1 //===- lib/CodeGen/GlobalISel/LegalizerInfo.cpp - Legalizer ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implement an interface to specify and query how an illegal operation on a
10 // given type should be expanded.
11 //
12 // Issues to be resolved:
13 // + Make it fast.
14 // + Support weird types like i3, <7 x i3>, ...
15 // + Operations with more than one type (ICMP, CMPXCHG, intrinsics, ...)
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/CodeGen/GlobalISel/LegalizerInfo.h"
20 #include "llvm/ADT/SmallBitVector.h"
21 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
22 #include "llvm/CodeGen/MachineInstr.h"
23 #include "llvm/CodeGen/MachineOperand.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/TargetOpcodes.h"
26 #include "llvm/MC/MCInstrDesc.h"
27 #include "llvm/MC/MCInstrInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/LowLevelTypeImpl.h"
31 #include "llvm/Support/MathExtras.h"
32 #include <algorithm>
33 #include <map>
34
35 using namespace llvm;
36 using namespace LegalizeActions;
37
38 #define DEBUG_TYPE "legalizer-info"
39
40 cl::opt<bool> llvm::DisableGISelLegalityCheck(
41 "disable-gisel-legality-check",
42 cl::desc("Don't verify that MIR is fully legal between GlobalISel passes"),
43 cl::Hidden);
44
operator <<(raw_ostream & OS,LegalizeAction Action)45 raw_ostream &llvm::operator<<(raw_ostream &OS, LegalizeAction Action) {
46 switch (Action) {
47 case Legal:
48 OS << "Legal";
49 break;
50 case NarrowScalar:
51 OS << "NarrowScalar";
52 break;
53 case WidenScalar:
54 OS << "WidenScalar";
55 break;
56 case FewerElements:
57 OS << "FewerElements";
58 break;
59 case MoreElements:
60 OS << "MoreElements";
61 break;
62 case Lower:
63 OS << "Lower";
64 break;
65 case Libcall:
66 OS << "Libcall";
67 break;
68 case Custom:
69 OS << "Custom";
70 break;
71 case Unsupported:
72 OS << "Unsupported";
73 break;
74 case NotFound:
75 OS << "NotFound";
76 break;
77 case UseLegacyRules:
78 OS << "UseLegacyRules";
79 break;
80 }
81 return OS;
82 }
83
print(raw_ostream & OS) const84 raw_ostream &LegalityQuery::print(raw_ostream &OS) const {
85 OS << Opcode << ", Tys={";
86 for (const auto &Type : Types) {
87 OS << Type << ", ";
88 }
89 OS << "}, Opcode=";
90
91 OS << Opcode << ", MMOs={";
92 for (const auto &MMODescr : MMODescrs) {
93 OS << MMODescr.SizeInBits << ", ";
94 }
95 OS << "}";
96
97 return OS;
98 }
99
100 #ifndef NDEBUG
101 // Make sure the rule won't (trivially) loop forever.
hasNoSimpleLoops(const LegalizeRule & Rule,const LegalityQuery & Q,const std::pair<unsigned,LLT> & Mutation)102 static bool hasNoSimpleLoops(const LegalizeRule &Rule, const LegalityQuery &Q,
103 const std::pair<unsigned, LLT> &Mutation) {
104 switch (Rule.getAction()) {
105 case Custom:
106 case Lower:
107 case MoreElements:
108 case FewerElements:
109 break;
110 default:
111 return Q.Types[Mutation.first] != Mutation.second;
112 }
113 return true;
114 }
115
116 // Make sure the returned mutation makes sense for the match type.
mutationIsSane(const LegalizeRule & Rule,const LegalityQuery & Q,std::pair<unsigned,LLT> Mutation)117 static bool mutationIsSane(const LegalizeRule &Rule,
118 const LegalityQuery &Q,
119 std::pair<unsigned, LLT> Mutation) {
120 // If the user wants a custom mutation, then we can't really say much about
121 // it. Return true, and trust that they're doing the right thing.
122 if (Rule.getAction() == Custom)
123 return true;
124
125 const unsigned TypeIdx = Mutation.first;
126 const LLT OldTy = Q.Types[TypeIdx];
127 const LLT NewTy = Mutation.second;
128
129 switch (Rule.getAction()) {
130 case FewerElements:
131 if (!OldTy.isVector())
132 return false;
133 LLVM_FALLTHROUGH;
134 case MoreElements: {
135 // MoreElements can go from scalar to vector.
136 const unsigned OldElts = OldTy.isVector() ? OldTy.getNumElements() : 1;
137 if (NewTy.isVector()) {
138 if (Rule.getAction() == FewerElements) {
139 // Make sure the element count really decreased.
