• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27 
28 #include "brw_fs.h"
29 #include "brw_fs_live_variables.h"
30 
31 using namespace brw;
32 
33 #define MAX_INSTRUCTION (1 << 30)
34 
35 /** @file brw_fs_live_variables.cpp
36  *
37  * Support for calculating liveness information about virtual GRFs.
38  *
39  * This produces a live interval for each whole virtual GRF.  We could
40  * choose to expose per-component live intervals for VGRFs of size > 1,
41  * but we currently do not.  It is easier for the consumers of this
42  * information to work with whole VGRFs.
43  *
44  * However, we internally track use/def information at the per-GRF level for
45  * greater accuracy.  Large VGRFs may be accessed piecemeal over many
46  * (possibly non-adjacent) instructions.  In this case, examining a single
47  * instruction is insufficient to decide whether a whole VGRF is ultimately
48  * used or defined.  Tracking individual components allows us to easily
49  * assemble this information.
50  *
51  * See Muchnick's Advanced Compiler Design and Implementation, section
52  * 14.1 (p444).
53  */
54 
55 void
setup_one_read(struct block_data * bd,int ip,const fs_reg & reg)56 fs_live_variables::setup_one_read(struct block_data *bd,
57                                   int ip, const fs_reg &reg)
58 {
59    int var = var_from_reg(reg);
60    assert(var < num_vars);
61 
62    start[var] = MIN2(start[var], ip);
63    end[var] = MAX2(end[var], ip);
64 
65    /* The use[] bitset marks when the block makes use of a variable (VGRF
66     * channel) without having completely defined that variable within the
67     * block.
68     */
69    if (!BITSET_TEST(bd->def, var))
70       BITSET_SET(bd->use, var);
71 }
72 
73 void
setup_one_write(struct block_data * bd,fs_inst * inst,int ip,const fs_reg & reg)74 fs_live_variables::setup_one_write(struct block_data *bd, fs_inst *inst,
75                                    int ip, const fs_reg &reg)
76 {
77    int var = var_from_reg(reg);
78    assert(var < num_vars);
79 
80    start[var] = MIN2(start[var], ip);
81    end[var] = MAX2(end[var], ip);
82 
83    /* The def[] bitset marks when an initialization in a block completely
84     * screens off previous updates of that variable (VGRF channel).
85     */
86    if (inst->dst.file == VGRF) {
87       if (!inst->is_partial_write() && !BITSET_TEST(bd->use, var))
88          BITSET_SET(bd->def, var);
89 
90       BITSET_SET(bd->defout, var);
91    }
92 }
93 
94 /**
95  * Sets up the use[] and def[] bitsets.
96  *
97  * The basic-block-level live variable analysis needs to know which
98  * variables get used before they're completely defined, and which
99  * variables are completely defined before they're used.
100  *
101  * These are tracked at the per-component level, rather than whole VGRFs.
102  */
103 void
setup_def_use()104 fs_live_variables::setup_def_use()
105 {
106    int ip = 0;
107 
108    foreach_block (block, cfg) {
109       assert(ip == block->start_ip);
110       if (block->num > 0)
111 	 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
112 
113       struct block_data *bd = &block_data[block->num];
114 
115       foreach_inst_in_block(fs_inst, inst, block) {
116 	 /* Set use[] for this instruction */
117 	 for (unsigned int i = 0; i < inst->sources; i++) {
118             fs_reg reg = inst->src[i];
119 
120             if (reg.file != VGRF)
121                continue;
122 
123             for (unsigned j = 0; j < regs_read(inst, i); j++) {
124                setup_one_read(bd, ip, reg);
125                reg.offset += REG_SIZE;
126             }
127 	 }
128 
129          bd->flag_use[0] |= inst->flags_read(devinfo) & ~bd->flag_def[0];
130 
131          /* Set def[] for this instruction */
132          if (inst->dst.file == VGRF) {
133             fs_reg reg = inst->dst;
134             for (unsigned j = 0; j < regs_written(inst); j++) {
135                setup_one_write(bd, inst, ip, reg);
136                reg.offset += REG_SIZE;
137             }
138 	 }
139 
140          if (!inst->predicate && inst->exec_size >= 8)
141             bd->flag_def[0] |= inst->flags_written(devinfo) & ~bd->flag_use[0];
142 
143 	 ip++;
144       }
145    }
146 }
147 
148 /**
149  * The algorithm incrementally sets bits in liveout and livein,
150  * propagating it through control flow.  It will eventually terminate
151  * because it only ever adds bits, and stops when no bits are added in
152  * a pass.
