,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif,unsigned short hnum)584 static inline bool __udp_is_mcast_sock(struct net *net, struct sock *sk,
585 __be16 loc_port, __be32 loc_addr,
586 __be16 rmt_port, __be32 rmt_addr,
587 int dif, int sdif, unsigned short hnum)
588 {
589 struct inet_sock *inet = inet_sk(sk);
590
591 if (!net_eq(sock_net(sk), net) ||
592 udp_sk(sk)->udp_port_hash != hnum ||
593 (inet->inet_daddr && inet->inet_daddr != rmt_addr) ||
594 (inet->inet_dport != rmt_port && inet->inet_dport) ||
595 (inet->inet_rcv_saddr && inet->inet_rcv_saddr != loc_addr) ||
596 ipv6_only_sock(sk) ||
597 !udp_sk_bound_dev_eq(net, sk->sk_bound_dev_if, dif, sdif))
598 return false;
599 if (!ip_mc_sf_allow(sk, loc_addr, rmt_addr, dif, sdif))
600 return false;
601 return true;
602 }
603
604 DEFINE_STATIC_KEY_FALSE(udp_encap_needed_key);
udp_encap_enable(void)605 void udp_encap_enable(void)
606 {
607 static_branch_inc(&udp_encap_needed_key);
608 }
609 EXPORT_SYMBOL(udp_encap_enable);
610
udp_encap_disable(void)611 void udp_encap_disable(void)
612 {
613 static_branch_dec(&udp_encap_needed_key);
614 }
615 EXPORT_SYMBOL(udp_encap_disable);
616
617 /* Handler for tunnels with arbitrary destination ports: no socket lookup, go
618 * through error handlers in encapsulations looking for a match.
619 */
__udp4_lib_err_encap_no_sk(struct sk_buff * skb,u32 info)620 static int __udp4_lib_err_encap_no_sk(struct sk_buff *skb, u32 info)
621 {
622 int i;
623
624 for (i = 0; i < MAX_IPTUN_ENCAP_OPS; i++) {
625 int (*handler)(struct sk_buff *skb, u32 info);
626 const struct ip_tunnel_encap_ops *encap;
627
628 encap = rcu_dereference(iptun_encaps[i]);
629 if (!encap)
630 continue;
631 handler = encap->err_handler;
632 if (handler && !handler(skb, info))
633 return 0;
634 }
635
636 return -ENOENT;
637 }
638
639 /* Try to match ICMP errors to UDP tunnels by looking up a socket without
640 * reversing source and destination port: this will match tunnels that force the
641 * same destination port on both endpoints (e.g. VXLAN, GENEVE). Note that
642 * lwtunnels might actually break this assumption by being configured with
643 * different destination ports on endpoints, in this case we won't be able to
644 * trace ICMP messages back to them.
645 *
646 * If this doesn't match any socket, probe tunnels with arbitrary destination
647 * ports (e.g. FoU, GUE): there, the receiving socket is useless, as the port
648 * we've sent packets to won't necessarily match the local destination port.
649 *
650 * Then ask the tunnel implementation to match the error against a valid
651 * association.
652 *
653 * Return an error if we can't find a match, the socket if we need further
654 * processing, zero otherwise.
655 */
__udp4_lib_err_encap(struct net * net,const struct iphdr * iph,struct udphdr * uh,struct udp_table * udptable,struct sk_buff * skb,u32 info)656 static struct sock *__udp4_lib_err_encap(struct net *net,
657 const struct iphdr *iph,
658 struct udphdr *uh,
659 struct udp_table *udptable,
660 struct sk_buff *skb, u32 info)
661 {
662 int network_offset, transport_offset;
663 struct sock *sk;
664
665 network_offset = skb_network_offset(skb);
666 transport_offset = skb_transport_offset(skb);
667
668 /* Network header needs to point to the outer IPv4 header inside ICMP */
669 skb_reset_network_header(skb);
670
671 /* Transport header needs to point to the UDP header */
672 skb_set_transport_header(skb, iph->ihl << 2);
673
674 sk = __udp4_lib_lookup(net, iph->daddr, uh->source,
675 iph->saddr, uh->dest, skb->dev->ifindex, 0,
676 udptable, NULL);
677 if (sk) {
678 int (*lookup)(struct sock *sk, struct sk_buff *skb);
679 struct udp_sock *up = udp_sk(sk);
680
681 lookup = READ_ONCE(up->encap_err_lookup);
682 if (!lookup || lookup(sk, skb))
683 sk = NULL;
684 }
685
686 if (!sk)
687 sk = ERR_PTR(__udp4_lib_err_encap_no_sk(skb, info));
688
689 skb_set_transport_header(skb, transport_offset);
690 skb_set_network_header(skb, network_offset);
691
692 return sk;
693 }
694
695 /*
696 * This routine is called by the ICMP module when it gets some
697 * sort of error condition. If err < 0 then the socket should
698 * be closed and the error returned to the user. If err > 0
699 * it's just the icmp type << 8 | icmp code.
700 * Header points to the ip header of the error packet. We move
701 * on past this. Then (as it used to claim before adjustment)
702 * header points to the first 8 bytes of the udp header. We need
703 * to find the appropriate port.
704 */
705
__udp4_lib_err(struct sk_buff * skb,u32 info,struct udp_table * udptable)706 int __udp4_lib_err(struct sk_buff *skb, u32 info, struct udp_table *udptable)
707 {
708 struct inet_sock *inet;
709 const struct iphdr *iph = (const struct iphdr *)skb->data;
710 struct udphdr *uh = (struct udphdr *)(skb->data+(iph->ihl<<2));
711 const int type = icmp_hdr(skb)->type;
712 const int code = icmp_hdr(skb)->code;
713 bool tunnel = false;
714 struct sock *sk;
715 int harderr;
716 int err;
717 struct net *net = dev_net(skb->dev);
718
719 sk = __udp4_lib_lookup(net, iph->daddr, uh->dest,
720 iph->saddr, uh->source, skb->dev->ifindex,
721 inet_sdif(skb), udptable, NULL);
722 if (!sk) {
723 /* No socket for error: try tunnels before discarding */
724 sk = ERR_PTR(-ENOENT);
725 if (static_branch_unlikely(&udp_encap_needed_key)) {
726 sk = __udp4_lib_err_encap(net, iph, uh, udptable, skb,
727 info);
728 if (!sk)
729 return 0;
730 }
731
732 if (IS_ERR(sk)) {
733 __ICMP_INC_STATS(net, ICMP_MIB_INERRORS);
734 return PTR_ERR(sk);
735 }
736
737 tunnel = true;
738 }
739
740 err = 0;
741 harderr = 0;
742 inet = inet_sk(sk);
743
744 switch (type) {
745 default:
746 case ICMP_TIME_EXCEEDED:
747 err = EHOSTUNREACH;
748 break;
749 case ICMP_SOURCE_QUENCH:
750 goto out;
751 case ICMP_PARAMETERPROB:
752 err = EPROTO;
753 harderr = 1;
754 break;
755 case ICMP_DEST_UNREACH:
756 if (code == ICMP_FRAG_NEEDED) { /* Path MTU discovery */
757 ipv4_sk_update_pmtu(skb, sk, info);
758 if (inet->pmtudisc != IP_PMTUDISC_DONT) {
759 err = EMSGSIZE;
760 harderr = 1;
761 break;
762 }
763 goto out;
764 }
765 err = EHOSTUNREACH;
766 if (code <= NR_ICMP_UNREACH) {
767 harderr = icmp_err_convert[code].fatal;
768 err = icmp_err_convert[code].errno;
769 }
770 break;
771 case ICMP_REDIRECT:
772 ipv4_sk_redirect(skb, sk);
773 goto out;
774 }
775
776 /*
777 * RFC1122: OK. Passes ICMP errors back to application, as per
778 * 4.1.3.3.
779 */
780 if (tunnel) {
781 /* ...not for tunnels though: we don't have a sending socket */
782 goto out;
783 }
784 if (!inet->recverr) {
785 if (!harderr || sk->sk_state != TCP_ESTABLISHED)
786 goto out;
787 } else
788 ip_icmp_error(sk, skb, err, uh->dest, info, (u8 *)(uh+1));
789
790 sk->sk_err = err;
791 sk->sk_error_report(sk);
792 out:
793 return 0;
794 }
795
udp_err(struct sk_buff * skb,u32 info)796 int udp_err(struct sk_buff *skb, u32 info)
797 {
798 return __udp4_lib_err(skb, info, &udp_table);
799 }
800
801 /*
802 * Throw away all pending data and cancel the corking. Socket is locked.
803 */
udp_flush_pending_frames(struct sock * sk)804 void udp_flush_pending_frames(struct sock *sk)
805 {
806 struct udp_sock *up = udp_sk(sk);
807
808 if (up->pending) {
809 up->len = 0;
810 up->pending = 0;
811 ip_flush_pending_frames(sk);
812 }
813 }
814 EXPORT_SYMBOL(udp_flush_pending_frames);
815
816 /**
817 * udp4_hwcsum - handle outgoing HW checksumming
818 * @skb: sk_buff containing the filled-in UDP header
819 * (checksum field must be zeroed out)
820 * @src: source IP address
821 * @dst: destination IP address
822 */
udp4_hwcsum(struct sk_buff * skb,__be32 src,__be32 dst)823 void udp4_hwcsum(struct sk_buff *skb, __be32 src, __be32 dst)
824 {
825 struct udphdr *uh = udp_hdr(skb);
826 int offset = skb_transport_offset(skb);
827 int len = skb->len - offset;
828 int hlen = len;
829 __wsum csum = 0;
830
831 if (!skb_has_frag_list(skb)) {
832 /*
833 * Only one fragment on the socket.
834 */
835 skb->csum_start = skb_transport_header(skb) - skb->head;
836 skb->csum_offset = offsetof(struct udphdr, check);
837 uh->check = ~csum_tcpudp_magic(src, dst, len,
838 IPPROTO_UDP, 0);
839 } else {
840 struct sk_buff *frags;
841
842 /*
843 * HW-checksum won't work as there are two or more
844 * fragments on the socket so that all csums of sk_buffs
845 * should be together
846 */
847 skb_walk_frags(skb, frags) {
848 csum = csum_add(csum, frags->csum);
849 hlen -= frags->len;
850 }
851
852 csum = skb_checksum(skb, offset, hlen, csum);
853 skb->ip_summed = CHECKSUM_NONE;
854
855 uh->check = csum_tcpudp_magic(src, dst, len, IPPROTO_UDP, csum);
856 if (uh->check == 0)
857 uh->check = CSUM_MANGLED_0;
858 }
859 }
860 EXPORT_SYMBOL_GPL(udp4_hwcsum);
861
862 /* Function to set UDP checksum for an IPv4 UDP packet. This is intended
863 * for the simple case like when setting the checksum for a UDP tunnel.
864 */
udp_set_csum(bool nocheck,struct sk_buff * skb,__be32 saddr,__be32 daddr,int len)865 void udp_set_csum(bool nocheck, struct sk_buff *skb,
866 __be32 saddr, __be32 daddr, int len)
867 {
868 struct udphdr *uh = udp_hdr(skb);
869
870 if (nocheck) {
871 uh->check = 0;
872 } else if (skb_is_gso(skb)) {
873 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
874 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
875 uh->check = 0;
876 uh->check = udp_v4_check(len, saddr, daddr, lco_csum(skb));
877 if (uh->check == 0)
878 uh->check = CSUM_MANGLED_0;
879 } else {
880 skb->ip_summed = CHECKSUM_PARTIAL;
881 skb->csum_start = skb_transport_header(skb) - skb->head;
882 skb->csum_offset = offsetof(struct udphdr, check);
883 uh->check = ~udp_v4_check(len, saddr, daddr, 0);
884 }
885 }
886 EXPORT_SYMBOL(udp_set_csum);
887
udp_send_skb(struct sk_buff * skb,struct flowi4 * fl4,struct inet_cork * cork)888 static int udp_send_skb(struct sk_buff *skb, struct flowi4 *fl4,
889 struct inet_cork *cork)
890 {
891 struct sock *sk = skb->sk;
892 struct inet_sock *inet = inet_sk(sk);
893 struct udphdr *uh;
894 int err = 0;
895 int is_udplite = IS_UDPLITE(sk);
896 int offset = skb_transport_offset(skb);
897 int len = skb->len - offset;
898 int datalen = len - sizeof(*uh);
899 __wsum csum = 0;
900
901 /*
902 * Create a UDP header
903 */
904 uh = udp_hdr(skb);
905 uh->source = inet->inet_sport;
906 uh->dest = fl4->fl4_dport;
907 uh->len = htons(len);
908 uh->check = 0;
909
910 if (cork->gso_size) {
911 const int hlen = skb_network_header_len(skb) +
912 sizeof(struct udphdr);
913
914 if (hlen + cork->gso_size > cork->fragsize) {
915 kfree_skb(skb);
916 return -EINVAL;
917 }
918 if (datalen > cork->gso_size * UDP_MAX_SEGMENTS) {
919 kfree_skb(skb);
920 return -EINVAL;
921 }
922 if (sk->sk_no_check_tx) {
923 kfree_skb(skb);
924 return -EINVAL;
925 }
926 if (skb->ip_summed != CHECKSUM_PARTIAL || is_udplite ||
927 dst_xfrm(skb_dst(skb))) {
928 kfree_skb(skb);
929 return -EIO;
930 }
931
932 if (datalen > cork->gso_size) {
933 skb_shinfo(skb)->gso_size = cork->gso_size;
934 skb_shinfo(skb)->gso_type = SKB_GSO_UDP_L4;
935 skb_shinfo(skb)->gso_segs = DIV_ROUND_UP(datalen,
936 cork->gso_size);
937 }
938 goto csum_partial;
939 }
940
941 if (is_udplite) /* UDP-Lite */
942 csum = udplite_csum(skb);
943
944 else if (sk->sk_no_check_tx) { /* UDP csum off */
945
946 skb->ip_summed = CHECKSUM_NONE;
947 goto send;
948
949 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { /* UDP hardware csum */
950 csum_partial:
951
952 udp4_hwcsum(skb, fl4->saddr, fl4->daddr);
953 goto send;
954
955 } else
956 csum = udp_csum(skb);
957
958 /* add protocol-dependent pseudo-header */
959 uh->check = csum_tcpudp_magic(fl4->saddr, fl4->daddr, len,
960 sk->sk_protocol, csum);
961 if (uh->check == 0)
962 uh->check = CSUM_MANGLED_0;
963
964 send:
965 err = ip_send_skb(sock_net(sk), skb);
966 if (err) {
967 if (err == -ENOBUFS && !inet->recverr) {
968 UDP_INC_STATS(sock_net(sk),
969 UDP_MIB_SNDBUFERRORS, is_udplite);
970 err = 0;
971 }
972 } else
973 UDP_INC_STATS(sock_net(sk),
974 UDP_MIB_OUTDATAGRAMS, is_udplite);
975 return err;
976 }
977
978 /*
979 * Push out all pending data as one UDP datagram. Socket is locked.
