• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/mmap.c
4  *
5  * Written by obz.
6  *
7  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/backing-dev.h>
15 #include <linux/mm.h>
16 #include <linux/mm_inline.h>
17 #include <linux/vmacache.h>
18 #include <linux/shm.h>
19 #include <linux/mman.h>
20 #include <linux/pagemap.h>
21 #include <linux/swap.h>
22 #include <linux/syscalls.h>
23 #include <linux/capability.h>
24 #include <linux/init.h>
25 #include <linux/file.h>
26 #include <linux/fs.h>
27 #include <linux/personality.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 #include <linux/shmem_fs.h>
31 #include <linux/profile.h>
32 #include <linux/export.h>
33 #include <linux/mount.h>
34 #include <linux/mempolicy.h>
35 #include <linux/rmap.h>
36 #include <linux/mmu_notifier.h>
37 #include <linux/mmdebug.h>
38 #include <linux/perf_event.h>
39 #include <linux/audit.h>
40 #include <linux/khugepaged.h>
41 #include <linux/uprobes.h>
42 #include <linux/rbtree_augmented.h>
43 #include <linux/notifier.h>
44 #include <linux/memory.h>
45 #include <linux/printk.h>
46 #include <linux/userfaultfd_k.h>
47 #include <linux/moduleparam.h>
48 #include <linux/pkeys.h>
49 #include <linux/oom.h>
50 #include <linux/sched/mm.h>
51 #include <linux/xpm.h>
52 
53 #include <linux/uaccess.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlb.h>
56 #include <asm/mmu_context.h>
57 #include <linux/hck/lite_hck_jit_memory.h>
58 
59 
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/mmap.h>
62 
63 #undef CREATE_TRACE_POINTS
64 #include <trace/hooks/mm.h>
65 
66 #include "internal.h"
67 
68 #ifndef arch_mmap_check
69 #define arch_mmap_check(addr, len, flags)	(0)
70 #endif
71 
72 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
73 const int mmap_rnd_bits_min = CONFIG_ARCH_MMAP_RND_BITS_MIN;
74 const int mmap_rnd_bits_max = CONFIG_ARCH_MMAP_RND_BITS_MAX;
75 int mmap_rnd_bits __read_mostly = CONFIG_ARCH_MMAP_RND_BITS;
76 #endif
77 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
78 const int mmap_rnd_compat_bits_min = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN;
79 const int mmap_rnd_compat_bits_max = CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX;
80 int mmap_rnd_compat_bits __read_mostly = CONFIG_ARCH_MMAP_RND_COMPAT_BITS;
81 #endif
82 
83 static bool ignore_rlimit_data;
84 core_param(ignore_rlimit_data, ignore_rlimit_data, bool, 0644);
85 
86 static void unmap_region(struct mm_struct *mm,
87 		struct vm_area_struct *vma, struct vm_area_struct *prev,
88 		unsigned long start, unsigned long end);
89 
90 /* description of effects of mapping type and prot in current implementation.
91  * this is due to the limited x86 page protection hardware.  The expected
92  * behavior is in parens:
93  *
94  * map_type	prot
95  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
96  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
97  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
98  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
99  *
100  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
101  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
102  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
103  */
104 pgprot_t protection_map[16] __ro_after_init = {
105 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
106 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
107 };
108 
109 #ifndef CONFIG_ARCH_HAS_FILTER_PGPROT
arch_filter_pgprot(pgprot_t prot)110 static inline pgprot_t arch_filter_pgprot(pgprot_t prot)
111 {
112 	return prot;
113 }
114 #endif
115 
vm_get_page_prot(unsigned long vm_flags)116 pgprot_t vm_get_page_prot(unsigned long vm_flags)
117 {
118 	pgprot_t ret = __pgprot(pgprot_val(protection_map[vm_flags &
119 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
120 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
121 
122 	return arch_filter_pgprot(ret);
123 }
124 EXPORT_SYMBOL(vm_get_page_prot);
125 
vm_pgprot_modify(pgprot_t oldprot,unsigned long vm_flags)126 static pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
127 {
128 	return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
129 }
130 
131 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
vma_set_page_prot(struct vm_area_struct * vma)132 void vma_set_page_prot(struct vm_area_struct *vma)
133 {
134 	unsigned long vm_flags = vma->vm_flags;
135 	pgprot_t vm_page_prot;
136 
137 	vm_page_prot = vm_pgprot_modify(vma->vm_page_prot, vm_flags);
138 	if (vma_wants_writenotify(vma, vm_page_prot)) {
139 		vm_flags &= ~VM_SHARED;
140 		vm_page_prot = vm_pgprot_modify(vm_page_prot, vm_flags);
141 	}
142 	/* remove_protection_ptes reads vma->vm_page_prot without mmap_lock */
143 	WRITE_ONCE(vma->vm_page_prot, vm_page_prot);
144 }
145 
146 /*
147  * Requires inode->i_mapping->i_mmap_rwsem
148  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)149 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
150 		struct file *file, struct address_space *mapping)
151 {
152 	if (vma->vm_flags & VM_DENYWRITE)
153 		allow_write_access(file);
154 	if (vma->vm_flags & VM_SHARED)
155 		mapping_unmap_writable(mapping);
156 
157 	flush_dcache_mmap_lock(mapping);
158 	vma_interval_tree_remove(vma, &mapping->i_mmap);
159 	flush_dcache_mmap_unlock(mapping);
160 }
161 
162 /*
163  * Unlink a file-based vm structure from its interval tree, to hide
164  * vma from rmap and vmtruncate before freeing its page tables.
165  */
unlink_file_vma(struct vm_area_struct * vma)166 void unlink_file_vma(struct vm_area_struct *vma)
167 {
168 	struct file *file = vma->vm_file;
169 
170 	if (file) {
171 		struct address_space *mapping = file->f_mapping;
172 		i_mmap_lock_write(mapping);
173 		__remove_shared_vm_struct(vma, file, mapping);
174 		i_mmap_unlock_write(mapping);
175 	}
176 }
177 
178 /*
179  * Close a vm structure and free it, returning the next.
180  */
remove_vma(struct vm_area_struct * vma)181 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
182 {
183 	struct vm_area_struct *next = vma->vm_next;
184 
185 	might_sleep();
186 	if (vma->vm_ops && vma->vm_ops->close)
187 		vma->vm_ops->close(vma);
188 	if (vma->vm_file)
189 		fput(vma->vm_file);
190 	mpol_put(vma_policy(vma));
191 	vm_area_free(vma);
192 	return next;
193 }
194 
195 static int do_brk_flags(unsigned long addr, unsigned long request, unsigned long flags,
196 		struct list_head *uf);
SYSCALL_DEFINE1(brk,unsigned long,brk)197 SYSCALL_DEFINE1(brk, unsigned long, brk)
198 {
199 	unsigned long retval;
200 	unsigned long newbrk, oldbrk, origbrk;
201 	struct mm_struct *mm = current->mm;
202 	struct vm_area_struct *next;
203 	unsigned long min_brk;
204 	bool populate;
205 	bool downgraded = false;
206 	LIST_HEAD(uf);
207 
208 	if (mmap_write_lock_killable(mm))
209 		return -EINTR;
210 
211 	origbrk = mm->brk;
212 
213 #ifdef CONFIG_COMPAT_BRK
214 	/*
215 	 * CONFIG_COMPAT_BRK can still be overridden by setting
216 	 * randomize_va_space to 2, which will still cause mm->start_brk
217 	 * to be arbitrarily shifted
218 	 */
219 	if (current->brk_randomized)
220 		min_brk = mm->start_brk;
221 	else
222 		min_brk = mm->end_data;
223 #else
224 	min_brk = mm->start_brk;
225 #endif
226 	if (brk < min_brk)
227 		goto out;
228 
229 	/*
230 	 * Check against rlimit here. If this check is done later after the test
231 	 * of oldbrk with newbrk then it can escape the test and let the data
232 	 * segment grow beyond its set limit the in case where the limit is
233 	 * not page aligned -Ram Gupta
234 	 */
235 	if (check_data_rlimit(rlimit(RLIMIT_DATA), brk, mm->start_brk,
236 			      mm->end_data, mm->start_data))
237 		goto out;
238 
239 	newbrk = PAGE_ALIGN(brk);
240 	oldbrk = PAGE_ALIGN(mm->brk);
241 	if (oldbrk == newbrk) {
242 		mm->brk = brk;
243 		goto success;
244 	}
245 
246 	/*
247 	 * Always allow shrinking brk.
248 	 * __do_munmap() may downgrade mmap_lock to read.
249 	 */
250 	if (brk <= mm->brk) {
251 		int ret;
252 
253 		/*
254 		 * mm->brk must to be protected by write mmap_lock so update it
255 		 * before downgrading mmap_lock. When __do_munmap() fails,
256 		 * mm->brk will be restored from origbrk.
257 		 */
258 		mm->brk = brk;
259 		ret = __do_munmap(mm, newbrk, oldbrk-newbrk, &uf, true);
260 		if (ret < 0) {
261 			mm->brk = origbrk;
262 			goto out;
263 		} else if (ret == 1) {
264 			downgraded = true;
265 		}
266 		goto success;
267 	}
268 
269 	/* Check against existing mmap mappings. */
270 	next = find_vma(mm, oldbrk);
271 	if (next && newbrk + PAGE_SIZE > vm_start_gap(next))
272 		goto out;
273 
274 	/* Ok, looks good - let it rip. */
275 	if (do_brk_flags(oldbrk, newbrk-oldbrk, 0, &uf) < 0)
276 		goto out;
277 	mm->brk = brk;
278 
279 success:
280 	populate = newbrk > oldbrk && (mm->def_flags & VM_LOCKED) != 0;
281 	if (downgraded)
282 		mmap_read_unlock(mm);
283 	else
284 		mmap_write_unlock(mm);
285 	userfaultfd_unmap_complete(mm, &uf);
286 	if (populate)
287 		mm_populate(oldbrk, newbrk - oldbrk);
288 	return brk;
289 
290 out:
291 	retval = origbrk;
292 	mmap_write_unlock(mm);
293 	return retval;
294 }
295 
vma_compute_gap(struct vm_area_struct * vma)296 static inline unsigned long vma_compute_gap(struct vm_area_struct *vma)
297 {
298 	unsigned long gap, prev_end;
299 
300 	/*
301 	 * Note: in the rare case of a VM_GROWSDOWN above a VM_GROWSUP, we
302 	 * allow two stack_guard_gaps between them here, and when choosing
303 	 * an unmapped area; whereas when expanding we only require one.
304 	 * That's a little inconsistent, but keeps the code here simpler.
305 	 */
306 	gap = vm_start_gap(vma);
307 	if (vma->vm_prev) {
308 		prev_end = vm_end_gap(vma->vm_prev);
309 		if (gap > prev_end)
310 			gap -= prev_end;
311 		else
312 			gap = 0;
313 	}
314 	return gap;
315 }
316 
317 #ifdef CONFIG_DEBUG_VM_RB
vma_compute_subtree_gap(struct vm_area_struct * vma)318 static unsigned long vma_compute_subtree_gap(struct vm_area_struct *vma)
319 {
320 	unsigned long max = vma_compute_gap(vma), subtree_gap;
321 	if (vma->vm_rb.rb_left) {
322 		subtree_gap = rb_entry(vma->vm_rb.rb_left,
323 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
324 		if (subtree_gap > max)
325 			max = subtree_gap;
326 	}
327 	if (vma->vm_rb.rb_right) {
328 		subtree_gap = rb_entry(vma->vm_rb.rb_right,
329 				struct vm_area_struct, vm_rb)->rb_subtree_gap;
330 		if (subtree_gap > max)
331 			max = subtree_gap;
332 	}
333 	return max;
334 }
335 
browse_rb(struct mm_struct * mm)336 static int browse_rb(struct mm_struct *mm)
337 {
338 	struct rb_root *root = &mm->mm_rb;
339 	int i = 0, j, bug = 0;
340 	struct rb_node *nd, *pn = NULL;
341 	unsigned long prev = 0, pend = 0;
342 
343 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
344 		struct vm_area_struct *vma;
345 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
346 		if (vma->vm_start < prev) {
347 			pr_emerg("vm_start %lx < prev %lx\n",
348 				  vma->vm_start, prev);
349 			bug = 1;
350 		}
351 		if (vma->vm_start < pend) {
352 			pr_emerg("vm_start %lx < pend %lx\n",
353 				  vma->vm_start, pend);
354 			bug = 1;
355 		}
356 		if (vma->vm_start > vma->vm_end) {
357 			pr_emerg("vm_start %lx > vm_end %lx\n",
358 				  vma->vm_start, vma->vm_end);
359 			bug = 1;
360 		}
361 		spin_lock(&mm->page_table_lock);
362 		if (vma->rb_subtree_gap != vma_compute_subtree_gap(vma)) {
363 			pr_emerg("free gap %lx, correct %lx\n",
364 			       vma->rb_subtree_gap,
365 			       vma_compute_subtree_gap(vma));
366 			bug = 1;
367 		}
368 		spin_unlock(&mm->page_table_lock);
369 		i++;
370 		pn = nd;
371 		prev = vma->vm_start;
372 		pend = vma->vm_end;
373 	}
374 	j = 0;
375 	for (nd = pn; nd; nd = rb_prev(nd))
376 		j++;
377 	if (i != j) {
378 		pr_emerg("backwards %d, forwards %d\n", j, i);
379 		bug = 1;
380 	}
381 	return bug ? -1 : i;
382 }
383 
validate_mm_rb(struct rb_root * root,struct vm_area_struct * ignore)384 static void validate_mm_rb(struct rb_root *root, struct vm_area_struct *ignore)
385 {
386 	struct rb_node *nd;
387 
388 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
389 		struct vm_area_struct *vma;
390 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
391 		VM_BUG_ON_VMA(vma != ignore &&
392 			vma->rb_subtree_gap != vma_compute_subtree_gap(vma),
393 			vma);
394 	}
395 }
396 
validate_mm(struct mm_struct * mm)397 static void validate_mm(struct mm_struct *mm)
398 {
399 	int bug = 0;
400 	int i = 0;
401 	unsigned long highest_address = 0;
402 	struct vm_area_struct *vma = mm->mmap;
403 
404 	while (vma) {
405 		struct anon_vma *anon_vma = vma->anon_vma;
406 		struct anon_vma_chain *avc;
407 
408 		if (anon_vma) {
409 			anon_vma_lock_read(anon_vma);
410 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
411 				anon_vma_interval_tree_verify(avc);
412 			anon_vma_unlock_read(anon_vma);
413 		}
414 
415 		highest_address = vm_end_gap(vma);
416 		vma = vma->vm_next;
417 		i++;
418 	}
419 	if (i != mm->map_count) {
420 		pr_emerg("map_count %d vm_next %d\n", mm->map_count, i);
421 		bug = 1;
422 	}
423 	if (highest_address != mm->highest_vm_end) {
424 		pr_emerg("mm->highest_vm_end %lx, found %lx\n",
425 			  mm->highest_vm_end, highest_address);
426 		bug = 1;
427 	}
428 	i = browse_rb(mm);
429 	if (i != mm->map_count) {
430 		if (i != -1)
431 			pr_emerg("map_count %d rb %d\n", mm->map_count, i);
432 		bug = 1;
433 	}
434 	VM_BUG_ON_MM(bug, mm);
435 }
436 #else
437 #define validate_mm_rb(root, ignore) do { } while (0)
438 #define validate_mm(mm) do { } while (0)
439 #endif
440 
RB_DECLARE_CALLBACKS_MAX(static,vma_gap_callbacks,struct vm_area_struct,vm_rb,unsigned long,rb_subtree_gap,vma_compute_gap)441 RB_DECLARE_CALLBACKS_MAX(static, vma_gap_callbacks,
442 			 struct vm_area_struct, vm_rb,
443 			 unsigned long, rb_subtree_gap, vma_compute_gap)
444 
445 /*
446  * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
447  * vma->vm_prev->vm_end values changed, without modifying the vma's position
448  * in the rbtree.
449  */
450 static void vma_gap_update(struct vm_area_struct *vma)
451 {
452 	/*
453 	 * As it turns out, RB_DECLARE_CALLBACKS_MAX() already created
454 	 * a callback function that does exactly what we want.
455 	 */
456 	vma_gap_callbacks_propagate(&vma->vm_rb, NULL);
457 }
458 
vma_rb_insert(struct vm_area_struct * vma,struct rb_root * root)459 static inline void vma_rb_insert(struct vm_area_struct *vma,
460 				 struct rb_root *root)
461 {
462 	/* All rb_subtree_gap values must be consistent prior to insertion */
463 	validate_mm_rb(root, NULL);
464 
465 	rb_insert_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
466 }
467 
__vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)468 static void __vma_rb_erase(struct vm_area_struct *vma, struct rb_root *root)
469 {
470 	/*
471 	 * Note rb_erase_augmented is a fairly large inline function,
472 	 * so make sure we instantiate it only once with our desired
473 	 * augmented rbtree callbacks.
474 	 */
475 	rb_erase_augmented(&vma->vm_rb, root, &vma_gap_callbacks);
476 }
477 
vma_rb_erase_ignore(struct vm_area_struct * vma,struct rb_root * root,struct vm_area_struct * ignore)478 static __always_inline void vma_rb_erase_ignore(struct vm_area_struct *vma,
479 						struct rb_root *root,
480 						struct vm_area_struct *ignore)
481 {
482 	/*
483 	 * All rb_subtree_gap values must be consistent prior to erase,
484 	 * with the possible exception of
485 	 *
486 	 * a. the "next" vma being erased if next->vm_start was reduced in
487 	 *    __vma_adjust() -> __vma_unlink()
488 	 * b. the vma being erased in detach_vmas_to_be_unmapped() ->
489 	 *    vma_rb_erase()
490 	 */
491 	validate_mm_rb(root, ignore);
492 
493 	__vma_rb_erase(vma, root);
494 }
495 
vma_rb_erase(struct vm_area_struct * vma,struct rb_root * root)496 static __always_inline void vma_rb_erase(struct vm_area_struct *vma,
497 					 struct rb_root *root)
498 {
499 	vma_rb_erase_ignore(vma, root, vma);
500 }
501 
502 /*
503  * vma has some anon_vma assigned, and is already inserted on that
504  * anon_vma's interval trees.
