1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/mm_inline.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97 #include <linux/kasan.h>
98 #include <linux/scs.h>
99 #include <linux/io_uring.h>
100 #ifdef CONFIG_RECLAIM_ACCT
101 #include <linux/reclaim_acct.h>
102 #endif
103 #include <linux/mm_purgeable.h>
104
105 #include <asm/pgalloc.h>
106 #include <linux/uaccess.h>
107 #include <asm/mmu_context.h>
108 #include <asm/cacheflush.h>
109 #include <asm/tlbflush.h>
110
111 #include <trace/events/sched.h>
112 #include <linux/hck/lite_hck_ced.h>
113
114 #define CREATE_TRACE_POINTS
115 #include <trace/events/task.h>
116
117 /*
118 * Minimum number of threads to boot the kernel
119 */
120 #define MIN_THREADS 20
121
122 /*
123 * Maximum number of threads
124 */
125 #define MAX_THREADS FUTEX_TID_MASK
126
127 /*
128 * Protected counters by write_lock_irq(&tasklist_lock)
129 */
130 unsigned long total_forks; /* Handle normal Linux uptimes. */
131 int nr_threads; /* The idle threads do not count.. */
132
133 static int max_threads; /* tunable limit on nr_threads */
134
135 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
136
137 static const char * const resident_page_types[] = {
138 NAMED_ARRAY_INDEX(MM_FILEPAGES),
139 NAMED_ARRAY_INDEX(MM_ANONPAGES),
140 NAMED_ARRAY_INDEX(MM_SWAPENTS),
141 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
142 };
143
144 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
145
146 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
147
148 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)149 int lockdep_tasklist_lock_is_held(void)
150 {
151 return lockdep_is_held(&tasklist_lock);
152 }
153 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
154 #endif /* #ifdef CONFIG_PROVE_RCU */
155
nr_processes(void)156 int nr_processes(void)
157 {
158 int cpu;
159 int total = 0;
160
161 for_each_possible_cpu(cpu)
162 total += per_cpu(process_counts, cpu);
163
164 return total;
165 }
166
arch_release_task_struct(struct task_struct * tsk)167 void __weak arch_release_task_struct(struct task_struct *tsk)
168 {
169 }
170
171 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
172 static struct kmem_cache *task_struct_cachep;
173
alloc_task_struct_node(int node)174 static inline struct task_struct *alloc_task_struct_node(int node)
175 {
176 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
177 }
178
free_task_struct(struct task_struct * tsk)179 static inline void free_task_struct(struct task_struct *tsk)
180 {
181 kmem_cache_free(task_struct_cachep, tsk);
182 }
183 #endif
184
185 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
186
187 /*
188 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
189 * kmemcache based allocator.
190 */
191 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
192
193 #ifdef CONFIG_VMAP_STACK
194 /*
195 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
196 * flush. Try to minimize the number of calls by caching stacks.
197 */
198 #define NR_CACHED_STACKS 2
199 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
200
free_vm_stack_cache(unsigned int cpu)201 static int free_vm_stack_cache(unsigned int cpu)
202 {
203 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
204 int i;
205
206 for (i = 0; i < NR_CACHED_STACKS; i++) {
207 struct vm_struct *vm_stack = cached_vm_stacks[i];
208
209 if (!vm_stack)
210 continue;
211
212 vfree(vm_stack->addr);
213 cached_vm_stacks[i] = NULL;
214 }
215
216 return 0;
217 }
218 #endif
219
alloc_thread_stack_node(struct task_struct * tsk,int node)220 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
221 {
222 #ifdef CONFIG_VMAP_STACK
223 void *stack;
224 int i;
225
226 for (i = 0; i < NR_CACHED_STACKS; i++) {
227 struct vm_struct *s;
228
229 s = this_cpu_xchg(cached_stacks[i], NULL);
230
231 if (!s)
232 continue;
233
234 /* Clear the KASAN shadow of the stack. */
235 kasan_unpoison_shadow(s->addr, THREAD_SIZE);
236
237 /* Clear stale pointers from reused stack. */
238 memset(s->addr, 0, THREAD_SIZE);
239
240 tsk->stack_vm_area = s;
241 tsk->stack = s->addr;
242 return s->addr;
243 }
244
245 /*
246 * Allocated stacks are cached and later reused by new threads,
247 * so memcg accounting is performed manually on assigning/releasing
248 * stacks to tasks. Drop __GFP_ACCOUNT.
249 */
250 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
251 VMALLOC_START, VMALLOC_END,
252 THREADINFO_GFP & ~__GFP_ACCOUNT,
253 PAGE_KERNEL,
254 0, node, __builtin_return_address(0));
255
256 /*
257 * We can't call find_vm_area() in interrupt context, and
258 * free_thread_stack() can be called in interrupt context,
259 * so cache the vm_struct.
260 */
261 if (stack) {
262 tsk->stack_vm_area = find_vm_area(stack);
263 tsk->stack = stack;
264 }
265 return stack;
266 #else
267 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
268 THREAD_SIZE_ORDER);
269
270 if (likely(page)) {
271 tsk->stack = kasan_reset_tag(page_address(page));
272 return tsk->stack;
273 }
274 return NULL;
275 #endif
276 }
277
free_thread_stack(struct task_struct * tsk)278 static inline void free_thread_stack(struct task_struct *tsk)
279 {
280 #ifdef CONFIG_VMAP_STACK
281 struct vm_struct *vm = task_stack_vm_area(tsk);
282
283 if (vm) {
284 int i;
285
286 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
287 memcg_kmem_uncharge_page(vm->pages[i], 0);
288
289 for (i = 0; i < NR_CACHED_STACKS; i++) {
290 if (this_cpu_cmpxchg(cached_stacks[i],
291 NULL, tsk->stack_vm_area) != NULL)
292 continue;
293
294 return;
295 }
296
297 vfree_atomic(tsk->stack);
298 return;
299 }
300 #endif
301
302 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
303 }
304 # else
305 static struct kmem_cache *thread_stack_cache;
306
alloc_thread_stack_node(struct task_struct * tsk,int node)307 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
308 int node)
309 {
310 unsigned long *stack;
311 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
312 stack = kasan_reset_tag(stack);
313 tsk->stack = stack;
314 return stack;
315 }
316
free_thread_stack(struct task_struct * tsk)317 static void free_thread_stack(struct task_struct *tsk)
318 {
319 kmem_cache_free(thread_stack_cache, tsk->stack);
320 }
321
thread_stack_cache_init(void)322 void thread_stack_cache_init(void)
323 {
324 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
325 THREAD_SIZE, THREAD_SIZE, 0, 0,
326 THREAD_SIZE, NULL);
327 BUG_ON(thread_stack_cache == NULL);
328 }
329 # endif
330 #endif
331
332 /* SLAB cache for signal_struct structures (tsk->signal) */
333 static struct kmem_cache *signal_cachep;
334
335 /* SLAB cache for sighand_struct structures (tsk->sighand) */
336 struct kmem_cache *sighand_cachep;
337
338 /* SLAB cache for files_struct structures (tsk->files) */
339 struct kmem_cache *files_cachep;
340
341 /* SLAB cache for fs_struct structures (tsk->fs) */
342 struct kmem_cache *fs_cachep;
343
344 /* SLAB cache for vm_area_struct structures */
345 static struct kmem_cache *vm_area_cachep;
346
347 /* SLAB cache for mm_struct structures (tsk->mm) */
348 static struct kmem_cache *mm_cachep;
349
vm_area_alloc(struct mm_struct * mm)350 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
351 {
352 struct vm_area_struct *vma;
353
354 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
355 if (vma)
356 vma_init(vma, mm);
357 return vma;
358 }
359
vm_area_dup(struct vm_area_struct * orig)360 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
361 {
362 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363
364 if (new) {
365 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
366 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
367 /*
368 * orig->shared.rb may be modified concurrently, but the clone
369 * will be reinitialized.
370 */
371 *new = data_race(*orig);
372 INIT_LIST_HEAD(&new->anon_vma_chain);
373 new->vm_next = new->vm_prev = NULL;
374 dup_anon_vma_name(orig, new);
375 }
376 return new;
377 }
378
vm_area_free(struct vm_area_struct * vma)379 void vm_area_free(struct vm_area_struct *vma)
380 {
381 free_anon_vma_name(vma);
382 kmem_cache_free(vm_area_cachep, vma);
383 }
384
account_kernel_stack(struct task_struct * tsk,int account)385 static void account_kernel_stack(struct task_struct *tsk, int account)
386 {
387 void *stack = task_stack_page(tsk);
388 struct vm_struct *vm = task_stack_vm_area(tsk);
389
390
391 /* All stack pages are in the same node. */
392 if (vm)
393 mod_lruvec_page_state(vm->pages[0], NR_KERNEL_STACK_KB,
394 account * (THREAD_SIZE / 1024));
395 else
396 mod_lruvec_slab_state(stack, NR_KERNEL_STACK_KB,
397 account * (THREAD_SIZE / 1024));
398 }
399
memcg_charge_kernel_stack(struct task_struct * tsk)400 static int memcg_charge_kernel_stack(struct task_struct *tsk)
401 {
402 #ifdef CONFIG_VMAP_STACK
403 struct vm_struct *vm = task_stack_vm_area(tsk);
404 int ret;
405
406 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
407
408 if (vm) {
409 int i;
410
411 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
412
413 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
414 /*
415 * If memcg_kmem_charge_page() fails, page->mem_cgroup
416 * pointer is NULL, and memcg_kmem_uncharge_page() in
417 * free_thread_stack() will ignore this page.
418 */
419 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
420 0);
421 if (ret)
422 return ret;
423 }
424 }
425 #endif
426 return 0;
427 }
428
release_task_stack(struct task_struct * tsk)429 static void release_task_stack(struct task_struct *tsk)
430 {
431 if (WARN_ON(tsk->state != TASK_DEAD))
432 return; /* Better to leak the stack than to free prematurely */
433
434 account_kernel_stack(tsk, -1);
435 free_thread_stack(tsk);
436 tsk->stack = NULL;
437 #ifdef CONFIG_VMAP_STACK
438 tsk->stack_vm_area = NULL;
439 #endif
440 }
441
442 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)443 void put_task_stack(struct task_struct *tsk)
444 {
445 if (refcount_dec_and_test(&tsk->stack_refcount))
446 release_task_stack(tsk);
447 }
448 #endif
449
free_task(struct task_struct * tsk)450 void free_task(struct task_struct *tsk)
451 {
452 #ifdef CONFIG_SECCOMP
453 WARN_ON_ONCE(tsk->seccomp.filter);
454 #endif
455 scs_release(tsk);
456
457 #ifndef CONFIG_THREAD_INFO_IN_TASK
458 /*
459 * The task is finally done with both the stack and thread_info,
460 * so free both.
461 */
462 release_task_stack(tsk);
463 #else
464 /*
465 * If the task had a separate stack allocation, it should be gone
466 * by now.