980 */
udp_push_pending_frames(struct sock * sk)981 int udp_push_pending_frames(struct sock *sk)
982 {
983 struct udp_sock *up = udp_sk(sk);
984 struct inet_sock *inet = inet_sk(sk);
985 struct flowi4 *fl4 = &inet->cork.fl.u.ip4;
986 struct sk_buff *skb;
987 int err = 0;
988
989 skb = ip_finish_skb(sk, fl4);
990 if (!skb)
991 goto out;
992
993 err = udp_send_skb(skb, fl4, &inet->cork.base);
994
995 out:
996 up->len = 0;
997 up->pending = 0;
998 return err;
999 }
1000 EXPORT_SYMBOL(udp_push_pending_frames);
1001
__udp_cmsg_send(struct cmsghdr * cmsg,u16 * gso_size)1002 static int __udp_cmsg_send(struct cmsghdr *cmsg, u16 *gso_size)
1003 {
1004 switch (cmsg->cmsg_type) {
1005 case UDP_SEGMENT:
1006 if (cmsg->cmsg_len != CMSG_LEN(sizeof(__u16)))
1007 return -EINVAL;
1008 *gso_size = *(__u16 *)CMSG_DATA(cmsg);
1009 return 0;
1010 default:
1011 return -EINVAL;
1012 }
1013 }
1014
udp_cmsg_send(struct sock * sk,struct msghdr * msg,u16 * gso_size)1015 int udp_cmsg_send(struct sock *sk, struct msghdr *msg, u16 *gso_size)
1016 {
1017 struct cmsghdr *cmsg;
1018 bool need_ip = false;
1019 int err;
1020
1021 for_each_cmsghdr(cmsg, msg) {
1022 if (!CMSG_OK(msg, cmsg))
1023 return -EINVAL;
1024
1025 if (cmsg->cmsg_level != SOL_UDP) {
1026 need_ip = true;
1027 continue;
1028 }
1029
1030 err = __udp_cmsg_send(cmsg, gso_size);
1031 if (err)
1032 return err;
1033 }
1034
1035 return need_ip;
1036 }
1037 EXPORT_SYMBOL_GPL(udp_cmsg_send);
1038
udp_sendmsg(struct sock * sk,struct msghdr * msg,size_t len)1039 int udp_sendmsg(struct sock *sk, struct msghdr *msg, size_t len)
1040 {
1041 struct inet_sock *inet = inet_sk(sk);
1042 struct udp_sock *up = udp_sk(sk);
1043 DECLARE_SOCKADDR(struct sockaddr_in *, usin, msg->msg_name);
1044 struct flowi4 fl4_stack;
1045 struct flowi4 *fl4;
1046 int ulen = len;
1047 struct ipcm_cookie ipc;
1048 struct rtable *rt = NULL;
1049 int free = 0;
1050 int connected = 0;
1051 __be32 daddr, faddr, saddr;
1052 __be16 dport;
1053 u8 tos;
1054 int err, is_udplite = IS_UDPLITE(sk);
1055 int corkreq = READ_ONCE(up->corkflag) || msg->msg_flags&MSG_MORE;
1056 int (*getfrag)(void *, char *, int, int, int, struct sk_buff *);
1057 struct sk_buff *skb;
1058 struct ip_options_data opt_copy;
1059
1060 if (len > 0xFFFF)
1061 return -EMSGSIZE;
1062
1063 /*
1064 * Check the flags.
1065 */
1066
1067 if (msg->msg_flags & MSG_OOB) /* Mirror BSD error message compatibility */
1068 return -EOPNOTSUPP;
1069
1070 getfrag = is_udplite ? udplite_getfrag : ip_generic_getfrag;
1071
1072 fl4 = &inet->cork.fl.u.ip4;
1073 if (up->pending) {
1074 /*
1075 * There are pending frames.
1076 * The socket lock must be held while it's corked.
1077 */
1078 lock_sock(sk);
1079 if (likely(up->pending)) {
1080 if (unlikely(up->pending != AF_INET)) {
1081 release_sock(sk);
1082 return -EINVAL;
1083 }
1084 goto do_append_data;
1085 }
1086 release_sock(sk);
1087 }
1088 ulen += sizeof(struct udphdr);
1089
1090 /*
1091 * Get and verify the address.
1092 */
1093 if (usin) {
1094 if (msg->msg_namelen < sizeof(*usin))
1095 return -EINVAL;
1096 if (usin->sin_family != AF_INET) {
1097 if (usin->sin_family != AF_UNSPEC)
1098 return -EAFNOSUPPORT;
1099 }
1100
1101 daddr = usin->sin_addr.s_addr;
1102 dport = usin->sin_port;
1103 if (dport == 0)
1104 return -EINVAL;
1105 } else {
1106 if (sk->sk_state != TCP_ESTABLISHED)
1107 return -EDESTADDRREQ;
1108 daddr = inet->inet_daddr;
1109 dport = inet->inet_dport;
1110 /* Open fast path for connected socket.
1111 Route will not be used, if at least one option is set.
1112 */
1113 connected = 1;
1114 }
1115
1116 ipcm_init_sk(&ipc, inet);
1117 ipc.gso_size = READ_ONCE(up->gso_size);
1118
1119 if (msg->msg_controllen) {
1120 err = udp_cmsg_send(sk, msg, &ipc.gso_size);
1121 if (err > 0)
1122 err = ip_cmsg_send(sk, msg, &ipc,
1123 sk->sk_family == AF_INET6);
1124 if (unlikely(err < 0)) {
1125 kfree(ipc.opt);
1126 return err;
1127 }
1128 if (ipc.opt)
1129 free = 1;
1130 connected = 0;
1131 }
1132 if (!ipc.opt) {
1133 struct ip_options_rcu *inet_opt;
1134
1135 rcu_read_lock();
1136 inet_opt = rcu_dereference(inet->inet_opt);
1137 if (inet_opt) {
1138 memcpy(&opt_copy, inet_opt,
1139 sizeof(*inet_opt) + inet_opt->opt.optlen);
1140 ipc.opt = &opt_copy.opt;
1141 }
1142 rcu_read_unlock();
1143 }
1144
1145 if (cgroup_bpf_enabled && !connected) {
1146 err = BPF_CGROUP_RUN_PROG_UDP4_SENDMSG_LOCK(sk,
1147 (struct sockaddr *)usin, &ipc.addr);
1148 if (err)
1149 goto out_free;
1150 if (usin) {
1151 if (usin->sin_port == 0) {
1152 /* BPF program set invalid port. Reject it. */
1153 err = -EINVAL;
1154 goto out_free;
1155 }
1156 daddr = usin->sin_addr.s_addr;
1157 dport = usin->sin_port;
1158 }
1159 }
1160
1161 saddr = ipc.addr;
1162 ipc.addr = faddr = daddr;
1163
1164 if (ipc.opt && ipc.opt->opt.srr) {
1165 if (!daddr) {
1166 err = -EINVAL;
1167 goto out_free;
1168 }
1169 faddr = ipc.opt->opt.faddr;
1170 connected = 0;
1171 }
1172 tos = get_rttos(&ipc, inet);
1173 if (sock_flag(sk, SOCK_LOCALROUTE) ||
1174 (msg->msg_flags & MSG_DONTROUTE) ||
1175 (ipc.opt && ipc.opt->opt.is_strictroute)) {
1176 tos |= RTO_ONLINK;
1177 connected = 0;
1178 }
1179
1180 if (ipv4_is_multicast(daddr)) {
1181 if (!ipc.oif || netif_index_is_l3_master(sock_net(sk), ipc.oif))
1182 ipc.oif = inet->mc_index;
1183 if (!saddr)
1184 saddr = inet->mc_addr;
1185 connected = 0;
1186 } else if (!ipc.oif) {
1187 ipc.oif = inet->uc_index;
1188 } else if (ipv4_is_lbcast(daddr) && inet->uc_index) {
1189 /* oif is set, packet is to local broadcast and
1190 * uc_index is set. oif is most likely set
1191 * by sk_bound_dev_if. If uc_index != oif check if the
1192 * oif is an L3 master and uc_index is an L3 slave.
1193 * If so, we want to allow the send using the uc_index.
1194 */
1195 if (ipc.oif != inet->uc_index &&
1196 ipc.oif == l3mdev_master_ifindex_by_index(sock_net(sk),
1197 inet->uc_index)) {
1198 ipc.oif = inet->uc_index;
1199 }
1200 }
1201
1202 if (connected)
1203 rt = (struct rtable *)sk_dst_check(sk, 0);
1204
1205 if (!rt) {
1206 struct net *net = sock_net(sk);
1207 __u8 flow_flags = inet_sk_flowi_flags(sk);
1208
1209 fl4 = &fl4_stack;
1210
1211 flowi4_init_output(fl4, ipc.oif, ipc.sockc.mark, tos,
1212 RT_SCOPE_UNIVERSE, sk->sk_protocol,
1213 flow_flags,
1214 faddr, saddr, dport, inet->inet_sport,
1215 sk->sk_uid);
1216
1217 security_sk_classify_flow(sk, flowi4_to_flowi_common(fl4));
1218 rt = ip_route_output_flow(net, fl4, sk);
1219 if (IS_ERR(rt)) {
1220 err = PTR_ERR(rt);
1221 rt = NULL;
1222 if (err == -ENETUNREACH)
1223 IP_INC_STATS(net, IPSTATS_MIB_OUTNOROUTES);
1224 goto out;
1225 }
1226
1227 err = -EACCES;
1228 if ((rt->rt_flags & RTCF_BROADCAST) &&
1229 !sock_flag(sk, SOCK_BROADCAST))
1230 goto out;
1231 if (connected)
1232 sk_dst_set(sk, dst_clone(&rt->dst));
1233 }
1234
1235 if (msg->msg_flags&MSG_CONFIRM)
1236 goto do_confirm;
1237 back_from_confirm:
1238
1239 saddr = fl4->saddr;
1240 if (!ipc.addr)
1241 daddr = ipc.addr = fl4->daddr;
1242
1243 /* Lockless fast path for the non-corking case. */
1244 if (!corkreq) {
1245 struct inet_cork cork;
1246
1247 skb = ip_make_skb(sk, fl4, getfrag, msg, ulen,
1248 sizeof(struct udphdr), &ipc, &rt,
1249 &cork, msg->msg_flags);
1250 err = PTR_ERR(skb);
1251 if (!IS_ERR_OR_NULL(skb))
1252 err = udp_send_skb(skb, fl4, &cork);
1253 goto out;
1254 }
1255
1256 lock_sock(sk);
1257 if (unlikely(up->pending)) {
1258 /* The socket is already corked while preparing it. */
1259 /* ... which is an evident application bug. --ANK */
1260 release_sock(sk);
1261
1262 net_dbg_ratelimited("socket already corked\n");
1263 err = -EINVAL;
1264 goto out;
1265 }
1266 /*
1267 * Now cork the socket to pend data.
1268 */
1269 fl4 = &inet->cork.fl.u.ip4;
1270 fl4->daddr = daddr;
1271 fl4->saddr = saddr;
1272 fl4->fl4_dport = dport;
1273 fl4->fl4_sport = inet->inet_sport;
1274 up->pending = AF_INET;
1275
1276 do_append_data:
1277 up->len += ulen;
1278 err = ip_append_data(sk, fl4, getfrag, msg, ulen,
1279 sizeof(struct udphdr), &ipc, &rt,
1280 corkreq ? msg->msg_flags|MSG_MORE : msg->msg_flags);
1281 if (err)
1282 udp_flush_pending_frames(sk);
1283 else if (!corkreq)
1284 err = udp_push_pending_frames(sk);
1285 else if (unlikely(skb_queue_empty(&sk->sk_write_queue)))
1286 up->pending = 0;
1287 release_sock(sk);
1288
1289 out:
1290 ip_rt_put(rt);
1291 out_free:
1292 if (free)
1293 kfree(ipc.opt);
1294 if (!err)
1295 return len;
1296 /*
1297 * ENOBUFS = no kernel mem, SOCK_NOSPACE = no sndbuf space. Reporting
1298 * ENOBUFS might not be good (it's not tunable per se), but otherwise
1299 * we don't have a good statistic (IpOutDiscards but it can be too many
1300 * things). We could add another new stat but at least for now that
1301 * seems like overkill.