153  */
154 void
compute_live_variables()155 fs_live_variables::compute_live_variables()
156 {
157    bool cont = true;
158 
159    while (cont) {
160       cont = false;
161 
162       foreach_block_reverse (block, cfg) {
163          struct block_data *bd = &block_data[block->num];
164 
165 	 /* Update liveout */
166 	 foreach_list_typed(bblock_link, child_link, link, &block->children) {
167        struct block_data *child_bd = &block_data[child_link->block->num];
168 
169 	    for (int i = 0; i < bitset_words; i++) {
170                BITSET_WORD new_liveout = (child_bd->livein[i] &
171                                           ~bd->liveout[i]);
172                if (new_liveout) {
173                   bd->liveout[i] |= new_liveout;
174                   cont = true;
175                }
176 	    }
177             BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
178                                        ~bd->flag_liveout[0]);
179             if (new_liveout) {
180                bd->flag_liveout[0] |= new_liveout;
181                cont = true;
182             }
183 	 }
184 
185          /* Update livein */
186          for (int i = 0; i < bitset_words; i++) {
187             BITSET_WORD new_livein = (bd->use[i] |
188                                       (bd->liveout[i] &
189                                        ~bd->def[i]));
190             if (new_livein & ~bd->livein[i]) {
191                bd->livein[i] |= new_livein;
192                cont = true;
193             }
194          }
195          BITSET_WORD new_livein = (bd->flag_use[0] |
196                                    (bd->flag_liveout[0] &
197                                     ~bd->flag_def[0]));
198          if (new_livein & ~bd->flag_livein[0]) {
199             bd->flag_livein[0] |= new_livein;
200             cont = true;
201          }
202       }
203    }
204 
205    /* Propagate defin and defout down the CFG to calculate the union of live
206     * variables potentially defined along any possible control flow path.
207     */
208    do {
209       cont = false;
210 
211       foreach_block (block, cfg) {
212          const struct block_data *bd = &block_data[block->num];
213 
214 	 foreach_list_typed(bblock_link, child_link, link, &block->children) {
215        struct block_data *child_bd = &block_data[child_link->block->num];
216 
217 	    for (int i = 0; i < bitset_words; i++) {
218                const BITSET_WORD new_def = bd->defout[i] & ~child_bd->defin[i];
219                child_bd->defin[i] |= new_def;
220                child_bd->defout[i] |= new_def;
221                cont |= new_def;
222 	    }
223 	 }
224       }
225    } while (cont);
226 }
227 
228 /**
229  * Extend the start/end ranges for each variable to account for the
230  * new information calculated from control flow.
231  */
232 void
compute_start_end()233 fs_live_variables::compute_start_end()
234 {
235    foreach_block (block, cfg) {
236       struct block_data *bd = &block_data[block->num];
237 
238       for (int w = 0; w < bitset_words; w++) {
239          BITSET_WORD livedefin = bd->livein[w] & bd->defin[w];
240          BITSET_WORD livedefout = bd->liveout[w] & bd->defout[w];
241          BITSET_WORD livedefinout = livedefin | livedefout;
242          while (livedefinout) {
243             unsigned b = u_bit_scan(&livedefinout);
244             unsigned i = w * BITSET_WORDBITS + b;
245             if (livedefin & (1u << b)) {
246                start[i] = MIN2(start[i], block->start_ip);
247                end[i] = MAX2(end[i], block->start_ip);
248             }
249             if (livedefout & (1u << b)) {
250                start[i] = MIN2(start[i], block->end_ip);
251                end[i] = MAX2(end[i], block->end_ip);
252             }
253          }
254       }
255    }
256 }
257 
fs_live_variables(const backend_shader * s)258 fs_live_variables::fs_live_variables(const backend_shader *s)
259    : devinfo(s->devinfo), cfg(s->cfg)
260 {
261    mem_ctx = ralloc_context(NULL);
262 
