1 /*
2 * Copyright (C) 2022 Collabora Ltd.
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "va_compiler.h"
25 #include "valhall_enums.h"
26 #include "bi_builder.h"
27
28 /*
29 * Insert flow control into a scheduled and register allocated shader. This
30 * pass runs after scheduling and register allocation. This pass only
31 * inserts NOPs with the appropriate flow control modifiers. It should be
32 * followed by a cleanup pass to merge flow control modifiers on adjacent
33 * instructions, eliminating the NOPs. This decouples optimization from
34 * correctness, simplifying both passes.
35 *
36 * This pass is responsible for calculating dependencies, according to the
37 * rules:
38 *
39 * 1. An instruction that depends on the results of a previous asyncronous
40 * must first wait for that instruction's slot, unless all
41 * reaching code paths already depended on it.
42 * 2. More generally, any dependencies must be encoded. This includes
43 * Write-After-Write and Write-After-Read hazards with LOAD/STORE to memory.
44 * 3. The shader must wait on slot #6 before running BLEND, ATEST
45 * 4. The shader must wait on slot #7 before running BLEND, ST_TILE
46 * 6. BARRIER must wait on every active slot.
47 *
48 * Unlike Bifrost, it is not necessary to worry about outbound staging
49 * registers, as the hardware stalls reading staging registers when issuing
50 * asynchronous instructions. So we don't track reads in our model of the
51 * hardware scoreboard. This makes things a bit simpler.
52 *
53 * We may reuse slots for multiple asynchronous instructions, though there may
54 * be a performance penalty.
55 */
56
57 #define BI_NUM_REGISTERS 64
58
59 /*
60 * Insert a NOP instruction with given flow control.
61 */
62 static void
bi_flow(bi_context * ctx,bi_cursor cursor,enum va_flow flow)63 bi_flow(bi_context *ctx, bi_cursor cursor, enum va_flow flow)
64 {
65 bi_builder b = bi_init_builder(ctx, cursor);
66
67 bi_nop(&b)->flow = flow;
68 }
69
70 static uint64_t
bi_read_mask(bi_instr * I)71 bi_read_mask(bi_instr *I)
72 {
73 uint64_t mask = 0;
74
75 bi_foreach_src(I, s) {
76 if (I->src[s].type == BI_INDEX_REGISTER) {
77 unsigned reg = I->src[s].value;
78 unsigned count = bi_count_read_registers(I, s);
79
80 mask |= (BITFIELD64_MASK(count) << reg);
81 }
82 }
83
84 return mask;
85 }
86
87 static uint64_t
bi_write_mask(bi_instr * I)88 bi_write_mask(bi_instr *I)
89 {
90 uint64_t mask = 0;
91
92 bi_foreach_dest(I, d) {
93 if (bi_is_null(I->dest[d])) continue;
94
95 assert(I->dest[d].type == BI_INDEX_REGISTER);
96
97 unsigned reg = I->dest[d].value;
98 unsigned count = bi_count_write_registers(I, d);
99
100 mask |= (BITFIELD64_MASK(count) << reg);
101 }
102
103 return mask;
104 }
105
106 static bool
bi_ld_vary_writes_hidden_register(const bi_instr * I)107 bi_ld_vary_writes_hidden_register(const bi_instr *I)
108 {
109 /* Only varying loads can write the hidden register */
110 if (bi_opcode_props[I->op].message != BIFROST_MESSAGE_VARYING)
111 return false;
112
113 /* They only write in some update modes */
114 return (I->update == BI_UPDATE_STORE) || (I->update == BI_UPDATE_CLOBBER);
115 }
116
117 static bool
bi_is_memory_access(const bi_instr * I)118 bi_is_memory_access(const bi_instr *I)
119 {
120 /* On the attribute unit but functionally a general memory load */
121 if (I->op == BI_OPCODE_LD_ATTR_TEX)
122 return true;
123
124 /* UBOs are read-only so there are no ordering constriants */