1302 */
1303 if (err == -ENOBUFS || test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
1304 UDP_INC_STATS(sock_net(sk),
1305 UDP_MIB_SNDBUFERRORS, is_udplite);
1306 }
1307 return err;
1308
1309 do_confirm:
1310 if (msg->msg_flags & MSG_PROBE)
1311 dst_confirm_neigh(&rt->dst, &fl4->daddr);
1312 if (!(msg->msg_flags&MSG_PROBE) || len)
1313 goto back_from_confirm;
1314 err = 0;
1315 goto out;
1316 }
1317 EXPORT_SYMBOL(udp_sendmsg);
1318
udp_sendpage(struct sock * sk,struct page * page,int offset,size_t size,int flags)1319 int udp_sendpage(struct sock *sk, struct page *page, int offset,
1320 size_t size, int flags)
1321 {
1322 struct inet_sock *inet = inet_sk(sk);
1323 struct udp_sock *up = udp_sk(sk);
1324 int ret;
1325
1326 if (flags & MSG_SENDPAGE_NOTLAST)
1327 flags |= MSG_MORE;
1328
1329 if (!up->pending) {
1330 struct msghdr msg = { .msg_flags = flags|MSG_MORE };
1331
1332 /* Call udp_sendmsg to specify destination address which
1333 * sendpage interface can't pass.
1334 * This will succeed only when the socket is connected.
1335 */
1336 ret = udp_sendmsg(sk, &msg, 0);
1337 if (ret < 0)
1338 return ret;
1339 }
1340
1341 lock_sock(sk);
1342
1343 if (unlikely(!up->pending)) {
1344 release_sock(sk);
1345
1346 net_dbg_ratelimited("cork failed\n");
1347 return -EINVAL;
1348 }
1349
1350 ret = ip_append_page(sk, &inet->cork.fl.u.ip4,
1351 page, offset, size, flags);
1352 if (ret == -EOPNOTSUPP) {
1353 release_sock(sk);
1354 return sock_no_sendpage(sk->sk_socket, page, offset,
1355 size, flags);
1356 }
1357 if (ret < 0) {
1358 udp_flush_pending_frames(sk);
1359 goto out;
1360 }
1361
1362 up->len += size;
1363 if (!(READ_ONCE(up->corkflag) || (flags&MSG_MORE)))
1364 ret = udp_push_pending_frames(sk);
1365 if (!ret)
1366 ret = size;
1367 out:
1368 release_sock(sk);
1369 return ret;
1370 }
1371
1372 #define UDP_SKB_IS_STATELESS 0x80000000
1373
1374 /* all head states (dst, sk, nf conntrack) except skb extensions are
1375 * cleared by udp_rcv().
1376 *
1377 * We need to preserve secpath, if present, to eventually process
1378 * IP_CMSG_PASSSEC at recvmsg() time.
1379 *
1380 * Other extensions can be cleared.
1381 */
udp_try_make_stateless(struct sk_buff * skb)1382 static bool udp_try_make_stateless(struct sk_buff *skb)
1383 {
1384 if (!skb_has_extensions(skb))
1385 return true;
1386
1387 if (!secpath_exists(skb)) {
1388 skb_ext_reset(skb);
1389 return true;
1390 }
1391
1392 return false;
1393 }
1394
udp_set_dev_scratch(struct sk_buff * skb)1395 static void udp_set_dev_scratch(struct sk_buff *skb)
1396 {
1397 struct udp_dev_scratch *scratch = udp_skb_scratch(skb);
1398
1399 BUILD_BUG_ON(sizeof(struct udp_dev_scratch) > sizeof(long));
1400 scratch->_tsize_state = skb->truesize;
1401 #if BITS_PER_LONG == 64
1402 scratch->len = skb->len;
1403 scratch->csum_unnecessary = !!skb_csum_unnecessary(skb);
1404 scratch->is_linear = !skb_is_nonlinear(skb);
1405 #endif
1406 if (udp_try_make_stateless(skb))
1407 scratch->_tsize_state |= UDP_SKB_IS_STATELESS;
1408 }
1409
udp_skb_csum_unnecessary_set(struct sk_buff * skb)1410 static void udp_skb_csum_unnecessary_set(struct sk_buff *skb)
1411 {
1412 /* We come here after udp_lib_checksum_complete() returned 0.
1413 * This means that __skb_checksum_complete() might have
1414 * set skb->csum_valid to 1.
1415 * On 64bit platforms, we can set csum_unnecessary
1416 * to true, but only if the skb is not shared.
1417 */
1418 #if BITS_PER_LONG == 64
1419 if (!skb_shared(skb))
1420 udp_skb_scratch(skb)->csum_unnecessary = true;
1421 #endif
1422 }
1423
udp_skb_truesize(struct sk_buff * skb)1424 static int udp_skb_truesize(struct sk_buff *skb)
1425 {
1426 return udp_skb_scratch(skb)->_tsize_state & ~UDP_SKB_IS_STATELESS;
1427 }
1428
udp_skb_has_head_state(struct sk_buff * skb)1429 static bool udp_skb_has_head_state(struct sk_buff *skb)
1430 {
1431 return !(udp_skb_scratch(skb)->_tsize_state & UDP_SKB_IS_STATELESS);
1432 }
1433
1434 /* fully reclaim rmem/fwd memory allocated for skb */
udp_rmem_release(struct sock * sk,int size,int partial,bool rx_queue_lock_held)1435 static void udp_rmem_release(struct sock *sk, int size, int partial,
1436 bool rx_queue_lock_held)
1437 {
1438 struct udp_sock *up = udp_sk(sk);
1439 struct sk_buff_head *sk_queue;
1440 int amt;
1441
1442 if (likely(partial)) {
1443 up->forward_deficit += size;
1444 size = up->forward_deficit;
1445 if (size < (sk->sk_rcvbuf >> 2) &&
1446 !skb_queue_empty(&up->reader_queue))
1447 return;
1448 } else {
1449 size += up->forward_deficit;
1450 }
1451 up->forward_deficit = 0;
1452
1453 /* acquire the sk_receive_queue for fwd allocated memory scheduling,
1454 * if the called don't held it already
1455 */
1456 sk_queue = &sk->sk_receive_queue;
1457 if (!rx_queue_lock_held)
1458 spin_lock(&sk_queue->lock);
1459
1460
1461 sk->sk_forward_alloc += size;
1462 amt = (sk->sk_forward_alloc - partial) & ~(SK_MEM_QUANTUM - 1);
1463 sk->sk_forward_alloc -= amt;
1464
1465 if (amt)
1466 __sk_mem_reduce_allocated(sk, amt >> SK_MEM_QUANTUM_SHIFT);
1467
1468 atomic_sub(size, &sk->sk_rmem_alloc);
1469
1470 /* this can save us from acquiring the rx queue lock on next receive */
1471 skb_queue_splice_tail_init(sk_queue, &up->reader_queue);
1472
1473 if (!rx_queue_lock_held)
1474 spin_unlock(&sk_queue->lock);
1475 }
1476
1477 /* Note: called with reader_queue.lock held.
1478 * Instead of using skb->truesize here, find a copy of it in skb->dev_scratch
1479 * This avoids a cache line miss while receive_queue lock is held.
1480 * Look at __udp_enqueue_schedule_skb() to find where this copy is done.
1481 */
udp_skb_destructor(struct sock * sk,struct sk_buff * skb)1482 void udp_skb_destructor(struct sock *sk, struct sk_buff *skb)
1483 {
1484 prefetch(&skb->data);
1485 udp_rmem_release(sk, udp_skb_truesize(skb), 1, false);
1486 }
1487 EXPORT_SYMBOL(udp_skb_destructor);
1488
1489 /* as above, but the caller held the rx queue lock, too */
udp_skb_dtor_locked(struct sock * sk,struct sk_buff * skb)1490 static void udp_skb_dtor_locked(struct sock *sk, struct sk_buff *skb)
1491 {
1492 prefetch(&skb->data);
1493 udp_rmem_release(sk, udp_skb_truesize(skb), 1, true);
1494 }
1495
1496 /* Idea of busylocks is to let producers grab an extra spinlock
1497 * to relieve pressure on the receive_queue spinlock shared by consumer.
1498 * Under flood, this means that only one producer can be in line
1499 * trying to acquire the receive_queue spinlock.
1500 * These busylock can be allocated on a per cpu manner, instead of a
1501 * per socket one (that would consume a cache line per socket)
1502 */
1503 static int udp_busylocks_log __read_mostly;
1504 static spinlock_t *udp_busylocks __read_mostly;
1505
busylock_acquire(void * ptr)1506 static spinlock_t *busylock_acquire(void *ptr)
1507 {
1508 spinlock_t *busy;
1509
1510 busy = udp_busylocks + hash_ptr(ptr, udp_busylocks_log);
1511 spin_lock(busy);
1512 return busy;
1513 }
1514
busylock_release(spinlock_t * busy)1515 static void busylock_release(spinlock_t *busy)
1516 {
1517 if (busy)
1518 spin_unlock(busy);
1519 }
1520
__udp_enqueue_schedule_skb(struct sock * sk,struct sk_buff * skb)1521 int __udp_enqueue_schedule_skb(struct sock *sk, struct sk_buff *skb)
1522 {
1523 struct sk_buff_head *list = &sk->sk_receive_queue;
1524 int rmem, delta, amt, err = -ENOMEM;
1525 spinlock_t *busy = NULL;
1526 int size;
1527
1528 /* try to avoid the costly atomic add/sub pair when the receive
1529 * queue is full; always allow at least a packet
1530 */
1531 rmem = atomic_read(&sk->sk_rmem_alloc);
1532 if (rmem > sk->sk_rcvbuf)
1533 goto drop;
1534
1535 /* Under mem pressure, it might be helpful to help udp_recvmsg()
1536 * having linear skbs :
1537 * - Reduce memory overhead and thus increase receive queue capacity
1538 * - Less cache line misses at copyout() time
1539 * - Less work at consume_skb() (less alien page frag freeing)
1540 */
1541 if (rmem > (sk->sk_rcvbuf >> 1)) {
1542 skb_condense(skb);
1543
1544 busy = busylock_acquire(sk);
1545 }
1546 size = skb->truesize;
1547 udp_set_dev_scratch(skb);
1548
1549 /* we drop only if the receive buf is full and the receive
1550 * queue contains some other skb
1551 */
1552 rmem = atomic_add_return(size, &sk->sk_rmem_alloc);
1553 if (rmem > (size + (unsigned int)sk->sk_rcvbuf))
1554 goto uncharge_drop;
1555
1556 spin_lock(&list->lock);
1557 if (size >= sk->sk_forward_alloc) {
1558 amt = sk_mem_pages(size);
1559 delta = amt << SK_MEM_QUANTUM_SHIFT;
1560 if (!__sk_mem_raise_allocated(sk, delta, amt, SK_MEM_RECV)) {
1561 err = -ENOBUFS;
1562 spin_unlock(&list->lock);
1563 goto uncharge_drop;
1564 }
1565
1566 sk->sk_forward_alloc += delta;
1567 }
1568
1569 sk->sk_forward_alloc -= size;
1570
1571 /* no need to setup a destructor, we will explicitly release the
1572 * forward allocated memory on dequeue
1573 */
1574 sock_skb_set_dropcount(sk, skb);
1575
1576 __skb_queue_tail(list, skb);
1577 spin_unlock(&list->lock);
1578
1579 if (!sock_flag(sk, SOCK_DEAD))
1580 sk->sk_data_ready(sk);
1581
1582 busylock_release(busy);
1583 return 0;
1584
1585 uncharge_drop:
1586 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
1587
1588 drop:
1589 atomic_inc(&sk->sk_drops);
1590 busylock_release(busy);
1591 return err;
1592 }
1593 EXPORT_SYMBOL_GPL(__udp_enqueue_schedule_skb);
1594
udp_destruct_common(struct sock * sk)1595 void udp_destruct_common(struct sock *sk)
1596 {
1597 /* reclaim completely the forward allocated memory */
1598 struct udp_sock *up = udp_sk(sk);
1599 unsigned int total = 0;
1600 struct sk_buff *skb;
1601
1602 skb_queue_splice_tail_init(&sk->sk_receive_queue, &up->reader_queue);
1603 while ((skb = __skb_dequeue(&up->reader_queue)) != NULL) {
1604 total += skb->truesize;
1605 kfree_skb(skb);
1606 }
1607 udp_rmem_release(sk, total, 0, true);
1608 }
1609 EXPORT_SYMBOL_GPL(udp_destruct_common);
1610
udp_destruct_sock(struct sock * sk)1611 static void udp_destruct_sock(struct sock *sk)
1612 {
1613 udp_destruct_common(sk);
1614 inet_sock_destruct(sk);
1615 }
1616
udp_init_sock(struct sock * sk)1617 int udp_init_sock(struct sock *sk)
1618 {
1619 skb_queue_head_init(&udp_sk(sk)->reader_queue);
1620 sk->sk_destruct = udp_destruct_sock;
1621 return 0;
1622 }
1623
skb_consume_udp(struct sock * sk,struct sk_buff * skb,int len)1624 void skb_consume_udp(struct sock *sk, struct sk_buff *skb, int len)
1625 {
1626 if (unlikely(READ_ONCE(sk->sk_peek_off) >= 0)) {
1627 bool slow = lock_sock_fast(sk);
1628
1629 sk_peek_offset_bwd(sk, len);
1630 unlock_sock_fast(sk, slow);
1631 }
1632
1633 if (!skb_unref(skb))
1634 return;
1635
1636 /* In the more common cases we cleared the head states previously,
1637 * see __udp_queue_rcv_skb().
