• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2022 Collabora Ltd.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  */
23 
24 #include "va_compiler.h"
25 #include "valhall_enums.h"
26 #include "bi_builder.h"
27 
28 /*
29  * Insert flow control into a scheduled and register allocated shader.  This
30  * pass runs after scheduling and register allocation. This pass only
31  * inserts NOPs with the appropriate flow control modifiers. It should be
32  * followed by a cleanup pass to merge flow control modifiers on adjacent
33  * instructions, eliminating the NOPs. This decouples optimization from
34  * correctness, simplifying both passes.
35  *
36  * This pass is responsible for calculating dependencies, according to the
37  * rules:
38  *
39  * 1. An instruction that depends on the results of a previous asyncronous
40  *    must first wait for that instruction's slot, unless all
41  *    reaching code paths already depended on it.
42  * 2. More generally, any dependencies must be encoded. This includes
43  *    Write-After-Write and Write-After-Read hazards with LOAD/STORE to memory.
44  * 3. The shader must wait on slot #6 before running BLEND, ATEST
45  * 4. The shader must wait on slot #7 before running BLEND, ST_TILE
46  * 6. BARRIER must wait on every active slot.
47  *
48  * Unlike Bifrost, it is not necessary to worry about outbound staging
49  * registers, as the hardware stalls reading staging registers when issuing
50  * asynchronous instructions. So we don't track reads in our model of the
51  * hardware scoreboard. This makes things a bit simpler.
52  *
53  * We may reuse slots for multiple asynchronous instructions, though there may
54  * be a performance penalty.
55  */
56 
57 #define BI_NUM_REGISTERS 64
58 
59 /*
60  * Insert a NOP instruction with given flow control.
61  */
62 static void
bi_flow(bi_context * ctx,bi_cursor cursor,enum va_flow flow)63 bi_flow(bi_context *ctx, bi_cursor cursor, enum va_flow flow)
64 {
65    bi_builder b = bi_init_builder(ctx, cursor);
66 
67    bi_nop(&b)->flow = flow;
68 }
69 
70 static uint64_t
bi_read_mask(bi_instr * I)71 bi_read_mask(bi_instr *I)
72 {
73    uint64_t mask = 0;
74 
75    bi_foreach_src(I, s) {
76       if (I->src[s].type == BI_INDEX_REGISTER) {
77          unsigned reg = I->src[s].value;
78          unsigned count = bi_count_read_registers(I, s);
79 
80          mask |= (BITFIELD64_MASK(count) << reg);
81       }
82    }
83 
84    return mask;
85 }
86 
87 static uint64_t
bi_write_mask(bi_instr * I)88 bi_write_mask(bi_instr *I)
89 {
90    uint64_t mask = 0;
91 
92    bi_foreach_dest(I, d) {
93       if (bi_is_null(I->dest[d])) continue;
94 
95       assert(I->dest[d].type == BI_INDEX_REGISTER);
96 
97       unsigned reg = I->dest[d].value;
98       unsigned count = bi_count_write_registers(I, d);
99 
100       mask |= (BITFIELD64_MASK(count) << reg);
101    }
102 
103    return mask;
104 }
105 
106 static bool
bi_ld_vary_writes_hidden_register(const bi_instr * I)107 bi_ld_vary_writes_hidden_register(const bi_instr *I)
108 {
109    /* Only varying loads can write the hidden register */
110    if (bi_opcode_props[I->op].message != BIFROST_MESSAGE_VARYING)
111       return false;
112 
113    /* They only write in some update modes */
114    return (I->update == BI_UPDATE_STORE) || (I->update == BI_UPDATE_CLOBBER);
115 }
116 
117 static bool
bi_is_memory_access(const bi_instr * I)118 bi_is_memory_access(const bi_instr *I)
119 {
120    /* On the attribute unit but functionally a general memory load */
121    if (I->op == BI_OPCODE_LD_ATTR_TEX)
122       return true;
123 
124    /* UBOs are read-only so there are no ordering constriants */
