1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/workqueue.c - generic async execution with shared worker pool
4 *
5 * Copyright (C) 2002 Ingo Molnar
6 *
7 * Derived from the taskqueue/keventd code by:
8 * David Woodhouse <dwmw2@infradead.org>
9 * Andrew Morton
10 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
11 * Theodore Ts'o <tytso@mit.edu>
12 *
13 * Made to use alloc_percpu by Christoph Lameter.
14 *
15 * Copyright (C) 2010 SUSE Linux Products GmbH
16 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
17 *
18 * This is the generic async execution mechanism. Work items as are
19 * executed in process context. The worker pool is shared and
20 * automatically managed. There are two worker pools for each CPU (one for
21 * normal work items and the other for high priority ones) and some extra
22 * pools for workqueues which are not bound to any specific CPU - the
23 * number of these backing pools is dynamic.
24 *
25 * Please read Documentation/core-api/workqueue.rst for details.
26 */
27
28 #include <linux/export.h>
29 #include <linux/kernel.h>
30 #include <linux/sched.h>
31 #include <linux/init.h>
32 #include <linux/signal.h>
33 #include <linux/completion.h>
34 #include <linux/workqueue.h>
35 #include <linux/slab.h>
36 #include <linux/cpu.h>
37 #include <linux/notifier.h>
38 #include <linux/kthread.h>
39 #include <linux/hardirq.h>
40 #include <linux/mempolicy.h>
41 #include <linux/freezer.h>
42 #include <linux/debug_locks.h>
43 #include <linux/lockdep.h>
44 #include <linux/idr.h>
45 #include <linux/jhash.h>
46 #include <linux/hashtable.h>
47 #include <linux/rculist.h>
48 #include <linux/nodemask.h>
49 #include <linux/moduleparam.h>
50 #include <linux/uaccess.h>
51 #include <linux/sched/isolation.h>
52 #include <linux/nmi.h>
53 #include <linux/kvm_para.h>
54
55 #include "workqueue_internal.h"
56
57 enum {
58 /*
59 * worker_pool flags
60 *
61 * A bound pool is either associated or disassociated with its CPU.
62 * While associated (!DISASSOCIATED), all workers are bound to the
63 * CPU and none has %WORKER_UNBOUND set and concurrency management
64 * is in effect.
65 *
66 * While DISASSOCIATED, the cpu may be offline and all workers have
67 * %WORKER_UNBOUND set and concurrency management disabled, and may
68 * be executing on any CPU. The pool behaves as an unbound one.
69 *
70 * Note that DISASSOCIATED should be flipped only while holding
71 * wq_pool_attach_mutex to avoid changing binding state while
72 * worker_attach_to_pool() is in progress.
73 */
74 POOL_MANAGER_ACTIVE = 1 << 0, /* being managed */
75 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
76
77 /* worker flags */
78 WORKER_DIE = 1 << 1, /* die die die */
79 WORKER_IDLE = 1 << 2, /* is idle */
80 WORKER_PREP = 1 << 3, /* preparing to run works */
81 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
82 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
83 WORKER_REBOUND = 1 << 8, /* worker was rebound */
84
85 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
86 WORKER_UNBOUND | WORKER_REBOUND,
87
88 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
89
90 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
91 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
92
93 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
94 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
95
96 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
97 /* call for help after 10ms
98 (min two ticks) */
99 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
100 CREATE_COOLDOWN = HZ, /* time to breath after fail */
101
102 /*
103 * Rescue workers are used only on emergencies and shared by
104 * all cpus. Give MIN_NICE.
105 */
106 RESCUER_NICE_LEVEL = MIN_NICE,
107 HIGHPRI_NICE_LEVEL = MIN_NICE,
108
109 WQ_NAME_LEN = 24,
110 };
111
112 /*
113 * Structure fields follow one of the following exclusion rules.
114 *
115 * I: Modifiable by initialization/destruction paths and read-only for
116 * everyone else.
117 *
118 * P: Preemption protected. Disabling preemption is enough and should
119 * only be modified and accessed from the local cpu.
120 *
121 * L: pool->lock protected. Access with pool->lock held.
122 *
123 * X: During normal operation, modification requires pool->lock and should
124 * be done only from local cpu. Either disabling preemption on local
125 * cpu or grabbing pool->lock is enough for read access. If
126 * POOL_DISASSOCIATED is set, it's identical to L.
127 *
128 * A: wq_pool_attach_mutex protected.
129 *
130 * PL: wq_pool_mutex protected.
131 *
132 * PR: wq_pool_mutex protected for writes. RCU protected for reads.
133 *
134 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
135 *
136 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
137 * RCU for reads.
138 *
139 * WQ: wq->mutex protected.
140 *
141 * WR: wq->mutex protected for writes. RCU protected for reads.
142 *
143 * MD: wq_mayday_lock protected.
144 */
145
146 /* struct worker is defined in workqueue_internal.h */
147
148 struct worker_pool {
149 raw_spinlock_t lock; /* the pool lock */
150 int cpu; /* I: the associated cpu */
151 int node; /* I: the associated node ID */
152 int id; /* I: pool ID */
153 unsigned int flags; /* X: flags */
154
155 unsigned long watchdog_ts; /* L: watchdog timestamp */
156
157 struct list_head worklist; /* L: list of pending works */
158
159 int nr_workers; /* L: total number of workers */
160 int nr_idle; /* L: currently idle workers */
161
162 struct list_head idle_list; /* X: list of idle workers */
163 struct timer_list idle_timer; /* L: worker idle timeout */
164 struct timer_list mayday_timer; /* L: SOS timer for workers */
165
166 /* a workers is either on busy_hash or idle_list, or the manager */
167 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
168 /* L: hash of busy workers */
169
170 struct worker *manager; /* L: purely informational */
171 struct list_head workers; /* A: attached workers */
172 struct completion *detach_completion; /* all workers detached */
173
174 struct ida worker_ida; /* worker IDs for task name */
175
176 struct workqueue_attrs *attrs; /* I: worker attributes */
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
179
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
186
187 /*
188 * Destruction of pool is RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
192 } ____cacheline_aligned_in_smp;
193
194 /*
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
199 */
200 struct pool_workqueue {
201 struct worker_pool *pool; /* I: the associated pool */
202 struct workqueue_struct *wq; /* I: the owning workqueue */
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
205 int refcnt; /* L: reference count */
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
208 int nr_active; /* L: nr of active works */
209 int max_active; /* L: max active works */
210 struct list_head inactive_works; /* L: inactive works */
211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
212 struct list_head mayday_node; /* MD: node on wq->maydays */
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also RCU protected so that the first pwq can be
218 * determined without grabbing wq->mutex.
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
222 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
223
224 /*
225 * Structure used to wait for workqueue flush.
226 */
227 struct wq_flusher {
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
230 struct completion done; /* flush completion */
231 };
232
233 struct wq_device;
234
235 /*
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
238 */
239 struct workqueue_struct {
240 struct list_head pwqs; /* WR: all pwqs of this wq */
241 struct list_head list; /* PR: list of all workqueues */
242
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
246 atomic_t nr_pwqs_to_flush; /* flush in progress */
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
250
251 struct list_head maydays; /* MD: pwqs requesting rescue */
252 struct worker *rescuer; /* MD: rescue worker */
253
254 int nr_drainers; /* WQ: drain in progress */
255 int saved_max_active; /* WQ: saved pwq max_active */
256
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
259
260 #ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262 #endif
263 #ifdef CONFIG_LOCKDEP
264 char *lock_name;
265 struct lock_class_key key;
266 struct lockdep_map lockdep_map;
267 #endif
268 char name[WQ_NAME_LEN]; /* I: workqueue name */
269
270 /*
271 * Destruction of workqueue_struct is RCU protected to allow walking
272 * the workqueues list without grabbing wq_pool_mutex.
273 * This is used to dump all workqueues from sysrq.
274 */
275 struct rcu_head rcu;
276
277 /* hot fields used during command issue, aligned to cacheline */
278 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
279 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
280 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
281 };
282
283 static struct kmem_cache *pwq_cache;
284
285 static cpumask_var_t *wq_numa_possible_cpumask;
286 /* possible CPUs of each node */
287
288 static bool wq_disable_numa;
289 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
290
291 /* see the comment above the definition of WQ_POWER_EFFICIENT */
292 static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
293 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
294
295 static bool wq_online; /* can kworkers be created yet? */
296
297 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
298
299 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
300 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
301
302 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
303 static DEFINE_MUTEX(wq_pool_attach_mutex); /* protects worker attach/detach */
304 static DEFINE_RAW_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
305 /* wait for manager to go away */
306 static struct rcuwait manager_wait = __RCUWAIT_INITIALIZER(manager_wait);
307
308 static LIST_HEAD(workqueues); /* PR: list of all workqueues */
309 static bool workqueue_freezing; /* PL: have wqs started freezing? */
310
311 /* PL: allowable cpus for unbound wqs and work items */
312 static cpumask_var_t wq_unbound_cpumask;
313
314 /* CPU where unbound work was last round robin scheduled from this CPU */
315 static DEFINE_PER_CPU(int, wq_rr_cpu_last);
316
317 /*
318 * Local execution of unbound work items is no longer guaranteed. The
319 * following always forces round-robin CPU selection on unbound work items
320 * to uncover usages which depend on it.
321 */
322 #ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
323 static bool wq_debug_force_rr_cpu = true;
324 #else
325 static bool wq_debug_force_rr_cpu = false;
326 #endif
327 module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
328
329 /* the per-cpu worker pools */
330 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
331
332 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
333
334 /* PL: hash of all unbound pools keyed by pool->attrs */
335 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
336
337 /* I: attributes used when instantiating standard unbound pools on demand */
338 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
339
340 /* I: attributes used when instantiating ordered pools on demand */
341 static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
342
343 struct workqueue_struct *system_wq __read_mostly;
344 EXPORT_SYMBOL(system_wq);
345 struct workqueue_struct *system_highpri_wq __read_mostly;
346 EXPORT_SYMBOL_GPL(system_highpri_wq);
347 struct workqueue_struct *system_long_wq __read_mostly;
348 EXPORT_SYMBOL_GPL(system_long_wq);
349 struct workqueue_struct *system_unbound_wq __read_mostly;
350 EXPORT_SYMBOL_GPL(system_unbound_wq);
351 struct workqueue_struct *system_freezable_wq __read_mostly;
352 EXPORT_SYMBOL_GPL(system_freezable_wq);
353 struct workqueue_struct *system_power_efficient_wq __read_mostly;
354 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
355 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
356 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
357
358 static int worker_thread(void *__worker);
359 static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
360 static void show_pwq(struct pool_workqueue *pwq);
361
362 #define CREATE_TRACE_POINTS
363 #include <trace/events/workqueue.h>
364
365 #define assert_rcu_or_pool_mutex() \
366 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
367 !lockdep_is_held(&wq_pool_mutex), \
368 "RCU or wq_pool_mutex should be held")
369
370 #define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
371 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
372 !lockdep_is_held(&wq->mutex) && \
373 !lockdep_is_held(&wq_pool_mutex), \
374 "RCU, wq->mutex or wq_pool_mutex should be held")
375
376 #define for_each_cpu_worker_pool(pool, cpu) \
377 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
378 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
379 (pool)++)
380
381 /**
382 * for_each_pool - iterate through all worker_pools in the system
383 * @pool: iteration cursor
384 * @pi: integer used for iteration
385 *
386 * This must be called either with wq_pool_mutex held or RCU read
387 * locked. If the pool needs to be used beyond the locking in effect, the
388 * caller is responsible for guaranteeing that the pool stays online.
389 *
390 * The if/else clause exists only for the lockdep assertion and can be
391 * ignored.
392 */
393 #define for_each_pool(pool, pi) \
394 idr_for_each_entry(&worker_pool_idr, pool, pi) \
395 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
396 else
397
398 /**
399 * for_each_pool_worker - iterate through all workers of a worker_pool
400 * @worker: iteration cursor
401 * @pool: worker_pool to iterate workers of
402 *
403 * This must be called with wq_pool_attach_mutex.
404 *
405 * The if/else clause exists only for the lockdep assertion and can be
406 * ignored.
407 */
408 #define for_each_pool_worker(worker, pool) \
409 list_for_each_entry((worker), &(pool)->workers, node) \
410 if (({ lockdep_assert_held(&wq_pool_attach_mutex); false; })) { } \
411 else
412
413 /**
414 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
415 * @pwq: iteration cursor
416 * @wq: the target workqueue
417 *
418 * This must be called either with wq->mutex held or RCU read locked.
419 * If the pwq needs to be used beyond the locking in effect, the caller is
420 * responsible for guaranteeing that the pwq stays online.
421 *
422 * The if/else clause exists only for the lockdep assertion and can be
423 * ignored.
424 */
425 #define for_each_pwq(pwq, wq) \
426 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node, \
427 lockdep_is_held(&(wq->mutex)))
428
429 #ifdef CONFIG_DEBUG_OBJECTS_WORK
430
431 static const struct debug_obj_descr work_debug_descr;
432
work_debug_hint(void * addr)433 static void *work_debug_hint(void *addr)
434 {
435 return ((struct work_struct *) addr)->func;
436 }
437
work_is_static_object(void * addr)438 static bool work_is_static_object(void *addr)
439 {
440 struct work_struct *work = addr;
441
442 return test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work));
443 }
444
445 /*
446 * fixup_init is called when:
447 * - an active object is initialized
448 */
work_fixup_init(void * addr,enum debug_obj_state state)449 static bool work_fixup_init(void *addr, enum debug_obj_state state)
450 {
451 struct work_struct *work = addr;
452
453 switch (state) {
454 case ODEBUG_STATE_ACTIVE:
455 cancel_work_sync(work);
456 debug_object_init(work, &work_debug_descr);
457 return true;
458 default:
459 return false;
460 }
461 }
462
463 /*
464 * fixup_free is called when:
465 * - an active object is freed
466 */
work_fixup_free(void * addr,enum debug_obj_state state)467 static bool work_fixup_free(void *addr, enum debug_obj_state state)
468 {
469 struct work_struct *work = addr;
470
471 switch (state) {
472 case ODEBUG_STATE_ACTIVE:
473 cancel_work_sync(work);
474 debug_object_free(work, &work_debug_descr);
475 return true;
476 default:
477 return false;
478 }
479 }
480
481 static const struct debug_obj_descr work_debug_descr = {
482 .name = "work_struct",
483 .debug_hint = work_debug_hint,
484 .is_static_object = work_is_static_object,
485 .fixup_init = work_fixup_init,
486 .fixup_free = work_fixup_free,
487 };
488
debug_work_activate(struct work_struct * work)489 static inline void debug_work_activate(struct work_struct *work)
490 {
491 debug_object_activate(work, &work_debug_descr);
492 }
493
debug_work_deactivate(struct work_struct * work)494 static inline void debug_work_deactivate(struct work_struct *work)
495 {
496 debug_object_deactivate(work, &work_debug_descr);
497 }
498
__init_work(struct work_struct * work,int onstack)499 void __init_work(struct work_struct *work, int onstack)
500 {
501 if (onstack)
502 debug_object_init_on_stack(work, &work_debug_descr);
503 else
504 debug_object_init(work, &work_debug_descr);
505 }
506 EXPORT_SYMBOL_GPL(__init_work);
507
destroy_work_on_stack(struct work_struct * work)508 void destroy_work_on_stack(struct work_struct *work)
509 {
510 debug_object_free(work, &work_debug_descr);
511 }
512 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
513
destroy_delayed_work_on_stack(struct delayed_work * work)514 void destroy_delayed_work_on_stack(struct delayed_work *work)
515 {
516 destroy_timer_on_stack(&work->timer);
517 debug_object_free(&work->work, &work_debug_descr);
518 }
519 EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
520
521 #else
debug_work_activate(struct work_struct * work)522 static inline void debug_work_activate(struct work_struct *work) { }
debug_work_deactivate(struct work_struct * work)523 static inline void debug_work_deactivate(struct work_struct *work) { }
524 #endif
525
526 /**
527 * worker_pool_assign_id - allocate ID and assing it to @pool
528 * @pool: the pool pointer of interest
529 *
530 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
531 * successfully, -errno on failure.
532 */
worker_pool_assign_id(struct worker_pool * pool)533 static int worker_pool_assign_id(struct worker_pool *pool)
534 {
535 int ret;
536
537 lockdep_assert_held(&wq_pool_mutex);
538
539 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
540 GFP_KERNEL);
541 if (ret >= 0) {
542 pool->id = ret;
543 return 0;
544 }
545 return ret;
546 }
547
548 /**
549 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
550 * @wq: the target workqueue
551 * @node: the node ID
552 *
553 * This must be called with any of wq_pool_mutex, wq->mutex or RCU
554 * read locked.
555 * If the pwq needs to be used beyond the locking in effect, the caller is
556 * responsible for guaranteeing that the pwq stays online.
557 *
558 * Return: The unbound pool_workqueue for @node.
559 */
unbound_pwq_by_node(struct workqueue_struct * wq,int node)560 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
561 int node)
562 {
563 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
564
565 /*
566 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
567 * delayed item is pending. The plan is to keep CPU -> NODE
568 * mapping valid and stable across CPU on/offlines. Once that
569 * happens, this workaround can be removed.
570 */
571 if (unlikely(node == NUMA_NO_NODE))
572 return wq->dfl_pwq;
573
574 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
575 }
576
work_color_to_flags(int color)577 static unsigned int work_color_to_flags(int color)
578 {
579 return color << WORK_STRUCT_COLOR_SHIFT;
580 }
581
get_work_color(struct work_struct * work)582 static int get_work_color(struct work_struct *work)
583 {
584 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
585 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
586 }
587
work_next_color(int color)588 static int work_next_color(int color)
589 {
590 return (color + 1) % WORK_NR_COLORS;
591 }
592
593 /*
594 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
595 * contain the pointer to the queued pwq. Once execution starts, the flag
596 * is cleared and the high bits contain OFFQ flags and pool ID.
597 *
598 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
599 * and clear_work_data() can be used to set the pwq, pool or clear
600 * work->data. These functions should only be called while the work is
601 * owned - ie. while the PENDING bit is set.
602 *
603 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
604 * corresponding to a work. Pool is available once the work has been
605 * queued anywhere after initialization until it is sync canceled. pwq is
606 * available only while the work item is queued.
607 *
608 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
609 * canceled. While being canceled, a work item may have its PENDING set
610 * but stay off timer and worklist for arbitrarily long and nobody should
611 * try to steal the PENDING bit.
612 */
set_work_data(struct work_struct * work,unsigned long data,unsigned long flags)613 static inline void set_work_data(struct work_struct *work, unsigned long data,
614 unsigned long flags)
615 {
616 WARN_ON_ONCE(!work_pending(work));
617 atomic_long_set(&work->data, data | flags | work_static(work));
618 }
619
set_work_pwq(struct work_struct * work,struct pool_workqueue * pwq,unsigned long extra_flags)620 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
621 unsigned long extra_flags)
622 {
623 set_work_data(work, (unsigned long)pwq,
624 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
625 }
626
set_work_pool_and_keep_pending(struct work_struct * work,int pool_id)627 static void set_work_pool_and_keep_pending(struct work_struct *work,
628 int pool_id)
629 {
630 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
631 WORK_STRUCT_PENDING);
632 }
633
set_work_pool_and_clear_pending(struct work_struct * work,int pool_id)634 static void set_work_pool_and_clear_pending(struct work_struct *work,
635 int pool_id)
636 {
637 /*
638 * The following wmb is paired with the implied mb in
639 * test_and_set_bit(PENDING) and ensures all updates to @work made
640 * here are visible to and precede any updates by the next PENDING
641 * owner.
642 */
643 smp_wmb();
644 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
645 /*
646 * The following mb guarantees that previous clear of a PENDING bit
647 * will not be reordered with any speculative LOADS or STORES from
648 * work->current_func, which is executed afterwards. This possible
649 * reordering can lead to a missed execution on attempt to queue
650 * the same @work. E.g. consider this case:
651 *
652 * CPU#0 CPU#1
653 * ---------------------------- --------------------------------
654 *
655 * 1 STORE event_indicated
656 * 2 queue_work_on() {
657 * 3 test_and_set_bit(PENDING)
658 * 4 } set_..._and_clear_pending() {
659 * 5 set_work_data() # clear bit
660 * 6 smp_mb()
661 * 7 work->current_func() {
662 * 8 LOAD event_indicated
663 * }
664 *
665 * Without an explicit full barrier speculative LOAD on line 8 can
666 * be executed before CPU#0 does STORE on line 1. If that happens,
667 * CPU#0 observes the PENDING bit is still set and new execution of
668 * a @work is not queued in a hope, that CPU#1 will eventually
669 * finish the queued @work. Meanwhile CPU#1 does not see
670 * event_indicated is set, because speculative LOAD was executed
671 * before actual STORE.
672 */
673 smp_mb();
674 }
675
clear_work_data(struct work_struct * work)676 static void clear_work_data(struct work_struct *work)
677 {
678 smp_wmb(); /* see set_work_pool_and_clear_pending() */
679 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
680 }
681
work_struct_pwq(unsigned long data)682 static inline struct pool_workqueue *work_struct_pwq(unsigned long data)
683 {
684 return (struct pool_workqueue *)(data & WORK_STRUCT_WQ_DATA_MASK);
685 }
686
get_work_pwq(struct work_struct * work)687 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
688 {
689 unsigned long data = atomic_long_read(&work->data);
690
691 if (data & WORK_STRUCT_PWQ)
692 return work_struct_pwq(data);
693 else
694 return NULL;
695 }
696
697 /**
698 * get_work_pool - return the worker_pool a given work was associated with
699 * @work: the work item of interest
700 *
701 * Pools are created and destroyed under wq_pool_mutex, and allows read
702 * access under RCU read lock. As such, this function should be
703 * called under wq_pool_mutex or inside of a rcu_read_lock() region.
704 *
705 * All fields of the returned pool are accessible as long as the above
706 * mentioned locking is in effect. If the returned pool needs to be used
707 * beyond the critical section, the caller is responsible for ensuring the
708 * returned pool is and stays online.
709 *
710 * Return: The worker_pool @work was last associated with. %NULL if none.
711 */
get_work_pool(struct work_struct * work)712 static struct worker_pool *get_work_pool(struct work_struct *work)
713 {
714 unsigned long data = atomic_long_read(&work->data);
715 int pool_id;
716
717 assert_rcu_or_pool_mutex();
718
719 if (data & WORK_STRUCT_PWQ)
720 return work_struct_pwq(data)->pool;
721
722 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
723 if (pool_id == WORK_OFFQ_POOL_NONE)
724 return NULL;
725
726 return idr_find(&worker_pool_idr, pool_id);
727 }
728
729 /**
730 * get_work_pool_id - return the worker pool ID a given work is associated with
731 * @work: the work item of interest
732 *
733 * Return: The worker_pool ID @work was last associated with.
734 * %WORK_OFFQ_POOL_NONE if none.
735 */
get_work_pool_id(struct work_struct * work)736 static int get_work_pool_id(struct work_struct *work)
737 {
738 unsigned long data = atomic_long_read(&work->data);
739
740 if (data & WORK_STRUCT_PWQ)
741 return work_struct_pwq(data)->pool->id;
742
743 return data >> WORK_OFFQ_POOL_SHIFT;
744 }
745
mark_work_canceling(struct work_struct * work)746 static void mark_work_canceling(struct work_struct *work)
747 {
748 unsigned long pool_id = get_work_pool_id(work);
749
750 pool_id <<= WORK_OFFQ_POOL_SHIFT;
751 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
752 }
753
work_is_canceling(struct work_struct * work)754 static bool work_is_canceling(struct work_struct *work)
755 {
756 unsigned long data = atomic_long_read(&work->data);
757
758 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
759 }
760
761 /*
762 * Policy functions. These define the policies on how the global worker
763 * pools are managed. Unless noted otherwise, these functions assume that
764 * they're being called with pool->lock held.
765 */
766
__need_more_worker(struct worker_pool * pool)767 static bool __need_more_worker(struct worker_pool *pool)
768 {
769 return !atomic_read(&pool->nr_running);
770 }
771
772 /*
773 * Need to wake up a worker? Called from anything but currently
774 * running workers.
775 *
776 * Note that, because unbound workers never contribute to nr_running, this
777 * function will always return %true for unbound pools as long as the
778 * worklist isn't empty.
779 */
need_more_worker(struct worker_pool * pool)780 static bool need_more_worker(struct worker_pool *pool)
781 {
782 return !list_empty(&pool->worklist) && __need_more_worker(pool);
783 }
784
785 /* Can I start working? Called from busy but !running workers. */
may_start_working(struct worker_pool * pool)786 static bool may_start_working(struct worker_pool *pool)
787 {
788 return pool->nr_idle;
789 }
790
791 /* Do I need to keep working? Called from currently running workers. */
keep_working(struct worker_pool * pool)792 static bool keep_working(struct worker_pool *pool)
793 {
794 return !list_empty(&pool->worklist) &&
795 atomic_read(&pool->nr_running) <= 1;
796 }
797
798 /* Do we need a new worker? Called from manager. */
need_to_create_worker(struct worker_pool * pool)799 static bool need_to_create_worker(struct worker_pool *pool)
800 {
801 return need_more_worker(pool) && !may_start_working(pool);
802 }
803
804 /* Do we have too many workers and should some go away? */
too_many_workers(struct worker_pool * pool)805 static bool too_many_workers(struct worker_pool *pool)
806 {
807 bool managing = pool->flags & POOL_MANAGER_ACTIVE;
808 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
809 int nr_busy = pool->nr_workers - nr_idle;
810
811 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
812 }
813
814 /*
815 * Wake up functions.