125 if (I->seg == BI_SEG_UBO)
126 return false;
127
128 switch (bi_opcode_props[I->op].message) {
129 case BIFROST_MESSAGE_LOAD:
130 case BIFROST_MESSAGE_STORE:
131 case BIFROST_MESSAGE_ATOMIC:
132 return true;
133 default:
134 return false;
135 }
136 }
137
138 /* Update the scoreboard model to assign an instruction to a given slot */
139
140 static void
bi_push_instr(struct bi_scoreboard_state * st,bi_instr * I)141 bi_push_instr(struct bi_scoreboard_state *st, bi_instr *I)
142 {
143 if (bi_opcode_props[I->op].sr_write)
144 st->write[I->slot] |= bi_write_mask(I);
145
146 if (bi_is_memory_access(I))
147 st->memory |= BITFIELD_BIT(I->slot);
148
149 if (bi_opcode_props[I->op].message == BIFROST_MESSAGE_VARYING)
150 st->varying |= BITFIELD_BIT(I->slot);
151 }
152
153 static uint8_t MUST_CHECK
bi_pop_slot(struct bi_scoreboard_state * st,unsigned slot)154 bi_pop_slot(struct bi_scoreboard_state *st, unsigned slot)
155 {
156 st->write[slot] = 0;
157 st->varying &= ~BITFIELD_BIT(slot);
158 st->memory &= ~BITFIELD_BIT(slot);
159
160 return BITFIELD_BIT(slot);
161 }
162
163 /* Adds a dependency on each slot writing any specified register */
164
165 static uint8_t MUST_CHECK
bi_depend_on_writers(struct bi_scoreboard_state * st,uint64_t regmask)166 bi_depend_on_writers(struct bi_scoreboard_state *st, uint64_t regmask)
167 {
168 uint8_t slots = 0;
169
170 for (unsigned slot = 0; slot < ARRAY_SIZE(st->write); ++slot) {
171 if (st->write[slot] & regmask)
172 slots |= bi_pop_slot(st, slot);
173 }
174
175 return slots;
176 }
177
178 /* Sets the dependencies for a given clause, updating the model */
179
180 static void
bi_set_dependencies(bi_block * block,bi_instr * I,struct bi_scoreboard_state * st)181 bi_set_dependencies(bi_block *block, bi_instr *I, struct bi_scoreboard_state *st)
182 {
183 /* Depend on writers to handle read-after-write and write-after-write
184 * dependencies. Write-after-read dependencies are handled in the hardware
185 * where necessary, so we don't worry about them.
186 */
187 I->flow |= bi_depend_on_writers(st, bi_read_mask(I) | bi_write_mask(I));
188
189 /* Handle write-after-write and write-after-read dependencies for the varying
190 * hidden registers. Read-after-write dependencies handled in hardware.
191 */
192 if (bi_ld_vary_writes_hidden_register(I)) {
193 u_foreach_bit(slot, st->varying)
194 I->flow |= bi_pop_slot(st, slot);
195 }
196
197 /* For now, serialize all memory access */
198 if (bi_is_memory_access(I)) {
199 u_foreach_bit(slot, st->memory)
200 I->flow |= bi_pop_slot(st, slot);
201 }
202
203 /* We need to wait for all general slots before a barrier. The reason is
204 * unknown. In theory, this is redundant, since the BARRIER instruction will
205 * be followed immediately by .wait which waits for all slots. However, that
206 * doesn't seem to work properly in practice.
207 *
208 * The DDK is observed to use the same workaround, going so far as
209 * introducing a NOP before a BARRIER at the beginning of a basic block when
210 * there are outstanding stores.
211 *
212 * NOP.wait12
213 * BARRIER.slot7.wait
214 *
215 * Luckily, this situation is pretty rare. The wait introduced here can
216 * usually be merged into the preceding instruction.
217 *
218 * We also use the same workaround to serialize all async instructions when
219 * debugging this pass with the BIFROST_MESA_DEBUG=nosb option.