505  *
506  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
507  * vma must be removed from the anon_vma's interval trees using
508  * anon_vma_interval_tree_pre_update_vma().
509  *
510  * After the update, the vma will be reinserted using
511  * anon_vma_interval_tree_post_update_vma().
512  *
513  * The entire update must be protected by exclusive mmap_lock and by
514  * the root anon_vma's mutex.
515  */
516 static inline void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)517 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
518 {
519 	struct anon_vma_chain *avc;
520 
521 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
522 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
523 }
524 
525 static inline void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)526 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
527 {
528 	struct anon_vma_chain *avc;
529 
530 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
531 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
532 }
533 
find_vma_links(struct mm_struct * mm,unsigned long addr,unsigned long end,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)534 static int find_vma_links(struct mm_struct *mm, unsigned long addr,
535 		unsigned long end, struct vm_area_struct **pprev,
536 		struct rb_node ***rb_link, struct rb_node **rb_parent)
537 {
538 	struct rb_node **__rb_link, *__rb_parent, *rb_prev;
539 
540 	__rb_link = &mm->mm_rb.rb_node;
541 	rb_prev = __rb_parent = NULL;
542 
543 	while (*__rb_link) {
544 		struct vm_area_struct *vma_tmp;
545 
546 		__rb_parent = *__rb_link;
547 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
548 
549 		if (vma_tmp->vm_end > addr) {
550 			/* Fail if an existing vma overlaps the area */
551 			if (vma_tmp->vm_start < end)
552 				return -ENOMEM;
553 			__rb_link = &__rb_parent->rb_left;
554 		} else {
555 			rb_prev = __rb_parent;
556 			__rb_link = &__rb_parent->rb_right;
557 		}
558 	}
559 
560 	*pprev = NULL;
561 	if (rb_prev)
562 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
563 	*rb_link = __rb_link;
564 	*rb_parent = __rb_parent;
565 	return 0;
566 }
567 
568 /*
569  * vma_next() - Get the next VMA.
570  * @mm: The mm_struct.
571  * @vma: The current vma.
572  *
573  * If @vma is NULL, return the first vma in the mm.
574  *
575  * Returns: The next VMA after @vma.
576  */
vma_next(struct mm_struct * mm,struct vm_area_struct * vma)577 static inline struct vm_area_struct *vma_next(struct mm_struct *mm,
578 					 struct vm_area_struct *vma)
579 {
580 	if (!vma)
581 		return mm->mmap;
582 
583 	return vma->vm_next;
584 }
585 
586 /*
587  * munmap_vma_range() - munmap VMAs that overlap a range.
588  * @mm: The mm struct
589  * @start: The start of the range.
590  * @len: The length of the range.
591  * @pprev: pointer to the pointer that will be set to previous vm_area_struct
592  * @rb_link: the rb_node
593  * @rb_parent: the parent rb_node
594  *
595  * Find all the vm_area_struct that overlap from @start to
596  * @end and munmap them.  Set @pprev to the previous vm_area_struct.
597  *
598  * Returns: -ENOMEM on munmap failure or 0 on success.
599  */
600 static inline int
munmap_vma_range(struct mm_struct * mm,unsigned long start,unsigned long len,struct vm_area_struct ** pprev,struct rb_node *** link,struct rb_node ** parent,struct list_head * uf)601 munmap_vma_range(struct mm_struct *mm, unsigned long start, unsigned long len,
602 		 struct vm_area_struct **pprev, struct rb_node ***link,
603 		 struct rb_node **parent, struct list_head *uf)
604 {
605 
606 	while (find_vma_links(mm, start, start + len, pprev, link, parent))
607 		if (do_munmap(mm, start, len, uf))
608 			return -ENOMEM;
609 
610 	return 0;
611 }
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)612 static unsigned long count_vma_pages_range(struct mm_struct *mm,
613 		unsigned long addr, unsigned long end)
614 {
615 	unsigned long nr_pages = 0;
616 	struct vm_area_struct *vma;
617 
618 	/* Find first overlaping mapping */
619 	vma = find_vma_intersection(mm, addr, end);
620 	if (!vma)
621 		return 0;
622 
623 	nr_pages = (min(end, vma->vm_end) -
624 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
625 
626 	/* Iterate over the rest of the overlaps */
627 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
628 		unsigned long overlap_len;
629 
630 		if (vma->vm_start > end)
631 			break;
632 
633 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
634 		nr_pages += overlap_len >> PAGE_SHIFT;
635 	}
636 
637 	return nr_pages;
638 }
639 
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)640 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
641 		struct rb_node **rb_link, struct rb_node *rb_parent)
642 {
643 	/* Update tracking information for the gap following the new vma. */
644 	if (vma->vm_next)
645 		vma_gap_update(vma->vm_next);
646 	else
647 		mm->highest_vm_end = vm_end_gap(vma);
648 
649 	/*
650 	 * vma->vm_prev wasn't known when we followed the rbtree to find the
651 	 * correct insertion point for that vma. As a result, we could not
652 	 * update the vma vm_rb parents rb_subtree_gap values on the way down.
653 	 * So, we first insert the vma with a zero rb_subtree_gap value
654 	 * (to be consistent with what we did on the way down), and then
655 	 * immediately update the gap to the correct value. Finally we
656 	 * rebalance the rbtree after all augmented values have been set.
657 	 */
658 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
659 	vma->rb_subtree_gap = 0;
660 	vma_gap_update(vma);
661 	vma_rb_insert(vma, &mm->mm_rb);
662 }
663 
__vma_link_file(struct vm_area_struct * vma)664 static void __vma_link_file(struct vm_area_struct *vma)
665 {
666 	struct file *file;
667 
668 	file = vma->vm_file;
669 	if (file) {
670 		struct address_space *mapping = file->f_mapping;
671 
672 		if (vma->vm_flags & VM_DENYWRITE)
673 			put_write_access(file_inode(file));
674 		if (vma->vm_flags & VM_SHARED)
675 			mapping_allow_writable(mapping);
676 
677 		flush_dcache_mmap_lock(mapping);
678 		vma_interval_tree_insert(vma, &mapping->i_mmap);
679 		flush_dcache_mmap_unlock(mapping);
680 	}
681 }
682 
683 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)684 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
685 	struct vm_area_struct *prev, struct rb_node **rb_link,
686 	struct rb_node *rb_parent)
687 {
688 	__vma_link_list(mm, vma, prev);
689 	__vma_link_rb(mm, vma, rb_link, rb_parent);
690 }
691 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)692 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
693 			struct vm_area_struct *prev, struct rb_node **rb_link,
694 			struct rb_node *rb_parent)
695 {
696 	struct address_space *mapping = NULL;
697 
698 	if (vma->vm_file) {
699 		mapping = vma->vm_file->f_mapping;
700 		i_mmap_lock_write(mapping);
701 	}
702 
703 	__vma_link(mm, vma, prev, rb_link, rb_parent);
704 	__vma_link_file(vma);
705 
706 	if (mapping)
707 		i_mmap_unlock_write(mapping);
708 
709 	mm->map_count++;
710 	validate_mm(mm);
711 }
712 
713 /*
714  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
715  * mm's list and rbtree.  It has already been inserted into the interval tree.
716  */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)717 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
718 {
719 	struct vm_area_struct *prev;
720 	struct rb_node **rb_link, *rb_parent;
721 
722 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
723 			   &prev, &rb_link, &rb_parent))
724 		BUG();
725 	__vma_link(mm, vma, prev, rb_link, rb_parent);
726 	mm->map_count++;
727 }
728 
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * ignore)729 static __always_inline void __vma_unlink(struct mm_struct *mm,
730 						struct vm_area_struct *vma,
731 						struct vm_area_struct *ignore)
732 {
733 	vma_rb_erase_ignore(vma, &mm->mm_rb, ignore);
734 	__vma_unlink_list(mm, vma);
735 	/* Kill the cache */
736 	vmacache_invalidate(mm);
737 }
738 
739 /*
740  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
741  * is already present in an i_mmap tree without adjusting the tree.
742  * The following helper function should be used when such adjustments
743  * are necessary.  The "insert" vma (if any) is to be inserted
744  * before we drop the necessary locks.
745  */
__vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert,struct vm_area_struct * expand)746 int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
747 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
748 	struct vm_area_struct *expand)
749 {
750 	struct mm_struct *mm = vma->vm_mm;
751 	struct vm_area_struct *next = vma->vm_next, *orig_vma = vma;
752 	struct address_space *mapping = NULL;
753 	struct rb_root_cached *root = NULL;
754 	struct anon_vma *anon_vma = NULL;
755 	struct file *file = vma->vm_file;
756 	bool start_changed = false, end_changed = false;
757 	long adjust_next = 0;
758 	int remove_next = 0;
759 
760 	if (next && !insert) {
761 		struct vm_area_struct *exporter = NULL, *importer = NULL;
762 
763 		if (end >= next->vm_end) {
764 			/*
765 			 * vma expands, overlapping all the next, and
766 			 * perhaps the one after too (mprotect case 6).
767 			 * The only other cases that gets here are
768 			 * case 1, case 7 and case 8.
769 			 */
770 			if (next == expand) {
771 				/*
772 				 * The only case where we don't expand "vma"
773 				 * and we expand "next" instead is case 8.
774 				 */
775 				VM_WARN_ON(end != next->vm_end);
776 				/*
777 				 * remove_next == 3 means we're
778 				 * removing "vma" and that to do so we
779 				 * swapped "vma" and "next".
780 				 */
781 				remove_next = 3;
782 				VM_WARN_ON(file != next->vm_file);
783 				swap(vma, next);
784 			} else {
785 				VM_WARN_ON(expand != vma);
786 				/*
787 				 * case 1, 6, 7, remove_next == 2 is case 6,
788 				 * remove_next == 1 is case 1 or 7.
789 				 */
790 				remove_next = 1 + (end > next->vm_end);
791 				VM_WARN_ON(remove_next == 2 &&
792 					   end != next->vm_next->vm_end);
793 				/* trim end to next, for case 6 first pass */
794 				end = next->vm_end;
795 			}
796 
797 			exporter = next;
798 			importer = vma;
799 
800 			/*
801 			 * If next doesn't have anon_vma, import from vma after
802 			 * next, if the vma overlaps with it.
803 			 */
804 			if (remove_next == 2 && !next->anon_vma)
805 				exporter = next->vm_next;
806 
807 		} else if (end > next->vm_start) {
808 			/*
809 			 * vma expands, overlapping part of the next:
810 			 * mprotect case 5 shifting the boundary up.
811 			 */
812 			adjust_next = (end - next->vm_start);
813 			exporter = next;
814 			importer = vma;
815 			VM_WARN_ON(expand != importer);
816 		} else if (end < vma->vm_end) {
817 			/*
818 			 * vma shrinks, and !insert tells it's not
819 			 * split_vma inserting another: so it must be
820 			 * mprotect case 4 shifting the boundary down.
821 			 */
822 			adjust_next = -(vma->vm_end - end);
823 			exporter = vma;
824 			importer = next;
825 			VM_WARN_ON(expand != importer);
826 		}
827 
828 		/*
829 		 * Easily overlooked: when mprotect shifts the boundary,
830 		 * make sure the expanding vma has anon_vma set if the
831 		 * shrinking vma had, to cover any anon pages imported.
832 		 */
833 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
834 			int error;
835 
836 			importer->anon_vma = exporter->anon_vma;
837 			error = anon_vma_clone(importer, exporter);
838 			if (error)
839 				return error;
840 		}
841 	}
842 again:
843 	vma_adjust_trans_huge(orig_vma, start, end, adjust_next);
844 
845 	if (file) {
846 		mapping = file->f_mapping;
847 		root = &mapping->i_mmap;
848 		uprobe_munmap(vma, vma->vm_start, vma->vm_end);
849 
850 		if (adjust_next)
851 			uprobe_munmap(next, next->vm_start, next->vm_end);
852 
853 		i_mmap_lock_write(mapping);
854 		if (insert) {
855 			/*
856 			 * Put into interval tree now, so instantiated pages
857 			 * are visible to arm/parisc __flush_dcache_page
858 			 * throughout; but we cannot insert into address
859 			 * space until vma start or end is updated.
860 			 */
861 			__vma_link_file(insert);
862 		}
863 	}
864 
865 	anon_vma = vma->anon_vma;
866 	if (!anon_vma && adjust_next)
867 		anon_vma = next->anon_vma;
868 	if (anon_vma) {
869 		VM_WARN_ON(adjust_next && next->anon_vma &&
870 			   anon_vma != next->anon_vma);
871 		anon_vma_lock_write(anon_vma);
872 		anon_vma_interval_tree_pre_update_vma(vma);
873 		if (adjust_next)
874 			anon_vma_interval_tree_pre_update_vma(next);
875 	}
876 
877 	if (file) {
878 		flush_dcache_mmap_lock(mapping);
879 		vma_interval_tree_remove(vma, root);
880 		if (adjust_next)
881 			vma_interval_tree_remove(next, root);
882 	}
883 
884 	if (start != vma->vm_start) {
885 		vma->vm_start = start;
886 		start_changed = true;
887 	}
888 	if (end != vma->vm_end) {
889 		vma->vm_end = end;
890 		end_changed = true;
891 	}
892 	vma->vm_pgoff = pgoff;
893 	if (adjust_next) {
894 		next->vm_start += adjust_next;
895 		next->vm_pgoff += adjust_next >> PAGE_SHIFT;
896 	}
897 
898 	if (file) {
899 		if (adjust_next)
900 			vma_interval_tree_insert(next, root);
901 		vma_interval_tree_insert(vma, root);
902 		flush_dcache_mmap_unlock(mapping);
903 	}
904 
905 	if (remove_next) {
906 		/*
907 		 * vma_merge has merged next into vma, and needs
908 		 * us to remove next before dropping the locks.
909 		 */
910 		if (remove_next != 3)
911 			__vma_unlink(mm, next, next);
912 		else
913 			/*
914 			 * vma is not before next if they've been
915 			 * swapped.
916 			 *
917 			 * pre-swap() next->vm_start was reduced so
918 			 * tell validate_mm_rb to ignore pre-swap()
919 			 * "next" (which is stored in post-swap()
920 			 * "vma").
921 			 */
922 			__vma_unlink(mm, next, vma);
923 		if (file)
924 			__remove_shared_vm_struct(next, file, mapping);
925 	} else if (insert) {
926 		/*
927 		 * split_vma has split insert from vma, and needs
928 		 * us to insert it before dropping the locks
929 		 * (it may either follow vma or precede it).
930 		 */
931 		__insert_vm_struct(mm, insert);
932 	} else {
933 		if (start_changed)
934 			vma_gap_update(vma);
935 		if (end_changed) {
936 			if (!next)
937 				mm->highest_vm_end = vm_end_gap(vma);
938 			else if (!adjust_next)
939 				vma_gap_update(next);
940 		}
941 	}
942 
943 	if (anon_vma) {
944 		anon_vma_interval_tree_post_update_vma(vma);
945 		if (adjust_next)
946 			anon_vma_interval_tree_post_update_vma(next);
947 		anon_vma_unlock_write(anon_vma);
948 	}
949 
950 	if (file) {
951 		i_mmap_unlock_write(mapping);
952 		uprobe_mmap(vma);
953 
954 		if (adjust_next)
955 			uprobe_mmap(next);
956 	}
957 
958 	if (remove_next) {
959 		if (file) {
960 			uprobe_munmap(next, next->vm_start, next->vm_end);
961 			fput(file);
962 		}
963 		if (next->anon_vma)
964 			anon_vma_merge(vma, next);
965 		mm->map_count--;
966 		mpol_put(vma_policy(next));
967 		vm_area_free(next);
968 		/*
969 		 * In mprotect's case 6 (see comments on vma_merge),
970 		 * we must remove another next too. It would clutter
971 		 * up the code too much to do both in one go.
972 		 */
973 		if (remove_next != 3) {
974 			/*
975 			 * If "next" was removed and vma->vm_end was
976 			 * expanded (up) over it, in turn
977 			 * "next->vm_prev->vm_end" changed and the
978 			 * "vma->vm_next" gap must be updated.
979 			 */
980 			next = vma->vm_next;
981 		} else {
982 			/*
983 			 * For the scope of the comment "next" and
984 			 * "vma" considered pre-swap(): if "vma" was
985 			 * removed, next->vm_start was expanded (down)
986 			 * over it and the "next" gap must be updated.
987 			 * Because of the swap() the post-swap() "vma"
988 			 * actually points to pre-swap() "next"
989 			 * (post-swap() "next" as opposed is now a
990 			 * dangling pointer).
991 			 */
992 			next = vma;
993 		}
994 		if (remove_next == 2) {
995 			remove_next = 1;
996 			end = next->vm_end;
997 			goto again;
998 		}
999 		else if (next)
1000 			vma_gap_update(next);
1001 		else {
1002 			/*
1003 			 * If remove_next == 2 we obviously can't
1004 			 * reach this path.
1005 			 *
1006 			 * If remove_next == 3 we can't reach this
1007 			 * path because pre-swap() next is always not
1008 			 * NULL. pre-swap() "next" is not being
1009 			 * removed and its next->vm_end is not altered
1010 			 * (and furthermore "end" already matches
1011 			 * next->vm_end in remove_next == 3).
