• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4  * All Rights Reserved.
5  */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23 
24 kmem_zone_t	*xfs_log_ticket_zone;
25 
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 	struct xfs_mount	*mp,
30 	struct xfs_buftarg	*log_target,
31 	xfs_daddr_t		blk_offset,
32 	int			num_bblks);
33 STATIC int
34 xlog_space_left(
35 	struct xlog		*log,
36 	atomic64_t		*head);
37 STATIC void
38 xlog_dealloc_log(
39 	struct xlog		*log);
40 
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 	struct xlog_in_core	*iclog);
44 STATIC int
45 xlog_state_get_iclog_space(
46 	struct xlog		*log,
47 	int			len,
48 	struct xlog_in_core	**iclog,
49 	struct xlog_ticket	*ticket,
50 	int			*continued_write,
51 	int			*logoffsetp);
52 STATIC void
53 xlog_state_switch_iclogs(
54 	struct xlog		*log,
55 	struct xlog_in_core	*iclog,
56 	int			eventual_size);
57 STATIC void
58 xlog_grant_push_ail(
59 	struct xlog		*log,
60 	int			need_bytes);
61 STATIC void
62 xlog_sync(
63 	struct xlog		*log,
64 	struct xlog_in_core	*iclog);
65 #if defined(DEBUG)
66 STATIC void
67 xlog_verify_dest_ptr(
68 	struct xlog		*log,
69 	void			*ptr);
70 STATIC void
71 xlog_verify_grant_tail(
72 	struct xlog *log);
73 STATIC void
74 xlog_verify_iclog(
75 	struct xlog		*log,
76 	struct xlog_in_core	*iclog,
77 	int			count);
78 STATIC void
79 xlog_verify_tail_lsn(
80 	struct xlog		*log,
81 	struct xlog_in_core	*iclog,
82 	xfs_lsn_t		tail_lsn);
83 #else
84 #define xlog_verify_dest_ptr(a,b)
85 #define xlog_verify_grant_tail(a)
86 #define xlog_verify_iclog(a,b,c)
87 #define xlog_verify_tail_lsn(a,b,c)
88 #endif
89 
90 STATIC int
91 xlog_iclogs_empty(
92 	struct xlog		*log);
93 
94 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)95 xlog_grant_sub_space(
96 	struct xlog		*log,
97 	atomic64_t		*head,
98 	int			bytes)
99 {
100 	int64_t	head_val = atomic64_read(head);
101 	int64_t new, old;
102 
103 	do {
104 		int	cycle, space;
105 
106 		xlog_crack_grant_head_val(head_val, &cycle, &space);
107 
108 		space -= bytes;
109 		if (space < 0) {
110 			space += log->l_logsize;
111 			cycle--;
112 		}
113 
114 		old = head_val;
115 		new = xlog_assign_grant_head_val(cycle, space);
116 		head_val = atomic64_cmpxchg(head, old, new);
117 	} while (head_val != old);
118 }
119 
120 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)121 xlog_grant_add_space(
122 	struct xlog		*log,
123 	atomic64_t		*head,
124 	int			bytes)
125 {
126 	int64_t	head_val = atomic64_read(head);
127 	int64_t new, old;
128 
129 	do {
130 		int		tmp;
131 		int		cycle, space;
132 
133 		xlog_crack_grant_head_val(head_val, &cycle, &space);
134 
135 		tmp = log->l_logsize - space;
136 		if (tmp > bytes)
137 			space += bytes;
138 		else {
139 			space = bytes - tmp;
140 			cycle++;
141 		}
142 
143 		old = head_val;
144 		new = xlog_assign_grant_head_val(cycle, space);
145 		head_val = atomic64_cmpxchg(head, old, new);
146 	} while (head_val != old);
147 }
148 
149 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)150 xlog_grant_head_init(
151 	struct xlog_grant_head	*head)
152 {
153 	xlog_assign_grant_head(&head->grant, 1, 0);
154 	INIT_LIST_HEAD(&head->waiters);
155 	spin_lock_init(&head->lock);
156 }
157 
158 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)159 xlog_grant_head_wake_all(
160 	struct xlog_grant_head	*head)
161 {
162 	struct xlog_ticket	*tic;
163 
164 	spin_lock(&head->lock);
165 	list_for_each_entry(tic, &head->waiters, t_queue)
166 		wake_up_process(tic->t_task);
167 	spin_unlock(&head->lock);
168 }
169 
170 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)171 xlog_ticket_reservation(
172 	struct xlog		*log,
173 	struct xlog_grant_head	*head,
174 	struct xlog_ticket	*tic)
175 {
176 	if (head == &log->l_write_head) {
177 		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
178 		return tic->t_unit_res;
179 	} else {
180 		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
181 			return tic->t_unit_res * tic->t_cnt;
182 		else
183 			return tic->t_unit_res;
184 	}
185 }
186 
187 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)188 xlog_grant_head_wake(
189 	struct xlog		*log,
190 	struct xlog_grant_head	*head,
191 	int			*free_bytes)
192 {
193 	struct xlog_ticket	*tic;
194 	int			need_bytes;
195 	bool			woken_task = false;
196 
197 	list_for_each_entry(tic, &head->waiters, t_queue) {
198 
199 		/*
200 		 * There is a chance that the size of the CIL checkpoints in
201 		 * progress at the last AIL push target calculation resulted in
202 		 * limiting the target to the log head (l_last_sync_lsn) at the
203 		 * time. This may not reflect where the log head is now as the
204 		 * CIL checkpoints may have completed.
205 		 *
206 		 * Hence when we are woken here, it may be that the head of the
207 		 * log that has moved rather than the tail. As the tail didn't
208 		 * move, there still won't be space available for the
209 		 * reservation we require.  However, if the AIL has already
210 		 * pushed to the target defined by the old log head location, we
211 		 * will hang here waiting for something else to update the AIL
212 		 * push target.
213 		 *
214 		 * Therefore, if there isn't space to wake the first waiter on
215 		 * the grant head, we need to push the AIL again to ensure the
216 		 * target reflects both the current log tail and log head
217 		 * position before we wait for the tail to move again.
218 		 */
219 
220 		need_bytes = xlog_ticket_reservation(log, head, tic);
221 		if (*free_bytes < need_bytes) {
222 			if (!woken_task)
223 				xlog_grant_push_ail(log, need_bytes);
224 			return false;
225 		}
226 
227 		*free_bytes -= need_bytes;
228 		trace_xfs_log_grant_wake_up(log, tic);
229 		wake_up_process(tic->t_task);
230 		woken_task = true;
231 	}
232 
233 	return true;
234 }
235 
236 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)237 xlog_grant_head_wait(
238 	struct xlog		*log,
239 	struct xlog_grant_head	*head,
240 	struct xlog_ticket	*tic,
241 	int			need_bytes) __releases(&head->lock)
242 					    __acquires(&head->lock)
243 {
244 	list_add_tail(&tic->t_queue, &head->waiters);
245 
246 	do {
247 		if (XLOG_FORCED_SHUTDOWN(log))
248 			goto shutdown;
249 		xlog_grant_push_ail(log, need_bytes);
250 
251 		__set_current_state(TASK_UNINTERRUPTIBLE);
252 		spin_unlock(&head->lock);
253 
254 		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
255 
256 		trace_xfs_log_grant_sleep(log, tic);
257 		schedule();
258 		trace_xfs_log_grant_wake(log, tic);
259 
260 		spin_lock(&head->lock);
261 		if (XLOG_FORCED_SHUTDOWN(log))
262 			goto shutdown;
263 	} while (xlog_space_left(log, &head->grant) < need_bytes);
264 
265 	list_del_init(&tic->t_queue);
266 	return 0;
267 shutdown:
268 	list_del_init(&tic->t_queue);
269 	return -EIO;
270 }
271 
272 /*
273  * Atomically get the log space required for a log ticket.
274  *
275  * Once a ticket gets put onto head->waiters, it will only return after the
276  * needed reservation is satisfied.
277  *
278  * This function is structured so that it has a lock free fast path. This is
279  * necessary because every new transaction reservation will come through this
280  * path. Hence any lock will be globally hot if we take it unconditionally on
281  * every pass.
282  *
283  * As tickets are only ever moved on and off head->waiters under head->lock, we
284  * only need to take that lock if we are going to add the ticket to the queue
285  * and sleep. We can avoid taking the lock if the ticket was never added to
286  * head->waiters because the t_queue list head will be empty and we hold the
287  * only reference to it so it can safely be checked unlocked.
288  */
289 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)290 xlog_grant_head_check(
291 	struct xlog		*log,
292 	struct xlog_grant_head	*head,
293 	struct xlog_ticket	*tic,
294 	int			*need_bytes)
295 {
296 	int			free_bytes;
297 	int			error = 0;
298 
299 	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
300 
301 	/*
302 	 * If there are other waiters on the queue then give them a chance at
303 	 * logspace before us.  Wake up the first waiters, if we do not wake
304 	 * up all the waiters then go to sleep waiting for more free space,
305 	 * otherwise try to get some space for this transaction.