220 */
221 if (I->op == BI_OPCODE_BARRIER || (bifrost_debug & BIFROST_DBG_NOSB)) {
222 for (unsigned i = 0; i < VA_NUM_GENERAL_SLOTS; ++i) {
223 if (st->write[i] || ((st->varying | st->memory) & BITFIELD_BIT(i)))
224 I->flow |= bi_pop_slot(st, i);
225 }
226 }
227 }
228
229 static bool
scoreboard_block_update(bi_context * ctx,bi_block * blk)230 scoreboard_block_update(bi_context *ctx, bi_block *blk)
231 {
232 bool progress = false;
233
234 /* pending_in[s] = sum { p in pred[s] } ( pending_out[p] ) */
235 bi_foreach_predecessor(blk, pred) {
236 for (unsigned i = 0; i < BI_NUM_SLOTS; ++i) {
237 blk->scoreboard_in.read[i] |= (*pred)->scoreboard_out.read[i];
238 blk->scoreboard_in.write[i] |= (*pred)->scoreboard_out.write[i];
239 blk->scoreboard_in.varying |= (*pred)->scoreboard_out.varying;
240 blk->scoreboard_in.memory |= (*pred)->scoreboard_out.memory;
241 }
242 }
243
244 struct bi_scoreboard_state state = blk->scoreboard_in;
245
246 /* Assign locally */
247
248 bi_foreach_instr_in_block(blk, I) {
249 bi_set_dependencies(blk, I, &state);
250 bi_push_instr(&state, I);
251 }
252
253 /* Insert a wait for varyings at the end of the block.
254 *
255 * A varying load with .store has to wait for all other varying loads
256 * in the quad to complete. The bad case looks like:
257 *
258 * if (dynamic) {
259 * x = ld_var()
260 * } else {
261 * x = ld_var()
262 * }
263 *
264 * Logically, a given thread executes only a single ld_var instruction. But
265 * if the quad diverges, the second ld_var has to wait for the first ld_var.
266 * For correct handling, we need to maintain a physical control flow graph
267 * and do the dataflow analysis on that instead of the logical control flow
268 * graph. However, this probably doesn't matter much in practice. This seems
269 * like a decent compromise for now.
270 *
271 * TODO: Consider optimizing this case.
272 */
273 if (state.varying) {
274 uint8_t flow = 0;
275
276 u_foreach_bit(slot, state.varying)
277 flow |= bi_pop_slot(&state, slot);
278
279 bi_flow(ctx, bi_after_block(blk), flow);
280 }
281
282 /* To figure out progress, diff scoreboard_out */
283 progress = !!memcmp(&state, &blk->scoreboard_out, sizeof(state));
284
285 blk->scoreboard_out = state;
286
287 return progress;
288 }
289
290 static void
va_assign_scoreboard(bi_context * ctx)291 va_assign_scoreboard(bi_context *ctx)
292 {
293 u_worklist worklist;
294 bi_worklist_init(ctx, &worklist);
295
296 bi_foreach_block(ctx, block) {
297 bi_worklist_push_tail(&worklist, block);
298 }
299
300 /* Perform forward data flow analysis to calculate dependencies */
301 while (!u_worklist_is_empty(&worklist)) {
302 /* Pop from the front for forward analysis */
303 bi_block *blk = bi_worklist_pop_head(&worklist);
304
305 if (scoreboard_block_update(ctx, blk)) {
306 bi_foreach_successor(blk, succ)
307 bi_worklist_push_tail(&worklist, succ);
308 }
309 }
310
311 u_worklist_fini(&worklist);
312 }
313
314 /*
315 * Determine if execution should terminate after a given block. Execution cannot
316 * terminate within a basic block.