1012 			 *
1013 			 * We reach this only in the remove_next == 1
1014 			 * case if the "next" vma that was removed was
1015 			 * the highest vma of the mm. However in such
1016 			 * case next->vm_end == "end" and the extended
1017 			 * "vma" has vma->vm_end == next->vm_end so
1018 			 * mm->highest_vm_end doesn't need any update
1019 			 * in remove_next == 1 case.
1020 			 */
1021 			VM_WARN_ON(mm->highest_vm_end != vm_end_gap(vma));
1022 		}
1023 	}
1024 	if (insert && file)
1025 		uprobe_mmap(insert);
1026 
1027 	validate_mm(mm);
1028 
1029 	return 0;
1030 }
1031 
1032 /*
1033  * If the vma has a ->close operation then the driver probably needs to release
1034  * per-vma resources, so we don't attempt to merge those.
1035  */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1036 static inline int is_mergeable_vma(struct vm_area_struct *vma,
1037 				struct file *file, unsigned long vm_flags,
1038 				struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1039 				struct anon_vma_name *anon_name)
1040 {
1041 	/*
1042 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
1043 	 * match the flags but dirty bit -- the caller should mark
1044 	 * merged VMA as dirty. If dirty bit won't be excluded from
1045 	 * comparison, we increase pressure on the memory system forcing
1046 	 * the kernel to generate new VMAs when old one could be
1047 	 * extended instead.
1048 	 */
1049 	if ((vma->vm_flags ^ vm_flags) & ~VM_SOFTDIRTY)
1050 		return 0;
1051 	if (vma->vm_file != file)
1052 		return 0;
1053 	if (vma->vm_ops && vma->vm_ops->close)
1054 		return 0;
1055 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vm_userfaultfd_ctx))
1056 		return 0;
1057 	if (!anon_vma_name_eq(anon_vma_name(vma), anon_name))
1058 		return 0;
1059 	return 1;
1060 }
1061 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)1062 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
1063 					struct anon_vma *anon_vma2,
1064 					struct vm_area_struct *vma)
1065 {
1066 	/*
1067 	 * The list_is_singular() test is to avoid merging VMA cloned from
1068 	 * parents. This can improve scalability caused by anon_vma lock.
1069 	 */
1070 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
1071 		list_is_singular(&vma->anon_vma_chain)))
1072 		return 1;
1073 	return anon_vma1 == anon_vma2;
1074 }
1075 
1076 /*
1077  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1078  * in front of (at a lower virtual address and file offset than) the vma.
1079  *
1080  * We cannot merge two vmas if they have differently assigned (non-NULL)
1081  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1082  *
1083  * We don't check here for the merged mmap wrapping around the end of pagecache
1084  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
1085  * wrap, nor mmaps which cover the final page at index -1UL.
1086  */
1087 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1088 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
1089 		     struct anon_vma *anon_vma, struct file *file,
1090 		     pgoff_t vm_pgoff,
1091 		     struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1092 		     struct anon_vma_name *anon_name)
1093 {
1094 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1095 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1096 		if (vma->vm_pgoff == vm_pgoff)
1097 			return 1;
1098 	}
1099 	return 0;
1100 }
1101 
1102 /*
1103  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
1104  * beyond (at a higher virtual address and file offset than) the vma.
1105  *
1106  * We cannot merge two vmas if they have differently assigned (non-NULL)
1107  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1108  */
1109 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1110 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
1111 		    struct anon_vma *anon_vma, struct file *file,
1112 		    pgoff_t vm_pgoff,
1113 		    struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1114 		    struct anon_vma_name *anon_name)
1115 {
1116 	if (is_mergeable_vma(vma, file, vm_flags, vm_userfaultfd_ctx, anon_name) &&
1117 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
1118 		pgoff_t vm_pglen;
1119 		vm_pglen = vma_pages(vma);
1120 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
1121 			return 1;
1122 	}
1123 	return 0;
1124 }
1125 
1126 /*
1127  * Given a mapping request (addr,end,vm_flags,file,pgoff,anon_name),
1128  * figure out whether that can be merged with its predecessor or its
1129  * successor.  Or both (it neatly fills a hole).
1130  *
1131  * In most cases - when called for mmap, brk or mremap - [addr,end) is
1132  * certain not to be mapped by the time vma_merge is called; but when
1133  * called for mprotect, it is certain to be already mapped (either at
1134  * an offset within prev, or at the start of next), and the flags of
1135  * this area are about to be changed to vm_flags - and the no-change
1136  * case has already been eliminated.
1137  *
1138  * The following mprotect cases have to be considered, where AAAA is
1139  * the area passed down from mprotect_fixup, never extending beyond one
1140  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1141  *
1142  *     AAAA             AAAA                   AAAA
1143  *    PPPPPPNNNNNN    PPPPPPNNNNNN       PPPPPPNNNNNN
1144  *    cannot merge    might become       might become
1145  *                    PPNNNNNNNNNN       PPPPPPPPPPNN
1146  *    mmap, brk or    case 4 below       case 5 below
1147  *    mremap move:
1148  *                        AAAA               AAAA
1149  *                    PPPP    NNNN       PPPPNNNNXXXX
1150  *                    might become       might become
1151  *                    PPPPPPPPPPPP 1 or  PPPPPPPPPPPP 6 or
1152  *                    PPPPPPPPNNNN 2 or  PPPPPPPPXXXX 7 or
1153  *                    PPPPNNNNNNNN 3     PPPPXXXXXXXX 8
1154  *
1155  * It is important for case 8 that the vma NNNN overlapping the
1156  * region AAAA is never going to extended over XXXX. Instead XXXX must
1157  * be extended in region AAAA and NNNN must be removed. This way in
1158  * all cases where vma_merge succeeds, the moment vma_adjust drops the
1159  * rmap_locks, the properties of the merged vma will be already
1160  * correct for the whole merged range. Some of those properties like
1161  * vm_page_prot/vm_flags may be accessed by rmap_walks and they must
1162  * be correct for the whole merged range immediately after the
1163  * rmap_locks are released. Otherwise if XXXX would be removed and
1164  * NNNN would be extended over the XXXX range, remove_migration_ptes
1165  * or other rmap walkers (if working on addresses beyond the "end"
1166  * parameter) may establish ptes with the wrong permissions of NNNN
1167  * instead of the right permissions of XXXX.
1168  */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy,struct vm_userfaultfd_ctx vm_userfaultfd_ctx,struct anon_vma_name * anon_name)1169 struct vm_area_struct *vma_merge(struct mm_struct *mm,
1170 			struct vm_area_struct *prev, unsigned long addr,
1171 			unsigned long end, unsigned long vm_flags,
1172 			struct anon_vma *anon_vma, struct file *file,
1173 			pgoff_t pgoff, struct mempolicy *policy,
1174 			struct vm_userfaultfd_ctx vm_userfaultfd_ctx,
1175 			struct anon_vma_name *anon_name)
1176 {
1177 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
1178 	struct vm_area_struct *area, *next;
1179 	int err;
1180 
1181 	/*
1182 	 * We later require that vma->vm_flags == vm_flags,
1183 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
1184 	 */
1185 	if (vm_flags & VM_SPECIAL)
1186 		return NULL;
1187 
1188 	next = vma_next(mm, prev);
1189 	area = next;
1190 	if (area && area->vm_end == end)		/* cases 6, 7, 8 */
1191 		next = next->vm_next;
1192 
1193 	/* verify some invariant that must be enforced by the caller */
1194 	VM_WARN_ON(prev && addr <= prev->vm_start);
1195 	VM_WARN_ON(area && end > area->vm_end);
1196 	VM_WARN_ON(addr >= end);
1197 
1198 	/*
1199 	 * Can it merge with the predecessor?
1200 	 */
1201 	if (prev && prev->vm_end == addr &&
1202 			mpol_equal(vma_policy(prev), policy) &&
1203 			can_vma_merge_after(prev, vm_flags,
1204 					    anon_vma, file, pgoff,
1205 					    vm_userfaultfd_ctx, anon_name)) {
1206 		/*
1207 		 * OK, it can.  Can we now merge in the successor as well?
1208 		 */
1209 		if (next && end == next->vm_start &&
1210 				mpol_equal(policy, vma_policy(next)) &&
1211 				can_vma_merge_before(next, vm_flags,
1212 						     anon_vma, file,
1213 						     pgoff+pglen,
1214 						     vm_userfaultfd_ctx, anon_name) &&
1215 				is_mergeable_anon_vma(prev->anon_vma,
1216 						      next->anon_vma, NULL)) {
1217 							/* cases 1, 6 */
1218 			err = __vma_adjust(prev, prev->vm_start,
1219 					 next->vm_end, prev->vm_pgoff, NULL,
1220 					 prev);
1221 		} else					/* cases 2, 5, 7 */
1222 			err = __vma_adjust(prev, prev->vm_start,
1223 					 end, prev->vm_pgoff, NULL, prev);
1224 		if (err)
1225 			return NULL;
1226 		khugepaged_enter_vma_merge(prev, vm_flags);
1227 		return prev;
1228 	}
1229 
1230 	/*
1231 	 * Can this new request be merged in front of next?
1232 	 */
1233 	if (next && end == next->vm_start &&
1234 			mpol_equal(policy, vma_policy(next)) &&
1235 			can_vma_merge_before(next, vm_flags,
1236 					     anon_vma, file, pgoff+pglen,
1237 					     vm_userfaultfd_ctx, anon_name)) {
1238 		if (prev && addr < prev->vm_end)	/* case 4 */
1239 			err = __vma_adjust(prev, prev->vm_start,
1240 					 addr, prev->vm_pgoff, NULL, next);
1241 		else {					/* cases 3, 8 */
1242 			err = __vma_adjust(area, addr, next->vm_end,
1243 					 next->vm_pgoff - pglen, NULL, next);
1244 			/*
1245 			 * In case 3 area is already equal to next and
1246 			 * this is a noop, but in case 8 "area" has
1247 			 * been removed and next was expanded over it.
1248 			 */
1249 			area = next;
1250 		}
1251 		if (err)
1252 			return NULL;
1253 		khugepaged_enter_vma_merge(area, vm_flags);
1254 		return area;
1255 	}
1256 
1257 	return NULL;
1258 }
1259 
1260 /*
1261  * Rough compatibility check to quickly see if it's even worth looking
1262  * at sharing an anon_vma.
1263  *
1264  * They need to have the same vm_file, and the flags can only differ
1265  * in things that mprotect may change.
1266  *
1267  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1268  * we can merge the two vma's. For example, we refuse to merge a vma if
1269  * there is a vm_ops->close() function, because that indicates that the
1270  * driver is doing some kind of reference counting. But that doesn't
1271  * really matter for the anon_vma sharing case.
1272  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1273 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1274 {
1275 	return a->vm_end == b->vm_start &&
1276 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1277 		a->vm_file == b->vm_file &&
1278 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1279 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1280 }
1281 
1282 /*
1283  * Do some basic sanity checking to see if we can re-use the anon_vma
1284  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1285  * the same as 'old', the other will be the new one that is trying
1286  * to share the anon_vma.
1287  *
1288  * NOTE! This runs with mm_sem held for reading, so it is possible that
1289  * the anon_vma of 'old' is concurrently in the process of being set up
1290  * by another page fault trying to merge _that_. But that's ok: if it
1291  * is being set up, that automatically means that it will be a singleton
1292  * acceptable for merging, so we can do all of this optimistically. But
1293  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1294  *
1295  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1296  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1297  * is to return an anon_vma that is "complex" due to having gone through
1298  * a fork).
1299  *
1300  * We also make sure that the two vma's are compatible (adjacent,
1301  * and with the same memory policies). That's all stable, even with just
1302  * a read lock on the mm_sem.
1303  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1304 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
1305 {
1306 	if (anon_vma_compatible(a, b)) {
1307 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1308 
1309 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1310 			return anon_vma;
1311 	}
1312 	return NULL;
1313 }
1314 
1315 /*
1316  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1317  * neighbouring vmas for a suitable anon_vma, before it goes off
1318  * to allocate a new anon_vma.  It checks because a repetitive
1319  * sequence of mprotects and faults may otherwise lead to distinct
1320  * anon_vmas being allocated, preventing vma merge in subsequent
1321  * mprotect.
1322  */
find_mergeable_anon_vma(struct vm_area_struct * vma)1323 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1324 {
1325 	struct anon_vma *anon_vma = NULL;
1326 
1327 	/* Try next first. */
1328 	if (vma->vm_next) {
1329 		anon_vma = reusable_anon_vma(vma->vm_next, vma, vma->vm_next);
1330 		if (anon_vma)
1331 			return anon_vma;
1332 	}
1333 
1334 	/* Try prev next. */
1335 	if (vma->vm_prev)
1336 		anon_vma = reusable_anon_vma(vma->vm_prev, vma->vm_prev, vma);
1337 
1338 	/*
1339 	 * We might reach here with anon_vma == NULL if we can't find
1340 	 * any reusable anon_vma.
1341 	 * There's no absolute need to look only at touching neighbours:
1342 	 * we could search further afield for "compatible" anon_vmas.
1343 	 * But it would probably just be a waste of time searching,
1344 	 * or lead to too many vmas hanging off the same anon_vma.
1345 	 * We're trying to allow mprotect remerging later on,
1346 	 * not trying to minimize memory used for anon_vmas.
1347 	 */
1348 	return anon_vma;
1349 }
1350 
1351 /*
1352  * If a hint addr is less than mmap_min_addr change hint to be as
1353  * low as possible but still greater than mmap_min_addr
1354  */
round_hint_to_min(unsigned long hint)1355 static inline unsigned long round_hint_to_min(unsigned long hint)
1356 {
1357 	hint &= PAGE_MASK;
1358 	if (((void *)hint != NULL) &&
1359 	    (hint < mmap_min_addr))
1360 		return PAGE_ALIGN(mmap_min_addr);
1361 	return hint;
1362 }
1363 
mlock_future_check(struct mm_struct * mm,unsigned long flags,unsigned long len)1364 static inline int mlock_future_check(struct mm_struct *mm,
1365 				     unsigned long flags,
1366 				     unsigned long len)
1367 {
1368 	unsigned long locked, lock_limit;
1369 
1370 	/*  mlock MCL_FUTURE? */
1371 	if (flags & VM_LOCKED) {
1372 		locked = len >> PAGE_SHIFT;
1373 		locked += mm->locked_vm;
1374 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1375 		lock_limit >>= PAGE_SHIFT;
1376 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1377 			return -EAGAIN;
1378 	}
1379 	return 0;
1380 }
1381 
file_mmap_size_max(struct file * file,struct inode * inode)1382 static inline u64 file_mmap_size_max(struct file *file, struct inode *inode)
1383 {
1384 	if (S_ISREG(inode->i_mode))
1385 		return MAX_LFS_FILESIZE;
1386 
1387 	if (S_ISBLK(inode->i_mode))
1388 		return MAX_LFS_FILESIZE;
1389 
1390 	if (S_ISSOCK(inode->i_mode))
1391 		return MAX_LFS_FILESIZE;
1392 
1393 	/* Special "we do even unsigned file positions" case */
1394 	if (file->f_mode & FMODE_UNSIGNED_OFFSET)
1395 		return 0;
1396 
1397 	/* Yes, random drivers might want more. But I'm tired of buggy drivers */
1398 	return ULONG_MAX;
1399 }
1400 
file_mmap_ok(struct file * file,struct inode * inode,unsigned long pgoff,unsigned long len)1401 static inline bool file_mmap_ok(struct file *file, struct inode *inode,
1402 				unsigned long pgoff, unsigned long len)
1403 {
1404 	u64 maxsize = file_mmap_size_max(file, inode);
1405 
1406 	if (maxsize && len > maxsize)
1407 		return false;
1408 	maxsize -= len;
1409 	if (pgoff > maxsize >> PAGE_SHIFT)
1410 		return false;
1411 	return true;
1412 }
1413 
1414 /*
1415  * The caller must write-lock current->mm->mmap_lock.
1416  */
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * populate,struct list_head * uf)1417 unsigned long do_mmap(struct file *file, unsigned long addr,
1418 			unsigned long len, unsigned long prot,
1419 			unsigned long flags, unsigned long pgoff,
1420 			unsigned long *populate, struct list_head *uf)
1421 {
1422 	struct mm_struct *mm = current->mm;
1423 	vm_flags_t vm_flags;
1424 	int pkey = 0;
1425 	int err = 0;
1426 
1427 	*populate = 0;
1428 
1429 	if (!len)
1430 		return -EINVAL;
1431 
1432 	/*
1433 	 * Does the application expect PROT_READ to imply PROT_EXEC?
1434 	 *
1435 	 * (the exception is when the underlying filesystem is noexec
1436 	 *  mounted, in which case we dont add PROT_EXEC.)
1437 	 */
1438 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1439 		if (!(file && path_noexec(&file->f_path)))
1440 			prot |= PROT_EXEC;
1441 
1442 	/* force arch specific MAP_FIXED handling in get_unmapped_area */
1443 	if (flags & MAP_FIXED_NOREPLACE)
1444 		flags |= MAP_FIXED;
1445 
1446 	if (!(flags & MAP_FIXED))
1447 		addr = round_hint_to_min(addr);
1448 
1449 	/* Careful about overflows.. */
1450 	len = PAGE_ALIGN(len);
1451 	if (!len)
1452 		return -ENOMEM;
1453 
1454 	/* offset overflow? */
1455 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1456 		return -EOVERFLOW;
1457 
1458 	/* Too many mappings? */
1459 	if (mm->map_count > sysctl_max_map_count)
1460 		return -ENOMEM;
1461 
1462 	/* Obtain the address to map to. we verify (or select) it and ensure
1463 	 * that it represents a valid section of the address space.