1638 */
1639 if (unlikely(udp_skb_has_head_state(skb)))
1640 skb_release_head_state(skb);
1641 __consume_stateless_skb(skb);
1642 }
1643 EXPORT_SYMBOL_GPL(skb_consume_udp);
1644
__first_packet_length(struct sock * sk,struct sk_buff_head * rcvq,int * total)1645 static struct sk_buff *__first_packet_length(struct sock *sk,
1646 struct sk_buff_head *rcvq,
1647 int *total)
1648 {
1649 struct sk_buff *skb;
1650
1651 while ((skb = skb_peek(rcvq)) != NULL) {
1652 if (udp_lib_checksum_complete(skb)) {
1653 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS,
1654 IS_UDPLITE(sk));
1655 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS,
1656 IS_UDPLITE(sk));
1657 atomic_inc(&sk->sk_drops);
1658 __skb_unlink(skb, rcvq);
1659 *total += skb->truesize;
1660 kfree_skb(skb);
1661 } else {
1662 udp_skb_csum_unnecessary_set(skb);
1663 break;
1664 }
1665 }
1666 return skb;
1667 }
1668
1669 /**
1670 * first_packet_length - return length of first packet in receive queue
1671 * @sk: socket
1672 *
1673 * Drops all bad checksum frames, until a valid one is found.
1674 * Returns the length of found skb, or -1 if none is found.
1675 */
first_packet_length(struct sock * sk)1676 static int first_packet_length(struct sock *sk)
1677 {
1678 struct sk_buff_head *rcvq = &udp_sk(sk)->reader_queue;
1679 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1680 struct sk_buff *skb;
1681 int total = 0;
1682 int res;
1683
1684 spin_lock_bh(&rcvq->lock);
1685 skb = __first_packet_length(sk, rcvq, &total);
1686 if (!skb && !skb_queue_empty_lockless(sk_queue)) {
1687 spin_lock(&sk_queue->lock);
1688 skb_queue_splice_tail_init(sk_queue, rcvq);
1689 spin_unlock(&sk_queue->lock);
1690
1691 skb = __first_packet_length(sk, rcvq, &total);
1692 }
1693 res = skb ? skb->len : -1;
1694 if (total)
1695 udp_rmem_release(sk, total, 1, false);
1696 spin_unlock_bh(&rcvq->lock);
1697 return res;
1698 }
1699
1700 /*
1701 * IOCTL requests applicable to the UDP protocol
1702 */
1703
udp_ioctl(struct sock * sk,int cmd,unsigned long arg)1704 int udp_ioctl(struct sock *sk, int cmd, unsigned long arg)
1705 {
1706 switch (cmd) {
1707 case SIOCOUTQ:
1708 {
1709 int amount = sk_wmem_alloc_get(sk);
1710
1711 return put_user(amount, (int __user *)arg);
1712 }
1713
1714 case SIOCINQ:
1715 {
1716 int amount = max_t(int, 0, first_packet_length(sk));
1717
1718 return put_user(amount, (int __user *)arg);
1719 }
1720
1721 default:
1722 return -ENOIOCTLCMD;
1723 }
1724
1725 return 0;
1726 }
1727 EXPORT_SYMBOL(udp_ioctl);
1728
__skb_recv_udp(struct sock * sk,unsigned int flags,int noblock,int * off,int * err)1729 struct sk_buff *__skb_recv_udp(struct sock *sk, unsigned int flags,
1730 int noblock, int *off, int *err)
1731 {
1732 struct sk_buff_head *sk_queue = &sk->sk_receive_queue;
1733 struct sk_buff_head *queue;
1734 struct sk_buff *last;
1735 long timeo;
1736 int error;
1737
1738 queue = &udp_sk(sk)->reader_queue;
1739 flags |= noblock ? MSG_DONTWAIT : 0;
1740 timeo = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
1741 do {
1742 struct sk_buff *skb;
1743
1744 error = sock_error(sk);
1745 if (error)
1746 break;
1747
1748 error = -EAGAIN;
1749 do {
1750 spin_lock_bh(&queue->lock);
1751 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1752 err, &last);
1753 if (skb) {
1754 if (!(flags & MSG_PEEK))
1755 udp_skb_destructor(sk, skb);
1756 spin_unlock_bh(&queue->lock);
1757 return skb;
1758 }
1759
1760 if (skb_queue_empty_lockless(sk_queue)) {
1761 spin_unlock_bh(&queue->lock);
1762 goto busy_check;
1763 }
1764
1765 /* refill the reader queue and walk it again
1766 * keep both queues locked to avoid re-acquiring
1767 * the sk_receive_queue lock if fwd memory scheduling
1768 * is needed.
1769 */
1770 spin_lock(&sk_queue->lock);
1771 skb_queue_splice_tail_init(sk_queue, queue);
1772
1773 skb = __skb_try_recv_from_queue(sk, queue, flags, off,
1774 err, &last);
1775 if (skb && !(flags & MSG_PEEK))
1776 udp_skb_dtor_locked(sk, skb);
1777 spin_unlock(&sk_queue->lock);
1778 spin_unlock_bh(&queue->lock);
1779 if (skb)
1780 return skb;
1781
1782 busy_check:
1783 if (!sk_can_busy_loop(sk))
1784 break;
1785
1786 sk_busy_loop(sk, flags & MSG_DONTWAIT);
1787 } while (!skb_queue_empty_lockless(sk_queue));
1788
1789 /* sk_queue is empty, reader_queue may contain peeked packets */
1790 } while (timeo &&
1791 !__skb_wait_for_more_packets(sk, &sk->sk_receive_queue,
1792 &error, &timeo,
1793 (struct sk_buff *)sk_queue));
1794
1795 *err = error;
1796 return NULL;
1797 }
1798 EXPORT_SYMBOL(__skb_recv_udp);
1799
1800 /*
1801 * This should be easy, if there is something there we
1802 * return it, otherwise we block.
1803 */
1804
udp_recvmsg(struct sock * sk,struct msghdr * msg,size_t len,int noblock,int flags,int * addr_len)1805 int udp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int noblock,
1806 int flags, int *addr_len)
1807 {
1808 struct inet_sock *inet = inet_sk(sk);
1809 DECLARE_SOCKADDR(struct sockaddr_in *, sin, msg->msg_name);
1810 struct sk_buff *skb;
1811 unsigned int ulen, copied;
1812 int off, err, peeking = flags & MSG_PEEK;
1813 int is_udplite = IS_UDPLITE(sk);
1814 bool checksum_valid = false;
1815
1816 if (flags & MSG_ERRQUEUE)
1817 return ip_recv_error(sk, msg, len, addr_len);
1818
1819 try_again:
1820 off = sk_peek_offset(sk, flags);
1821 skb = __skb_recv_udp(sk, flags, noblock, &off, &err);
1822 if (!skb)
1823 return err;
1824
1825 ulen = udp_skb_len(skb);
1826 copied = len;
1827 if (copied > ulen - off)
1828 copied = ulen - off;
1829 else if (copied < ulen)
1830 msg->msg_flags |= MSG_TRUNC;
1831
1832 /*
1833 * If checksum is needed at all, try to do it while copying the
1834 * data. If the data is truncated, or if we only want a partial
1835 * coverage checksum (UDP-Lite), do it before the copy.
1836 */
1837
1838 if (copied < ulen || peeking ||
1839 (is_udplite && UDP_SKB_CB(skb)->partial_cov)) {
1840 checksum_valid = udp_skb_csum_unnecessary(skb) ||
1841 !__udp_lib_checksum_complete(skb);
1842 if (!checksum_valid)
1843 goto csum_copy_err;
1844 }
1845
1846 if (checksum_valid || udp_skb_csum_unnecessary(skb)) {
1847 if (udp_skb_is_linear(skb))
1848 err = copy_linear_skb(skb, copied, off, &msg->msg_iter);
1849 else
1850 err = skb_copy_datagram_msg(skb, off, msg, copied);
1851 } else {
1852 err = skb_copy_and_csum_datagram_msg(skb, off, msg);
1853
1854 if (err == -EINVAL)
1855 goto csum_copy_err;
1856 }
1857
1858 if (unlikely(err)) {
1859 if (!peeking) {
1860 atomic_inc(&sk->sk_drops);
1861 UDP_INC_STATS(sock_net(sk),
1862 UDP_MIB_INERRORS, is_udplite);
1863 }
1864 kfree_skb(skb);
1865 return err;
1866 }
1867
1868 if (!peeking)
1869 UDP_INC_STATS(sock_net(sk),
1870 UDP_MIB_INDATAGRAMS, is_udplite);
1871
1872 sock_recv_ts_and_drops(msg, sk, skb);
1873
1874 /* Copy the address. */
1875 if (sin) {
1876 sin->sin_family = AF_INET;
1877 sin->sin_port = udp_hdr(skb)->source;
1878 sin->sin_addr.s_addr = ip_hdr(skb)->saddr;
1879 memset(sin->sin_zero, 0, sizeof(sin->sin_zero));
1880 *addr_len = sizeof(*sin);
1881
1882 if (cgroup_bpf_enabled)
1883 BPF_CGROUP_RUN_PROG_UDP4_RECVMSG_LOCK(sk,
1884 (struct sockaddr *)sin);
1885 }
1886
1887 if (udp_sk(sk)->gro_enabled)
1888 udp_cmsg_recv(msg, sk, skb);
1889
1890 if (inet->cmsg_flags)
1891 ip_cmsg_recv_offset(msg, sk, skb, sizeof(struct udphdr), off);
1892
1893 err = copied;
1894 if (flags & MSG_TRUNC)
1895 err = ulen;
1896
1897 skb_consume_udp(sk, skb, peeking ? -err : err);
1898 return err;
1899
1900 csum_copy_err:
1901 if (!__sk_queue_drop_skb(sk, &udp_sk(sk)->reader_queue, skb, flags,
1902 udp_skb_destructor)) {
1903 UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
1904 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
1905 }
1906 kfree_skb(skb);
1907
1908 /* starting over for a new packet, but check if we need to yield */
1909 cond_resched();
1910 msg->msg_flags &= ~MSG_TRUNC;
1911 goto try_again;
1912 }
1913
udp_pre_connect(struct sock * sk,struct sockaddr * uaddr,int addr_len)1914 int udp_pre_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len)
1915 {
1916 /* This check is replicated from __ip4_datagram_connect() and
1917 * intended to prevent BPF program called below from accessing bytes
1918 * that are out of the bound specified by user in addr_len.
1919 */
1920 if (addr_len < sizeof(struct sockaddr_in))
1921 return -EINVAL;
1922
1923 return BPF_CGROUP_RUN_PROG_INET4_CONNECT_LOCK(sk, uaddr);
1924 }
1925 EXPORT_SYMBOL(udp_pre_connect);
1926
__udp_disconnect(struct sock * sk,int flags)1927 int __udp_disconnect(struct sock *sk, int flags)
1928 {
1929 struct inet_sock *inet = inet_sk(sk);
1930 /*
1931 * 1003.1g - break association.