317 */
318 static bool
va_should_end(bi_block * block)319 va_should_end(bi_block *block)
320 {
321 /* Don't return if we're succeeded by instructions */
322 for (unsigned i = 0; i < ARRAY_SIZE(block->successors); ++i) {
323 bi_block *succ = block->successors[i];
324
325 if (succ)
326 return false;
327 }
328
329 return true;
330 }
331
332 /*
333 * We should discard helper invocations as soon as helper invocations die after
334 * their last use. Either they die after an instruction using helper
335 * invocations, or they die along a control flow edge. The former is handled by
336 * discarding appropriately after instructions. The latter is handled by
337 * inserting a discard at the _start_ of some blocks:
338 *
339 * Lemma: If a non-critical edge discards helpers, it is the only edge that
340 * enters its destination.
341 *
342 * Proof: An edge discards helpers if helpers are live at the end of the source
343 * block and dead at the start of the destination block. By definition, helpers
344 * are live at the end of a block iff they are live at the start of some
345 * successor of a block. The source block therefore has a successor with helpers
346 * live at the start and a successor with helpers dead at the start. As the
347 * source block has at least two successors, the edge is NOT the only edge
348 * exiting its source. Hence it is the only edge entering the destination,
349 * otherwise the edge would be critical.
350 *
351 * By corrollary, we may handle discards on control flow edges by discarding at
352 * the start of blocks with a single predecessor.
353 *
354 * This routine tests if a block should discard helper invocations at its start.
355 */
356 static bool
va_discard_before_block(bi_block * block)357 va_discard_before_block(bi_block *block)
358 {
359 /* Do not discard if the block requires helpers at the start */
360 if (block->pass_flags)
361 return false;
362
363 /* By the lemma, if we need to discard, there is a unique predecessor */
364 if (bi_num_predecessors(block) != 1)
365 return false;
366
367 bi_block *pred = *util_dynarray_element(&block->predecessors, bi_block *, 0);
368
369 /* Discard if helpers are live at the end of the predecessor, due to helpers
370 * live at the start of some (other) successor.
371 */
372 bi_foreach_successor(pred, succ) {
373 if (succ->pass_flags)
374 return true;
375 }
376
377 return false;
378 }
379
380 /*
381 * Test if a program is empty, in the sense of having zero instructions. Empty
382 * shaders get special handling.
383 */
384 static bool
bi_is_empty(bi_context * ctx)385 bi_is_empty(bi_context *ctx)
386 {
387 bi_foreach_instr_global(ctx, _)
388 return false;
389
390 return true;
391 }
392
393 /*
394 * Given a program with no flow control modifiers, insert NOPs signaling the
395 * required flow control. Not much optimization happens here.
396 */
397 void
va_insert_flow_control_nops(bi_context * ctx)398 va_insert_flow_control_nops(bi_context *ctx)
399 {
400 /* Special case: if a program is empty, leave it empty. In particular, do not
401 * insert NOP.end. There is special handling in the driver for skipping empty
402 * shaders for shader stage. The .end is not necessary and disrupts
403 * optimizations.
404 */
405 if (bi_is_empty(ctx))
406 return;
407
408 /* First do dataflow analysis for the scoreboard. This populates I->flow with
409 * a bitmap of slots to wait on.
410 *
411 * Also do dataflow analysis for helper invocations in fragment shaders. This
412 * populates block->pass_flags with helper invocation information.
413 */
414 va_assign_scoreboard(ctx);
415 bi_analyze_helper_terminate(ctx);
416
417 bi_foreach_block(ctx, block) {
418 /* Handle discards along control flow edges */
419 if (va_discard_before_block(block))
420 bi_flow(ctx, bi_before_block(block), VA_FLOW_DISCARD);
421
422 bi_foreach_instr_in_block_safe(block, I) {
423 switch (I->op) {
424 /* Signal barriers immediately */
425 case BI_OPCODE_BARRIER:
426 bi_flow(ctx, bi_after_instr(I), VA_FLOW_WAIT);
427 break;
428
429 /* Insert waits for tilebuffer and depth/stencil instructions. These
430 * only happen in regular fragment shaders, as the required waits are
431 * assumed to already have happened in blend shaders.