1464 	 */
1465 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1466 	if (IS_ERR_VALUE(addr))
1467 		return addr;
1468 
1469 	if (flags & MAP_FIXED_NOREPLACE) {
1470 		struct vm_area_struct *vma = find_vma(mm, addr);
1471 
1472 		if (vma && vma->vm_start < addr + len)
1473 			return -EEXIST;
1474 	}
1475 
1476 	if (prot == PROT_EXEC) {
1477 		pkey = execute_only_pkey(mm);
1478 		if (pkey < 0)
1479 			pkey = 0;
1480 	}
1481 
1482 	/* Do simple checking here so the lower-level routines won't have
1483 	 * to. we assume access permissions have been handled by the open
1484 	 * of the memory object, so we don't do any here.
1485 	 */
1486 	vm_flags = calc_vm_prot_bits(prot, pkey) | calc_vm_flag_bits(flags) |
1487 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1488 
1489 	trace_vendor_do_mmap(&vm_flags, &err);
1490 	if (err)
1491 		return err;
1492 
1493 	if (flags & MAP_LOCKED)
1494 		if (!can_do_mlock())
1495 			return -EPERM;
1496 
1497 	if (mlock_future_check(mm, vm_flags, len))
1498 		return -EAGAIN;
1499 
1500 	if (file) {
1501 		struct inode *inode = file_inode(file);
1502 		unsigned long flags_mask;
1503 
1504 		if (!file_mmap_ok(file, inode, pgoff, len))
1505 			return -EOVERFLOW;
1506 
1507 		flags_mask = LEGACY_MAP_MASK | file->f_op->mmap_supported_flags;
1508 
1509 		switch (flags & MAP_TYPE) {
1510 		case MAP_SHARED:
1511 			/*
1512 			 * Force use of MAP_SHARED_VALIDATE with non-legacy
1513 			 * flags. E.g. MAP_SYNC is dangerous to use with
1514 			 * MAP_SHARED as you don't know which consistency model
1515 			 * you will get. We silently ignore unsupported flags
1516 			 * with MAP_SHARED to preserve backward compatibility.
1517 			 */
1518 			flags &= LEGACY_MAP_MASK;
1519 			fallthrough;
1520 		case MAP_SHARED_VALIDATE:
1521 			if (flags & ~flags_mask)
1522 				return -EOPNOTSUPP;
1523 			if (prot & PROT_WRITE) {
1524 				if (!(file->f_mode & FMODE_WRITE))
1525 					return -EACCES;
1526 				if (IS_SWAPFILE(file->f_mapping->host))
1527 					return -ETXTBSY;
1528 			}
1529 
1530 			/*
1531 			 * Make sure we don't allow writing to an append-only
1532 			 * file..
1533 			 */
1534 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1535 				return -EACCES;
1536 
1537 			/*
1538 			 * Make sure there are no mandatory locks on the file.
1539 			 */
1540 			if (locks_verify_locked(file))
1541 				return -EAGAIN;
1542 
1543 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1544 			if (!(file->f_mode & FMODE_WRITE))
1545 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1546 			fallthrough;
1547 		case MAP_PRIVATE:
1548 			if (!(file->f_mode & FMODE_READ))
1549 				return -EACCES;
1550 			if (path_noexec(&file->f_path)) {
1551 				if (vm_flags & VM_EXEC)
1552 					return -EPERM;
1553 				vm_flags &= ~VM_MAYEXEC;
1554 			}
1555 
1556 			if (!file->f_op->mmap)
1557 				return -ENODEV;
1558 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1559 				return -EINVAL;
1560 			break;
1561 
1562 		default:
1563 			return -EINVAL;
1564 		}
1565 	} else {
1566 		switch (flags & MAP_TYPE) {
1567 		case MAP_SHARED:
1568 			if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1569 				return -EINVAL;
1570 			/*
1571 			 * Ignore pgoff.
1572 			 */
1573 			pgoff = 0;
1574 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1575 			break;
1576 		case MAP_PRIVATE:
1577 			/*
1578 			 * Set pgoff according to addr for anon_vma.
1579 			 */
1580 			pgoff = addr >> PAGE_SHIFT;
1581 			break;
1582 #ifdef CONFIG_MEM_PURGEABLE
1583 		case MAP_PURGEABLE:
1584 			vm_flags |= VM_PURGEABLE;
1585 			pr_info("vm_flags purgeable = %lx.\n", VM_PURGEABLE);
1586 			break;
1587 		case MAP_USEREXPTE:
1588 			vm_flags |= VM_USEREXPTE;
1589 			pr_info("vm_flags useredpte = %lx.\n", VM_USEREXPTE);
1590 			break;
1591 #endif
1592 		default:
1593 			return -EINVAL;
1594 		}
1595 	}
1596 
1597 	/*
1598 	 * Set 'VM_NORESERVE' if we should not account for the
1599 	 * memory use of this mapping.
1600 	 */
1601 	if (flags & MAP_NORESERVE) {
1602 		/* We honor MAP_NORESERVE if allowed to overcommit */
1603 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1604 			vm_flags |= VM_NORESERVE;
1605 
1606 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1607 		if (file && is_file_hugepages(file))
1608 			vm_flags |= VM_NORESERVE;
1609 	}
1610 
1611 	addr = mmap_region(file, addr, len, vm_flags, pgoff, uf);
1612 	if (!IS_ERR_VALUE(addr) &&
1613 	    ((vm_flags & VM_LOCKED) ||
1614 	     (flags & (MAP_POPULATE | MAP_NONBLOCK)) == MAP_POPULATE))
1615 		*populate = len;
1616 	return addr;
1617 }
1618 
ksys_mmap_pgoff(unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long fd,unsigned long pgoff)1619 unsigned long ksys_mmap_pgoff(unsigned long addr, unsigned long len,
1620 			      unsigned long prot, unsigned long flags,
1621 			      unsigned long fd, unsigned long pgoff)
1622 {
1623 	struct file *file = NULL;
1624 	unsigned long retval;
1625 
1626 	if (!(flags & MAP_ANONYMOUS)) {
1627 		audit_mmap_fd(fd, flags);
1628 		file = fget(fd);
1629 		if (!file)
1630 			return -EBADF;
1631 		if (is_file_hugepages(file)) {
1632 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1633 		} else if (unlikely(flags & MAP_HUGETLB)) {
1634 			retval = -EINVAL;
1635 			goto out_fput;
1636 		}
1637 	} else if (flags & MAP_HUGETLB) {
1638 		struct user_struct *user = NULL;
1639 		struct hstate *hs;
1640 
1641 		hs = hstate_sizelog((flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1642 		if (!hs)
1643 			return -EINVAL;
1644 
1645 		len = ALIGN(len, huge_page_size(hs));
1646 		/*
1647 		 * VM_NORESERVE is used because the reservations will be
1648 		 * taken when vm_ops->mmap() is called
1649 		 * A dummy user value is used because we are not locking
1650 		 * memory so no accounting is necessary
1651 		 */
1652 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1653 				VM_NORESERVE,
1654 				&user, HUGETLB_ANONHUGE_INODE,
1655 				(flags >> MAP_HUGE_SHIFT) & MAP_HUGE_MASK);
1656 		if (IS_ERR(file))
1657 			return PTR_ERR(file);
1658 	}
1659 
1660 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1661 
1662 	retval = vm_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1663 
1664 	if (!IS_ERR_VALUE(retval)) {
1665 		CALL_HCK_LITE_HOOK(check_jit_memory_lhck, current, fd, prot, flags, PAGE_ALIGN(len), &retval);
1666 		if (IS_ERR_VALUE(retval))
1667 			pr_info("JITINFO: jit request denied");
1668 	}
1669 out_fput:
1670 	if (file)
1671 		fput(file);
1672 	return retval;
1673 }
1674 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1675 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1676 		unsigned long, prot, unsigned long, flags,
1677 		unsigned long, fd, unsigned long, pgoff)
1678 {
1679 	return ksys_mmap_pgoff(addr, len, prot, flags, fd, pgoff);
1680 }
1681 
1682 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1683 struct mmap_arg_struct {
1684 	unsigned long addr;
1685 	unsigned long len;
1686 	unsigned long prot;
1687 	unsigned long flags;
1688 	unsigned long fd;
1689 	unsigned long offset;
1690 };
1691 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1692 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1693 {
1694 	struct mmap_arg_struct a;
1695 
1696 	if (copy_from_user(&a, arg, sizeof(a)))
1697 		return -EFAULT;
1698 	if (offset_in_page(a.offset))
1699 		return -EINVAL;
1700 
1701 	return ksys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1702 			       a.offset >> PAGE_SHIFT);
1703 }
1704 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1705 
1706 /*
1707  * Some shared mappings will want the pages marked read-only
1708  * to track write events. If so, we'll downgrade vm_page_prot
1709  * to the private version (using protection_map[] without the
1710  * VM_SHARED bit).
1711  */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1712 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1713 {
1714 	vm_flags_t vm_flags = vma->vm_flags;
1715 	const struct vm_operations_struct *vm_ops = vma->vm_ops;
1716 
1717 	/* If it was private or non-writable, the write bit is already clear */
1718 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1719 		return 0;
1720 
1721 	/* The backer wishes to know when pages are first written to? */
1722 	if (vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite))
1723 		return 1;
1724 
1725 	/* The open routine did something to the protections that pgprot_modify
1726 	 * won't preserve? */
1727 	if (pgprot_val(vm_page_prot) !=
1728 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vm_flags)))
1729 		return 0;
1730 
1731 	/*
1732 	 * Do we need to track softdirty? hugetlb does not support softdirty
1733 	 * tracking yet.
1734 	 */
1735 	if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY) && !(vm_flags & VM_SOFTDIRTY) &&
1736 	    !is_vm_hugetlb_page(vma))
1737 		return 1;
1738 
1739 	/* Specialty mapping? */
1740 	if (vm_flags & VM_PFNMAP)
1741 		return 0;
1742 
1743 	/* Can the mapping track the dirty pages? */
1744 	return vma->vm_file && vma->vm_file->f_mapping &&
1745 		mapping_can_writeback(vma->vm_file->f_mapping);
1746 }
1747 
1748 /*
1749  * We account for memory if it's a private writeable mapping,
1750  * not hugepages and VM_NORESERVE wasn't set.
1751  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1752 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1753 {
1754 	/*
1755 	 * hugetlb has its own accounting separate from the core VM
1756 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1757 	 */
1758 	if (file && is_file_hugepages(file))
1759 		return 0;
1760 
1761 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1762 }
1763 
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)1764 unsigned long mmap_region(struct file *file, unsigned long addr,
1765 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
1766 		struct list_head *uf)
1767 {
1768 	struct mm_struct *mm = current->mm;
1769 	struct vm_area_struct *vma, *prev, *merge;
1770 	int error;
1771 	struct rb_node **rb_link, *rb_parent;
1772 	unsigned long charged = 0;
1773 
1774 	/* Check against address space limit. */
1775 	if (!may_expand_vm(mm, vm_flags, len >> PAGE_SHIFT)) {
1776 		unsigned long nr_pages;
1777 
1778 		/*
1779 		 * MAP_FIXED may remove pages of mappings that intersects with
1780 		 * requested mapping. Account for the pages it would unmap.
1781 		 */
1782 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1783 
1784 		if (!may_expand_vm(mm, vm_flags,
1785 					(len >> PAGE_SHIFT) - nr_pages))
1786 			return -ENOMEM;
1787 	}
1788 
1789 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
1790 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
1791 		return -ENOMEM;
1792 	/*
1793 	 * Private writable mapping: check memory availability
1794 	 */
1795 	if (accountable_mapping(file, vm_flags)) {
1796 		charged = len >> PAGE_SHIFT;
1797 		if (security_vm_enough_memory_mm(mm, charged))
1798 			return -ENOMEM;
1799 		vm_flags |= VM_ACCOUNT;
1800 	}
1801 
1802 	/*
1803 	 * Can we just expand an old mapping?
1804 	 */
1805 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags,
1806 			NULL, file, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1807 	if (vma)
1808 		goto out;
1809 
1810 	/*
1811 	 * Determine the object being mapped and call the appropriate
1812 	 * specific mapper. the address has already been validated, but
1813 	 * not unmapped, but the maps are removed from the list.
1814 	 */
1815 	vma = vm_area_alloc(mm);
1816 	if (!vma) {
1817 		error = -ENOMEM;
1818 		goto unacct_error;
1819 	}
1820 
1821 	vma->vm_start = addr;
1822 	vma->vm_end = addr + len;
1823 	vma->vm_flags = vm_flags;
1824 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1825 	vma->vm_pgoff = pgoff;
1826 
1827 	if (file) {
1828 		if (vm_flags & VM_DENYWRITE) {
1829 			error = deny_write_access(file);
1830 			if (error)
1831 				goto free_vma;
1832 		}
1833 		if (vm_flags & VM_SHARED) {
1834 			error = mapping_map_writable(file->f_mapping);
1835 			if (error)
1836 				goto allow_write_and_free_vma;
1837 		}
1838 
1839 		/* ->mmap() can change vma->vm_file, but must guarantee that
1840 		 * vma_link() below can deny write-access if VM_DENYWRITE is set
1841 		 * and map writably if VM_SHARED is set. This usually means the
1842 		 * new file must not have been exposed to user-space, yet.
1843 		 */
1844 		vma->vm_file = get_file(file);
1845 		error = call_mmap(file, vma);
1846 		if (error)
1847 			goto unmap_and_free_vma;
1848 
1849 		/* Can addr have changed??
1850 		 *
1851 		 * Answer: Yes, several device drivers can do it in their
1852 		 *         f_op->mmap method. -DaveM
1853 		 * Bug: If addr is changed, prev, rb_link, rb_parent should
1854 		 *      be updated for vma_link()
1855 		 */
1856 		WARN_ON_ONCE(addr != vma->vm_start);
1857 
1858 		addr = vma->vm_start;
1859 
1860 		/* If vm_flags changed after call_mmap(), we should try merge vma again
1861 		 * as we may succeed this time.
1862 		 */
1863 		if (unlikely(vm_flags != vma->vm_flags && prev)) {
1864 			merge = vma_merge(mm, prev, vma->vm_start, vma->vm_end, vma->vm_flags,
1865 				NULL, vma->vm_file, vma->vm_pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
1866 			if (merge) {
1867 				/* ->mmap() can change vma->vm_file and fput the original file. So
1868 				 * fput the vma->vm_file here or we would add an extra fput for file
1869 				 * and cause general protection fault ultimately.
1870 				 */
1871 				fput(vma->vm_file);
1872 				vm_area_free(vma);
1873 				vma = merge;
1874 				/* Update vm_flags to pick up the change. */
1875 				vm_flags = vma->vm_flags;
1876 				goto unmap_writable;
1877 			}
1878 		}
1879 
1880 		vm_flags = vma->vm_flags;
1881 	} else if (vm_flags & VM_SHARED) {
1882 		error = shmem_zero_setup(vma);
1883 		if (error)
1884 			goto free_vma;
1885 	} else {
1886 		vma_set_anonymous(vma);
1887 	}
1888 
1889 	/* Allow architectures to sanity-check the vma */
1890 	if (security_mmap_region(vma) ||
1891 		!arch_validate_flags(vma->vm_flags)) {
1892 		error = -EINVAL;
1893 		if (file)
1894 			goto close_and_free_vma;
1895 		else
1896 			goto free_vma;
1897 	}
1898 
1899 	vma_link(mm, vma, prev, rb_link, rb_parent);
1900 	/* Once vma denies write, undo our temporary denial count */
1901 	if (file) {
1902 unmap_writable:
1903 		if (vm_flags & VM_SHARED)
1904 			mapping_unmap_writable(file->f_mapping);
1905 		if (vm_flags & VM_DENYWRITE)
1906 			allow_write_access(file);
1907 	}
1908 	file = vma->vm_file;
1909 out:
1910 	perf_event_mmap(vma);
1911 
1912 	vm_stat_account(mm, vm_flags, len >> PAGE_SHIFT);
1913 	if (vm_flags & VM_LOCKED) {
1914 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
1915 					is_vm_hugetlb_page(vma) ||
1916 					vma == get_gate_vma(current->mm))
1917 			vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
1918 		else
1919 			mm->locked_vm += (len >> PAGE_SHIFT);
1920 	}
1921 
1922 	if (file)
1923 		uprobe_mmap(vma);
1924 
1925 	/*
1926 	 * New (or expanded) vma always get soft dirty status.
1927 	 * Otherwise user-space soft-dirty page tracker won't
1928 	 * be able to distinguish situation when vma area unmapped,
1929 	 * then new mapped in-place (which must be aimed as
1930 	 * a completely new data area).