306 	 */
307 	*need_bytes = xlog_ticket_reservation(log, head, tic);
308 	free_bytes = xlog_space_left(log, &head->grant);
309 	if (!list_empty_careful(&head->waiters)) {
310 		spin_lock(&head->lock);
311 		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
312 		    free_bytes < *need_bytes) {
313 			error = xlog_grant_head_wait(log, head, tic,
314 						     *need_bytes);
315 		}
316 		spin_unlock(&head->lock);
317 	} else if (free_bytes < *need_bytes) {
318 		spin_lock(&head->lock);
319 		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
320 		spin_unlock(&head->lock);
321 	}
322 
323 	return error;
324 }
325 
326 static void
xlog_tic_reset_res(xlog_ticket_t * tic)327 xlog_tic_reset_res(xlog_ticket_t *tic)
328 {
329 	tic->t_res_num = 0;
330 	tic->t_res_arr_sum = 0;
331 	tic->t_res_num_ophdrs = 0;
332 }
333 
334 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)335 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
336 {
337 	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
338 		/* add to overflow and start again */
339 		tic->t_res_o_flow += tic->t_res_arr_sum;
340 		tic->t_res_num = 0;
341 		tic->t_res_arr_sum = 0;
342 	}
343 
344 	tic->t_res_arr[tic->t_res_num].r_len = len;
345 	tic->t_res_arr[tic->t_res_num].r_type = type;
346 	tic->t_res_arr_sum += len;
347 	tic->t_res_num++;
348 }
349 
350 bool
xfs_log_writable(struct xfs_mount * mp)351 xfs_log_writable(
352 	struct xfs_mount	*mp)
353 {
354 	/*
355 	 * Never write to the log on norecovery mounts, if the block device is
356 	 * read-only, or if the filesystem is shutdown. Read-only mounts still
357 	 * allow internal writes for log recovery and unmount purposes, so don't
358 	 * restrict that case here.
359 	 */
360 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
361 		return false;
362 	if (xfs_readonly_buftarg(mp->m_log->l_targ))
363 		return false;
364 	if (XFS_FORCED_SHUTDOWN(mp))
365 		return false;
366 	return true;
367 }
368 
369 /*
370  * Replenish the byte reservation required by moving the grant write head.
371  */
372 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)373 xfs_log_regrant(
374 	struct xfs_mount	*mp,
375 	struct xlog_ticket	*tic)
376 {
377 	struct xlog		*log = mp->m_log;
378 	int			need_bytes;
379 	int			error = 0;
380 
381 	if (XLOG_FORCED_SHUTDOWN(log))
382 		return -EIO;
383 
384 	XFS_STATS_INC(mp, xs_try_logspace);
385 
386 	/*
387 	 * This is a new transaction on the ticket, so we need to change the
388 	 * transaction ID so that the next transaction has a different TID in
389 	 * the log. Just add one to the existing tid so that we can see chains
390 	 * of rolling transactions in the log easily.
391 	 */
392 	tic->t_tid++;
393 
394 	xlog_grant_push_ail(log, tic->t_unit_res);
395 
396 	tic->t_curr_res = tic->t_unit_res;
397 	xlog_tic_reset_res(tic);
398 
399 	if (tic->t_cnt > 0)
400 		return 0;
401 
402 	trace_xfs_log_regrant(log, tic);
403 
404 	error = xlog_grant_head_check(log, &log->l_write_head, tic,
405 				      &need_bytes);
406 	if (error)
407 		goto out_error;
408 
409 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
410 	trace_xfs_log_regrant_exit(log, tic);
411 	xlog_verify_grant_tail(log);
412 	return 0;
413 
414 out_error:
415 	/*
416 	 * If we are failing, make sure the ticket doesn't have any current
417 	 * reservations.  We don't want to add this back when the ticket/
418 	 * transaction gets cancelled.
419 	 */
420 	tic->t_curr_res = 0;
421 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
422 	return error;
423 }
424 
425 /*
426  * Reserve log space and return a ticket corresponding to the reservation.
427  *
428  * Each reservation is going to reserve extra space for a log record header.
429  * When writes happen to the on-disk log, we don't subtract the length of the
430  * log record header from any reservation.  By wasting space in each
431  * reservation, we prevent over allocation problems.
432  */
433 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,uint8_t client,bool permanent)434 xfs_log_reserve(
435 	struct xfs_mount	*mp,
436 	int		 	unit_bytes,
437 	int		 	cnt,
438 	struct xlog_ticket	**ticp,
439 	uint8_t		 	client,
440 	bool			permanent)
441 {
442 	struct xlog		*log = mp->m_log;
443 	struct xlog_ticket	*tic;
444 	int			need_bytes;
445 	int			error = 0;
446 
447 	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
448 
449 	if (XLOG_FORCED_SHUTDOWN(log))
450 		return -EIO;
451 
452 	XFS_STATS_INC(mp, xs_try_logspace);
453 
454 	ASSERT(*ticp == NULL);
455 	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
456 	*ticp = tic;
457 
458 	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
459 					    : tic->t_unit_res);
460 
461 	trace_xfs_log_reserve(log, tic);
462 
463 	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
464 				      &need_bytes);
465 	if (error)
466 		goto out_error;
467 
468 	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
469 	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
470 	trace_xfs_log_reserve_exit(log, tic);
471 	xlog_verify_grant_tail(log);
472 	return 0;
473 
474 out_error:
475 	/*
476 	 * If we are failing, make sure the ticket doesn't have any current
477 	 * reservations.  We don't want to add this back when the ticket/
478 	 * transaction gets cancelled.
479 	 */
480 	tic->t_curr_res = 0;
481 	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
482 	return error;
483 }
484 
485 static bool
__xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)486 __xlog_state_release_iclog(
487 	struct xlog		*log,
488 	struct xlog_in_core	*iclog)
489 {
490 	lockdep_assert_held(&log->l_icloglock);
491 
492 	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
493 		/* update tail before writing to iclog */
494 		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
495 
496 		iclog->ic_state = XLOG_STATE_SYNCING;
497 		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
498 		xlog_verify_tail_lsn(log, iclog, tail_lsn);
499 		/* cycle incremented when incrementing curr_block */
500 		return true;
501 	}
502 
503 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
504 	return false;
505 }
506 
507 /*
508  * Flush iclog to disk if this is the last reference to the given iclog and the
509  * it is in the WANT_SYNC state.
510  */
511 static int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)512 xlog_state_release_iclog(
513 	struct xlog		*log,
514 	struct xlog_in_core	*iclog)
515 {
516 	lockdep_assert_held(&log->l_icloglock);
517 
518 	if (iclog->ic_state == XLOG_STATE_IOERROR)
519 		return -EIO;
520 
521 	if (atomic_dec_and_test(&iclog->ic_refcnt) &&
522 	    __xlog_state_release_iclog(log, iclog)) {
523 		spin_unlock(&log->l_icloglock);
524 		xlog_sync(log, iclog);
525 		spin_lock(&log->l_icloglock);
526 	}
527 
528 	return 0;
529 }
530 
531 void
xfs_log_release_iclog(struct xlog_in_core * iclog)532 xfs_log_release_iclog(
533 	struct xlog_in_core	*iclog)
534 {
535 	struct xlog		*log = iclog->ic_log;
536 	bool			sync = false;
537 
538 	if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
539 		if (iclog->ic_state != XLOG_STATE_IOERROR)
540 			sync = __xlog_state_release_iclog(log, iclog);
541 		spin_unlock(&log->l_icloglock);
542 	}
543 
544 	if (sync)
545 		xlog_sync(log, iclog);
546 }
547 
548 /*
549  * Mount a log filesystem
550  *
551  * mp		- ubiquitous xfs mount point structure
552  * log_target	- buftarg of on-disk log device
553  * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
554  * num_bblocks	- Number of BBSIZE blocks in on-disk log
555  *
556  * Return error or zero.
557  */
558 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)559 xfs_log_mount(
560 	xfs_mount_t	*mp,
561 	xfs_buftarg_t	*log_target,
562 	xfs_daddr_t	blk_offset,
563 	int		num_bblks)
564 {
565 	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
566 	int		error = 0;
567 	int		min_logfsbs;
568 
569 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
570 		xfs_notice(mp, "Mounting V%d Filesystem",
571 			   XFS_SB_VERSION_NUM(&mp->m_sb));
572 	} else {
573 		xfs_notice(mp,
574 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
575 			   XFS_SB_VERSION_NUM(&mp->m_sb));
576 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
577 	}
578 
579 	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
580 	if (IS_ERR(mp->m_log)) {
581 		error = PTR_ERR(mp->m_log);
582 		goto out;
583 	}
584 
585 	/*
586 	 * Validate the given log space and drop a critical message via syslog
587 	 * if the log size is too small that would lead to some unexpected
588 	 * situations in transaction log space reservation stage.
589 	 *
590 	 * Note: we can't just reject the mount if the validation fails.  This
591 	 * would mean that people would have to downgrade their kernel just to
592 	 * remedy the situation as there is no way to grow the log (short of
593 	 * black magic surgery with xfs_db).
594 	 *
595 	 * We can, however, reject mounts for CRC format filesystems, as the
596 	 * mkfs binary being used to make the filesystem should never create a
597 	 * filesystem with a log that is too small.
598 	 */
599 	min_logfsbs = xfs_log_calc_minimum_size(mp);
600 
601 	if (mp->m_sb.sb_logblocks < min_logfsbs) {
602 		xfs_warn(mp,
603 		"Log size %d blocks too small, minimum size is %d blocks",
604 			 mp->m_sb.sb_logblocks, min_logfsbs);
605 		error = -EINVAL;
606 	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
607 		xfs_warn(mp,
608 		"Log size %d blocks too large, maximum size is %lld blocks",
609 			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
610 		error = -EINVAL;
611 	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
612 		xfs_warn(mp,
613 		"log size %lld bytes too large, maximum size is %lld bytes",
614 			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
615 			 XFS_MAX_LOG_BYTES);
616 		error = -EINVAL;
617 	} else if (mp->m_sb.sb_logsunit > 1 &&
618 		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
619 		xfs_warn(mp,
620 		"log stripe unit %u bytes must be a multiple of block size",
621 			 mp->m_sb.sb_logsunit);
622 		error = -EINVAL;
623 		fatal = true;
624 	}
625 	if (error) {
626 		/*
627 		 * Log check errors are always fatal on v5; or whenever bad
628 		 * metadata leads to a crash.