140 if (NewTy.getNumElements() >= OldElts)
141 return false;
142 } else {
143 // Make sure the element count really increased.
144 if (NewTy.getNumElements() <= OldElts)
145 return false;
146 }
147 }
148
149 // Make sure the element type didn't change.
150 return NewTy.getScalarType() == OldTy.getScalarType();
151 }
152 case NarrowScalar:
153 case WidenScalar: {
154 if (OldTy.isVector()) {
155 // Number of elements should not change.
156 if (!NewTy.isVector() || OldTy.getNumElements() != NewTy.getNumElements())
157 return false;
158 } else {
159 // Both types must be vectors
160 if (NewTy.isVector())
161 return false;
162 }
163
164 if (Rule.getAction() == NarrowScalar) {
165 // Make sure the size really decreased.
166 if (NewTy.getScalarSizeInBits() >= OldTy.getScalarSizeInBits())
167 return false;
168 } else {
169 // Make sure the size really increased.
170 if (NewTy.getScalarSizeInBits() <= OldTy.getScalarSizeInBits())
171 return false;
172 }
173
174 return true;
175 }
176 default:
177 return true;
178 }
179 }
180 #endif
181
apply(const LegalityQuery & Query) const182 LegalizeActionStep LegalizeRuleSet::apply(const LegalityQuery &Query) const {
183 LLVM_DEBUG(dbgs() << "Applying legalizer ruleset to: "; Query.print(dbgs());
184 dbgs() << "\n");
185 if (Rules.empty()) {
186 LLVM_DEBUG(dbgs() << ".. fallback to legacy rules (no rules defined)\n");
187 return {LegalizeAction::UseLegacyRules, 0, LLT{}};
188 }
189 for (const LegalizeRule &Rule : Rules) {
190 if (Rule.match(Query)) {
191 LLVM_DEBUG(dbgs() << ".. match\n");
192 std::pair<unsigned, LLT> Mutation = Rule.determineMutation(Query);
193 LLVM_DEBUG(dbgs() << ".. .. " << Rule.getAction() << ", "
194 << Mutation.first << ", " << Mutation.second << "\n");
195 assert(mutationIsSane(Rule, Query, Mutation) &&
196 "legality mutation invalid for match");
197 assert(hasNoSimpleLoops(Rule, Query, Mutation) && "Simple loop detected");
198 return {Rule.getAction(), Mutation.first, Mutation.second};
199 } else
200 LLVM_DEBUG(dbgs() << ".. no match\n");
201 }
202 LLVM_DEBUG(dbgs() << ".. unsupported\n");
203 return {LegalizeAction::Unsupported, 0, LLT{}};
204 }
205
verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const206 bool LegalizeRuleSet::verifyTypeIdxsCoverage(unsigned NumTypeIdxs) const {
207 #ifndef NDEBUG
208 if (Rules.empty()) {
209 LLVM_DEBUG(
210 dbgs() << ".. type index coverage check SKIPPED: no rules defined\n");
211 return true;
212 }
213 const int64_t FirstUncovered = TypeIdxsCovered.find_first_unset();
214 if (FirstUncovered < 0) {
215 LLVM_DEBUG(dbgs() << ".. type index coverage check SKIPPED:"
216 " user-defined predicate detected\n");
217 return true;
218 }
219 const bool AllCovered = (FirstUncovered >= NumTypeIdxs);
220 if (NumTypeIdxs > 0)
221 LLVM_DEBUG(dbgs() << ".. the first uncovered type index: " << FirstUncovered
222 << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
223 return AllCovered;
224 #else
225 return true;
226 #endif
227 }
228
verifyImmIdxsCoverage(unsigned NumImmIdxs) const229 bool LegalizeRuleSet::verifyImmIdxsCoverage(unsigned NumImmIdxs) const {
230 #ifndef NDEBUG
231 if (Rules.empty()) {
232 LLVM_DEBUG(
233 dbgs() << ".. imm index coverage check SKIPPED: no rules defined\n");
234 return true;
235 }
236 const int64_t FirstUncovered = ImmIdxsCovered.find_first_unset();
237 if (FirstUncovered < 0) {
238 LLVM_DEBUG(dbgs() << ".. imm index coverage check SKIPPED:"
239 " user-defined predicate detected\n");
240 return true;
241 }
242 const bool AllCovered = (FirstUncovered >= NumImmIdxs);
243 LLVM_DEBUG(dbgs() << ".. the first uncovered imm index: " << FirstUncovered
244 << ", " << (AllCovered ? "OK" : "FAIL") << "\n");
245 return AllCovered;
246 #else
247 return true;
248 #endif
249 }
250
LegalizerInfo()251 LegalizerInfo::LegalizerInfo() : TablesInitialized(false) {
252 // Set defaults.