1931 	 */
1932 	vma->vm_flags |= VM_SOFTDIRTY;
1933 
1934 	vma_set_page_prot(vma);
1935 
1936 	return addr;
1937 
1938 close_and_free_vma:
1939 	if (vma->vm_ops && vma->vm_ops->close)
1940 		vma->vm_ops->close(vma);
1941 unmap_and_free_vma:
1942 	vma->vm_file = NULL;
1943 	fput(file);
1944 
1945 	/* Undo any partial mapping done by a device driver. */
1946 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1947 	if (vm_flags & VM_SHARED)
1948 		mapping_unmap_writable(file->f_mapping);
1949 allow_write_and_free_vma:
1950 	if (vm_flags & VM_DENYWRITE)
1951 		allow_write_access(file);
1952 free_vma:
1953 	vm_area_free(vma);
1954 unacct_error:
1955 	if (charged)
1956 		vm_unacct_memory(charged);
1957 	return error;
1958 }
1959 
unmapped_area(struct vm_unmapped_area_info * info)1960 static unsigned long unmapped_area(struct vm_unmapped_area_info *info)
1961 {
1962 	/*
1963 	 * We implement the search by looking for an rbtree node that
1964 	 * immediately follows a suitable gap. That is,
1965 	 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1966 	 * - gap_end   = vma->vm_start        >= info->low_limit  + length;
1967 	 * - gap_end - gap_start >= length
1968 	 */
1969 
1970 	struct mm_struct *mm = current->mm;
1971 	struct vm_area_struct *vma;
1972 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
1973 
1974 	/* Adjust search length to account for worst case alignment overhead */
1975 	length = info->length + info->align_mask;
1976 	if (length < info->length)
1977 		return -ENOMEM;
1978 
1979 	/* Adjust search limits by the desired length */
1980 	if (info->high_limit < length)
1981 		return -ENOMEM;
1982 	high_limit = info->high_limit - length;
1983 
1984 	if (info->low_limit > high_limit)
1985 		return -ENOMEM;
1986 	low_limit = info->low_limit + length;
1987 
1988 	/* Check if rbtree root looks promising */
1989 	if (RB_EMPTY_ROOT(&mm->mm_rb))
1990 		goto check_highest;
1991 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
1992 	if (vma->rb_subtree_gap < length)
1993 		goto check_highest;
1994 
1995 	while (true) {
1996 		/* Visit left subtree if it looks promising */
1997 		gap_end = vm_start_gap(vma);
1998 		if (gap_end >= low_limit && vma->vm_rb.rb_left) {
1999 			struct vm_area_struct *left =
2000 				rb_entry(vma->vm_rb.rb_left,
2001 					 struct vm_area_struct, vm_rb);
2002 			if (left->rb_subtree_gap >= length) {
2003 				vma = left;
2004 				continue;
2005 			}
2006 		}
2007 
2008 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2009 check_current:
2010 		/* Check if current node has a suitable gap */
2011 		if (gap_start > high_limit)
2012 			return -ENOMEM;
2013 		if ((gap_end >= low_limit &&
2014 		    gap_end > gap_start && gap_end - gap_start >= length) &&
2015 		    (xpm_region_outer_hook(gap_start, gap_end, info->flags)))
2016 			goto found;
2017 
2018 		/* Visit right subtree if it looks promising */
2019 		if (vma->vm_rb.rb_right) {
2020 			struct vm_area_struct *right =
2021 				rb_entry(vma->vm_rb.rb_right,
2022 					 struct vm_area_struct, vm_rb);
2023 			if (right->rb_subtree_gap >= length) {
2024 				vma = right;
2025 				continue;
2026 			}
2027 		}
2028 
2029 		/* Go back up the rbtree to find next candidate node */
2030 		while (true) {
2031 			struct rb_node *prev = &vma->vm_rb;
2032 			if (!rb_parent(prev))
2033 				goto check_highest;
2034 			vma = rb_entry(rb_parent(prev),
2035 				       struct vm_area_struct, vm_rb);
2036 			if (prev == vma->vm_rb.rb_left) {
2037 				gap_start = vm_end_gap(vma->vm_prev);
2038 				gap_end = vm_start_gap(vma);
2039 				goto check_current;
2040 			}
2041 		}
2042 	}
2043 
2044 check_highest:
2045 	/* Check highest gap, which does not precede any rbtree node */
2046 	gap_start = mm->highest_vm_end;
2047 	gap_end = ULONG_MAX;  /* Only for VM_BUG_ON below */
2048 	if (gap_start > high_limit)
2049 		return -ENOMEM;
2050 
2051 found:
2052 	/* We found a suitable gap. Clip it with the original low_limit. */
2053 	if (gap_start < info->low_limit)
2054 		gap_start = info->low_limit;
2055 
2056 	/* Adjust gap address to the desired alignment */
2057 	gap_start += (info->align_offset - gap_start) & info->align_mask;
2058 
2059 	VM_BUG_ON(gap_start + info->length > info->high_limit);
2060 	VM_BUG_ON(gap_start + info->length > gap_end);
2061 	return gap_start;
2062 }
2063 
unmapped_area_topdown(struct vm_unmapped_area_info * info)2064 static unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2065 {
2066 	struct mm_struct *mm = current->mm;
2067 	struct vm_area_struct *vma;
2068 	unsigned long length, low_limit, high_limit, gap_start, gap_end;
2069 
2070 	/* Adjust search length to account for worst case alignment overhead */
2071 	length = info->length + info->align_mask;
2072 	if (length < info->length)
2073 		return -ENOMEM;
2074 
2075 	/*
2076 	 * Adjust search limits by the desired length.
2077 	 * See implementation comment at top of unmapped_area().
2078 	 */
2079 	gap_end = info->high_limit;
2080 	if (gap_end < length)
2081 		return -ENOMEM;
2082 	high_limit = gap_end - length;
2083 
2084 	if (info->low_limit > high_limit)
2085 		return -ENOMEM;
2086 	low_limit = info->low_limit + length;
2087 
2088 	/* Check highest gap, which does not precede any rbtree node */
2089 	gap_start = mm->highest_vm_end;
2090 	if (gap_start <= high_limit)
2091 		goto found_highest;
2092 
2093 	/* Check if rbtree root looks promising */
2094 	if (RB_EMPTY_ROOT(&mm->mm_rb))
2095 		return -ENOMEM;
2096 	vma = rb_entry(mm->mm_rb.rb_node, struct vm_area_struct, vm_rb);
2097 	if (vma->rb_subtree_gap < length)
2098 		return -ENOMEM;
2099 
2100 	while (true) {
2101 		/* Visit right subtree if it looks promising */
2102 		gap_start = vma->vm_prev ? vm_end_gap(vma->vm_prev) : 0;
2103 		if (gap_start <= high_limit && vma->vm_rb.rb_right) {
2104 			struct vm_area_struct *right =
2105 				rb_entry(vma->vm_rb.rb_right,
2106 					 struct vm_area_struct, vm_rb);
2107 			if (right->rb_subtree_gap >= length) {
2108 				vma = right;
2109 				continue;
2110 			}
2111 		}
2112 
2113 check_current:
2114 		/* Check if current node has a suitable gap */
2115 		gap_end = vm_start_gap(vma);
2116 		if (gap_end < low_limit)
2117 			return -ENOMEM;
2118 		if ((gap_start <= high_limit &&
2119 		    gap_end > gap_start && gap_end - gap_start >= length) &&
2120 		    (xpm_region_outer_hook(gap_start, gap_end, info->flags)))
2121 			goto found;
2122 
2123 		/* Visit left subtree if it looks promising */
2124 		if (vma->vm_rb.rb_left) {
2125 			struct vm_area_struct *left =
2126 				rb_entry(vma->vm_rb.rb_left,
2127 					 struct vm_area_struct, vm_rb);
2128 			if (left->rb_subtree_gap >= length) {
2129 				vma = left;
2130 				continue;
2131 			}
2132 		}
2133 
2134 		/* Go back up the rbtree to find next candidate node */
2135 		while (true) {
2136 			struct rb_node *prev = &vma->vm_rb;
2137 			if (!rb_parent(prev))
2138 				return -ENOMEM;
2139 			vma = rb_entry(rb_parent(prev),
2140 				       struct vm_area_struct, vm_rb);
2141 			if (prev == vma->vm_rb.rb_right) {
2142 				gap_start = vma->vm_prev ?
2143 					vm_end_gap(vma->vm_prev) : 0;
2144 				goto check_current;
2145 			}
2146 		}
2147 	}
2148 
2149 found:
2150 	/* We found a suitable gap. Clip it with the original high_limit. */
2151 	if (gap_end > info->high_limit)
2152 		gap_end = info->high_limit;
2153 
2154 found_highest:
2155 	/* Compute highest gap address at the desired alignment */
2156 	gap_end -= info->length;
2157 	gap_end -= (gap_end - info->align_offset) & info->align_mask;
2158 
2159 	VM_BUG_ON(gap_end < info->low_limit);
2160 	VM_BUG_ON(gap_end < gap_start);
2161 	return gap_end;
2162 }
2163 
2164 /*
2165  * Search for an unmapped address range.
2166  *
2167  * We are looking for a range that:
2168  * - does not intersect with any VMA;
2169  * - is contained within the [low_limit, high_limit) interval;
2170  * - is at least the desired size.
2171  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2172  */
vm_unmapped_area(struct vm_unmapped_area_info * info)2173 unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info)
2174 {
2175 	unsigned long addr;
2176 
2177 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2178 		addr = unmapped_area_topdown(info);
2179 	else
2180 		addr = unmapped_area(info);
2181 
2182 	trace_vm_unmapped_area(addr, info);
2183 	return addr;
2184 }
2185 
2186 /* Get an address range which is currently unmapped.
2187  * For shmat() with addr=0.
2188  *
2189  * Ugly calling convention alert:
2190  * Return value with the low bits set means error value,
2191  * ie
2192  *	if (ret & ~PAGE_MASK)
2193  *		error = ret;
2194  *
2195  * This function "knows" that -ENOMEM has the bits set.
2196  */
2197 #ifndef HAVE_ARCH_UNMAPPED_AREA
2198 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2199 arch_get_unmapped_area(struct file *filp, unsigned long addr,
2200 		unsigned long len, unsigned long pgoff, unsigned long flags)
2201 {
2202 	unsigned long xpm_addr;
2203 	struct mm_struct *mm = current->mm;
2204 	struct vm_area_struct *vma, *prev;
2205 	struct vm_unmapped_area_info info;
2206 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2207 
2208 	if (len > mmap_end - mmap_min_addr)
2209 		return -ENOMEM;
2210 
2211 	xpm_addr = xpm_get_unmapped_area_hook(addr, len, flags, 0);
2212 	if (xpm_addr)
2213 		return xpm_addr;
2214 
2215 	if (flags & MAP_FIXED)
2216 		return addr;
2217 
2218 	if (addr) {
2219 		addr = PAGE_ALIGN(addr);
2220 		vma = find_vma_prev(mm, addr, &prev);
2221 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2222 		    (!vma || addr + len <= vm_start_gap(vma)) &&
2223 		    (!prev || addr >= vm_end_gap(prev)) &&
2224 		    (xpm_region_outer_hook(addr, addr + len, 0)))
2225 			return addr;
2226 	}
2227 
2228 	info.flags = 0;
2229 	info.length = len;
2230 	info.low_limit = mm->mmap_base;
2231 	info.high_limit = mmap_end;
2232 	info.align_mask = 0;
2233 	info.align_offset = 0;
2234 	return vm_unmapped_area(&info);
2235 }
2236 #endif
2237 
2238 /*
2239  * This mmap-allocator allocates new areas top-down from below the
2240  * stack's low limit (the base):
2241  */
2242 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
2243 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2244 arch_get_unmapped_area_topdown(struct file *filp, unsigned long addr,
2245 			  unsigned long len, unsigned long pgoff,
2246 			  unsigned long flags)
2247 {
2248 	unsigned long xpm_addr;
2249 	struct vm_area_struct *vma, *prev;
2250 	struct mm_struct *mm = current->mm;
2251 	struct vm_unmapped_area_info info;
2252 	const unsigned long mmap_end = arch_get_mmap_end(addr);
2253 
2254 	/* requested length too big for entire address space */
2255 	if (len > mmap_end - mmap_min_addr)
2256 		return -ENOMEM;
2257 
2258 	xpm_addr = xpm_get_unmapped_area_hook(addr, len, flags,
2259 		VM_UNMAPPED_AREA_TOPDOWN);
2260 	if (xpm_addr)
2261 		return xpm_addr;
2262 
2263 	if (flags & MAP_FIXED)
2264 		return addr;
2265 
2266 	/* requesting a specific address */
2267 	if (addr) {
2268 		addr = PAGE_ALIGN(addr);
2269 		vma = find_vma_prev(mm, addr, &prev);
2270 		if (mmap_end - len >= addr && addr >= mmap_min_addr &&
2271 				(!vma || addr + len <= vm_start_gap(vma)) &&
2272 				(!prev || addr >= vm_end_gap(prev)) &&
2273 				(xpm_region_outer_hook(addr, addr + len, 0)))
2274 			return addr;
2275 	}
2276 
2277 	info.flags = VM_UNMAPPED_AREA_TOPDOWN;
2278 	info.length = len;
2279 	info.low_limit = max(PAGE_SIZE, mmap_min_addr);
2280 	info.high_limit = arch_get_mmap_base(addr, mm->mmap_base);
2281 	info.align_mask = 0;
2282 	info.align_offset = 0;
2283 	addr = vm_unmapped_area(&info);
2284 
2285 	/*
2286 	 * A failed mmap() very likely causes application failure,
2287 	 * so fall back to the bottom-up function here. This scenario
2288 	 * can happen with large stack limits and large mmap()
2289 	 * allocations.
2290 	 */
2291 	if (offset_in_page(addr)) {
2292 		VM_BUG_ON(addr != -ENOMEM);
2293 		info.flags = 0;
2294 		info.low_limit = TASK_UNMAPPED_BASE;
2295 		info.high_limit = mmap_end;
2296 		addr = vm_unmapped_area(&info);
2297 	}
2298 
2299 	return addr;
2300 }
2301 #endif
2302 
2303 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)2304 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
2305 		unsigned long pgoff, unsigned long flags)
2306 {
2307 	unsigned long (*get_area)(struct file *, unsigned long,
2308 				  unsigned long, unsigned long, unsigned long);
2309 
2310 	unsigned long error = arch_mmap_check(addr, len, flags);
2311 	if (error)
2312 		return error;
2313 
2314 	/* Careful about overflows.. */
2315 	if (len > TASK_SIZE)
2316 		return -ENOMEM;
2317 
2318 	get_area = current->mm->get_unmapped_area;
2319 	if (file) {
2320 		if (file->f_op->get_unmapped_area)
2321 			get_area = file->f_op->get_unmapped_area;
2322 	} else if (flags & MAP_SHARED) {
2323 		/*
2324 		 * mmap_region() will call shmem_zero_setup() to create a file,
2325 		 * so use shmem's get_unmapped_area in case it can be huge.
2326 		 * do_mmap() will clear pgoff, so match alignment.
2327 		 */
2328 		pgoff = 0;
2329 		get_area = shmem_get_unmapped_area;
2330 	}
2331 
2332 	addr = get_area(file, addr, len, pgoff, flags);
2333 	if (IS_ERR_VALUE(addr))
2334 		return addr;
2335 
2336 	if (addr > TASK_SIZE - len)
2337 		return -ENOMEM;
2338 	if (offset_in_page(addr))
2339 		return -EINVAL;
2340 
2341 	error = security_mmap_addr(addr);
2342 	return error ? error : addr;
2343 }
2344 
2345 EXPORT_SYMBOL(get_unmapped_area);
2346 
2347 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)2348 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
2349 {
2350 	struct rb_node *rb_node;
2351 	struct vm_area_struct *vma;
2352 
2353 	/* Check the cache first. */
2354 	vma = vmacache_find(mm, addr);
2355 	if (likely(vma))
2356 		return vma;
2357 
2358 	rb_node = mm->mm_rb.rb_node;
2359 
2360 	while (rb_node) {
2361 		struct vm_area_struct *tmp;
2362 
2363 		tmp = rb_entry(rb_node, struct vm_area_struct, vm_rb);
2364 
2365 		if (tmp->vm_end > addr) {
2366 			vma = tmp;
2367 			if (tmp->vm_start <= addr)
2368 				break;
2369 			rb_node = rb_node->rb_left;
2370 		} else
2371 			rb_node = rb_node->rb_right;
2372 	}
2373 
2374 	if (vma)
2375 		vmacache_update(addr, vma);
2376 	return vma;
2377 }
2378 
2379 EXPORT_SYMBOL(find_vma);
2380 
2381 /*
2382  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2383  */
2384 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)2385 find_vma_prev(struct mm_struct *mm, unsigned long addr,
2386 			struct vm_area_struct **pprev)
2387 {
2388 	struct vm_area_struct *vma;
2389 
2390 	vma = find_vma(mm, addr);
2391 	if (vma) {
2392 		*pprev = vma->vm_prev;
2393 	} else {
2394 		struct rb_node *rb_node = rb_last(&mm->mm_rb);
2395 
2396 		*pprev = rb_node ? rb_entry(rb_node, struct vm_area_struct, vm_rb) : NULL;
2397 	}
2398 	return vma;
2399 }
2400 
2401 /*
2402  * Verify that the stack growth is acceptable and
2403  * update accounting. This is shared with both the
2404  * grow-up and grow-down cases.
2405  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2406 static int acct_stack_growth(struct vm_area_struct *vma,
2407 			     unsigned long size, unsigned long grow)
2408 {
2409 	struct mm_struct *mm = vma->vm_mm;
2410 	unsigned long new_start;
2411 
2412 	/* address space limit tests */
2413 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2414 		return -ENOMEM;
2415 
2416 	/* Stack limit test */
2417 	if (size > rlimit(RLIMIT_STACK))
2418 		return -ENOMEM;
2419 
2420 	/* mlock limit tests */
2421 	if (vma->vm_flags & VM_LOCKED) {
2422 		unsigned long locked;
2423 		unsigned long limit;
2424 		locked = mm->locked_vm + grow;
2425 		limit = rlimit(RLIMIT_MEMLOCK);
2426 		limit >>= PAGE_SHIFT;
2427 		if (locked > limit && !capable(CAP_IPC_LOCK))
2428 			return -ENOMEM;
2429 	}
2430 
2431 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2432 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2433 			vma->vm_end - size;
2434 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2435 		return -EFAULT;
2436 
2437 	/*
2438 	 * Overcommit..  This must be the final test, as it will
2439 	 * update security statistics.