1932 */
1933
1934 sk->sk_state = TCP_CLOSE;
1935 inet->inet_daddr = 0;
1936 inet->inet_dport = 0;
1937 sock_rps_reset_rxhash(sk);
1938 sk->sk_bound_dev_if = 0;
1939 if (!(sk->sk_userlocks & SOCK_BINDADDR_LOCK)) {
1940 inet_reset_saddr(sk);
1941 if (sk->sk_prot->rehash &&
1942 (sk->sk_userlocks & SOCK_BINDPORT_LOCK))
1943 sk->sk_prot->rehash(sk);
1944 }
1945
1946 if (!(sk->sk_userlocks & SOCK_BINDPORT_LOCK)) {
1947 sk->sk_prot->unhash(sk);
1948 inet->inet_sport = 0;
1949 }
1950 sk_dst_reset(sk);
1951 return 0;
1952 }
1953 EXPORT_SYMBOL(__udp_disconnect);
1954
udp_disconnect(struct sock * sk,int flags)1955 int udp_disconnect(struct sock *sk, int flags)
1956 {
1957 lock_sock(sk);
1958 __udp_disconnect(sk, flags);
1959 release_sock(sk);
1960 return 0;
1961 }
1962 EXPORT_SYMBOL(udp_disconnect);
1963
udp_lib_unhash(struct sock * sk)1964 void udp_lib_unhash(struct sock *sk)
1965 {
1966 if (sk_hashed(sk)) {
1967 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1968 struct udp_hslot *hslot, *hslot2;
1969
1970 hslot = udp_hashslot(udptable, sock_net(sk),
1971 udp_sk(sk)->udp_port_hash);
1972 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
1973
1974 spin_lock_bh(&hslot->lock);
1975 if (rcu_access_pointer(sk->sk_reuseport_cb))
1976 reuseport_detach_sock(sk);
1977 if (sk_del_node_init_rcu(sk)) {
1978 hslot->count--;
1979 inet_sk(sk)->inet_num = 0;
1980 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
1981
1982 spin_lock(&hslot2->lock);
1983 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
1984 hslot2->count--;
1985 spin_unlock(&hslot2->lock);
1986 }
1987 spin_unlock_bh(&hslot->lock);
1988 }
1989 }
1990 EXPORT_SYMBOL(udp_lib_unhash);
1991
1992 /*
1993 * inet_rcv_saddr was changed, we must rehash secondary hash
1994 */
udp_lib_rehash(struct sock * sk,u16 newhash)1995 void udp_lib_rehash(struct sock *sk, u16 newhash)
1996 {
1997 if (sk_hashed(sk)) {
1998 struct udp_table *udptable = sk->sk_prot->h.udp_table;
1999 struct udp_hslot *hslot, *hslot2, *nhslot2;
2000
2001 hslot2 = udp_hashslot2(udptable, udp_sk(sk)->udp_portaddr_hash);
2002 nhslot2 = udp_hashslot2(udptable, newhash);
2003 udp_sk(sk)->udp_portaddr_hash = newhash;
2004
2005 if (hslot2 != nhslot2 ||
2006 rcu_access_pointer(sk->sk_reuseport_cb)) {
2007 hslot = udp_hashslot(udptable, sock_net(sk),
2008 udp_sk(sk)->udp_port_hash);
2009 /* we must lock primary chain too */
2010 spin_lock_bh(&hslot->lock);
2011 if (rcu_access_pointer(sk->sk_reuseport_cb))
2012 reuseport_detach_sock(sk);
2013
2014 if (hslot2 != nhslot2) {
2015 spin_lock(&hslot2->lock);
2016 hlist_del_init_rcu(&udp_sk(sk)->udp_portaddr_node);
2017 hslot2->count--;
2018 spin_unlock(&hslot2->lock);
2019
2020 spin_lock(&nhslot2->lock);
2021 hlist_add_head_rcu(&udp_sk(sk)->udp_portaddr_node,
2022 &nhslot2->head);
2023 nhslot2->count++;
2024 spin_unlock(&nhslot2->lock);
2025 }
2026
2027 spin_unlock_bh(&hslot->lock);
2028 }
2029 }
2030 }
2031 EXPORT_SYMBOL(udp_lib_rehash);
2032
udp_v4_rehash(struct sock * sk)2033 void udp_v4_rehash(struct sock *sk)
2034 {
2035 u16 new_hash = ipv4_portaddr_hash(sock_net(sk),
2036 inet_sk(sk)->inet_rcv_saddr,
2037 inet_sk(sk)->inet_num);
2038 udp_lib_rehash(sk, new_hash);
2039 }
2040
__udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2041 static int __udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2042 {
2043 int rc;
2044
2045 if (inet_sk(sk)->inet_daddr) {
2046 sock_rps_save_rxhash(sk, skb);
2047 sk_mark_napi_id(sk, skb);
2048 sk_incoming_cpu_update(sk);
2049 } else {
2050 sk_mark_napi_id_once(sk, skb);
2051 }
2052
2053 rc = __udp_enqueue_schedule_skb(sk, skb);
2054 if (rc < 0) {
2055 int is_udplite = IS_UDPLITE(sk);
2056
2057 /* Note that an ENOMEM error is charged twice */
2058 if (rc == -ENOMEM)
2059 UDP_INC_STATS(sock_net(sk), UDP_MIB_RCVBUFERRORS,
2060 is_udplite);
2061 UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2062 kfree_skb(skb);
2063 trace_udp_fail_queue_rcv_skb(rc, sk);
2064 return -1;
2065 }
2066
2067 return 0;
2068 }
2069
2070 /* returns:
2071 * -1: error
2072 * 0: success
2073 * >0: "udp encap" protocol resubmission
2074 *
2075 * Note that in the success and error cases, the skb is assumed to
2076 * have either been requeued or freed.
2077 */
udp_queue_rcv_one_skb(struct sock * sk,struct sk_buff * skb)2078 static int udp_queue_rcv_one_skb(struct sock *sk, struct sk_buff *skb)
2079 {
2080 struct udp_sock *up = udp_sk(sk);
2081 int is_udplite = IS_UDPLITE(sk);
2082
2083 /*
2084 * Charge it to the socket, dropping if the queue is full.
2085 */
2086 if (!xfrm4_policy_check(sk, XFRM_POLICY_IN, skb))
2087 goto drop;
2088 nf_reset_ct(skb);
2089
2090 if (static_branch_unlikely(&udp_encap_needed_key) && up->encap_type) {
2091 int (*encap_rcv)(struct sock *sk, struct sk_buff *skb);
2092
2093 /*
2094 * This is an encapsulation socket so pass the skb to
2095 * the socket's udp_encap_rcv() hook. Otherwise, just
2096 * fall through and pass this up the UDP socket.
2097 * up->encap_rcv() returns the following value:
2098 * =0 if skb was successfully passed to the encap
2099 * handler or was discarded by it.
2100 * >0 if skb should be passed on to UDP.
2101 * <0 if skb should be resubmitted as proto -N
2102 */
2103
2104 /* if we're overly short, let UDP handle it */
2105 encap_rcv = READ_ONCE(up->encap_rcv);
2106 if (encap_rcv) {
2107 int ret;
2108
2109 /* Verify checksum before giving to encap */
2110 if (udp_lib_checksum_complete(skb))
2111 goto csum_error;
2112
2113 ret = encap_rcv(sk, skb);
2114 if (ret <= 0) {
2115 __UDP_INC_STATS(sock_net(sk),
2116 UDP_MIB_INDATAGRAMS,
2117 is_udplite);
2118 return -ret;
2119 }
2120 }
2121
2122 /* FALLTHROUGH -- it's a UDP Packet */
2123 }
2124
2125 /*
2126 * UDP-Lite specific tests, ignored on UDP sockets
2127 */
2128 if ((up->pcflag & UDPLITE_RECV_CC) && UDP_SKB_CB(skb)->partial_cov) {
2129
2130 /*
2131 * MIB statistics other than incrementing the error count are
2132 * disabled for the following two types of errors: these depend
2133 * on the application settings, not on the functioning of the
2134 * protocol stack as such.
2135 *
2136 * RFC 3828 here recommends (sec 3.3): "There should also be a
2137 * way ... to ... at least let the receiving application block
2138 * delivery of packets with coverage values less than a value
2139 * provided by the application."
2140 */
2141 if (up->pcrlen == 0) { /* full coverage was set */
2142 net_dbg_ratelimited("UDPLite: partial coverage %d while full coverage %d requested\n",
2143 UDP_SKB_CB(skb)->cscov, skb->len);
2144 goto drop;
2145 }
2146 /* The next case involves violating the min. coverage requested
2147 * by the receiver. This is subtle: if receiver wants x and x is
2148 * greater than the buffersize/MTU then receiver will complain
2149 * that it wants x while sender emits packets of smaller size y.
2150 * Therefore the above ...()->partial_cov statement is essential.
2151 */
2152 if (UDP_SKB_CB(skb)->cscov < up->pcrlen) {
2153 net_dbg_ratelimited("UDPLite: coverage %d too small, need min %d\n",
2154 UDP_SKB_CB(skb)->cscov, up->pcrlen);
2155 goto drop;
2156 }
2157 }
2158
2159 prefetch(&sk->sk_rmem_alloc);
2160 if (rcu_access_pointer(sk->sk_filter) &&
2161 udp_lib_checksum_complete(skb))
2162 goto csum_error;
2163
2164 if (sk_filter_trim_cap(sk, skb, sizeof(struct udphdr)))
2165 goto drop;
2166
2167 udp_csum_pull_header(skb);
2168
2169 ipv4_pktinfo_prepare(sk, skb);
2170 return __udp_queue_rcv_skb(sk, skb);
2171
2172 csum_error:
2173 __UDP_INC_STATS(sock_net(sk), UDP_MIB_CSUMERRORS, is_udplite);
2174 drop:
2175 __UDP_INC_STATS(sock_net(sk), UDP_MIB_INERRORS, is_udplite);
2176 atomic_inc(&sk->sk_drops);
2177 kfree_skb(skb);
2178 return -1;
2179 }
2180
udp_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2181 static int udp_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2182 {
2183 struct sk_buff *next, *segs;
2184 int ret;
2185
2186 if (likely(!udp_unexpected_gso(sk, skb)))
2187 return udp_queue_rcv_one_skb(sk, skb);
2188
2189 BUILD_BUG_ON(sizeof(struct udp_skb_cb) > SKB_GSO_CB_OFFSET);
2190 __skb_push(skb, -skb_mac_offset(skb));
2191 segs = udp_rcv_segment(sk, skb, true);
2192 skb_list_walk_safe(segs, skb, next) {
2193 __skb_pull(skb, skb_transport_offset(skb));
2194 ret = udp_queue_rcv_one_skb(sk, skb);
2195 if (ret > 0)
2196 ip_protocol_deliver_rcu(dev_net(skb->dev), skb, ret);
2197 }
2198 return 0;
2199 }
2200
2201 /* For TCP sockets, sk_rx_dst is protected by socket lock
2202 * For UDP, we use xchg() to guard against concurrent changes.
2203 */
udp_sk_rx_dst_set(struct sock * sk,struct dst_entry * dst)2204 bool udp_sk_rx_dst_set(struct sock *sk, struct dst_entry *dst)
2205 {
2206 struct dst_entry *old;
2207
2208 if (dst_hold_safe(dst)) {
2209 old = xchg((__force struct dst_entry **)&sk->sk_rx_dst, dst);
2210 dst_release(old);
2211 return old != dst;
2212 }
2213 return false;
2214 }
2215 EXPORT_SYMBOL(udp_sk_rx_dst_set);
2216
2217 /*
2218 * Multicasts and broadcasts go to each listener.
2219 *
2220 * Note: called only from the BH handler context.
2221 */
__udp4_lib_mcast_deliver(struct net * net,struct sk_buff * skb,struct udphdr * uh,__be32 saddr,__be32 daddr,struct udp_table * udptable,int proto)2222 static int __udp4_lib_mcast_deliver(struct net *net, struct sk_buff *skb,
2223 struct udphdr *uh,
2224 __be32 saddr, __be32 daddr,
2225 struct udp_table *udptable,
2226 int proto)
2227 {
2228 struct sock *sk, *first = NULL;
2229 unsigned short hnum = ntohs(uh->dest);
2230 struct udp_hslot *hslot = udp_hashslot(udptable, net, hnum);
2231 unsigned int hash2 = 0, hash2_any = 0, use_hash2 = (hslot->count > 10);
2232 unsigned int offset = offsetof(typeof(*sk), sk_node);
2233 int dif = skb->dev->ifindex;
2234 int sdif = inet_sdif(skb);
2235 struct hlist_node *node;
2236 struct sk_buff *nskb;
2237
2238 if (use_hash2) {
2239 hash2_any = ipv4_portaddr_hash(net, htonl(INADDR_ANY), hnum) &
2240 udptable->mask;
2241 hash2 = ipv4_portaddr_hash(net, daddr, hnum) & udptable->mask;
2242 start_lookup:
2243 hslot = &udptable->hash2[hash2];
2244 offset = offsetof(typeof(*sk), __sk_common.skc_portaddr_node);
2245 }
2246
2247 sk_for_each_entry_offset_rcu(sk, node, &hslot->head, offset) {
2248 if (!__udp_is_mcast_sock(net, sk, uh->dest, daddr,
2249 uh->source, saddr, dif, sdif, hnum))
2250 continue;
2251
2252 if (!first) {
2253 first = sk;
2254 continue;
2255 }
2256 nskb = skb_clone(skb, GFP_ATOMIC);
2257
2258 if (unlikely(!nskb)) {
2259 atomic_inc(&sk->sk_drops);
2260 __UDP_INC_STATS(net, UDP_MIB_RCVBUFERRORS,
2261 IS_UDPLITE(sk));
2262 __UDP_INC_STATS(net, UDP_MIB_INERRORS,
2263 IS_UDPLITE(sk));
2264 continue;
2265 }
2266 if (udp_queue_rcv_skb(sk, nskb) > 0)
2267 consume_skb(nskb);
2268 }
2269
2270 /* Also lookup *:port if we are using hash2 and haven't done so yet. */
2271 if (use_hash2 && hash2 != hash2_any) {
2272 hash2 = hash2_any;
2273 goto start_lookup;
2274 }
2275
2276 if (first) {
2277 if (udp_queue_rcv_skb(first, skb) > 0)
2278 consume_skb(skb);
2279 } else {
2280 kfree_skb(skb);
2281 __UDP_INC_STATS(net, UDP_MIB_IGNOREDMULTI,
2282 proto == IPPROTO_UDPLITE);
2283 }
2284 return 0;
2285 }
2286
2287 /* Initialize UDP checksum. If exited with zero value (success),
2288 * CHECKSUM_UNNECESSARY means, that no more checks are required.
2289 * Otherwise, csum completion requires checksumming packet body,
2290 * including udp header and folding it to skb->csum.