816 */
817
818 /* Return the first idle worker. Safe with preemption disabled */
first_idle_worker(struct worker_pool * pool)819 static struct worker *first_idle_worker(struct worker_pool *pool)
820 {
821 if (unlikely(list_empty(&pool->idle_list)))
822 return NULL;
823
824 return list_first_entry(&pool->idle_list, struct worker, entry);
825 }
826
827 /**
828 * wake_up_worker - wake up an idle worker
829 * @pool: worker pool to wake worker from
830 *
831 * Wake up the first idle worker of @pool.
832 *
833 * CONTEXT:
834 * raw_spin_lock_irq(pool->lock).
835 */
wake_up_worker(struct worker_pool * pool)836 static void wake_up_worker(struct worker_pool *pool)
837 {
838 struct worker *worker = first_idle_worker(pool);
839
840 if (likely(worker))
841 wake_up_process(worker->task);
842 }
843
844 /**
845 * wq_worker_running - a worker is running again
846 * @task: task waking up
847 *
848 * This function is called when a worker returns from schedule()
849 */
wq_worker_running(struct task_struct * task)850 void wq_worker_running(struct task_struct *task)
851 {
852 struct worker *worker = kthread_data(task);
853
854 if (!worker->sleeping)
855 return;
856
857 /*
858 * If preempted by unbind_workers() between the WORKER_NOT_RUNNING check
859 * and the nr_running increment below, we may ruin the nr_running reset
860 * and leave with an unexpected pool->nr_running == 1 on the newly unbound
861 * pool. Protect against such race.
862 */
863 preempt_disable();
864 if (!(worker->flags & WORKER_NOT_RUNNING))
865 atomic_inc(&worker->pool->nr_running);
866 preempt_enable();
867 worker->sleeping = 0;
868 }
869
870 /**
871 * wq_worker_sleeping - a worker is going to sleep
872 * @task: task going to sleep
873 *
874 * This function is called from schedule() when a busy worker is
875 * going to sleep. Preemption needs to be disabled to protect ->sleeping
876 * assignment.
877 */
wq_worker_sleeping(struct task_struct * task)878 void wq_worker_sleeping(struct task_struct *task)
879 {
880 struct worker *next, *worker = kthread_data(task);
881 struct worker_pool *pool;
882
883 /*
884 * Rescuers, which may not have all the fields set up like normal
885 * workers, also reach here, let's not access anything before
886 * checking NOT_RUNNING.
887 */
888 if (worker->flags & WORKER_NOT_RUNNING)
889 return;
890
891 pool = worker->pool;
892
893 /* Return if preempted before wq_worker_running() was reached */
894 if (worker->sleeping)
895 return;
896
897 worker->sleeping = 1;
898 raw_spin_lock_irq(&pool->lock);
899
900 /*
901 * The counterpart of the following dec_and_test, implied mb,
902 * worklist not empty test sequence is in insert_work().
903 * Please read comment there.
904 *
905 * NOT_RUNNING is clear. This means that we're bound to and
906 * running on the local cpu w/ rq lock held and preemption
907 * disabled, which in turn means that none else could be
908 * manipulating idle_list, so dereferencing idle_list without pool
909 * lock is safe.
910 */
911 if (atomic_dec_and_test(&pool->nr_running) &&
912 !list_empty(&pool->worklist)) {
913 next = first_idle_worker(pool);
914 if (next)
915 wake_up_process(next->task);
916 }
917 raw_spin_unlock_irq(&pool->lock);
918 }
919
920 /**
921 * wq_worker_last_func - retrieve worker's last work function
922 * @task: Task to retrieve last work function of.
923 *
924 * Determine the last function a worker executed. This is called from
925 * the scheduler to get a worker's last known identity.
926 *
927 * CONTEXT:
928 * raw_spin_lock_irq(rq->lock)
929 *
930 * This function is called during schedule() when a kworker is going
931 * to sleep. It's used by psi to identify aggregation workers during
932 * dequeuing, to allow periodic aggregation to shut-off when that
933 * worker is the last task in the system or cgroup to go to sleep.
934 *
935 * As this function doesn't involve any workqueue-related locking, it
936 * only returns stable values when called from inside the scheduler's
937 * queuing and dequeuing paths, when @task, which must be a kworker,
938 * is guaranteed to not be processing any works.
939 *
940 * Return:
941 * The last work function %current executed as a worker, NULL if it
942 * hasn't executed any work yet.
943 */
wq_worker_last_func(struct task_struct * task)944 work_func_t wq_worker_last_func(struct task_struct *task)
945 {
946 struct worker *worker = kthread_data(task);
947
948 return worker->last_func;
949 }
950
951 /**
952 * worker_set_flags - set worker flags and adjust nr_running accordingly
953 * @worker: self
954 * @flags: flags to set
955 *
956 * Set @flags in @worker->flags and adjust nr_running accordingly.
957 *
958 * CONTEXT:
959 * raw_spin_lock_irq(pool->lock)
960 */
worker_set_flags(struct worker * worker,unsigned int flags)961 static inline void worker_set_flags(struct worker *worker, unsigned int flags)
962 {
963 struct worker_pool *pool = worker->pool;
964
965 WARN_ON_ONCE(worker->task != current);
966
967 /* If transitioning into NOT_RUNNING, adjust nr_running. */
968 if ((flags & WORKER_NOT_RUNNING) &&
969 !(worker->flags & WORKER_NOT_RUNNING)) {
970 atomic_dec(&pool->nr_running);
971 }
972
973 worker->flags |= flags;
974 }
975
976 /**
977 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
978 * @worker: self
979 * @flags: flags to clear
980 *
981 * Clear @flags in @worker->flags and adjust nr_running accordingly.
982 *
983 * CONTEXT:
984 * raw_spin_lock_irq(pool->lock)
985 */
worker_clr_flags(struct worker * worker,unsigned int flags)986 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
987 {
988 struct worker_pool *pool = worker->pool;
989 unsigned int oflags = worker->flags;
990
991 WARN_ON_ONCE(worker->task != current);
992
993 worker->flags &= ~flags;
994
995 /*
996 * If transitioning out of NOT_RUNNING, increment nr_running. Note
997 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
998 * of multiple flags, not a single flag.
999 */
1000 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
1001 if (!(worker->flags & WORKER_NOT_RUNNING))
1002 atomic_inc(&pool->nr_running);
1003 }
1004
1005 /**
1006 * find_worker_executing_work - find worker which is executing a work
1007 * @pool: pool of interest
1008 * @work: work to find worker for
1009 *
1010 * Find a worker which is executing @work on @pool by searching
1011 * @pool->busy_hash which is keyed by the address of @work. For a worker
1012 * to match, its current execution should match the address of @work and
1013 * its work function. This is to avoid unwanted dependency between
1014 * unrelated work executions through a work item being recycled while still
1015 * being executed.
1016 *
1017 * This is a bit tricky. A work item may be freed once its execution
1018 * starts and nothing prevents the freed area from being recycled for
1019 * another work item. If the same work item address ends up being reused
1020 * before the original execution finishes, workqueue will identify the
1021 * recycled work item as currently executing and make it wait until the
1022 * current execution finishes, introducing an unwanted dependency.
1023 *
1024 * This function checks the work item address and work function to avoid
1025 * false positives. Note that this isn't complete as one may construct a
1026 * work function which can introduce dependency onto itself through a
1027 * recycled work item. Well, if somebody wants to shoot oneself in the
1028 * foot that badly, there's only so much we can do, and if such deadlock
1029 * actually occurs, it should be easy to locate the culprit work function.
1030 *
1031 * CONTEXT:
1032 * raw_spin_lock_irq(pool->lock).
1033 *
1034 * Return:
1035 * Pointer to worker which is executing @work if found, %NULL
1036 * otherwise.
1037 */
find_worker_executing_work(struct worker_pool * pool,struct work_struct * work)1038 static struct worker *find_worker_executing_work(struct worker_pool *pool,
1039 struct work_struct *work)
1040 {
1041 struct worker *worker;
1042
1043 hash_for_each_possible(pool->busy_hash, worker, hentry,
1044 (unsigned long)work)
1045 if (worker->current_work == work &&
1046 worker->current_func == work->func)
1047 return worker;
1048
1049 return NULL;
1050 }
1051
1052 /**
1053 * move_linked_works - move linked works to a list
1054 * @work: start of series of works to be scheduled
1055 * @head: target list to append @work to
1056 * @nextp: out parameter for nested worklist walking
1057 *
1058 * Schedule linked works starting from @work to @head. Work series to
1059 * be scheduled starts at @work and includes any consecutive work with
1060 * WORK_STRUCT_LINKED set in its predecessor.
1061 *
1062 * If @nextp is not NULL, it's updated to point to the next work of
1063 * the last scheduled work. This allows move_linked_works() to be
1064 * nested inside outer list_for_each_entry_safe().
1065 *
1066 * CONTEXT:
1067 * raw_spin_lock_irq(pool->lock).
1068 */
move_linked_works(struct work_struct * work,struct list_head * head,struct work_struct ** nextp)1069 static void move_linked_works(struct work_struct *work, struct list_head *head,
1070 struct work_struct **nextp)
1071 {
1072 struct work_struct *n;
1073
1074 /*
1075 * Linked worklist will always end before the end of the list,
1076 * use NULL for list head.
1077 */
1078 list_for_each_entry_safe_from(work, n, NULL, entry) {
1079 list_move_tail(&work->entry, head);
1080 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1081 break;
1082 }
1083
1084 /*
1085 * If we're already inside safe list traversal and have moved
1086 * multiple works to the scheduled queue, the next position
1087 * needs to be updated.
1088 */
1089 if (nextp)
1090 *nextp = n;
1091 }
1092
1093 /**
1094 * get_pwq - get an extra reference on the specified pool_workqueue
1095 * @pwq: pool_workqueue to get
1096 *
1097 * Obtain an extra reference on @pwq. The caller should guarantee that
1098 * @pwq has positive refcnt and be holding the matching pool->lock.
1099 */
get_pwq(struct pool_workqueue * pwq)1100 static void get_pwq(struct pool_workqueue *pwq)
1101 {
1102 lockdep_assert_held(&pwq->pool->lock);
1103 WARN_ON_ONCE(pwq->refcnt <= 0);
1104 pwq->refcnt++;
1105 }
1106
1107 /**
1108 * put_pwq - put a pool_workqueue reference
1109 * @pwq: pool_workqueue to put
1110 *
1111 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1112 * destruction. The caller should be holding the matching pool->lock.
1113 */
put_pwq(struct pool_workqueue * pwq)1114 static void put_pwq(struct pool_workqueue *pwq)
1115 {
1116 lockdep_assert_held(&pwq->pool->lock);
1117 if (likely(--pwq->refcnt))
1118 return;
1119 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1120 return;
1121 /*
1122 * @pwq can't be released under pool->lock, bounce to
1123 * pwq_unbound_release_workfn(). This never recurses on the same
1124 * pool->lock as this path is taken only for unbound workqueues and
1125 * the release work item is scheduled on a per-cpu workqueue. To
1126 * avoid lockdep warning, unbound pool->locks are given lockdep
1127 * subclass of 1 in get_unbound_pool().
1128 */
1129 schedule_work(&pwq->unbound_release_work);
1130 }
1131
1132 /**
1133 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1134 * @pwq: pool_workqueue to put (can be %NULL)
1135 *
1136 * put_pwq() with locking. This function also allows %NULL @pwq.
1137 */
put_pwq_unlocked(struct pool_workqueue * pwq)1138 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1139 {
1140 if (pwq) {
1141 /*
1142 * As both pwqs and pools are RCU protected, the
1143 * following lock operations are safe.
1144 */
1145 raw_spin_lock_irq(&pwq->pool->lock);
1146 put_pwq(pwq);
1147 raw_spin_unlock_irq(&pwq->pool->lock);
1148 }
1149 }
1150
pwq_activate_inactive_work(struct work_struct * work)1151 static void pwq_activate_inactive_work(struct work_struct *work)
1152 {
1153 struct pool_workqueue *pwq = get_work_pwq(work);
1154
1155 trace_workqueue_activate_work(work);
1156 if (list_empty(&pwq->pool->worklist))
1157 pwq->pool->watchdog_ts = jiffies;
1158 move_linked_works(work, &pwq->pool->worklist, NULL);
1159 __clear_bit(WORK_STRUCT_INACTIVE_BIT, work_data_bits(work));
1160 pwq->nr_active++;
1161 }
1162
pwq_activate_first_inactive(struct pool_workqueue * pwq)1163 static void pwq_activate_first_inactive(struct pool_workqueue *pwq)
1164 {
1165 struct work_struct *work = list_first_entry(&pwq->inactive_works,
1166 struct work_struct, entry);
1167
1168 pwq_activate_inactive_work(work);
1169 }
1170
1171 /**
1172 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1173 * @pwq: pwq of interest
1174 * @color: color of work which left the queue
1175 *
1176 * A work either has completed or is removed from pending queue,
1177 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1178 *
1179 * CONTEXT:
1180 * raw_spin_lock_irq(pool->lock).
1181 */
pwq_dec_nr_in_flight(struct pool_workqueue * pwq,int color)1182 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1183 {
1184 /* uncolored work items don't participate in flushing or nr_active */
1185 if (color == WORK_NO_COLOR)
1186 goto out_put;
1187
1188 pwq->nr_in_flight[color]--;
1189
1190 pwq->nr_active--;
1191 if (!list_empty(&pwq->inactive_works)) {
1192 /* one down, submit an inactive one */
1193 if (pwq->nr_active < pwq->max_active)
1194 pwq_activate_first_inactive(pwq);
1195 }
1196
1197 /* is flush in progress and are we at the flushing tip? */
1198 if (likely(pwq->flush_color != color))
1199 goto out_put;
1200
1201 /* are there still in-flight works? */
1202 if (pwq->nr_in_flight[color])
1203 goto out_put;
1204
1205 /* this pwq is done, clear flush_color */
1206 pwq->flush_color = -1;
1207
1208 /*
1209 * If this was the last pwq, wake up the first flusher. It
1210 * will handle the rest.
1211 */
1212 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1213 complete(&pwq->wq->first_flusher->done);
1214 out_put:
1215 put_pwq(pwq);
1216 }
1217
1218 /**
1219 * try_to_grab_pending - steal work item from worklist and disable irq
1220 * @work: work item to steal
1221 * @is_dwork: @work is a delayed_work
1222 * @flags: place to store irq state
1223 *
1224 * Try to grab PENDING bit of @work. This function can handle @work in any
1225 * stable state - idle, on timer or on worklist.
1226 *
1227 * Return:
1228 *
1229 * ======== ================================================================
1230 * 1 if @work was pending and we successfully stole PENDING
1231 * 0 if @work was idle and we claimed PENDING
1232 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1233 * -ENOENT if someone else is canceling @work, this state may persist
1234 * for arbitrarily long
1235 * ======== ================================================================
1236 *
1237 * Note:
1238 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1239 * interrupted while holding PENDING and @work off queue, irq must be
1240 * disabled on entry. This, combined with delayed_work->timer being
1241 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1242 *
1243 * On successful return, >= 0, irq is disabled and the caller is
1244 * responsible for releasing it using local_irq_restore(*@flags).
1245 *
1246 * This function is safe to call from any context including IRQ handler.
1247 */
try_to_grab_pending(struct work_struct * work,bool is_dwork,unsigned long * flags)1248 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1249 unsigned long *flags)
1250 {
1251 struct worker_pool *pool;
1252 struct pool_workqueue *pwq;
1253
1254 local_irq_save(*flags);
1255
1256 /* try to steal the timer if it exists */
1257 if (is_dwork) {
1258 struct delayed_work *dwork = to_delayed_work(work);
1259
1260 /*
1261 * dwork->timer is irqsafe. If del_timer() fails, it's
1262 * guaranteed that the timer is not queued anywhere and not
1263 * running on the local CPU.
1264 */
1265 if (likely(del_timer(&dwork->timer)))
1266 return 1;
1267 }
1268
1269 /* try to claim PENDING the normal way */
1270 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1271 return 0;
1272
1273 rcu_read_lock();
1274 /*
1275 * The queueing is in progress, or it is already queued. Try to
1276 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1277 */
1278 pool = get_work_pool(work);
1279 if (!pool)
1280 goto fail;
1281
1282 raw_spin_lock(&pool->lock);
1283 /*
1284 * work->data is guaranteed to point to pwq only while the work
1285 * item is queued on pwq->wq, and both updating work->data to point
1286 * to pwq on queueing and to pool on dequeueing are done under
1287 * pwq->pool->lock. This in turn guarantees that, if work->data
1288 * points to pwq which is associated with a locked pool, the work
1289 * item is currently queued on that pool.
1290 */
1291 pwq = get_work_pwq(work);
1292 if (pwq && pwq->pool == pool) {
1293 debug_work_deactivate(work);
1294
1295 /*
1296 * An inactive work item cannot be grabbed directly because
1297 * it might have linked NO_COLOR work items which, if left
1298 * on the inactive_works list, will confuse pwq->nr_active
1299 * management later on and cause stall. Make sure the work
1300 * item is activated before grabbing.
1301 */
1302 if (*work_data_bits(work) & WORK_STRUCT_INACTIVE)
1303 pwq_activate_inactive_work(work);
1304
1305 list_del_init(&work->entry);
1306 pwq_dec_nr_in_flight(pwq, get_work_color(work));
1307
1308 /* work->data points to pwq iff queued, point to pool */
1309 set_work_pool_and_keep_pending(work, pool->id);
1310
1311 raw_spin_unlock(&pool->lock);
1312 rcu_read_unlock();
1313 return 1;
1314 }
1315 raw_spin_unlock(&pool->lock);
1316 fail:
1317 rcu_read_unlock();
1318 local_irq_restore(*flags);
1319 if (work_is_canceling(work))
1320 return -ENOENT;
1321 cpu_relax();
1322 return -EAGAIN;
1323 }
1324
1325 /**
1326 * insert_work - insert a work into a pool
1327 * @pwq: pwq @work belongs to
1328 * @work: work to insert
1329 * @head: insertion point
1330 * @extra_flags: extra WORK_STRUCT_* flags to set
1331 *
1332 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1333 * work_struct flags.
1334 *
1335 * CONTEXT:
1336 * raw_spin_lock_irq(pool->lock).
1337 */
insert_work(struct pool_workqueue * pwq,struct work_struct * work,struct list_head * head,unsigned int extra_flags)1338 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1339 struct list_head *head, unsigned int extra_flags)
1340 {
1341 struct worker_pool *pool = pwq->pool;
1342
1343 /* we own @work, set data and link */
1344 set_work_pwq(work, pwq, extra_flags);
1345 list_add_tail(&work->entry, head);
1346 get_pwq(pwq);
1347
1348 /*
1349 * Ensure either wq_worker_sleeping() sees the above
1350 * list_add_tail() or we see zero nr_running to avoid workers lying
1351 * around lazily while there are works to be processed.
1352 */
1353 smp_mb();
1354
1355 if (__need_more_worker(pool))
1356 wake_up_worker(pool);
1357 }
1358
1359 /*
1360 * Test whether @work is being queued from another work executing on the
1361 * same workqueue.
1362 */
is_chained_work(struct workqueue_struct * wq)1363 static bool is_chained_work(struct workqueue_struct *wq)
1364 {
1365 struct worker *worker;
1366
1367 worker = current_wq_worker();
1368 /*
1369 * Return %true iff I'm a worker executing a work item on @wq. If
1370 * I'm @worker, it's safe to dereference it without locking.
1371 */
1372 return worker && worker->current_pwq->wq == wq;
1373 }
1374
1375 /*
1376 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1377 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1378 * avoid perturbing sensitive tasks.
1379 */
wq_select_unbound_cpu(int cpu)1380 static int wq_select_unbound_cpu(int cpu)
1381 {
1382 static bool printed_dbg_warning;
1383 int new_cpu;
1384
1385 if (likely(!wq_debug_force_rr_cpu)) {
1386 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1387 return cpu;
1388 } else if (!printed_dbg_warning) {
1389 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1390 printed_dbg_warning = true;
1391 }
1392
1393 if (cpumask_empty(wq_unbound_cpumask))
1394 return cpu;
1395
1396 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1397 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1398 if (unlikely(new_cpu >= nr_cpu_ids)) {
1399 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1400 if (unlikely(new_cpu >= nr_cpu_ids))
1401 return cpu;
1402 }
1403 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1404
1405 return new_cpu;
1406 }
1407
__queue_work(int cpu,struct workqueue_struct * wq,struct work_struct * work)1408 static void __queue_work(int cpu, struct workqueue_struct *wq,
1409 struct work_struct *work)
1410 {
1411 struct pool_workqueue *pwq;
1412 struct worker_pool *last_pool;
1413 struct list_head *worklist;
1414 unsigned int work_flags;
1415 unsigned int req_cpu = cpu;
1416
1417 /*
1418 * While a work item is PENDING && off queue, a task trying to
1419 * steal the PENDING will busy-loop waiting for it to either get
1420 * queued or lose PENDING. Grabbing PENDING and queueing should
1421 * happen with IRQ disabled.
1422 */
1423 lockdep_assert_irqs_disabled();
1424
1425
1426 /* if draining, only works from the same workqueue are allowed */
1427 if (unlikely(wq->flags & __WQ_DRAINING) &&
1428 WARN_ON_ONCE(!is_chained_work(wq)))
1429 return;
1430 rcu_read_lock();
1431 retry:
1432 /* pwq which will be used unless @work is executing elsewhere */
1433 if (wq->flags & WQ_UNBOUND) {
1434 if (req_cpu == WORK_CPU_UNBOUND)
1435 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
1436 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1437 } else {
1438 if (req_cpu == WORK_CPU_UNBOUND)
1439 cpu = raw_smp_processor_id();
1440 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1441 }
1442
1443 /*
1444 * If @work was previously on a different pool, it might still be
1445 * running there, in which case the work needs to be queued on that
1446 * pool to guarantee non-reentrancy.
1447 */
1448 last_pool = get_work_pool(work);
1449 if (last_pool && last_pool != pwq->pool) {
1450 struct worker *worker;
1451
1452 raw_spin_lock(&last_pool->lock);
1453
1454 worker = find_worker_executing_work(last_pool, work);
1455
1456 if (worker && worker->current_pwq->wq == wq) {
1457 pwq = worker->current_pwq;
1458 } else {
1459 /* meh... not running there, queue here */
1460 raw_spin_unlock(&last_pool->lock);
1461 raw_spin_lock(&pwq->pool->lock);
1462 }
1463 } else {
1464 raw_spin_lock(&pwq->pool->lock);
1465 }
1466
1467 /*
1468 * pwq is determined and locked. For unbound pools, we could have
1469 * raced with pwq release and it could already be dead. If its
1470 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1471 * without another pwq replacing it in the numa_pwq_tbl or while
1472 * work items are executing on it, so the retrying is guaranteed to
1473 * make forward-progress.
1474 */
1475 if (unlikely(!pwq->refcnt)) {
1476 if (wq->flags & WQ_UNBOUND) {
1477 raw_spin_unlock(&pwq->pool->lock);
1478 cpu_relax();
1479 goto retry;
1480 }
1481 /* oops */
1482 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1483 wq->name, cpu);
1484 }
1485
1486 /* pwq determined, queue */
1487 trace_workqueue_queue_work(req_cpu, pwq, work);
1488
1489 if (WARN_ON(!list_empty(&work->entry)))
1490 goto out;
1491
1492 pwq->nr_in_flight[pwq->work_color]++;
1493 work_flags = work_color_to_flags(pwq->work_color);
1494
1495 if (likely(pwq->nr_active < pwq->max_active)) {
1496 trace_workqueue_activate_work(work);
1497 pwq->nr_active++;
1498 worklist = &pwq->pool->worklist;
1499 if (list_empty(worklist))
1500 pwq->pool->watchdog_ts = jiffies;
1501 } else {
1502 work_flags |= WORK_STRUCT_INACTIVE;
1503 worklist = &pwq->inactive_works;
1504 }
1505
1506 debug_work_activate(work);
1507 insert_work(pwq, work, worklist, work_flags);
1508
1509 out:
1510 raw_spin_unlock(&pwq->pool->lock);
1511 rcu_read_unlock();
1512 }
1513
1514 /**
1515 * queue_work_on - queue work on specific cpu
1516 * @cpu: CPU number to execute work on
1517 * @wq: workqueue to use
1518 * @work: work to queue
1519 *
1520 * We queue the work to a specific CPU, the caller must ensure it
1521 * can't go away.
1522 *
1523 * Return: %false if @work was already on a queue, %true otherwise.
1524 */
queue_work_on(int cpu,struct workqueue_struct * wq,struct work_struct * work)1525 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1526 struct work_struct *work)
1527 {
1528 bool ret = false;
1529 unsigned long flags;
1530
1531 local_irq_save(flags);
1532
1533 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1534 __queue_work(cpu, wq, work);
1535 ret = true;
1536 }
1537
1538 local_irq_restore(flags);
1539 return ret;
1540 }
1541 EXPORT_SYMBOL(queue_work_on);
1542
1543 /**
1544 * workqueue_select_cpu_near - Select a CPU based on NUMA node
1545 * @node: NUMA node ID that we want to select a CPU from
1546 *
1547 * This function will attempt to find a "random" cpu available on a given
1548 * node. If there are no CPUs available on the given node it will return
1549 * WORK_CPU_UNBOUND indicating that we should just schedule to any
1550 * available CPU if we need to schedule this work.