2440 	 */
2441 	if (security_vm_enough_memory_mm(mm, grow))
2442 		return -ENOMEM;
2443 
2444 	return 0;
2445 }
2446 
2447 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2448 /*
2449  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2450  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2451  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2452 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2453 {
2454 	struct mm_struct *mm = vma->vm_mm;
2455 	struct vm_area_struct *next;
2456 	unsigned long gap_addr;
2457 	int error = 0;
2458 
2459 	if (!(vma->vm_flags & VM_GROWSUP))
2460 		return -EFAULT;
2461 
2462 	/* Guard against exceeding limits of the address space. */
2463 	address &= PAGE_MASK;
2464 	if (address >= (TASK_SIZE & PAGE_MASK))
2465 		return -ENOMEM;
2466 	address += PAGE_SIZE;
2467 
2468 	/* Enforce stack_guard_gap */
2469 	gap_addr = address + stack_guard_gap;
2470 
2471 	/* Guard against overflow */
2472 	if (gap_addr < address || gap_addr > TASK_SIZE)
2473 		gap_addr = TASK_SIZE;
2474 
2475 	next = vma->vm_next;
2476 	if (next && next->vm_start < gap_addr && vma_is_accessible(next)) {
2477 		if (!(next->vm_flags & VM_GROWSUP))
2478 			return -ENOMEM;
2479 		/* Check that both stack segments have the same anon_vma? */
2480 	}
2481 
2482 	/* We must make sure the anon_vma is allocated. */
2483 	if (unlikely(anon_vma_prepare(vma)))
2484 		return -ENOMEM;
2485 
2486 	/*
2487 	 * vma->vm_start/vm_end cannot change under us because the caller
2488 	 * is required to hold the mmap_lock in read mode.  We need the
2489 	 * anon_vma lock to serialize against concurrent expand_stacks.
2490 	 */
2491 	anon_vma_lock_write(vma->anon_vma);
2492 
2493 	/* Somebody else might have raced and expanded it already */
2494 	if (address > vma->vm_end) {
2495 		unsigned long size, grow;
2496 
2497 		size = address - vma->vm_start;
2498 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2499 
2500 		error = -ENOMEM;
2501 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2502 			error = acct_stack_growth(vma, size, grow);
2503 			if (!error) {
2504 				/*
2505 				 * vma_gap_update() doesn't support concurrent
2506 				 * updates, but we only hold a shared mmap_lock
2507 				 * lock here, so we need to protect against
2508 				 * concurrent vma expansions.
2509 				 * anon_vma_lock_write() doesn't help here, as
2510 				 * we don't guarantee that all growable vmas
2511 				 * in a mm share the same root anon vma.
2512 				 * So, we reuse mm->page_table_lock to guard
2513 				 * against concurrent vma expansions.
2514 				 */
2515 				spin_lock(&mm->page_table_lock);
2516 				if (vma->vm_flags & VM_LOCKED)
2517 					mm->locked_vm += grow;
2518 				vm_stat_account(mm, vma->vm_flags, grow);
2519 				anon_vma_interval_tree_pre_update_vma(vma);
2520 				vma->vm_end = address;
2521 				anon_vma_interval_tree_post_update_vma(vma);
2522 				if (vma->vm_next)
2523 					vma_gap_update(vma->vm_next);
2524 				else
2525 					mm->highest_vm_end = vm_end_gap(vma);
2526 				spin_unlock(&mm->page_table_lock);
2527 
2528 				perf_event_mmap(vma);
2529 			}
2530 		}
2531 	}
2532 	anon_vma_unlock_write(vma->anon_vma);
2533 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2534 	validate_mm(mm);
2535 	return error;
2536 }
2537 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2538 
2539 /*
2540  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2541  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2542 int expand_downwards(struct vm_area_struct *vma,
2543 				   unsigned long address)
2544 {
2545 	struct mm_struct *mm = vma->vm_mm;
2546 	struct vm_area_struct *prev;
2547 	int error = 0;
2548 
2549 	address &= PAGE_MASK;
2550 	if (address < mmap_min_addr)
2551 		return -EPERM;
2552 
2553 	/* Enforce stack_guard_gap */
2554 	prev = vma->vm_prev;
2555 	/* Check that both stack segments have the same anon_vma? */
2556 	if (prev && !(prev->vm_flags & VM_GROWSDOWN) &&
2557 			vma_is_accessible(prev)) {
2558 		if (address - prev->vm_end < stack_guard_gap)
2559 			return -ENOMEM;
2560 	}
2561 
2562 	/* We must make sure the anon_vma is allocated. */
2563 	if (unlikely(anon_vma_prepare(vma)))
2564 		return -ENOMEM;
2565 
2566 	/*
2567 	 * vma->vm_start/vm_end cannot change under us because the caller
2568 	 * is required to hold the mmap_lock in read mode.  We need the
2569 	 * anon_vma lock to serialize against concurrent expand_stacks.
2570 	 */
2571 	anon_vma_lock_write(vma->anon_vma);
2572 
2573 	/* Somebody else might have raced and expanded it already */
2574 	if (address < vma->vm_start) {
2575 		unsigned long size, grow;
2576 
2577 		size = vma->vm_end - address;
2578 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2579 
2580 		error = -ENOMEM;
2581 		if (grow <= vma->vm_pgoff) {
2582 			error = acct_stack_growth(vma, size, grow);
2583 			if (!error) {
2584 				/*
2585 				 * vma_gap_update() doesn't support concurrent
2586 				 * updates, but we only hold a shared mmap_lock
2587 				 * lock here, so we need to protect against
2588 				 * concurrent vma expansions.
2589 				 * anon_vma_lock_write() doesn't help here, as
2590 				 * we don't guarantee that all growable vmas
2591 				 * in a mm share the same root anon vma.
2592 				 * So, we reuse mm->page_table_lock to guard
2593 				 * against concurrent vma expansions.
2594 				 */
2595 				spin_lock(&mm->page_table_lock);
2596 				if (vma->vm_flags & VM_LOCKED)
2597 					mm->locked_vm += grow;
2598 				vm_stat_account(mm, vma->vm_flags, grow);
2599 				anon_vma_interval_tree_pre_update_vma(vma);
2600 				vma->vm_start = address;
2601 				vma->vm_pgoff -= grow;
2602 				anon_vma_interval_tree_post_update_vma(vma);
2603 				vma_gap_update(vma);
2604 				spin_unlock(&mm->page_table_lock);
2605 
2606 				perf_event_mmap(vma);
2607 			}
2608 		}
2609 	}
2610 	anon_vma_unlock_write(vma->anon_vma);
2611 	khugepaged_enter_vma_merge(vma, vma->vm_flags);
2612 	validate_mm(mm);
2613 	return error;
2614 }
2615 
2616 /* enforced gap between the expanding stack and other mappings. */
2617 unsigned long stack_guard_gap = 256UL<<PAGE_SHIFT;
2618 
cmdline_parse_stack_guard_gap(char * p)2619 static int __init cmdline_parse_stack_guard_gap(char *p)
2620 {
2621 	unsigned long val;
2622 	char *endptr;
2623 
2624 	val = simple_strtoul(p, &endptr, 10);
2625 	if (!*endptr)
2626 		stack_guard_gap = val << PAGE_SHIFT;
2627 
2628 	return 1;
2629 }
2630 __setup("stack_guard_gap=", cmdline_parse_stack_guard_gap);
2631 
2632 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)2633 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2634 {
2635 	return expand_upwards(vma, address);
2636 }
2637 
2638 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2639 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2640 {
2641 	struct vm_area_struct *vma, *prev;
2642 
2643 	addr &= PAGE_MASK;
2644 	vma = find_vma_prev(mm, addr, &prev);
2645 	if (vma && (vma->vm_start <= addr))
2646 		return vma;
2647 	/* don't alter vm_end if the coredump is running */
2648 	if (!prev || expand_stack(prev, addr))
2649 		return NULL;
2650 	if (prev->vm_flags & VM_LOCKED)
2651 		populate_vma_page_range(prev, addr, prev->vm_end, NULL);
2652 	return prev;
2653 }
2654 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)2655 int expand_stack(struct vm_area_struct *vma, unsigned long address)
2656 {
2657 	return expand_downwards(vma, address);
2658 }
2659 
2660 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)2661 find_extend_vma(struct mm_struct *mm, unsigned long addr)
2662 {
2663 	struct vm_area_struct *vma;
2664 	unsigned long start;
2665 
2666 	addr &= PAGE_MASK;
2667 	vma = find_vma(mm, addr);
2668 	if (!vma)
2669 		return NULL;
2670 	if (vma->vm_start <= addr)
2671 		return vma;
2672 	if (!(vma->vm_flags & VM_GROWSDOWN))
2673 		return NULL;
2674 	start = vma->vm_start;
2675 	if (expand_stack(vma, addr))
2676 		return NULL;
2677 	if (vma->vm_flags & VM_LOCKED)
2678 		populate_vma_page_range(vma, addr, start, NULL);
2679 	return vma;
2680 }
2681 #endif
2682 
2683 EXPORT_SYMBOL_GPL(find_extend_vma);
2684 
2685 /*
2686  * Ok - we have the memory areas we should free on the vma list,
2687  * so release them, and do the vma updates.
2688  *
2689  * Called with the mm semaphore held.
2690  */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)2691 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
2692 {
2693 	unsigned long nr_accounted = 0;
2694 
2695 	/* Update high watermark before we lower total_vm */
2696 	update_hiwater_vm(mm);
2697 	do {
2698 		long nrpages = vma_pages(vma);
2699 
2700 		if (vma->vm_flags & VM_ACCOUNT)
2701 			nr_accounted += nrpages;
2702 		vm_stat_account(mm, vma->vm_flags, -nrpages);
2703 		vma = remove_vma(vma);
2704 	} while (vma);
2705 	vm_unacct_memory(nr_accounted);
2706 	validate_mm(mm);
2707 }
2708 
2709 /*
2710  * Get rid of page table information in the indicated region.
2711  *
2712  * Called with the mm semaphore held.
2713  */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)2714 static void unmap_region(struct mm_struct *mm,
2715 		struct vm_area_struct *vma, struct vm_area_struct *prev,
2716 		unsigned long start, unsigned long end)
2717 {
2718 	struct vm_area_struct *next = vma_next(mm, prev);
2719 	struct mmu_gather tlb;
2720 	struct vm_area_struct *cur_vma;
2721 
2722 	lru_add_drain();
2723 	tlb_gather_mmu(&tlb, mm, start, end);
2724 	update_hiwater_rss(mm);
2725 	unmap_vmas(&tlb, vma, start, end);
2726 
2727 	/*
2728 	 * Ensure we have no stale TLB entries by the time this mapping is
2729 	 * removed from the rmap.
2730 	 * Note that we don't have to worry about nested flushes here because
2731 	 * we're holding the mm semaphore for removing the mapping - so any
2732 	 * concurrent flush in this region has to be coming through the rmap,
2733 	 * and we synchronize against that using the rmap lock.
2734 	 */
2735 	for (cur_vma = vma; cur_vma; cur_vma = cur_vma->vm_next) {
2736 		if ((cur_vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) != 0) {
2737 			tlb_flush_mmu(&tlb);
2738 			break;
2739 		}
2740 	}
2741 
2742 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
2743 				 next ? next->vm_start : USER_PGTABLES_CEILING);
2744 	tlb_finish_mmu(&tlb, start, end);
2745 }
2746 
2747 /*
2748  * Create a list of vma's touched by the unmap, removing them from the mm's
2749  * vma list as we go..
2750  */
2751 static bool
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2752 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2753 	struct vm_area_struct *prev, unsigned long end)
2754 {
2755 	struct vm_area_struct **insertion_point;
2756 	struct vm_area_struct *tail_vma = NULL;
2757 
2758 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2759 	vma->vm_prev = NULL;
2760 	do {
2761 		vma_rb_erase(vma, &mm->mm_rb);
2762 		mm->map_count--;
2763 		tail_vma = vma;
2764 		vma = vma->vm_next;
2765 	} while (vma && vma->vm_start < end);
2766 	*insertion_point = vma;
2767 	if (vma) {
2768 		vma->vm_prev = prev;
2769 		vma_gap_update(vma);
2770 	} else
2771 		mm->highest_vm_end = prev ? vm_end_gap(prev) : 0;
2772 	tail_vma->vm_next = NULL;
2773 
2774 	/* Kill the cache */
2775 	vmacache_invalidate(mm);
2776 
2777 	/*
2778 	 * Do not downgrade mmap_lock if we are next to VM_GROWSDOWN or
2779 	 * VM_GROWSUP VMA. Such VMAs can change their size under
2780 	 * down_read(mmap_lock) and collide with the VMA we are about to unmap.
2781 	 */
2782 	if (vma && (vma->vm_flags & VM_GROWSDOWN))
2783 		return false;
2784 	if (prev && (prev->vm_flags & VM_GROWSUP))
2785 		return false;
2786 	return true;
2787 }
2788 
2789 /*
2790  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
2791  * has already been checked or doesn't make sense to fail.
2792  */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2793 int __split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2794 		unsigned long addr, int new_below)
2795 {
2796 	struct vm_area_struct *new;
2797 	int err;
2798 
2799 	if (vma->vm_ops && vma->vm_ops->split) {
2800 		err = vma->vm_ops->split(vma, addr);
2801 		if (err)
2802 			return err;
2803 	}
2804 
2805 	new = vm_area_dup(vma);
2806 	if (!new)
2807 		return -ENOMEM;
2808 
2809 	if (new_below)
2810 		new->vm_end = addr;
2811 	else {
2812 		new->vm_start = addr;
2813 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2814 	}
2815 
2816 	err = vma_dup_policy(vma, new);
2817 	if (err)
2818 		goto out_free_vma;
2819 
2820 	err = anon_vma_clone(new, vma);
2821 	if (err)
2822 		goto out_free_mpol;
2823 
2824 	if (new->vm_file)
2825 		get_file(new->vm_file);
2826 
2827 	if (new->vm_ops && new->vm_ops->open)
2828 		new->vm_ops->open(new);
2829 
2830 	if (new_below)
2831 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2832 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2833 	else
2834 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2835 
2836 	/* Success. */
2837 	if (!err)
2838 		return 0;
2839 
2840 	/* Clean everything up if vma_adjust failed. */
2841 	if (new->vm_ops && new->vm_ops->close)
2842 		new->vm_ops->close(new);
2843 	if (new->vm_file)
2844 		fput(new->vm_file);
2845 	unlink_anon_vmas(new);
2846  out_free_mpol:
2847 	mpol_put(vma_policy(new));
2848  out_free_vma:
2849 	vm_area_free(new);
2850 	return err;
2851 }
2852 
2853 /*
2854  * Split a vma into two pieces at address 'addr', a new vma is allocated
2855  * either for the first part or the tail.
2856  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2857 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2858 	      unsigned long addr, int new_below)
2859 {
2860 	if (mm->map_count >= sysctl_max_map_count)
2861 		return -ENOMEM;
2862 
2863 	return __split_vma(mm, vma, addr, new_below);
2864 }
2865 
2866 /* Munmap is split into 2 main parts -- this part which finds
2867  * what needs doing, and the areas themselves, which do the
2868  * work.  This now handles partial unmappings.
2869  * Jeremy Fitzhardinge <jeremy@goop.org>
2870  */
__do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool downgrade)2871 int __do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2872 		struct list_head *uf, bool downgrade)
2873 {
2874 	unsigned long end;
2875 	struct vm_area_struct *vma, *prev, *last;
2876 
2877 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
2878 		return -EINVAL;
2879 
2880 	len = PAGE_ALIGN(len);
2881 	end = start + len;
2882 	if (len == 0)
2883 		return -EINVAL;
2884 
2885 	int errno = 0;
2886 	CALL_HCK_LITE_HOOK(delete_jit_memory_lhck, current, start, len, &errno);
2887 	if (errno)
2888 		return errno;
2889 
2890 	/*
2891 	 * arch_unmap() might do unmaps itself.  It must be called
2892 	 * and finish any rbtree manipulation before this code
2893 	 * runs and also starts to manipulate the rbtree.
2894 	 */
2895 	arch_unmap(mm, start, end);
2896 
2897 	/* Find the first overlapping VMA */
2898 	vma = find_vma(mm, start);
2899 	if (!vma)
2900 		return 0;
2901 	prev = vma->vm_prev;
2902 	/* we have  start < vma->vm_end  */
2903 
2904 	/* if it doesn't overlap, we have nothing.. */
2905 	if (vma->vm_start >= end)
2906 		return 0;
2907 
2908 	/*
2909 	 * If we need to split any vma, do it now to save pain later.
2910 	 *
2911 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2912 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2913 	 * places tmp vma above, and higher split_vma places tmp vma below.
2914 	 */
2915 	if (start > vma->vm_start) {
2916 		int error;
2917 
2918 		/*
2919 		 * Make sure that map_count on return from munmap() will
2920 		 * not exceed its limit; but let map_count go just above
2921 		 * its limit temporarily, to help free resources as expected.
2922 		 */
2923 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2924 			return -ENOMEM;
2925 
2926 		error = __split_vma(mm, vma, start, 0);
2927 		if (error)
2928 			return error;
2929 		prev = vma;
2930 	}
2931 
2932 	/* Does it split the last one? */
2933 	last = find_vma(mm, end);
2934 	if (last && end > last->vm_start) {
2935 		int error = __split_vma(mm, last, end, 1);
2936 		if (error)
2937 			return error;
2938 	}
2939 	vma = vma_next(mm, prev);
2940 
2941 	if (unlikely(uf)) {
2942 		/*
2943 		 * If userfaultfd_unmap_prep returns an error the vmas
2944 		 * will remain splitted, but userland will get a
2945 		 * highly unexpected error anyway. This is no
2946 		 * different than the case where the first of the two
2947 		 * __split_vma fails, but we don't undo the first
2948 		 * split, despite we could. This is unlikely enough
2949 		 * failure that it's not worth optimizing it for.