467 */
468 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
469 #endif
470 rt_mutex_debug_task_free(tsk);
471 ftrace_graph_exit_task(tsk);
472 arch_release_task_struct(tsk);
473 if (tsk->flags & PF_KTHREAD)
474 free_kthread_struct(tsk);
475 free_task_struct(tsk);
476 }
477 EXPORT_SYMBOL(free_task);
478
479 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)480 static __latent_entropy int dup_mmap(struct mm_struct *mm,
481 struct mm_struct *oldmm)
482 {
483 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
484 struct rb_node **rb_link, *rb_parent;
485 int retval;
486 unsigned long charge;
487 LIST_HEAD(uf);
488
489 uprobe_start_dup_mmap();
490 if (mmap_write_lock_killable(oldmm)) {
491 retval = -EINTR;
492 goto fail_uprobe_end;
493 }
494 flush_cache_dup_mm(oldmm);
495 uprobe_dup_mmap(oldmm, mm);
496 /*
497 * Not linked in yet - no deadlock potential:
498 */
499 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
500
501 /* No ordering required: file already has been exposed. */
502 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
503
504 mm->total_vm = oldmm->total_vm;
505 mm->data_vm = oldmm->data_vm;
506 mm->exec_vm = oldmm->exec_vm;
507 mm->stack_vm = oldmm->stack_vm;
508
509 rb_link = &mm->mm_rb.rb_node;
510 rb_parent = NULL;
511 pprev = &mm->mmap;
512 retval = ksm_fork(mm, oldmm);
513 if (retval)
514 goto out;
515 retval = khugepaged_fork(mm, oldmm);
516 if (retval)
517 goto out;
518
519 prev = NULL;
520 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
521 struct file *file;
522
523 if (mpnt->vm_flags & VM_DONTCOPY) {
524 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
525 continue;
526 }
527 charge = 0;
528 /*
529 * Don't duplicate many vmas if we've been oom-killed (for
530 * example)
531 */
532 if (fatal_signal_pending(current)) {
533 retval = -EINTR;
534 goto out;
535 }
536 if (mpnt->vm_flags & VM_ACCOUNT) {
537 unsigned long len = vma_pages(mpnt);
538
539 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
540 goto fail_nomem;
541 charge = len;
542 }
543 tmp = vm_area_dup(mpnt);
544 if (!tmp)
545 goto fail_nomem;
546 retval = vma_dup_policy(mpnt, tmp);
547 if (retval)
548 goto fail_nomem_policy;
549 tmp->vm_mm = mm;
550 retval = dup_userfaultfd(tmp, &uf);
551 if (retval)
552 goto fail_nomem_anon_vma_fork;
553 if (tmp->vm_flags & VM_WIPEONFORK) {
554 /*
555 * VM_WIPEONFORK gets a clean slate in the child.
556 * Don't prepare anon_vma until fault since we don't
557 * copy page for current vma.
558 */
559 tmp->anon_vma = NULL;
560 } else if (anon_vma_fork(tmp, mpnt))
561 goto fail_nomem_anon_vma_fork;
562 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
563 file = tmp->vm_file;
564 if (file) {
565 struct inode *inode = file_inode(file);
566 struct address_space *mapping = file->f_mapping;
567
568 get_file(file);
569 if (tmp->vm_flags & VM_DENYWRITE)
570 put_write_access(inode);
571 i_mmap_lock_write(mapping);
572 if (tmp->vm_flags & VM_SHARED)
573 mapping_allow_writable(mapping);
574 flush_dcache_mmap_lock(mapping);
575 /* insert tmp into the share list, just after mpnt */
576 vma_interval_tree_insert_after(tmp, mpnt,
577 &mapping->i_mmap);
578 flush_dcache_mmap_unlock(mapping);
579 i_mmap_unlock_write(mapping);
580 }
581
582 /*
583 * Clear hugetlb-related page reserves for children. This only
584 * affects MAP_PRIVATE mappings. Faults generated by the child
585 * are not guaranteed to succeed, even if read-only
586 */
587 if (is_vm_hugetlb_page(tmp))
588 reset_vma_resv_huge_pages(tmp);
589
590 /*
591 * Link in the new vma and copy the page table entries.
592 */
593 *pprev = tmp;
594 pprev = &tmp->vm_next;
595 tmp->vm_prev = prev;
596 prev = tmp;
597
598 __vma_link_rb(mm, tmp, rb_link, rb_parent);
599 rb_link = &tmp->vm_rb.rb_right;
600 rb_parent = &tmp->vm_rb;
601
602 mm->map_count++;
603 if (!(tmp->vm_flags & VM_WIPEONFORK))
604 retval = copy_page_range(tmp, mpnt);
605
606 if (tmp->vm_ops && tmp->vm_ops->open)
607 tmp->vm_ops->open(tmp);
608
609 if (retval)
610 goto out;
611 }
612 /* a new mm has just been created */
613 retval = arch_dup_mmap(oldmm, mm);
614 out:
615 mmap_write_unlock(mm);
616 flush_tlb_mm(oldmm);
617 mmap_write_unlock(oldmm);
618 dup_userfaultfd_complete(&uf);
619 fail_uprobe_end:
620 uprobe_end_dup_mmap();
621 return retval;
622 fail_nomem_anon_vma_fork:
623 mpol_put(vma_policy(tmp));
624 fail_nomem_policy:
625 vm_area_free(tmp);
626 fail_nomem:
627 retval = -ENOMEM;
628 vm_unacct_memory(charge);
629 goto out;
630 }
631
mm_alloc_pgd(struct mm_struct * mm)632 static inline int mm_alloc_pgd(struct mm_struct *mm)
633 {
634 mm_init_uxpgd(mm);
635 mm->pgd = pgd_alloc(mm);
636 if (unlikely(!mm->pgd))
637 return -ENOMEM;
638 return 0;
639 }
640
mm_free_pgd(struct mm_struct * mm)641 static inline void mm_free_pgd(struct mm_struct *mm)
642 {
643 pgd_free(mm, mm->pgd);
644 mm_clear_uxpgd(mm);
645 }
646 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)647 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
648 {
649 mmap_write_lock(oldmm);
650 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
651 mmap_write_unlock(oldmm);
652 return 0;
653 }
654 #define mm_alloc_pgd(mm) (0)
655 #define mm_free_pgd(mm)
656 #endif /* CONFIG_MMU */
657
check_mm(struct mm_struct * mm)658 static void check_mm(struct mm_struct *mm)
659 {
660 int i;
661
662 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
663 "Please make sure 'struct resident_page_types[]' is updated as well");
664
665 for (i = 0; i < NR_MM_COUNTERS; i++) {
666 long x = atomic_long_read(&mm->rss_stat.count[i]);
667
668 if (unlikely(x))
669 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
670 mm, resident_page_types[i], x);
671 }
672
673 if (mm_pgtables_bytes(mm))
674 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
675 mm_pgtables_bytes(mm));
676
677 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
678 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
679 #endif
680 }
681
682 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
683 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
684
685 /*
686 * Called when the last reference to the mm
687 * is dropped: either by a lazy thread or by
688 * mmput. Free the page directory and the mm.
689 */
__mmdrop(struct mm_struct * mm)690 void __mmdrop(struct mm_struct *mm)
691 {
692 BUG_ON(mm == &init_mm);
693 WARN_ON_ONCE(mm == current->mm);
694 WARN_ON_ONCE(mm == current->active_mm);
695 mm_free_pgd(mm);
696 destroy_context(mm);
697 mmu_notifier_subscriptions_destroy(mm);
698 check_mm(mm);
699 put_user_ns(mm->user_ns);
700 free_mm(mm);
701 }
702 EXPORT_SYMBOL_GPL(__mmdrop);
703
mmdrop_async_fn(struct work_struct * work)704 static void mmdrop_async_fn(struct work_struct *work)
705 {
706 struct mm_struct *mm;
707
708 mm = container_of(work, struct mm_struct, async_put_work);
709 __mmdrop(mm);
710 }
711
mmdrop_async(struct mm_struct * mm)712 static void mmdrop_async(struct mm_struct *mm)
713 {
714 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
715 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
716 schedule_work(&mm->async_put_work);
717 }
718 }
719
free_signal_struct(struct signal_struct * sig)720 static inline void free_signal_struct(struct signal_struct *sig)
721 {
722 taskstats_tgid_free(sig);
723 sched_autogroup_exit(sig);
724 /*
725 * __mmdrop is not safe to call from softirq context on x86 due to
726 * pgd_dtor so postpone it to the async context
727 */
728 if (sig->oom_mm)
729 mmdrop_async(sig->oom_mm);
730 kmem_cache_free(signal_cachep, sig);
731 }
732
put_signal_struct(struct signal_struct * sig)733 static inline void put_signal_struct(struct signal_struct *sig)
734 {
735 if (refcount_dec_and_test(&sig->sigcnt))
736 free_signal_struct(sig);
737 }
738
__put_task_struct(struct task_struct * tsk)739 void __put_task_struct(struct task_struct *tsk)
740 {
741 WARN_ON(!tsk->exit_state);
742 WARN_ON(refcount_read(&tsk->usage));
743 WARN_ON(tsk == current);
744
745 io_uring_free(tsk);
746 cgroup_free(tsk);
747 task_numa_free(tsk, true);
748 security_task_free(tsk);
749 exit_creds(tsk);
750 delayacct_tsk_free(tsk);
751 put_signal_struct(tsk->signal);
752
753 if (!profile_handoff_task(tsk))
754 free_task(tsk);
755 }
756 EXPORT_SYMBOL_GPL(__put_task_struct);
757
arch_task_cache_init(void)758 void __init __weak arch_task_cache_init(void) { }
759
760 /*
761 * set_max_threads
762 */
set_max_threads(unsigned int max_threads_suggested)763 static void set_max_threads(unsigned int max_threads_suggested)
764 {
765 u64 threads;
766 unsigned long nr_pages = totalram_pages();
767
768 /*
769 * The number of threads shall be limited such that the thread
770 * structures may only consume a small part of the available memory.
771 */
772 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
773 threads = MAX_THREADS;
774 else
775 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
776 (u64) THREAD_SIZE * 8UL);
777
778 if (threads > max_threads_suggested)
779 threads = max_threads_suggested;
780
781 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
782 }
783
784 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
785 /* Initialized by the architecture: */
786 int arch_task_struct_size __read_mostly;
787 #endif
788
789 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)790 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
791 {
792 /* Fetch thread_struct whitelist for the architecture. */
793 arch_thread_struct_whitelist(offset, size);
794
795 /*
796 * Handle zero-sized whitelist or empty thread_struct, otherwise
797 * adjust offset to position of thread_struct in task_struct.
798 */
799 if (unlikely(*size == 0))
800 *offset = 0;
801 else
802 *offset += offsetof(struct task_struct, thread);
803 }
804 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
805
fork_init(void)806 void __init fork_init(void)
807 {
808 int i;
809 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
810 #ifndef ARCH_MIN_TASKALIGN
811 #define ARCH_MIN_TASKALIGN 0
812 #endif
813 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
814 unsigned long useroffset, usersize;
815
816 /* create a slab on which task_structs can be allocated */
817 task_struct_whitelist(&useroffset, &usersize);
818 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
819 arch_task_struct_size, align,
820 SLAB_PANIC|SLAB_ACCOUNT,
821 useroffset, usersize, NULL);
822 #endif
823
824 /* do the arch specific task caches init */
825 arch_task_cache_init();
826
827 set_max_threads(MAX_THREADS);
828
829 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
830 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
831 init_task.signal->rlim[RLIMIT_SIGPENDING] =
832 init_task.signal->rlim[RLIMIT_NPROC];
833
834 for (i = 0; i < UCOUNT_COUNTS; i++) {
835 init_user_ns.ucount_max[i] = max_threads/2;
836 }
837
838 #ifdef CONFIG_VMAP_STACK
839 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
840 NULL, free_vm_stack_cache);
841 #endif
842
843 scs_init();
844
845 lockdep_init_task(&init_task);
846 uprobes_init();
847 }
848
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)849 int __weak arch_dup_task_struct(struct task_struct *dst,
850 struct task_struct *src)
851 {
852 *dst = *src;
853 return 0;
854 }
855
set_task_stack_end_magic(struct task_struct * tsk)856 void set_task_stack_end_magic(struct task_struct *tsk)
857 {
858 unsigned long *stackend;
859
860 stackend = end_of_stack(tsk);
861 *stackend = STACK_END_MAGIC; /* for overflow detection */
862 }
863
dup_task_struct(struct task_struct * orig,int node)864 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
865 {
866 struct task_struct *tsk;
867 unsigned long *stack;
868 struct vm_struct *stack_vm_area __maybe_unused;
869 int err;
870
871 if (node == NUMA_NO_NODE)
872 node = tsk_fork_get_node(orig);
873 tsk = alloc_task_struct_node(node);
874 if (!tsk)
875 return NULL;
876
877 stack = alloc_thread_stack_node(tsk, node);
878 if (!stack)
879 goto free_tsk;
880
881 if (memcg_charge_kernel_stack(tsk))
882 goto free_stack;
883
884 stack_vm_area = task_stack_vm_area(tsk);
885
886 err = arch_dup_task_struct(tsk, orig);
887
888 #ifdef CONFIG_ACCESS_TOKENID
889 tsk->token = orig->token;
890 tsk->ftoken = 0;
891 #endif
892 /*
893 * arch_dup_task_struct() clobbers the stack-related fields. Make
894 * sure they're properly initialized before using any stack-related
895 * functions again.