1551 */
workqueue_select_cpu_near(int node)1552 static int workqueue_select_cpu_near(int node)
1553 {
1554 int cpu;
1555
1556 /* No point in doing this if NUMA isn't enabled for workqueues */
1557 if (!wq_numa_enabled)
1558 return WORK_CPU_UNBOUND;
1559
1560 /* Delay binding to CPU if node is not valid or online */
1561 if (node < 0 || node >= MAX_NUMNODES || !node_online(node))
1562 return WORK_CPU_UNBOUND;
1563
1564 /* Use local node/cpu if we are already there */
1565 cpu = raw_smp_processor_id();
1566 if (node == cpu_to_node(cpu))
1567 return cpu;
1568
1569 /* Use "random" otherwise know as "first" online CPU of node */
1570 cpu = cpumask_any_and(cpumask_of_node(node), cpu_online_mask);
1571
1572 /* If CPU is valid return that, otherwise just defer */
1573 return cpu < nr_cpu_ids ? cpu : WORK_CPU_UNBOUND;
1574 }
1575
1576 /**
1577 * queue_work_node - queue work on a "random" cpu for a given NUMA node
1578 * @node: NUMA node that we are targeting the work for
1579 * @wq: workqueue to use
1580 * @work: work to queue
1581 *
1582 * We queue the work to a "random" CPU within a given NUMA node. The basic
1583 * idea here is to provide a way to somehow associate work with a given
1584 * NUMA node.
1585 *
1586 * This function will only make a best effort attempt at getting this onto
1587 * the right NUMA node. If no node is requested or the requested node is
1588 * offline then we just fall back to standard queue_work behavior.
1589 *
1590 * Currently the "random" CPU ends up being the first available CPU in the
1591 * intersection of cpu_online_mask and the cpumask of the node, unless we
1592 * are running on the node. In that case we just use the current CPU.
1593 *
1594 * Return: %false if @work was already on a queue, %true otherwise.
1595 */
queue_work_node(int node,struct workqueue_struct * wq,struct work_struct * work)1596 bool queue_work_node(int node, struct workqueue_struct *wq,
1597 struct work_struct *work)
1598 {
1599 unsigned long flags;
1600 bool ret = false;
1601
1602 /*
1603 * This current implementation is specific to unbound workqueues.
1604 * Specifically we only return the first available CPU for a given
1605 * node instead of cycling through individual CPUs within the node.
1606 *
1607 * If this is used with a per-cpu workqueue then the logic in
1608 * workqueue_select_cpu_near would need to be updated to allow for
1609 * some round robin type logic.
1610 */
1611 WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND));
1612
1613 local_irq_save(flags);
1614
1615 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1616 int cpu = workqueue_select_cpu_near(node);
1617
1618 __queue_work(cpu, wq, work);
1619 ret = true;
1620 }
1621
1622 local_irq_restore(flags);
1623 return ret;
1624 }
1625 EXPORT_SYMBOL_GPL(queue_work_node);
1626
delayed_work_timer_fn(struct timer_list * t)1627 void delayed_work_timer_fn(struct timer_list *t)
1628 {
1629 struct delayed_work *dwork = from_timer(dwork, t, timer);
1630
1631 /* should have been called from irqsafe timer with irq already off */
1632 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1633 }
1634 EXPORT_SYMBOL(delayed_work_timer_fn);
1635
__queue_delayed_work(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1636 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1637 struct delayed_work *dwork, unsigned long delay)
1638 {
1639 struct timer_list *timer = &dwork->timer;
1640 struct work_struct *work = &dwork->work;
1641
1642 WARN_ON_ONCE(!wq);
1643 WARN_ON_FUNCTION_MISMATCH(timer->function, delayed_work_timer_fn);
1644 WARN_ON_ONCE(timer_pending(timer));
1645 WARN_ON_ONCE(!list_empty(&work->entry));
1646
1647 /*
1648 * If @delay is 0, queue @dwork->work immediately. This is for
1649 * both optimization and correctness. The earliest @timer can
1650 * expire is on the closest next tick and delayed_work users depend
1651 * on that there's no such delay when @delay is 0.
1652 */
1653 if (!delay) {
1654 __queue_work(cpu, wq, &dwork->work);
1655 return;
1656 }
1657
1658 dwork->wq = wq;
1659 dwork->cpu = cpu;
1660 timer->expires = jiffies + delay;
1661
1662 if (unlikely(cpu != WORK_CPU_UNBOUND))
1663 add_timer_on(timer, cpu);
1664 else
1665 add_timer(timer);
1666 }
1667
1668 /**
1669 * queue_delayed_work_on - queue work on specific CPU after delay
1670 * @cpu: CPU number to execute work on
1671 * @wq: workqueue to use
1672 * @dwork: work to queue
1673 * @delay: number of jiffies to wait before queueing
1674 *
1675 * Return: %false if @work was already on a queue, %true otherwise. If
1676 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1677 * execution.
1678 */
queue_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1679 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1680 struct delayed_work *dwork, unsigned long delay)
1681 {
1682 struct work_struct *work = &dwork->work;
1683 bool ret = false;
1684 unsigned long flags;
1685
1686 /* read the comment in __queue_work() */
1687 local_irq_save(flags);
1688
1689 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1690 __queue_delayed_work(cpu, wq, dwork, delay);
1691 ret = true;
1692 }
1693
1694 local_irq_restore(flags);
1695 return ret;
1696 }
1697 EXPORT_SYMBOL(queue_delayed_work_on);
1698
1699 /**
1700 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1701 * @cpu: CPU number to execute work on
1702 * @wq: workqueue to use
1703 * @dwork: work to queue
1704 * @delay: number of jiffies to wait before queueing
1705 *
1706 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1707 * modify @dwork's timer so that it expires after @delay. If @delay is
1708 * zero, @work is guaranteed to be scheduled immediately regardless of its
1709 * current state.
1710 *
1711 * Return: %false if @dwork was idle and queued, %true if @dwork was
1712 * pending and its timer was modified.
1713 *
1714 * This function is safe to call from any context including IRQ handler.
1715 * See try_to_grab_pending() for details.
1716 */
mod_delayed_work_on(int cpu,struct workqueue_struct * wq,struct delayed_work * dwork,unsigned long delay)1717 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1718 struct delayed_work *dwork, unsigned long delay)
1719 {
1720 unsigned long flags;
1721 int ret;
1722
1723 do {
1724 ret = try_to_grab_pending(&dwork->work, true, &flags);
1725 } while (unlikely(ret == -EAGAIN));
1726
1727 if (likely(ret >= 0)) {
1728 __queue_delayed_work(cpu, wq, dwork, delay);
1729 local_irq_restore(flags);
1730 }
1731
1732 /* -ENOENT from try_to_grab_pending() becomes %true */
1733 return ret;
1734 }
1735 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1736
rcu_work_rcufn(struct rcu_head * rcu)1737 static void rcu_work_rcufn(struct rcu_head *rcu)
1738 {
1739 struct rcu_work *rwork = container_of(rcu, struct rcu_work, rcu);
1740
1741 /* read the comment in __queue_work() */
1742 local_irq_disable();
1743 __queue_work(WORK_CPU_UNBOUND, rwork->wq, &rwork->work);
1744 local_irq_enable();
1745 }
1746
1747 /**
1748 * queue_rcu_work - queue work after a RCU grace period
1749 * @wq: workqueue to use
1750 * @rwork: work to queue
1751 *
1752 * Return: %false if @rwork was already pending, %true otherwise. Note
1753 * that a full RCU grace period is guaranteed only after a %true return.
1754 * While @rwork is guaranteed to be executed after a %false return, the
1755 * execution may happen before a full RCU grace period has passed.
1756 */
queue_rcu_work(struct workqueue_struct * wq,struct rcu_work * rwork)1757 bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
1758 {
1759 struct work_struct *work = &rwork->work;
1760
1761 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1762 rwork->wq = wq;
1763 call_rcu(&rwork->rcu, rcu_work_rcufn);
1764 return true;
1765 }
1766
1767 return false;
1768 }
1769 EXPORT_SYMBOL(queue_rcu_work);
1770
1771 /**
1772 * worker_enter_idle - enter idle state
1773 * @worker: worker which is entering idle state
1774 *
1775 * @worker is entering idle state. Update stats and idle timer if
1776 * necessary.
1777 *
1778 * LOCKING:
1779 * raw_spin_lock_irq(pool->lock).
1780 */
worker_enter_idle(struct worker * worker)1781 static void worker_enter_idle(struct worker *worker)
1782 {
1783 struct worker_pool *pool = worker->pool;
1784
1785 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1786 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1787 (worker->hentry.next || worker->hentry.pprev)))
1788 return;
1789
1790 /* can't use worker_set_flags(), also called from create_worker() */
1791 worker->flags |= WORKER_IDLE;
1792 pool->nr_idle++;
1793 worker->last_active = jiffies;
1794
1795 /* idle_list is LIFO */
1796 list_add(&worker->entry, &pool->idle_list);
1797
1798 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1799 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1800
1801 /*
1802 * Sanity check nr_running. Because unbind_workers() releases
1803 * pool->lock between setting %WORKER_UNBOUND and zapping
1804 * nr_running, the warning may trigger spuriously. Check iff
1805 * unbind is not in progress.
1806 */
1807 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1808 pool->nr_workers == pool->nr_idle &&
1809 atomic_read(&pool->nr_running));
1810 }
1811
1812 /**
1813 * worker_leave_idle - leave idle state
1814 * @worker: worker which is leaving idle state
1815 *
1816 * @worker is leaving idle state. Update stats.
1817 *
1818 * LOCKING:
1819 * raw_spin_lock_irq(pool->lock).
1820 */
worker_leave_idle(struct worker * worker)1821 static void worker_leave_idle(struct worker *worker)
1822 {
1823 struct worker_pool *pool = worker->pool;
1824
1825 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1826 return;
1827 worker_clr_flags(worker, WORKER_IDLE);
1828 pool->nr_idle--;
1829 list_del_init(&worker->entry);
1830 }
1831
alloc_worker(int node)1832 static struct worker *alloc_worker(int node)
1833 {
1834 struct worker *worker;
1835
1836 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
1837 if (worker) {
1838 INIT_LIST_HEAD(&worker->entry);
1839 INIT_LIST_HEAD(&worker->scheduled);
1840 INIT_LIST_HEAD(&worker->node);
1841 /* on creation a worker is in !idle && prep state */
1842 worker->flags = WORKER_PREP;
1843 }
1844 return worker;
1845 }
1846
1847 /**
1848 * worker_attach_to_pool() - attach a worker to a pool
1849 * @worker: worker to be attached
1850 * @pool: the target pool
1851 *
1852 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1853 * cpu-binding of @worker are kept coordinated with the pool across
1854 * cpu-[un]hotplugs.
1855 */
worker_attach_to_pool(struct worker * worker,struct worker_pool * pool)1856 static void worker_attach_to_pool(struct worker *worker,
1857 struct worker_pool *pool)
1858 {
1859 mutex_lock(&wq_pool_attach_mutex);
1860
1861 /*
1862 * The wq_pool_attach_mutex ensures %POOL_DISASSOCIATED remains
1863 * stable across this function. See the comments above the flag
1864 * definition for details.
1865 */
1866 if (pool->flags & POOL_DISASSOCIATED)
1867 worker->flags |= WORKER_UNBOUND;
1868
1869 if (worker->rescue_wq)
1870 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1871
1872 list_add_tail(&worker->node, &pool->workers);
1873 worker->pool = pool;
1874
1875 mutex_unlock(&wq_pool_attach_mutex);
1876 }
1877
1878 /**
1879 * worker_detach_from_pool() - detach a worker from its pool
1880 * @worker: worker which is attached to its pool
1881 *
1882 * Undo the attaching which had been done in worker_attach_to_pool(). The
1883 * caller worker shouldn't access to the pool after detached except it has
1884 * other reference to the pool.
1885 */
worker_detach_from_pool(struct worker * worker)1886 static void worker_detach_from_pool(struct worker *worker)
1887 {
1888 struct worker_pool *pool = worker->pool;
1889 struct completion *detach_completion = NULL;
1890
1891 mutex_lock(&wq_pool_attach_mutex);
1892
1893 list_del(&worker->node);
1894 worker->pool = NULL;
1895
1896 if (list_empty(&pool->workers))
1897 detach_completion = pool->detach_completion;
1898 mutex_unlock(&wq_pool_attach_mutex);
1899
1900 /* clear leftover flags without pool->lock after it is detached */
1901 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1902
1903 if (detach_completion)
1904 complete(detach_completion);
1905 }
1906
1907 /**
1908 * create_worker - create a new workqueue worker
1909 * @pool: pool the new worker will belong to
1910 *
1911 * Create and start a new worker which is attached to @pool.
1912 *
1913 * CONTEXT:
1914 * Might sleep. Does GFP_KERNEL allocations.
1915 *
1916 * Return:
1917 * Pointer to the newly created worker.
1918 */
create_worker(struct worker_pool * pool)1919 static struct worker *create_worker(struct worker_pool *pool)
1920 {
1921 struct worker *worker = NULL;
1922 int id = -1;
1923 char id_buf[16];
1924
1925 /* ID is needed to determine kthread name */
1926 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
1927 if (id < 0)
1928 goto fail;
1929
1930 worker = alloc_worker(pool->node);
1931 if (!worker)
1932 goto fail;
1933
1934 worker->id = id;
1935
1936 if (pool->cpu >= 0)
1937 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1938 pool->attrs->nice < 0 ? "H" : "");
1939 else
1940 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1941
1942 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1943 "kworker/%s", id_buf);
1944 if (IS_ERR(worker->task))
1945 goto fail;
1946
1947 set_user_nice(worker->task, pool->attrs->nice);
1948 kthread_bind_mask(worker->task, pool->attrs->cpumask);
1949
1950 /* successful, attach the worker to the pool */
1951 worker_attach_to_pool(worker, pool);
1952
1953 /* start the newly created worker */
1954 raw_spin_lock_irq(&pool->lock);
1955 worker->pool->nr_workers++;
1956 worker_enter_idle(worker);
1957 wake_up_process(worker->task);
1958 raw_spin_unlock_irq(&pool->lock);
1959
1960 return worker;
1961
1962 fail:
1963 if (id >= 0)
1964 ida_simple_remove(&pool->worker_ida, id);
1965 kfree(worker);
1966 return NULL;
1967 }
1968
1969 /**
1970 * destroy_worker - destroy a workqueue worker
1971 * @worker: worker to be destroyed
1972 *
1973 * Destroy @worker and adjust @pool stats accordingly. The worker should
1974 * be idle.
1975 *
1976 * CONTEXT:
1977 * raw_spin_lock_irq(pool->lock).
1978 */
destroy_worker(struct worker * worker)1979 static void destroy_worker(struct worker *worker)
1980 {
1981 struct worker_pool *pool = worker->pool;
1982
1983 lockdep_assert_held(&pool->lock);
1984
1985 /* sanity check frenzy */
1986 if (WARN_ON(worker->current_work) ||
1987 WARN_ON(!list_empty(&worker->scheduled)) ||
1988 WARN_ON(!(worker->flags & WORKER_IDLE)))
1989 return;
1990
1991 pool->nr_workers--;
1992 pool->nr_idle--;
1993
1994 list_del_init(&worker->entry);
1995 worker->flags |= WORKER_DIE;
1996 wake_up_process(worker->task);
1997 }
1998
idle_worker_timeout(struct timer_list * t)1999 static void idle_worker_timeout(struct timer_list *t)
2000 {
2001 struct worker_pool *pool = from_timer(pool, t, idle_timer);
2002
2003 raw_spin_lock_irq(&pool->lock);
2004
2005 while (too_many_workers(pool)) {
2006 struct worker *worker;
2007 unsigned long expires;
2008
2009 /* idle_list is kept in LIFO order, check the last one */
2010 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2011 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2012
2013 if (time_before(jiffies, expires)) {
2014 mod_timer(&pool->idle_timer, expires);
2015 break;
2016 }
2017
2018 destroy_worker(worker);
2019 }
2020
2021 raw_spin_unlock_irq(&pool->lock);
2022 }
2023
send_mayday(struct work_struct * work)2024 static void send_mayday(struct work_struct *work)
2025 {
2026 struct pool_workqueue *pwq = get_work_pwq(work);
2027 struct workqueue_struct *wq = pwq->wq;
2028
2029 lockdep_assert_held(&wq_mayday_lock);
2030
2031 if (!wq->rescuer)
2032 return;
2033
2034 /* mayday mayday mayday */
2035 if (list_empty(&pwq->mayday_node)) {
2036 /*
2037 * If @pwq is for an unbound wq, its base ref may be put at
2038 * any time due to an attribute change. Pin @pwq until the
2039 * rescuer is done with it.
2040 */
2041 get_pwq(pwq);
2042 list_add_tail(&pwq->mayday_node, &wq->maydays);
2043 wake_up_process(wq->rescuer->task);
2044 }
2045 }
2046
pool_mayday_timeout(struct timer_list * t)2047 static void pool_mayday_timeout(struct timer_list *t)
2048 {
2049 struct worker_pool *pool = from_timer(pool, t, mayday_timer);
2050 struct work_struct *work;
2051
2052 raw_spin_lock_irq(&pool->lock);
2053 raw_spin_lock(&wq_mayday_lock); /* for wq->maydays */
2054
2055 if (need_to_create_worker(pool)) {
2056 /*
2057 * We've been trying to create a new worker but
2058 * haven't been successful. We might be hitting an
2059 * allocation deadlock. Send distress signals to
2060 * rescuers.
2061 */
2062 list_for_each_entry(work, &pool->worklist, entry)
2063 send_mayday(work);
2064 }
2065
2066 raw_spin_unlock(&wq_mayday_lock);
2067 raw_spin_unlock_irq(&pool->lock);
2068
2069 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
2070 }
2071
2072 /**
2073 * maybe_create_worker - create a new worker if necessary
2074 * @pool: pool to create a new worker for
2075 *
2076 * Create a new worker for @pool if necessary. @pool is guaranteed to
2077 * have at least one idle worker on return from this function. If
2078 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
2079 * sent to all rescuers with works scheduled on @pool to resolve
2080 * possible allocation deadlock.
2081 *
2082 * On return, need_to_create_worker() is guaranteed to be %false and
2083 * may_start_working() %true.
2084 *
2085 * LOCKING:
2086 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2087 * multiple times. Does GFP_KERNEL allocations. Called only from
2088 * manager.
2089 */
maybe_create_worker(struct worker_pool * pool)2090 static void maybe_create_worker(struct worker_pool *pool)
2091 __releases(&pool->lock)
2092 __acquires(&pool->lock)
2093 {
2094 restart:
2095 raw_spin_unlock_irq(&pool->lock);
2096
2097 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
2098 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
2099
2100 while (true) {
2101 if (create_worker(pool) || !need_to_create_worker(pool))
2102 break;
2103
2104 schedule_timeout_interruptible(CREATE_COOLDOWN);
2105
2106 if (!need_to_create_worker(pool))
2107 break;
2108 }
2109
2110 del_timer_sync(&pool->mayday_timer);
2111 raw_spin_lock_irq(&pool->lock);
2112 /*
2113 * This is necessary even after a new worker was just successfully
2114 * created as @pool->lock was dropped and the new worker might have
2115 * already become busy.
2116 */
2117 if (need_to_create_worker(pool))
2118 goto restart;
2119 }
2120
2121 /**
2122 * manage_workers - manage worker pool
2123 * @worker: self
2124 *
2125 * Assume the manager role and manage the worker pool @worker belongs
2126 * to. At any given time, there can be only zero or one manager per
2127 * pool. The exclusion is handled automatically by this function.
2128 *
2129 * The caller can safely start processing works on false return. On
2130 * true return, it's guaranteed that need_to_create_worker() is false
2131 * and may_start_working() is true.
2132 *
2133 * CONTEXT:
2134 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2135 * multiple times. Does GFP_KERNEL allocations.
2136 *
2137 * Return:
2138 * %false if the pool doesn't need management and the caller can safely
2139 * start processing works, %true if management function was performed and
2140 * the conditions that the caller verified before calling the function may
2141 * no longer be true.
2142 */
manage_workers(struct worker * worker)2143 static bool manage_workers(struct worker *worker)
2144 {
2145 struct worker_pool *pool = worker->pool;
2146
2147 if (pool->flags & POOL_MANAGER_ACTIVE)
2148 return false;
2149
2150 pool->flags |= POOL_MANAGER_ACTIVE;
2151 pool->manager = worker;
2152
2153 maybe_create_worker(pool);
2154
2155 pool->manager = NULL;
2156 pool->flags &= ~POOL_MANAGER_ACTIVE;
2157 rcuwait_wake_up(&manager_wait);
2158 return true;
2159 }
2160
2161 /**
2162 * process_one_work - process single work
2163 * @worker: self
2164 * @work: work to process
2165 *
2166 * Process @work. This function contains all the logics necessary to
2167 * process a single work including synchronization against and
2168 * interaction with other workers on the same cpu, queueing and
2169 * flushing. As long as context requirement is met, any worker can
2170 * call this function to process a work.
2171 *
2172 * CONTEXT:
2173 * raw_spin_lock_irq(pool->lock) which is released and regrabbed.
2174 */
process_one_work(struct worker * worker,struct work_struct * work)2175 static void process_one_work(struct worker *worker, struct work_struct *work)
2176 __releases(&pool->lock)
2177 __acquires(&pool->lock)
2178 {
2179 struct pool_workqueue *pwq = get_work_pwq(work);
2180 struct worker_pool *pool = worker->pool;
2181 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2182 int work_color;
2183 struct worker *collision;
2184 #ifdef CONFIG_LOCKDEP
2185 /*
2186 * It is permissible to free the struct work_struct from
2187 * inside the function that is called from it, this we need to
2188 * take into account for lockdep too. To avoid bogus "held
2189 * lock freed" warnings as well as problems when looking into
2190 * work->lockdep_map, make a copy and use that here.
2191 */
2192 struct lockdep_map lockdep_map;
2193
2194 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2195 #endif
2196 /* ensure we're on the correct CPU */
2197 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
2198 raw_smp_processor_id() != pool->cpu);
2199
2200 /*
2201 * A single work shouldn't be executed concurrently by
2202 * multiple workers on a single cpu. Check whether anyone is
2203 * already processing the work. If so, defer the work to the
2204 * currently executing one.
2205 */
2206 collision = find_worker_executing_work(pool, work);
2207 if (unlikely(collision)) {
2208 move_linked_works(work, &collision->scheduled, NULL);
2209 return;
2210 }
2211
2212 /* claim and dequeue */
2213 debug_work_deactivate(work);
2214 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2215 worker->current_work = work;
2216 worker->current_func = work->func;
2217 worker->current_pwq = pwq;
2218 work_color = get_work_color(work);
2219
2220 /*
2221 * Record wq name for cmdline and debug reporting, may get
2222 * overridden through set_worker_desc().
2223 */
2224 strscpy(worker->desc, pwq->wq->name, WORKER_DESC_LEN);
2225
2226 list_del_init(&work->entry);
2227
2228 /*
2229 * CPU intensive works don't participate in concurrency management.
2230 * They're the scheduler's responsibility. This takes @worker out
2231 * of concurrency management and the next code block will chain
2232 * execution of the pending work items.
2233 */
2234 if (unlikely(cpu_intensive))
2235 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
2236
2237 /*
2238 * Wake up another worker if necessary. The condition is always
2239 * false for normal per-cpu workers since nr_running would always
2240 * be >= 1 at this point. This is used to chain execution of the
2241 * pending work items for WORKER_NOT_RUNNING workers such as the
2242 * UNBOUND and CPU_INTENSIVE ones.
2243 */
2244 if (need_more_worker(pool))
2245 wake_up_worker(pool);
2246
2247 /*
2248 * Record the last pool and clear PENDING which should be the last
2249 * update to @work. Also, do this inside @pool->lock so that
2250 * PENDING and queued state changes happen together while IRQ is
2251 * disabled.
2252 */
2253 set_work_pool_and_clear_pending(work, pool->id);
2254
2255 raw_spin_unlock_irq(&pool->lock);
2256
2257 lock_map_acquire(&pwq->wq->lockdep_map);
2258 lock_map_acquire(&lockdep_map);
2259 /*
2260 * Strictly speaking we should mark the invariant state without holding
2261 * any locks, that is, before these two lock_map_acquire()'s.
2262 *
2263 * However, that would result in:
2264 *
2265 * A(W1)
2266 * WFC(C)
2267 * A(W1)
2268 * C(C)
2269 *
2270 * Which would create W1->C->W1 dependencies, even though there is no
2271 * actual deadlock possible. There are two solutions, using a
2272 * read-recursive acquire on the work(queue) 'locks', but this will then
2273 * hit the lockdep limitation on recursive locks, or simply discard
2274 * these locks.
2275 *
2276 * AFAICT there is no possible deadlock scenario between the
2277 * flush_work() and complete() primitives (except for single-threaded
2278 * workqueues), so hiding them isn't a problem.
2279 */
2280 lockdep_invariant_state(true);
2281 trace_workqueue_execute_start(work);
2282 worker->current_func(work);
2283 /*
2284 * While we must be careful to not use "work" after this, the trace
2285 * point will only record its address.