253 // FIXME: these two (G_ANYEXT and G_TRUNC?) can be legalized to the
254 // fundamental load/store Jakob proposed. Once loads & stores are supported.
255 setScalarAction(TargetOpcode::G_ANYEXT, 1, {{1, Legal}});
256 setScalarAction(TargetOpcode::G_ZEXT, 1, {{1, Legal}});
257 setScalarAction(TargetOpcode::G_SEXT, 1, {{1, Legal}});
258 setScalarAction(TargetOpcode::G_TRUNC, 0, {{1, Legal}});
259 setScalarAction(TargetOpcode::G_TRUNC, 1, {{1, Legal}});
260
261 setScalarAction(TargetOpcode::G_INTRINSIC, 0, {{1, Legal}});
262 setScalarAction(TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS, 0, {{1, Legal}});
263
264 setLegalizeScalarToDifferentSizeStrategy(
265 TargetOpcode::G_IMPLICIT_DEF, 0, narrowToSmallerAndUnsupportedIfTooSmall);
266 setLegalizeScalarToDifferentSizeStrategy(
267 TargetOpcode::G_ADD, 0, widenToLargerTypesAndNarrowToLargest);
268 setLegalizeScalarToDifferentSizeStrategy(
269 TargetOpcode::G_OR, 0, widenToLargerTypesAndNarrowToLargest);
270 setLegalizeScalarToDifferentSizeStrategy(
271 TargetOpcode::G_LOAD, 0, narrowToSmallerAndUnsupportedIfTooSmall);
272 setLegalizeScalarToDifferentSizeStrategy(
273 TargetOpcode::G_STORE, 0, narrowToSmallerAndUnsupportedIfTooSmall);
274
275 setLegalizeScalarToDifferentSizeStrategy(
276 TargetOpcode::G_BRCOND, 0, widenToLargerTypesUnsupportedOtherwise);
277 setLegalizeScalarToDifferentSizeStrategy(
278 TargetOpcode::G_INSERT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
279 setLegalizeScalarToDifferentSizeStrategy(
280 TargetOpcode::G_EXTRACT, 0, narrowToSmallerAndUnsupportedIfTooSmall);
281 setLegalizeScalarToDifferentSizeStrategy(
282 TargetOpcode::G_EXTRACT, 1, narrowToSmallerAndUnsupportedIfTooSmall);
283 setScalarAction(TargetOpcode::G_FNEG, 0, {{1, Lower}});
284 }
285
computeTables()286 void LegalizerInfo::computeTables() {
287 assert(TablesInitialized == false);
288
289 for (unsigned OpcodeIdx = 0; OpcodeIdx <= LastOp - FirstOp; ++OpcodeIdx) {
290 const unsigned Opcode = FirstOp + OpcodeIdx;
291 for (unsigned TypeIdx = 0; TypeIdx != SpecifiedActions[OpcodeIdx].size();
292 ++TypeIdx) {
293 // 0. Collect information specified through the setAction API, i.e.
294 // for specific bit sizes.
295 // For scalar types:
296 SizeAndActionsVec ScalarSpecifiedActions;
297 // For pointer types:
298 std::map<uint16_t, SizeAndActionsVec> AddressSpace2SpecifiedActions;
299 // For vector types:
300 std::map<uint16_t, SizeAndActionsVec> ElemSize2SpecifiedActions;
301 for (auto LLT2Action : SpecifiedActions[OpcodeIdx][TypeIdx]) {
302 const LLT Type = LLT2Action.first;
303 const LegalizeAction Action = LLT2Action.second;
304
305 auto SizeAction = std::make_pair(Type.getSizeInBits(), Action);
306 if (Type.isPointer())
307 AddressSpace2SpecifiedActions[Type.getAddressSpace()].push_back(
308 SizeAction);
309 else if (Type.isVector())
310 ElemSize2SpecifiedActions[Type.getElementType().getSizeInBits()]
311 .push_back(SizeAction);
312 else
313 ScalarSpecifiedActions.push_back(SizeAction);
314 }
315
316 // 1. Handle scalar types
317 {
318 // Decide how to handle bit sizes for which no explicit specification
319 // was given.
