1 /*-
2 * SPDX-License-Identifier: BSD-2-Clause
3 *
4 * Copyright (c) 2008 Hans Petter Selasky. All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 * 1. Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * 2. Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
25 * SUCH DAMAGE.
26 */
27
28 #include "implementation/global_implementation.h"
29
30 struct usb_process usb_process[USB_PROC_MAX];
31 struct mtx sched_lock;
32
33 #undef USB_DEBUG_VAR
34 #define USB_DEBUG_VAR usb_proc_debug
35 #ifdef LOSCFG_USB_DEBUG
36 static int usb_proc_debug;
37 void
usb_process_debug_func(int level)38 usb_process_debug_func(int level)
39 {
40 usb_proc_debug = level;
41 PRINTK("The level of usb process debug is %d\n", level);
42 }
43 DEBUG_MODULE(process, usb_process_debug_func);
44 #endif
45
46 SPIN_LOCK_INIT(g_usb_process_queue_spinlock);
47
48 /*------------------------------------------------------------------------*
49 * usb_process
50 *
51 * This function is the USB process dispatcher.
52 *------------------------------------------------------------------------*/
53 static void*
usb_process_thread(UINTPTR para)54 usb_process_thread(UINTPTR para)
55 {
56 struct usb_process *up = (struct usb_process*)para;
57 struct usb_proc_msg *pm;
58 struct thread *td;
59 uint32_t int_save;
60
61 /* in case of attach error, check for suspended */
62 USB_THREAD_SUSPEND_CHECK();
63
64 /* adjust priority */
65 td = (struct thread *)(UINTPTR)curthread;
66 thread_lock(td);
67 sched_prio(td, up->up_prio);
68 thread_unlock(td);
69
70 USB_MTX_LOCK(up->up_mtx);
71
72 up->up_curtd = td;
73 while (1) {
74 if (up->up_gone)
75 break;
76
77 /*
78 * NOTE to reimplementors: dequeueing a command from the
79 * "used" queue and executing it must be atomic, with regard
80 * to the "up_mtx" mutex. That means any attempt to queue a
81 * command by another thread must be blocked until either:
82 *
83 * 1) the command sleeps
84 *
85 * 2) the command returns
86 *
87 * Here is a practical example that shows how this helps
88 * solving a problem:
89 *
90 * Assume that you want to set the baud rate on a USB serial
91 * device. During the programming of the device you don't
92 * want to receive nor transmit any data, because it will be
93 * garbage most likely anyway. The programming of our USB
94 * device takes 20 milliseconds and it needs to call
95 * functions that sleep.
96 *
97 * Non-working solution: Before we queue the programming
98 * command, we stop transmission and reception of data. Then
99 * we queue a programming command. At the end of the
100 * programming command we enable transmission and reception
101 * of data.
102 *
103 * Problem: If a second programming command is queued while the
104 * first one is sleeping, we end up enabling transmission
105 * and reception of data too early.
106 *
107 * Working solution: Before we queue the programming command,
108 * we stop transmission and reception of data. Then we queue
109 * a programming command. Then we queue a second command
110 * that only enables transmission and reception of data.
111 *
112 * Why it works: If a second programming command is queued
113 * while the first one is sleeping, then the queueing of a
114 * second command to enable the data transfers, will cause
115 * the previous one, which is still on the queue, to be
116 * removed from the queue, and re-inserted after the last
117 * baud rate programming command, which then gives the
118 * desired result.