896 */
897 tsk->stack = stack;
898 #ifdef CONFIG_VMAP_STACK
899 tsk->stack_vm_area = stack_vm_area;
900 #endif
901 #ifdef CONFIG_THREAD_INFO_IN_TASK
902 refcount_set(&tsk->stack_refcount, 1);
903 #endif
904
905 if (err)
906 goto free_stack;
907
908 err = scs_prepare(tsk, node);
909 if (err)
910 goto free_stack;
911
912 #ifdef CONFIG_SECCOMP
913 /*
914 * We must handle setting up seccomp filters once we're under
915 * the sighand lock in case orig has changed between now and
916 * then. Until then, filter must be NULL to avoid messing up
917 * the usage counts on the error path calling free_task.
918 */
919 tsk->seccomp.filter = NULL;
920 #endif
921
922 setup_thread_stack(tsk, orig);
923 clear_user_return_notifier(tsk);
924 clear_tsk_need_resched(tsk);
925 set_task_stack_end_magic(tsk);
926
927 #ifdef CONFIG_STACKPROTECTOR
928 tsk->stack_canary = get_random_canary();
929 #endif
930 if (orig->cpus_ptr == &orig->cpus_mask)
931 tsk->cpus_ptr = &tsk->cpus_mask;
932
933 /*
934 * One for the user space visible state that goes away when reaped.
935 * One for the scheduler.
936 */
937 refcount_set(&tsk->rcu_users, 2);
938 /* One for the rcu users */
939 refcount_set(&tsk->usage, 1);
940 #ifdef CONFIG_BLK_DEV_IO_TRACE
941 tsk->btrace_seq = 0;
942 #endif
943 tsk->splice_pipe = NULL;
944 tsk->task_frag.page = NULL;
945 tsk->wake_q.next = NULL;
946 tsk->pf_io_worker = NULL;
947
948 account_kernel_stack(tsk, 1);
949
950 kcov_task_init(tsk);
951
952 #ifdef CONFIG_FAULT_INJECTION
953 tsk->fail_nth = 0;
954 #endif
955
956 #ifdef CONFIG_BLK_CGROUP
957 tsk->throttle_queue = NULL;
958 tsk->use_memdelay = 0;
959 #endif
960
961 #ifdef CONFIG_MEMCG
962 tsk->active_memcg = NULL;
963 #endif
964 return tsk;
965
966 free_stack:
967 free_thread_stack(tsk);
968 free_tsk:
969 free_task_struct(tsk);
970 return NULL;
971 }
972
973 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
974
975 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
976
coredump_filter_setup(char * s)977 static int __init coredump_filter_setup(char *s)
978 {
979 default_dump_filter =
980 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
981 MMF_DUMP_FILTER_MASK;
982 return 1;
983 }
984
985 __setup("coredump_filter=", coredump_filter_setup);
986
987 #include <linux/init_task.h>
988
mm_init_aio(struct mm_struct * mm)989 static void mm_init_aio(struct mm_struct *mm)
990 {
991 #ifdef CONFIG_AIO
992 spin_lock_init(&mm->ioctx_lock);
993 mm->ioctx_table = NULL;
994 #endif
995 }
996
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)997 static __always_inline void mm_clear_owner(struct mm_struct *mm,
998 struct task_struct *p)
999 {
1000 #ifdef CONFIG_MEMCG
1001 if (mm->owner == p)
1002 WRITE_ONCE(mm->owner, NULL);
1003 #endif
1004 }
1005
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1006 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1007 {
1008 #ifdef CONFIG_MEMCG
1009 mm->owner = p;
1010 #endif
1011 }
1012
mm_init_pasid(struct mm_struct * mm)1013 static void mm_init_pasid(struct mm_struct *mm)
1014 {
1015 #ifdef CONFIG_IOMMU_SUPPORT
1016 mm->pasid = INIT_PASID;
1017 #endif
1018 }
1019
mm_init_uprobes_state(struct mm_struct * mm)1020 static void mm_init_uprobes_state(struct mm_struct *mm)
1021 {
1022 #ifdef CONFIG_UPROBES
1023 mm->uprobes_state.xol_area = NULL;
1024 #endif
1025 }
1026
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1027 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1028 struct user_namespace *user_ns)
1029 {
1030 mm->mmap = NULL;
1031 mm->mm_rb = RB_ROOT;
1032 mm->vmacache_seqnum = 0;
1033 #ifdef CONFIG_RSS_THRESHOLD
1034 mm->rss_threshold = 0;
1035 #endif
1036 atomic_set(&mm->mm_users, 1);
1037 atomic_set(&mm->mm_count, 1);
1038 seqcount_init(&mm->write_protect_seq);
1039 mmap_init_lock(mm);
1040 INIT_LIST_HEAD(&mm->mmlist);
1041 mm->core_state = NULL;
1042 mm_pgtables_bytes_init(mm);
1043 mm->map_count = 0;
1044 mm->locked_vm = 0;
1045 atomic_set(&mm->has_pinned, 0);
1046 atomic64_set(&mm->pinned_vm, 0);
1047 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1048 spin_lock_init(&mm->page_table_lock);
1049 spin_lock_init(&mm->arg_lock);
1050 mm_init_cpumask(mm);
1051 mm_init_aio(mm);
1052 mm_init_owner(mm, p);
1053 mm_init_pasid(mm);
1054 RCU_INIT_POINTER(mm->exe_file, NULL);
1055 mmu_notifier_subscriptions_init(mm);
1056 init_tlb_flush_pending(mm);
1057 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1058 mm->pmd_huge_pte = NULL;
1059 #endif
1060 mm_init_uprobes_state(mm);
1061 hugetlb_count_init(mm);
1062
1063 if (current->mm) {
1064 mm->flags = current->mm->flags & MMF_INIT_MASK;
1065 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1066 } else {
1067 mm->flags = default_dump_filter;
1068 mm->def_flags = 0;
1069 }
1070
1071 if (mm_alloc_pgd(mm))
1072 goto fail_nopgd;
1073
1074 if (init_new_context(p, mm))
1075 goto fail_nocontext;
1076
1077 mm->user_ns = get_user_ns(user_ns);
1078 return mm;
1079
1080 fail_nocontext:
1081 mm_free_pgd(mm);
1082 fail_nopgd:
1083 free_mm(mm);
1084 return NULL;
1085 }
1086
1087 /*
1088 * Allocate and initialize an mm_struct.
1089 */
mm_alloc(void)1090 struct mm_struct *mm_alloc(void)
1091 {
1092 struct mm_struct *mm;
1093
1094 mm = allocate_mm();
1095 if (!mm)
1096 return NULL;
1097
1098 memset(mm, 0, sizeof(*mm));
1099 return mm_init(mm, current, current_user_ns());
1100 }
1101
__mmput(struct mm_struct * mm)1102 static inline void __mmput(struct mm_struct *mm)
1103 {
1104 VM_BUG_ON(atomic_read(&mm->mm_users));
1105
1106 uprobe_clear_state(mm);
1107 exit_aio(mm);
1108 ksm_exit(mm);
1109 khugepaged_exit(mm); /* must run before exit_mmap */
1110 exit_mmap(mm);
1111 mm_put_huge_zero_page(mm);
1112 set_mm_exe_file(mm, NULL);
1113 if (!list_empty(&mm->mmlist)) {
1114 spin_lock(&mmlist_lock);
1115 list_del(&mm->mmlist);
1116 spin_unlock(&mmlist_lock);
1117 }
1118 if (mm->binfmt)
1119 module_put(mm->binfmt->module);
1120 mmdrop(mm);
1121 }
1122
1123 /*
1124 * Decrement the use count and release all resources for an mm.
1125 */
mmput(struct mm_struct * mm)1126 void mmput(struct mm_struct *mm)
1127 {
1128 might_sleep();
1129
1130 if (atomic_dec_and_test(&mm->mm_users))
1131 __mmput(mm);
1132 }
1133 EXPORT_SYMBOL_GPL(mmput);
1134
1135 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1136 static void mmput_async_fn(struct work_struct *work)
1137 {
1138 struct mm_struct *mm = container_of(work, struct mm_struct,
1139 async_put_work);
1140
1141 __mmput(mm);
1142 }
1143
mmput_async(struct mm_struct * mm)1144 void mmput_async(struct mm_struct *mm)
1145 {
1146 if (atomic_dec_and_test(&mm->mm_users)) {
1147 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1148 schedule_work(&mm->async_put_work);
1149 }
1150 }
1151 EXPORT_SYMBOL_GPL(mmput_async);
1152 #endif
1153
1154 /**
1155 * set_mm_exe_file - change a reference to the mm's executable file
1156 *
1157 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1158 *
1159 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1160 * invocations: in mmput() nobody alive left, in execve task is single
1161 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1162 * mm->exe_file, but does so without using set_mm_exe_file() in order
1163 * to do avoid the need for any locks.
1164 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1165 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1166 {
1167 struct file *old_exe_file;
1168
1169 /*
1170 * It is safe to dereference the exe_file without RCU as
1171 * this function is only called if nobody else can access
1172 * this mm -- see comment above for justification.
1173 */
1174 old_exe_file = rcu_dereference_raw(mm->exe_file);
1175
1176 if (new_exe_file)
1177 get_file(new_exe_file);
1178 rcu_assign_pointer(mm->exe_file, new_exe_file);
1179 if (old_exe_file)
1180 fput(old_exe_file);
1181 }
1182
1183 /**
1184 * get_mm_exe_file - acquire a reference to the mm's executable file
1185 *
1186 * Returns %NULL if mm has no associated executable file.
1187 * User must release file via fput().
1188 */
get_mm_exe_file(struct mm_struct * mm)1189 struct file *get_mm_exe_file(struct mm_struct *mm)
1190 {
1191 struct file *exe_file;
1192
1193 rcu_read_lock();
1194 exe_file = rcu_dereference(mm->exe_file);
1195 if (exe_file && !get_file_rcu(exe_file))
1196 exe_file = NULL;
1197 rcu_read_unlock();
1198 return exe_file;
1199 }
1200 EXPORT_SYMBOL(get_mm_exe_file);
1201
1202 /**
1203 * get_task_exe_file - acquire a reference to the task's executable file
1204 *
1205 * Returns %NULL if task's mm (if any) has no associated executable file or
1206 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1207 * User must release file via fput().
1208 */
get_task_exe_file(struct task_struct * task)1209 struct file *get_task_exe_file(struct task_struct *task)
1210 {
1211 struct file *exe_file = NULL;
1212 struct mm_struct *mm;
1213
1214 task_lock(task);
1215 mm = task->mm;
1216 if (mm) {
1217 if (!(task->flags & PF_KTHREAD))
1218 exe_file = get_mm_exe_file(mm);
1219 }
1220 task_unlock(task);
1221 return exe_file;
1222 }
1223 EXPORT_SYMBOL(get_task_exe_file);
1224
1225 /**
1226 * get_task_mm - acquire a reference to the task's mm
1227 *
1228 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1229 * this kernel workthread has transiently adopted a user mm with use_mm,
1230 * to do its AIO) is not set and if so returns a reference to it, after
1231 * bumping up the use count. User must release the mm via mmput()
1232 * after use. Typically used by /proc and ptrace.