320 SizeChangeStrategy S = &unsupportedForDifferentSizes;
321 if (TypeIdx < ScalarSizeChangeStrategies[OpcodeIdx].size() &&
322 ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
323 S = ScalarSizeChangeStrategies[OpcodeIdx][TypeIdx];
324 llvm::sort(ScalarSpecifiedActions);
325 checkPartialSizeAndActionsVector(ScalarSpecifiedActions);
326 setScalarAction(Opcode, TypeIdx, S(ScalarSpecifiedActions));
327 }
328
329 // 2. Handle pointer types
330 for (auto PointerSpecifiedActions : AddressSpace2SpecifiedActions) {
331 llvm::sort(PointerSpecifiedActions.second);
332 checkPartialSizeAndActionsVector(PointerSpecifiedActions.second);
333 // For pointer types, we assume that there isn't a meaningfull way
334 // to change the number of bits used in the pointer.
335 setPointerAction(
336 Opcode, TypeIdx, PointerSpecifiedActions.first,
337 unsupportedForDifferentSizes(PointerSpecifiedActions.second));
338 }
339
340 // 3. Handle vector types
341 SizeAndActionsVec ElementSizesSeen;
342 for (auto VectorSpecifiedActions : ElemSize2SpecifiedActions) {
343 llvm::sort(VectorSpecifiedActions.second);
344 const uint16_t ElementSize = VectorSpecifiedActions.first;
345 ElementSizesSeen.push_back({ElementSize, Legal});
346 checkPartialSizeAndActionsVector(VectorSpecifiedActions.second);
347 // For vector types, we assume that the best way to adapt the number
348 // of elements is to the next larger number of elements type for which
349 // the vector type is legal, unless there is no such type. In that case,
350 // legalize towards a vector type with a smaller number of elements.
351 SizeAndActionsVec NumElementsActions;
352 for (SizeAndAction BitsizeAndAction : VectorSpecifiedActions.second) {
353 assert(BitsizeAndAction.first % ElementSize == 0);
354 const uint16_t NumElements = BitsizeAndAction.first / ElementSize;
355 NumElementsActions.push_back({NumElements, BitsizeAndAction.second});
356 }
357 setVectorNumElementAction(
358 Opcode, TypeIdx, ElementSize,
359 moreToWiderTypesAndLessToWidest(NumElementsActions));
360 }
361 llvm::sort(ElementSizesSeen);
362 SizeChangeStrategy VectorElementSizeChangeStrategy =
363 &unsupportedForDifferentSizes;
364 if (TypeIdx < VectorElementSizeChangeStrategies[OpcodeIdx].size() &&
365 VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx] != nullptr)
366 VectorElementSizeChangeStrategy =
367 VectorElementSizeChangeStrategies[OpcodeIdx][TypeIdx];
368 setScalarInVectorAction(
369 Opcode, TypeIdx, VectorElementSizeChangeStrategy(ElementSizesSeen));
370 }
371 }
372
373 TablesInitialized = true;
374 }
375
376 // FIXME: inefficient implementation for now. Without ComputeValueVTs we're
377 // probably going to need specialized lookup structures for various types before
378 // we have any hope of doing well with something like <13 x i3>. Even the common
379 // cases should do better than what we have now.
380 std::pair<LegalizeAction, LLT>
getAspectAction(const InstrAspect & Aspect) const381 LegalizerInfo::getAspectAction(const InstrAspect &Aspect) const {
382 assert(TablesInitialized && "backend forgot to call computeTables");
383 // These *have* to be implemented for now, they're the fundamental basis of
384 // how everything else is transformed.
385 if (Aspect.Type.isScalar() || Aspect.Type.isPointer())
386 return findScalarLegalAction(Aspect);
387 assert(Aspect.Type.isVector());
388 return findVectorLegalAction(Aspect);
389 }
390
391 /// Helper function to get LLT for the given type index.
getTypeFromTypeIdx(const MachineInstr & MI,const MachineRegisterInfo & MRI,unsigned OpIdx,unsigned TypeIdx)392 static LLT getTypeFromTypeIdx(const MachineInstr &MI,
393 const MachineRegisterInfo &MRI, unsigned OpIdx,
394 unsigned TypeIdx) {
395 assert(TypeIdx < MI.getNumOperands() && "Unexpected TypeIdx");
396 // G_UNMERGE_VALUES has variable number of operands, but there is only
397 // one source type and one destination type as all destinations must be the
398 // same type. So, get the last operand if TypeIdx == 1.