119 */
120
121 LOS_SpinLockSave(&g_usb_process_queue_spinlock, &int_save);
122 pm = TAILQ_FIRST(&up->up_qhead);
123 LOS_SpinUnlockRestore(&g_usb_process_queue_spinlock, int_save);
124 if (pm) {
125 DPRINTF("Message pm=%p, cb=%p (enter)\n",
126 pm, pm->pm_callback);
127
128 if (pm->pm_callback)
129 (pm->pm_callback) (pm);
130
131 LOS_SpinLockSave(&g_usb_process_queue_spinlock, &int_save);
132 if (pm == TAILQ_FIRST(&up->up_qhead)) {
133 /* nothing changed */
134 TAILQ_REMOVE(&up->up_qhead, pm, pm_qentry);
135 pm->pm_qentry.tqe_prev = NULL;
136 }
137 LOS_SpinUnlockRestore(&g_usb_process_queue_spinlock, int_save);
138 DPRINTF("Message pm=%p (leave)\n", pm);
139
140 continue;
141 }
142 /* end if messages - check if anyone is waiting for sync */
143 if (up->up_dsleep) {
144 up->up_dsleep = 0;
145 (void)cv_broadcast(&up->up_drain);
146 }
147 up->up_msleep = 1;
148 (void)cv_wait(&up->up_cv, up->up_mtx);
149 }
150
151 up->up_ptr = NULL;
152 (void)cv_signal(&up->up_cv);
153 USB_MTX_UNLOCK(up->up_mtx);
154 USB_THREAD_EXIT(0);
155 return NULL;
156 }
157
158 uint32_t
usb_os_task_creat(pthread_t * taskid,TSK_ENTRY_FUNC func,uint32_t prio,const char * nm,UINTPTR para)159 usb_os_task_creat(pthread_t *taskid, TSK_ENTRY_FUNC func, uint32_t prio, const char *nm, UINTPTR para)
160 {
161 uint32_t ret;
162 TSK_INIT_PARAM_S attr;
163
164 (void)memset_s(&attr, sizeof(TSK_INIT_PARAM_S), 0, sizeof(TSK_INIT_PARAM_S));
165
166 attr.pfnTaskEntry = func;
167 attr.uwStackSize = LOSCFG_BASE_CORE_TSK_DEFAULT_STACK_SIZE;
168 attr.auwArgs[0] = (UINTPTR)para;
169 attr.usTaskPrio = prio;
170 attr.pcName = (char *)nm;
171 attr.uwResved = LOS_TASK_STATUS_DETACHED;
172
173 ret = LOS_TaskCreate((uint32_t *)taskid, &attr);
174 if (ret != LOS_OK) {
175 PRINTK("create %s task error!\n",nm);
176 }
177 return (ret);
178 }
179
180 uint32_t
usb_os_task_delete(pthread_t taskid)181 usb_os_task_delete(pthread_t taskid)
182 {
183 uint32_t ret;
184
185 ret = LOS_TaskDelete(taskid);
186 if (ret != LOS_OK) {
187 PRINTK("delete task error!\n");
188 }
189 return (ret);
190 }
191
192 /*------------------------------------------------------------------------*
193 * usb_proc_create
194 *
195 * This function will create a process using the given "prio" that can
196 * execute callbacks. The mutex pointed to by "p_mtx" will be applied
197 * before calling the callbacks and released after that the callback
198 * has returned. The structure pointed to by "up" is assumed to be
199 * zeroed before this function is called.
200 *
201 * Return values:
202 * 0: success
203 * Else: failure
204 *------------------------------------------------------------------------*/
205 int
usb_proc_create(struct usb_process * up,struct mtx * p_mtx,const char * pmesg,uint8_t prio)206 usb_proc_create(struct usb_process *up, struct mtx *p_mtx,
207 const char *pmesg, uint8_t prio)
208 {
209 uint32_t ret;
210 pthread_t td = 0;
211 up->up_mtx = p_mtx;
212 up->up_prio = prio;
213
214 TAILQ_INIT(&up->up_qhead);
215
216 cv_init(&up->up_cv, "-");
217 cv_init(&up->up_drain, "usbdrain");
218
219 ret = usb_os_task_creat(&td, (TSK_ENTRY_FUNC)usb_process_thread, prio, pmesg, (UINTPTR)up);
220 if (ret != LOS_OK) {
221 DPRINTFN(0, "Unable to create USB process.");
222 up->up_ptr = NULL;
223 goto error;
224 }
225 up->up_ptr = (struct thread *)(UINTPTR)td;
226 return (0);
227
228 error:
229 usb_proc_free(up);
230 return (ENOMEM);
231 }
232
233 /*------------------------------------------------------------------------*
234 * usb_proc_free
235 *
236 * NOTE: If the structure pointed to by "up" is all zero, this
237 * function does nothing.
238 *
239 * NOTE: Messages that are pending on the process queue will not be
240 * removed nor called.