2286 */
2287 trace_workqueue_execute_end(work, worker->current_func);
2288 lock_map_release(&lockdep_map);
2289 lock_map_release(&pwq->wq->lockdep_map);
2290
2291 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2292 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2293 " last function: %ps\n",
2294 current->comm, preempt_count(), task_pid_nr(current),
2295 worker->current_func);
2296 debug_show_held_locks(current);
2297 dump_stack();
2298 }
2299
2300 /*
2301 * The following prevents a kworker from hogging CPU on !PREEMPTION
2302 * kernels, where a requeueing work item waiting for something to
2303 * happen could deadlock with stop_machine as such work item could
2304 * indefinitely requeue itself while all other CPUs are trapped in
2305 * stop_machine. At the same time, report a quiescent RCU state so
2306 * the same condition doesn't freeze RCU.
2307 */
2308 cond_resched();
2309
2310 raw_spin_lock_irq(&pool->lock);
2311
2312 /* clear cpu intensive status */
2313 if (unlikely(cpu_intensive))
2314 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2315
2316 /* tag the worker for identification in schedule() */
2317 worker->last_func = worker->current_func;
2318
2319 /* we're done with it, release */
2320 hash_del(&worker->hentry);
2321 worker->current_work = NULL;
2322 worker->current_func = NULL;
2323 worker->current_pwq = NULL;
2324 pwq_dec_nr_in_flight(pwq, work_color);
2325 }
2326
2327 /**
2328 * process_scheduled_works - process scheduled works
2329 * @worker: self
2330 *
2331 * Process all scheduled works. Please note that the scheduled list
2332 * may change while processing a work, so this function repeatedly
2333 * fetches a work from the top and executes it.
2334 *
2335 * CONTEXT:
2336 * raw_spin_lock_irq(pool->lock) which may be released and regrabbed
2337 * multiple times.
2338 */
process_scheduled_works(struct worker * worker)2339 static void process_scheduled_works(struct worker *worker)
2340 {
2341 while (!list_empty(&worker->scheduled)) {
2342 struct work_struct *work = list_first_entry(&worker->scheduled,
2343 struct work_struct, entry);
2344 process_one_work(worker, work);
2345 }
2346 }
2347
set_pf_worker(bool val)2348 static void set_pf_worker(bool val)
2349 {
2350 mutex_lock(&wq_pool_attach_mutex);
2351 if (val)
2352 current->flags |= PF_WQ_WORKER;
2353 else
2354 current->flags &= ~PF_WQ_WORKER;
2355 mutex_unlock(&wq_pool_attach_mutex);
2356 }
2357
2358 /**
2359 * worker_thread - the worker thread function
2360 * @__worker: self
2361 *
2362 * The worker thread function. All workers belong to a worker_pool -
2363 * either a per-cpu one or dynamic unbound one. These workers process all
2364 * work items regardless of their specific target workqueue. The only
2365 * exception is work items which belong to workqueues with a rescuer which
2366 * will be explained in rescuer_thread().
2367 *
2368 * Return: 0
2369 */
worker_thread(void * __worker)2370 static int worker_thread(void *__worker)
2371 {
2372 struct worker *worker = __worker;
2373 struct worker_pool *pool = worker->pool;
2374
2375 /* tell the scheduler that this is a workqueue worker */
2376 set_pf_worker(true);
2377 woke_up:
2378 raw_spin_lock_irq(&pool->lock);
2379
2380 /* am I supposed to die? */
2381 if (unlikely(worker->flags & WORKER_DIE)) {
2382 raw_spin_unlock_irq(&pool->lock);
2383 WARN_ON_ONCE(!list_empty(&worker->entry));
2384 set_pf_worker(false);
2385
2386 set_task_comm(worker->task, "kworker/dying");
2387 ida_simple_remove(&pool->worker_ida, worker->id);
2388 worker_detach_from_pool(worker);
2389 kfree(worker);
2390 return 0;
2391 }
2392
2393 worker_leave_idle(worker);
2394 recheck:
2395 /* no more worker necessary? */
2396 if (!need_more_worker(pool))
2397 goto sleep;
2398
2399 /* do we need to manage? */
2400 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2401 goto recheck;
2402
2403 /*
2404 * ->scheduled list can only be filled while a worker is
2405 * preparing to process a work or actually processing it.
2406 * Make sure nobody diddled with it while I was sleeping.
2407 */
2408 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2409
2410 /*
2411 * Finish PREP stage. We're guaranteed to have at least one idle
2412 * worker or that someone else has already assumed the manager
2413 * role. This is where @worker starts participating in concurrency
2414 * management if applicable and concurrency management is restored
2415 * after being rebound. See rebind_workers() for details.
2416 */
2417 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2418
2419 do {
2420 struct work_struct *work =
2421 list_first_entry(&pool->worklist,
2422 struct work_struct, entry);
2423
2424 pool->watchdog_ts = jiffies;
2425
2426 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2427 /* optimization path, not strictly necessary */
2428 process_one_work(worker, work);
2429 if (unlikely(!list_empty(&worker->scheduled)))
2430 process_scheduled_works(worker);
2431 } else {
2432 move_linked_works(work, &worker->scheduled, NULL);
2433 process_scheduled_works(worker);
2434 }
2435 } while (keep_working(pool));
2436
2437 worker_set_flags(worker, WORKER_PREP);
2438 sleep:
2439 /*
2440 * pool->lock is held and there's no work to process and no need to
2441 * manage, sleep. Workers are woken up only while holding
2442 * pool->lock or from local cpu, so setting the current state
2443 * before releasing pool->lock is enough to prevent losing any
2444 * event.
2445 */
2446 worker_enter_idle(worker);
2447 __set_current_state(TASK_IDLE);
2448 raw_spin_unlock_irq(&pool->lock);
2449 schedule();
2450 goto woke_up;
2451 }
2452
2453 /**
2454 * rescuer_thread - the rescuer thread function
2455 * @__rescuer: self
2456 *
2457 * Workqueue rescuer thread function. There's one rescuer for each
2458 * workqueue which has WQ_MEM_RECLAIM set.
2459 *
2460 * Regular work processing on a pool may block trying to create a new
2461 * worker which uses GFP_KERNEL allocation which has slight chance of
2462 * developing into deadlock if some works currently on the same queue
2463 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2464 * the problem rescuer solves.
2465 *
2466 * When such condition is possible, the pool summons rescuers of all
2467 * workqueues which have works queued on the pool and let them process
2468 * those works so that forward progress can be guaranteed.
2469 *
2470 * This should happen rarely.
2471 *
2472 * Return: 0
2473 */
rescuer_thread(void * __rescuer)2474 static int rescuer_thread(void *__rescuer)
2475 {
2476 struct worker *rescuer = __rescuer;
2477 struct workqueue_struct *wq = rescuer->rescue_wq;
2478 struct list_head *scheduled = &rescuer->scheduled;
2479 bool should_stop;
2480
2481 set_user_nice(current, RESCUER_NICE_LEVEL);
2482
2483 /*
2484 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2485 * doesn't participate in concurrency management.
2486 */
2487 set_pf_worker(true);
2488 repeat:
2489 set_current_state(TASK_IDLE);
2490
2491 /*
2492 * By the time the rescuer is requested to stop, the workqueue
2493 * shouldn't have any work pending, but @wq->maydays may still have
2494 * pwq(s) queued. This can happen by non-rescuer workers consuming
2495 * all the work items before the rescuer got to them. Go through
2496 * @wq->maydays processing before acting on should_stop so that the
2497 * list is always empty on exit.
2498 */
2499 should_stop = kthread_should_stop();
2500
2501 /* see whether any pwq is asking for help */
2502 raw_spin_lock_irq(&wq_mayday_lock);
2503
2504 while (!list_empty(&wq->maydays)) {
2505 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2506 struct pool_workqueue, mayday_node);
2507 struct worker_pool *pool = pwq->pool;
2508 struct work_struct *work, *n;
2509 bool first = true;
2510
2511 __set_current_state(TASK_RUNNING);
2512 list_del_init(&pwq->mayday_node);
2513
2514 raw_spin_unlock_irq(&wq_mayday_lock);
2515
2516 worker_attach_to_pool(rescuer, pool);
2517
2518 raw_spin_lock_irq(&pool->lock);
2519
2520 /*
2521 * Slurp in all works issued via this workqueue and
2522 * process'em.
2523 */
2524 WARN_ON_ONCE(!list_empty(scheduled));
2525 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2526 if (get_work_pwq(work) == pwq) {
2527 if (first)
2528 pool->watchdog_ts = jiffies;
2529 move_linked_works(work, scheduled, &n);
2530 }
2531 first = false;
2532 }
2533
2534 if (!list_empty(scheduled)) {
2535 process_scheduled_works(rescuer);
2536
2537 /*
2538 * The above execution of rescued work items could
2539 * have created more to rescue through
2540 * pwq_activate_first_inactive() or chained
2541 * queueing. Let's put @pwq back on mayday list so
2542 * that such back-to-back work items, which may be
2543 * being used to relieve memory pressure, don't
2544 * incur MAYDAY_INTERVAL delay inbetween.
2545 */
2546 if (pwq->nr_active && need_to_create_worker(pool)) {
2547 raw_spin_lock(&wq_mayday_lock);
2548 /*
2549 * Queue iff we aren't racing destruction
2550 * and somebody else hasn't queued it already.
2551 */
2552 if (wq->rescuer && list_empty(&pwq->mayday_node)) {
2553 get_pwq(pwq);
2554 list_add_tail(&pwq->mayday_node, &wq->maydays);
2555 }
2556 raw_spin_unlock(&wq_mayday_lock);
2557 }
2558 }
2559
2560 /*
2561 * Put the reference grabbed by send_mayday(). @pool won't
2562 * go away while we're still attached to it.
2563 */
2564 put_pwq(pwq);
2565
2566 /*
2567 * Leave this pool. If need_more_worker() is %true, notify a
2568 * regular worker; otherwise, we end up with 0 concurrency
2569 * and stalling the execution.
2570 */
2571 if (need_more_worker(pool))
2572 wake_up_worker(pool);
2573
2574 raw_spin_unlock_irq(&pool->lock);
2575
2576 worker_detach_from_pool(rescuer);
2577
2578 raw_spin_lock_irq(&wq_mayday_lock);
2579 }
2580
2581 raw_spin_unlock_irq(&wq_mayday_lock);
2582
2583 if (should_stop) {
2584 __set_current_state(TASK_RUNNING);
2585 set_pf_worker(false);
2586 return 0;
2587 }
2588
2589 /* rescuers should never participate in concurrency management */
2590 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2591 schedule();
2592 goto repeat;
2593 }
2594
2595 /**
2596 * check_flush_dependency - check for flush dependency sanity
2597 * @target_wq: workqueue being flushed
2598 * @target_work: work item being flushed (NULL for workqueue flushes)
2599 *
2600 * %current is trying to flush the whole @target_wq or @target_work on it.
2601 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2602 * reclaiming memory or running on a workqueue which doesn't have
2603 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2604 * a deadlock.
2605 */
check_flush_dependency(struct workqueue_struct * target_wq,struct work_struct * target_work)2606 static void check_flush_dependency(struct workqueue_struct *target_wq,
2607 struct work_struct *target_work)
2608 {
2609 work_func_t target_func = target_work ? target_work->func : NULL;
2610 struct worker *worker;
2611
2612 if (target_wq->flags & WQ_MEM_RECLAIM)
2613 return;
2614
2615 worker = current_wq_worker();
2616
2617 WARN_ONCE(current->flags & PF_MEMALLOC,
2618 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%ps",
2619 current->pid, current->comm, target_wq->name, target_func);
2620 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2621 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
2622 "workqueue: WQ_MEM_RECLAIM %s:%ps is flushing !WQ_MEM_RECLAIM %s:%ps",
2623 worker->current_pwq->wq->name, worker->current_func,
2624 target_wq->name, target_func);
2625 }
2626
2627 struct wq_barrier {
2628 struct work_struct work;
2629 struct completion done;
2630 struct task_struct *task; /* purely informational */
2631 };
2632
wq_barrier_func(struct work_struct * work)2633 static void wq_barrier_func(struct work_struct *work)
2634 {
2635 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2636 complete(&barr->done);
2637 }
2638
2639 /**
2640 * insert_wq_barrier - insert a barrier work
2641 * @pwq: pwq to insert barrier into
2642 * @barr: wq_barrier to insert
2643 * @target: target work to attach @barr to
2644 * @worker: worker currently executing @target, NULL if @target is not executing
2645 *
2646 * @barr is linked to @target such that @barr is completed only after
2647 * @target finishes execution. Please note that the ordering
2648 * guarantee is observed only with respect to @target and on the local
2649 * cpu.
2650 *
2651 * Currently, a queued barrier can't be canceled. This is because
2652 * try_to_grab_pending() can't determine whether the work to be
2653 * grabbed is at the head of the queue and thus can't clear LINKED
2654 * flag of the previous work while there must be a valid next work
2655 * after a work with LINKED flag set.
2656 *
2657 * Note that when @worker is non-NULL, @target may be modified
2658 * underneath us, so we can't reliably determine pwq from @target.
2659 *
2660 * CONTEXT:
2661 * raw_spin_lock_irq(pool->lock).
2662 */
insert_wq_barrier(struct pool_workqueue * pwq,struct wq_barrier * barr,struct work_struct * target,struct worker * worker)2663 static void insert_wq_barrier(struct pool_workqueue *pwq,
2664 struct wq_barrier *barr,
2665 struct work_struct *target, struct worker *worker)
2666 {
2667 struct list_head *head;
2668 unsigned int linked = 0;
2669
2670 /*
2671 * debugobject calls are safe here even with pool->lock locked
2672 * as we know for sure that this will not trigger any of the
2673 * checks and call back into the fixup functions where we
2674 * might deadlock.
2675 */
2676 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2677 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2678
2679 init_completion_map(&barr->done, &target->lockdep_map);
2680
2681 barr->task = current;
2682
2683 /*
2684 * If @target is currently being executed, schedule the
2685 * barrier to the worker; otherwise, put it after @target.
2686 */
2687 if (worker)
2688 head = worker->scheduled.next;
2689 else {
2690 unsigned long *bits = work_data_bits(target);
2691
2692 head = target->entry.next;
2693 /* there can already be other linked works, inherit and set */
2694 linked = *bits & WORK_STRUCT_LINKED;
2695 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2696 }
2697
2698 debug_work_activate(&barr->work);
2699 insert_work(pwq, &barr->work, head,
2700 work_color_to_flags(WORK_NO_COLOR) | linked);
2701 }
2702
2703 /**
2704 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2705 * @wq: workqueue being flushed
2706 * @flush_color: new flush color, < 0 for no-op
2707 * @work_color: new work color, < 0 for no-op
2708 *
2709 * Prepare pwqs for workqueue flushing.
2710 *
2711 * If @flush_color is non-negative, flush_color on all pwqs should be
2712 * -1. If no pwq has in-flight commands at the specified color, all
2713 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2714 * has in flight commands, its pwq->flush_color is set to
2715 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2716 * wakeup logic is armed and %true is returned.
2717 *
2718 * The caller should have initialized @wq->first_flusher prior to
2719 * calling this function with non-negative @flush_color. If
2720 * @flush_color is negative, no flush color update is done and %false
2721 * is returned.
2722 *
2723 * If @work_color is non-negative, all pwqs should have the same
2724 * work_color which is previous to @work_color and all will be
2725 * advanced to @work_color.
2726 *
2727 * CONTEXT:
2728 * mutex_lock(wq->mutex).
2729 *
2730 * Return:
2731 * %true if @flush_color >= 0 and there's something to flush. %false
2732 * otherwise.
2733 */
flush_workqueue_prep_pwqs(struct workqueue_struct * wq,int flush_color,int work_color)2734 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2735 int flush_color, int work_color)
2736 {
2737 bool wait = false;
2738 struct pool_workqueue *pwq;
2739
2740 if (flush_color >= 0) {
2741 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2742 atomic_set(&wq->nr_pwqs_to_flush, 1);
2743 }
2744
2745 for_each_pwq(pwq, wq) {
2746 struct worker_pool *pool = pwq->pool;
2747
2748 raw_spin_lock_irq(&pool->lock);
2749
2750 if (flush_color >= 0) {
2751 WARN_ON_ONCE(pwq->flush_color != -1);
2752
2753 if (pwq->nr_in_flight[flush_color]) {
2754 pwq->flush_color = flush_color;
2755 atomic_inc(&wq->nr_pwqs_to_flush);
2756 wait = true;
2757 }
2758 }
2759
2760 if (work_color >= 0) {
2761 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2762 pwq->work_color = work_color;
2763 }
2764
2765 raw_spin_unlock_irq(&pool->lock);
2766 }
2767
2768 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2769 complete(&wq->first_flusher->done);
2770
2771 return wait;
2772 }
2773
2774 /**
2775 * flush_workqueue - ensure that any scheduled work has run to completion.
2776 * @wq: workqueue to flush
2777 *
2778 * This function sleeps until all work items which were queued on entry
2779 * have finished execution, but it is not livelocked by new incoming ones.
2780 */
flush_workqueue(struct workqueue_struct * wq)2781 void flush_workqueue(struct workqueue_struct *wq)
2782 {
2783 struct wq_flusher this_flusher = {
2784 .list = LIST_HEAD_INIT(this_flusher.list),
2785 .flush_color = -1,
2786 .done = COMPLETION_INITIALIZER_ONSTACK_MAP(this_flusher.done, wq->lockdep_map),
2787 };
2788 int next_color;
2789
2790 if (WARN_ON(!wq_online))
2791 return;
2792
2793 lock_map_acquire(&wq->lockdep_map);
2794 lock_map_release(&wq->lockdep_map);
2795
2796 mutex_lock(&wq->mutex);
2797
2798 /*
2799 * Start-to-wait phase
2800 */
2801 next_color = work_next_color(wq->work_color);
2802
2803 if (next_color != wq->flush_color) {
2804 /*
2805 * Color space is not full. The current work_color
2806 * becomes our flush_color and work_color is advanced
2807 * by one.
2808 */
2809 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2810 this_flusher.flush_color = wq->work_color;
2811 wq->work_color = next_color;
2812
2813 if (!wq->first_flusher) {
2814 /* no flush in progress, become the first flusher */
2815 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2816
2817 wq->first_flusher = &this_flusher;
2818
2819 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2820 wq->work_color)) {
2821 /* nothing to flush, done */
2822 wq->flush_color = next_color;
2823 wq->first_flusher = NULL;
2824 goto out_unlock;
2825 }
2826 } else {
2827 /* wait in queue */
2828 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2829 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2830 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2831 }
2832 } else {
2833 /*
2834 * Oops, color space is full, wait on overflow queue.
2835 * The next flush completion will assign us
2836 * flush_color and transfer to flusher_queue.
2837 */
2838 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2839 }
2840
2841 check_flush_dependency(wq, NULL);
2842
2843 mutex_unlock(&wq->mutex);
2844
2845 wait_for_completion(&this_flusher.done);
2846
2847 /*
2848 * Wake-up-and-cascade phase
2849 *
2850 * First flushers are responsible for cascading flushes and
2851 * handling overflow. Non-first flushers can simply return.
2852 */
2853 if (READ_ONCE(wq->first_flusher) != &this_flusher)
2854 return;
2855
2856 mutex_lock(&wq->mutex);
2857
2858 /* we might have raced, check again with mutex held */
2859 if (wq->first_flusher != &this_flusher)
2860 goto out_unlock;
2861
2862 WRITE_ONCE(wq->first_flusher, NULL);
2863
2864 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2865 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2866
2867 while (true) {
2868 struct wq_flusher *next, *tmp;
2869
2870 /* complete all the flushers sharing the current flush color */
2871 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2872 if (next->flush_color != wq->flush_color)
2873 break;
2874 list_del_init(&next->list);
2875 complete(&next->done);
2876 }
2877
2878 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2879 wq->flush_color != work_next_color(wq->work_color));
2880
2881 /* this flush_color is finished, advance by one */
2882 wq->flush_color = work_next_color(wq->flush_color);
2883
2884 /* one color has been freed, handle overflow queue */
2885 if (!list_empty(&wq->flusher_overflow)) {
2886 /*
2887 * Assign the same color to all overflowed
2888 * flushers, advance work_color and append to
2889 * flusher_queue. This is the start-to-wait
2890 * phase for these overflowed flushers.
2891 */
2892 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2893 tmp->flush_color = wq->work_color;
2894
2895 wq->work_color = work_next_color(wq->work_color);
2896
2897 list_splice_tail_init(&wq->flusher_overflow,
2898 &wq->flusher_queue);
2899 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2900 }
2901
2902 if (list_empty(&wq->flusher_queue)) {
2903 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2904 break;
2905 }
2906
2907 /*
2908 * Need to flush more colors. Make the next flusher
2909 * the new first flusher and arm pwqs.
2910 */
2911 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2912 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2913
2914 list_del_init(&next->list);
2915 wq->first_flusher = next;
2916
2917 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2918 break;
2919
2920 /*
2921 * Meh... this color is already done, clear first
2922 * flusher and repeat cascading.
2923 */
2924 wq->first_flusher = NULL;
2925 }
2926
2927 out_unlock:
2928 mutex_unlock(&wq->mutex);
2929 }
2930 EXPORT_SYMBOL(flush_workqueue);
2931
2932 /**
2933 * drain_workqueue - drain a workqueue
2934 * @wq: workqueue to drain
2935 *
2936 * Wait until the workqueue becomes empty. While draining is in progress,
2937 * only chain queueing is allowed. IOW, only currently pending or running
2938 * work items on @wq can queue further work items on it. @wq is flushed
2939 * repeatedly until it becomes empty. The number of flushing is determined
2940 * by the depth of chaining and should be relatively short. Whine if it
2941 * takes too long.
2942 */
drain_workqueue(struct workqueue_struct * wq)2943 void drain_workqueue(struct workqueue_struct *wq)
2944 {
2945 unsigned int flush_cnt = 0;
2946 struct pool_workqueue *pwq;
2947
2948 /*
2949 * __queue_work() needs to test whether there are drainers, is much
2950 * hotter than drain_workqueue() and already looks at @wq->flags.
2951 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2952 */
2953 mutex_lock(&wq->mutex);
2954 if (!wq->nr_drainers++)
2955 wq->flags |= __WQ_DRAINING;
2956 mutex_unlock(&wq->mutex);
2957 reflush:
2958 flush_workqueue(wq);
2959
2960 mutex_lock(&wq->mutex);
2961
2962 for_each_pwq(pwq, wq) {
2963 bool drained;
2964
2965 raw_spin_lock_irq(&pwq->pool->lock);
2966 drained = !pwq->nr_active && list_empty(&pwq->inactive_works);
2967 raw_spin_unlock_irq(&pwq->pool->lock);
2968
2969 if (drained)
2970 continue;
2971
2972 if (++flush_cnt == 10 ||
2973 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2974 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2975 wq->name, flush_cnt);
2976
2977 mutex_unlock(&wq->mutex);
2978 goto reflush;
2979 }
2980
2981 if (!--wq->nr_drainers)
2982 wq->flags &= ~__WQ_DRAINING;
2983 mutex_unlock(&wq->mutex);
2984 }
2985 EXPORT_SYMBOL_GPL(drain_workqueue);
2986
start_flush_work(struct work_struct * work,struct wq_barrier * barr,bool from_cancel)2987 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr,
2988 bool from_cancel)
2989 {
2990 struct worker *worker = NULL;
2991 struct worker_pool *pool;
2992 struct pool_workqueue *pwq;
2993
2994 might_sleep();
2995
2996 rcu_read_lock();
2997 pool = get_work_pool(work);
2998 if (!pool) {
2999 rcu_read_unlock();
3000 return false;
3001 }
3002
3003 raw_spin_lock_irq(&pool->lock);
3004 /* see the comment in try_to_grab_pending() with the same code */
3005 pwq = get_work_pwq(work);
3006 if (pwq) {
3007 if (unlikely(pwq->pool != pool))
3008 goto already_gone;
3009 } else {
3010 worker = find_worker_executing_work(pool, work);
3011 if (!worker)
3012 goto already_gone;
3013 pwq = worker->current_pwq;
3014 }
3015
3016 check_flush_dependency(pwq->wq, work);
3017
3018 insert_wq_barrier(pwq, barr, work, worker);
3019 raw_spin_unlock_irq(&pool->lock);
3020
3021 /*
3022 * Force a lock recursion deadlock when using flush_work() inside a
3023 * single-threaded or rescuer equipped workqueue.
3024 *
3025 * For single threaded workqueues the deadlock happens when the work
3026 * is after the work issuing the flush_work(). For rescuer equipped
3027 * workqueues the deadlock happens when the rescuer stalls, blocking
3028 * forward progress.
3029 */
3030 if (!from_cancel &&
3031 (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)) {
3032 lock_map_acquire(&pwq->wq->lockdep_map);
3033 lock_map_release(&pwq->wq->lockdep_map);
3034 }
3035 rcu_read_unlock();
3036 return true;
3037 already_gone:
3038 raw_spin_unlock_irq(&pool->lock);
3039 rcu_read_unlock();
3040 return false;
3041 }
3042
__flush_work(struct work_struct * work,bool from_cancel)3043 static bool __flush_work(struct work_struct *work, bool from_cancel)
3044 {
3045 struct wq_barrier barr;
3046
3047 if (WARN_ON(!wq_online))
3048 return false;
3049
3050 if (WARN_ON(!work->func))
3051 return false;
3052
3053 lock_map_acquire(&work->lockdep_map);
3054 lock_map_release(&work->lockdep_map);
3055
3056 if (start_flush_work(work, &barr, from_cancel)) {
3057 wait_for_completion(&barr.done);
3058 destroy_work_on_stack(&barr.work);
3059 return true;
3060 } else {
3061 return false;
3062 }
3063 }
3064
3065 /**
3066 * flush_work - wait for a work to finish executing the last queueing instance
3067 * @work: the work to flush
3068 *
3069 * Wait until @work has finished execution. @work is guaranteed to be idle
3070 * on return if it hasn't been requeued since flush started.