1233 */
get_task_mm(struct task_struct * task)1234 struct mm_struct *get_task_mm(struct task_struct *task)
1235 {
1236 struct mm_struct *mm;
1237
1238 task_lock(task);
1239 mm = task->mm;
1240 if (mm) {
1241 if (task->flags & PF_KTHREAD)
1242 mm = NULL;
1243 else
1244 mmget(mm);
1245 }
1246 task_unlock(task);
1247 return mm;
1248 }
1249 EXPORT_SYMBOL_GPL(get_task_mm);
1250
mm_access(struct task_struct * task,unsigned int mode)1251 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1252 {
1253 struct mm_struct *mm;
1254 int err;
1255
1256 err = down_read_killable(&task->signal->exec_update_lock);
1257 if (err)
1258 return ERR_PTR(err);
1259
1260 mm = get_task_mm(task);
1261 if (mm && mm != current->mm &&
1262 !ptrace_may_access(task, mode)) {
1263 mmput(mm);
1264 mm = ERR_PTR(-EACCES);
1265 }
1266 up_read(&task->signal->exec_update_lock);
1267
1268 return mm;
1269 }
1270
complete_vfork_done(struct task_struct * tsk)1271 static void complete_vfork_done(struct task_struct *tsk)
1272 {
1273 struct completion *vfork;
1274
1275 task_lock(tsk);
1276 vfork = tsk->vfork_done;
1277 if (likely(vfork)) {
1278 tsk->vfork_done = NULL;
1279 complete(vfork);
1280 }
1281 task_unlock(tsk);
1282 }
1283
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1284 static int wait_for_vfork_done(struct task_struct *child,
1285 struct completion *vfork)
1286 {
1287 int killed;
1288
1289 freezer_do_not_count();
1290 cgroup_enter_frozen();
1291 killed = wait_for_completion_killable(vfork);
1292 cgroup_leave_frozen(false);
1293 freezer_count();
1294
1295 if (killed) {
1296 task_lock(child);
1297 child->vfork_done = NULL;
1298 task_unlock(child);
1299 }
1300
1301 put_task_struct(child);
1302 return killed;
1303 }
1304
1305 /* Please note the differences between mmput and mm_release.
1306 * mmput is called whenever we stop holding onto a mm_struct,
1307 * error success whatever.
1308 *
1309 * mm_release is called after a mm_struct has been removed
1310 * from the current process.
1311 *
1312 * This difference is important for error handling, when we
1313 * only half set up a mm_struct for a new process and need to restore
1314 * the old one. Because we mmput the new mm_struct before
1315 * restoring the old one. . .
1316 * Eric Biederman 10 January 1998
1317 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1318 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1319 {
1320 uprobe_free_utask(tsk);
1321
1322 /* Get rid of any cached register state */
1323 deactivate_mm(tsk, mm);
1324
1325 /*
1326 * Signal userspace if we're not exiting with a core dump
1327 * because we want to leave the value intact for debugging
1328 * purposes.
1329 */
1330 if (tsk->clear_child_tid) {
1331 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1332 atomic_read(&mm->mm_users) > 1) {
1333 /*
1334 * We don't check the error code - if userspace has
1335 * not set up a proper pointer then tough luck.
1336 */
1337 put_user(0, tsk->clear_child_tid);
1338 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1339 1, NULL, NULL, 0, 0);
1340 }
1341 tsk->clear_child_tid = NULL;
1342 }
1343
1344 /*
1345 * All done, finally we can wake up parent and return this mm to him.
1346 * Also kthread_stop() uses this completion for synchronization.
1347 */
1348 if (tsk->vfork_done)
1349 complete_vfork_done(tsk);
1350 }
1351
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1352 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1353 {
1354 futex_exit_release(tsk);
1355 mm_release(tsk, mm);
1356 }
1357
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1358 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1359 {
1360 futex_exec_release(tsk);
1361 mm_release(tsk, mm);
1362 }
1363
1364 /**
1365 * dup_mm() - duplicates an existing mm structure
1366 * @tsk: the task_struct with which the new mm will be associated.
1367 * @oldmm: the mm to duplicate.
1368 *
1369 * Allocates a new mm structure and duplicates the provided @oldmm structure
1370 * content into it.
1371 *
1372 * Return: the duplicated mm or NULL on failure.
1373 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1374 static struct mm_struct *dup_mm(struct task_struct *tsk,
1375 struct mm_struct *oldmm)
1376 {
1377 struct mm_struct *mm;
1378 int err;
1379
1380 mm = allocate_mm();
1381 if (!mm)
1382 goto fail_nomem;
1383
1384 memcpy(mm, oldmm, sizeof(*mm));
1385
1386 if (!mm_init(mm, tsk, mm->user_ns))
1387 goto fail_nomem;
1388
1389 err = dup_mmap(mm, oldmm);
1390 if (err)
1391 goto free_pt;
1392
1393 mm->hiwater_rss = get_mm_rss(mm);
1394 mm->hiwater_vm = mm->total_vm;
1395
1396 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1397 goto free_pt;
1398
1399 return mm;
1400
1401 free_pt:
1402 /* don't put binfmt in mmput, we haven't got module yet */
1403 mm->binfmt = NULL;
1404 mm_init_owner(mm, NULL);
1405 mmput(mm);
1406
1407 fail_nomem:
1408 return NULL;
1409 }
1410
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1411 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1412 {
1413 struct mm_struct *mm, *oldmm;
1414 int retval;
1415
1416 tsk->min_flt = tsk->maj_flt = 0;
1417 tsk->nvcsw = tsk->nivcsw = 0;
1418 #ifdef CONFIG_DETECT_HUNG_TASK
1419 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1420 tsk->last_switch_time = 0;
1421 #endif
1422
1423 tsk->mm = NULL;
1424 tsk->active_mm = NULL;
1425
1426 /*
1427 * Are we cloning a kernel thread?
1428 *
1429 * We need to steal a active VM for that..
1430 */
1431 oldmm = current->mm;
1432 if (!oldmm)
1433 return 0;
1434
1435 /* initialize the new vmacache entries */
1436 vmacache_flush(tsk);
1437
1438 if (clone_flags & CLONE_VM) {
1439 mmget(oldmm);
1440 mm = oldmm;
1441 goto good_mm;
1442 }
1443
1444 retval = -ENOMEM;
1445 mm = dup_mm(tsk, current->mm);
1446 if (!mm)
1447 goto fail_nomem;
1448
1449 good_mm:
1450 tsk->mm = mm;
1451 tsk->active_mm = mm;
1452 return 0;
1453
1454 fail_nomem:
1455 return retval;
1456 }
1457
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1458 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1459 {
1460 struct fs_struct *fs = current->fs;
1461 if (clone_flags & CLONE_FS) {
1462 /* tsk->fs is already what we want */
1463 spin_lock(&fs->lock);
1464 if (fs->in_exec) {
1465 spin_unlock(&fs->lock);
1466 return -EAGAIN;
1467 }
1468 fs->users++;
1469 spin_unlock(&fs->lock);
1470 return 0;
1471 }
1472 tsk->fs = copy_fs_struct(fs);
1473 if (!tsk->fs)
1474 return -ENOMEM;
1475 return 0;
1476 }
1477
copy_files(unsigned long clone_flags,struct task_struct * tsk)1478 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1479 {
1480 struct files_struct *oldf, *newf;
1481 int error = 0;
1482
1483 /*
1484 * A background process may not have any files ...
1485 */
1486 oldf = current->files;
1487 if (!oldf)
1488 goto out;
1489
1490 if (clone_flags & CLONE_FILES) {
1491 atomic_inc(&oldf->count);
1492 goto out;
1493 }
1494
1495 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1496 if (!newf)
1497 goto out;
1498
1499 tsk->files = newf;
1500 error = 0;
1501 out:
1502 return error;
1503 }
1504
copy_io(unsigned long clone_flags,struct task_struct * tsk)1505 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1506 {
1507 #ifdef CONFIG_BLOCK
1508 struct io_context *ioc = current->io_context;
1509 struct io_context *new_ioc;
1510
1511 if (!ioc)
1512 return 0;
1513 /*
1514 * Share io context with parent, if CLONE_IO is set
1515 */
1516 if (clone_flags & CLONE_IO) {
1517 ioc_task_link(ioc);
1518 tsk->io_context = ioc;
1519 } else if (ioprio_valid(ioc->ioprio)) {
1520 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1521 if (unlikely(!new_ioc))
1522 return -ENOMEM;
1523
1524 new_ioc->ioprio = ioc->ioprio;
1525 put_io_context(new_ioc);
1526 }
1527 #endif
1528 return 0;
1529 }
1530
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1531 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1532 {
1533 struct sighand_struct *sig;
1534
1535 if (clone_flags & CLONE_SIGHAND) {
1536 refcount_inc(¤t->sighand->count);
1537 return 0;
1538 }
1539 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1540 RCU_INIT_POINTER(tsk->sighand, sig);
1541 if (!sig)
1542 return -ENOMEM;
1543
1544 refcount_set(&sig->count, 1);
1545 spin_lock_irq(¤t->sighand->siglock);
1546 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1547 spin_unlock_irq(¤t->sighand->siglock);
1548
1549 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1550 if (clone_flags & CLONE_CLEAR_SIGHAND)
1551 flush_signal_handlers(tsk, 0);
1552
1553 return 0;
1554 }
1555
__cleanup_sighand(struct sighand_struct * sighand)1556 void __cleanup_sighand(struct sighand_struct *sighand)
1557 {
1558 if (refcount_dec_and_test(&sighand->count)) {
1559 signalfd_cleanup(sighand);
1560 /*
1561 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1562 * without an RCU grace period, see __lock_task_sighand().
1563 */
1564 kmem_cache_free(sighand_cachep, sighand);
1565 }
1566 }
1567
1568 /*
1569 * Initialize POSIX timer handling for a thread group.
1570 */
posix_cpu_timers_init_group(struct signal_struct * sig)1571 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1572 {
1573 struct posix_cputimers *pct = &sig->posix_cputimers;
1574 unsigned long cpu_limit;
1575
1576 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1577 posix_cputimers_group_init(pct, cpu_limit);
1578 }
1579
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1580 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1581 {
1582 struct signal_struct *sig;
1583
1584 if (clone_flags & CLONE_THREAD)
1585 return 0;
1586
1587 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1588 tsk->signal = sig;
1589 if (!sig)
1590 return -ENOMEM;
1591
1592 sig->nr_threads = 1;
1593 atomic_set(&sig->live, 1);
1594 refcount_set(&sig->sigcnt, 1);
1595
1596 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1597 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1598 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1599
1600 init_waitqueue_head(&sig->wait_chldexit);
1601 sig->curr_target = tsk;
1602 init_sigpending(&sig->shared_pending);
1603 INIT_HLIST_HEAD(&sig->multiprocess);
1604 seqlock_init(&sig->stats_lock);
1605 prev_cputime_init(&sig->prev_cputime);
1606
1607 #ifdef CONFIG_POSIX_TIMERS
1608 INIT_LIST_HEAD(&sig->posix_timers);
1609 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1610 sig->real_timer.function = it_real_fn;
1611 #endif
1612
1613 task_lock(current->group_leader);
1614 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1615 task_unlock(current->group_leader);
1616
1617 posix_cpu_timers_init_group(sig);
1618
1619 tty_audit_fork(sig);
1620 sched_autogroup_fork(sig);
1621
1622 sig->oom_score_adj = current->signal->oom_score_adj;
1623 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1624
1625 mutex_init(&sig->cred_guard_mutex);
1626 init_rwsem(&sig->exec_update_lock);
1627
1628 return 0;
1629 }
1630
copy_seccomp(struct task_struct * p)1631 static void copy_seccomp(struct task_struct *p)
1632 {
1633 #ifdef CONFIG_SECCOMP
1634 /*
1635 * Must be called with sighand->lock held, which is common to
1636 * all threads in the group. Holding cred_guard_mutex is not
1637 * needed because this new task is not yet running and cannot
1638 * be racing exec.
1639 */
1640 assert_spin_locked(¤t->sighand->siglock);
1641
1642 /* Ref-count the new filter user, and assign it. */
1643 get_seccomp_filter(current);
1644 p->seccomp = current->seccomp;
1645
1646 /*
1647 * Explicitly enable no_new_privs here in case it got set
1648 * between the task_struct being duplicated and holding the
1649 * sighand lock. The seccomp state and nnp must be in sync.