125    if (I->seg == BI_SEG_UBO)
126       return false;
127 
128    switch (bi_opcode_props[I->op].message) {
129    case BIFROST_MESSAGE_LOAD:
130    case BIFROST_MESSAGE_STORE:
131    case BIFROST_MESSAGE_ATOMIC:
132       return true;
133    default:
134       return false;
135    }
136 }
137 
138 /* Update the scoreboard model to assign an instruction to a given slot */
139 
140 static void
bi_push_instr(struct bi_scoreboard_state * st,bi_instr * I)141 bi_push_instr(struct bi_scoreboard_state *st, bi_instr *I)
142 {
143    if (bi_opcode_props[I->op].sr_write)
144       st->write[I->slot] |= bi_write_mask(I);
145 
146    if (bi_is_memory_access(I))
147       st->memory |= BITFIELD_BIT(I->slot);
148 
149    if (bi_opcode_props[I->op].message == BIFROST_MESSAGE_VARYING)
150       st->varying |= BITFIELD_BIT(I->slot);
151 }
152 
153 static uint8_t MUST_CHECK
bi_pop_slot(struct bi_scoreboard_state * st,unsigned slot)154 bi_pop_slot(struct bi_scoreboard_state *st, unsigned slot)
155 {
156    st->write[slot] = 0;
157    st->varying &= ~BITFIELD_BIT(slot);
158    st->memory &= ~BITFIELD_BIT(slot);
159 
160    return BITFIELD_BIT(slot);
161 }
162 
163 /* Adds a dependency on each slot writing any specified register */
164 
165 static uint8_t MUST_CHECK
bi_depend_on_writers(struct bi_scoreboard_state * st,uint64_t regmask)166 bi_depend_on_writers(struct bi_scoreboard_state *st, uint64_t regmask)
167 {
168    uint8_t slots = 0;
169 
170    for (unsigned slot = 0; slot < ARRAY_SIZE(st->write); ++slot) {
171       if (st->write[slot] & regmask)
172          slots |= bi_pop_slot(st, slot);
173    }
174 
175    return slots;
176 }
177 
178 /* Sets the dependencies for a given clause, updating the model */
179 
180 static void
bi_set_dependencies(bi_block * block,bi_instr * I,struct bi_scoreboard_state * st)181 bi_set_dependencies(bi_block *block, bi_instr *I, struct bi_scoreboard_state *st)
182 {
183    /* Depend on writers to handle read-after-write and write-after-write
184     * dependencies. Write-after-read dependencies are handled in the hardware
185     * where necessary, so we don't worry about them.
186     */
187    I->flow |= bi_depend_on_writers(st, bi_read_mask(I) | bi_write_mask(I));
188 
189    /* Handle write-after-write and write-after-read dependencies for the varying
190     * hidden registers. Read-after-write dependencies handled in hardware.
191     */
192    if (bi_ld_vary_writes_hidden_register(I)) {
193       u_foreach_bit(slot, st->varying)
194          I->flow |= bi_pop_slot(st, slot);
195    }
196 
197    /* For now, serialize all memory access */
198    if (bi_is_memory_access(I)) {
199       u_foreach_bit(slot, st->memory)
200          I->flow |= bi_pop_slot(st, slot);
201    }
202 
203    /* We need to wait for all general slots before a barrier. The reason is
204     * unknown. In theory, this is redundant, since the BARRIER instruction will
205     * be followed immediately by .wait which waits for all slots. However, that
206     * doesn't seem to work properly in practice.
207     *
208     * The DDK is observed to use the same workaround, going so far as
209     * introducing a NOP before a BARRIER at the beginning of a basic block when
210     * there are outstanding stores.
211     *
212     *     NOP.wait12
213     *     BARRIER.slot7.wait
214     *
215     * Luckily, this situation is pretty rare. The wait introduced here can
216     * usually be merged into the preceding instruction.
217     *
218     * We also use the same workaround to serialize all async instructions when
219     * debugging this pass with the BIFROST_MESA_DEBUG=nosb option.