3071 *
3072 * Return:
3073 * %true if flush_work() waited for the work to finish execution,
3074 * %false if it was already idle.
3075 */
flush_work(struct work_struct * work)3076 bool flush_work(struct work_struct *work)
3077 {
3078 return __flush_work(work, false);
3079 }
3080 EXPORT_SYMBOL_GPL(flush_work);
3081
3082 struct cwt_wait {
3083 wait_queue_entry_t wait;
3084 struct work_struct *work;
3085 };
3086
cwt_wakefn(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)3087 static int cwt_wakefn(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
3088 {
3089 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
3090
3091 if (cwait->work != key)
3092 return 0;
3093 return autoremove_wake_function(wait, mode, sync, key);
3094 }
3095
__cancel_work_timer(struct work_struct * work,bool is_dwork)3096 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
3097 {
3098 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
3099 unsigned long flags;
3100 int ret;
3101
3102 do {
3103 ret = try_to_grab_pending(work, is_dwork, &flags);
3104 /*
3105 * If someone else is already canceling, wait for it to
3106 * finish. flush_work() doesn't work for PREEMPT_NONE
3107 * because we may get scheduled between @work's completion
3108 * and the other canceling task resuming and clearing
3109 * CANCELING - flush_work() will return false immediately
3110 * as @work is no longer busy, try_to_grab_pending() will
3111 * return -ENOENT as @work is still being canceled and the
3112 * other canceling task won't be able to clear CANCELING as
3113 * we're hogging the CPU.
3114 *
3115 * Let's wait for completion using a waitqueue. As this
3116 * may lead to the thundering herd problem, use a custom
3117 * wake function which matches @work along with exclusive
3118 * wait and wakeup.
3119 */
3120 if (unlikely(ret == -ENOENT)) {
3121 struct cwt_wait cwait;
3122
3123 init_wait(&cwait.wait);
3124 cwait.wait.func = cwt_wakefn;
3125 cwait.work = work;
3126
3127 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
3128 TASK_UNINTERRUPTIBLE);
3129 if (work_is_canceling(work))
3130 schedule();
3131 finish_wait(&cancel_waitq, &cwait.wait);
3132 }
3133 } while (unlikely(ret < 0));
3134
3135 /* tell other tasks trying to grab @work to back off */
3136 mark_work_canceling(work);
3137 local_irq_restore(flags);
3138
3139 /*
3140 * This allows canceling during early boot. We know that @work
3141 * isn't executing.
3142 */
3143 if (wq_online)
3144 __flush_work(work, true);
3145
3146 clear_work_data(work);
3147
3148 /*
3149 * Paired with prepare_to_wait() above so that either
3150 * waitqueue_active() is visible here or !work_is_canceling() is
3151 * visible there.
3152 */
3153 smp_mb();
3154 if (waitqueue_active(&cancel_waitq))
3155 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
3156
3157 return ret;
3158 }
3159
3160 /**
3161 * cancel_work_sync - cancel a work and wait for it to finish
3162 * @work: the work to cancel
3163 *
3164 * Cancel @work and wait for its execution to finish. This function
3165 * can be used even if the work re-queues itself or migrates to
3166 * another workqueue. On return from this function, @work is
3167 * guaranteed to be not pending or executing on any CPU.
3168 *
3169 * cancel_work_sync(&delayed_work->work) must not be used for
3170 * delayed_work's. Use cancel_delayed_work_sync() instead.
3171 *
3172 * The caller must ensure that the workqueue on which @work was last
3173 * queued can't be destroyed before this function returns.
3174 *
3175 * Return:
3176 * %true if @work was pending, %false otherwise.
3177 */
cancel_work_sync(struct work_struct * work)3178 bool cancel_work_sync(struct work_struct *work)
3179 {
3180 return __cancel_work_timer(work, false);
3181 }
3182 EXPORT_SYMBOL_GPL(cancel_work_sync);
3183
3184 /**
3185 * flush_delayed_work - wait for a dwork to finish executing the last queueing
3186 * @dwork: the delayed work to flush
3187 *
3188 * Delayed timer is cancelled and the pending work is queued for
3189 * immediate execution. Like flush_work(), this function only
3190 * considers the last queueing instance of @dwork.
3191 *
3192 * Return:
3193 * %true if flush_work() waited for the work to finish execution,
3194 * %false if it was already idle.
3195 */
flush_delayed_work(struct delayed_work * dwork)3196 bool flush_delayed_work(struct delayed_work *dwork)
3197 {
3198 local_irq_disable();
3199 if (del_timer_sync(&dwork->timer))
3200 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
3201 local_irq_enable();
3202 return flush_work(&dwork->work);
3203 }
3204 EXPORT_SYMBOL(flush_delayed_work);
3205
3206 /**
3207 * flush_rcu_work - wait for a rwork to finish executing the last queueing
3208 * @rwork: the rcu work to flush
3209 *
3210 * Return:
3211 * %true if flush_rcu_work() waited for the work to finish execution,
3212 * %false if it was already idle.
3213 */
flush_rcu_work(struct rcu_work * rwork)3214 bool flush_rcu_work(struct rcu_work *rwork)
3215 {
3216 if (test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&rwork->work))) {
3217 rcu_barrier();
3218 flush_work(&rwork->work);
3219 return true;
3220 } else {
3221 return flush_work(&rwork->work);
3222 }
3223 }
3224 EXPORT_SYMBOL(flush_rcu_work);
3225
__cancel_work(struct work_struct * work,bool is_dwork)3226 static bool __cancel_work(struct work_struct *work, bool is_dwork)
3227 {
3228 unsigned long flags;
3229 int ret;
3230
3231 do {
3232 ret = try_to_grab_pending(work, is_dwork, &flags);
3233 } while (unlikely(ret == -EAGAIN));
3234
3235 if (unlikely(ret < 0))
3236 return false;
3237
3238 set_work_pool_and_clear_pending(work, get_work_pool_id(work));
3239 local_irq_restore(flags);
3240 return ret;
3241 }
3242
3243 /**
3244 * cancel_delayed_work - cancel a delayed work
3245 * @dwork: delayed_work to cancel
3246 *
3247 * Kill off a pending delayed_work.
3248 *
3249 * Return: %true if @dwork was pending and canceled; %false if it wasn't
3250 * pending.
3251 *
3252 * Note:
3253 * The work callback function may still be running on return, unless
3254 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
3255 * use cancel_delayed_work_sync() to wait on it.
3256 *
3257 * This function is safe to call from any context including IRQ handler.
3258 */
cancel_delayed_work(struct delayed_work * dwork)3259 bool cancel_delayed_work(struct delayed_work *dwork)
3260 {
3261 return __cancel_work(&dwork->work, true);
3262 }
3263 EXPORT_SYMBOL(cancel_delayed_work);
3264
3265 /**
3266 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3267 * @dwork: the delayed work cancel
3268 *
3269 * This is cancel_work_sync() for delayed works.
3270 *
3271 * Return:
3272 * %true if @dwork was pending, %false otherwise.
3273 */
cancel_delayed_work_sync(struct delayed_work * dwork)3274 bool cancel_delayed_work_sync(struct delayed_work *dwork)
3275 {
3276 return __cancel_work_timer(&dwork->work, true);
3277 }
3278 EXPORT_SYMBOL(cancel_delayed_work_sync);
3279
3280 /**
3281 * schedule_on_each_cpu - execute a function synchronously on each online CPU
3282 * @func: the function to call
3283 *
3284 * schedule_on_each_cpu() executes @func on each online CPU using the
3285 * system workqueue and blocks until all CPUs have completed.
3286 * schedule_on_each_cpu() is very slow.
3287 *
3288 * Return:
3289 * 0 on success, -errno on failure.
3290 */
schedule_on_each_cpu(work_func_t func)3291 int schedule_on_each_cpu(work_func_t func)
3292 {
3293 int cpu;
3294 struct work_struct __percpu *works;
3295
3296 works = alloc_percpu(struct work_struct);
3297 if (!works)
3298 return -ENOMEM;
3299
3300 get_online_cpus();
3301
3302 for_each_online_cpu(cpu) {
3303 struct work_struct *work = per_cpu_ptr(works, cpu);
3304
3305 INIT_WORK(work, func);
3306 schedule_work_on(cpu, work);
3307 }
3308
3309 for_each_online_cpu(cpu)
3310 flush_work(per_cpu_ptr(works, cpu));
3311
3312 put_online_cpus();
3313 free_percpu(works);
3314 return 0;
3315 }
3316
3317 /**
3318 * execute_in_process_context - reliably execute the routine with user context
3319 * @fn: the function to execute
3320 * @ew: guaranteed storage for the execute work structure (must
3321 * be available when the work executes)
3322 *
3323 * Executes the function immediately if process context is available,
3324 * otherwise schedules the function for delayed execution.
3325 *
3326 * Return: 0 - function was executed
3327 * 1 - function was scheduled for execution
3328 */
execute_in_process_context(work_func_t fn,struct execute_work * ew)3329 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3330 {
3331 if (!in_interrupt()) {
3332 fn(&ew->work);
3333 return 0;
3334 }
3335
3336 INIT_WORK(&ew->work, fn);
3337 schedule_work(&ew->work);
3338
3339 return 1;
3340 }
3341 EXPORT_SYMBOL_GPL(execute_in_process_context);
3342
3343 /**
3344 * free_workqueue_attrs - free a workqueue_attrs
3345 * @attrs: workqueue_attrs to free
3346 *
3347 * Undo alloc_workqueue_attrs().
3348 */
free_workqueue_attrs(struct workqueue_attrs * attrs)3349 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3350 {
3351 if (attrs) {
3352 free_cpumask_var(attrs->cpumask);
3353 kfree(attrs);
3354 }
3355 }
3356
3357 /**
3358 * alloc_workqueue_attrs - allocate a workqueue_attrs
3359 *
3360 * Allocate a new workqueue_attrs, initialize with default settings and
3361 * return it.
3362 *
3363 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3364 */
alloc_workqueue_attrs(void)3365 struct workqueue_attrs *alloc_workqueue_attrs(void)
3366 {
3367 struct workqueue_attrs *attrs;
3368
3369 attrs = kzalloc(sizeof(*attrs), GFP_KERNEL);
3370 if (!attrs)
3371 goto fail;
3372 if (!alloc_cpumask_var(&attrs->cpumask, GFP_KERNEL))
3373 goto fail;
3374
3375 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3376 return attrs;
3377 fail:
3378 free_workqueue_attrs(attrs);
3379 return NULL;
3380 }
3381
copy_workqueue_attrs(struct workqueue_attrs * to,const struct workqueue_attrs * from)3382 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3383 const struct workqueue_attrs *from)
3384 {
3385 to->nice = from->nice;
3386 cpumask_copy(to->cpumask, from->cpumask);
3387 /*
3388 * Unlike hash and equality test, this function doesn't ignore
3389 * ->no_numa as it is used for both pool and wq attrs. Instead,
3390 * get_unbound_pool() explicitly clears ->no_numa after copying.
3391 */
3392 to->no_numa = from->no_numa;
3393 }
3394
3395 /* hash value of the content of @attr */
wqattrs_hash(const struct workqueue_attrs * attrs)3396 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3397 {
3398 u32 hash = 0;
3399
3400 hash = jhash_1word(attrs->nice, hash);
3401 hash = jhash(cpumask_bits(attrs->cpumask),
3402 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3403 return hash;
3404 }
3405
3406 /* content equality test */
wqattrs_equal(const struct workqueue_attrs * a,const struct workqueue_attrs * b)3407 static bool wqattrs_equal(const struct workqueue_attrs *a,
3408 const struct workqueue_attrs *b)
3409 {
3410 if (a->nice != b->nice)
3411 return false;
3412 if (!cpumask_equal(a->cpumask, b->cpumask))
3413 return false;
3414 return true;
3415 }
3416
3417 /**
3418 * init_worker_pool - initialize a newly zalloc'd worker_pool
3419 * @pool: worker_pool to initialize
3420 *
3421 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
3422 *
3423 * Return: 0 on success, -errno on failure. Even on failure, all fields
3424 * inside @pool proper are initialized and put_unbound_pool() can be called
3425 * on @pool safely to release it.
3426 */
init_worker_pool(struct worker_pool * pool)3427 static int init_worker_pool(struct worker_pool *pool)
3428 {
3429 raw_spin_lock_init(&pool->lock);
3430 pool->id = -1;
3431 pool->cpu = -1;
3432 pool->node = NUMA_NO_NODE;
3433 pool->flags |= POOL_DISASSOCIATED;
3434 pool->watchdog_ts = jiffies;
3435 INIT_LIST_HEAD(&pool->worklist);
3436 INIT_LIST_HEAD(&pool->idle_list);
3437 hash_init(pool->busy_hash);
3438
3439 timer_setup(&pool->idle_timer, idle_worker_timeout, TIMER_DEFERRABLE);
3440
3441 timer_setup(&pool->mayday_timer, pool_mayday_timeout, 0);
3442
3443 INIT_LIST_HEAD(&pool->workers);
3444
3445 ida_init(&pool->worker_ida);
3446 INIT_HLIST_NODE(&pool->hash_node);
3447 pool->refcnt = 1;
3448
3449 /* shouldn't fail above this point */
3450 pool->attrs = alloc_workqueue_attrs();
3451 if (!pool->attrs)
3452 return -ENOMEM;
3453 return 0;
3454 }
3455
3456 #ifdef CONFIG_LOCKDEP
wq_init_lockdep(struct workqueue_struct * wq)3457 static void wq_init_lockdep(struct workqueue_struct *wq)
3458 {
3459 char *lock_name;
3460
3461 lockdep_register_key(&wq->key);
3462 lock_name = kasprintf(GFP_KERNEL, "%s%s", "(wq_completion)", wq->name);
3463 if (!lock_name)
3464 lock_name = wq->name;
3465
3466 wq->lock_name = lock_name;
3467 lockdep_init_map(&wq->lockdep_map, lock_name, &wq->key, 0);
3468 }
3469
wq_unregister_lockdep(struct workqueue_struct * wq)3470 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3471 {
3472 lockdep_unregister_key(&wq->key);
3473 }
3474
wq_free_lockdep(struct workqueue_struct * wq)3475 static void wq_free_lockdep(struct workqueue_struct *wq)
3476 {
3477 if (wq->lock_name != wq->name)
3478 kfree(wq->lock_name);
3479 }
3480 #else
wq_init_lockdep(struct workqueue_struct * wq)3481 static void wq_init_lockdep(struct workqueue_struct *wq)
3482 {
3483 }
3484
wq_unregister_lockdep(struct workqueue_struct * wq)3485 static void wq_unregister_lockdep(struct workqueue_struct *wq)
3486 {
3487 }
3488
wq_free_lockdep(struct workqueue_struct * wq)3489 static void wq_free_lockdep(struct workqueue_struct *wq)
3490 {
3491 }
3492 #endif
3493
rcu_free_wq(struct rcu_head * rcu)3494 static void rcu_free_wq(struct rcu_head *rcu)
3495 {
3496 struct workqueue_struct *wq =
3497 container_of(rcu, struct workqueue_struct, rcu);
3498
3499 wq_free_lockdep(wq);
3500
3501 if (!(wq->flags & WQ_UNBOUND))
3502 free_percpu(wq->cpu_pwqs);
3503 else
3504 free_workqueue_attrs(wq->unbound_attrs);
3505
3506 kfree(wq);
3507 }
3508
rcu_free_pool(struct rcu_head * rcu)3509 static void rcu_free_pool(struct rcu_head *rcu)
3510 {
3511 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3512
3513 ida_destroy(&pool->worker_ida);
3514 free_workqueue_attrs(pool->attrs);
3515 kfree(pool);
3516 }
3517
3518 /* This returns with the lock held on success (pool manager is inactive). */
wq_manager_inactive(struct worker_pool * pool)3519 static bool wq_manager_inactive(struct worker_pool *pool)
3520 {
3521 raw_spin_lock_irq(&pool->lock);
3522
3523 if (pool->flags & POOL_MANAGER_ACTIVE) {
3524 raw_spin_unlock_irq(&pool->lock);
3525 return false;
3526 }
3527 return true;
3528 }
3529
3530 /**
3531 * put_unbound_pool - put a worker_pool
3532 * @pool: worker_pool to put
3533 *
3534 * Put @pool. If its refcnt reaches zero, it gets destroyed in RCU
3535 * safe manner. get_unbound_pool() calls this function on its failure path
3536 * and this function should be able to release pools which went through,
3537 * successfully or not, init_worker_pool().
3538 *
3539 * Should be called with wq_pool_mutex held.
3540 */
put_unbound_pool(struct worker_pool * pool)3541 static void put_unbound_pool(struct worker_pool *pool)
3542 {
3543 DECLARE_COMPLETION_ONSTACK(detach_completion);
3544 struct worker *worker;
3545
3546 lockdep_assert_held(&wq_pool_mutex);
3547
3548 if (--pool->refcnt)
3549 return;
3550
3551 /* sanity checks */
3552 if (WARN_ON(!(pool->cpu < 0)) ||
3553 WARN_ON(!list_empty(&pool->worklist)))
3554 return;
3555
3556 /* release id and unhash */
3557 if (pool->id >= 0)
3558 idr_remove(&worker_pool_idr, pool->id);
3559 hash_del(&pool->hash_node);
3560
3561 /*
3562 * Become the manager and destroy all workers. This prevents
3563 * @pool's workers from blocking on attach_mutex. We're the last
3564 * manager and @pool gets freed with the flag set.
3565 * Because of how wq_manager_inactive() works, we will hold the
3566 * spinlock after a successful wait.
3567 */
3568 rcuwait_wait_event(&manager_wait, wq_manager_inactive(pool),
3569 TASK_UNINTERRUPTIBLE);
3570 pool->flags |= POOL_MANAGER_ACTIVE;
3571
3572 while ((worker = first_idle_worker(pool)))
3573 destroy_worker(worker);
3574 WARN_ON(pool->nr_workers || pool->nr_idle);
3575 raw_spin_unlock_irq(&pool->lock);
3576
3577 mutex_lock(&wq_pool_attach_mutex);
3578 if (!list_empty(&pool->workers))
3579 pool->detach_completion = &detach_completion;
3580 mutex_unlock(&wq_pool_attach_mutex);
3581
3582 if (pool->detach_completion)
3583 wait_for_completion(pool->detach_completion);
3584
3585 /* shut down the timers */
3586 del_timer_sync(&pool->idle_timer);
3587 del_timer_sync(&pool->mayday_timer);
3588
3589 /* RCU protected to allow dereferences from get_work_pool() */
3590 call_rcu(&pool->rcu, rcu_free_pool);
3591 }
3592
3593 /**
3594 * get_unbound_pool - get a worker_pool with the specified attributes
3595 * @attrs: the attributes of the worker_pool to get
3596 *
3597 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3598 * reference count and return it. If there already is a matching
3599 * worker_pool, it will be used; otherwise, this function attempts to
3600 * create a new one.
3601 *
3602 * Should be called with wq_pool_mutex held.
3603 *
3604 * Return: On success, a worker_pool with the same attributes as @attrs.
3605 * On failure, %NULL.
3606 */
get_unbound_pool(const struct workqueue_attrs * attrs)3607 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3608 {
3609 u32 hash = wqattrs_hash(attrs);
3610 struct worker_pool *pool;
3611 int node;
3612 int target_node = NUMA_NO_NODE;
3613
3614 lockdep_assert_held(&wq_pool_mutex);
3615
3616 /* do we already have a matching pool? */
3617 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3618 if (wqattrs_equal(pool->attrs, attrs)) {
3619 pool->refcnt++;
3620 return pool;
3621 }
3622 }
3623
3624 /* if cpumask is contained inside a NUMA node, we belong to that node */
3625 if (wq_numa_enabled) {
3626 for_each_node(node) {
3627 if (cpumask_subset(attrs->cpumask,
3628 wq_numa_possible_cpumask[node])) {
3629 target_node = node;
3630 break;
3631 }
3632 }
3633 }
3634
3635 /* nope, create a new one */
3636 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
3637 if (!pool || init_worker_pool(pool) < 0)
3638 goto fail;
3639
3640 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3641 copy_workqueue_attrs(pool->attrs, attrs);
3642 pool->node = target_node;
3643
3644 /*
3645 * no_numa isn't a worker_pool attribute, always clear it. See
3646 * 'struct workqueue_attrs' comments for detail.
3647 */
3648 pool->attrs->no_numa = false;
3649
3650 if (worker_pool_assign_id(pool) < 0)
3651 goto fail;
3652
3653 /* create and start the initial worker */
3654 if (wq_online && !create_worker(pool))
3655 goto fail;
3656
3657 /* install */
3658 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3659
3660 return pool;
3661 fail:
3662 if (pool)
3663 put_unbound_pool(pool);
3664 return NULL;
3665 }
3666
rcu_free_pwq(struct rcu_head * rcu)3667 static void rcu_free_pwq(struct rcu_head *rcu)
3668 {
3669 kmem_cache_free(pwq_cache,
3670 container_of(rcu, struct pool_workqueue, rcu));
3671 }
3672
3673 /*
3674 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3675 * and needs to be destroyed.
3676 */
pwq_unbound_release_workfn(struct work_struct * work)3677 static void pwq_unbound_release_workfn(struct work_struct *work)
3678 {
3679 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3680 unbound_release_work);
3681 struct workqueue_struct *wq = pwq->wq;
3682 struct worker_pool *pool = pwq->pool;
3683 bool is_last = false;
3684
3685 /*
3686 * when @pwq is not linked, it doesn't hold any reference to the
3687 * @wq, and @wq is invalid to access.
3688 */
3689 if (!list_empty(&pwq->pwqs_node)) {
3690 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3691 return;
3692
3693 mutex_lock(&wq->mutex);
3694 list_del_rcu(&pwq->pwqs_node);
3695 is_last = list_empty(&wq->pwqs);
3696 mutex_unlock(&wq->mutex);
3697 }
3698
3699 mutex_lock(&wq_pool_mutex);
3700 put_unbound_pool(pool);
3701 mutex_unlock(&wq_pool_mutex);
3702
3703 call_rcu(&pwq->rcu, rcu_free_pwq);
3704
3705 /*
3706 * If we're the last pwq going away, @wq is already dead and no one
3707 * is gonna access it anymore. Schedule RCU free.
3708 */
3709 if (is_last) {
3710 wq_unregister_lockdep(wq);
3711 call_rcu(&wq->rcu, rcu_free_wq);
3712 }
3713 }
3714
3715 /**
3716 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3717 * @pwq: target pool_workqueue
3718 *
3719 * If @pwq isn't freezing, set @pwq->max_active to the associated
3720 * workqueue's saved_max_active and activate inactive work items
3721 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3722 */
pwq_adjust_max_active(struct pool_workqueue * pwq)3723 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3724 {
3725 struct workqueue_struct *wq = pwq->wq;
3726 bool freezable = wq->flags & WQ_FREEZABLE;
3727 unsigned long flags;
3728
3729 /* for @wq->saved_max_active */
3730 lockdep_assert_held(&wq->mutex);
3731
3732 /* fast exit for non-freezable wqs */
3733 if (!freezable && pwq->max_active == wq->saved_max_active)
3734 return;
3735
3736 /* this function can be called during early boot w/ irq disabled */
3737 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
3738
3739 /*
3740 * During [un]freezing, the caller is responsible for ensuring that
3741 * this function is called at least once after @workqueue_freezing
3742 * is updated and visible.
3743 */
3744 if (!freezable || !workqueue_freezing) {
3745 bool kick = false;
3746
3747 pwq->max_active = wq->saved_max_active;
3748
3749 while (!list_empty(&pwq->inactive_works) &&
3750 pwq->nr_active < pwq->max_active) {
3751 pwq_activate_first_inactive(pwq);
3752 kick = true;
3753 }
3754
3755 /*
3756 * Need to kick a worker after thawed or an unbound wq's
3757 * max_active is bumped. In realtime scenarios, always kicking a
3758 * worker will cause interference on the isolated cpu cores, so
3759 * let's kick iff work items were activated.