399 if (MI.getOpcode() == TargetOpcode::G_UNMERGE_VALUES && TypeIdx == 1)
400 return MRI.getType(MI.getOperand(MI.getNumOperands() - 1).getReg());
401 return MRI.getType(MI.getOperand(OpIdx).getReg());
402 }
403
getOpcodeIdxForOpcode(unsigned Opcode) const404 unsigned LegalizerInfo::getOpcodeIdxForOpcode(unsigned Opcode) const {
405 assert(Opcode >= FirstOp && Opcode <= LastOp && "Unsupported opcode");
406 return Opcode - FirstOp;
407 }
408
getActionDefinitionsIdx(unsigned Opcode) const409 unsigned LegalizerInfo::getActionDefinitionsIdx(unsigned Opcode) const {
410 unsigned OpcodeIdx = getOpcodeIdxForOpcode(Opcode);
411 if (unsigned Alias = RulesForOpcode[OpcodeIdx].getAlias()) {
412 LLVM_DEBUG(dbgs() << ".. opcode " << Opcode << " is aliased to " << Alias
413 << "\n");
414 OpcodeIdx = getOpcodeIdxForOpcode(Alias);
415 assert(RulesForOpcode[OpcodeIdx].getAlias() == 0 && "Cannot chain aliases");
416 }
417
418 return OpcodeIdx;
419 }
420
421 const LegalizeRuleSet &
getActionDefinitions(unsigned Opcode) const422 LegalizerInfo::getActionDefinitions(unsigned Opcode) const {
423 unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
424 return RulesForOpcode[OpcodeIdx];
425 }
426
getActionDefinitionsBuilder(unsigned Opcode)427 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(unsigned Opcode) {
428 unsigned OpcodeIdx = getActionDefinitionsIdx(Opcode);
429 auto &Result = RulesForOpcode[OpcodeIdx];
430 assert(!Result.isAliasedByAnother() && "Modifying this opcode will modify aliases");
431 return Result;
432 }
433
getActionDefinitionsBuilder(std::initializer_list<unsigned> Opcodes)434 LegalizeRuleSet &LegalizerInfo::getActionDefinitionsBuilder(
435 std::initializer_list<unsigned> Opcodes) {
436 unsigned Representative = *Opcodes.begin();
437
438 assert(!llvm::empty(Opcodes) && Opcodes.begin() + 1 != Opcodes.end() &&
439 "Initializer list must have at least two opcodes");
440
441 for (auto I = Opcodes.begin() + 1, E = Opcodes.end(); I != E; ++I)
442 aliasActionDefinitions(Representative, *I);
443
444 auto &Return = getActionDefinitionsBuilder(Representative);
445 Return.setIsAliasedByAnother();
446 return Return;
447 }
448
aliasActionDefinitions(unsigned OpcodeTo,unsigned OpcodeFrom)449 void LegalizerInfo::aliasActionDefinitions(unsigned OpcodeTo,
450 unsigned OpcodeFrom) {
451 assert(OpcodeTo != OpcodeFrom && "Cannot alias to self");
452 assert(OpcodeTo >= FirstOp && OpcodeTo <= LastOp && "Unsupported opcode");
453 const unsigned OpcodeFromIdx = getOpcodeIdxForOpcode(OpcodeFrom);
454 RulesForOpcode[OpcodeFromIdx].aliasTo(OpcodeTo);
455 }
456
457 LegalizeActionStep
getAction(const LegalityQuery & Query) const458 LegalizerInfo::getAction(const LegalityQuery &Query) const {
459 LegalizeActionStep Step = getActionDefinitions(Query.Opcode).apply(Query);
460 if (Step.Action != LegalizeAction::UseLegacyRules) {
461 return Step;
462 }
463
464 for (unsigned i = 0; i < Query.Types.size(); ++i) {
465 auto Action = getAspectAction({Query.Opcode, i, Query.Types[i]});
466 if (Action.first != Legal) {
467 LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Action="
468 << Action.first << ", " << Action.second << "\n");
469 return {Action.first, i, Action.second};
470 } else
471 LLVM_DEBUG(dbgs() << ".. (legacy) Type " << i << " Legal\n");
472 }
473 LLVM_DEBUG(dbgs() << ".. (legacy) Legal\n");
474 return {Legal, 0, LLT{}};
475 }
476
477 LegalizeActionStep
getAction(const MachineInstr & MI,const MachineRegisterInfo & MRI) const478 LegalizerInfo::getAction(const MachineInstr &MI,
479 const MachineRegisterInfo &MRI) const {
480 SmallVector<LLT, 2> Types;
481 SmallBitVector SeenTypes(8);
482 const MCOperandInfo *OpInfo = MI.getDesc().OpInfo;
483 // FIXME: probably we'll need to cache the results here somehow?
484 for (unsigned i = 0; i < MI.getDesc().getNumOperands(); ++i) {
485 if (!OpInfo[i].isGenericType())
486 continue;
487
488 // We must only record actions once for each TypeIdx; otherwise we'd
489 // try to legalize operands multiple times down the line.