1650 */
1651 if (task_no_new_privs(current))
1652 task_set_no_new_privs(p);
1653
1654 /*
1655 * If the parent gained a seccomp mode after copying thread
1656 * flags and between before we held the sighand lock, we have
1657 * to manually enable the seccomp thread flag here.
1658 */
1659 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1660 set_tsk_thread_flag(p, TIF_SECCOMP);
1661 #endif
1662 }
1663
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1664 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1665 {
1666 current->clear_child_tid = tidptr;
1667
1668 return task_pid_vnr(current);
1669 }
1670
rt_mutex_init_task(struct task_struct * p)1671 static void rt_mutex_init_task(struct task_struct *p)
1672 {
1673 raw_spin_lock_init(&p->pi_lock);
1674 #ifdef CONFIG_RT_MUTEXES
1675 p->pi_waiters = RB_ROOT_CACHED;
1676 p->pi_top_task = NULL;
1677 p->pi_blocked_on = NULL;
1678 #endif
1679 }
1680
init_task_pid_links(struct task_struct * task)1681 static inline void init_task_pid_links(struct task_struct *task)
1682 {
1683 enum pid_type type;
1684
1685 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1686 INIT_HLIST_NODE(&task->pid_links[type]);
1687 }
1688 }
1689
1690 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1691 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1692 {
1693 if (type == PIDTYPE_PID)
1694 task->thread_pid = pid;
1695 else
1696 task->signal->pids[type] = pid;
1697 }
1698
rcu_copy_process(struct task_struct * p)1699 static inline void rcu_copy_process(struct task_struct *p)
1700 {
1701 #ifdef CONFIG_PREEMPT_RCU
1702 p->rcu_read_lock_nesting = 0;
1703 p->rcu_read_unlock_special.s = 0;
1704 p->rcu_blocked_node = NULL;
1705 INIT_LIST_HEAD(&p->rcu_node_entry);
1706 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1707 #ifdef CONFIG_TASKS_RCU
1708 p->rcu_tasks_holdout = false;
1709 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1710 p->rcu_tasks_idle_cpu = -1;
1711 #endif /* #ifdef CONFIG_TASKS_RCU */
1712 #ifdef CONFIG_TASKS_TRACE_RCU
1713 p->trc_reader_nesting = 0;
1714 p->trc_reader_special.s = 0;
1715 INIT_LIST_HEAD(&p->trc_holdout_list);
1716 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1717 }
1718
pidfd_pid(const struct file * file)1719 struct pid *pidfd_pid(const struct file *file)
1720 {
1721 if (file->f_op == &pidfd_fops)
1722 return file->private_data;
1723
1724 return ERR_PTR(-EBADF);
1725 }
1726
pidfd_release(struct inode * inode,struct file * file)1727 static int pidfd_release(struct inode *inode, struct file *file)
1728 {
1729 struct pid *pid = file->private_data;
1730
1731 file->private_data = NULL;
1732 put_pid(pid);
1733 return 0;
1734 }
1735
1736 #ifdef CONFIG_PROC_FS
1737 /**
1738 * pidfd_show_fdinfo - print information about a pidfd
1739 * @m: proc fdinfo file
1740 * @f: file referencing a pidfd
1741 *
1742 * Pid:
1743 * This function will print the pid that a given pidfd refers to in the
1744 * pid namespace of the procfs instance.
1745 * If the pid namespace of the process is not a descendant of the pid
1746 * namespace of the procfs instance 0 will be shown as its pid. This is
1747 * similar to calling getppid() on a process whose parent is outside of
1748 * its pid namespace.
1749 *
1750 * NSpid:
1751 * If pid namespaces are supported then this function will also print
1752 * the pid of a given pidfd refers to for all descendant pid namespaces
1753 * starting from the current pid namespace of the instance, i.e. the
1754 * Pid field and the first entry in the NSpid field will be identical.
1755 * If the pid namespace of the process is not a descendant of the pid
1756 * namespace of the procfs instance 0 will be shown as its first NSpid
1757 * entry and no others will be shown.
1758 * Note that this differs from the Pid and NSpid fields in
1759 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1760 * the pid namespace of the procfs instance. The difference becomes
1761 * obvious when sending around a pidfd between pid namespaces from a
1762 * different branch of the tree, i.e. where no ancestoral relation is
1763 * present between the pid namespaces:
1764 * - create two new pid namespaces ns1 and ns2 in the initial pid
1765 * namespace (also take care to create new mount namespaces in the
1766 * new pid namespace and mount procfs)
1767 * - create a process with a pidfd in ns1
1768 * - send pidfd from ns1 to ns2
1769 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1770 * have exactly one entry, which is 0
1771 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1772 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1773 {
1774 struct pid *pid = f->private_data;
1775 struct pid_namespace *ns;
1776 pid_t nr = -1;
1777
1778 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1779 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1780 nr = pid_nr_ns(pid, ns);
1781 }
1782
1783 seq_put_decimal_ll(m, "Pid:\t", nr);
1784
1785 #ifdef CONFIG_PID_NS
1786 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1787 if (nr > 0) {
1788 int i;
1789
1790 /* If nr is non-zero it means that 'pid' is valid and that
1791 * ns, i.e. the pid namespace associated with the procfs
1792 * instance, is in the pid namespace hierarchy of pid.
1793 * Start at one below the already printed level.
1794 */
1795 for (i = ns->level + 1; i <= pid->level; i++)
1796 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1797 }
1798 #endif
1799 seq_putc(m, '\n');
1800 }
1801 #endif
1802
1803 /*
1804 * Poll support for process exit notification.
1805 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1806 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1807 {
1808 struct pid *pid = file->private_data;
1809 __poll_t poll_flags = 0;
1810
1811 poll_wait(file, &pid->wait_pidfd, pts);
1812
1813 /*
1814 * Inform pollers only when the whole thread group exits.
1815 * If the thread group leader exits before all other threads in the
1816 * group, then poll(2) should block, similar to the wait(2) family.
1817 */
1818 if (thread_group_exited(pid))
1819 poll_flags = EPOLLIN | EPOLLRDNORM;
1820
1821 return poll_flags;
1822 }
1823
1824 const struct file_operations pidfd_fops = {
1825 .release = pidfd_release,
1826 .poll = pidfd_poll,
1827 #ifdef CONFIG_PROC_FS
1828 .show_fdinfo = pidfd_show_fdinfo,
1829 #endif
1830 };
1831
__delayed_free_task(struct rcu_head * rhp)1832 static void __delayed_free_task(struct rcu_head *rhp)
1833 {
1834 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1835
1836 free_task(tsk);
1837 }
1838
delayed_free_task(struct task_struct * tsk)1839 static __always_inline void delayed_free_task(struct task_struct *tsk)
1840 {
1841 if (IS_ENABLED(CONFIG_MEMCG))
1842 call_rcu(&tsk->rcu, __delayed_free_task);
1843 else
1844 free_task(tsk);
1845 }
1846
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1847 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1848 {
1849 /* Skip if kernel thread */
1850 if (!tsk->mm)
1851 return;
1852
1853 /* Skip if spawning a thread or using vfork */
1854 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1855 return;
1856
1857 /* We need to synchronize with __set_oom_adj */
1858 mutex_lock(&oom_adj_mutex);
1859 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1860 /* Update the values in case they were changed after copy_signal */
1861 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1862 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1863 mutex_unlock(&oom_adj_mutex);
1864 }
1865
1866 /*
1867 * This creates a new process as a copy of the old one,
1868 * but does not actually start it yet.
1869 *
1870 * It copies the registers, and all the appropriate
1871 * parts of the process environment (as per the clone
1872 * flags). The actual kick-off is left to the caller.
1873 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1874 static __latent_entropy struct task_struct *copy_process(
1875 struct pid *pid,
1876 int trace,
1877 int node,
1878 struct kernel_clone_args *args)
1879 {
1880 int pidfd = -1, retval;
1881 struct task_struct *p;
1882 struct multiprocess_signals delayed;
1883 struct file *pidfile = NULL;
1884 u64 clone_flags = args->flags;
1885 struct nsproxy *nsp = current->nsproxy;
1886
1887 /*
1888 * Don't allow sharing the root directory with processes in a different
1889 * namespace
1890 */
1891 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1892 return ERR_PTR(-EINVAL);
1893
1894 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1895 return ERR_PTR(-EINVAL);
1896
1897 /*
1898 * Thread groups must share signals as well, and detached threads
1899 * can only be started up within the thread group.
1900 */
1901 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1902 return ERR_PTR(-EINVAL);
1903
1904 /*
1905 * Shared signal handlers imply shared VM. By way of the above,
1906 * thread groups also imply shared VM. Blocking this case allows
1907 * for various simplifications in other code.
1908 */
1909 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1910 return ERR_PTR(-EINVAL);
1911
1912 /*
1913 * Siblings of global init remain as zombies on exit since they are
1914 * not reaped by their parent (swapper). To solve this and to avoid
1915 * multi-rooted process trees, prevent global and container-inits
1916 * from creating siblings.
1917 */
1918 if ((clone_flags & CLONE_PARENT) &&
1919 current->signal->flags & SIGNAL_UNKILLABLE)
1920 return ERR_PTR(-EINVAL);
1921
1922 /*
1923 * If the new process will be in a different pid or user namespace
1924 * do not allow it to share a thread group with the forking task.
1925 */
1926 if (clone_flags & CLONE_THREAD) {
1927 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1928 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1929 return ERR_PTR(-EINVAL);
1930 }
1931
1932 /*
1933 * If the new process will be in a different time namespace
1934 * do not allow it to share VM or a thread group with the forking task.
1935 */
1936 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1937 if (nsp->time_ns != nsp->time_ns_for_children)
1938 return ERR_PTR(-EINVAL);
1939 }
1940
1941 if (clone_flags & CLONE_PIDFD) {
1942 /*
1943 * - CLONE_DETACHED is blocked so that we can potentially
1944 * reuse it later for CLONE_PIDFD.
1945 * - CLONE_THREAD is blocked until someone really needs it.
1946 */
1947 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1948 return ERR_PTR(-EINVAL);
1949 }
1950
1951 /*
1952 * Force any signals received before this point to be delivered
1953 * before the fork happens. Collect up signals sent to multiple
1954 * processes that happen during the fork and delay them so that
1955 * they appear to happen after the fork.
1956 */
1957 sigemptyset(&delayed.signal);
1958 INIT_HLIST_NODE(&delayed.node);
1959
1960 spin_lock_irq(¤t->sighand->siglock);
1961 if (!(clone_flags & CLONE_THREAD))
1962 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
1963 recalc_sigpending();
1964 spin_unlock_irq(¤t->sighand->siglock);
1965 retval = -ERESTARTNOINTR;
1966 if (task_sigpending(current))
1967 goto fork_out;
1968
1969 retval = -ENOMEM;
1970 p = dup_task_struct(current, node);
1971 if (!p)
1972 goto fork_out;
1973 if (args->io_thread) {
1974 /*
1975 * Mark us an IO worker, and block any signal that isn't
1976 * fatal or STOP
1977 */
1978 p->flags |= PF_IO_WORKER;
1979 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
1980 }
1981
1982 /*
1983 * This _must_ happen before we call free_task(), i.e. before we jump
1984 * to any of the bad_fork_* labels. This is to avoid freeing
1985 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1986 * kernel threads (PF_KTHREAD).
1987 */
1988 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1989 /*
1990 * Clear TID on mm_release()?