3760 */
3761 if (kick)
3762 wake_up_worker(pwq->pool);
3763 } else {
3764 pwq->max_active = 0;
3765 }
3766
3767 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
3768 }
3769
3770 /* initialize newly alloced @pwq which is associated with @wq and @pool */
init_pwq(struct pool_workqueue * pwq,struct workqueue_struct * wq,struct worker_pool * pool)3771 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3772 struct worker_pool *pool)
3773 {
3774 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3775
3776 memset(pwq, 0, sizeof(*pwq));
3777
3778 pwq->pool = pool;
3779 pwq->wq = wq;
3780 pwq->flush_color = -1;
3781 pwq->refcnt = 1;
3782 INIT_LIST_HEAD(&pwq->inactive_works);
3783 INIT_LIST_HEAD(&pwq->pwqs_node);
3784 INIT_LIST_HEAD(&pwq->mayday_node);
3785 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3786 }
3787
3788 /* sync @pwq with the current state of its associated wq and link it */
link_pwq(struct pool_workqueue * pwq)3789 static void link_pwq(struct pool_workqueue *pwq)
3790 {
3791 struct workqueue_struct *wq = pwq->wq;
3792
3793 lockdep_assert_held(&wq->mutex);
3794
3795 /* may be called multiple times, ignore if already linked */
3796 if (!list_empty(&pwq->pwqs_node))
3797 return;
3798
3799 /* set the matching work_color */
3800 pwq->work_color = wq->work_color;
3801
3802 /* sync max_active to the current setting */
3803 pwq_adjust_max_active(pwq);
3804
3805 /* link in @pwq */
3806 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3807 }
3808
3809 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
alloc_unbound_pwq(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3810 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3811 const struct workqueue_attrs *attrs)
3812 {
3813 struct worker_pool *pool;
3814 struct pool_workqueue *pwq;
3815
3816 lockdep_assert_held(&wq_pool_mutex);
3817
3818 pool = get_unbound_pool(attrs);
3819 if (!pool)
3820 return NULL;
3821
3822 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3823 if (!pwq) {
3824 put_unbound_pool(pool);
3825 return NULL;
3826 }
3827
3828 init_pwq(pwq, wq, pool);
3829 return pwq;
3830 }
3831
3832 /**
3833 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
3834 * @attrs: the wq_attrs of the default pwq of the target workqueue
3835 * @node: the target NUMA node
3836 * @cpu_going_down: if >= 0, the CPU to consider as offline
3837 * @cpumask: outarg, the resulting cpumask
3838 *
3839 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3840 * @cpu_going_down is >= 0, that cpu is considered offline during
3841 * calculation. The result is stored in @cpumask.
3842 *
3843 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3844 * enabled and @node has online CPUs requested by @attrs, the returned
3845 * cpumask is the intersection of the possible CPUs of @node and
3846 * @attrs->cpumask.
3847 *
3848 * The caller is responsible for ensuring that the cpumask of @node stays
3849 * stable.
3850 *
3851 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3852 * %false if equal.
3853 */
wq_calc_node_cpumask(const struct workqueue_attrs * attrs,int node,int cpu_going_down,cpumask_t * cpumask)3854 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3855 int cpu_going_down, cpumask_t *cpumask)
3856 {
3857 if (!wq_numa_enabled || attrs->no_numa)
3858 goto use_dfl;
3859
3860 /* does @node have any online CPUs @attrs wants? */
3861 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3862 if (cpu_going_down >= 0)
3863 cpumask_clear_cpu(cpu_going_down, cpumask);
3864
3865 if (cpumask_empty(cpumask))
3866 goto use_dfl;
3867
3868 /* yeap, return possible CPUs in @node that @attrs wants */
3869 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3870
3871 if (cpumask_empty(cpumask)) {
3872 pr_warn_once("WARNING: workqueue cpumask: online intersect > "
3873 "possible intersect\n");
3874 return false;
3875 }
3876
3877 return !cpumask_equal(cpumask, attrs->cpumask);
3878
3879 use_dfl:
3880 cpumask_copy(cpumask, attrs->cpumask);
3881 return false;
3882 }
3883
3884 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
numa_pwq_tbl_install(struct workqueue_struct * wq,int node,struct pool_workqueue * pwq)3885 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3886 int node,
3887 struct pool_workqueue *pwq)
3888 {
3889 struct pool_workqueue *old_pwq;
3890
3891 lockdep_assert_held(&wq_pool_mutex);
3892 lockdep_assert_held(&wq->mutex);
3893
3894 /* link_pwq() can handle duplicate calls */
3895 link_pwq(pwq);
3896
3897 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3898 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3899 return old_pwq;
3900 }
3901
3902 /* context to store the prepared attrs & pwqs before applying */
3903 struct apply_wqattrs_ctx {
3904 struct workqueue_struct *wq; /* target workqueue */
3905 struct workqueue_attrs *attrs; /* attrs to apply */
3906 struct list_head list; /* queued for batching commit */
3907 struct pool_workqueue *dfl_pwq;
3908 struct pool_workqueue *pwq_tbl[];
3909 };
3910
3911 /* free the resources after success or abort */
apply_wqattrs_cleanup(struct apply_wqattrs_ctx * ctx)3912 static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3913 {
3914 if (ctx) {
3915 int node;
3916
3917 for_each_node(node)
3918 put_pwq_unlocked(ctx->pwq_tbl[node]);
3919 put_pwq_unlocked(ctx->dfl_pwq);
3920
3921 free_workqueue_attrs(ctx->attrs);
3922
3923 kfree(ctx);
3924 }
3925 }
3926
3927 /* allocate the attrs and pwqs for later installation */
3928 static struct apply_wqattrs_ctx *
apply_wqattrs_prepare(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)3929 apply_wqattrs_prepare(struct workqueue_struct *wq,
3930 const struct workqueue_attrs *attrs)
3931 {
3932 struct apply_wqattrs_ctx *ctx;
3933 struct workqueue_attrs *new_attrs, *tmp_attrs;
3934 int node;
3935
3936 lockdep_assert_held(&wq_pool_mutex);
3937
3938 ctx = kzalloc(struct_size(ctx, pwq_tbl, nr_node_ids), GFP_KERNEL);
3939
3940 new_attrs = alloc_workqueue_attrs();
3941 tmp_attrs = alloc_workqueue_attrs();
3942 if (!ctx || !new_attrs || !tmp_attrs)
3943 goto out_free;
3944
3945 /*
3946 * Calculate the attrs of the default pwq.
3947 * If the user configured cpumask doesn't overlap with the
3948 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3949 */
3950 copy_workqueue_attrs(new_attrs, attrs);
3951 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
3952 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3953 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
3954
3955 /*
3956 * We may create multiple pwqs with differing cpumasks. Make a
3957 * copy of @new_attrs which will be modified and used to obtain
3958 * pools.
3959 */
3960 copy_workqueue_attrs(tmp_attrs, new_attrs);
3961
3962 /*
3963 * If something goes wrong during CPU up/down, we'll fall back to
3964 * the default pwq covering whole @attrs->cpumask. Always create
3965 * it even if we don't use it immediately.
3966 */
3967 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3968 if (!ctx->dfl_pwq)
3969 goto out_free;
3970
3971 for_each_node(node) {
3972 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
3973 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3974 if (!ctx->pwq_tbl[node])
3975 goto out_free;
3976 } else {
3977 ctx->dfl_pwq->refcnt++;
3978 ctx->pwq_tbl[node] = ctx->dfl_pwq;
3979 }
3980 }
3981
3982 /* save the user configured attrs and sanitize it. */
3983 copy_workqueue_attrs(new_attrs, attrs);
3984 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3985 ctx->attrs = new_attrs;
3986
3987 ctx->wq = wq;
3988 free_workqueue_attrs(tmp_attrs);
3989 return ctx;
3990
3991 out_free:
3992 free_workqueue_attrs(tmp_attrs);
3993 free_workqueue_attrs(new_attrs);
3994 apply_wqattrs_cleanup(ctx);
3995 return NULL;
3996 }
3997
3998 /* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
apply_wqattrs_commit(struct apply_wqattrs_ctx * ctx)3999 static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
4000 {
4001 int node;
4002
4003 /* all pwqs have been created successfully, let's install'em */
4004 mutex_lock(&ctx->wq->mutex);
4005
4006 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4007
4008 /* save the previous pwq and install the new one */
4009 for_each_node(node)
4010 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
4011 ctx->pwq_tbl[node]);
4012
4013 /* @dfl_pwq might not have been used, ensure it's linked */
4014 link_pwq(ctx->dfl_pwq);
4015 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
4016
4017 mutex_unlock(&ctx->wq->mutex);
4018 }
4019
apply_wqattrs_lock(void)4020 static void apply_wqattrs_lock(void)
4021 {
4022 /* CPUs should stay stable across pwq creations and installations */
4023 get_online_cpus();
4024 mutex_lock(&wq_pool_mutex);
4025 }
4026
apply_wqattrs_unlock(void)4027 static void apply_wqattrs_unlock(void)
4028 {
4029 mutex_unlock(&wq_pool_mutex);
4030 put_online_cpus();
4031 }
4032
apply_workqueue_attrs_locked(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4033 static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
4034 const struct workqueue_attrs *attrs)
4035 {
4036 struct apply_wqattrs_ctx *ctx;
4037
4038 /* only unbound workqueues can change attributes */
4039 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
4040 return -EINVAL;
4041
4042 /* creating multiple pwqs breaks ordering guarantee */
4043 if (!list_empty(&wq->pwqs)) {
4044 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4045 return -EINVAL;
4046
4047 wq->flags &= ~__WQ_ORDERED;
4048 }
4049
4050 ctx = apply_wqattrs_prepare(wq, attrs);
4051 if (!ctx)
4052 return -ENOMEM;
4053
4054 /* the ctx has been prepared successfully, let's commit it */
4055 apply_wqattrs_commit(ctx);
4056 apply_wqattrs_cleanup(ctx);
4057
4058 return 0;
4059 }
4060
4061 /**
4062 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
4063 * @wq: the target workqueue
4064 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
4065 *
4066 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
4067 * machines, this function maps a separate pwq to each NUMA node with
4068 * possibles CPUs in @attrs->cpumask so that work items are affine to the
4069 * NUMA node it was issued on. Older pwqs are released as in-flight work
4070 * items finish. Note that a work item which repeatedly requeues itself
4071 * back-to-back will stay on its current pwq.
4072 *
4073 * Performs GFP_KERNEL allocations.
4074 *
4075 * Assumes caller has CPU hotplug read exclusion, i.e. get_online_cpus().
4076 *
4077 * Return: 0 on success and -errno on failure.
4078 */
apply_workqueue_attrs(struct workqueue_struct * wq,const struct workqueue_attrs * attrs)4079 int apply_workqueue_attrs(struct workqueue_struct *wq,
4080 const struct workqueue_attrs *attrs)
4081 {
4082 int ret;
4083
4084 lockdep_assert_cpus_held();
4085
4086 mutex_lock(&wq_pool_mutex);
4087 ret = apply_workqueue_attrs_locked(wq, attrs);
4088 mutex_unlock(&wq_pool_mutex);
4089
4090 return ret;
4091 }
4092
4093 /**
4094 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
4095 * @wq: the target workqueue
4096 * @cpu: the CPU coming up or going down
4097 * @online: whether @cpu is coming up or going down
4098 *
4099 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
4100 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
4101 * @wq accordingly.
4102 *
4103 * If NUMA affinity can't be adjusted due to memory allocation failure, it
4104 * falls back to @wq->dfl_pwq which may not be optimal but is always
4105 * correct.
4106 *
4107 * Note that when the last allowed CPU of a NUMA node goes offline for a
4108 * workqueue with a cpumask spanning multiple nodes, the workers which were
4109 * already executing the work items for the workqueue will lose their CPU
4110 * affinity and may execute on any CPU. This is similar to how per-cpu
4111 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4112 * affinity, it's the user's responsibility to flush the work item from
4113 * CPU_DOWN_PREPARE.
4114 */
wq_update_unbound_numa(struct workqueue_struct * wq,int cpu,bool online)4115 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4116 bool online)
4117 {
4118 int node = cpu_to_node(cpu);
4119 int cpu_off = online ? -1 : cpu;
4120 struct pool_workqueue *old_pwq = NULL, *pwq;
4121 struct workqueue_attrs *target_attrs;
4122 cpumask_t *cpumask;
4123
4124 lockdep_assert_held(&wq_pool_mutex);
4125
4126 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
4127 wq->unbound_attrs->no_numa)
4128 return;
4129
4130 /*
4131 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4132 * Let's use a preallocated one. The following buf is protected by
4133 * CPU hotplug exclusion.
4134 */
4135 target_attrs = wq_update_unbound_numa_attrs_buf;
4136 cpumask = target_attrs->cpumask;
4137
4138 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4139 pwq = unbound_pwq_by_node(wq, node);
4140
4141 /*
4142 * Let's determine what needs to be done. If the target cpumask is
4143 * different from the default pwq's, we need to compare it to @pwq's
4144 * and create a new one if they don't match. If the target cpumask
4145 * equals the default pwq's, the default pwq should be used.
4146 */
4147 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4148 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4149 return;
4150 } else {
4151 goto use_dfl_pwq;
4152 }
4153
4154 /* create a new pwq */
4155 pwq = alloc_unbound_pwq(wq, target_attrs);
4156 if (!pwq) {
4157 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4158 wq->name);
4159 goto use_dfl_pwq;
4160 }
4161
4162 /* Install the new pwq. */
4163 mutex_lock(&wq->mutex);
4164 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4165 goto out_unlock;
4166
4167 use_dfl_pwq:
4168 mutex_lock(&wq->mutex);
4169 raw_spin_lock_irq(&wq->dfl_pwq->pool->lock);
4170 get_pwq(wq->dfl_pwq);
4171 raw_spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4172 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4173 out_unlock:
4174 mutex_unlock(&wq->mutex);
4175 put_pwq_unlocked(old_pwq);
4176 }
4177
alloc_and_link_pwqs(struct workqueue_struct * wq)4178 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4179 {
4180 bool highpri = wq->flags & WQ_HIGHPRI;
4181 int cpu, ret;
4182
4183 if (!(wq->flags & WQ_UNBOUND)) {
4184 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4185 if (!wq->cpu_pwqs)
4186 return -ENOMEM;
4187
4188 for_each_possible_cpu(cpu) {
4189 struct pool_workqueue *pwq =
4190 per_cpu_ptr(wq->cpu_pwqs, cpu);
4191 struct worker_pool *cpu_pools =
4192 per_cpu(cpu_worker_pools, cpu);
4193
4194 init_pwq(pwq, wq, &cpu_pools[highpri]);
4195
4196 mutex_lock(&wq->mutex);
4197 link_pwq(pwq);
4198 mutex_unlock(&wq->mutex);
4199 }
4200 return 0;
4201 }
4202
4203 get_online_cpus();
4204 if (wq->flags & __WQ_ORDERED) {
4205 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
4206 /* there should only be single pwq for ordering guarantee */
4207 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
4208 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
4209 "ordering guarantee broken for workqueue %s\n", wq->name);
4210 } else {
4211 ret = apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4212 }
4213 put_online_cpus();
4214
4215 return ret;
4216 }
4217
wq_clamp_max_active(int max_active,unsigned int flags,const char * name)4218 static int wq_clamp_max_active(int max_active, unsigned int flags,
4219 const char *name)
4220 {
4221 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4222
4223 if (max_active < 1 || max_active > lim)
4224 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4225 max_active, name, 1, lim);
4226
4227 return clamp_val(max_active, 1, lim);
4228 }
4229
4230 /*
4231 * Workqueues which may be used during memory reclaim should have a rescuer
4232 * to guarantee forward progress.
4233 */
init_rescuer(struct workqueue_struct * wq)4234 static int init_rescuer(struct workqueue_struct *wq)
4235 {
4236 struct worker *rescuer;
4237 int ret;
4238
4239 if (!(wq->flags & WQ_MEM_RECLAIM))
4240 return 0;
4241
4242 rescuer = alloc_worker(NUMA_NO_NODE);
4243 if (!rescuer)
4244 return -ENOMEM;
4245
4246 rescuer->rescue_wq = wq;
4247 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s", wq->name);
4248 if (IS_ERR(rescuer->task)) {
4249 ret = PTR_ERR(rescuer->task);
4250 kfree(rescuer);
4251 return ret;
4252 }
4253
4254 wq->rescuer = rescuer;
4255 kthread_bind_mask(rescuer->task, cpu_possible_mask);
4256 wake_up_process(rescuer->task);
4257
4258 return 0;
4259 }
4260
4261 __printf(1, 4)
alloc_workqueue(const char * fmt,unsigned int flags,int max_active,...)4262 struct workqueue_struct *alloc_workqueue(const char *fmt,
4263 unsigned int flags,
4264 int max_active, ...)
4265 {
4266 size_t tbl_size = 0;
4267 va_list args;
4268 struct workqueue_struct *wq;
4269 struct pool_workqueue *pwq;
4270
4271 /*
4272 * Unbound && max_active == 1 used to imply ordered, which is no
4273 * longer the case on NUMA machines due to per-node pools. While
4274 * alloc_ordered_workqueue() is the right way to create an ordered
4275 * workqueue, keep the previous behavior to avoid subtle breakages
4276 * on NUMA.
4277 */
4278 if ((flags & WQ_UNBOUND) && max_active == 1)
4279 flags |= __WQ_ORDERED;
4280
4281 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4282 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4283 flags |= WQ_UNBOUND;
4284
4285 /* allocate wq and format name */
4286 if (flags & WQ_UNBOUND)
4287 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
4288
4289 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4290 if (!wq)
4291 return NULL;
4292
4293 if (flags & WQ_UNBOUND) {
4294 wq->unbound_attrs = alloc_workqueue_attrs();
4295 if (!wq->unbound_attrs)
4296 goto err_free_wq;
4297 }
4298
4299 va_start(args, max_active);
4300 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4301 va_end(args);
4302
4303 max_active = max_active ?: WQ_DFL_ACTIVE;
4304 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4305
4306 /* init wq */
4307 wq->flags = flags;
4308 wq->saved_max_active = max_active;
4309 mutex_init(&wq->mutex);
4310 atomic_set(&wq->nr_pwqs_to_flush, 0);
4311 INIT_LIST_HEAD(&wq->pwqs);
4312 INIT_LIST_HEAD(&wq->flusher_queue);
4313 INIT_LIST_HEAD(&wq->flusher_overflow);
4314 INIT_LIST_HEAD(&wq->maydays);
4315
4316 wq_init_lockdep(wq);
4317 INIT_LIST_HEAD(&wq->list);
4318
4319 if (alloc_and_link_pwqs(wq) < 0)
4320 goto err_unreg_lockdep;
4321
4322 if (wq_online && init_rescuer(wq) < 0)
4323 goto err_destroy;
4324
4325 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4326 goto err_destroy;
4327
4328 /*
4329 * wq_pool_mutex protects global freeze state and workqueues list.
4330 * Grab it, adjust max_active and add the new @wq to workqueues
4331 * list.
4332 */
4333 mutex_lock(&wq_pool_mutex);
4334
4335 mutex_lock(&wq->mutex);
4336 for_each_pwq(pwq, wq)
4337 pwq_adjust_max_active(pwq);
4338 mutex_unlock(&wq->mutex);
4339
4340 list_add_tail_rcu(&wq->list, &workqueues);
4341
4342 mutex_unlock(&wq_pool_mutex);
4343
4344 return wq;
4345
4346 err_unreg_lockdep:
4347 wq_unregister_lockdep(wq);
4348 wq_free_lockdep(wq);
4349 err_free_wq:
4350 free_workqueue_attrs(wq->unbound_attrs);
4351 kfree(wq);
4352 return NULL;
4353 err_destroy:
4354 destroy_workqueue(wq);
4355 return NULL;
4356 }
4357 EXPORT_SYMBOL_GPL(alloc_workqueue);
4358
pwq_busy(struct pool_workqueue * pwq)4359 static bool pwq_busy(struct pool_workqueue *pwq)
4360 {
4361 int i;
4362
4363 for (i = 0; i < WORK_NR_COLORS; i++)
4364 if (pwq->nr_in_flight[i])
4365 return true;
4366
4367 if ((pwq != pwq->wq->dfl_pwq) && (pwq->refcnt > 1))
4368 return true;
4369 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4370 return true;
4371
4372 return false;
4373 }
4374
4375 /**
4376 * destroy_workqueue - safely terminate a workqueue
4377 * @wq: target workqueue
4378 *
4379 * Safely destroy a workqueue. All work currently pending will be done first.
4380 */
destroy_workqueue(struct workqueue_struct * wq)4381 void destroy_workqueue(struct workqueue_struct *wq)
4382 {
4383 struct pool_workqueue *pwq;
4384 int node;
4385
4386 /*
4387 * Remove it from sysfs first so that sanity check failure doesn't
4388 * lead to sysfs name conflicts.
4389 */
4390 workqueue_sysfs_unregister(wq);
4391
4392 /* drain it before proceeding with destruction */
4393 drain_workqueue(wq);
4394
4395 /* kill rescuer, if sanity checks fail, leave it w/o rescuer */
4396 if (wq->rescuer) {
4397 struct worker *rescuer = wq->rescuer;
4398
4399 /* this prevents new queueing */
4400 raw_spin_lock_irq(&wq_mayday_lock);
4401 wq->rescuer = NULL;
4402 raw_spin_unlock_irq(&wq_mayday_lock);
4403
4404 /* rescuer will empty maydays list before exiting */
4405 kthread_stop(rescuer->task);
4406 kfree(rescuer);
4407 }
4408
4409 /*
4410 * Sanity checks - grab all the locks so that we wait for all
4411 * in-flight operations which may do put_pwq().
4412 */
4413 mutex_lock(&wq_pool_mutex);
4414 mutex_lock(&wq->mutex);
4415 for_each_pwq(pwq, wq) {
4416 raw_spin_lock_irq(&pwq->pool->lock);
4417 if (WARN_ON(pwq_busy(pwq))) {
4418 pr_warn("%s: %s has the following busy pwq\n",
4419 __func__, wq->name);
4420 show_pwq(pwq);
4421 raw_spin_unlock_irq(&pwq->pool->lock);
4422 mutex_unlock(&wq->mutex);
4423 mutex_unlock(&wq_pool_mutex);
4424 show_workqueue_state();
4425 return;
4426 }
4427 raw_spin_unlock_irq(&pwq->pool->lock);
4428 }
4429 mutex_unlock(&wq->mutex);
4430
4431 /*
4432 * wq list is used to freeze wq, remove from list after
4433 * flushing is complete in case freeze races us.
4434 */
4435 list_del_rcu(&wq->list);
4436 mutex_unlock(&wq_pool_mutex);
4437
4438 if (!(wq->flags & WQ_UNBOUND)) {
4439 wq_unregister_lockdep(wq);
4440 /*
4441 * The base ref is never dropped on per-cpu pwqs. Directly
4442 * schedule RCU free.
4443 */
4444 call_rcu(&wq->rcu, rcu_free_wq);
4445 } else {
4446 /*
4447 * We're the sole accessor of @wq at this point. Directly
4448 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4449 * @wq will be freed when the last pwq is released.
4450 */
4451 for_each_node(node) {
4452 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4453 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4454 put_pwq_unlocked(pwq);
4455 }
4456
4457 /*
4458 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4459 * put. Don't access it afterwards.
4460 */
4461 pwq = wq->dfl_pwq;
4462 wq->dfl_pwq = NULL;
4463 put_pwq_unlocked(pwq);
4464 }
4465 }
4466 EXPORT_SYMBOL_GPL(destroy_workqueue);
4467
4468 /**
4469 * workqueue_set_max_active - adjust max_active of a workqueue
4470 * @wq: target workqueue
4471 * @max_active: new max_active value.
4472 *
4473 * Set max_active of @wq to @max_active.
4474 *
4475 * CONTEXT:
4476 * Don't call from IRQ context.
4477 */
workqueue_set_max_active(struct workqueue_struct * wq,int max_active)4478 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4479 {
4480 struct pool_workqueue *pwq;
4481
4482 /* disallow meddling with max_active for ordered workqueues */
4483 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
4484 return;
4485
4486 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4487
4488 mutex_lock(&wq->mutex);
4489
4490 wq->flags &= ~__WQ_ORDERED;
4491 wq->saved_max_active = max_active;
4492
4493 for_each_pwq(pwq, wq)
4494 pwq_adjust_max_active(pwq);
4495
4496 mutex_unlock(&wq->mutex);
4497 }
4498 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4499
4500 /**
4501 * current_work - retrieve %current task's work struct
4502 *
4503 * Determine if %current task is a workqueue worker and what it's working on.
4504 * Useful to find out the context that the %current task is running in.
4505 *
4506 * Return: work struct if %current task is a workqueue worker, %NULL otherwise.
4507 */
current_work(void)4508 struct work_struct *current_work(void)
4509 {
4510 struct worker *worker = current_wq_worker();
4511
4512 return worker ? worker->current_work : NULL;
4513 }
4514 EXPORT_SYMBOL(current_work);
4515
4516 /**
4517 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4518 *
4519 * Determine whether %current is a workqueue rescuer. Can be used from
4520 * work functions to determine whether it's being run off the rescuer task.
4521 *
4522 * Return: %true if %current is a workqueue rescuer. %false otherwise.
4523 */
current_is_workqueue_rescuer(void)4524 bool current_is_workqueue_rescuer(void)
4525 {
4526 struct worker *worker = current_wq_worker();
4527
4528 return worker && worker->rescue_wq;
4529 }
4530
4531 /**
4532 * workqueue_congested - test whether a workqueue is congested
4533 * @cpu: CPU in question
4534 * @wq: target workqueue
4535 *
4536 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4537 * no synchronization around this function and the test result is
4538 * unreliable and only useful as advisory hints or for debugging.
4539 *
4540 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4541 * Note that both per-cpu and unbound workqueues may be associated with
4542 * multiple pool_workqueues which have separate congested states. A
4543 * workqueue being congested on one CPU doesn't mean the workqueue is also
4544 * contested on other CPUs / NUMA nodes.
4545 *
4546 * Return:
4547 * %true if congested, %false otherwise.