629 		 */
630 		if (fatal) {
631 			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
632 			ASSERT(0);
633 			goto out_free_log;
634 		}
635 		xfs_crit(mp, "Log size out of supported range.");
636 		xfs_crit(mp,
637 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
638 	}
639 
640 	/*
641 	 * Initialize the AIL now we have a log.
642 	 */
643 	error = xfs_trans_ail_init(mp);
644 	if (error) {
645 		xfs_warn(mp, "AIL initialisation failed: error %d", error);
646 		goto out_free_log;
647 	}
648 	mp->m_log->l_ailp = mp->m_ail;
649 
650 	/*
651 	 * skip log recovery on a norecovery mount.  pretend it all
652 	 * just worked.
653 	 */
654 	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
655 		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
656 
657 		if (readonly)
658 			mp->m_flags &= ~XFS_MOUNT_RDONLY;
659 
660 		error = xlog_recover(mp->m_log);
661 
662 		if (readonly)
663 			mp->m_flags |= XFS_MOUNT_RDONLY;
664 		if (error) {
665 			xfs_warn(mp, "log mount/recovery failed: error %d",
666 				error);
667 			xlog_recover_cancel(mp->m_log);
668 			goto out_destroy_ail;
669 		}
670 	}
671 
672 	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
673 			       "log");
674 	if (error)
675 		goto out_destroy_ail;
676 
677 	/* Normal transactions can now occur */
678 	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
679 
680 	/*
681 	 * Now the log has been fully initialised and we know were our
682 	 * space grant counters are, we can initialise the permanent ticket
683 	 * needed for delayed logging to work.
684 	 */
685 	xlog_cil_init_post_recovery(mp->m_log);
686 
687 	return 0;
688 
689 out_destroy_ail:
690 	xfs_trans_ail_destroy(mp);
691 out_free_log:
692 	xlog_dealloc_log(mp->m_log);
693 out:
694 	return error;
695 }
696 
697 /*
698  * Finish the recovery of the file system.  This is separate from the
699  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
700  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
701  * here.
702  *
703  * If we finish recovery successfully, start the background log work. If we are
704  * not doing recovery, then we have a RO filesystem and we don't need to start
705  * it.
706  */
707 int
xfs_log_mount_finish(struct xfs_mount * mp)708 xfs_log_mount_finish(
709 	struct xfs_mount	*mp)
710 {
711 	int	error = 0;
712 	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
713 	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
714 
715 	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
716 		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
717 		return 0;
718 	} else if (readonly) {
719 		/* Allow unlinked processing to proceed */
720 		mp->m_flags &= ~XFS_MOUNT_RDONLY;
721 	}
722 
723 	/*
724 	 * During the second phase of log recovery, we need iget and
725 	 * iput to behave like they do for an active filesystem.
726 	 * xfs_fs_drop_inode needs to be able to prevent the deletion
727 	 * of inodes before we're done replaying log items on those
728 	 * inodes.  Turn it off immediately after recovery finishes
729 	 * so that we don't leak the quota inodes if subsequent mount
730 	 * activities fail.
731 	 *
732 	 * We let all inodes involved in redo item processing end up on
733 	 * the LRU instead of being evicted immediately so that if we do
734 	 * something to an unlinked inode, the irele won't cause
735 	 * premature truncation and freeing of the inode, which results
736 	 * in log recovery failure.  We have to evict the unreferenced
737 	 * lru inodes after clearing SB_ACTIVE because we don't
738 	 * otherwise clean up the lru if there's a subsequent failure in
739 	 * xfs_mountfs, which leads to us leaking the inodes if nothing
740 	 * else (e.g. quotacheck) references the inodes before the
741 	 * mount failure occurs.
742 	 */
743 	mp->m_super->s_flags |= SB_ACTIVE;
744 	error = xlog_recover_finish(mp->m_log);
745 	if (!error)
746 		xfs_log_work_queue(mp);
747 	mp->m_super->s_flags &= ~SB_ACTIVE;
748 	evict_inodes(mp->m_super);
749 
750 	/*
751 	 * Drain the buffer LRU after log recovery. This is required for v4
752 	 * filesystems to avoid leaving around buffers with NULL verifier ops,
753 	 * but we do it unconditionally to make sure we're always in a clean
754 	 * cache state after mount.
755 	 *
756 	 * Don't push in the error case because the AIL may have pending intents
757 	 * that aren't removed until recovery is cancelled.
758 	 */
759 	if (!error && recovered) {
760 		xfs_log_force(mp, XFS_LOG_SYNC);
761 		xfs_ail_push_all_sync(mp->m_ail);
762 	}
763 	xfs_wait_buftarg(mp->m_ddev_targp);
764 
765 	if (readonly)
766 		mp->m_flags |= XFS_MOUNT_RDONLY;
767 
768 	/* Make sure the log is dead if we're returning failure. */
769 	ASSERT(!error || (mp->m_log->l_flags & XLOG_IO_ERROR));
770 
771 	return error;
772 }
773 
774 /*
775  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
776  * the log.
777  */
778 void
xfs_log_mount_cancel(struct xfs_mount * mp)779 xfs_log_mount_cancel(
780 	struct xfs_mount	*mp)
781 {
782 	xlog_recover_cancel(mp->m_log);
783 	xfs_log_unmount(mp);
784 }
785 
786 /*
787  * Wait for the iclog to be written disk, or return an error if the log has been
788  * shut down.
789  */
790 static int
xlog_wait_on_iclog(struct xlog_in_core * iclog)791 xlog_wait_on_iclog(
792 	struct xlog_in_core	*iclog)
793 		__releases(iclog->ic_log->l_icloglock)
794 {
795 	struct xlog		*log = iclog->ic_log;
796 
797 	if (!XLOG_FORCED_SHUTDOWN(log) &&
798 	    iclog->ic_state != XLOG_STATE_ACTIVE &&
799 	    iclog->ic_state != XLOG_STATE_DIRTY) {
800 		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
801 		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
802 	} else {
803 		spin_unlock(&log->l_icloglock);
804 	}
805 
806 	if (XLOG_FORCED_SHUTDOWN(log))
807 		return -EIO;
808 	return 0;
809 }
810 
811 /*
812  * Write out an unmount record using the ticket provided. We have to account for
813  * the data space used in the unmount ticket as this write is not done from a
814  * transaction context that has already done the accounting for us.
815  */
816 static int
xlog_write_unmount_record(struct xlog * log,struct xlog_ticket * ticket,xfs_lsn_t * lsn,uint flags)817 xlog_write_unmount_record(
818 	struct xlog		*log,
819 	struct xlog_ticket	*ticket,
820 	xfs_lsn_t		*lsn,
821 	uint			flags)
822 {
823 	struct xfs_unmount_log_format ulf = {
824 		.magic = XLOG_UNMOUNT_TYPE,
825 	};
826 	struct xfs_log_iovec reg = {
827 		.i_addr = &ulf,
828 		.i_len = sizeof(ulf),
829 		.i_type = XLOG_REG_TYPE_UNMOUNT,
830 	};
831 	struct xfs_log_vec vec = {
832 		.lv_niovecs = 1,
833 		.lv_iovecp = &reg,
834 	};
835 
836 	/* account for space used by record data */
837 	ticket->t_curr_res -= sizeof(ulf);
838 	return xlog_write(log, &vec, ticket, lsn, NULL, flags, false);
839 }
840 
841 /*
842  * Mark the filesystem clean by writing an unmount record to the head of the
843  * log.
844  */
845 static void
xlog_unmount_write(struct xlog * log)846 xlog_unmount_write(
847 	struct xlog		*log)
848 {
849 	struct xfs_mount	*mp = log->l_mp;
850 	struct xlog_in_core	*iclog;
851 	struct xlog_ticket	*tic = NULL;
852 	xfs_lsn_t		lsn;
853 	uint			flags = XLOG_UNMOUNT_TRANS;
854 	int			error;
855 
856 	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
857 	if (error)
858 		goto out_err;
859 
860 	error = xlog_write_unmount_record(log, tic, &lsn, flags);
861 	/*
862 	 * At this point, we're umounting anyway, so there's no point in
863 	 * transitioning log state to IOERROR. Just continue...
864 	 */
865 out_err:
866 	if (error)
867 		xfs_alert(mp, "%s: unmount record failed", __func__);
868 
869 	spin_lock(&log->l_icloglock);
870 	iclog = log->l_iclog;
871 	atomic_inc(&iclog->ic_refcnt);
872 	if (iclog->ic_state == XLOG_STATE_ACTIVE)
873 		xlog_state_switch_iclogs(log, iclog, 0);
874 	else
875 		ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
876 		       iclog->ic_state == XLOG_STATE_IOERROR);
877 	error = xlog_state_release_iclog(log, iclog);
878 	xlog_wait_on_iclog(iclog);
879 
880 	if (tic) {
881 		trace_xfs_log_umount_write(log, tic);
882 		xfs_log_ticket_ungrant(log, tic);
883 	}
884 }
885 
886 static void
xfs_log_unmount_verify_iclog(struct xlog * log)887 xfs_log_unmount_verify_iclog(
888 	struct xlog		*log)
889 {
890 	struct xlog_in_core	*iclog = log->l_iclog;
891 
892 	do {
893 		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
894 		ASSERT(iclog->ic_offset == 0);
895 	} while ((iclog = iclog->ic_next) != log->l_iclog);
896 }
897 
898 /*
899  * Unmount record used to have a string "Unmount filesystem--" in the
900  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
901  * We just write the magic number now since that particular field isn't
902  * currently architecture converted and "Unmount" is a bit foo.