2950 		 */
2951 		int error = userfaultfd_unmap_prep(vma, start, end, uf);
2952 		if (error)
2953 			return error;
2954 	}
2955 
2956 	/*
2957 	 * unlock any mlock()ed ranges before detaching vmas
2958 	 */
2959 	if (mm->locked_vm) {
2960 		struct vm_area_struct *tmp = vma;
2961 		while (tmp && tmp->vm_start < end) {
2962 			if (tmp->vm_flags & VM_LOCKED) {
2963 				mm->locked_vm -= vma_pages(tmp);
2964 				munlock_vma_pages_all(tmp);
2965 			}
2966 
2967 			tmp = tmp->vm_next;
2968 		}
2969 	}
2970 
2971 	/* Detach vmas from rbtree */
2972 	if (!detach_vmas_to_be_unmapped(mm, vma, prev, end))
2973 		downgrade = false;
2974 
2975 	if (downgrade)
2976 		mmap_write_downgrade(mm);
2977 
2978 	unmap_region(mm, vma, prev, start, end);
2979 
2980 	/* Fix up all other VM information */
2981 	remove_vma_list(mm, vma);
2982 
2983 	return downgrade ? 1 : 0;
2984 }
2985 
do_munmap(struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf)2986 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len,
2987 	      struct list_head *uf)
2988 {
2989 	return __do_munmap(mm, start, len, uf, false);
2990 }
2991 
__vm_munmap(unsigned long start,size_t len,bool downgrade)2992 static int __vm_munmap(unsigned long start, size_t len, bool downgrade)
2993 {
2994 	int ret;
2995 	struct mm_struct *mm = current->mm;
2996 	LIST_HEAD(uf);
2997 
2998 	if (mmap_write_lock_killable(mm))
2999 		return -EINTR;
3000 
3001 	ret = __do_munmap(mm, start, len, &uf, downgrade);
3002 	/*
3003 	 * Returning 1 indicates mmap_lock is downgraded.
3004 	 * But 1 is not legal return value of vm_munmap() and munmap(), reset
3005 	 * it to 0 before return.
3006 	 */
3007 	if (ret == 1) {
3008 		mmap_read_unlock(mm);
3009 		ret = 0;
3010 	} else
3011 		mmap_write_unlock(mm);
3012 
3013 	userfaultfd_unmap_complete(mm, &uf);
3014 	return ret;
3015 }
3016 
vm_munmap(unsigned long start,size_t len)3017 int vm_munmap(unsigned long start, size_t len)
3018 {
3019 	return __vm_munmap(start, len, false);
3020 }
3021 EXPORT_SYMBOL(vm_munmap);
3022 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)3023 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
3024 {
3025 	addr = untagged_addr(addr);
3026 	profile_munmap(addr);
3027 	return __vm_munmap(addr, len, true);
3028 }
3029 
3030 
3031 /*
3032  * Emulation of deprecated remap_file_pages() syscall.
3033  */
SYSCALL_DEFINE5(remap_file_pages,unsigned long,start,unsigned long,size,unsigned long,prot,unsigned long,pgoff,unsigned long,flags)3034 SYSCALL_DEFINE5(remap_file_pages, unsigned long, start, unsigned long, size,
3035 		unsigned long, prot, unsigned long, pgoff, unsigned long, flags)
3036 {
3037 
3038 	struct mm_struct *mm = current->mm;
3039 	struct vm_area_struct *vma;
3040 	unsigned long populate = 0;
3041 	unsigned long ret = -EINVAL;
3042 	struct file *file;
3043 
3044 	pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. See Documentation/vm/remap_file_pages.rst.\n",
3045 		     current->comm, current->pid);
3046 
3047 	if (prot)
3048 		return ret;
3049 	start = start & PAGE_MASK;
3050 	size = size & PAGE_MASK;
3051 
3052 	if (start + size <= start)
3053 		return ret;
3054 
3055 	/* Does pgoff wrap? */
3056 	if (pgoff + (size >> PAGE_SHIFT) < pgoff)
3057 		return ret;
3058 
3059 	if (mmap_write_lock_killable(mm))
3060 		return -EINTR;
3061 
3062 	vma = find_vma(mm, start);
3063 
3064 	if (!vma || !(vma->vm_flags & VM_SHARED))
3065 		goto out;
3066 
3067 	if (start < vma->vm_start)
3068 		goto out;
3069 
3070 	if (start + size > vma->vm_end) {
3071 		struct vm_area_struct *next;
3072 
3073 		for (next = vma->vm_next; next; next = next->vm_next) {
3074 			/* hole between vmas ? */
3075 			if (next->vm_start != next->vm_prev->vm_end)
3076 				goto out;
3077 
3078 			if (next->vm_file != vma->vm_file)
3079 				goto out;
3080 
3081 			if (next->vm_flags != vma->vm_flags)
3082 				goto out;
3083 
3084 			if (start + size <= next->vm_end)
3085 				break;
3086 		}
3087 
3088 		if (!next)
3089 			goto out;
3090 	}
3091 
3092 	prot |= vma->vm_flags & VM_READ ? PROT_READ : 0;
3093 	prot |= vma->vm_flags & VM_WRITE ? PROT_WRITE : 0;
3094 	prot |= vma->vm_flags & VM_EXEC ? PROT_EXEC : 0;
3095 
3096 	flags &= MAP_NONBLOCK;
3097 	flags |= MAP_SHARED | MAP_FIXED | MAP_POPULATE;
3098 	if (vma->vm_flags & VM_LOCKED) {
3099 		struct vm_area_struct *tmp;
3100 		flags |= MAP_LOCKED;
3101 
3102 		/* drop PG_Mlocked flag for over-mapped range */
3103 		for (tmp = vma; tmp->vm_start >= start + size;
3104 				tmp = tmp->vm_next) {
3105 			/*
3106 			 * Split pmd and munlock page on the border
3107 			 * of the range.
3108 			 */
3109 			vma_adjust_trans_huge(tmp, start, start + size, 0);
3110 
3111 			munlock_vma_pages_range(tmp,
3112 					max(tmp->vm_start, start),
3113 					min(tmp->vm_end, start + size));
3114 		}
3115 	}
3116 
3117 	file = get_file(vma->vm_file);
3118 	ret = do_mmap(vma->vm_file, start, size,
3119 			prot, flags, pgoff, &populate, NULL);
3120 	fput(file);
3121 out:
3122 	mmap_write_unlock(mm);
3123 	if (populate)
3124 		mm_populate(ret, populate);
3125 	if (!IS_ERR_VALUE(ret))
3126 		ret = 0;
3127 	return ret;
3128 }
3129 
3130 /*
3131  *  this is really a simplified "do_mmap".  it only handles
3132  *  anonymous maps.  eventually we may be able to do some
3133  *  brk-specific accounting here.
3134  */
do_brk_flags(unsigned long addr,unsigned long len,unsigned long flags,struct list_head * uf)3135 static int do_brk_flags(unsigned long addr, unsigned long len, unsigned long flags, struct list_head *uf)
3136 {
3137 	struct mm_struct *mm = current->mm;
3138 	struct vm_area_struct *vma, *prev;
3139 	struct rb_node **rb_link, *rb_parent;
3140 	pgoff_t pgoff = addr >> PAGE_SHIFT;
3141 	int error;
3142 	unsigned long mapped_addr;
3143 
3144 	/* Until we need other flags, refuse anything except VM_EXEC. */
3145 	if ((flags & (~VM_EXEC)) != 0)
3146 		return -EINVAL;
3147 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
3148 
3149 	mapped_addr = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
3150 	if (IS_ERR_VALUE(mapped_addr))
3151 		return mapped_addr;
3152 
3153 	error = mlock_future_check(mm, mm->def_flags, len);
3154 	if (error)
3155 		return error;
3156 
3157 	/* Clear old maps, set up prev, rb_link, rb_parent, and uf */
3158 	if (munmap_vma_range(mm, addr, len, &prev, &rb_link, &rb_parent, uf))
3159 		return -ENOMEM;
3160 
3161 	/* Check against address space limits *after* clearing old maps... */
3162 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
3163 		return -ENOMEM;
3164 
3165 	if (mm->map_count > sysctl_max_map_count)
3166 		return -ENOMEM;
3167 
3168 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
3169 		return -ENOMEM;
3170 
3171 	/* Can we just expand an old private anonymous mapping? */
3172 	vma = vma_merge(mm, prev, addr, addr + len, flags,
3173 			NULL, NULL, pgoff, NULL, NULL_VM_UFFD_CTX, NULL);
3174 	if (vma)
3175 		goto out;
3176 
3177 	/*
3178 	 * create a vma struct for an anonymous mapping
3179 	 */
3180 	vma = vm_area_alloc(mm);
3181 	if (!vma) {
3182 		vm_unacct_memory(len >> PAGE_SHIFT);
3183 		return -ENOMEM;
3184 	}
3185 
3186 	vma_set_anonymous(vma);
3187 	vma->vm_start = addr;
3188 	vma->vm_end = addr + len;
3189 	vma->vm_pgoff = pgoff;
3190 	vma->vm_flags = flags;
3191 	vma->vm_page_prot = vm_get_page_prot(flags);
3192 	vma_link(mm, vma, prev, rb_link, rb_parent);
3193 out:
3194 	perf_event_mmap(vma);
3195 	mm->total_vm += len >> PAGE_SHIFT;
3196 	mm->data_vm += len >> PAGE_SHIFT;
3197 	if (flags & VM_LOCKED)
3198 		mm->locked_vm += (len >> PAGE_SHIFT);
3199 	vma->vm_flags |= VM_SOFTDIRTY;
3200 	return 0;
3201 }
3202 
vm_brk_flags(unsigned long addr,unsigned long request,unsigned long flags)3203 int vm_brk_flags(unsigned long addr, unsigned long request, unsigned long flags)
3204 {
3205 	struct mm_struct *mm = current->mm;
3206 	unsigned long len;
3207 	int ret;
3208 	bool populate;
3209 	LIST_HEAD(uf);
3210 
3211 	len = PAGE_ALIGN(request);
3212 	if (len < request)
3213 		return -ENOMEM;
3214 	if (!len)
3215 		return 0;
3216 
3217 	if (mmap_write_lock_killable(mm))
3218 		return -EINTR;
3219 
3220 	ret = do_brk_flags(addr, len, flags, &uf);
3221 	populate = ((mm->def_flags & VM_LOCKED) != 0);
3222 	mmap_write_unlock(mm);
3223 	userfaultfd_unmap_complete(mm, &uf);
3224 	if (populate && !ret)
3225 		mm_populate(addr, len);
3226 	return ret;
3227 }
3228 EXPORT_SYMBOL(vm_brk_flags);
3229 
vm_brk(unsigned long addr,unsigned long len)3230 int vm_brk(unsigned long addr, unsigned long len)
3231 {
3232 	return vm_brk_flags(addr, len, 0);
3233 }
3234 EXPORT_SYMBOL(vm_brk);
3235 
3236 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)3237 void exit_mmap(struct mm_struct *mm)
3238 {
3239 	struct mmu_gather tlb;
3240 	struct vm_area_struct *vma;
3241 	unsigned long nr_accounted = 0;
3242 
3243 	/* mm's last user has gone, and its about to be pulled down */
3244 	mmu_notifier_release(mm);
3245 
3246 	if (unlikely(mm_is_oom_victim(mm))) {
3247 		/*
3248 		 * Manually reap the mm to free as much memory as possible.
3249 		 * Then, as the oom reaper does, set MMF_OOM_SKIP to disregard
3250 		 * this mm from further consideration.  Taking mm->mmap_lock for
3251 		 * write after setting MMF_OOM_SKIP will guarantee that the oom
3252 		 * reaper will not run on this mm again after mmap_lock is
3253 		 * dropped.
3254 		 *
3255 		 * Nothing can be holding mm->mmap_lock here and the above call
3256 		 * to mmu_notifier_release(mm) ensures mmu notifier callbacks in
3257 		 * __oom_reap_task_mm() will not block.
3258 		 *
3259 		 * This needs to be done before calling munlock_vma_pages_all(),
3260 		 * which clears VM_LOCKED, otherwise the oom reaper cannot
3261 		 * reliably test it.
3262 		 */
3263 		(void)__oom_reap_task_mm(mm);
3264 
3265 		set_bit(MMF_OOM_SKIP, &mm->flags);
3266 		mmap_write_lock(mm);
3267 		mmap_write_unlock(mm);
3268 	}
3269 
3270 	if (mm->locked_vm) {
3271 		vma = mm->mmap;
3272 		while (vma) {
3273 			if (vma->vm_flags & VM_LOCKED)
3274 				munlock_vma_pages_all(vma);
3275 			vma = vma->vm_next;
3276 		}
3277 	}
3278 
3279 	arch_exit_mmap(mm);
3280 
3281 	vma = mm->mmap;
3282 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
3283 		return;
3284 
3285 	lru_add_drain();
3286 	flush_cache_mm(mm);
3287 	tlb_gather_mmu(&tlb, mm, 0, -1);
3288 	/* update_hiwater_rss(mm) here? but nobody should be looking */
3289 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
3290 	unmap_vmas(&tlb, vma, 0, -1);
3291 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
3292 	tlb_finish_mmu(&tlb, 0, -1);
3293 
3294 	/*
3295 	 * Walk the list again, actually closing and freeing it,
3296 	 * with preemption enabled, without holding any MM locks.
3297 	 */
3298 	while (vma) {
3299 		if (vma->vm_flags & VM_ACCOUNT)
3300 			nr_accounted += vma_pages(vma);
3301 		vma = remove_vma(vma);
3302 		cond_resched();
3303 	}
3304 	vm_unacct_memory(nr_accounted);
3305 }
3306 
3307 /* Insert vm structure into process list sorted by address
3308  * and into the inode's i_mmap tree.  If vm_file is non-NULL
3309  * then i_mmap_rwsem is taken here.
3310  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)3311 int insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
3312 {
3313 	struct vm_area_struct *prev;
3314 	struct rb_node **rb_link, *rb_parent;
3315 
3316 	if (find_vma_links(mm, vma->vm_start, vma->vm_end,
3317 			   &prev, &rb_link, &rb_parent))
3318 		return -ENOMEM;
3319 	if ((vma->vm_flags & VM_ACCOUNT) &&
3320 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
3321 		return -ENOMEM;
3322 
3323 	/*
3324 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
3325 	 * until its first write fault, when page's anon_vma and index
3326 	 * are set.  But now set the vm_pgoff it will almost certainly
3327 	 * end up with (unless mremap moves it elsewhere before that
3328 	 * first wfault), so /proc/pid/maps tells a consistent story.
3329 	 *
3330 	 * By setting it to reflect the virtual start address of the
3331 	 * vma, merges and splits can happen in a seamless way, just
3332 	 * using the existing file pgoff checks and manipulations.
3333 	 * Similarly in do_mmap and in do_brk_flags.
3334 	 */
3335 	if (vma_is_anonymous(vma)) {
3336 		BUG_ON(vma->anon_vma);
3337 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
3338 	}
3339 
3340 	vma_link(mm, vma, prev, rb_link, rb_parent);
3341 	return 0;
3342 }
3343 
3344 /*
3345  * Copy the vma structure to a new location in the same mm,
3346  * prior to moving page table entries, to effect an mremap move.
3347  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)3348 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
3349 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3350 	bool *need_rmap_locks)
3351 {
3352 	struct vm_area_struct *vma = *vmap;
3353 	unsigned long vma_start = vma->vm_start;
3354 	struct mm_struct *mm = vma->vm_mm;
3355 	struct vm_area_struct *new_vma, *prev;
3356 	struct rb_node **rb_link, *rb_parent;
3357 	bool faulted_in_anon_vma = true;
3358 
3359 	/*
3360 	 * If anonymous vma has not yet been faulted, update new pgoff
3361 	 * to match new location, to increase its chance of merging.
3362 	 */
3363 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
3364 		pgoff = addr >> PAGE_SHIFT;
3365 		faulted_in_anon_vma = false;
3366 	}
3367 
3368 	if (find_vma_links(mm, addr, addr + len, &prev, &rb_link, &rb_parent))
3369 		return NULL;	/* should never get here */
3370 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
3371 			    vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma),
3372 			    vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3373 	if (new_vma) {
3374 		/*
3375 		 * Source vma may have been merged into new_vma
3376 		 */
3377 		if (unlikely(vma_start >= new_vma->vm_start &&
3378 			     vma_start < new_vma->vm_end)) {
3379 			/*
3380 			 * The only way we can get a vma_merge with
3381 			 * self during an mremap is if the vma hasn't
3382 			 * been faulted in yet and we were allowed to
3383 			 * reset the dst vma->vm_pgoff to the
3384 			 * destination address of the mremap to allow
3385 			 * the merge to happen. mremap must change the
3386 			 * vm_pgoff linearity between src and dst vmas
3387 			 * (in turn preventing a vma_merge) to be
3388 			 * safe. It is only safe to keep the vm_pgoff
3389 			 * linear if there are no pages mapped yet.