4548 */
workqueue_congested(int cpu,struct workqueue_struct * wq)4549 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4550 {
4551 struct pool_workqueue *pwq;
4552 bool ret;
4553
4554 rcu_read_lock();
4555 preempt_disable();
4556
4557 if (cpu == WORK_CPU_UNBOUND)
4558 cpu = smp_processor_id();
4559
4560 if (!(wq->flags & WQ_UNBOUND))
4561 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4562 else
4563 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4564
4565 ret = !list_empty(&pwq->inactive_works);
4566 preempt_enable();
4567 rcu_read_unlock();
4568
4569 return ret;
4570 }
4571 EXPORT_SYMBOL_GPL(workqueue_congested);
4572
4573 /**
4574 * work_busy - test whether a work is currently pending or running
4575 * @work: the work to be tested
4576 *
4577 * Test whether @work is currently pending or running. There is no
4578 * synchronization around this function and the test result is
4579 * unreliable and only useful as advisory hints or for debugging.
4580 *
4581 * Return:
4582 * OR'd bitmask of WORK_BUSY_* bits.
4583 */
work_busy(struct work_struct * work)4584 unsigned int work_busy(struct work_struct *work)
4585 {
4586 struct worker_pool *pool;
4587 unsigned long flags;
4588 unsigned int ret = 0;
4589
4590 if (work_pending(work))
4591 ret |= WORK_BUSY_PENDING;
4592
4593 rcu_read_lock();
4594 pool = get_work_pool(work);
4595 if (pool) {
4596 raw_spin_lock_irqsave(&pool->lock, flags);
4597 if (find_worker_executing_work(pool, work))
4598 ret |= WORK_BUSY_RUNNING;
4599 raw_spin_unlock_irqrestore(&pool->lock, flags);
4600 }
4601 rcu_read_unlock();
4602
4603 return ret;
4604 }
4605 EXPORT_SYMBOL_GPL(work_busy);
4606
4607 /**
4608 * set_worker_desc - set description for the current work item
4609 * @fmt: printf-style format string
4610 * @...: arguments for the format string
4611 *
4612 * This function can be called by a running work function to describe what
4613 * the work item is about. If the worker task gets dumped, this
4614 * information will be printed out together to help debugging. The
4615 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4616 */
set_worker_desc(const char * fmt,...)4617 void set_worker_desc(const char *fmt, ...)
4618 {
4619 struct worker *worker = current_wq_worker();
4620 va_list args;
4621
4622 if (worker) {
4623 va_start(args, fmt);
4624 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4625 va_end(args);
4626 }
4627 }
4628 EXPORT_SYMBOL_GPL(set_worker_desc);
4629
4630 /**
4631 * print_worker_info - print out worker information and description
4632 * @log_lvl: the log level to use when printing
4633 * @task: target task
4634 *
4635 * If @task is a worker and currently executing a work item, print out the
4636 * name of the workqueue being serviced and worker description set with
4637 * set_worker_desc() by the currently executing work item.
4638 *
4639 * This function can be safely called on any task as long as the
4640 * task_struct itself is accessible. While safe, this function isn't
4641 * synchronized and may print out mixups or garbages of limited length.
4642 */
print_worker_info(const char * log_lvl,struct task_struct * task)4643 void print_worker_info(const char *log_lvl, struct task_struct *task)
4644 {
4645 work_func_t *fn = NULL;
4646 char name[WQ_NAME_LEN] = { };
4647 char desc[WORKER_DESC_LEN] = { };
4648 struct pool_workqueue *pwq = NULL;
4649 struct workqueue_struct *wq = NULL;
4650 struct worker *worker;
4651
4652 if (!(task->flags & PF_WQ_WORKER))
4653 return;
4654
4655 /*
4656 * This function is called without any synchronization and @task
4657 * could be in any state. Be careful with dereferences.
4658 */
4659 worker = kthread_probe_data(task);
4660
4661 /*
4662 * Carefully copy the associated workqueue's workfn, name and desc.
4663 * Keep the original last '\0' in case the original is garbage.
4664 */
4665 copy_from_kernel_nofault(&fn, &worker->current_func, sizeof(fn));
4666 copy_from_kernel_nofault(&pwq, &worker->current_pwq, sizeof(pwq));
4667 copy_from_kernel_nofault(&wq, &pwq->wq, sizeof(wq));
4668 copy_from_kernel_nofault(name, wq->name, sizeof(name) - 1);
4669 copy_from_kernel_nofault(desc, worker->desc, sizeof(desc) - 1);
4670
4671 if (fn || name[0] || desc[0]) {
4672 printk("%sWorkqueue: %s %ps", log_lvl, name, fn);
4673 if (strcmp(name, desc))
4674 pr_cont(" (%s)", desc);
4675 pr_cont("\n");
4676 }
4677 }
4678
pr_cont_pool_info(struct worker_pool * pool)4679 static void pr_cont_pool_info(struct worker_pool *pool)
4680 {
4681 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4682 if (pool->node != NUMA_NO_NODE)
4683 pr_cont(" node=%d", pool->node);
4684 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4685 }
4686
pr_cont_work(bool comma,struct work_struct * work)4687 static void pr_cont_work(bool comma, struct work_struct *work)
4688 {
4689 if (work->func == wq_barrier_func) {
4690 struct wq_barrier *barr;
4691
4692 barr = container_of(work, struct wq_barrier, work);
4693
4694 pr_cont("%s BAR(%d)", comma ? "," : "",
4695 task_pid_nr(barr->task));
4696 } else {
4697 pr_cont("%s %ps", comma ? "," : "", work->func);
4698 }
4699 }
4700
show_pwq(struct pool_workqueue * pwq)4701 static void show_pwq(struct pool_workqueue *pwq)
4702 {
4703 struct worker_pool *pool = pwq->pool;
4704 struct work_struct *work;
4705 struct worker *worker;
4706 bool has_in_flight = false, has_pending = false;
4707 int bkt;
4708
4709 pr_info(" pwq %d:", pool->id);
4710 pr_cont_pool_info(pool);
4711
4712 pr_cont(" active=%d/%d refcnt=%d%s\n",
4713 pwq->nr_active, pwq->max_active, pwq->refcnt,
4714 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4715
4716 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4717 if (worker->current_pwq == pwq) {
4718 has_in_flight = true;
4719 break;
4720 }
4721 }
4722 if (has_in_flight) {
4723 bool comma = false;
4724
4725 pr_info(" in-flight:");
4726 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4727 if (worker->current_pwq != pwq)
4728 continue;
4729
4730 pr_cont("%s %d%s:%ps", comma ? "," : "",
4731 task_pid_nr(worker->task),
4732 worker->rescue_wq ? "(RESCUER)" : "",
4733 worker->current_func);
4734 list_for_each_entry(work, &worker->scheduled, entry)
4735 pr_cont_work(false, work);
4736 comma = true;
4737 }
4738 pr_cont("\n");
4739 }
4740
4741 list_for_each_entry(work, &pool->worklist, entry) {
4742 if (get_work_pwq(work) == pwq) {
4743 has_pending = true;
4744 break;
4745 }
4746 }
4747 if (has_pending) {
4748 bool comma = false;
4749
4750 pr_info(" pending:");
4751 list_for_each_entry(work, &pool->worklist, entry) {
4752 if (get_work_pwq(work) != pwq)
4753 continue;
4754
4755 pr_cont_work(comma, work);
4756 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4757 }
4758 pr_cont("\n");
4759 }
4760
4761 if (!list_empty(&pwq->inactive_works)) {
4762 bool comma = false;
4763
4764 pr_info(" inactive:");
4765 list_for_each_entry(work, &pwq->inactive_works, entry) {
4766 pr_cont_work(comma, work);
4767 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4768 }
4769 pr_cont("\n");
4770 }
4771 }
4772
4773 /**
4774 * show_workqueue_state - dump workqueue state
4775 *
4776 * Called from a sysrq handler or try_to_freeze_tasks() and prints out
4777 * all busy workqueues and pools.
4778 */
show_workqueue_state(void)4779 void show_workqueue_state(void)
4780 {
4781 struct workqueue_struct *wq;
4782 struct worker_pool *pool;
4783 unsigned long flags;
4784 int pi;
4785
4786 rcu_read_lock();
4787
4788 pr_info("Showing busy workqueues and worker pools:\n");
4789
4790 list_for_each_entry_rcu(wq, &workqueues, list) {
4791 struct pool_workqueue *pwq;
4792 bool idle = true;
4793
4794 for_each_pwq(pwq, wq) {
4795 if (pwq->nr_active || !list_empty(&pwq->inactive_works)) {
4796 idle = false;
4797 break;
4798 }
4799 }
4800 if (idle)
4801 continue;
4802
4803 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4804
4805 for_each_pwq(pwq, wq) {
4806 raw_spin_lock_irqsave(&pwq->pool->lock, flags);
4807 if (pwq->nr_active || !list_empty(&pwq->inactive_works))
4808 show_pwq(pwq);
4809 raw_spin_unlock_irqrestore(&pwq->pool->lock, flags);
4810 /*
4811 * We could be printing a lot from atomic context, e.g.
4812 * sysrq-t -> show_workqueue_state(). Avoid triggering
4813 * hard lockup.
4814 */
4815 touch_nmi_watchdog();
4816 }
4817 }
4818
4819 for_each_pool(pool, pi) {
4820 struct worker *worker;
4821 bool first = true;
4822 unsigned long hung = 0;
4823
4824 raw_spin_lock_irqsave(&pool->lock, flags);
4825 if (pool->nr_workers == pool->nr_idle)
4826 goto next_pool;
4827
4828 /* How long the first pending work is waiting for a worker. */
4829 if (!list_empty(&pool->worklist))
4830 hung = jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000;
4831
4832 pr_info("pool %d:", pool->id);
4833 pr_cont_pool_info(pool);
4834 pr_cont(" hung=%lus workers=%d", hung, pool->nr_workers);
4835 if (pool->manager)
4836 pr_cont(" manager: %d",
4837 task_pid_nr(pool->manager->task));
4838 list_for_each_entry(worker, &pool->idle_list, entry) {
4839 pr_cont(" %s%d", first ? "idle: " : "",
4840 task_pid_nr(worker->task));
4841 first = false;
4842 }
4843 pr_cont("\n");
4844 next_pool:
4845 raw_spin_unlock_irqrestore(&pool->lock, flags);
4846 /*
4847 * We could be printing a lot from atomic context, e.g.
4848 * sysrq-t -> show_workqueue_state(). Avoid triggering
4849 * hard lockup.
4850 */
4851 touch_nmi_watchdog();
4852 }
4853
4854 rcu_read_unlock();
4855 }
4856
4857 /* used to show worker information through /proc/PID/{comm,stat,status} */
wq_worker_comm(char * buf,size_t size,struct task_struct * task)4858 void wq_worker_comm(char *buf, size_t size, struct task_struct *task)
4859 {
4860 int off;
4861
4862 /* always show the actual comm */
4863 off = strscpy(buf, task->comm, size);
4864 if (off < 0)
4865 return;
4866
4867 /* stabilize PF_WQ_WORKER and worker pool association */
4868 mutex_lock(&wq_pool_attach_mutex);
4869
4870 if (task->flags & PF_WQ_WORKER) {
4871 struct worker *worker = kthread_data(task);
4872 struct worker_pool *pool = worker->pool;
4873
4874 if (pool) {
4875 raw_spin_lock_irq(&pool->lock);
4876 /*
4877 * ->desc tracks information (wq name or
4878 * set_worker_desc()) for the latest execution. If
4879 * current, prepend '+', otherwise '-'.
4880 */
4881 if (worker->desc[0] != '\0') {
4882 if (worker->current_work)
4883 scnprintf(buf + off, size - off, "+%s",
4884 worker->desc);
4885 else
4886 scnprintf(buf + off, size - off, "-%s",
4887 worker->desc);
4888 }
4889 raw_spin_unlock_irq(&pool->lock);
4890 }
4891 }
4892
4893 mutex_unlock(&wq_pool_attach_mutex);
4894 }
4895
4896 #ifdef CONFIG_SMP
4897
4898 /*
4899 * CPU hotplug.
4900 *
4901 * There are two challenges in supporting CPU hotplug. Firstly, there
4902 * are a lot of assumptions on strong associations among work, pwq and
4903 * pool which make migrating pending and scheduled works very
4904 * difficult to implement without impacting hot paths. Secondly,
4905 * worker pools serve mix of short, long and very long running works making
4906 * blocked draining impractical.
4907 *
4908 * This is solved by allowing the pools to be disassociated from the CPU
4909 * running as an unbound one and allowing it to be reattached later if the
4910 * cpu comes back online.
4911 */
4912
unbind_workers(int cpu)4913 static void unbind_workers(int cpu)
4914 {
4915 struct worker_pool *pool;
4916 struct worker *worker;
4917
4918 for_each_cpu_worker_pool(pool, cpu) {
4919 mutex_lock(&wq_pool_attach_mutex);
4920 raw_spin_lock_irq(&pool->lock);
4921
4922 /*
4923 * We've blocked all attach/detach operations. Make all workers
4924 * unbound and set DISASSOCIATED. Before this, all workers
4925 * except for the ones which are still executing works from
4926 * before the last CPU down must be on the cpu. After
4927 * this, they may become diasporas.
4928 */
4929 for_each_pool_worker(worker, pool)
4930 worker->flags |= WORKER_UNBOUND;
4931
4932 pool->flags |= POOL_DISASSOCIATED;
4933
4934 raw_spin_unlock_irq(&pool->lock);
4935 mutex_unlock(&wq_pool_attach_mutex);
4936
4937 /*
4938 * Call schedule() so that we cross rq->lock and thus can
4939 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4940 * This is necessary as scheduler callbacks may be invoked
4941 * from other cpus.
4942 */
4943 schedule();
4944
4945 /*
4946 * Sched callbacks are disabled now. Zap nr_running.
4947 * After this, nr_running stays zero and need_more_worker()
4948 * and keep_working() are always true as long as the
4949 * worklist is not empty. This pool now behaves as an
4950 * unbound (in terms of concurrency management) pool which
4951 * are served by workers tied to the pool.
4952 */
4953 atomic_set(&pool->nr_running, 0);
4954
4955 /*
4956 * With concurrency management just turned off, a busy
4957 * worker blocking could lead to lengthy stalls. Kick off
4958 * unbound chain execution of currently pending work items.
4959 */
4960 raw_spin_lock_irq(&pool->lock);
4961 wake_up_worker(pool);
4962 raw_spin_unlock_irq(&pool->lock);
4963 }
4964 }
4965
4966 /**
4967 * rebind_workers - rebind all workers of a pool to the associated CPU
4968 * @pool: pool of interest
4969 *
4970 * @pool->cpu is coming online. Rebind all workers to the CPU.
4971 */
rebind_workers(struct worker_pool * pool)4972 static void rebind_workers(struct worker_pool *pool)
4973 {
4974 struct worker *worker;
4975
4976 lockdep_assert_held(&wq_pool_attach_mutex);
4977
4978 /*
4979 * Restore CPU affinity of all workers. As all idle workers should
4980 * be on the run-queue of the associated CPU before any local
4981 * wake-ups for concurrency management happen, restore CPU affinity
4982 * of all workers first and then clear UNBOUND. As we're called
4983 * from CPU_ONLINE, the following shouldn't fail.
4984 */
4985 for_each_pool_worker(worker, pool)
4986 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4987 pool->attrs->cpumask) < 0);
4988
4989 raw_spin_lock_irq(&pool->lock);
4990
4991 pool->flags &= ~POOL_DISASSOCIATED;
4992
4993 for_each_pool_worker(worker, pool) {
4994 unsigned int worker_flags = worker->flags;
4995
4996 /*
4997 * A bound idle worker should actually be on the runqueue
4998 * of the associated CPU for local wake-ups targeting it to
4999 * work. Kick all idle workers so that they migrate to the
5000 * associated CPU. Doing this in the same loop as
5001 * replacing UNBOUND with REBOUND is safe as no worker will
5002 * be bound before @pool->lock is released.
5003 */
5004 if (worker_flags & WORKER_IDLE)
5005 wake_up_process(worker->task);
5006
5007 /*
5008 * We want to clear UNBOUND but can't directly call
5009 * worker_clr_flags() or adjust nr_running. Atomically
5010 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
5011 * @worker will clear REBOUND using worker_clr_flags() when
5012 * it initiates the next execution cycle thus restoring
5013 * concurrency management. Note that when or whether
5014 * @worker clears REBOUND doesn't affect correctness.
5015 *
5016 * WRITE_ONCE() is necessary because @worker->flags may be
5017 * tested without holding any lock in
5018 * wq_worker_running(). Without it, NOT_RUNNING test may
5019 * fail incorrectly leading to premature concurrency
5020 * management operations.
5021 */
5022 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
5023 worker_flags |= WORKER_REBOUND;
5024 worker_flags &= ~WORKER_UNBOUND;
5025 WRITE_ONCE(worker->flags, worker_flags);
5026 }
5027
5028 raw_spin_unlock_irq(&pool->lock);
5029 }
5030
5031 /**
5032 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
5033 * @pool: unbound pool of interest
5034 * @cpu: the CPU which is coming up
5035 *
5036 * An unbound pool may end up with a cpumask which doesn't have any online
5037 * CPUs. When a worker of such pool get scheduled, the scheduler resets
5038 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
5039 * online CPU before, cpus_allowed of all its workers should be restored.
5040 */
restore_unbound_workers_cpumask(struct worker_pool * pool,int cpu)5041 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
5042 {
5043 static cpumask_t cpumask;
5044 struct worker *worker;
5045
5046 lockdep_assert_held(&wq_pool_attach_mutex);
5047
5048 /* is @cpu allowed for @pool? */
5049 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
5050 return;
5051
5052 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
5053
5054 /* as we're called from CPU_ONLINE, the following shouldn't fail */
5055 for_each_pool_worker(worker, pool)
5056 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task, &cpumask) < 0);
5057 }
5058
workqueue_prepare_cpu(unsigned int cpu)5059 int workqueue_prepare_cpu(unsigned int cpu)
5060 {
5061 struct worker_pool *pool;
5062
5063 for_each_cpu_worker_pool(pool, cpu) {
5064 if (pool->nr_workers)
5065 continue;
5066 if (!create_worker(pool))
5067 return -ENOMEM;
5068 }
5069 return 0;
5070 }
5071
workqueue_online_cpu(unsigned int cpu)5072 int workqueue_online_cpu(unsigned int cpu)
5073 {
5074 struct worker_pool *pool;
5075 struct workqueue_struct *wq;
5076 int pi;
5077
5078 mutex_lock(&wq_pool_mutex);
5079
5080 for_each_pool(pool, pi) {
5081 mutex_lock(&wq_pool_attach_mutex);
5082
5083 if (pool->cpu == cpu)
5084 rebind_workers(pool);
5085 else if (pool->cpu < 0)
5086 restore_unbound_workers_cpumask(pool, cpu);
5087
5088 mutex_unlock(&wq_pool_attach_mutex);
5089 }
5090
5091 /* update NUMA affinity of unbound workqueues */
5092 list_for_each_entry(wq, &workqueues, list)
5093 wq_update_unbound_numa(wq, cpu, true);
5094
5095 mutex_unlock(&wq_pool_mutex);
5096 return 0;
5097 }
5098
workqueue_offline_cpu(unsigned int cpu)5099 int workqueue_offline_cpu(unsigned int cpu)
5100 {
5101 struct workqueue_struct *wq;
5102
5103 /* unbinding per-cpu workers should happen on the local CPU */
5104 if (WARN_ON(cpu != smp_processor_id()))
5105 return -1;
5106
5107 unbind_workers(cpu);
5108
5109 /* update NUMA affinity of unbound workqueues */
5110 mutex_lock(&wq_pool_mutex);
5111 list_for_each_entry(wq, &workqueues, list)
5112 wq_update_unbound_numa(wq, cpu, false);
5113 mutex_unlock(&wq_pool_mutex);
5114
5115 return 0;
5116 }
5117
5118 struct work_for_cpu {
5119 struct work_struct work;
5120 long (*fn)(void *);
5121 void *arg;
5122 long ret;
5123 };
5124
work_for_cpu_fn(struct work_struct * work)5125 static void work_for_cpu_fn(struct work_struct *work)
5126 {
5127 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
5128
5129 wfc->ret = wfc->fn(wfc->arg);
5130 }
5131
5132 /**
5133 * work_on_cpu - run a function in thread context on a particular cpu
5134 * @cpu: the cpu to run on
5135 * @fn: the function to run
5136 * @arg: the function arg
5137 *
5138 * It is up to the caller to ensure that the cpu doesn't go offline.
5139 * The caller must not hold any locks which would prevent @fn from completing.
5140 *
5141 * Return: The value @fn returns.
5142 */
work_on_cpu(int cpu,long (* fn)(void *),void * arg)5143 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
5144 {
5145 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
5146
5147 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
5148 schedule_work_on(cpu, &wfc.work);
5149 flush_work(&wfc.work);
5150 destroy_work_on_stack(&wfc.work);
5151 return wfc.ret;
5152 }
5153 EXPORT_SYMBOL_GPL(work_on_cpu);
5154
5155 /**
5156 * work_on_cpu_safe - run a function in thread context on a particular cpu
5157 * @cpu: the cpu to run on
5158 * @fn: the function to run
5159 * @arg: the function argument
5160 *
5161 * Disables CPU hotplug and calls work_on_cpu(). The caller must not hold
5162 * any locks which would prevent @fn from completing.
5163 *
5164 * Return: The value @fn returns.
5165 */
work_on_cpu_safe(int cpu,long (* fn)(void *),void * arg)5166 long work_on_cpu_safe(int cpu, long (*fn)(void *), void *arg)
5167 {
5168 long ret = -ENODEV;
5169
5170 get_online_cpus();
5171 if (cpu_online(cpu))
5172 ret = work_on_cpu(cpu, fn, arg);
5173 put_online_cpus();
5174 return ret;
5175 }
5176 EXPORT_SYMBOL_GPL(work_on_cpu_safe);
5177 #endif /* CONFIG_SMP */
5178
5179 #ifdef CONFIG_FREEZER
5180
5181 /**
5182 * freeze_workqueues_begin - begin freezing workqueues
5183 *
5184 * Start freezing workqueues. After this function returns, all freezable
5185 * workqueues will queue new works to their inactive_works list instead of
5186 * pool->worklist.
5187 *
5188 * CONTEXT:
5189 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5190 */
freeze_workqueues_begin(void)5191 void freeze_workqueues_begin(void)
5192 {
5193 struct workqueue_struct *wq;
5194 struct pool_workqueue *pwq;
5195
5196 mutex_lock(&wq_pool_mutex);
5197
5198 WARN_ON_ONCE(workqueue_freezing);
5199 workqueue_freezing = true;
5200
5201 list_for_each_entry(wq, &workqueues, list) {
5202 mutex_lock(&wq->mutex);
5203 for_each_pwq(pwq, wq)
5204 pwq_adjust_max_active(pwq);
5205 mutex_unlock(&wq->mutex);
5206 }
5207
5208 mutex_unlock(&wq_pool_mutex);
5209 }
5210
5211 /**
5212 * freeze_workqueues_busy - are freezable workqueues still busy?
5213 *
5214 * Check whether freezing is complete. This function must be called
5215 * between freeze_workqueues_begin() and thaw_workqueues().
5216 *
5217 * CONTEXT:
5218 * Grabs and releases wq_pool_mutex.
5219 *
5220 * Return:
5221 * %true if some freezable workqueues are still busy. %false if freezing
5222 * is complete.
5223 */
freeze_workqueues_busy(void)5224 bool freeze_workqueues_busy(void)
5225 {
5226 bool busy = false;
5227 struct workqueue_struct *wq;
5228 struct pool_workqueue *pwq;
5229
5230 mutex_lock(&wq_pool_mutex);
5231
5232 WARN_ON_ONCE(!workqueue_freezing);
5233
5234 list_for_each_entry(wq, &workqueues, list) {
5235 if (!(wq->flags & WQ_FREEZABLE))
5236 continue;
5237 /*
5238 * nr_active is monotonically decreasing. It's safe
5239 * to peek without lock.
5240 */
5241 rcu_read_lock();
5242 for_each_pwq(pwq, wq) {
5243 WARN_ON_ONCE(pwq->nr_active < 0);
5244 if (pwq->nr_active) {
5245 busy = true;
5246 rcu_read_unlock();
5247 goto out_unlock;
5248 }
5249 }
5250 rcu_read_unlock();
5251 }
5252 out_unlock:
5253 mutex_unlock(&wq_pool_mutex);
5254 return busy;
5255 }
5256
5257 /**
5258 * thaw_workqueues - thaw workqueues
5259 *
5260 * Thaw workqueues. Normal queueing is restored and all collected
5261 * frozen works are transferred to their respective pool worklists.