903  * As far as I know, there weren't any dependencies on the old behaviour.
904  */
905 static void
xfs_log_unmount_write(struct xfs_mount * mp)906 xfs_log_unmount_write(
907 	struct xfs_mount	*mp)
908 {
909 	struct xlog		*log = mp->m_log;
910 
911 	if (!xfs_log_writable(mp))
912 		return;
913 
914 	xfs_log_force(mp, XFS_LOG_SYNC);
915 
916 	if (XLOG_FORCED_SHUTDOWN(log))
917 		return;
918 
919 	/*
920 	 * If we think the summary counters are bad, avoid writing the unmount
921 	 * record to force log recovery at next mount, after which the summary
922 	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
923 	 * more details.
924 	 */
925 	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
926 			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
927 		xfs_alert(mp, "%s: will fix summary counters at next mount",
928 				__func__);
929 		return;
930 	}
931 
932 	xfs_log_unmount_verify_iclog(log);
933 	xlog_unmount_write(log);
934 }
935 
936 /*
937  * Empty the log for unmount/freeze.
938  *
939  * To do this, we first need to shut down the background log work so it is not
940  * trying to cover the log as we clean up. We then need to unpin all objects in
941  * the log so we can then flush them out. Once they have completed their IO and
942  * run the callbacks removing themselves from the AIL, we can write the unmount
943  * record.
944  */
945 void
xfs_log_quiesce(struct xfs_mount * mp)946 xfs_log_quiesce(
947 	struct xfs_mount	*mp)
948 {
949 	cancel_delayed_work_sync(&mp->m_log->l_work);
950 	xfs_log_force(mp, XFS_LOG_SYNC);
951 
952 	/*
953 	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
954 	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
955 	 * xfs_buf_iowait() cannot be used because it was pushed with the
956 	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
957 	 * the IO to complete.
958 	 */
959 	xfs_ail_push_all_sync(mp->m_ail);
960 	xfs_wait_buftarg(mp->m_ddev_targp);
961 	xfs_buf_lock(mp->m_sb_bp);
962 	xfs_buf_unlock(mp->m_sb_bp);
963 
964 	xfs_log_unmount_write(mp);
965 }
966 
967 /*
968  * Shut down and release the AIL and Log.
969  *
970  * During unmount, we need to ensure we flush all the dirty metadata objects
971  * from the AIL so that the log is empty before we write the unmount record to
972  * the log. Once this is done, we can tear down the AIL and the log.
973  */
974 void
xfs_log_unmount(struct xfs_mount * mp)975 xfs_log_unmount(
976 	struct xfs_mount	*mp)
977 {
978 	xfs_log_quiesce(mp);
979 
980 	xfs_trans_ail_destroy(mp);
981 
982 	xfs_sysfs_del(&mp->m_log->l_kobj);
983 
984 	xlog_dealloc_log(mp->m_log);
985 }
986 
987 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)988 xfs_log_item_init(
989 	struct xfs_mount	*mp,
990 	struct xfs_log_item	*item,
991 	int			type,
992 	const struct xfs_item_ops *ops)
993 {
994 	item->li_mountp = mp;
995 	item->li_ailp = mp->m_ail;
996 	item->li_type = type;
997 	item->li_ops = ops;
998 	item->li_lv = NULL;
999 
1000 	INIT_LIST_HEAD(&item->li_ail);
1001 	INIT_LIST_HEAD(&item->li_cil);
1002 	INIT_LIST_HEAD(&item->li_bio_list);
1003 	INIT_LIST_HEAD(&item->li_trans);
1004 }
1005 
1006 /*
1007  * Wake up processes waiting for log space after we have moved the log tail.
1008  */
1009 void
xfs_log_space_wake(struct xfs_mount * mp)1010 xfs_log_space_wake(
1011 	struct xfs_mount	*mp)
1012 {
1013 	struct xlog		*log = mp->m_log;
1014 	int			free_bytes;
1015 
1016 	if (XLOG_FORCED_SHUTDOWN(log))
1017 		return;
1018 
1019 	if (!list_empty_careful(&log->l_write_head.waiters)) {
1020 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1021 
1022 		spin_lock(&log->l_write_head.lock);
1023 		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1024 		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1025 		spin_unlock(&log->l_write_head.lock);
1026 	}
1027 
1028 	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1029 		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1030 
1031 		spin_lock(&log->l_reserve_head.lock);
1032 		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1033 		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1034 		spin_unlock(&log->l_reserve_head.lock);
1035 	}
1036 }
1037 
1038 /*
1039  * Determine if we have a transaction that has gone to disk that needs to be
1040  * covered. To begin the transition to the idle state firstly the log needs to
1041  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1042  * we start attempting to cover the log.
1043  *
1044  * Only if we are then in a state where covering is needed, the caller is
1045  * informed that dummy transactions are required to move the log into the idle
1046  * state.
1047  *
1048  * If there are any items in the AIl or CIL, then we do not want to attempt to
1049  * cover the log as we may be in a situation where there isn't log space
1050  * available to run a dummy transaction and this can lead to deadlocks when the
1051  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1052  * there's no point in running a dummy transaction at this point because we
1053  * can't start trying to idle the log until both the CIL and AIL are empty.
1054  */
1055 static int
xfs_log_need_covered(xfs_mount_t * mp)1056 xfs_log_need_covered(xfs_mount_t *mp)
1057 {
1058 	struct xlog	*log = mp->m_log;
1059 	int		needed = 0;
1060 
1061 	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1062 		return 0;
1063 
1064 	if (!xlog_cil_empty(log))
1065 		return 0;
1066 
1067 	spin_lock(&log->l_icloglock);
1068 	switch (log->l_covered_state) {
1069 	case XLOG_STATE_COVER_DONE:
1070 	case XLOG_STATE_COVER_DONE2:
1071 	case XLOG_STATE_COVER_IDLE:
1072 		break;
1073 	case XLOG_STATE_COVER_NEED:
1074 	case XLOG_STATE_COVER_NEED2:
1075 		if (xfs_ail_min_lsn(log->l_ailp))
1076 			break;
1077 		if (!xlog_iclogs_empty(log))
1078 			break;
1079 
1080 		needed = 1;
1081 		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1082 			log->l_covered_state = XLOG_STATE_COVER_DONE;
1083 		else
1084 			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1085 		break;
1086 	default:
1087 		needed = 1;
1088 		break;
1089 	}
1090 	spin_unlock(&log->l_icloglock);
1091 	return needed;
1092 }
1093 
1094 /*
1095  * We may be holding the log iclog lock upon entering this routine.
1096  */
1097 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1098 xlog_assign_tail_lsn_locked(
1099 	struct xfs_mount	*mp)
1100 {
1101 	struct xlog		*log = mp->m_log;
1102 	struct xfs_log_item	*lip;
1103 	xfs_lsn_t		tail_lsn;
1104 
1105 	assert_spin_locked(&mp->m_ail->ail_lock);
1106 
1107 	/*
1108 	 * To make sure we always have a valid LSN for the log tail we keep
1109 	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1110 	 * and use that when the AIL was empty.
1111 	 */
1112 	lip = xfs_ail_min(mp->m_ail);
1113 	if (lip)
1114 		tail_lsn = lip->li_lsn;
1115 	else
1116 		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1117 	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1118 	atomic64_set(&log->l_tail_lsn, tail_lsn);
1119 	return tail_lsn;
1120 }
1121 
1122 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1123 xlog_assign_tail_lsn(
1124 	struct xfs_mount	*mp)
1125 {
1126 	xfs_lsn_t		tail_lsn;
1127 
1128 	spin_lock(&mp->m_ail->ail_lock);
1129 	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1130 	spin_unlock(&mp->m_ail->ail_lock);
1131 
1132 	return tail_lsn;
1133 }
1134 
1135 /*
1136  * Return the space in the log between the tail and the head.  The head
1137  * is passed in the cycle/bytes formal parms.  In the special case where
1138  * the reserve head has wrapped passed the tail, this calculation is no
1139  * longer valid.  In this case, just return 0 which means there is no space
1140  * in the log.  This works for all places where this function is called
1141  * with the reserve head.  Of course, if the write head were to ever
1142  * wrap the tail, we should blow up.  Rather than catch this case here,
1143  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1144  *
1145  * This code also handles the case where the reservation head is behind
1146  * the tail.  The details of this case are described below, but the end
1147  * result is that we return the size of the log as the amount of space left.