490 unsigned TypeIdx = OpInfo[i].getGenericTypeIndex();
491 if (SeenTypes[TypeIdx])
492 continue;
493
494 SeenTypes.set(TypeIdx);
495
496 LLT Ty = getTypeFromTypeIdx(MI, MRI, i, TypeIdx);
497 Types.push_back(Ty);
498 }
499
500 SmallVector<LegalityQuery::MemDesc, 2> MemDescrs;
501 for (const auto &MMO : MI.memoperands())
502 MemDescrs.push_back({8 * MMO->getSize() /* in bits */,
503 8 * MMO->getAlignment(),
504 MMO->getOrdering()});
505
506 return getAction({MI.getOpcode(), Types, MemDescrs});
507 }
508
isLegal(const MachineInstr & MI,const MachineRegisterInfo & MRI) const509 bool LegalizerInfo::isLegal(const MachineInstr &MI,
510 const MachineRegisterInfo &MRI) const {
511 return getAction(MI, MRI).Action == Legal;
512 }
513
isLegalOrCustom(const MachineInstr & MI,const MachineRegisterInfo & MRI) const514 bool LegalizerInfo::isLegalOrCustom(const MachineInstr &MI,
515 const MachineRegisterInfo &MRI) const {
516 auto Action = getAction(MI, MRI).Action;
517 // If the action is custom, it may not necessarily modify the instruction,
518 // so we have to assume it's legal.
519 return Action == Legal || Action == Custom;
520 }
521
legalizeCustom(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder,GISelChangeObserver & Observer) const522 bool LegalizerInfo::legalizeCustom(MachineInstr &MI, MachineRegisterInfo &MRI,
523 MachineIRBuilder &MIRBuilder,
524 GISelChangeObserver &Observer) const {
525 return false;
526 }
527
528 LegalizerInfo::SizeAndActionsVec
increaseToLargerTypesAndDecreaseToLargest(const SizeAndActionsVec & v,LegalizeAction IncreaseAction,LegalizeAction DecreaseAction)529 LegalizerInfo::increaseToLargerTypesAndDecreaseToLargest(
530 const SizeAndActionsVec &v, LegalizeAction IncreaseAction,
531 LegalizeAction DecreaseAction) {
532 SizeAndActionsVec result;
533 unsigned LargestSizeSoFar = 0;
534 if (v.size() >= 1 && v[0].first != 1)
535 result.push_back({1, IncreaseAction});
536 for (size_t i = 0; i < v.size(); ++i) {
537 result.push_back(v[i]);
538 LargestSizeSoFar = v[i].first;
539 if (i + 1 < v.size() && v[i + 1].first != v[i].first + 1) {
540 result.push_back({LargestSizeSoFar + 1, IncreaseAction});
541 LargestSizeSoFar = v[i].first + 1;
542 }
543 }
544 result.push_back({LargestSizeSoFar + 1, DecreaseAction});
545 return result;
546 }
547
548 LegalizerInfo::SizeAndActionsVec
decreaseToSmallerTypesAndIncreaseToSmallest(const SizeAndActionsVec & v,LegalizeAction DecreaseAction,LegalizeAction IncreaseAction)549 LegalizerInfo::decreaseToSmallerTypesAndIncreaseToSmallest(
550 const SizeAndActionsVec &v, LegalizeAction DecreaseAction,
551 LegalizeAction IncreaseAction) {
552 SizeAndActionsVec result;
553 if (v.size() == 0 || v[0].first != 1)
554 result.push_back({1, IncreaseAction});
555 for (size_t i = 0; i < v.size(); ++i) {
556 result.push_back(v[i]);
557 if (i + 1 == v.size() || v[i + 1].first != v[i].first + 1) {
558 result.push_back({v[i].first + 1, DecreaseAction});
559 }
560 }
561 return result;
562 }
563
564 LegalizerInfo::SizeAndAction
findAction(const SizeAndActionsVec & Vec,const uint32_t Size)565 LegalizerInfo::findAction(const SizeAndActionsVec &Vec, const uint32_t Size) {
566 assert(Size >= 1);
567 // Find the last element in Vec that has a bitsize equal to or smaller than
568 // the requested bit size.
569 // That is the element just before the first element that is bigger than Size.