241 *------------------------------------------------------------------------*/
242 void
usb_proc_free(struct usb_process * up)243 usb_proc_free(struct usb_process *up)
244 {
245 /* check if not initialised */
246 if (up->up_mtx == NULL)
247 return;
248
249 usb_proc_drain(up);
250
251 cv_destroy(&up->up_cv);
252 cv_destroy(&up->up_drain);
253
254 /* make sure that we do not enter here again */
255 up->up_mtx = NULL;
256 }
257
258 /*------------------------------------------------------------------------*
259 * usb_proc_msignal
260 *
261 * This function will queue one of the passed USB process messages on
262 * the USB process queue. The first message that is not already queued
263 * will get queued. If both messages are already queued the one queued
264 * last will be removed from the queue and queued in the end. The USB
265 * process mutex must be locked when calling this function. This
266 * function exploits the fact that a process can only do one callback
267 * at a time. The message that was queued is returned.
268 *------------------------------------------------------------------------*/
269 void *
usb_proc_msignal(struct usb_process * up,void * _pm0,void * _pm1)270 usb_proc_msignal(struct usb_process *up, void *_pm0, void *_pm1)
271 {
272 struct usb_proc_msg *pm0 = _pm0;
273 struct usb_proc_msg *pm1 = _pm1;
274 struct usb_proc_msg *pm2;
275 usb_size_t d;
276 uint8_t t;
277 uint32_t int_save;
278
279 /* check if gone, return dummy value */
280 if (up->up_gone)
281 return (_pm0);
282
283 t = 0;
284
285 LOS_SpinLockSave(&g_usb_process_queue_spinlock, &int_save);
286 if (pm0->pm_qentry.tqe_prev) {
287 t |= 1;
288 }
289 if (pm1->pm_qentry.tqe_prev) {
290 t |= 2;
291 }
292 if (t == 0) {
293 /*
294 * No entries are queued. Queue "pm0" and use the existing
295 * message number.
296 */
297 pm2 = pm0;
298 } else if (t == 1) {
299 /* Check if we need to increment the message number. */
300 if (pm0->pm_num == up->up_msg_num) {
301 up->up_msg_num++;
302 }
303 pm2 = pm1;
304 } else if (t == 2) {
305 /* Check if we need to increment the message number. */
306 if (pm1->pm_num == up->up_msg_num) {
307 up->up_msg_num++;
308 }
309 pm2 = pm0;
310 } else if (t == 3) {
311 /*
312 * Both entries are queued. Re-queue the entry closest to
313 * the end.
314 */
315 d = (pm1->pm_num - pm0->pm_num);
316
317 /* Check sign after subtraction */
318 if (d & 0x80000000) {
319 pm2 = pm0;
320 } else {
321 pm2 = pm1;
322 }
323
324 TAILQ_REMOVE(&up->up_qhead, pm2, pm_qentry);
325 pm2->pm_qentry.tqe_prev = NULL;
326 } else {
327 pm2 = NULL; /* panic - should not happen */
328 }
329
330 DPRINTF(" t=%u, num=%u\n", t, up->up_msg_num);
331
332 /* Put message last on queue */
333
334 pm2->pm_num = up->up_msg_num;
335 TAILQ_INSERT_TAIL(&up->up_qhead, pm2, pm_qentry);
336 LOS_SpinUnlockRestore(&g_usb_process_queue_spinlock, int_save);
337
338 /* Check if we need to wakeup the USB process. */
339
340 up->up_msleep = 0; /* save "cv_signal()" calls */
341 (void)cv_signal(&up->up_cv);
342
343 return (pm2);
344 }
345
346 /*------------------------------------------------------------------------*
347 * usb_proc_is_gone
348 *
349 * Return values:
350 * 0: USB process is running
351 * Else: USB process is tearing down
352 *------------------------------------------------------------------------*/
353 uint8_t
usb_proc_is_gone(struct usb_process * up)354 usb_proc_is_gone(struct usb_process *up)
355 {
356 if (up->up_gone) {
357 return (1);
358 }
359
360 /*
361 * Allow calls when up_mtx is NULL, before the USB process
362 * structure is initialised.
363 */
364 if (up->up_mtx != NULL) {
365 mtx_assert(up->up_mtx, MA_OWNED);
366 }
367 return (0);
368 }
369
370 /*------------------------------------------------------------------------*
371 * usb_proc_mwait
372 *
373 * This function will return when the USB process message pointed to
374 * by "pm" is no longer on a queue. This function must be called
375 * having "up->up_mtx" locked.