263    num_vgrfs = s->alloc.count;
264    num_vars = 0;
265    var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs);
266    for (int i = 0; i < num_vgrfs; i++) {
267       var_from_vgrf[i] = num_vars;
268       num_vars += s->alloc.sizes[i];
269    }
270 
271    vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars);
272    for (int i = 0; i < num_vgrfs; i++) {
273       for (unsigned j = 0; j < s->alloc.sizes[i]; j++) {
274          vgrf_from_var[var_from_vgrf[i] + j] = i;
275       }
276    }
277 
278    start = ralloc_array(mem_ctx, int, num_vars);
279    end = rzalloc_array(mem_ctx, int, num_vars);
280    for (int i = 0; i < num_vars; i++) {
281       start[i] = MAX_INSTRUCTION;
282       end[i] = -1;
283    }
284 
285    vgrf_start = ralloc_array(mem_ctx, int, num_vgrfs);
286    vgrf_end = ralloc_array(mem_ctx, int, num_vgrfs);
287    for (int i = 0; i < num_vgrfs; i++) {
288       vgrf_start[i] = MAX_INSTRUCTION;
289       vgrf_end[i] = -1;
290    }
291 
292    block_data = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
293 
294    bitset_words = BITSET_WORDS(num_vars);
295    for (int i = 0; i < cfg->num_blocks; i++) {
296       block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
297       block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
298       block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
299       block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
300       block_data[i].defin = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
301       block_data[i].defout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
302 
303       block_data[i].flag_def[0] = 0;
304       block_data[i].flag_use[0] = 0;
305       block_data[i].flag_livein[0] = 0;
306       block_data[i].flag_liveout[0] = 0;
307    }
308 
309    setup_def_use();
310    compute_live_variables();
311    compute_start_end();
312 
313    /* Merge the per-component live ranges to whole VGRF live ranges. */
314    for (int i = 0; i < num_vars; i++) {
315       const unsigned vgrf = vgrf_from_var[i];
316       vgrf_start[vgrf] = MIN2(vgrf_start[vgrf], start[i]);
317       vgrf_end[vgrf] = MAX2(vgrf_end[vgrf], end[i]);
318    }
319 }
320 
~fs_live_variables()321 fs_live_variables::~fs_live_variables()
322 {
323    ralloc_free(mem_ctx);
324 }
325 
326 static bool
check_register_live_range(const fs_live_variables * live,int ip,const fs_reg & reg,unsigned n)327 check_register_live_range(const fs_live_variables *live, int ip,
328                           const fs_reg &reg, unsigned n)
329 {
330    const unsigned var = live->var_from_reg(reg);
331 
332    if (var + n > unsigned(live->num_vars) ||
333        live->vgrf_start[reg.nr] > ip || live->vgrf_end[reg.nr] < ip)
334       return false;
335 
336    for (unsigned j = 0; j < n; j++) {
337       if (live->start[var + j] > ip || live->end[var + j] < ip)
338          return false;
339    }
340 
341    return true;
342 }
343 
344 bool
validate(const backend_shader * s) const345 fs_live_variables::validate(const backend_shader *s) const
346 {
347    int ip = 0;
348 
349    foreach_block_and_inst(block, fs_inst, inst, s->cfg) {
350       for (unsigned i = 0; i < inst->sources; i++) {
351          if (inst->src[i].file == VGRF &&
352              !check_register_live_range(this, ip,
353                                         inst->src[i], regs_read(inst, i)))
354             return false;
355       }
356 
357       if (inst->dst.file == VGRF &&
358           !check_register_live_range(this, ip, inst->dst, regs_written(inst)))
359          return false;
360 
361       ip++;
362    }
363 
364    return true;
365 }
366 
367 bool
vars_interfere(int a,int b) const368 fs_live_variables::vars_interfere(int a, int b) const
369 {
370    return !(end[b] <= start[a] ||
371             end[a] <= start[b]);
372 }
373 
374 bool
vgrfs_interfere(int a,int b) const375 fs_live_variables::vgrfs_interfere(int a, int b) const
376 {
377    return !(vgrf_end[a] <= vgrf_start[b] ||
378             vgrf_end[b] <= vgrf_start[a]);
379 }
380