1991 */
1992 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1993
1994 ftrace_graph_init_task(p);
1995
1996 rt_mutex_init_task(p);
1997
1998 lockdep_assert_irqs_enabled();
1999 #ifdef CONFIG_PROVE_LOCKING
2000 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2001 #endif
2002 retval = -EAGAIN;
2003 if (atomic_read(&p->real_cred->user->processes) >=
2004 task_rlimit(p, RLIMIT_NPROC)) {
2005 if (p->real_cred->user != INIT_USER &&
2006 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2007 goto bad_fork_free;
2008 }
2009 current->flags &= ~PF_NPROC_EXCEEDED;
2010
2011 retval = copy_creds(p, clone_flags);
2012 if (retval < 0)
2013 goto bad_fork_free;
2014
2015 /*
2016 * If multiple threads are within copy_process(), then this check
2017 * triggers too late. This doesn't hurt, the check is only there
2018 * to stop root fork bombs.
2019 */
2020 retval = -EAGAIN;
2021 if (data_race(nr_threads >= max_threads))
2022 goto bad_fork_cleanup_count;
2023
2024 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2025 #ifdef CONFIG_RECLAIM_ACCT
2026 reclaimacct_tsk_init(p);
2027 #endif
2028 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
2029 p->flags |= PF_FORKNOEXEC;
2030 INIT_LIST_HEAD(&p->children);
2031 INIT_LIST_HEAD(&p->sibling);
2032 rcu_copy_process(p);
2033 p->vfork_done = NULL;
2034 spin_lock_init(&p->alloc_lock);
2035
2036 init_sigpending(&p->pending);
2037
2038 p->utime = p->stime = p->gtime = 0;
2039 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2040 p->utimescaled = p->stimescaled = 0;
2041 #endif
2042 prev_cputime_init(&p->prev_cputime);
2043
2044 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2045 seqcount_init(&p->vtime.seqcount);
2046 p->vtime.starttime = 0;
2047 p->vtime.state = VTIME_INACTIVE;
2048 #endif
2049
2050 #ifdef CONFIG_IO_URING
2051 p->io_uring = NULL;
2052 #endif
2053
2054 #if defined(SPLIT_RSS_COUNTING)
2055 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2056 #endif
2057
2058 p->default_timer_slack_ns = current->timer_slack_ns;
2059
2060 #ifdef CONFIG_PSI
2061 p->psi_flags = 0;
2062 #endif
2063
2064 task_io_accounting_init(&p->ioac);
2065 acct_clear_integrals(p);
2066
2067 posix_cputimers_init(&p->posix_cputimers);
2068
2069 p->io_context = NULL;
2070 audit_set_context(p, NULL);
2071 cgroup_fork(p);
2072 #ifdef CONFIG_NUMA
2073 p->mempolicy = mpol_dup(p->mempolicy);
2074 if (IS_ERR(p->mempolicy)) {
2075 retval = PTR_ERR(p->mempolicy);
2076 p->mempolicy = NULL;
2077 goto bad_fork_cleanup_threadgroup_lock;
2078 }
2079 #endif
2080 #ifdef CONFIG_CPUSETS
2081 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2082 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2083 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2084 #endif
2085 #ifdef CONFIG_TRACE_IRQFLAGS
2086 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2087 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2088 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2089 p->softirqs_enabled = 1;
2090 p->softirq_context = 0;
2091 #endif
2092
2093 p->pagefault_disabled = 0;
2094
2095 #ifdef CONFIG_LOCKDEP
2096 lockdep_init_task(p);
2097 #endif
2098
2099 #ifdef CONFIG_DEBUG_MUTEXES
2100 p->blocked_on = NULL; /* not blocked yet */
2101 #endif
2102 #ifdef CONFIG_BCACHE
2103 p->sequential_io = 0;
2104 p->sequential_io_avg = 0;
2105 #endif
2106 #ifdef CONFIG_BPF_SYSCALL
2107 p->bpf_ctx = NULL;
2108 #endif
2109
2110 /* Perform scheduler related setup. Assign this task to a CPU. */
2111 retval = sched_fork(clone_flags, p);
2112 if (retval)
2113 goto bad_fork_cleanup_policy;
2114
2115 retval = perf_event_init_task(p);
2116 if (retval)
2117 goto bad_fork_cleanup_policy;
2118 retval = audit_alloc(p);
2119 if (retval)
2120 goto bad_fork_cleanup_perf;
2121 /* copy all the process information */
2122 shm_init_task(p);
2123 retval = security_task_alloc(p, clone_flags);
2124 if (retval)
2125 goto bad_fork_cleanup_audit;
2126 retval = copy_semundo(clone_flags, p);
2127 if (retval)
2128 goto bad_fork_cleanup_security;
2129 retval = copy_files(clone_flags, p);
2130 if (retval)
2131 goto bad_fork_cleanup_semundo;
2132 retval = copy_fs(clone_flags, p);
2133 if (retval)
2134 goto bad_fork_cleanup_files;
2135 retval = copy_sighand(clone_flags, p);
2136 if (retval)
2137 goto bad_fork_cleanup_fs;
2138 retval = copy_signal(clone_flags, p);
2139 if (retval)
2140 goto bad_fork_cleanup_sighand;
2141 retval = copy_mm(clone_flags, p);
2142 if (retval)
2143 goto bad_fork_cleanup_signal;
2144 retval = copy_namespaces(clone_flags, p);
2145 if (retval)
2146 goto bad_fork_cleanup_mm;
2147 retval = copy_io(clone_flags, p);
2148 if (retval)
2149 goto bad_fork_cleanup_namespaces;
2150 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2151 if (retval)
2152 goto bad_fork_cleanup_io;
2153
2154 stackleak_task_init(p);
2155
2156 if (pid != &init_struct_pid) {
2157 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2158 args->set_tid_size);
2159 if (IS_ERR(pid)) {
2160 retval = PTR_ERR(pid);
2161 goto bad_fork_cleanup_thread;
2162 }
2163 }
2164
2165 /*
2166 * This has to happen after we've potentially unshared the file
2167 * descriptor table (so that the pidfd doesn't leak into the child
2168 * if the fd table isn't shared).
2169 */
2170 if (clone_flags & CLONE_PIDFD) {
2171 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2172 if (retval < 0)
2173 goto bad_fork_free_pid;
2174
2175 pidfd = retval;
2176
2177 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2178 O_RDWR | O_CLOEXEC);
2179 if (IS_ERR(pidfile)) {
2180 put_unused_fd(pidfd);
2181 retval = PTR_ERR(pidfile);
2182 goto bad_fork_free_pid;
2183 }
2184 get_pid(pid); /* held by pidfile now */
2185
2186 retval = put_user(pidfd, args->pidfd);
2187 if (retval)
2188 goto bad_fork_put_pidfd;
2189 }
2190
2191 #ifdef CONFIG_BLOCK
2192 p->plug = NULL;
2193 #endif
2194 futex_init_task(p);
2195
2196 /*
2197 * sigaltstack should be cleared when sharing the same VM
2198 */
2199 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2200 sas_ss_reset(p);
2201
2202 /*
2203 * Syscall tracing and stepping should be turned off in the
2204 * child regardless of CLONE_PTRACE.
2205 */
2206 user_disable_single_step(p);
2207 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2208 #ifdef TIF_SYSCALL_EMU
2209 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2210 #endif
2211 clear_tsk_latency_tracing(p);
2212
2213 /* ok, now we should be set up.. */
2214 p->pid = pid_nr(pid);
2215 if (clone_flags & CLONE_THREAD) {
2216 p->group_leader = current->group_leader;
2217 p->tgid = current->tgid;
2218 } else {
2219 p->group_leader = p;
2220 p->tgid = p->pid;
2221 }
2222
2223 p->nr_dirtied = 0;
2224 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2225 p->dirty_paused_when = 0;
2226
2227 p->pdeath_signal = 0;
2228 INIT_LIST_HEAD(&p->thread_group);
2229 p->task_works = NULL;
2230 clear_posix_cputimers_work(p);
2231
2232 /*
2233 * Ensure that the cgroup subsystem policies allow the new process to be
2234 * forked. It should be noted that the new process's css_set can be changed
2235 * between here and cgroup_post_fork() if an organisation operation is in
2236 * progress.
2237 */
2238 retval = cgroup_can_fork(p, args);
2239 if (retval)
2240 goto bad_fork_put_pidfd;
2241
2242 /*
2243 * From this point on we must avoid any synchronous user-space
2244 * communication until we take the tasklist-lock. In particular, we do
2245 * not want user-space to be able to predict the process start-time by
2246 * stalling fork(2) after we recorded the start_time but before it is
2247 * visible to the system.
2248 */
2249
2250 p->start_time = ktime_get_ns();
2251 p->start_boottime = ktime_get_boottime_ns();
2252
2253 /*
2254 * Make it visible to the rest of the system, but dont wake it up yet.
2255 * Need tasklist lock for parent etc handling!
2256 */
2257 write_lock_irq(&tasklist_lock);
2258
2259 /* CLONE_PARENT re-uses the old parent */
2260 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2261 p->real_parent = current->real_parent;
2262 p->parent_exec_id = current->parent_exec_id;
2263 if (clone_flags & CLONE_THREAD)
2264 p->exit_signal = -1;
2265 else
2266 p->exit_signal = current->group_leader->exit_signal;
2267 } else {
2268 p->real_parent = current;
2269 p->parent_exec_id = current->self_exec_id;
2270 p->exit_signal = args->exit_signal;
2271 }
2272
2273 klp_copy_process(p);
2274
2275 spin_lock(¤t->sighand->siglock);
2276
2277 rseq_fork(p, clone_flags);
2278
2279 /* Don't start children in a dying pid namespace */
2280 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2281 retval = -ENOMEM;
2282 goto bad_fork_cancel_cgroup;
2283 }
2284
2285 /* Let kill terminate clone/fork in the middle */
2286 if (fatal_signal_pending(current)) {
2287 retval = -EINTR;
2288 goto bad_fork_cancel_cgroup;
2289 }
2290
2291 /* No more failure paths after this point. */
2292
2293 /*
2294 * Copy seccomp details explicitly here, in case they were changed
2295 * before holding sighand lock.
2296 */
2297 copy_seccomp(p);
2298
2299 init_task_pid_links(p);
2300 if (likely(p->pid)) {
2301 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2302
2303 init_task_pid(p, PIDTYPE_PID, pid);
2304 if (thread_group_leader(p)) {
2305 init_task_pid(p, PIDTYPE_TGID, pid);
2306 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2307 init_task_pid(p, PIDTYPE_SID, task_session(current));
2308
2309 if (is_child_reaper(pid)) {
2310 ns_of_pid(pid)->child_reaper = p;
2311 p->signal->flags |= SIGNAL_UNKILLABLE;
2312 }
2313 p->signal->shared_pending.signal = delayed.signal;
2314 p->signal->tty = tty_kref_get(current->signal->tty);
2315 /*
2316 * Inherit has_child_subreaper flag under the same
2317 * tasklist_lock with adding child to the process tree
2318 * for propagate_has_child_subreaper optimization.