220     */
221    if (I->op == BI_OPCODE_BARRIER || (bifrost_debug & BIFROST_DBG_NOSB)) {
222       for (unsigned i = 0; i < VA_NUM_GENERAL_SLOTS; ++i) {
223          if (st->write[i] || ((st->varying | st->memory) & BITFIELD_BIT(i)))
224             I->flow |= bi_pop_slot(st, i);
225       }
226    }
227 }
228 
229 static bool
scoreboard_block_update(bi_context * ctx,bi_block * blk)230 scoreboard_block_update(bi_context *ctx, bi_block *blk)
231 {
232    bool progress = false;
233 
234    /* pending_in[s] = sum { p in pred[s] } ( pending_out[p] ) */
235    bi_foreach_predecessor(blk, pred) {
236       for (unsigned i = 0; i < BI_NUM_SLOTS; ++i) {
237          blk->scoreboard_in.read[i] |= (*pred)->scoreboard_out.read[i];
238          blk->scoreboard_in.write[i] |= (*pred)->scoreboard_out.write[i];
239          blk->scoreboard_in.varying |= (*pred)->scoreboard_out.varying;
240          blk->scoreboard_in.memory |= (*pred)->scoreboard_out.memory;
241       }
242    }
243 
244    struct bi_scoreboard_state state = blk->scoreboard_in;
245 
246    /* Assign locally */
247 
248    bi_foreach_instr_in_block(blk, I) {
249       bi_set_dependencies(blk, I, &state);
250       bi_push_instr(&state, I);
251    }
252 
253    /* Insert a wait for varyings at the end of the block.
254     *
255     * A varying load with .store has to wait for all other varying loads
256     * in the quad to complete. The bad case looks like:
257     *
258     *    if (dynamic) {
259     *        x = ld_var()
260     *    } else {
261     *       x = ld_var()
262     *    }
263     *
264     * Logically, a given thread executes only a single ld_var instruction. But
265     * if the quad diverges, the second ld_var has to wait for the first ld_var.
266     * For correct handling, we need to maintain a physical control flow graph
267     * and do the dataflow analysis on that instead of the logical control flow
268     * graph. However, this probably doesn't matter much in practice. This seems
269     * like a decent compromise for now.
270     *
271     * TODO: Consider optimizing this case.
272     */
273    if (state.varying) {
274       uint8_t flow = 0;
275 
276       u_foreach_bit(slot, state.varying)
277          flow |= bi_pop_slot(&state, slot);
278 
279       bi_flow(ctx, bi_after_block(blk), flow);
280    }
281 
282    /* To figure out progress, diff scoreboard_out */
283    progress = !!memcmp(&state, &blk->scoreboard_out, sizeof(state));
284 
285    blk->scoreboard_out = state;
286 
287    return progress;
288 }
289 
290 static void
va_assign_scoreboard(bi_context * ctx)291 va_assign_scoreboard(bi_context *ctx)
292 {
293    u_worklist worklist;
294    bi_worklist_init(ctx, &worklist);
295 
296    bi_foreach_block(ctx, block) {
297       bi_worklist_push_tail(&worklist, block);
298    }
299 
300    /* Perform forward data flow analysis to calculate dependencies */
301    while (!u_worklist_is_empty(&worklist)) {
302       /* Pop from the front for forward analysis */
303       bi_block *blk = bi_worklist_pop_head(&worklist);
304 
305       if (scoreboard_block_update(ctx, blk)) {
306          bi_foreach_successor(blk, succ)
307             bi_worklist_push_tail(&worklist, succ);
308       }
309    }
310 
311    u_worklist_fini(&worklist);
312 }
313 
314 /*
315  * Determine if execution should terminate after a given block. Execution cannot
316  * terminate within a basic block.