570 auto It = partition_point(
571 Vec, [=](const SizeAndAction &A) { return A.first <= Size; });
572 assert(It != Vec.begin() && "Does Vec not start with size 1?");
573 int VecIdx = It - Vec.begin() - 1;
574
575 LegalizeAction Action = Vec[VecIdx].second;
576 switch (Action) {
577 case Legal:
578 case Lower:
579 case Libcall:
580 case Custom:
581 return {Size, Action};
582 case FewerElements:
583 // FIXME: is this special case still needed and correct?
584 // Special case for scalarization:
585 if (Vec == SizeAndActionsVec({{1, FewerElements}}))
586 return {1, FewerElements};
587 LLVM_FALLTHROUGH;
588 case NarrowScalar: {
589 // The following needs to be a loop, as for now, we do allow needing to
590 // go over "Unsupported" bit sizes before finding a legalizable bit size.
591 // e.g. (s8, WidenScalar), (s9, Unsupported), (s32, Legal). if Size==8,
592 // we need to iterate over s9, and then to s32 to return (s32, Legal).
593 // If we want to get rid of the below loop, we should have stronger asserts
594 // when building the SizeAndActionsVecs, probably not allowing
595 // "Unsupported" unless at the ends of the vector.
596 for (int i = VecIdx - 1; i >= 0; --i)
597 if (!needsLegalizingToDifferentSize(Vec[i].second) &&
598 Vec[i].second != Unsupported)
599 return {Vec[i].first, Action};
600 llvm_unreachable("");
601 }
602 case WidenScalar:
603 case MoreElements: {
604 // See above, the following needs to be a loop, at least for now.
605 for (std::size_t i = VecIdx + 1; i < Vec.size(); ++i)
606 if (!needsLegalizingToDifferentSize(Vec[i].second) &&
607 Vec[i].second != Unsupported)
608 return {Vec[i].first, Action};
609 llvm_unreachable("");
610 }
611 case Unsupported:
612 return {Size, Unsupported};
613 case NotFound:
614 case UseLegacyRules:
615 llvm_unreachable("NotFound");
616 }
617 llvm_unreachable("Action has an unknown enum value");
618 }
619
620 std::pair<LegalizeAction, LLT>
findScalarLegalAction(const InstrAspect & Aspect) const621 LegalizerInfo::findScalarLegalAction(const InstrAspect &Aspect) const {
622 assert(Aspect.Type.isScalar() || Aspect.Type.isPointer());
623 if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
624 return {NotFound, LLT()};
625 const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
626 if (Aspect.Type.isPointer() &&
627 AddrSpace2PointerActions[OpcodeIdx].find(Aspect.Type.getAddressSpace()) ==
628 AddrSpace2PointerActions[OpcodeIdx].end()) {
629 return {NotFound, LLT()};
630 }
631 const SmallVector<SizeAndActionsVec, 1> &Actions =
632 Aspect.Type.isPointer()
633 ? AddrSpace2PointerActions[OpcodeIdx]
634 .find(Aspect.Type.getAddressSpace())
635 ->second
636 : ScalarActions[OpcodeIdx];
637 if (Aspect.Idx >= Actions.size())
638 return {NotFound, LLT()};
639 const SizeAndActionsVec &Vec = Actions[Aspect.Idx];
640 // FIXME: speed up this search, e.g. by using a results cache for repeated
641 // queries?
642 auto SizeAndAction = findAction(Vec, Aspect.Type.getSizeInBits());
643 return {SizeAndAction.second,
644 Aspect.Type.isScalar() ? LLT::scalar(SizeAndAction.first)
645 : LLT::pointer(Aspect.Type.getAddressSpace(),
646 SizeAndAction.first)};
647 }
648
649 std::pair<LegalizeAction, LLT>
findVectorLegalAction(const InstrAspect & Aspect) const650 LegalizerInfo::findVectorLegalAction(const InstrAspect &Aspect) const {
651 assert(Aspect.Type.isVector());
652 // First legalize the vector element size, then legalize the number of
653 // lanes in the vector.