1148  */
1149 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1150 xlog_space_left(
1151 	struct xlog	*log,
1152 	atomic64_t	*head)
1153 {
1154 	int		free_bytes;
1155 	int		tail_bytes;
1156 	int		tail_cycle;
1157 	int		head_cycle;
1158 	int		head_bytes;
1159 
1160 	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1161 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1162 	tail_bytes = BBTOB(tail_bytes);
1163 	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1164 		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1165 	else if (tail_cycle + 1 < head_cycle)
1166 		return 0;
1167 	else if (tail_cycle < head_cycle) {
1168 		ASSERT(tail_cycle == (head_cycle - 1));
1169 		free_bytes = tail_bytes - head_bytes;
1170 	} else {
1171 		/*
1172 		 * The reservation head is behind the tail.
1173 		 * In this case we just want to return the size of the
1174 		 * log as the amount of space left.
1175 		 */
1176 		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1177 		xfs_alert(log->l_mp,
1178 			  "  tail_cycle = %d, tail_bytes = %d",
1179 			  tail_cycle, tail_bytes);
1180 		xfs_alert(log->l_mp,
1181 			  "  GH   cycle = %d, GH   bytes = %d",
1182 			  head_cycle, head_bytes);
1183 		ASSERT(0);
1184 		free_bytes = log->l_logsize;
1185 	}
1186 	return free_bytes;
1187 }
1188 
1189 
1190 static void
xlog_ioend_work(struct work_struct * work)1191 xlog_ioend_work(
1192 	struct work_struct	*work)
1193 {
1194 	struct xlog_in_core     *iclog =
1195 		container_of(work, struct xlog_in_core, ic_end_io_work);
1196 	struct xlog		*log = iclog->ic_log;
1197 	int			error;
1198 
1199 	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1200 #ifdef DEBUG
1201 	/* treat writes with injected CRC errors as failed */
1202 	if (iclog->ic_fail_crc)
1203 		error = -EIO;
1204 #endif
1205 
1206 	/*
1207 	 * Race to shutdown the filesystem if we see an error.
1208 	 */
1209 	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1210 		xfs_alert(log->l_mp, "log I/O error %d", error);
1211 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1212 	}
1213 
1214 	xlog_state_done_syncing(iclog);
1215 	bio_uninit(&iclog->ic_bio);
1216 
1217 	/*
1218 	 * Drop the lock to signal that we are done. Nothing references the
1219 	 * iclog after this, so an unmount waiting on this lock can now tear it
1220 	 * down safely. As such, it is unsafe to reference the iclog after the
1221 	 * unlock as we could race with it being freed.
1222 	 */
1223 	up(&iclog->ic_sema);
1224 }
1225 
1226 /*
1227  * Return size of each in-core log record buffer.
1228  *
1229  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1230  *
1231  * If the filesystem blocksize is too large, we may need to choose a
1232  * larger size since the directory code currently logs entire blocks.
1233  */
1234 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1235 xlog_get_iclog_buffer_size(
1236 	struct xfs_mount	*mp,
1237 	struct xlog		*log)
1238 {
1239 	if (mp->m_logbufs <= 0)
1240 		mp->m_logbufs = XLOG_MAX_ICLOGS;
1241 	if (mp->m_logbsize <= 0)
1242 		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1243 
1244 	log->l_iclog_bufs = mp->m_logbufs;
1245 	log->l_iclog_size = mp->m_logbsize;
1246 
1247 	/*
1248 	 * # headers = size / 32k - one header holds cycles from 32k of data.
1249 	 */
1250 	log->l_iclog_heads =
1251 		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1252 	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1253 }
1254 
1255 void
xfs_log_work_queue(struct xfs_mount * mp)1256 xfs_log_work_queue(
1257 	struct xfs_mount        *mp)
1258 {
1259 	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1260 				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1261 }
1262 
1263 /*
1264  * Every sync period we need to unpin all items in the AIL and push them to
1265  * disk. If there is nothing dirty, then we might need to cover the log to
1266  * indicate that the filesystem is idle.
1267  */
1268 static void
xfs_log_worker(struct work_struct * work)1269 xfs_log_worker(
1270 	struct work_struct	*work)
1271 {
1272 	struct xlog		*log = container_of(to_delayed_work(work),
1273 						struct xlog, l_work);
1274 	struct xfs_mount	*mp = log->l_mp;
1275 
1276 	/* dgc: errors ignored - not fatal and nowhere to report them */
1277 	if (xfs_log_need_covered(mp)) {
1278 		/*
1279 		 * Dump a transaction into the log that contains no real change.
1280 		 * This is needed to stamp the current tail LSN into the log
1281 		 * during the covering operation.
1282 		 *
1283 		 * We cannot use an inode here for this - that will push dirty
1284 		 * state back up into the VFS and then periodic inode flushing
1285 		 * will prevent log covering from making progress. Hence we
1286 		 * synchronously log the superblock instead to ensure the
1287 		 * superblock is immediately unpinned and can be written back.
1288 		 */
1289 		xfs_sync_sb(mp, true);
1290 	} else
1291 		xfs_log_force(mp, 0);
1292 
1293 	/* start pushing all the metadata that is currently dirty */
1294 	xfs_ail_push_all(mp->m_ail);
1295 
1296 	/* queue us up again */
1297 	xfs_log_work_queue(mp);
1298 }
1299 
1300 /*
1301  * This routine initializes some of the log structure for a given mount point.
1302  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1303  * some other stuff may be filled in too.
1304  */
1305 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1306 xlog_alloc_log(
1307 	struct xfs_mount	*mp,
1308 	struct xfs_buftarg	*log_target,
1309 	xfs_daddr_t		blk_offset,
1310 	int			num_bblks)
1311 {
1312 	struct xlog		*log;
1313 	xlog_rec_header_t	*head;
1314 	xlog_in_core_t		**iclogp;
1315 	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1316 	int			i;
1317 	int			error = -ENOMEM;
1318 	uint			log2_size = 0;
1319 
1320 	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1321 	if (!log) {
1322 		xfs_warn(mp, "Log allocation failed: No memory!");
1323 		goto out;
1324 	}
1325 
1326 	log->l_mp	   = mp;
1327 	log->l_targ	   = log_target;
1328 	log->l_logsize     = BBTOB(num_bblks);
1329 	log->l_logBBstart  = blk_offset;
1330 	log->l_logBBsize   = num_bblks;
1331 	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1332 	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1333 	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1334 
1335 	log->l_prev_block  = -1;
1336 	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1337 	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1338 	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1339 	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1340 
1341 	xlog_grant_head_init(&log->l_reserve_head);
1342 	xlog_grant_head_init(&log->l_write_head);
1343 
1344 	error = -EFSCORRUPTED;
1345 	if (xfs_sb_version_hassector(&mp->m_sb)) {
1346 	        log2_size = mp->m_sb.sb_logsectlog;
1347 		if (log2_size < BBSHIFT) {
1348 			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1349 				log2_size, BBSHIFT);
1350 			goto out_free_log;
1351 		}
1352 
1353 	        log2_size -= BBSHIFT;
1354 		if (log2_size > mp->m_sectbb_log) {
1355 			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1356 				log2_size, mp->m_sectbb_log);
1357 			goto out_free_log;
1358 		}
1359 
1360 		/* for larger sector sizes, must have v2 or external log */
1361 		if (log2_size && log->l_logBBstart > 0 &&
1362 			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1363 			xfs_warn(mp,
1364 		"log sector size (0x%x) invalid for configuration.",
1365 				log2_size);
1366 			goto out_free_log;
1367 		}
1368 	}
1369 	log->l_sectBBsize = 1 << log2_size;
1370 
1371 	xlog_get_iclog_buffer_size(mp, log);
1372 
1373 	spin_lock_init(&log->l_icloglock);
1374 	init_waitqueue_head(&log->l_flush_wait);
1375 
1376 	iclogp = &log->l_iclog;
1377 	/*
1378 	 * The amount of memory to allocate for the iclog structure is
1379 	 * rather funky due to the way the structure is defined.  It is
1380 	 * done this way so that we can use different sizes for machines
1381 	 * with different amounts of memory.  See the definition of
1382 	 * xlog_in_core_t in xfs_log_priv.h for details.
1383 	 */
1384 	ASSERT(log->l_iclog_size >= 4096);
1385 	for (i = 0; i < log->l_iclog_bufs; i++) {
1386 		int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1387 		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1388 				sizeof(struct bio_vec);
1389 
1390 		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1391 		if (!iclog)
1392 			goto out_free_iclog;
1393 
1394 		*iclogp = iclog;
1395 		iclog->ic_prev = prev_iclog;
1396 		prev_iclog = iclog;
1397 
1398 		iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1399 						KM_MAYFAIL | KM_ZERO);
1400 		if (!iclog->ic_data)
1401 			goto out_free_iclog;
1402 #ifdef DEBUG
1403 		log->l_iclog_bak[i] = &iclog->ic_header;
1404 #endif
1405 		head = &iclog->ic_header;
1406 		memset(head, 0, sizeof(xlog_rec_header_t));
1407 		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1408 		head->h_version = cpu_to_be32(
1409 			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1410 		head->h_size = cpu_to_be32(log->l_iclog_size);
1411 		/* new fields */
1412 		head->h_fmt = cpu_to_be32(XLOG_FMT);
1413 		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1414 
1415 		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1416 		iclog->ic_state = XLOG_STATE_ACTIVE;
1417 		iclog->ic_log = log;
1418 		atomic_set(&iclog->ic_refcnt, 0);
1419 		spin_lock_init(&iclog->ic_callback_lock);
1420 		INIT_LIST_HEAD(&iclog->ic_callbacks);
1421 		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1422 
1423 		init_waitqueue_head(&iclog->ic_force_wait);
1424 		init_waitqueue_head(&iclog->ic_write_wait);
1425 		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1426 		sema_init(&iclog->ic_sema, 1);
1427 
1428 		iclogp = &iclog->ic_next;
1429 	}
1430 	*iclogp = log->l_iclog;			/* complete ring */
1431 	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1432 
1433 	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1434 			WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1435 			mp->m_super->s_id);
1436 	if (!log->l_ioend_workqueue)
1437 		goto out_free_iclog;
1438 
1439 	error = xlog_cil_init(log);
1440 	if (error)
1441 		goto out_destroy_workqueue;
1442 	return log;
1443 
1444 out_destroy_workqueue:
1445 	destroy_workqueue(log->l_ioend_workqueue);
1446 out_free_iclog:
1447 	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1448 		prev_iclog = iclog->ic_next;
1449 		kmem_free(iclog->ic_data);
1450 		kmem_free(iclog);
1451 		if (prev_iclog == log->l_iclog)
1452 			break;
1453 	}
1454 out_free_log:
1455 	kmem_free(log);
1456 out:
1457 	return ERR_PTR(error);
1458 }	/* xlog_alloc_log */
1459 
1460 /*
1461  * Write out the commit record of a transaction associated with the given
1462  * ticket to close off a running log write. Return the lsn of the commit record.