3390 			 */
3391 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
3392 			*vmap = vma = new_vma;
3393 		}
3394 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
3395 	} else {
3396 		new_vma = vm_area_dup(vma);
3397 		if (!new_vma)
3398 			goto out;
3399 		new_vma->vm_start = addr;
3400 		new_vma->vm_end = addr + len;
3401 		new_vma->vm_pgoff = pgoff;
3402 		if (vma_dup_policy(vma, new_vma))
3403 			goto out_free_vma;
3404 		if (anon_vma_clone(new_vma, vma))
3405 			goto out_free_mempol;
3406 		if (new_vma->vm_file)
3407 			get_file(new_vma->vm_file);
3408 		if (new_vma->vm_ops && new_vma->vm_ops->open)
3409 			new_vma->vm_ops->open(new_vma);
3410 		vma_link(mm, new_vma, prev, rb_link, rb_parent);
3411 		*need_rmap_locks = false;
3412 	}
3413 	return new_vma;
3414 
3415 out_free_mempol:
3416 	mpol_put(vma_policy(new_vma));
3417 out_free_vma:
3418 	vm_area_free(new_vma);
3419 out:
3420 	return NULL;
3421 }
3422 
3423 /*
3424  * Return true if the calling process may expand its vm space by the passed
3425  * number of pages
3426  */
may_expand_vm(struct mm_struct * mm,vm_flags_t flags,unsigned long npages)3427 bool may_expand_vm(struct mm_struct *mm, vm_flags_t flags, unsigned long npages)
3428 {
3429 	if (mm->total_vm + npages > rlimit(RLIMIT_AS) >> PAGE_SHIFT)
3430 		return false;
3431 
3432 	if (is_data_mapping(flags) &&
3433 	    mm->data_vm + npages > rlimit(RLIMIT_DATA) >> PAGE_SHIFT) {
3434 		/* Workaround for Valgrind */
3435 		if (rlimit(RLIMIT_DATA) == 0 &&
3436 		    mm->data_vm + npages <= rlimit_max(RLIMIT_DATA) >> PAGE_SHIFT)
3437 			return true;
3438 
3439 		pr_warn_once("%s (%d): VmData %lu exceed data ulimit %lu. Update limits%s.\n",
3440 			     current->comm, current->pid,
3441 			     (mm->data_vm + npages) << PAGE_SHIFT,
3442 			     rlimit(RLIMIT_DATA),
3443 			     ignore_rlimit_data ? "" : " or use boot option ignore_rlimit_data");
3444 
3445 		if (!ignore_rlimit_data)
3446 			return false;
3447 	}
3448 
3449 	return true;
3450 }
3451 
vm_stat_account(struct mm_struct * mm,vm_flags_t flags,long npages)3452 void vm_stat_account(struct mm_struct *mm, vm_flags_t flags, long npages)
3453 {
3454 	mm->total_vm += npages;
3455 
3456 	if (is_exec_mapping(flags))
3457 		mm->exec_vm += npages;
3458 	else if (is_stack_mapping(flags))
3459 		mm->stack_vm += npages;
3460 	else if (is_data_mapping(flags))
3461 		mm->data_vm += npages;
3462 }
3463 
3464 static vm_fault_t special_mapping_fault(struct vm_fault *vmf);
3465 
3466 /*
3467  * Having a close hook prevents vma merging regardless of flags.
3468  */
special_mapping_close(struct vm_area_struct * vma)3469 static void special_mapping_close(struct vm_area_struct *vma)
3470 {
3471 }
3472 
special_mapping_name(struct vm_area_struct * vma)3473 static const char *special_mapping_name(struct vm_area_struct *vma)
3474 {
3475 	return ((struct vm_special_mapping *)vma->vm_private_data)->name;
3476 }
3477 
special_mapping_mremap(struct vm_area_struct * new_vma)3478 static int special_mapping_mremap(struct vm_area_struct *new_vma)
3479 {
3480 	struct vm_special_mapping *sm = new_vma->vm_private_data;
3481 
3482 	if (WARN_ON_ONCE(current->mm != new_vma->vm_mm))
3483 		return -EFAULT;
3484 
3485 	if (sm->mremap)
3486 		return sm->mremap(sm, new_vma);
3487 
3488 	return 0;
3489 }
3490 
3491 static const struct vm_operations_struct special_mapping_vmops = {
3492 	.close = special_mapping_close,
3493 	.fault = special_mapping_fault,
3494 	.mremap = special_mapping_mremap,
3495 	.name = special_mapping_name,
3496 	/* vDSO code relies that VVAR can't be accessed remotely */
3497 	.access = NULL,
3498 };
3499 
3500 static const struct vm_operations_struct legacy_special_mapping_vmops = {
3501 	.close = special_mapping_close,
3502 	.fault = special_mapping_fault,
3503 };
3504 
special_mapping_fault(struct vm_fault * vmf)3505 static vm_fault_t special_mapping_fault(struct vm_fault *vmf)
3506 {
3507 	struct vm_area_struct *vma = vmf->vma;
3508 	pgoff_t pgoff;
3509 	struct page **pages;
3510 
3511 	if (vma->vm_ops == &legacy_special_mapping_vmops) {
3512 		pages = vma->vm_private_data;
3513 	} else {
3514 		struct vm_special_mapping *sm = vma->vm_private_data;
3515 
3516 		if (sm->fault)
3517 			return sm->fault(sm, vmf->vma, vmf);
3518 
3519 		pages = sm->pages;
3520 	}
3521 
3522 	for (pgoff = vmf->pgoff; pgoff && *pages; ++pages)
3523 		pgoff--;
3524 
3525 	if (*pages) {
3526 		struct page *page = *pages;
3527 		get_page(page);
3528 		vmf->page = page;
3529 		return 0;
3530 	}
3531 
3532 	return VM_FAULT_SIGBUS;
3533 }
3534 
__install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,void * priv,const struct vm_operations_struct * ops)3535 static struct vm_area_struct *__install_special_mapping(
3536 	struct mm_struct *mm,
3537 	unsigned long addr, unsigned long len,
3538 	unsigned long vm_flags, void *priv,
3539 	const struct vm_operations_struct *ops)
3540 {
3541 	int ret;
3542 	struct vm_area_struct *vma;
3543 
3544 	vma = vm_area_alloc(mm);
3545 	if (unlikely(vma == NULL))
3546 		return ERR_PTR(-ENOMEM);
3547 
3548 	vma->vm_start = addr;
3549 	vma->vm_end = addr + len;
3550 
3551 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND | VM_SOFTDIRTY;
3552 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3553 
3554 	vma->vm_ops = ops;
3555 	vma->vm_private_data = priv;
3556 
3557 	ret = insert_vm_struct(mm, vma);
3558 	if (ret)
3559 		goto out;
3560 
3561 	vm_stat_account(mm, vma->vm_flags, len >> PAGE_SHIFT);
3562 
3563 	perf_event_mmap(vma);
3564 
3565 	return vma;
3566 
3567 out:
3568 	vm_area_free(vma);
3569 	return ERR_PTR(ret);
3570 }
3571 
vma_is_special_mapping(const struct vm_area_struct * vma,const struct vm_special_mapping * sm)3572 bool vma_is_special_mapping(const struct vm_area_struct *vma,
3573 	const struct vm_special_mapping *sm)
3574 {
3575 	return vma->vm_private_data == sm &&
3576 		(vma->vm_ops == &special_mapping_vmops ||
3577 		 vma->vm_ops == &legacy_special_mapping_vmops);
3578 }
3579 
3580 /*
3581  * Called with mm->mmap_lock held for writing.
3582  * Insert a new vma covering the given region, with the given flags.
3583  * Its pages are supplied by the given array of struct page *.
3584  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3585  * The region past the last page supplied will always produce SIGBUS.
3586  * The array pointer and the pages it points to are assumed to stay alive
3587  * for as long as this mapping might exist.
3588  */
_install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,const struct vm_special_mapping * spec)3589 struct vm_area_struct *_install_special_mapping(
3590 	struct mm_struct *mm,
3591 	unsigned long addr, unsigned long len,
3592 	unsigned long vm_flags, const struct vm_special_mapping *spec)
3593 {
3594 	return __install_special_mapping(mm, addr, len, vm_flags, (void *)spec,
3595 					&special_mapping_vmops);
3596 }
3597 
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)3598 int install_special_mapping(struct mm_struct *mm,
3599 			    unsigned long addr, unsigned long len,
3600 			    unsigned long vm_flags, struct page **pages)
3601 {
3602 	struct vm_area_struct *vma = __install_special_mapping(
3603 		mm, addr, len, vm_flags, (void *)pages,
3604 		&legacy_special_mapping_vmops);
3605 
3606 	return PTR_ERR_OR_ZERO(vma);
3607 }
3608 
3609 static DEFINE_MUTEX(mm_all_locks_mutex);
3610 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)3611 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
3612 {
3613 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3614 		/*
3615 		 * The LSB of head.next can't change from under us
3616 		 * because we hold the mm_all_locks_mutex.
3617 		 */
3618 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
3619 		/*
3620 		 * We can safely modify head.next after taking the
3621 		 * anon_vma->root->rwsem. If some other vma in this mm shares
3622 		 * the same anon_vma we won't take it again.
3623 		 *
3624 		 * No need of atomic instructions here, head.next
3625 		 * can't change from under us thanks to the
3626 		 * anon_vma->root->rwsem.
3627 		 */
3628 		if (__test_and_set_bit(0, (unsigned long *)
3629 				       &anon_vma->root->rb_root.rb_root.rb_node))
3630 			BUG();
3631 	}
3632 }
3633 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)3634 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
3635 {
3636 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3637 		/*
3638 		 * AS_MM_ALL_LOCKS can't change from under us because
3639 		 * we hold the mm_all_locks_mutex.
3640 		 *
3641 		 * Operations on ->flags have to be atomic because
3642 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
3643 		 * mm_all_locks_mutex, there may be other cpus
3644 		 * changing other bitflags in parallel to us.
3645 		 */
3646 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
3647 			BUG();
3648 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
3649 	}
3650 }
3651 
3652 /*
3653  * This operation locks against the VM for all pte/vma/mm related
3654  * operations that could ever happen on a certain mm. This includes
3655  * vmtruncate, try_to_unmap, and all page faults.
3656  *
3657  * The caller must take the mmap_lock in write mode before calling
3658  * mm_take_all_locks(). The caller isn't allowed to release the
3659  * mmap_lock until mm_drop_all_locks() returns.
3660  *
3661  * mmap_lock in write mode is required in order to block all operations
3662  * that could modify pagetables and free pages without need of
3663  * altering the vma layout. It's also needed in write mode to avoid new
3664  * anon_vmas to be associated with existing vmas.
3665  *
3666  * A single task can't take more than one mm_take_all_locks() in a row
3667  * or it would deadlock.
3668  *
3669  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3670  * mapping->flags avoid to take the same lock twice, if more than one
3671  * vma in this mm is backed by the same anon_vma or address_space.
3672  *
3673  * We take locks in following order, accordingly to comment at beginning
3674  * of mm/rmap.c:
3675  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3676  *     hugetlb mapping);
3677  *   - all i_mmap_rwsem locks;
3678  *   - all anon_vma->rwseml
3679  *
3680  * We can take all locks within these types randomly because the VM code
3681  * doesn't nest them and we protected from parallel mm_take_all_locks() by
3682  * mm_all_locks_mutex.
3683  *
3684  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3685  * that may have to take thousand of locks.
3686  *
3687  * mm_take_all_locks() can fail if it's interrupted by signals.
3688  */
mm_take_all_locks(struct mm_struct * mm)3689 int mm_take_all_locks(struct mm_struct *mm)
3690 {
3691 	struct vm_area_struct *vma;
3692 	struct anon_vma_chain *avc;
3693 
3694 	BUG_ON(mmap_read_trylock(mm));
3695 
3696 	mutex_lock(&mm_all_locks_mutex);
3697 
3698 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3699 		if (signal_pending(current))
3700 			goto out_unlock;
3701 		if (vma->vm_file && vma->vm_file->f_mapping &&
3702 				is_vm_hugetlb_page(vma))
3703 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3704 	}
3705 
3706 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3707 		if (signal_pending(current))
3708 			goto out_unlock;
3709 		if (vma->vm_file && vma->vm_file->f_mapping &&
3710 				!is_vm_hugetlb_page(vma))
3711 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
3712 	}
3713 
3714 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3715 		if (signal_pending(current))
3716 			goto out_unlock;
3717 		if (vma->anon_vma)
3718 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3719 				vm_lock_anon_vma(mm, avc->anon_vma);
3720 	}
3721 
3722 	return 0;
3723 
3724 out_unlock:
3725 	mm_drop_all_locks(mm);
3726 	return -EINTR;
3727 }
3728 
vm_unlock_anon_vma(struct anon_vma * anon_vma)3729 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
3730 {
3731 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
3732 		/*
3733 		 * The LSB of head.next can't change to 0 from under
3734 		 * us because we hold the mm_all_locks_mutex.
3735 		 *
3736 		 * We must however clear the bitflag before unlocking
3737 		 * the vma so the users using the anon_vma->rb_root will
3738 		 * never see our bitflag.
3739 		 *
3740 		 * No need of atomic instructions here, head.next
3741 		 * can't change from under us until we release the
3742 		 * anon_vma->root->rwsem.
3743 		 */
3744 		if (!__test_and_clear_bit(0, (unsigned long *)
3745 					  &anon_vma->root->rb_root.rb_root.rb_node))
3746 			BUG();
3747 		anon_vma_unlock_write(anon_vma);
3748 	}
3749 }
3750 
vm_unlock_mapping(struct address_space * mapping)3751 static void vm_unlock_mapping(struct address_space *mapping)
3752 {
3753 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
3754 		/*
3755 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
3756 		 * because we hold the mm_all_locks_mutex.
3757 		 */
3758 		i_mmap_unlock_write(mapping);
3759 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
3760 					&mapping->flags))
3761 			BUG();
3762 	}
3763 }
3764 
3765 /*
3766  * The mmap_lock cannot be released by the caller until
3767  * mm_drop_all_locks() returns.
3768  */
mm_drop_all_locks(struct mm_struct * mm)3769 void mm_drop_all_locks(struct mm_struct *mm)
3770 {
3771 	struct vm_area_struct *vma;
3772 	struct anon_vma_chain *avc;
3773 
3774 	BUG_ON(mmap_read_trylock(mm));
3775 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
3776 
3777 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
3778 		if (vma->anon_vma)
3779 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
3780 				vm_unlock_anon_vma(avc->anon_vma);
3781 		if (vma->vm_file && vma->vm_file->f_mapping)
3782 			vm_unlock_mapping(vma->vm_file->f_mapping);
3783 	}
3784 
3785 	mutex_unlock(&mm_all_locks_mutex);
3786 }
3787 
3788 /*
3789  * initialise the percpu counter for VM
3790  */
mmap_init(void)3791 void __init mmap_init(void)
3792 {
3793 	int ret;
3794 
3795 	ret = percpu_counter_init(&vm_committed_as, 0, GFP_KERNEL);
3796 	VM_BUG_ON(ret);
3797 }
3798 
3799 /*
3800  * Initialise sysctl_user_reserve_kbytes.
3801  *
3802  * This is intended to prevent a user from starting a single memory hogging
3803  * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3804  * mode.
3805  *
3806  * The default value is min(3% of free memory, 128MB)
3807  * 128MB is enough to recover with sshd/login, bash, and top/kill.
3808  */
init_user_reserve(void)3809 static int init_user_reserve(void)
3810 {
3811 	unsigned long free_kbytes;
3812 
3813 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3814 
3815 	sysctl_user_reserve_kbytes = min(free_kbytes / 32, 1UL << 17);
3816 	return 0;
3817 }
3818 subsys_initcall(init_user_reserve);
3819 
3820 /*
3821  * Initialise sysctl_admin_reserve_kbytes.
3822  *
3823  * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3824  * to log in and kill a memory hogging process.
3825  *
3826  * Systems with more than 256MB will reserve 8MB, enough to recover
3827  * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3828  * only reserve 3% of free pages by default.
3829  */
init_admin_reserve(void)3830 static int init_admin_reserve(void)
3831 {
3832 	unsigned long free_kbytes;
3833 
3834 	free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3835 
3836 	sysctl_admin_reserve_kbytes = min(free_kbytes / 32, 1UL << 13);
3837 	return 0;
3838 }
3839 subsys_initcall(init_admin_reserve);
3840 
3841 /*
3842  * Reinititalise user and admin reserves if memory is added or removed.
3843  *
3844  * The default user reserve max is 128MB, and the default max for the
3845  * admin reserve is 8MB. These are usually, but not always, enough to
3846  * enable recovery from a memory hogging process using login/sshd, a shell,
3847  * and tools like top. It may make sense to increase or even disable the
3848  * reserve depending on the existence of swap or variations in the recovery
3849  * tools. So, the admin may have changed them.
3850  *
3851  * If memory is added and the reserves have been eliminated or increased above
3852  * the default max, then we'll trust the admin.
3853  *
3854  * If memory is removed and there isn't enough free memory, then we
3855  * need to reset the reserves.
3856  *
3857  * Otherwise keep the reserve set by the admin.
3858  */
reserve_mem_notifier(struct notifier_block * nb,unsigned long action,void * data)3859 static int reserve_mem_notifier(struct notifier_block *nb,
3860 			     unsigned long action, void *data)
3861 {
3862 	unsigned long tmp, free_kbytes;
3863 
3864 	switch (action) {
3865 	case MEM_ONLINE:
3866 		/* Default max is 128MB. Leave alone if modified by operator. */
3867 		tmp = sysctl_user_reserve_kbytes;
3868 		if (0 < tmp && tmp < (1UL << 17))
3869 			init_user_reserve();
3870 
3871 		/* Default max is 8MB.  Leave alone if modified by operator. */
3872 		tmp = sysctl_admin_reserve_kbytes;
3873 		if (0 < tmp && tmp < (1UL << 13))
3874 			init_admin_reserve();
3875 
3876 		break;
3877 	case MEM_OFFLINE:
3878 		free_kbytes = global_zone_page_state(NR_FREE_PAGES) << (PAGE_SHIFT - 10);
3879 
3880 		if (sysctl_user_reserve_kbytes > free_kbytes) {
3881 			init_user_reserve();
3882 			pr_info("vm.user_reserve_kbytes reset to %lu\n",
3883 				sysctl_user_reserve_kbytes);
3884 		}
3885 
3886 		if (sysctl_admin_reserve_kbytes > free_kbytes) {
3887 			init_admin_reserve();
3888 			pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3889 				sysctl_admin_reserve_kbytes);
3890 		}
3891 		break;
3892 	default:
3893 		break;
3894 	}
3895 	return NOTIFY_OK;
3896 }
3897 
3898 static struct notifier_block reserve_mem_nb = {
3899 	.notifier_call = reserve_mem_notifier,
3900 };
3901 
init_reserve_notifier(void)3902 static int __meminit init_reserve_notifier(void)
3903 {
3904 	if (register_hotmemory_notifier(&reserve_mem_nb))
3905 		pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3906 
3907 	return 0;
3908 }
3909 subsys_initcall(init_reserve_notifier);
3910