2319 */
2320 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2321 p->real_parent->signal->is_child_subreaper;
2322 list_add_tail(&p->sibling, &p->real_parent->children);
2323 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2324 attach_pid(p, PIDTYPE_TGID);
2325 attach_pid(p, PIDTYPE_PGID);
2326 attach_pid(p, PIDTYPE_SID);
2327 __this_cpu_inc(process_counts);
2328 } else {
2329 current->signal->nr_threads++;
2330 atomic_inc(¤t->signal->live);
2331 refcount_inc(¤t->signal->sigcnt);
2332 task_join_group_stop(p);
2333 list_add_tail_rcu(&p->thread_group,
2334 &p->group_leader->thread_group);
2335 list_add_tail_rcu(&p->thread_node,
2336 &p->signal->thread_head);
2337 }
2338 attach_pid(p, PIDTYPE_PID);
2339 nr_threads++;
2340 }
2341 total_forks++;
2342 hlist_del_init(&delayed.node);
2343 spin_unlock(¤t->sighand->siglock);
2344 syscall_tracepoint_update(p);
2345 write_unlock_irq(&tasklist_lock);
2346
2347 if (pidfile)
2348 fd_install(pidfd, pidfile);
2349
2350 proc_fork_connector(p);
2351 sched_post_fork(p, args);
2352 cgroup_post_fork(p, args);
2353 perf_event_fork(p);
2354
2355 trace_task_newtask(p, clone_flags);
2356 uprobe_copy_process(p, clone_flags);
2357
2358 copy_oom_score_adj(clone_flags, p);
2359
2360 return p;
2361
2362 bad_fork_cancel_cgroup:
2363 spin_unlock(¤t->sighand->siglock);
2364 write_unlock_irq(&tasklist_lock);
2365 cgroup_cancel_fork(p, args);
2366 bad_fork_put_pidfd:
2367 if (clone_flags & CLONE_PIDFD) {
2368 fput(pidfile);
2369 put_unused_fd(pidfd);
2370 }
2371 bad_fork_free_pid:
2372 if (pid != &init_struct_pid)
2373 free_pid(pid);
2374 bad_fork_cleanup_thread:
2375 exit_thread(p);
2376 bad_fork_cleanup_io:
2377 if (p->io_context)
2378 exit_io_context(p);
2379 bad_fork_cleanup_namespaces:
2380 exit_task_namespaces(p);
2381 bad_fork_cleanup_mm:
2382 if (p->mm) {
2383 mm_clear_owner(p->mm, p);
2384 mmput(p->mm);
2385 }
2386 bad_fork_cleanup_signal:
2387 if (!(clone_flags & CLONE_THREAD))
2388 free_signal_struct(p->signal);
2389 bad_fork_cleanup_sighand:
2390 __cleanup_sighand(p->sighand);
2391 bad_fork_cleanup_fs:
2392 exit_fs(p); /* blocking */
2393 bad_fork_cleanup_files:
2394 exit_files(p); /* blocking */
2395 bad_fork_cleanup_semundo:
2396 exit_sem(p);
2397 bad_fork_cleanup_security:
2398 security_task_free(p);
2399 bad_fork_cleanup_audit:
2400 audit_free(p);
2401 bad_fork_cleanup_perf:
2402 perf_event_free_task(p);
2403 bad_fork_cleanup_policy:
2404 lockdep_free_task(p);
2405 free_task_load_ptrs(p);
2406 #ifdef CONFIG_NUMA
2407 mpol_put(p->mempolicy);
2408 bad_fork_cleanup_threadgroup_lock:
2409 #endif
2410 delayacct_tsk_free(p);
2411 bad_fork_cleanup_count:
2412 atomic_dec(&p->cred->user->processes);
2413 exit_creds(p);
2414 bad_fork_free:
2415 p->state = TASK_DEAD;
2416 put_task_stack(p);
2417 delayed_free_task(p);
2418 fork_out:
2419 spin_lock_irq(¤t->sighand->siglock);
2420 hlist_del_init(&delayed.node);
2421 spin_unlock_irq(¤t->sighand->siglock);
2422 return ERR_PTR(retval);
2423 }
2424
init_idle_pids(struct task_struct * idle)2425 static inline void init_idle_pids(struct task_struct *idle)
2426 {
2427 enum pid_type type;
2428
2429 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2430 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2431 init_task_pid(idle, type, &init_struct_pid);
2432 }
2433 }
2434
fork_idle(int cpu)2435 struct task_struct * __init fork_idle(int cpu)
2436 {
2437 struct task_struct *task;
2438 struct kernel_clone_args args = {
2439 .flags = CLONE_VM,
2440 };
2441
2442 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2443 if (!IS_ERR(task)) {
2444 init_idle_pids(task);
2445 init_idle(task, cpu);
2446 }
2447
2448 return task;
2449 }
2450
2451 /*
2452 * This is like kernel_clone(), but shaved down and tailored to just
2453 * creating io_uring workers. It returns a created task, or an error pointer.
2454 * The returned task is inactive, and the caller must fire it up through
2455 * wake_up_new_task(p). All signals are blocked in the created task.
2456 */
create_io_thread(int (* fn)(void *),void * arg,int node)2457 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2458 {
2459 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2460 CLONE_IO;
2461 struct kernel_clone_args args = {
2462 .flags = ((lower_32_bits(flags) | CLONE_VM |
2463 CLONE_UNTRACED) & ~CSIGNAL),
2464 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2465 .stack = (unsigned long)fn,
2466 .stack_size = (unsigned long)arg,
2467 .io_thread = 1,
2468 };
2469
2470 return copy_process(NULL, 0, node, &args);
2471 }
2472
2473 /*
2474 * Ok, this is the main fork-routine.
2475 *
2476 * It copies the process, and if successful kick-starts
2477 * it and waits for it to finish using the VM if required.
2478 *
2479 * args->exit_signal is expected to be checked for sanity by the caller.
2480 */
kernel_clone(struct kernel_clone_args * args)2481 pid_t kernel_clone(struct kernel_clone_args *args)
2482 {
2483 u64 clone_flags = args->flags;
2484 struct completion vfork;
2485 struct pid *pid;
2486 struct task_struct *p;
2487 int trace = 0;
2488 pid_t nr;
2489
2490 /*
2491 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2492 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2493 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2494 * field in struct clone_args and it still doesn't make sense to have
2495 * them both point at the same memory location. Performing this check
2496 * here has the advantage that we don't need to have a separate helper
2497 * to check for legacy clone().
2498 */
2499 if ((args->flags & CLONE_PIDFD) &&
2500 (args->flags & CLONE_PARENT_SETTID) &&
2501 (args->pidfd == args->parent_tid))
2502 return -EINVAL;
2503
2504 /*
2505 * Determine whether and which event to report to ptracer. When
2506 * called from kernel_thread or CLONE_UNTRACED is explicitly
2507 * requested, no event is reported; otherwise, report if the event
2508 * for the type of forking is enabled.
2509 */
2510 if (!(clone_flags & CLONE_UNTRACED)) {
2511 if (clone_flags & CLONE_VFORK)
2512 trace = PTRACE_EVENT_VFORK;
2513 else if (args->exit_signal != SIGCHLD)
2514 trace = PTRACE_EVENT_CLONE;
2515 else
2516 trace = PTRACE_EVENT_FORK;
2517
2518 if (likely(!ptrace_event_enabled(current, trace)))
2519 trace = 0;
2520 }
2521
2522 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2523 add_latent_entropy();
2524
2525 if (IS_ERR(p))
2526 return PTR_ERR(p);
2527
2528 /*
2529 * Do this prior waking up the new thread - the thread pointer
2530 * might get invalid after that point, if the thread exits quickly.
2531 */
2532 trace_sched_process_fork(current, p);
2533
2534 pid = get_task_pid(p, PIDTYPE_PID);
2535 nr = pid_vnr(pid);
2536
2537 if (clone_flags & CLONE_PARENT_SETTID)
2538 put_user(nr, args->parent_tid);
2539
2540 if (clone_flags & CLONE_VFORK) {
2541 p->vfork_done = &vfork;
2542 init_completion(&vfork);
2543 get_task_struct(p);
2544 }
2545
2546 CALL_HCK_LITE_HOOK(ced_kernel_clone_lhck, p);
2547 wake_up_new_task(p);
2548
2549 /* forking complete and child started to run, tell ptracer */
2550 if (unlikely(trace))
2551 ptrace_event_pid(trace, pid);
2552
2553 if (clone_flags & CLONE_VFORK) {
2554 if (!wait_for_vfork_done(p, &vfork))
2555 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2556 }
2557
2558 put_pid(pid);
2559 return nr;
2560 }
2561
2562 /*
2563 * Create a kernel thread.
2564 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2565 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2566 {
2567 struct kernel_clone_args args = {
2568 .flags = ((lower_32_bits(flags) | CLONE_VM |
2569 CLONE_UNTRACED) & ~CSIGNAL),
2570 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2571 .stack = (unsigned long)fn,
2572 .stack_size = (unsigned long)arg,
2573 };
2574
2575 return kernel_clone(&args);
2576 }
2577
2578 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2579 SYSCALL_DEFINE0(fork)
2580 {
2581 #ifdef CONFIG_MMU
2582 struct kernel_clone_args args = {
2583 .exit_signal = SIGCHLD,
2584 };
2585
2586 return kernel_clone(&args);
2587 #else
2588 /* can not support in nommu mode */
2589 return -EINVAL;
2590 #endif
2591 }
2592 #endif
2593
2594 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2595 SYSCALL_DEFINE0(vfork)
2596 {
2597 struct kernel_clone_args args = {
2598 .flags = CLONE_VFORK | CLONE_VM,
2599 .exit_signal = SIGCHLD,
2600 };
2601
2602 return kernel_clone(&args);
2603 }
2604 #endif
2605
2606 #ifdef __ARCH_WANT_SYS_CLONE
2607 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2608 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2609 int __user *, parent_tidptr,
2610 unsigned long, tls,
2611 int __user *, child_tidptr)
2612 #elif defined(CONFIG_CLONE_BACKWARDS2)
2613 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2614 int __user *, parent_tidptr,
2615 int __user *, child_tidptr,
2616 unsigned long, tls)
2617 #elif defined(CONFIG_CLONE_BACKWARDS3)
2618 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2619 int, stack_size,
2620 int __user *, parent_tidptr,
2621 int __user *, child_tidptr,
2622 unsigned long, tls)
2623 #else
2624 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2625 int __user *, parent_tidptr,
2626 int __user *, child_tidptr,
2627 unsigned long, tls)
2628 #endif
2629 {
2630 struct kernel_clone_args args = {
2631 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2632 .pidfd = parent_tidptr,
2633 .child_tid = child_tidptr,
2634 .parent_tid = parent_tidptr,
2635 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2636 .stack = newsp,
2637 .tls = tls,
2638 };
2639
2640 return kernel_clone(&args);
2641 }
2642 #endif
2643
2644 #ifdef __ARCH_WANT_SYS_CLONE3
2645
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2646 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2647 struct clone_args __user *uargs,
2648 size_t usize)
2649 {
2650 int err;
2651 struct clone_args args;
2652 pid_t *kset_tid = kargs->set_tid;
2653
2654 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2655 CLONE_ARGS_SIZE_VER0);
2656 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2657 CLONE_ARGS_SIZE_VER1);
2658 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2659 CLONE_ARGS_SIZE_VER2);
2660 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2661
2662 if (unlikely(usize > PAGE_SIZE))
2663 return -E2BIG;
2664 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2665 return -EINVAL;
2666
2667 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2668 if (err)
2669 return err;
2670
2671 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2672 return -EINVAL;
2673
2674 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2675 return -EINVAL;
2676
2677 if (unlikely(args.set_tid && args.set_tid_size == 0))
2678 return -EINVAL;
2679
2680 /*
2681 * Verify that higher 32bits of exit_signal are unset and that
2682 * it is a valid signal
2683 */
2684 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2685 !valid_signal(args.exit_signal)))
2686 return -EINVAL;
2687
2688 if ((args.flags & CLONE_INTO_CGROUP) &&
2689 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2690 return -EINVAL;
2691
2692 *kargs = (struct kernel_clone_args){
2693 .flags = args.flags,
2694 .pidfd = u64_to_user_ptr(args.pidfd),
2695 .child_tid = u64_to_user_ptr(args.child_tid),
2696 .parent_tid = u64_to_user_ptr(args.parent_tid),
2697 .exit_signal = args.exit_signal,
2698 .stack = args.stack,
2699 .stack_size = args.stack_size,
2700 .tls = args.tls,
2701 .set_tid_size = args.set_tid_size,
2702 .cgroup = args.cgroup,
2703 };
2704
2705 if (args.set_tid &&
2706 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2707 (kargs->set_tid_size * sizeof(pid_t))))
2708 return -EFAULT;
2709
2710 kargs->set_tid = kset_tid;
2711
2712 return 0;
2713 }
2714
2715 /**
2716 * clone3_stack_valid - check and prepare stack
2717 * @kargs: kernel clone args
2718 *
2719 * Verify that the stack arguments userspace gave us are sane.
2720 * In addition, set the stack direction for userspace since it's easy for us to
2721 * determine.