1463  */
1464 int
xlog_commit_record(struct xlog * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * lsn)1465 xlog_commit_record(
1466 	struct xlog		*log,
1467 	struct xlog_ticket	*ticket,
1468 	struct xlog_in_core	**iclog,
1469 	xfs_lsn_t		*lsn)
1470 {
1471 	struct xfs_log_iovec reg = {
1472 		.i_addr = NULL,
1473 		.i_len = 0,
1474 		.i_type = XLOG_REG_TYPE_COMMIT,
1475 	};
1476 	struct xfs_log_vec vec = {
1477 		.lv_niovecs = 1,
1478 		.lv_iovecp = &reg,
1479 	};
1480 	int	error;
1481 
1482 	if (XLOG_FORCED_SHUTDOWN(log))
1483 		return -EIO;
1484 
1485 	error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS,
1486 			   false);
1487 	if (error)
1488 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1489 	return error;
1490 }
1491 
1492 /*
1493  * Compute the LSN that we'd need to push the log tail towards in order to have
1494  * (a) enough on-disk log space to log the number of bytes specified, (b) at
1495  * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1496  * log free space already meets all three thresholds, this function returns
1497  * NULLCOMMITLSN.
1498  */
1499 xfs_lsn_t
xlog_grant_push_threshold(struct xlog * log,int need_bytes)1500 xlog_grant_push_threshold(
1501 	struct xlog	*log,
1502 	int		need_bytes)
1503 {
1504 	xfs_lsn_t	threshold_lsn = 0;
1505 	xfs_lsn_t	last_sync_lsn;
1506 	int		free_blocks;
1507 	int		free_bytes;
1508 	int		threshold_block;
1509 	int		threshold_cycle;
1510 	int		free_threshold;
1511 
1512 	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1513 
1514 	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1515 	free_blocks = BTOBBT(free_bytes);
1516 
1517 	/*
1518 	 * Set the threshold for the minimum number of free blocks in the
1519 	 * log to the maximum of what the caller needs, one quarter of the
1520 	 * log, and 256 blocks.
1521 	 */
1522 	free_threshold = BTOBB(need_bytes);
1523 	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1524 	free_threshold = max(free_threshold, 256);
1525 	if (free_blocks >= free_threshold)
1526 		return NULLCOMMITLSN;
1527 
1528 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1529 						&threshold_block);
1530 	threshold_block += free_threshold;
1531 	if (threshold_block >= log->l_logBBsize) {
1532 		threshold_block -= log->l_logBBsize;
1533 		threshold_cycle += 1;
1534 	}
1535 	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1536 					threshold_block);
1537 	/*
1538 	 * Don't pass in an lsn greater than the lsn of the last
1539 	 * log record known to be on disk. Use a snapshot of the last sync lsn
1540 	 * so that it doesn't change between the compare and the set.
1541 	 */
1542 	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1543 	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1544 		threshold_lsn = last_sync_lsn;
1545 
1546 	return threshold_lsn;
1547 }
1548 
1549 /*
1550  * Push the tail of the log if we need to do so to maintain the free log space
1551  * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1552  * policy which pushes on an lsn which is further along in the log once we
1553  * reach the high water mark.  In this manner, we would be creating a low water
1554  * mark.
1555  */
1556 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1557 xlog_grant_push_ail(
1558 	struct xlog	*log,
1559 	int		need_bytes)
1560 {
1561 	xfs_lsn_t	threshold_lsn;
1562 
1563 	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1564 	if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1565 		return;
1566 
1567 	/*
1568 	 * Get the transaction layer to kick the dirty buffers out to
1569 	 * disk asynchronously. No point in trying to do this if
1570 	 * the filesystem is shutting down.
1571 	 */
1572 	xfs_ail_push(log->l_ailp, threshold_lsn);
1573 }
1574 
1575 /*
1576  * Stamp cycle number in every block
1577  */
1578 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1579 xlog_pack_data(
1580 	struct xlog		*log,
1581 	struct xlog_in_core	*iclog,
1582 	int			roundoff)
1583 {
1584 	int			i, j, k;
1585 	int			size = iclog->ic_offset + roundoff;
1586 	__be32			cycle_lsn;
1587 	char			*dp;
1588 
1589 	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1590 
1591 	dp = iclog->ic_datap;
1592 	for (i = 0; i < BTOBB(size); i++) {
1593 		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1594 			break;
1595 		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1596 		*(__be32 *)dp = cycle_lsn;
1597 		dp += BBSIZE;
1598 	}
1599 
1600 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1601 		xlog_in_core_2_t *xhdr = iclog->ic_data;
1602 
1603 		for ( ; i < BTOBB(size); i++) {
1604 			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1605 			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1606 			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1607 			*(__be32 *)dp = cycle_lsn;
1608 			dp += BBSIZE;
1609 		}
1610 
1611 		for (i = 1; i < log->l_iclog_heads; i++)
1612 			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1613 	}
1614 }
1615 
1616 /*
1617  * Calculate the checksum for a log buffer.
1618  *
1619  * This is a little more complicated than it should be because the various
1620  * headers and the actual data are non-contiguous.
1621  */
1622 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1623 xlog_cksum(
1624 	struct xlog		*log,
1625 	struct xlog_rec_header	*rhead,
1626 	char			*dp,
1627 	int			size)
1628 {
1629 	uint32_t		crc;
1630 
1631 	/* first generate the crc for the record header ... */
1632 	crc = xfs_start_cksum_update((char *)rhead,
1633 			      sizeof(struct xlog_rec_header),
1634 			      offsetof(struct xlog_rec_header, h_crc));
1635 
1636 	/* ... then for additional cycle data for v2 logs ... */
1637 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1638 		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1639 		int		i;
1640 		int		xheads;
1641 
1642 		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1643 
1644 		for (i = 1; i < xheads; i++) {
1645 			crc = crc32c(crc, &xhdr[i].hic_xheader,
1646 				     sizeof(struct xlog_rec_ext_header));
1647 		}
1648 	}
1649 
1650 	/* ... and finally for the payload */
1651 	crc = crc32c(crc, dp, size);
1652 
1653 	return xfs_end_cksum(crc);
1654 }
1655 
1656 static void
xlog_bio_end_io(struct bio * bio)1657 xlog_bio_end_io(
1658 	struct bio		*bio)
1659 {
1660 	struct xlog_in_core	*iclog = bio->bi_private;
1661 
1662 	queue_work(iclog->ic_log->l_ioend_workqueue,
1663 		   &iclog->ic_end_io_work);
1664 }
1665 
1666 static int
xlog_map_iclog_data(struct bio * bio,void * data,size_t count)1667 xlog_map_iclog_data(
1668 	struct bio		*bio,
1669 	void			*data,
1670 	size_t			count)
1671 {
1672 	do {
1673 		struct page	*page = kmem_to_page(data);
1674 		unsigned int	off = offset_in_page(data);
1675 		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1676 
1677 		if (bio_add_page(bio, page, len, off) != len)
1678 			return -EIO;
1679 
1680 		data += len;
1681 		count -= len;
1682 	} while (count);
1683 
1684 	return 0;
1685 }
1686 
1687 STATIC void
xlog_write_iclog(struct xlog * log,struct xlog_in_core * iclog,uint64_t bno,unsigned int count,bool need_flush)1688 xlog_write_iclog(
1689 	struct xlog		*log,
1690 	struct xlog_in_core	*iclog,
1691 	uint64_t		bno,
1692 	unsigned int		count,
1693 	bool			need_flush)
1694 {
1695 	ASSERT(bno < log->l_logBBsize);
1696 
1697 	/*
1698 	 * We lock the iclogbufs here so that we can serialise against I/O
1699 	 * completion during unmount.  We might be processing a shutdown
1700 	 * triggered during unmount, and that can occur asynchronously to the
1701 	 * unmount thread, and hence we need to ensure that completes before
1702 	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1703 	 * across the log IO to archieve that.
1704 	 */
1705 	down(&iclog->ic_sema);
1706 	if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1707 		/*
1708 		 * It would seem logical to return EIO here, but we rely on
1709 		 * the log state machine to propagate I/O errors instead of
1710 		 * doing it here.  We kick of the state machine and unlock
1711 		 * the buffer manually, the code needs to be kept in sync
1712 		 * with the I/O completion path.