2291 */
udp4_csum_init(struct sk_buff * skb,struct udphdr * uh,int proto)2292 static inline int udp4_csum_init(struct sk_buff *skb, struct udphdr *uh,
2293 int proto)
2294 {
2295 int err;
2296
2297 UDP_SKB_CB(skb)->partial_cov = 0;
2298 UDP_SKB_CB(skb)->cscov = skb->len;
2299
2300 if (proto == IPPROTO_UDPLITE) {
2301 err = udplite_checksum_init(skb, uh);
2302 if (err)
2303 return err;
2304
2305 if (UDP_SKB_CB(skb)->partial_cov) {
2306 skb->csum = inet_compute_pseudo(skb, proto);
2307 return 0;
2308 }
2309 }
2310
2311 /* Note, we are only interested in != 0 or == 0, thus the
2312 * force to int.
2313 */
2314 err = (__force int)skb_checksum_init_zero_check(skb, proto, uh->check,
2315 inet_compute_pseudo);
2316 if (err)
2317 return err;
2318
2319 if (skb->ip_summed == CHECKSUM_COMPLETE && !skb->csum_valid) {
2320 /* If SW calculated the value, we know it's bad */
2321 if (skb->csum_complete_sw)
2322 return 1;
2323
2324 /* HW says the value is bad. Let's validate that.
2325 * skb->csum is no longer the full packet checksum,
2326 * so don't treat it as such.
2327 */
2328 skb_checksum_complete_unset(skb);
2329 }
2330
2331 return 0;
2332 }
2333
2334 /* wrapper for udp_queue_rcv_skb tacking care of csum conversion and
2335 * return code conversion for ip layer consumption
2336 */
udp_unicast_rcv_skb(struct sock * sk,struct sk_buff * skb,struct udphdr * uh)2337 static int udp_unicast_rcv_skb(struct sock *sk, struct sk_buff *skb,
2338 struct udphdr *uh)
2339 {
2340 int ret;
2341
2342 if (inet_get_convert_csum(sk) && uh->check && !IS_UDPLITE(sk))
2343 skb_checksum_try_convert(skb, IPPROTO_UDP, inet_compute_pseudo);
2344
2345 ret = udp_queue_rcv_skb(sk, skb);
2346
2347 /* a return value > 0 means to resubmit the input, but
2348 * it wants the return to be -protocol, or 0
2349 */
2350 if (ret > 0)
2351 return -ret;
2352 return 0;
2353 }
2354
2355 /*
2356 * All we need to do is get the socket, and then do a checksum.
2357 */
2358
__udp4_lib_rcv(struct sk_buff * skb,struct udp_table * udptable,int proto)2359 int __udp4_lib_rcv(struct sk_buff *skb, struct udp_table *udptable,
2360 int proto)
2361 {
2362 struct sock *sk;
2363 struct udphdr *uh;
2364 unsigned short ulen;
2365 struct rtable *rt = skb_rtable(skb);
2366 __be32 saddr, daddr;
2367 struct net *net = dev_net(skb->dev);
2368 bool refcounted;
2369
2370 /*
2371 * Validate the packet.
2372 */
2373 if (!pskb_may_pull(skb, sizeof(struct udphdr)))
2374 goto drop; /* No space for header. */
2375
2376 uh = udp_hdr(skb);
2377 ulen = ntohs(uh->len);
2378 saddr = ip_hdr(skb)->saddr;
2379 daddr = ip_hdr(skb)->daddr;
2380
2381 if (ulen > skb->len)
2382 goto short_packet;
2383
2384 if (proto == IPPROTO_UDP) {
2385 /* UDP validates ulen. */
2386 if (ulen < sizeof(*uh) || pskb_trim_rcsum(skb, ulen))
2387 goto short_packet;
2388 uh = udp_hdr(skb);
2389 }
2390
2391 if (udp4_csum_init(skb, uh, proto))
2392 goto csum_error;
2393
2394 sk = skb_steal_sock(skb, &refcounted);
2395 if (sk) {
2396 struct dst_entry *dst = skb_dst(skb);
2397 int ret;
2398
2399 if (unlikely(rcu_dereference(sk->sk_rx_dst) != dst))
2400 udp_sk_rx_dst_set(sk, dst);
2401
2402 ret = udp_unicast_rcv_skb(sk, skb, uh);
2403 if (refcounted)
2404 sock_put(sk);
2405 return ret;
2406 }
2407
2408 if (rt->rt_flags & (RTCF_BROADCAST|RTCF_MULTICAST))
2409 return __udp4_lib_mcast_deliver(net, skb, uh,
2410 saddr, daddr, udptable, proto);
2411
2412 sk = __udp4_lib_lookup_skb(skb, uh->source, uh->dest, udptable);
2413 if (sk)
2414 return udp_unicast_rcv_skb(sk, skb, uh);
2415
2416 if (!xfrm4_policy_check(NULL, XFRM_POLICY_IN, skb))
2417 goto drop;
2418 nf_reset_ct(skb);
2419
2420 /* No socket. Drop packet silently, if checksum is wrong */
2421 if (udp_lib_checksum_complete(skb))
2422 goto csum_error;
2423
2424 __UDP_INC_STATS(net, UDP_MIB_NOPORTS, proto == IPPROTO_UDPLITE);
2425 icmp_send(skb, ICMP_DEST_UNREACH, ICMP_PORT_UNREACH, 0);
2426
2427 /*
2428 * Hmm. We got an UDP packet to a port to which we
2429 * don't wanna listen. Ignore it.
2430 */
2431 kfree_skb(skb);
2432 return 0;
2433
2434 short_packet:
2435 net_dbg_ratelimited("UDP%s: short packet: From %pI4:%u %d/%d to %pI4:%u\n",
2436 proto == IPPROTO_UDPLITE ? "Lite" : "",
2437 &saddr, ntohs(uh->source),
2438 ulen, skb->len,
2439 &daddr, ntohs(uh->dest));
2440 goto drop;
2441
2442 csum_error:
2443 /*
2444 * RFC1122: OK. Discards the bad packet silently (as far as
2445 * the network is concerned, anyway) as per 4.1.3.4 (MUST).
2446 */
2447 net_dbg_ratelimited("UDP%s: bad checksum. From %pI4:%u to %pI4:%u ulen %d\n",
2448 proto == IPPROTO_UDPLITE ? "Lite" : "",
2449 &saddr, ntohs(uh->source), &daddr, ntohs(uh->dest),
2450 ulen);
2451 __UDP_INC_STATS(net, UDP_MIB_CSUMERRORS, proto == IPPROTO_UDPLITE);
2452 drop:
2453 __UDP_INC_STATS(net, UDP_MIB_INERRORS, proto == IPPROTO_UDPLITE);
2454 kfree_skb(skb);
2455 return 0;
2456 }
2457
2458 /* We can only early demux multicast if there is a single matching socket.
2459 * If more than one socket found returns NULL
2460 */
__udp4_lib_mcast_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2461 static struct sock *__udp4_lib_mcast_demux_lookup(struct net *net,
2462 __be16 loc_port, __be32 loc_addr,
2463 __be16 rmt_port, __be32 rmt_addr,
2464 int dif, int sdif)
2465 {
2466 struct sock *sk, *result;
2467 unsigned short hnum = ntohs(loc_port);
2468 unsigned int slot = udp_hashfn(net, hnum, udp_table.mask);
2469 struct udp_hslot *hslot = &udp_table.hash[slot];
2470
2471 /* Do not bother scanning a too big list */
2472 if (hslot->count > 10)
2473 return NULL;
2474
2475 result = NULL;
2476 sk_for_each_rcu(sk, &hslot->head) {
2477 if (__udp_is_mcast_sock(net, sk, loc_port, loc_addr,
2478 rmt_port, rmt_addr, dif, sdif, hnum)) {
2479 if (result)
2480 return NULL;
2481 result = sk;
2482 }
2483 }
2484
2485 return result;
2486 }
2487
2488 /* For unicast we should only early demux connected sockets or we can
2489 * break forwarding setups. The chains here can be long so only check
2490 * if the first socket is an exact match and if not move on.
2491 */
__udp4_lib_demux_lookup(struct net * net,__be16 loc_port,__be32 loc_addr,__be16 rmt_port,__be32 rmt_addr,int dif,int sdif)2492 static struct sock *__udp4_lib_demux_lookup(struct net *net,
2493 __be16 loc_port, __be32 loc_addr,
2494 __be16 rmt_port, __be32 rmt_addr,
2495 int dif, int sdif)
2496 {
2497 unsigned short hnum = ntohs(loc_port);
2498 unsigned int hash2 = ipv4_portaddr_hash(net, loc_addr, hnum);
2499 unsigned int slot2 = hash2 & udp_table.mask;
2500 struct udp_hslot *hslot2 = &udp_table.hash2[slot2];
2501 INET_ADDR_COOKIE(acookie, rmt_addr, loc_addr);
2502 const __portpair ports = INET_COMBINED_PORTS(rmt_port, hnum);
2503 struct sock *sk;
2504
2505 udp_portaddr_for_each_entry_rcu(sk, &hslot2->head) {
2506 if (INET_MATCH(net, sk, acookie, ports, dif, sdif))
2507 return sk;
2508 /* Only check first socket in chain */
2509 break;
2510 }
2511 return NULL;
2512 }
2513
udp_v4_early_demux(struct sk_buff * skb)2514 int udp_v4_early_demux(struct sk_buff *skb)
2515 {
2516 struct net *net = dev_net(skb->dev);
2517 struct in_device *in_dev = NULL;
2518 const struct iphdr *iph;
2519 const struct udphdr *uh;
2520 struct sock *sk = NULL;
2521 struct dst_entry *dst;
2522 int dif = skb->dev->ifindex;
2523 int sdif = inet_sdif(skb);
2524 int ours;
2525
2526 /* validate the packet */
2527 if (!pskb_may_pull(skb, skb_transport_offset(skb) + sizeof(struct udphdr)))
2528 return 0;
2529
2530 iph = ip_hdr(skb);
2531 uh = udp_hdr(skb);
2532
2533 if (skb->pkt_type == PACKET_MULTICAST) {
2534 in_dev = __in_dev_get_rcu(skb->dev);
2535
2536 if (!in_dev)
2537 return 0;
2538
2539 ours = ip_check_mc_rcu(in_dev, iph->daddr, iph->saddr,
2540 iph->protocol);
2541 if (!ours)
2542 return 0;
2543
2544 sk = __udp4_lib_mcast_demux_lookup(net, uh->dest, iph->daddr,
2545 uh->source, iph->saddr,
2546 dif, sdif);
2547 } else if (skb->pkt_type == PACKET_HOST) {
2548 sk = __udp4_lib_demux_lookup(net, uh->dest, iph->daddr,
2549 uh->source, iph->saddr, dif, sdif);
2550 }
2551
2552 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
2553 return 0;
2554
2555 skb->sk = sk;
2556 skb->destructor = sock_efree;
2557 dst = rcu_dereference(sk->sk_rx_dst);
2558
2559 if (dst)
2560 dst = dst_check(dst, 0);
2561 if (dst) {
2562 u32 itag = 0;
2563
2564 /* set noref for now.
2565 * any place which wants to hold dst has to call
2566 * dst_hold_safe()
2567 */
2568 skb_dst_set_noref(skb, dst);
2569
2570 /* for unconnected multicast sockets we need to validate
2571 * the source on each packet
2572 */
2573 if (!inet_sk(sk)->inet_daddr && in_dev)
2574 return ip_mc_validate_source(skb, iph->daddr,
2575 iph->saddr,
2576 iph->tos & IPTOS_RT_MASK,
2577 skb->dev, in_dev, &itag);
2578 }
2579 return 0;
2580 }
2581
udp_rcv(struct sk_buff * skb)2582 int udp_rcv(struct sk_buff *skb)
2583 {
2584 return __udp4_lib_rcv(skb, &udp_table, IPPROTO_UDP);
2585 }
2586
udp_destroy_sock(struct sock * sk)2587 void udp_destroy_sock(struct sock *sk)
2588 {
2589 struct udp_sock *up = udp_sk(sk);
2590 bool slow = lock_sock_fast(sk);
2591
2592 /* protects from races with udp_abort() */
2593 sock_set_flag(sk, SOCK_DEAD);
2594 udp_flush_pending_frames(sk);
2595 unlock_sock_fast(sk, slow);
2596 if (static_branch_unlikely(&udp_encap_needed_key)) {
2597 if (up->encap_type) {
2598 void (*encap_destroy)(struct sock *sk);
2599 encap_destroy = READ_ONCE(up->encap_destroy);
2600 if (encap_destroy)
2601 encap_destroy(sk);
2602 }
2603 if (up->encap_enabled)
2604 static_branch_dec(&udp_encap_needed_key);
2605 }
2606 }
2607
2608 /*
2609 * Socket option code for UDP
2610 */
udp_lib_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen,int (* push_pending_frames)(struct sock *))2611 int udp_lib_setsockopt(struct sock *sk, int level, int optname,
2612 sockptr_t optval, unsigned int optlen,
2613 int (*push_pending_frames)(struct sock *))
2614 {
2615 struct udp_sock *up = udp_sk(sk);
2616 int val, valbool;
2617 int err = 0;
2618 int is_udplite = IS_UDPLITE(sk);
2619
2620 if (optlen < sizeof(int))
2621 return -EINVAL;
2622
2623 if (copy_from_sockptr(&val, optval, sizeof(val)))
2624 return -EFAULT;
2625
2626 valbool = val ? 1 : 0;
2627
2628 switch (optname) {
2629 case UDP_CORK:
2630 if (val != 0) {
2631 WRITE_ONCE(up->corkflag, 1);
2632 } else {
2633 WRITE_ONCE(up->corkflag, 0);
2634 lock_sock(sk);
2635 push_pending_frames(sk);
2636 release_sock(sk);
2637 }
2638 break;
2639
2640 case UDP_ENCAP:
2641 switch (val) {
2642 case 0:
2643 #ifdef CONFIG_XFRM
2644 case UDP_ENCAP_ESPINUDP:
2645 case UDP_ENCAP_ESPINUDP_NON_IKE:
2646 #if IS_ENABLED(CONFIG_IPV6)
2647 if (sk->sk_family == AF_INET6)
2648 up->encap_rcv = ipv6_stub->xfrm6_udp_encap_rcv;
2649 else
2650 #endif
2651 up->encap_rcv = xfrm4_udp_encap_rcv;
2652 #endif
2653 fallthrough;
2654 case UDP_ENCAP_L2TPINUDP:
2655 up->encap_type = val;
2656 lock_sock(sk);
2657 udp_tunnel_encap_enable(sk->sk_socket);
2658 release_sock(sk);
2659 break;
2660 default:
2661 err = -ENOPROTOOPT;
2662 break;
2663 }
2664 break;
2665
2666 case UDP_NO_CHECK6_TX:
2667 up->no_check6_tx = valbool;
2668 break;
2669
2670 case UDP_NO_CHECK6_RX:
2671 up->no_check6_rx = valbool;
2672 break;
2673
2674 case UDP_SEGMENT:
2675 if (val < 0 || val > USHRT_MAX)
2676 return -EINVAL;
2677 WRITE_ONCE(up->gso_size, val);
2678 break;
2679
2680 case UDP_GRO:
2681 lock_sock(sk);
2682
2683 /* when enabling GRO, accept the related GSO packet type */
2684 if (valbool)
2685 udp_tunnel_encap_enable(sk->sk_socket);
2686 up->gro_enabled = valbool;
2687 up->accept_udp_l4 = valbool;
2688 release_sock(sk);
2689 break;
2690
2691 /*
2692 * UDP-Lite's partial checksum coverage (RFC 3828).