654 if (Aspect.Opcode < FirstOp || Aspect.Opcode > LastOp)
655 return {NotFound, Aspect.Type};
656 const unsigned OpcodeIdx = getOpcodeIdxForOpcode(Aspect.Opcode);
657 const unsigned TypeIdx = Aspect.Idx;
658 if (TypeIdx >= ScalarInVectorActions[OpcodeIdx].size())
659 return {NotFound, Aspect.Type};
660 const SizeAndActionsVec &ElemSizeVec =
661 ScalarInVectorActions[OpcodeIdx][TypeIdx];
662
663 LLT IntermediateType;
664 auto ElementSizeAndAction =
665 findAction(ElemSizeVec, Aspect.Type.getScalarSizeInBits());
666 IntermediateType =
667 LLT::vector(Aspect.Type.getNumElements(), ElementSizeAndAction.first);
668 if (ElementSizeAndAction.second != Legal)
669 return {ElementSizeAndAction.second, IntermediateType};
670
671 auto i = NumElements2Actions[OpcodeIdx].find(
672 IntermediateType.getScalarSizeInBits());
673 if (i == NumElements2Actions[OpcodeIdx].end()) {
674 return {NotFound, IntermediateType};
675 }
676 const SizeAndActionsVec &NumElementsVec = (*i).second[TypeIdx];
677 auto NumElementsAndAction =
678 findAction(NumElementsVec, IntermediateType.getNumElements());
679 return {NumElementsAndAction.second,
680 LLT::vector(NumElementsAndAction.first,
681 IntermediateType.getScalarSizeInBits())};
682 }
683
legalizeIntrinsic(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIRBuilder) const684 bool LegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
685 MachineRegisterInfo &MRI,
686 MachineIRBuilder &MIRBuilder) const {
687 return true;
688 }
689
getExtOpcodeForWideningConstant(LLT SmallTy) const690 unsigned LegalizerInfo::getExtOpcodeForWideningConstant(LLT SmallTy) const {
691 return SmallTy.isByteSized() ? TargetOpcode::G_SEXT : TargetOpcode::G_ZEXT;
692 }
693
694 /// \pre Type indices of every opcode form a dense set starting from 0.
verify(const MCInstrInfo & MII) const695 void LegalizerInfo::verify(const MCInstrInfo &MII) const {
696 #ifndef NDEBUG
697 std::vector<unsigned> FailedOpcodes;
698 for (unsigned Opcode = FirstOp; Opcode <= LastOp; ++Opcode) {
699 const MCInstrDesc &MCID = MII.get(Opcode);
700 const unsigned NumTypeIdxs = std::accumulate(
701 MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
702 [](unsigned Acc, const MCOperandInfo &OpInfo) {
703 return OpInfo.isGenericType()
704 ? std::max(OpInfo.getGenericTypeIndex() + 1U, Acc)
705 : Acc;
706 });
707 const unsigned NumImmIdxs = std::accumulate(
708 MCID.opInfo_begin(), MCID.opInfo_end(), 0U,
709 [](unsigned Acc, const MCOperandInfo &OpInfo) {
710 return OpInfo.isGenericImm()
711 ? std::max(OpInfo.getGenericImmIndex() + 1U, Acc)
712 : Acc;
713 });
714 LLVM_DEBUG(dbgs() << MII.getName(Opcode) << " (opcode " << Opcode
715 << "): " << NumTypeIdxs << " type ind"
716 << (NumTypeIdxs == 1 ? "ex" : "ices") << ", "
717 << NumImmIdxs << " imm ind"
718 << (NumImmIdxs == 1 ? "ex" : "ices") << "\n");
719 const LegalizeRuleSet &RuleSet = getActionDefinitions(Opcode);
720 if (!RuleSet.verifyTypeIdxsCoverage(NumTypeIdxs))
721 FailedOpcodes.push_back(Opcode);
722 else if (!RuleSet.verifyImmIdxsCoverage(NumImmIdxs))
723 FailedOpcodes.push_back(Opcode);
724 }
725 if (!FailedOpcodes.empty()) {
726 errs() << "The following opcodes have ill-defined legalization rules:";
727 for (unsigned Opcode : FailedOpcodes)
728 errs() << " " << MII.getName(Opcode);
729 errs() << "\n";
730
731 report_fatal_error("ill-defined LegalizerInfo"
732 ", try -debug-only=legalizer-info for details");
733 }
734 #endif
735 }
736
737 #ifndef NDEBUG
738 // FIXME: This should be in the MachineVerifier, but it can't use the
739 // LegalizerInfo as it's currently in the separate GlobalISel library.
740 // Note that RegBankSelected property already checked in the verifier
741 // has the same layering problem, but we only use inline methods so
742 // end up not needing to link against the GlobalISel library.
machineFunctionIsIllegal(const MachineFunction & MF)743 const MachineInstr *llvm::machineFunctionIsIllegal(const MachineFunction &MF) {
744 if (const LegalizerInfo *MLI = MF.getSubtarget().getLegalizerInfo()) {
745 const MachineRegisterInfo &MRI = MF.getRegInfo();
746 for (const MachineBasicBlock &MBB : MF)
747 for (const MachineInstr &MI : MBB)
748 if (isPreISelGenericOpcode(MI.getOpcode()) &&
749 !MLI->isLegalOrCustom(MI, MRI))
750 return &MI;
751 }
752 return nullptr;
753 }
754 #endif
755