1713 		 */
1714 		xlog_state_done_syncing(iclog);
1715 		up(&iclog->ic_sema);
1716 		return;
1717 	}
1718 
1719 	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1720 	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1721 	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1722 	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1723 	iclog->ic_bio.bi_private = iclog;
1724 
1725 	/*
1726 	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1727 	 * IOs coming immediately after this one. This prevents the block layer
1728 	 * writeback throttle from throttling log writes behind background
1729 	 * metadata writeback and causing priority inversions.
1730 	 */
1731 	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC |
1732 				REQ_IDLE | REQ_FUA;
1733 	if (need_flush)
1734 		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1735 
1736 	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1737 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1738 		return;
1739 	}
1740 	if (is_vmalloc_addr(iclog->ic_data))
1741 		flush_kernel_vmap_range(iclog->ic_data, count);
1742 
1743 	/*
1744 	 * If this log buffer would straddle the end of the log we will have
1745 	 * to split it up into two bios, so that we can continue at the start.
1746 	 */
1747 	if (bno + BTOBB(count) > log->l_logBBsize) {
1748 		struct bio *split;
1749 
1750 		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1751 				  GFP_NOIO, &fs_bio_set);
1752 		bio_chain(split, &iclog->ic_bio);
1753 		submit_bio(split);
1754 
1755 		/* restart at logical offset zero for the remainder */
1756 		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1757 	}
1758 
1759 	submit_bio(&iclog->ic_bio);
1760 }
1761 
1762 /*
1763  * We need to bump cycle number for the part of the iclog that is
1764  * written to the start of the log. Watch out for the header magic
1765  * number case, though.
1766  */
1767 static void
xlog_split_iclog(struct xlog * log,void * data,uint64_t bno,unsigned int count)1768 xlog_split_iclog(
1769 	struct xlog		*log,
1770 	void			*data,
1771 	uint64_t		bno,
1772 	unsigned int		count)
1773 {
1774 	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1775 	unsigned int		i;
1776 
1777 	for (i = split_offset; i < count; i += BBSIZE) {
1778 		uint32_t cycle = get_unaligned_be32(data + i);
1779 
1780 		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1781 			cycle++;
1782 		put_unaligned_be32(cycle, data + i);
1783 	}
1784 }
1785 
1786 static int
xlog_calc_iclog_size(struct xlog * log,struct xlog_in_core * iclog,uint32_t * roundoff)1787 xlog_calc_iclog_size(
1788 	struct xlog		*log,
1789 	struct xlog_in_core	*iclog,
1790 	uint32_t		*roundoff)
1791 {
1792 	uint32_t		count_init, count;
1793 	bool			use_lsunit;
1794 
1795 	use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1796 			log->l_mp->m_sb.sb_logsunit > 1;
1797 
1798 	/* Add for LR header */
1799 	count_init = log->l_iclog_hsize + iclog->ic_offset;
1800 
1801 	/* Round out the log write size */
1802 	if (use_lsunit) {
1803 		/* we have a v2 stripe unit to use */
1804 		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1805 	} else {
1806 		count = BBTOB(BTOBB(count_init));
1807 	}
1808 
1809 	ASSERT(count >= count_init);
1810 	*roundoff = count - count_init;
1811 
1812 	if (use_lsunit)
1813 		ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1814 	else
1815 		ASSERT(*roundoff < BBTOB(1));
1816 	return count;
1817 }
1818 
1819 /*
1820  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1821  * fashion.  Previously, we should have moved the current iclog
1822  * ptr in the log to point to the next available iclog.  This allows further
1823  * write to continue while this code syncs out an iclog ready to go.
1824  * Before an in-core log can be written out, the data section must be scanned
1825  * to save away the 1st word of each BBSIZE block into the header.  We replace
1826  * it with the current cycle count.  Each BBSIZE block is tagged with the
1827  * cycle count because there in an implicit assumption that drives will
1828  * guarantee that entire 512 byte blocks get written at once.  In other words,
1829  * we can't have part of a 512 byte block written and part not written.  By
1830  * tagging each block, we will know which blocks are valid when recovering
1831  * after an unclean shutdown.
1832  *
1833  * This routine is single threaded on the iclog.  No other thread can be in
1834  * this routine with the same iclog.  Changing contents of iclog can there-
1835  * fore be done without grabbing the state machine lock.  Updating the global
1836  * log will require grabbing the lock though.
1837  *
1838  * The entire log manager uses a logical block numbering scheme.  Only
1839  * xlog_write_iclog knows about the fact that the log may not start with
1840  * block zero on a given device.
1841  */
1842 STATIC void
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)1843 xlog_sync(
1844 	struct xlog		*log,
1845 	struct xlog_in_core	*iclog)
1846 {
1847 	unsigned int		count;		/* byte count of bwrite */
1848 	unsigned int		roundoff;       /* roundoff to BB or stripe */
1849 	uint64_t		bno;
1850 	unsigned int		size;
1851 	bool			need_flush = true, split = false;
1852 
1853 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1854 
1855 	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1856 
1857 	/* move grant heads by roundoff in sync */
1858 	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1859 	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1860 
1861 	/* put cycle number in every block */
1862 	xlog_pack_data(log, iclog, roundoff);
1863 
1864 	/* real byte length */
1865 	size = iclog->ic_offset;
1866 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1867 		size += roundoff;
1868 	iclog->ic_header.h_len = cpu_to_be32(size);
1869 
1870 	XFS_STATS_INC(log->l_mp, xs_log_writes);
1871 	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1872 
1873 	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1874 
1875 	/* Do we need to split this write into 2 parts? */
1876 	if (bno + BTOBB(count) > log->l_logBBsize) {
1877 		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1878 		split = true;
1879 	}
1880 
1881 	/* calculcate the checksum */
1882 	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1883 					    iclog->ic_datap, size);
1884 	/*
1885 	 * Intentionally corrupt the log record CRC based on the error injection
1886 	 * frequency, if defined. This facilitates testing log recovery in the
1887 	 * event of torn writes. Hence, set the IOABORT state to abort the log
1888 	 * write on I/O completion and shutdown the fs. The subsequent mount
1889 	 * detects the bad CRC and attempts to recover.
1890 	 */
1891 #ifdef DEBUG
1892 	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1893 		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1894 		iclog->ic_fail_crc = true;
1895 		xfs_warn(log->l_mp,
1896 	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1897 			 be64_to_cpu(iclog->ic_header.h_lsn));
1898 	}
1899 #endif
1900 
1901 	/*
1902 	 * Flush the data device before flushing the log to make sure all meta
1903 	 * data written back from the AIL actually made it to disk before
1904 	 * stamping the new log tail LSN into the log buffer.  For an external
1905 	 * log we need to issue the flush explicitly, and unfortunately
1906 	 * synchronously here; for an internal log we can simply use the block
1907 	 * layer state machine for preflushes.
1908 	 */
1909 	if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1910 		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1911 		need_flush = false;
1912 	}
1913 
1914 	xlog_verify_iclog(log, iclog, count);
1915 	xlog_write_iclog(log, iclog, bno, count, need_flush);
1916 }
1917 
1918 /*
1919  * Deallocate a log structure
1920  */
1921 STATIC void
xlog_dealloc_log(struct xlog * log)1922 xlog_dealloc_log(
1923 	struct xlog	*log)
1924 {
1925 	xlog_in_core_t	*iclog, *next_iclog;
1926 	int		i;
1927 
1928 	xlog_cil_destroy(log);
1929 
1930 	/*
1931 	 * Cycle all the iclogbuf locks to make sure all log IO completion
1932 	 * is done before we tear down these buffers.
1933 	 */
1934 	iclog = log->l_iclog;
1935 	for (i = 0; i < log->l_iclog_bufs; i++) {
1936 		down(&iclog->ic_sema);
1937 		up(&iclog->ic_sema);
1938 		iclog = iclog->ic_next;
1939 	}
1940 
1941 	iclog = log->l_iclog;
1942 	for (i = 0; i < log->l_iclog_bufs; i++) {
1943 		next_iclog = iclog->ic_next;
1944 		kmem_free(iclog->ic_data);
1945 		kmem_free(iclog);
1946 		iclog = next_iclog;
1947 	}
1948 
1949 	log->l_mp->m_log = NULL;
1950 	destroy_workqueue(log->l_ioend_workqueue);
1951 	kmem_free(log);
1952 }
1953 
1954 /*
1955  * Update counters atomically now that memcpy is done.