432 *
433 * For discarded thread handling, ATEST must be serialized against all
434 * other asynchronous instructions and should be serialized against all
435 * instructions. Wait for slot 0 immediately after the ATEST.
436 */
437 case BI_OPCODE_BLEND:
438 case BI_OPCODE_LD_TILE:
439 case BI_OPCODE_ST_TILE:
440 if (!ctx->inputs->is_blend)
441 bi_flow(ctx, bi_before_instr(I), VA_FLOW_WAIT);
442 break;
443 case BI_OPCODE_ATEST:
444 bi_flow(ctx, bi_before_instr(I), VA_FLOW_WAIT0126);
445 bi_flow(ctx, bi_after_instr(I), VA_FLOW_WAIT0);
446 break;
447 case BI_OPCODE_ZS_EMIT:
448 if (!ctx->inputs->is_blend)
449 bi_flow(ctx, bi_before_instr(I), VA_FLOW_WAIT0126);
450 break;
451
452 default:
453 break;
454 }
455
456 if (I->flow && I->op != BI_OPCODE_NOP) {
457 /* Wait on the results of asynchronous instructions
458 *
459 * Bitmap of general slots lines up with the encoding of va_flow for
460 * waits on general slots. The dataflow analysis should be ignoring
461 * the special slots #6 and #7, which are handled separately.
462 */
463 assert((I->flow & ~BITFIELD_MASK(VA_NUM_GENERAL_SLOTS)) == 0);
464
465 bi_flow(ctx, bi_before_instr(I), I->flow);
466 I->flow = 0;
467 }
468 }
469
470 /* Terminate helpers after the last use */
471 if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->inputs->is_blend &&
472 block->pass_flags && bi_block_terminates_helpers(block)) {
473
474 bi_foreach_instr_in_block_safe_rev(block, I) {
475 if (bi_instr_uses_helpers(I)) {
476 bi_flow(ctx, bi_after_instr(I), VA_FLOW_DISCARD);
477 break;
478 }
479 }
480 }
481
482 /* End exeuction at the end of the block if needed, or reconverge if we
483 * continue but we don't need to end execution.
484 */
485 if (va_should_end(block) || block->needs_nop) {
486 /* Don't bother adding a NOP into an unreachable block */
487 if (block == bi_start_block(&ctx->blocks) || bi_num_predecessors(block))
488 bi_flow(ctx, bi_after_block(block), VA_FLOW_END);
489 } else if (bi_reconverge_branches(block)) {
490 /* TODO: Do we have ever need to reconverge from an empty block? */
491 if (!list_is_empty(&block->instructions))
492 bi_flow(ctx, bi_after_block(block), VA_FLOW_RECONVERGE);
493 }
494 }
495
496 /* If helpers are not used anywhere, they are not used at the start, so we
497 * terminate at the start. Else, helpers are used somewhere in the shader and
498 * are terminated after last use.
499 */
500 bi_block *start = bi_start_block(&ctx->blocks);
501 bool frag = (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->inputs->is_blend);
502
503 if (frag && !start->pass_flags)
504 bi_flow(ctx, bi_before_block(start), VA_FLOW_DISCARD);
505 }
506
507 /*
508 * Assign slots to all asynchronous instructions. A few special instructions
509 * require specific slots. For the rest, we assign slots in a round-robin
510 * fashion to reduce false dependencies when encoding waits.
511 *
512 * This should be called before va_insert_flow_control_nops.
513 */
514 void
va_assign_slots(bi_context * ctx)515 va_assign_slots(bi_context *ctx)
516 {
517 unsigned counter = 0;
518
519 bi_foreach_instr_global(ctx, I) {
520 if (I->op == BI_OPCODE_BARRIER) {
521 I->slot = 7;
522 } else if (I->op == BI_OPCODE_ZS_EMIT || I->op == BI_OPCODE_ATEST) {
523 I->slot = 0;
524 } else if (bi_opcode_props[I->op].message) {
525 I->slot = counter++;
526
527 if (counter == 3)
528 counter = 0;
529 }
530 }
531 }
532