317  */
318 static bool
va_should_end(bi_block * block)319 va_should_end(bi_block *block)
320 {
321    /* Don't return if we're succeeded by instructions */
322    for (unsigned i = 0; i < ARRAY_SIZE(block->successors); ++i) {
323       bi_block *succ = block->successors[i];
324 
325       if (succ)
326          return false;
327    }
328 
329    return true;
330 }
331 
332 /*
333  * We should discard helper invocations as soon as helper invocations die after
334  * their last use. Either they die after an instruction using helper
335  * invocations, or they die along a control flow edge. The former is handled by
336  * discarding appropriately after instructions. The latter is handled by
337  * inserting a discard at the _start_ of some blocks:
338  *
339  * Lemma: If a non-critical edge discards helpers, it is the only edge that
340  * enters its destination.
341  *
342  * Proof: An edge discards helpers if helpers are live at the end of the source
343  * block and dead at the start of the destination block. By definition, helpers
344  * are live at the end of a block iff they are live at the start of some
345  * successor of a block. The source block therefore has a successor with helpers
346  * live at the start and a successor with helpers dead at the start. As the
347  * source block has at least two successors, the edge is NOT the only edge
348  * exiting its source. Hence it is the only edge entering the destination,
349  * otherwise the edge would be critical.
350  *
351  * By corrollary, we may handle discards on control flow edges by discarding at
352  * the start of blocks with a single predecessor.
353  *
354  * This routine tests if a block should discard helper invocations at its start.
355  */
356 static bool
va_discard_before_block(bi_block * block)357 va_discard_before_block(bi_block *block)
358 {
359    /* Do not discard if the block requires helpers at the start */
360    if (block->pass_flags)
361       return false;
362 
363    /* By the lemma, if we need to discard, there is a unique predecessor */
364    if (bi_num_predecessors(block) != 1)
365       return false;
366 
367    bi_block *pred = *util_dynarray_element(&block->predecessors, bi_block *, 0);
368 
369    /* Discard if helpers are live at the end of the predecessor, due to helpers
370     * live at the start of some (other) successor.
371     */
372    bi_foreach_successor(pred, succ) {
373       if (succ->pass_flags)
374          return true;
375    }
376 
377    return false;
378 }
379 
380 /*
381  * Test if a program is empty, in the sense of having zero instructions. Empty
382  * shaders get special handling.
383  */
384 static bool
bi_is_empty(bi_context * ctx)385 bi_is_empty(bi_context *ctx)
386 {
387    bi_foreach_instr_global(ctx, _)
388       return false;
389 
390    return true;
391 }
392 
393 /*
394  * Given a program with no flow control modifiers, insert NOPs signaling the
395  * required flow control. Not much optimization happens here.
396  */
397 void
va_insert_flow_control_nops(bi_context * ctx)398 va_insert_flow_control_nops(bi_context *ctx)
399 {
400    /* Special case: if a program is empty, leave it empty. In particular, do not
401     * insert NOP.end. There is special handling in the driver for skipping empty
402     * shaders for shader stage. The .end is not necessary and disrupts
403     * optimizations.
404     */
405    if (bi_is_empty(ctx))
406       return;
407 
408    /* First do dataflow analysis for the scoreboard. This populates I->flow with
409     * a bitmap of slots to wait on.
410     *
411     * Also do dataflow analysis for helper invocations in fragment shaders. This
412     * populates block->pass_flags with helper invocation information.
413     */
414    va_assign_scoreboard(ctx);
415    bi_analyze_helper_terminate(ctx);
416 
417    bi_foreach_block(ctx, block) {
418       /* Handle discards along control flow edges */
419       if (va_discard_before_block(block))
420          bi_flow(ctx, bi_before_block(block), VA_FLOW_DISCARD);
421 
422       bi_foreach_instr_in_block_safe(block, I) {
423          switch (I->op) {
424          /* Signal barriers immediately */
425          case BI_OPCODE_BARRIER:
426             bi_flow(ctx, bi_after_instr(I), VA_FLOW_WAIT);
427             break;
428 
429          /* Insert waits for tilebuffer and depth/stencil instructions. These
430           * only happen in regular fragment shaders, as the required waits are
431           * assumed to already have happened in blend shaders.
432           *
433           * For discarded thread handling, ATEST must be serialized against all
434           * other asynchronous instructions and should be serialized against all
435           * instructions. Wait for slot 0 immediately after the ATEST.