376 *------------------------------------------------------------------------*/
377 void
usb_proc_mwait(struct usb_process * up,void * _pm0,void * _pm1)378 usb_proc_mwait(struct usb_process *up, void *_pm0, void *_pm1)
379 {
380 struct usb_proc_msg *pm0 = _pm0;
381 struct usb_proc_msg *pm1 = _pm1;
382 uint32_t int_save;
383
384 /* check if gone */
385 if (up->up_gone)
386 return;
387
388 mtx_assert(up->up_mtx, MA_OWNED);
389
390 if (up->up_curtd == (struct thread *)(UINTPTR)curthread) {
391 LOS_SpinLockSave(&g_usb_process_queue_spinlock, &int_save);
392 /* Just remove the messages from the queue. */
393 if (pm0->pm_qentry.tqe_prev) {
394 TAILQ_REMOVE(&up->up_qhead, pm0, pm_qentry);
395 pm0->pm_qentry.tqe_prev = NULL;
396 }
397 if (pm1->pm_qentry.tqe_prev) {
398 TAILQ_REMOVE(&up->up_qhead, pm1, pm_qentry);
399 pm1->pm_qentry.tqe_prev = NULL;
400 }
401 LOS_SpinUnlockRestore(&g_usb_process_queue_spinlock, int_save);
402 } else
403 while (pm0->pm_qentry.tqe_prev ||
404 pm1->pm_qentry.tqe_prev) {
405 /* check if config thread is gone */
406 if (up->up_gone)
407 break;
408 up->up_dsleep = 1;
409 (void)cv_wait(&up->up_drain, up->up_mtx);
410 }
411 }
412
413 /*------------------------------------------------------------------------*
414 * usb_proc_drain
415 *
416 * This function will tear down an USB process, waiting for the
417 * currently executing command to return.
418 *
419 * NOTE: If the structure pointed to by "up" is all zero,
420 * this function does nothing.
421 *------------------------------------------------------------------------*/
422 void
usb_proc_drain(struct usb_process * up)423 usb_proc_drain(struct usb_process *up)
424 {
425 /* check if not initialised */
426 if (up->up_mtx == NULL) {
427 return;
428 }
429
430 /* handle special case with Giant */
431 if (up->up_mtx != &Giant) {
432 mtx_assert(up->up_mtx, MA_NOTOWNED);
433 }
434
435 USB_MTX_LOCK(up->up_mtx);
436
437 /* Set the gone flag */
438
439 up->up_gone = 1;
440
441 while (up->up_ptr) {
442
443 /* Check if we need to wakeup the USB process */
444
445 if (up->up_msleep || up->up_csleep) {
446 up->up_msleep = 0;
447 up->up_csleep = 0;
448 (void)cv_signal(&up->up_cv);
449 }
450 (void)cv_wait(&up->up_cv, up->up_mtx);
451 }
452 /* Check if someone is waiting - should not happen */
453
454 if (up->up_dsleep) {
455 up->up_dsleep = 0;
456 (void)cv_broadcast(&up->up_drain);
457 DPRINTF("WARNING: Someone is waiting "
458 "for USB process drain!\n");
459 }
460 USB_MTX_UNLOCK(up->up_mtx);
461 }
462
463 /*------------------------------------------------------------------------*
464 * usb_proc_rewakeup
465 *
466 * This function is called to re-wakeup the given USB
467 * process. This usually happens after that the USB system has been in
468 * polling mode, like during a panic. This function must be called
469 * having "up->up_mtx" locked.
470 *------------------------------------------------------------------------*/
471 void
usb_proc_rewakeup(struct usb_process * up)472 usb_proc_rewakeup(struct usb_process *up)
473 {
474 /* check if not initialised */
475 if (up->up_mtx == NULL)
476 return;
477 /* check if gone */
478 if (up->up_gone)
479 return;
480
481 mtx_assert(up->up_mtx, MA_OWNED);
482
483 if (up->up_msleep == 0) {
484 /* re-wakeup */
485 (void)cv_signal(&up->up_cv);
486 }
487 }
488
489 /*------------------------------------------------------------------------*
490 * usb_proc_is_called_from
491 *
492 * This function will return non-zero if called from inside the USB
493 * process passed as first argument. Else this function returns zero.
494 *------------------------------------------------------------------------*/
495 int
usb_proc_is_called_from(struct usb_process * up)496 usb_proc_is_called_from(struct usb_process *up)
497 {
498 return (up->up_curtd == (struct thread *)(UINTPTR)curthread);
499 }
500
501 #undef USB_DEBUG_VAR
502