2722 */
clone3_stack_valid(struct kernel_clone_args * kargs)2723 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2724 {
2725 if (kargs->stack == 0) {
2726 if (kargs->stack_size > 0)
2727 return false;
2728 } else {
2729 if (kargs->stack_size == 0)
2730 return false;
2731
2732 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2733 return false;
2734
2735 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2736 kargs->stack += kargs->stack_size;
2737 #endif
2738 }
2739
2740 return true;
2741 }
2742
clone3_args_valid(struct kernel_clone_args * kargs)2743 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2744 {
2745 /* Verify that no unknown flags are passed along. */
2746 if (kargs->flags &
2747 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2748 return false;
2749
2750 /*
2751 * - make the CLONE_DETACHED bit reuseable for clone3
2752 * - make the CSIGNAL bits reuseable for clone3
2753 */
2754 if (kargs->flags & (CLONE_DETACHED | (CSIGNAL & (~CLONE_NEWTIME))))
2755 return false;
2756
2757 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2758 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2759 return false;
2760
2761 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2762 kargs->exit_signal)
2763 return false;
2764
2765 if (!clone3_stack_valid(kargs))
2766 return false;
2767
2768 return true;
2769 }
2770
2771 /**
2772 * clone3 - create a new process with specific properties
2773 * @uargs: argument structure
2774 * @size: size of @uargs
2775 *
2776 * clone3() is the extensible successor to clone()/clone2().
2777 * It takes a struct as argument that is versioned by its size.
2778 *
2779 * Return: On success, a positive PID for the child process.
2780 * On error, a negative errno number.
2781 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2782 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2783 {
2784 int err;
2785
2786 struct kernel_clone_args kargs;
2787 pid_t set_tid[MAX_PID_NS_LEVEL];
2788
2789 kargs.set_tid = set_tid;
2790
2791 err = copy_clone_args_from_user(&kargs, uargs, size);
2792 if (err)
2793 return err;
2794
2795 if (!clone3_args_valid(&kargs))
2796 return -EINVAL;
2797
2798 return kernel_clone(&kargs);
2799 }
2800 #endif
2801
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2802 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2803 {
2804 struct task_struct *leader, *parent, *child;
2805 int res;
2806
2807 read_lock(&tasklist_lock);
2808 leader = top = top->group_leader;
2809 down:
2810 for_each_thread(leader, parent) {
2811 list_for_each_entry(child, &parent->children, sibling) {
2812 res = visitor(child, data);
2813 if (res) {
2814 if (res < 0)
2815 goto out;
2816 leader = child;
2817 goto down;
2818 }
2819 up:
2820 ;
2821 }
2822 }
2823
2824 if (leader != top) {
2825 child = leader;
2826 parent = child->real_parent;
2827 leader = parent->group_leader;
2828 goto up;
2829 }
2830 out:
2831 read_unlock(&tasklist_lock);
2832 }
2833
2834 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2835 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2836 #endif
2837
sighand_ctor(void * data)2838 static void sighand_ctor(void *data)
2839 {
2840 struct sighand_struct *sighand = data;
2841
2842 spin_lock_init(&sighand->siglock);
2843 init_waitqueue_head(&sighand->signalfd_wqh);
2844 }
2845
mm_cache_init(void)2846 void __init mm_cache_init(void)
2847 {
2848 unsigned int mm_size;
2849
2850 /*
2851 * The mm_cpumask is located at the end of mm_struct, and is
2852 * dynamically sized based on the maximum CPU number this system
2853 * can have, taking hotplug into account (nr_cpu_ids).
2854 */
2855 mm_size = sizeof(struct mm_struct) + cpumask_size();
2856
2857 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2858 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2859 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2860 offsetof(struct mm_struct, saved_auxv),
2861 sizeof_field(struct mm_struct, saved_auxv),
2862 NULL);
2863 }
2864
proc_caches_init(void)2865 void __init proc_caches_init(void)
2866 {
2867 sighand_cachep = kmem_cache_create("sighand_cache",
2868 sizeof(struct sighand_struct), 0,
2869 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2870 SLAB_ACCOUNT, sighand_ctor);
2871 signal_cachep = kmem_cache_create("signal_cache",
2872 sizeof(struct signal_struct), 0,
2873 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2874 NULL);
2875 files_cachep = kmem_cache_create("files_cache",
2876 sizeof(struct files_struct), 0,
2877 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2878 NULL);
2879 fs_cachep = kmem_cache_create("fs_cache",
2880 sizeof(struct fs_struct), 0,
2881 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2882 NULL);
2883
2884 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2885 mmap_init();
2886 nsproxy_cache_init();
2887 }
2888
2889 /*
2890 * Check constraints on flags passed to the unshare system call.
2891 */
check_unshare_flags(unsigned long unshare_flags)2892 static int check_unshare_flags(unsigned long unshare_flags)
2893 {
2894 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2895 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2896 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2897 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2898 CLONE_NEWTIME))
2899 return -EINVAL;
2900 /*
2901 * Not implemented, but pretend it works if there is nothing
2902 * to unshare. Note that unsharing the address space or the
2903 * signal handlers also need to unshare the signal queues (aka
2904 * CLONE_THREAD).
2905 */
2906 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2907 if (!thread_group_empty(current))
2908 return -EINVAL;
2909 }
2910 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2911 if (refcount_read(¤t->sighand->count) > 1)
2912 return -EINVAL;
2913 }
2914 if (unshare_flags & CLONE_VM) {
2915 if (!current_is_single_threaded())
2916 return -EINVAL;
2917 }
2918
2919 return 0;
2920 }
2921
2922 /*
2923 * Unshare the filesystem structure if it is being shared
2924 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2925 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2926 {
2927 struct fs_struct *fs = current->fs;
2928
2929 if (!(unshare_flags & CLONE_FS) || !fs)
2930 return 0;
2931
2932 /* don't need lock here; in the worst case we'll do useless copy */
2933 if (fs->users == 1)
2934 return 0;
2935
2936 *new_fsp = copy_fs_struct(fs);
2937 if (!*new_fsp)
2938 return -ENOMEM;
2939
2940 return 0;
2941 }
2942
2943 /*
2944 * Unshare file descriptor table if it is being shared
2945 */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)2946 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
2947 struct files_struct **new_fdp)
2948 {
2949 struct files_struct *fd = current->files;
2950 int error = 0;
2951
2952 if ((unshare_flags & CLONE_FILES) &&
2953 (fd && atomic_read(&fd->count) > 1)) {
2954 *new_fdp = dup_fd(fd, max_fds, &error);
2955 if (!*new_fdp)
2956 return error;
2957 }
2958
2959 return 0;
2960 }
2961
2962 /*
2963 * unshare allows a process to 'unshare' part of the process
2964 * context which was originally shared using clone. copy_*
2965 * functions used by kernel_clone() cannot be used here directly
2966 * because they modify an inactive task_struct that is being
2967 * constructed. Here we are modifying the current, active,
2968 * task_struct.
2969 */
ksys_unshare(unsigned long unshare_flags)2970 int ksys_unshare(unsigned long unshare_flags)
2971 {
2972 struct fs_struct *fs, *new_fs = NULL;
2973 struct files_struct *fd, *new_fd = NULL;
2974 struct cred *new_cred = NULL;
2975 struct nsproxy *new_nsproxy = NULL;
2976 int do_sysvsem = 0;
2977 int err;
2978
2979 /*
2980 * If unsharing a user namespace must also unshare the thread group
2981 * and unshare the filesystem root and working directories.
2982 */
2983 if (unshare_flags & CLONE_NEWUSER)
2984 unshare_flags |= CLONE_THREAD | CLONE_FS;
2985 /*
2986 * If unsharing vm, must also unshare signal handlers.
2987 */
2988 if (unshare_flags & CLONE_VM)
2989 unshare_flags |= CLONE_SIGHAND;
2990 /*
2991 * If unsharing a signal handlers, must also unshare the signal queues.
2992 */
2993 if (unshare_flags & CLONE_SIGHAND)
2994 unshare_flags |= CLONE_THREAD;
2995 /*
2996 * If unsharing namespace, must also unshare filesystem information.
2997 */
2998 if (unshare_flags & CLONE_NEWNS)
2999 unshare_flags |= CLONE_FS;
3000
3001 err = check_unshare_flags(unshare_flags);
3002 if (err)
3003 goto bad_unshare_out;
3004 /*
3005 * CLONE_NEWIPC must also detach from the undolist: after switching
3006 * to a new ipc namespace, the semaphore arrays from the old
3007 * namespace are unreachable.
3008 */
3009 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3010 do_sysvsem = 1;
3011 err = unshare_fs(unshare_flags, &new_fs);
3012 if (err)
3013 goto bad_unshare_out;
3014 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3015 if (err)
3016 goto bad_unshare_cleanup_fs;
3017 err = unshare_userns(unshare_flags, &new_cred);
3018 if (err)
3019 goto bad_unshare_cleanup_fd;
3020 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3021 new_cred, new_fs);
3022 if (err)
3023 goto bad_unshare_cleanup_cred;
3024
3025 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3026 if (do_sysvsem) {
3027 /*
3028 * CLONE_SYSVSEM is equivalent to sys_exit().
3029 */
3030 exit_sem(current);
3031 }
3032 if (unshare_flags & CLONE_NEWIPC) {
3033 /* Orphan segments in old ns (see sem above). */
3034 exit_shm(current);
3035 shm_init_task(current);
3036 }
3037
3038 if (new_nsproxy)
3039 switch_task_namespaces(current, new_nsproxy);
3040
3041 task_lock(current);
3042
3043 if (new_fs) {
3044 fs = current->fs;
3045 spin_lock(&fs->lock);
3046 current->fs = new_fs;
3047 if (--fs->users)
3048 new_fs = NULL;
3049 else
3050 new_fs = fs;
3051 spin_unlock(&fs->lock);
3052 }
3053
3054 if (new_fd) {
3055 fd = current->files;
3056 current->files = new_fd;
3057 new_fd = fd;
3058 }
3059
3060 task_unlock(current);
3061
3062 if (new_cred) {
3063 /* Install the new user namespace */
3064 commit_creds(new_cred);
3065 new_cred = NULL;
3066 }
3067 }
3068
3069 perf_event_namespaces(current);
3070
3071 bad_unshare_cleanup_cred:
3072 if (new_cred)
3073 put_cred(new_cred);
3074 bad_unshare_cleanup_fd:
3075 if (new_fd)
3076 put_files_struct(new_fd);
3077
3078 bad_unshare_cleanup_fs:
3079 if (new_fs)
3080 free_fs_struct(new_fs);
3081
3082 bad_unshare_out:
3083 return err;
3084 }
3085
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3086 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3087 {
3088 return ksys_unshare(unshare_flags);
3089 }
3090
3091 /*
3092 * Helper to unshare the files of the current task.
3093 * We don't want to expose copy_files internals to
3094 * the exec layer of the kernel.
3095 */
3096
unshare_files(struct files_struct ** displaced)3097 int unshare_files(struct files_struct **displaced)
3098 {
3099 struct task_struct *task = current;
3100 struct files_struct *copy = NULL;
3101 int error;
3102
3103 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3104 if (error || !copy) {
3105 *displaced = NULL;
3106 return error;
3107 }
3108 *displaced = task->files;
3109 task_lock(task);
3110 task->files = copy;
3111 task_unlock(task);
3112 return 0;
3113 }
3114
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3115 int sysctl_max_threads(struct ctl_table *table, int write,
3116 void *buffer, size_t *lenp, loff_t *ppos)
3117 {
3118 struct ctl_table t;
3119 int ret;
3120 int threads = max_threads;
3121 int min = 1;
3122 int max = MAX_THREADS;
3123
3124 t = *table;
3125 t.data = &threads;
3126 t.extra1 = &min;
3127 t.extra2 = &max;
3128
3129 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3130 if (ret || !write)
3131 return ret;
3132
3133 max_threads = threads;
3134
3135 return 0;
3136 }
3137