2693 */
2694 /* The sender sets actual checksum coverage length via this option.
2695 * The case coverage > packet length is handled by send module. */
2696 case UDPLITE_SEND_CSCOV:
2697 if (!is_udplite) /* Disable the option on UDP sockets */
2698 return -ENOPROTOOPT;
2699 if (val != 0 && val < 8) /* Illegal coverage: use default (8) */
2700 val = 8;
2701 else if (val > USHRT_MAX)
2702 val = USHRT_MAX;
2703 up->pcslen = val;
2704 up->pcflag |= UDPLITE_SEND_CC;
2705 break;
2706
2707 /* The receiver specifies a minimum checksum coverage value. To make
2708 * sense, this should be set to at least 8 (as done below). If zero is
2709 * used, this again means full checksum coverage. */
2710 case UDPLITE_RECV_CSCOV:
2711 if (!is_udplite) /* Disable the option on UDP sockets */
2712 return -ENOPROTOOPT;
2713 if (val != 0 && val < 8) /* Avoid silly minimal values. */
2714 val = 8;
2715 else if (val > USHRT_MAX)
2716 val = USHRT_MAX;
2717 up->pcrlen = val;
2718 up->pcflag |= UDPLITE_RECV_CC;
2719 break;
2720
2721 default:
2722 err = -ENOPROTOOPT;
2723 break;
2724 }
2725
2726 return err;
2727 }
2728 EXPORT_SYMBOL(udp_lib_setsockopt);
2729
udp_setsockopt(struct sock * sk,int level,int optname,sockptr_t optval,unsigned int optlen)2730 int udp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
2731 unsigned int optlen)
2732 {
2733 if (level == SOL_UDP || level == SOL_UDPLITE)
2734 return udp_lib_setsockopt(sk, level, optname,
2735 optval, optlen,
2736 udp_push_pending_frames);
2737 return ip_setsockopt(sk, level, optname, optval, optlen);
2738 }
2739
udp_lib_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2740 int udp_lib_getsockopt(struct sock *sk, int level, int optname,
2741 char __user *optval, int __user *optlen)
2742 {
2743 struct udp_sock *up = udp_sk(sk);
2744 int val, len;
2745
2746 if (get_user(len, optlen))
2747 return -EFAULT;
2748
2749 len = min_t(unsigned int, len, sizeof(int));
2750
2751 if (len < 0)
2752 return -EINVAL;
2753
2754 switch (optname) {
2755 case UDP_CORK:
2756 val = READ_ONCE(up->corkflag);
2757 break;
2758
2759 case UDP_ENCAP:
2760 val = up->encap_type;
2761 break;
2762
2763 case UDP_NO_CHECK6_TX:
2764 val = up->no_check6_tx;
2765 break;
2766
2767 case UDP_NO_CHECK6_RX:
2768 val = up->no_check6_rx;
2769 break;
2770
2771 case UDP_SEGMENT:
2772 val = READ_ONCE(up->gso_size);
2773 break;
2774
2775 case UDP_GRO:
2776 val = up->gro_enabled;
2777 break;
2778
2779 /* The following two cannot be changed on UDP sockets, the return is
2780 * always 0 (which corresponds to the full checksum coverage of UDP). */
2781 case UDPLITE_SEND_CSCOV:
2782 val = up->pcslen;
2783 break;
2784
2785 case UDPLITE_RECV_CSCOV:
2786 val = up->pcrlen;
2787 break;
2788
2789 default:
2790 return -ENOPROTOOPT;
2791 }
2792
2793 if (put_user(len, optlen))
2794 return -EFAULT;
2795 if (copy_to_user(optval, &val, len))
2796 return -EFAULT;
2797 return 0;
2798 }
2799 EXPORT_SYMBOL(udp_lib_getsockopt);
2800
udp_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen)2801 int udp_getsockopt(struct sock *sk, int level, int optname,
2802 char __user *optval, int __user *optlen)
2803 {
2804 if (level == SOL_UDP || level == SOL_UDPLITE)
2805 return udp_lib_getsockopt(sk, level, optname, optval, optlen);
2806 return ip_getsockopt(sk, level, optname, optval, optlen);
2807 }
2808
2809 /**
2810 * udp_poll - wait for a UDP event.
2811 * @file: - file struct
2812 * @sock: - socket
2813 * @wait: - poll table
2814 *
2815 * This is same as datagram poll, except for the special case of
2816 * blocking sockets. If application is using a blocking fd
2817 * and a packet with checksum error is in the queue;
2818 * then it could get return from select indicating data available
2819 * but then block when reading it. Add special case code
2820 * to work around these arguably broken applications.
2821 */
udp_poll(struct file * file,struct socket * sock,poll_table * wait)2822 __poll_t udp_poll(struct file *file, struct socket *sock, poll_table *wait)
2823 {
2824 __poll_t mask = datagram_poll(file, sock, wait);
2825 struct sock *sk = sock->sk;
2826
2827 if (!skb_queue_empty_lockless(&udp_sk(sk)->reader_queue))
2828 mask |= EPOLLIN | EPOLLRDNORM;
2829
2830 /* Check for false positives due to checksum errors */
2831 if ((mask & EPOLLRDNORM) && !(file->f_flags & O_NONBLOCK) &&
2832 !(sk->sk_shutdown & RCV_SHUTDOWN) && first_packet_length(sk) == -1)
2833 mask &= ~(EPOLLIN | EPOLLRDNORM);
2834
2835 return mask;
2836
2837 }
2838 EXPORT_SYMBOL(udp_poll);
2839
udp_abort(struct sock * sk,int err)2840 int udp_abort(struct sock *sk, int err)
2841 {
2842 lock_sock(sk);
2843
2844 /* udp{v6}_destroy_sock() sets it under the sk lock, avoid racing
2845 * with close()
2846 */
2847 if (sock_flag(sk, SOCK_DEAD))
2848 goto out;
2849
2850 sk->sk_err = err;
2851 sk->sk_error_report(sk);
2852 __udp_disconnect(sk, 0);
2853
2854 out:
2855 release_sock(sk);
2856
2857 return 0;
2858 }
2859 EXPORT_SYMBOL_GPL(udp_abort);
2860
2861 struct proto udp_prot = {
2862 .name = "UDP",
2863 .owner = THIS_MODULE,
2864 .close = udp_lib_close,
2865 .pre_connect = udp_pre_connect,
2866 .connect = ip4_datagram_connect,
2867 .disconnect = udp_disconnect,
2868 .ioctl = udp_ioctl,
2869 .init = udp_init_sock,
2870 .destroy = udp_destroy_sock,
2871 .setsockopt = udp_setsockopt,
2872 .getsockopt = udp_getsockopt,
2873 .sendmsg = udp_sendmsg,
2874 .recvmsg = udp_recvmsg,
2875 .sendpage = udp_sendpage,
2876 .release_cb = ip4_datagram_release_cb,
2877 .hash = udp_lib_hash,
2878 .unhash = udp_lib_unhash,
2879 .rehash = udp_v4_rehash,
2880 .get_port = udp_v4_get_port,
2881 .memory_allocated = &udp_memory_allocated,
2882 .sysctl_mem = sysctl_udp_mem,
2883 .sysctl_wmem_offset = offsetof(struct net, ipv4.sysctl_udp_wmem_min),
2884 .sysctl_rmem_offset = offsetof(struct net, ipv4.sysctl_udp_rmem_min),
2885 .obj_size = sizeof(struct udp_sock),
2886 .h.udp_table = &udp_table,
2887 .diag_destroy = udp_abort,
2888 };
2889 EXPORT_SYMBOL(udp_prot);
2890
2891 /* ------------------------------------------------------------------------ */
2892 #ifdef CONFIG_PROC_FS
2893
udp_get_first(struct seq_file * seq,int start)2894 static struct sock *udp_get_first(struct seq_file *seq, int start)
2895 {
2896 struct sock *sk;
2897 struct udp_seq_afinfo *afinfo;
2898 struct udp_iter_state *state = seq->private;
2899 struct net *net = seq_file_net(seq);
2900
2901 if (state->bpf_seq_afinfo)
2902 afinfo = state->bpf_seq_afinfo;
2903 else
2904 afinfo = PDE_DATA(file_inode(seq->file));
2905
2906 for (state->bucket = start; state->bucket <= afinfo->udp_table->mask;
2907 ++state->bucket) {
2908 struct udp_hslot *hslot = &afinfo->udp_table->hash[state->bucket];
2909
2910 if (hlist_empty(&hslot->head))
2911 continue;
2912
2913 spin_lock_bh(&hslot->lock);
2914 sk_for_each(sk, &hslot->head) {
2915 if (!net_eq(sock_net(sk), net))
2916 continue;
2917 if (afinfo->family == AF_UNSPEC ||
2918 sk->sk_family == afinfo->family)
2919 goto found;
2920 }
2921 spin_unlock_bh(&hslot->lock);
2922 }
2923 sk = NULL;
2924 found:
2925 return sk;
2926 }
2927
udp_get_next(struct seq_file * seq,struct sock * sk)2928 static struct sock *udp_get_next(struct seq_file *seq, struct sock *sk)
2929 {
2930 struct udp_seq_afinfo *afinfo;
2931 struct udp_iter_state *state = seq->private;
2932 struct net *net = seq_file_net(seq);
2933
2934 if (state->bpf_seq_afinfo)
2935 afinfo = state->bpf_seq_afinfo;
2936 else
2937 afinfo = PDE_DATA(file_inode(seq->file));
2938
2939 do {
2940 sk = sk_next(sk);
2941 } while (sk && (!net_eq(sock_net(sk), net) ||
2942 (afinfo->family != AF_UNSPEC &&
2943 sk->sk_family != afinfo->family)));
2944
2945 if (!sk) {
2946 if (state->bucket <= afinfo->udp_table->mask)
2947 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2948 return udp_get_first(seq, state->bucket + 1);
2949 }
2950 return sk;
2951 }
2952
udp_get_idx(struct seq_file * seq,loff_t pos)2953 static struct sock *udp_get_idx(struct seq_file *seq, loff_t pos)
2954 {
2955 struct sock *sk = udp_get_first(seq, 0);
2956
2957 if (sk)
2958 while (pos && (sk = udp_get_next(seq, sk)) != NULL)
2959 --pos;
2960 return pos ? NULL : sk;
2961 }
2962
udp_seq_start(struct seq_file * seq,loff_t * pos)2963 void *udp_seq_start(struct seq_file *seq, loff_t *pos)
2964 {
2965 struct udp_iter_state *state = seq->private;
2966 state->bucket = MAX_UDP_PORTS;
2967
2968 return *pos ? udp_get_idx(seq, *pos-1) : SEQ_START_TOKEN;
2969 }
2970 EXPORT_SYMBOL(udp_seq_start);
2971
udp_seq_next(struct seq_file * seq,void * v,loff_t * pos)2972 void *udp_seq_next(struct seq_file *seq, void *v, loff_t *pos)
2973 {
2974 struct sock *sk;
2975
2976 if (v == SEQ_START_TOKEN)
2977 sk = udp_get_idx(seq, 0);
2978 else
2979 sk = udp_get_next(seq, v);
2980
2981 ++*pos;
2982 return sk;
2983 }
2984 EXPORT_SYMBOL(udp_seq_next);
2985
udp_seq_stop(struct seq_file * seq,void * v)2986 void udp_seq_stop(struct seq_file *seq, void *v)
2987 {
2988 struct udp_seq_afinfo *afinfo;
2989 struct udp_iter_state *state = seq->private;
2990
2991 if (state->bpf_seq_afinfo)
2992 afinfo = state->bpf_seq_afinfo;
2993 else
2994 afinfo = PDE_DATA(file_inode(seq->file));
2995
2996 if (state->bucket <= afinfo->udp_table->mask)
2997 spin_unlock_bh(&afinfo->udp_table->hash[state->bucket].lock);
2998 }