436           */
437          case BI_OPCODE_BLEND:
438          case BI_OPCODE_LD_TILE:
439          case BI_OPCODE_ST_TILE:
440             if (!ctx->inputs->is_blend)
441                bi_flow(ctx, bi_before_instr(I), VA_FLOW_WAIT);
442             break;
443          case BI_OPCODE_ATEST:
444             bi_flow(ctx, bi_before_instr(I), VA_FLOW_WAIT0126);
445             bi_flow(ctx, bi_after_instr(I), VA_FLOW_WAIT0);
446             break;
447          case BI_OPCODE_ZS_EMIT:
448             if (!ctx->inputs->is_blend)
449                bi_flow(ctx, bi_before_instr(I), VA_FLOW_WAIT0126);
450             break;
451 
452          default:
453             break;
454          }
455 
456          if (I->flow && I->op != BI_OPCODE_NOP) {
457             /* Wait on the results of asynchronous instructions
458              *
459              * Bitmap of general slots lines up with the encoding of va_flow for
460              * waits on general slots. The dataflow analysis should be ignoring
461              * the special slots #6 and #7, which are handled separately.
462              */
463             assert((I->flow & ~BITFIELD_MASK(VA_NUM_GENERAL_SLOTS)) == 0);
464 
465             bi_flow(ctx, bi_before_instr(I), I->flow);
466             I->flow = 0;
467          }
468       }
469 
470       /* Terminate helpers after the last use */
471       if (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->inputs->is_blend &&
472           block->pass_flags && bi_block_terminates_helpers(block)) {
473 
474          bi_foreach_instr_in_block_safe_rev(block, I) {
475             if (bi_instr_uses_helpers(I)) {
476                bi_flow(ctx, bi_after_instr(I), VA_FLOW_DISCARD);
477                break;
478             }
479          }
480       }
481 
482       /* End exeuction at the end of the block if needed, or reconverge if we
483        * continue but we don't need to end execution.
484        */
485       if (va_should_end(block) || block->needs_nop) {
486          /* Don't bother adding a NOP into an unreachable block */
487          if (block == bi_start_block(&ctx->blocks) || bi_num_predecessors(block))
488             bi_flow(ctx, bi_after_block(block), VA_FLOW_END);
489       } else if (bi_reconverge_branches(block)) {
490          /* TODO: Do we have ever need to reconverge from an empty block? */
491          if (!list_is_empty(&block->instructions))
492             bi_flow(ctx, bi_after_block(block), VA_FLOW_RECONVERGE);
493       }
494    }
495 
496    /* If helpers are not used anywhere, they are not used at the start, so we
497     * terminate at the start. Else, helpers are used somewhere in the shader and
498     * are terminated after last use.
499     */
500    bi_block *start = bi_start_block(&ctx->blocks);
501    bool frag = (ctx->stage == MESA_SHADER_FRAGMENT && !ctx->inputs->is_blend);
502 
503    if (frag && !start->pass_flags)
504       bi_flow(ctx, bi_before_block(start), VA_FLOW_DISCARD);
505 }
506 
507 /*
508  * Assign slots to all asynchronous instructions. A few special instructions
509  * require specific slots. For the rest, we assign slots in a round-robin
510  * fashion to reduce false dependencies when encoding waits.
511  *
512  * This should be called before va_insert_flow_control_nops.
513  */
514 void
va_assign_slots(bi_context * ctx)515 va_assign_slots(bi_context *ctx)
516 {
517    unsigned counter = 0;
518 
519    bi_foreach_instr_global(ctx, I) {
520       if (I->op == BI_OPCODE_BARRIER) {
521          I->slot = 7;
522       } else if (I->op == BI_OPCODE_ZS_EMIT || I->op == BI_OPCODE_ATEST) {
523          I->slot = 0;
524       } else if (bi_opcode_props[I->op].message) {
525          I->slot = counter++;
526 
527          if (counter == 3)
528             counter = 0;
529       }
530    }
531 }
532