5262 *
5263 * CONTEXT:
5264 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
5265 */
thaw_workqueues(void)5266 void thaw_workqueues(void)
5267 {
5268 struct workqueue_struct *wq;
5269 struct pool_workqueue *pwq;
5270
5271 mutex_lock(&wq_pool_mutex);
5272
5273 if (!workqueue_freezing)
5274 goto out_unlock;
5275
5276 workqueue_freezing = false;
5277
5278 /* restore max_active and repopulate worklist */
5279 list_for_each_entry(wq, &workqueues, list) {
5280 mutex_lock(&wq->mutex);
5281 for_each_pwq(pwq, wq)
5282 pwq_adjust_max_active(pwq);
5283 mutex_unlock(&wq->mutex);
5284 }
5285
5286 out_unlock:
5287 mutex_unlock(&wq_pool_mutex);
5288 }
5289 #endif /* CONFIG_FREEZER */
5290
workqueue_apply_unbound_cpumask(void)5291 static int workqueue_apply_unbound_cpumask(void)
5292 {
5293 LIST_HEAD(ctxs);
5294 int ret = 0;
5295 struct workqueue_struct *wq;
5296 struct apply_wqattrs_ctx *ctx, *n;
5297
5298 lockdep_assert_held(&wq_pool_mutex);
5299
5300 list_for_each_entry(wq, &workqueues, list) {
5301 if (!(wq->flags & WQ_UNBOUND))
5302 continue;
5303 /* creating multiple pwqs breaks ordering guarantee */
5304 if (wq->flags & __WQ_ORDERED)
5305 continue;
5306
5307 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
5308 if (!ctx) {
5309 ret = -ENOMEM;
5310 break;
5311 }
5312
5313 list_add_tail(&ctx->list, &ctxs);
5314 }
5315
5316 list_for_each_entry_safe(ctx, n, &ctxs, list) {
5317 if (!ret)
5318 apply_wqattrs_commit(ctx);
5319 apply_wqattrs_cleanup(ctx);
5320 }
5321
5322 return ret;
5323 }
5324
5325 /**
5326 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
5327 * @cpumask: the cpumask to set
5328 *
5329 * The low-level workqueues cpumask is a global cpumask that limits
5330 * the affinity of all unbound workqueues. This function check the @cpumask
5331 * and apply it to all unbound workqueues and updates all pwqs of them.
5332 *
5333 * Retun: 0 - Success
5334 * -EINVAL - Invalid @cpumask
5335 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
5336 */
workqueue_set_unbound_cpumask(cpumask_var_t cpumask)5337 int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
5338 {
5339 int ret = -EINVAL;
5340 cpumask_var_t saved_cpumask;
5341
5342 /*
5343 * Not excluding isolated cpus on purpose.
5344 * If the user wishes to include them, we allow that.
5345 */
5346 cpumask_and(cpumask, cpumask, cpu_possible_mask);
5347 if (!cpumask_empty(cpumask)) {
5348 apply_wqattrs_lock();
5349 if (cpumask_equal(cpumask, wq_unbound_cpumask)) {
5350 ret = 0;
5351 goto out_unlock;
5352 }
5353
5354 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL)) {
5355 ret = -ENOMEM;
5356 goto out_unlock;
5357 }
5358
5359 /* save the old wq_unbound_cpumask. */
5360 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
5361
5362 /* update wq_unbound_cpumask at first and apply it to wqs. */
5363 cpumask_copy(wq_unbound_cpumask, cpumask);
5364 ret = workqueue_apply_unbound_cpumask();
5365
5366 /* restore the wq_unbound_cpumask when failed. */
5367 if (ret < 0)
5368 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
5369
5370 free_cpumask_var(saved_cpumask);
5371 out_unlock:
5372 apply_wqattrs_unlock();
5373 }
5374
5375 return ret;
5376 }
5377
5378 #ifdef CONFIG_SYSFS
5379 /*
5380 * Workqueues with WQ_SYSFS flag set is visible to userland via
5381 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
5382 * following attributes.
5383 *
5384 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
5385 * max_active RW int : maximum number of in-flight work items
5386 *
5387 * Unbound workqueues have the following extra attributes.
5388 *
5389 * pool_ids RO int : the associated pool IDs for each node
5390 * nice RW int : nice value of the workers
5391 * cpumask RW mask : bitmask of allowed CPUs for the workers
5392 * numa RW bool : whether enable NUMA affinity
5393 */
5394 struct wq_device {
5395 struct workqueue_struct *wq;
5396 struct device dev;
5397 };
5398
dev_to_wq(struct device * dev)5399 static struct workqueue_struct *dev_to_wq(struct device *dev)
5400 {
5401 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5402
5403 return wq_dev->wq;
5404 }
5405
per_cpu_show(struct device * dev,struct device_attribute * attr,char * buf)5406 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
5407 char *buf)
5408 {
5409 struct workqueue_struct *wq = dev_to_wq(dev);
5410
5411 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
5412 }
5413 static DEVICE_ATTR_RO(per_cpu);
5414
max_active_show(struct device * dev,struct device_attribute * attr,char * buf)5415 static ssize_t max_active_show(struct device *dev,
5416 struct device_attribute *attr, char *buf)
5417 {
5418 struct workqueue_struct *wq = dev_to_wq(dev);
5419
5420 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
5421 }
5422
max_active_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5423 static ssize_t max_active_store(struct device *dev,
5424 struct device_attribute *attr, const char *buf,
5425 size_t count)
5426 {
5427 struct workqueue_struct *wq = dev_to_wq(dev);
5428 int val;
5429
5430 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
5431 return -EINVAL;
5432
5433 workqueue_set_max_active(wq, val);
5434 return count;
5435 }
5436 static DEVICE_ATTR_RW(max_active);
5437
5438 static struct attribute *wq_sysfs_attrs[] = {
5439 &dev_attr_per_cpu.attr,
5440 &dev_attr_max_active.attr,
5441 NULL,
5442 };
5443 ATTRIBUTE_GROUPS(wq_sysfs);
5444
wq_pool_ids_show(struct device * dev,struct device_attribute * attr,char * buf)5445 static ssize_t wq_pool_ids_show(struct device *dev,
5446 struct device_attribute *attr, char *buf)
5447 {
5448 struct workqueue_struct *wq = dev_to_wq(dev);
5449 const char *delim = "";
5450 int node, written = 0;
5451
5452 get_online_cpus();
5453 rcu_read_lock();
5454 for_each_node(node) {
5455 written += scnprintf(buf + written, PAGE_SIZE - written,
5456 "%s%d:%d", delim, node,
5457 unbound_pwq_by_node(wq, node)->pool->id);
5458 delim = " ";
5459 }
5460 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
5461 rcu_read_unlock();
5462 put_online_cpus();
5463
5464 return written;
5465 }
5466
wq_nice_show(struct device * dev,struct device_attribute * attr,char * buf)5467 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
5468 char *buf)
5469 {
5470 struct workqueue_struct *wq = dev_to_wq(dev);
5471 int written;
5472
5473 mutex_lock(&wq->mutex);
5474 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5475 mutex_unlock(&wq->mutex);
5476
5477 return written;
5478 }
5479
5480 /* prepare workqueue_attrs for sysfs store operations */
wq_sysfs_prep_attrs(struct workqueue_struct * wq)5481 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5482 {
5483 struct workqueue_attrs *attrs;
5484
5485 lockdep_assert_held(&wq_pool_mutex);
5486
5487 attrs = alloc_workqueue_attrs();
5488 if (!attrs)
5489 return NULL;
5490
5491 copy_workqueue_attrs(attrs, wq->unbound_attrs);
5492 return attrs;
5493 }
5494
wq_nice_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5495 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5496 const char *buf, size_t count)
5497 {
5498 struct workqueue_struct *wq = dev_to_wq(dev);
5499 struct workqueue_attrs *attrs;
5500 int ret = -ENOMEM;
5501
5502 apply_wqattrs_lock();
5503
5504 attrs = wq_sysfs_prep_attrs(wq);
5505 if (!attrs)
5506 goto out_unlock;
5507
5508 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5509 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
5510 ret = apply_workqueue_attrs_locked(wq, attrs);
5511 else
5512 ret = -EINVAL;
5513
5514 out_unlock:
5515 apply_wqattrs_unlock();
5516 free_workqueue_attrs(attrs);
5517 return ret ?: count;
5518 }
5519
wq_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5520 static ssize_t wq_cpumask_show(struct device *dev,
5521 struct device_attribute *attr, char *buf)
5522 {
5523 struct workqueue_struct *wq = dev_to_wq(dev);
5524 int written;
5525
5526 mutex_lock(&wq->mutex);
5527 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5528 cpumask_pr_args(wq->unbound_attrs->cpumask));
5529 mutex_unlock(&wq->mutex);
5530 return written;
5531 }
5532
wq_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5533 static ssize_t wq_cpumask_store(struct device *dev,
5534 struct device_attribute *attr,
5535 const char *buf, size_t count)
5536 {
5537 struct workqueue_struct *wq = dev_to_wq(dev);
5538 struct workqueue_attrs *attrs;
5539 int ret = -ENOMEM;
5540
5541 apply_wqattrs_lock();
5542
5543 attrs = wq_sysfs_prep_attrs(wq);
5544 if (!attrs)
5545 goto out_unlock;
5546
5547 ret = cpumask_parse(buf, attrs->cpumask);
5548 if (!ret)
5549 ret = apply_workqueue_attrs_locked(wq, attrs);
5550
5551 out_unlock:
5552 apply_wqattrs_unlock();
5553 free_workqueue_attrs(attrs);
5554 return ret ?: count;
5555 }
5556
wq_numa_show(struct device * dev,struct device_attribute * attr,char * buf)5557 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5558 char *buf)
5559 {
5560 struct workqueue_struct *wq = dev_to_wq(dev);
5561 int written;
5562
5563 mutex_lock(&wq->mutex);
5564 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5565 !wq->unbound_attrs->no_numa);
5566 mutex_unlock(&wq->mutex);
5567
5568 return written;
5569 }
5570
wq_numa_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5571 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5572 const char *buf, size_t count)
5573 {
5574 struct workqueue_struct *wq = dev_to_wq(dev);
5575 struct workqueue_attrs *attrs;
5576 int v, ret = -ENOMEM;
5577
5578 apply_wqattrs_lock();
5579
5580 attrs = wq_sysfs_prep_attrs(wq);
5581 if (!attrs)
5582 goto out_unlock;
5583
5584 ret = -EINVAL;
5585 if (sscanf(buf, "%d", &v) == 1) {
5586 attrs->no_numa = !v;
5587 ret = apply_workqueue_attrs_locked(wq, attrs);
5588 }
5589
5590 out_unlock:
5591 apply_wqattrs_unlock();
5592 free_workqueue_attrs(attrs);
5593 return ret ?: count;
5594 }
5595
5596 static struct device_attribute wq_sysfs_unbound_attrs[] = {
5597 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5598 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5599 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5600 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5601 __ATTR_NULL,
5602 };
5603
5604 static struct bus_type wq_subsys = {
5605 .name = "workqueue",
5606 .dev_groups = wq_sysfs_groups,
5607 };
5608
wq_unbound_cpumask_show(struct device * dev,struct device_attribute * attr,char * buf)5609 static ssize_t wq_unbound_cpumask_show(struct device *dev,
5610 struct device_attribute *attr, char *buf)
5611 {
5612 int written;
5613
5614 mutex_lock(&wq_pool_mutex);
5615 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5616 cpumask_pr_args(wq_unbound_cpumask));
5617 mutex_unlock(&wq_pool_mutex);
5618
5619 return written;
5620 }
5621
wq_unbound_cpumask_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)5622 static ssize_t wq_unbound_cpumask_store(struct device *dev,
5623 struct device_attribute *attr, const char *buf, size_t count)
5624 {
5625 cpumask_var_t cpumask;
5626 int ret;
5627
5628 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5629 return -ENOMEM;
5630
5631 ret = cpumask_parse(buf, cpumask);
5632 if (!ret)
5633 ret = workqueue_set_unbound_cpumask(cpumask);
5634
5635 free_cpumask_var(cpumask);
5636 return ret ? ret : count;
5637 }
5638
5639 static struct device_attribute wq_sysfs_cpumask_attr =
5640 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5641 wq_unbound_cpumask_store);
5642
wq_sysfs_init(void)5643 static int __init wq_sysfs_init(void)
5644 {
5645 int err;
5646
5647 err = subsys_virtual_register(&wq_subsys, NULL);
5648 if (err)
5649 return err;
5650
5651 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
5652 }
5653 core_initcall(wq_sysfs_init);
5654
wq_device_release(struct device * dev)5655 static void wq_device_release(struct device *dev)
5656 {
5657 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
5658
5659 kfree(wq_dev);
5660 }
5661
5662 /**
5663 * workqueue_sysfs_register - make a workqueue visible in sysfs
5664 * @wq: the workqueue to register
5665 *
5666 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5667 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5668 * which is the preferred method.
5669 *
5670 * Workqueue user should use this function directly iff it wants to apply
5671 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5672 * apply_workqueue_attrs() may race against userland updating the
5673 * attributes.
5674 *
5675 * Return: 0 on success, -errno on failure.
5676 */
workqueue_sysfs_register(struct workqueue_struct * wq)5677 int workqueue_sysfs_register(struct workqueue_struct *wq)
5678 {
5679 struct wq_device *wq_dev;
5680 int ret;
5681
5682 /*
5683 * Adjusting max_active or creating new pwqs by applying
5684 * attributes breaks ordering guarantee. Disallow exposing ordered
5685 * workqueues.
5686 */
5687 if (WARN_ON(wq->flags & __WQ_ORDERED_EXPLICIT))
5688 return -EINVAL;
5689
5690 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5691 if (!wq_dev)
5692 return -ENOMEM;
5693
5694 wq_dev->wq = wq;
5695 wq_dev->dev.bus = &wq_subsys;
5696 wq_dev->dev.release = wq_device_release;
5697 dev_set_name(&wq_dev->dev, "%s", wq->name);
5698
5699 /*
5700 * unbound_attrs are created separately. Suppress uevent until
5701 * everything is ready.
5702 */
5703 dev_set_uevent_suppress(&wq_dev->dev, true);
5704
5705 ret = device_register(&wq_dev->dev);
5706 if (ret) {
5707 put_device(&wq_dev->dev);
5708 wq->wq_dev = NULL;
5709 return ret;
5710 }
5711
5712 if (wq->flags & WQ_UNBOUND) {
5713 struct device_attribute *attr;
5714
5715 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5716 ret = device_create_file(&wq_dev->dev, attr);
5717 if (ret) {
5718 device_unregister(&wq_dev->dev);
5719 wq->wq_dev = NULL;
5720 return ret;
5721 }
5722 }
5723 }
5724
5725 dev_set_uevent_suppress(&wq_dev->dev, false);
5726 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5727 return 0;
5728 }
5729
5730 /**
5731 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5732 * @wq: the workqueue to unregister
5733 *
5734 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
5735 */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5736 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
5737 {
5738 struct wq_device *wq_dev = wq->wq_dev;
5739
5740 if (!wq->wq_dev)
5741 return;
5742
5743 wq->wq_dev = NULL;
5744 device_unregister(&wq_dev->dev);
5745 }
5746 #else /* CONFIG_SYSFS */
workqueue_sysfs_unregister(struct workqueue_struct * wq)5747 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5748 #endif /* CONFIG_SYSFS */
5749
5750 /*
5751 * Workqueue watchdog.
5752 *
5753 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5754 * flush dependency, a concurrency managed work item which stays RUNNING
5755 * indefinitely. Workqueue stalls can be very difficult to debug as the
5756 * usual warning mechanisms don't trigger and internal workqueue state is
5757 * largely opaque.
5758 *
5759 * Workqueue watchdog monitors all worker pools periodically and dumps
5760 * state if some pools failed to make forward progress for a while where
5761 * forward progress is defined as the first item on ->worklist changing.
5762 *
5763 * This mechanism is controlled through the kernel parameter
5764 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5765 * corresponding sysfs parameter file.
5766 */
5767 #ifdef CONFIG_WQ_WATCHDOG
5768
5769 static unsigned long wq_watchdog_thresh = 30;
5770 static struct timer_list wq_watchdog_timer;
5771
5772 static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5773 static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5774
wq_watchdog_reset_touched(void)5775 static void wq_watchdog_reset_touched(void)
5776 {
5777 int cpu;
5778
5779 wq_watchdog_touched = jiffies;
5780 for_each_possible_cpu(cpu)
5781 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5782 }
5783
wq_watchdog_timer_fn(struct timer_list * unused)5784 static void wq_watchdog_timer_fn(struct timer_list *unused)
5785 {
5786 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5787 bool lockup_detected = false;
5788 unsigned long now = jiffies;
5789 struct worker_pool *pool;
5790 int pi;
5791
5792 if (!thresh)
5793 return;
5794
5795 rcu_read_lock();
5796
5797 for_each_pool(pool, pi) {
5798 unsigned long pool_ts, touched, ts;
5799
5800 if (list_empty(&pool->worklist))
5801 continue;
5802
5803 /*
5804 * If a virtual machine is stopped by the host it can look to
5805 * the watchdog like a stall.
5806 */
5807 kvm_check_and_clear_guest_paused();
5808
5809 /* get the latest of pool and touched timestamps */
5810 pool_ts = READ_ONCE(pool->watchdog_ts);
5811 touched = READ_ONCE(wq_watchdog_touched);
5812
5813 if (time_after(pool_ts, touched))
5814 ts = pool_ts;
5815 else
5816 ts = touched;
5817
5818 if (pool->cpu >= 0) {
5819 unsigned long cpu_touched =
5820 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5821 pool->cpu));
5822 if (time_after(cpu_touched, ts))
5823 ts = cpu_touched;
5824 }
5825
5826 /* did we stall? */
5827 if (time_after(now, ts + thresh)) {
5828 lockup_detected = true;
5829 pr_emerg("BUG: workqueue lockup - pool");
5830 pr_cont_pool_info(pool);
5831 pr_cont(" stuck for %us!\n",
5832 jiffies_to_msecs(now - pool_ts) / 1000);
5833 }
5834 }
5835
5836 rcu_read_unlock();
5837
5838 if (lockup_detected)
5839 show_workqueue_state();
5840
5841 wq_watchdog_reset_touched();
5842 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5843 }
5844
wq_watchdog_touch(int cpu)5845 notrace void wq_watchdog_touch(int cpu)
5846 {
5847 if (cpu >= 0)
5848 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5849 else
5850 wq_watchdog_touched = jiffies;
5851 }
5852
wq_watchdog_set_thresh(unsigned long thresh)5853 static void wq_watchdog_set_thresh(unsigned long thresh)
5854 {
5855 wq_watchdog_thresh = 0;
5856 del_timer_sync(&wq_watchdog_timer);
5857
5858 if (thresh) {
5859 wq_watchdog_thresh = thresh;
5860 wq_watchdog_reset_touched();
5861 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5862 }
5863 }
5864
wq_watchdog_param_set_thresh(const char * val,const struct kernel_param * kp)5865 static int wq_watchdog_param_set_thresh(const char *val,
5866 const struct kernel_param *kp)
5867 {
5868 unsigned long thresh;
5869 int ret;
5870
5871 ret = kstrtoul(val, 0, &thresh);
5872 if (ret)
5873 return ret;
5874
5875 if (system_wq)
5876 wq_watchdog_set_thresh(thresh);
5877 else
5878 wq_watchdog_thresh = thresh;
5879
5880 return 0;
5881 }
5882
5883 static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5884 .set = wq_watchdog_param_set_thresh,
5885 .get = param_get_ulong,
5886 };
5887
5888 module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5889 0644);
5890
wq_watchdog_init(void)5891 static void wq_watchdog_init(void)
5892 {
5893 timer_setup(&wq_watchdog_timer, wq_watchdog_timer_fn, TIMER_DEFERRABLE);
5894 wq_watchdog_set_thresh(wq_watchdog_thresh);
5895 }
5896
5897 #else /* CONFIG_WQ_WATCHDOG */
5898
wq_watchdog_init(void)5899 static inline void wq_watchdog_init(void) { }
5900
5901 #endif /* CONFIG_WQ_WATCHDOG */
5902
wq_numa_init(void)5903 static void __init wq_numa_init(void)
5904 {
5905 cpumask_var_t *tbl;
5906 int node, cpu;
5907
5908 if (num_possible_nodes() <= 1)
5909 return;
5910
5911 if (wq_disable_numa) {
5912 pr_info("workqueue: NUMA affinity support disabled\n");
5913 return;
5914 }
5915
5916 for_each_possible_cpu(cpu) {
5917 if (WARN_ON(cpu_to_node(cpu) == NUMA_NO_NODE)) {
5918 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5919 return;
5920 }
5921 }
5922
5923 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs();
5924 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5925
5926 /*
5927 * We want masks of possible CPUs of each node which isn't readily
5928 * available. Build one from cpu_to_node() which should have been
5929 * fully initialized by now.
5930 */
5931 tbl = kcalloc(nr_node_ids, sizeof(tbl[0]), GFP_KERNEL);
5932 BUG_ON(!tbl);
5933
5934 for_each_node(node)
5935 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
5936 node_online(node) ? node : NUMA_NO_NODE));
5937
5938 for_each_possible_cpu(cpu) {
5939 node = cpu_to_node(cpu);
5940 cpumask_set_cpu(cpu, tbl[node]);
5941 }
5942
5943 wq_numa_possible_cpumask = tbl;
5944 wq_numa_enabled = true;
5945 }
5946
5947 /**
5948 * workqueue_init_early - early init for workqueue subsystem
5949 *
5950 * This is the first half of two-staged workqueue subsystem initialization
5951 * and invoked as soon as the bare basics - memory allocation, cpumasks and
5952 * idr are up. It sets up all the data structures and system workqueues
5953 * and allows early boot code to create workqueues and queue/cancel work
5954 * items. Actual work item execution starts only after kthreads can be
5955 * created and scheduled right before early initcalls.
5956 */
workqueue_init_early(void)5957 void __init workqueue_init_early(void)
5958 {
5959 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5960 int hk_flags = HK_FLAG_DOMAIN | HK_FLAG_WQ;
5961 int i, cpu;
5962
5963 BUILD_BUG_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5964
5965 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5966 cpumask_copy(wq_unbound_cpumask, housekeeping_cpumask(hk_flags));
5967
5968 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5969
5970 /* initialize CPU pools */
5971 for_each_possible_cpu(cpu) {
5972 struct worker_pool *pool;
5973
5974 i = 0;
5975 for_each_cpu_worker_pool(pool, cpu) {
5976 BUG_ON(init_worker_pool(pool));
5977 pool->cpu = cpu;
5978 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5979 pool->attrs->nice = std_nice[i++];
5980 pool->node = cpu_to_node(cpu);
5981
5982 /* alloc pool ID */
5983 mutex_lock(&wq_pool_mutex);
5984 BUG_ON(worker_pool_assign_id(pool));
5985 mutex_unlock(&wq_pool_mutex);
5986 }
5987 }
5988
5989 /* create default unbound and ordered wq attrs */
5990 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5991 struct workqueue_attrs *attrs;
5992
5993 BUG_ON(!(attrs = alloc_workqueue_attrs()));
5994 attrs->nice = std_nice[i];
5995 unbound_std_wq_attrs[i] = attrs;
5996
5997 /*
5998 * An ordered wq should have only one pwq as ordering is
5999 * guaranteed by max_active which is enforced by pwqs.
6000 * Turn off NUMA so that dfl_pwq is used for all nodes.
6001 */
6002 BUG_ON(!(attrs = alloc_workqueue_attrs()));
6003 attrs->nice = std_nice[i];
6004 attrs->no_numa = true;
6005 ordered_wq_attrs[i] = attrs;
6006 }
6007
6008 system_wq = alloc_workqueue("events", 0, 0);
6009 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
6010 system_long_wq = alloc_workqueue("events_long", 0, 0);
6011 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
6012 WQ_UNBOUND_MAX_ACTIVE);
6013 system_freezable_wq = alloc_workqueue("events_freezable",
6014 WQ_FREEZABLE, 0);
6015 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
6016 WQ_POWER_EFFICIENT, 0);
6017 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
6018 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
6019 0);
6020 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
6021 !system_unbound_wq || !system_freezable_wq ||
6022 !system_power_efficient_wq ||
6023 !system_freezable_power_efficient_wq);
6024 }
6025
6026 /**
6027 * workqueue_init - bring workqueue subsystem fully online
6028 *
6029 * This is the latter half of two-staged workqueue subsystem initialization
6030 * and invoked as soon as kthreads can be created and scheduled.
6031 * Workqueues have been created and work items queued on them, but there
6032 * are no kworkers executing the work items yet. Populate the worker pools
6033 * with the initial workers and enable future kworker creations.
6034 */
workqueue_init(void)6035 void __init workqueue_init(void)
6036 {
6037 struct workqueue_struct *wq;
6038 struct worker_pool *pool;
6039 int cpu, bkt;
6040
6041 /*
6042 * It'd be simpler to initialize NUMA in workqueue_init_early() but
6043 * CPU to node mapping may not be available that early on some
6044 * archs such as power and arm64. As per-cpu pools created
6045 * previously could be missing node hint and unbound pools NUMA
6046 * affinity, fix them up.
6047 *
6048 * Also, while iterating workqueues, create rescuers if requested.
6049 */
6050 wq_numa_init();
6051
6052 mutex_lock(&wq_pool_mutex);
6053
6054 for_each_possible_cpu(cpu) {
6055 for_each_cpu_worker_pool(pool, cpu) {
6056 pool->node = cpu_to_node(cpu);
6057 }
6058 }
6059
6060 list_for_each_entry(wq, &workqueues, list) {
6061 wq_update_unbound_numa(wq, smp_processor_id(), true);
6062 WARN(init_rescuer(wq),
6063 "workqueue: failed to create early rescuer for %s",
6064 wq->name);
6065 }
6066
6067 mutex_unlock(&wq_pool_mutex);
6068
6069 /* create the initial workers */
6070 for_each_online_cpu(cpu) {
6071 for_each_cpu_worker_pool(pool, cpu) {
6072 pool->flags &= ~POOL_DISASSOCIATED;
6073 BUG_ON(!create_worker(pool));
6074 }
6075 }
6076
6077 hash_for_each(unbound_pool_hash, bkt, pool, hash_node)
6078 BUG_ON(!create_worker(pool));
6079
6080 wq_online = true;
6081 wq_watchdog_init();
6082 }
6083