2999 EXPORT_SYMBOL(udp_seq_stop);
3000
3001 /* ------------------------------------------------------------------------ */
udp4_format_sock(struct sock * sp,struct seq_file * f,int bucket)3002 static void udp4_format_sock(struct sock *sp, struct seq_file *f,
3003 int bucket)
3004 {
3005 struct inet_sock *inet = inet_sk(sp);
3006 __be32 dest = inet->inet_daddr;
3007 __be32 src = inet->inet_rcv_saddr;
3008 __u16 destp = ntohs(inet->inet_dport);
3009 __u16 srcp = ntohs(inet->inet_sport);
3010
3011 seq_printf(f, "%5d: %08X:%04X %08X:%04X"
3012 " %02X %08X:%08X %02X:%08lX %08X %5u %8d %lu %d %pK %u",
3013 bucket, src, srcp, dest, destp, sp->sk_state,
3014 sk_wmem_alloc_get(sp),
3015 udp_rqueue_get(sp),
3016 0, 0L, 0,
3017 from_kuid_munged(seq_user_ns(f), sock_i_uid(sp)),
3018 0, sock_i_ino(sp),
3019 refcount_read(&sp->sk_refcnt), sp,
3020 atomic_read(&sp->sk_drops));
3021 }
3022
udp4_seq_show(struct seq_file * seq,void * v)3023 int udp4_seq_show(struct seq_file *seq, void *v)
3024 {
3025 seq_setwidth(seq, 127);
3026 if (v == SEQ_START_TOKEN)
3027 seq_puts(seq, " sl local_address rem_address st tx_queue "
3028 "rx_queue tr tm->when retrnsmt uid timeout "
3029 "inode ref pointer drops");
3030 else {
3031 struct udp_iter_state *state = seq->private;
3032
3033 udp4_format_sock(v, seq, state->bucket);
3034 }
3035 seq_pad(seq, '\n');
3036 return 0;
3037 }
3038
3039 #ifdef CONFIG_BPF_SYSCALL
3040 struct bpf_iter__udp {
3041 __bpf_md_ptr(struct bpf_iter_meta *, meta);
3042 __bpf_md_ptr(struct udp_sock *, udp_sk);
3043 uid_t uid __aligned(8);
3044 int bucket __aligned(8);
3045 };
3046
udp_prog_seq_show(struct bpf_prog * prog,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3047 static int udp_prog_seq_show(struct bpf_prog *prog, struct bpf_iter_meta *meta,
3048 struct udp_sock *udp_sk, uid_t uid, int bucket)
3049 {
3050 struct bpf_iter__udp ctx;
3051
3052 meta->seq_num--; /* skip SEQ_START_TOKEN */
3053 ctx.meta = meta;
3054 ctx.udp_sk = udp_sk;
3055 ctx.uid = uid;
3056 ctx.bucket = bucket;
3057 return bpf_iter_run_prog(prog, &ctx);
3058 }
3059
bpf_iter_udp_seq_show(struct seq_file * seq,void * v)3060 static int bpf_iter_udp_seq_show(struct seq_file *seq, void *v)
3061 {
3062 struct udp_iter_state *state = seq->private;
3063 struct bpf_iter_meta meta;
3064 struct bpf_prog *prog;
3065 struct sock *sk = v;
3066 uid_t uid;
3067
3068 if (v == SEQ_START_TOKEN)
3069 return 0;
3070
3071 uid = from_kuid_munged(seq_user_ns(seq), sock_i_uid(sk));
3072 meta.seq = seq;
3073 prog = bpf_iter_get_info(&meta, false);
3074 return udp_prog_seq_show(prog, &meta, v, uid, state->bucket);
3075 }
3076
bpf_iter_udp_seq_stop(struct seq_file * seq,void * v)3077 static void bpf_iter_udp_seq_stop(struct seq_file *seq, void *v)
3078 {
3079 struct bpf_iter_meta meta;
3080 struct bpf_prog *prog;
3081
3082 if (!v) {
3083 meta.seq = seq;
3084 prog = bpf_iter_get_info(&meta, true);
3085 if (prog)
3086 (void)udp_prog_seq_show(prog, &meta, v, 0, 0);
3087 }
3088
3089 udp_seq_stop(seq, v);
3090 }
3091
3092 static const struct seq_operations bpf_iter_udp_seq_ops = {
3093 .start = udp_seq_start,
3094 .next = udp_seq_next,
3095 .stop = bpf_iter_udp_seq_stop,
3096 .show = bpf_iter_udp_seq_show,
3097 };
3098 #endif
3099
3100 const struct seq_operations udp_seq_ops = {
3101 .start = udp_seq_start,
3102 .next = udp_seq_next,
3103 .stop = udp_seq_stop,
3104 .show = udp4_seq_show,
3105 };
3106 EXPORT_SYMBOL(udp_seq_ops);
3107
3108 static struct udp_seq_afinfo udp4_seq_afinfo = {
3109 .family = AF_INET,
3110 .udp_table = &udp_table,
3111 };
3112
udp4_proc_init_net(struct net * net)3113 static int __net_init udp4_proc_init_net(struct net *net)
3114 {
3115 if (!proc_create_net_data("udp", 0444, net->proc_net, &udp_seq_ops,
3116 sizeof(struct udp_iter_state), &udp4_seq_afinfo))
3117 return -ENOMEM;
3118 return 0;
3119 }
3120
udp4_proc_exit_net(struct net * net)3121 static void __net_exit udp4_proc_exit_net(struct net *net)
3122 {
3123 remove_proc_entry("udp", net->proc_net);
3124 }
3125
3126 static struct pernet_operations udp4_net_ops = {
3127 .init = udp4_proc_init_net,
3128 .exit = udp4_proc_exit_net,
3129 };
3130
udp4_proc_init(void)3131 int __init udp4_proc_init(void)
3132 {
3133 return register_pernet_subsys(&udp4_net_ops);
3134 }
3135
udp4_proc_exit(void)3136 void udp4_proc_exit(void)
3137 {
3138 unregister_pernet_subsys(&udp4_net_ops);
3139 }
3140 #endif /* CONFIG_PROC_FS */
3141
3142 static __initdata unsigned long uhash_entries;
set_uhash_entries(char * str)3143 static int __init set_uhash_entries(char *str)
3144 {
3145 ssize_t ret;
3146
3147 if (!str)
3148 return 0;
3149
3150 ret = kstrtoul(str, 0, &uhash_entries);
3151 if (ret)
3152 return 0;
3153
3154 if (uhash_entries && uhash_entries < UDP_HTABLE_SIZE_MIN)
3155 uhash_entries = UDP_HTABLE_SIZE_MIN;
3156 return 1;
3157 }
3158 __setup("uhash_entries=", set_uhash_entries);
3159
udp_table_init(struct udp_table * table,const char * name)3160 void __init udp_table_init(struct udp_table *table, const char *name)
3161 {
3162 unsigned int i;
3163
3164 table->hash = alloc_large_system_hash(name,
3165 2 * sizeof(struct udp_hslot),
3166 uhash_entries,
3167 21, /* one slot per 2 MB */
3168 0,
3169 &table->log,
3170 &table->mask,
3171 UDP_HTABLE_SIZE_MIN,
3172 64 * 1024);
3173
3174 table->hash2 = table->hash + (table->mask + 1);
3175 for (i = 0; i <= table->mask; i++) {
3176 INIT_HLIST_HEAD(&table->hash[i].head);
3177 table->hash[i].count = 0;
3178 spin_lock_init(&table->hash[i].lock);
3179 }
3180 for (i = 0; i <= table->mask; i++) {
3181 INIT_HLIST_HEAD(&table->hash2[i].head);
3182 table->hash2[i].count = 0;
3183 spin_lock_init(&table->hash2[i].lock);
3184 }
3185 }
3186
udp_flow_hashrnd(void)3187 u32 udp_flow_hashrnd(void)
3188 {
3189 static u32 hashrnd __read_mostly;
3190
3191 net_get_random_once(&hashrnd, sizeof(hashrnd));
3192
3193 return hashrnd;
3194 }
3195 EXPORT_SYMBOL(udp_flow_hashrnd);
3196
__udp_sysctl_init(struct net * net)3197 static void __udp_sysctl_init(struct net *net)
3198 {
3199 net->ipv4.sysctl_udp_rmem_min = SK_MEM_QUANTUM;
3200 net->ipv4.sysctl_udp_wmem_min = SK_MEM_QUANTUM;
3201
3202 #ifdef CONFIG_NET_L3_MASTER_DEV
3203 net->ipv4.sysctl_udp_l3mdev_accept = 0;
3204 #endif
3205 }
3206
udp_sysctl_init(struct net * net)3207 static int __net_init udp_sysctl_init(struct net *net)
3208 {
3209 __udp_sysctl_init(net);
3210 return 0;
3211 }
3212
3213 static struct pernet_operations __net_initdata udp_sysctl_ops = {
3214 .init = udp_sysctl_init,
3215 };
3216
3217 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
DEFINE_BPF_ITER_FUNC(udp,struct bpf_iter_meta * meta,struct udp_sock * udp_sk,uid_t uid,int bucket)3218 DEFINE_BPF_ITER_FUNC(udp, struct bpf_iter_meta *meta,
3219 struct udp_sock *udp_sk, uid_t uid, int bucket)
3220
3221 static int bpf_iter_init_udp(void *priv_data, struct bpf_iter_aux_info *aux)
3222 {
3223 struct udp_iter_state *st = priv_data;
3224 struct udp_seq_afinfo *afinfo;
3225 int ret;
3226
3227 afinfo = kmalloc(sizeof(*afinfo), GFP_USER | __GFP_NOWARN);
3228 if (!afinfo)
3229 return -ENOMEM;
3230
3231 afinfo->family = AF_UNSPEC;
3232 afinfo->udp_table = &udp_table;
3233 st->bpf_seq_afinfo = afinfo;
3234 ret = bpf_iter_init_seq_net(priv_data, aux);
3235 if (ret)
3236 kfree(afinfo);
3237 return ret;
3238 }
3239
bpf_iter_fini_udp(void * priv_data)3240 static void bpf_iter_fini_udp(void *priv_data)
3241 {
3242 struct udp_iter_state *st = priv_data;
3243
3244 kfree(st->bpf_seq_afinfo);
3245 bpf_iter_fini_seq_net(priv_data);
3246 }
3247
3248 static const struct bpf_iter_seq_info udp_seq_info = {
3249 .seq_ops = &bpf_iter_udp_seq_ops,
3250 .init_seq_private = bpf_iter_init_udp,
3251 .fini_seq_private = bpf_iter_fini_udp,
3252 .seq_priv_size = sizeof(struct udp_iter_state),
3253 };
3254
3255 static struct bpf_iter_reg udp_reg_info = {
3256 .target = "udp",
3257 .ctx_arg_info_size = 1,
3258 .ctx_arg_info = {
3259 { offsetof(struct bpf_iter__udp, udp_sk),
3260 PTR_TO_BTF_ID_OR_NULL },
3261 },
3262 .seq_info = &udp_seq_info,
3263 };
3264
bpf_iter_register(void)3265 static void __init bpf_iter_register(void)
3266 {
3267 udp_reg_info.ctx_arg_info[0].btf_id = btf_sock_ids[BTF_SOCK_TYPE_UDP];
3268 if (bpf_iter_reg_target(&udp_reg_info))
3269 pr_warn("Warning: could not register bpf iterator udp\n");
3270 }
3271 #endif
3272
udp_init(void)3273 void __init udp_init(void)
3274 {
3275 unsigned long limit;
3276 unsigned int i;
3277
3278 udp_table_init(&udp_table, "UDP");
3279 limit = nr_free_buffer_pages() / 8;
3280 limit = max(limit, 128UL);
3281 sysctl_udp_mem[0] = limit / 4 * 3;
3282 sysctl_udp_mem[1] = limit;
3283 sysctl_udp_mem[2] = sysctl_udp_mem[0] * 2;
3284
3285 __udp_sysctl_init(&init_net);
3286
3287 /* 16 spinlocks per cpu */
3288 udp_busylocks_log = ilog2(nr_cpu_ids) + 4;
3289 udp_busylocks = kmalloc(sizeof(spinlock_t) << udp_busylocks_log,
3290 GFP_KERNEL);
3291 if (!udp_busylocks)
3292 panic("UDP: failed to alloc udp_busylocks\n");
3293 for (i = 0; i < (1U << udp_busylocks_log); i++)
3294 spin_lock_init(udp_busylocks + i);
3295
3296 if (register_pernet_subsys(&udp_sysctl_ops))
3297 panic("UDP: failed to init sysctl parameters.\n");
3298
3299 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_PROC_FS)
3300 bpf_iter_register();
3301 #endif
3302 }
3303