1956  */
1957 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)1958 xlog_state_finish_copy(
1959 	struct xlog		*log,
1960 	struct xlog_in_core	*iclog,
1961 	int			record_cnt,
1962 	int			copy_bytes)
1963 {
1964 	lockdep_assert_held(&log->l_icloglock);
1965 
1966 	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1967 	iclog->ic_offset += copy_bytes;
1968 }
1969 
1970 /*
1971  * print out info relating to regions written which consume
1972  * the reservation
1973  */
1974 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1975 xlog_print_tic_res(
1976 	struct xfs_mount	*mp,
1977 	struct xlog_ticket	*ticket)
1978 {
1979 	uint i;
1980 	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1981 
1982 	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1983 #define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
1984 	static char *res_type_str[] = {
1985 	    REG_TYPE_STR(BFORMAT, "bformat"),
1986 	    REG_TYPE_STR(BCHUNK, "bchunk"),
1987 	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
1988 	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
1989 	    REG_TYPE_STR(IFORMAT, "iformat"),
1990 	    REG_TYPE_STR(ICORE, "icore"),
1991 	    REG_TYPE_STR(IEXT, "iext"),
1992 	    REG_TYPE_STR(IBROOT, "ibroot"),
1993 	    REG_TYPE_STR(ILOCAL, "ilocal"),
1994 	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
1995 	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
1996 	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
1997 	    REG_TYPE_STR(QFORMAT, "qformat"),
1998 	    REG_TYPE_STR(DQUOT, "dquot"),
1999 	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2000 	    REG_TYPE_STR(LRHEADER, "LR header"),
2001 	    REG_TYPE_STR(UNMOUNT, "unmount"),
2002 	    REG_TYPE_STR(COMMIT, "commit"),
2003 	    REG_TYPE_STR(TRANSHDR, "trans header"),
2004 	    REG_TYPE_STR(ICREATE, "inode create"),
2005 	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2006 	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2007 	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2008 	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2009 	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2010 	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2011 	};
2012 	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2013 #undef REG_TYPE_STR
2014 
2015 	xfs_warn(mp, "ticket reservation summary:");
2016 	xfs_warn(mp, "  unit res    = %d bytes",
2017 		 ticket->t_unit_res);
2018 	xfs_warn(mp, "  current res = %d bytes",
2019 		 ticket->t_curr_res);
2020 	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2021 		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2022 	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2023 		 ticket->t_res_num_ophdrs, ophdr_spc);
2024 	xfs_warn(mp, "  ophdr + reg = %u bytes",
2025 		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2026 	xfs_warn(mp, "  num regions = %u",
2027 		 ticket->t_res_num);
2028 
2029 	for (i = 0; i < ticket->t_res_num; i++) {
2030 		uint r_type = ticket->t_res_arr[i].r_type;
2031 		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2032 			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2033 			    "bad-rtype" : res_type_str[r_type]),
2034 			    ticket->t_res_arr[i].r_len);
2035 	}
2036 }
2037 
2038 /*
2039  * Print a summary of the transaction.
2040  */
2041 void
xlog_print_trans(struct xfs_trans * tp)2042 xlog_print_trans(
2043 	struct xfs_trans	*tp)
2044 {
2045 	struct xfs_mount	*mp = tp->t_mountp;
2046 	struct xfs_log_item	*lip;
2047 
2048 	/* dump core transaction and ticket info */
2049 	xfs_warn(mp, "transaction summary:");
2050 	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2051 	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2052 	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2053 
2054 	xlog_print_tic_res(mp, tp->t_ticket);
2055 
2056 	/* dump each log item */
2057 	list_for_each_entry(lip, &tp->t_items, li_trans) {
2058 		struct xfs_log_vec	*lv = lip->li_lv;
2059 		struct xfs_log_iovec	*vec;
2060 		int			i;
2061 
2062 		xfs_warn(mp, "log item: ");
2063 		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2064 		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2065 		if (!lv)
2066 			continue;
2067 		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2068 		xfs_warn(mp, "  size	= %d", lv->lv_size);
2069 		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2070 		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2071 
2072 		/* dump each iovec for the log item */
2073 		vec = lv->lv_iovecp;
2074 		for (i = 0; i < lv->lv_niovecs; i++) {
2075 			int dumplen = min(vec->i_len, 32);
2076 
2077 			xfs_warn(mp, "  iovec[%d]", i);
2078 			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2079 			xfs_warn(mp, "    len	= %d", vec->i_len);
2080 			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2081 			xfs_hex_dump(vec->i_addr, dumplen);
2082 
2083 			vec++;
2084 		}
2085 	}
2086 }
2087 
2088 /*
2089  * Calculate the potential space needed by the log vector.  We may need a start
2090  * record, and each region gets its own struct xlog_op_header and may need to be
2091  * double word aligned.
2092  */
2093 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector,bool need_start_rec)2094 xlog_write_calc_vec_length(
2095 	struct xlog_ticket	*ticket,
2096 	struct xfs_log_vec	*log_vector,
2097 	bool			need_start_rec)
2098 {
2099 	struct xfs_log_vec	*lv;
2100 	int			headers = need_start_rec ? 1 : 0;
2101 	int			len = 0;
2102 	int			i;
2103 
2104 	for (lv = log_vector; lv; lv = lv->lv_next) {
2105 		/* we don't write ordered log vectors */
2106 		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2107 			continue;
2108 
2109 		headers += lv->lv_niovecs;
2110 
2111 		for (i = 0; i < lv->lv_niovecs; i++) {
2112 			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2113 
2114 			len += vecp->i_len;
2115 			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2116 		}
2117 	}
2118 
2119 	ticket->t_res_num_ophdrs += headers;
2120 	len += headers * sizeof(struct xlog_op_header);
2121 
2122 	return len;
2123 }
2124 
2125 static void
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)2126 xlog_write_start_rec(
2127 	struct xlog_op_header	*ophdr,
2128 	struct xlog_ticket	*ticket)
2129 {
2130 	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2131 	ophdr->oh_clientid = ticket->t_clientid;
2132 	ophdr->oh_len = 0;
2133 	ophdr->oh_flags = XLOG_START_TRANS;
2134 	ophdr->oh_res2 = 0;
2135 }
2136 
2137 static xlog_op_header_t *
xlog_write_setup_ophdr(struct xlog * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)2138 xlog_write_setup_ophdr(
2139 	struct xlog		*log,
2140 	struct xlog_op_header	*ophdr,
2141 	struct xlog_ticket	*ticket,
2142 	uint			flags)
2143 {
2144 	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2145 	ophdr->oh_clientid = ticket->t_clientid;
2146 	ophdr->oh_res2 = 0;
2147 
2148 	/* are we copying a commit or unmount record? */
2149 	ophdr->oh_flags = flags;
2150 
2151 	/*
2152 	 * We've seen logs corrupted with bad transaction client ids.  This
2153 	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2154 	 * and shut down the filesystem.
2155 	 */
2156 	switch (ophdr->oh_clientid)  {
2157 	case XFS_TRANSACTION:
2158 	case XFS_VOLUME:
2159 	case XFS_LOG:
2160 		break;
2161 	default:
2162 		xfs_warn(log->l_mp,
2163 			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2164 			ophdr->oh_clientid, ticket);
2165 		return NULL;
2166 	}
2167 
2168 	return ophdr;
2169 }
2170 
2171 /*
2172  * Set up the parameters of the region copy into the log. This has
2173  * to handle region write split across multiple log buffers - this
2174  * state is kept external to this function so that this code can
2175  * be written in an obvious, self documenting manner.
2176  */
2177 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)2178 xlog_write_setup_copy(
2179 	struct xlog_ticket	*ticket,
2180 	struct xlog_op_header	*ophdr,
2181 	int			space_available,
2182 	int			space_required,
2183 	int			*copy_off,
2184 	int			*copy_len,
2185 	int			*last_was_partial_copy,
2186 	int			*bytes_consumed)
2187 {
2188 	int			still_to_copy;
2189 
2190 	still_to_copy = space_required - *bytes_consumed;
2191 	*copy_off = *bytes_consumed;
2192 
2193 	if (still_to_copy <= space_available) {
2194 		/* write of region completes here */
2195 		*copy_len = still_to_copy;
2196 		ophdr->oh_len = cpu_to_be32(*copy_len);
2197 		if (*last_was_partial_copy)
2198 			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2199 		*last_was_partial_copy = 0;
2200 		*bytes_consumed = 0;
2201 		return 0;
2202 	}
2203 
2204 	/* partial write of region, needs extra log op header reservation */
2205 	*copy_len = space_available;
2206 	ophdr->oh_len = cpu_to_be32(*copy_len);
2207 	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2208 	if (*last_was_partial_copy)
2209 		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2210 	*bytes_consumed += *copy_len;
2211 	(*last_was_partial_copy)++;
2212 
2213 	/* account for new log op header */
2214 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2215 	ticket->t_res_num_ophdrs++;
2216 
2217 	return sizeof(struct xlog_op_header);
2218 }
2219 
2220 static int
xlog_write_copy_finish(struct xlog * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)2221 xlog_write_copy_finish(
2222 	struct xlog		*log,
2223 	struct xlog_in_core	*iclog,
2224 	uint			flags,
2225 	int			*record_cnt,
2226 	int			*data_cnt,
2227 	int			*partial_copy,
2228 	int			*partial_copy_len,
2229 	int			log_offset,
2230 	struct xlog_in_core	**commit_iclog)
2231 {
2232 	int			error;
2233 
2234 	if (*partial_copy) {
2235 		/*
2236 		 * This iclog has already been marked WANT_SYNC by
2237 		 * xlog_state_get_iclog_space.
2238 		 */
2239 		spin_lock(&log->l_icloglock);
2240 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2241 		*record_cnt = 0;
2242 		*data_cnt = 0;
2243 		goto release_iclog;
2244 	}
2245 
2246 	*partial_copy = 0;
2247 	*partial_copy_len = 0;
2248 
2249 	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2250 		/* no more space in this iclog - push it. */
2251 		spin_lock(&log->l_icloglock);
2252 		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2253 		*record_cnt = 0;
2254 		*data_cnt = 0;
2255 
2256 		if (iclog->ic_state == XLOG_STATE_ACTIVE)
2257 			xlog_state_switch_iclogs(log, iclog, 0);
2258 		else
2259 			ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2260 			       iclog->ic_state == XLOG_STATE_IOERROR);
2261 		if (!commit_iclog)
2262 			goto release_iclog;
2263 		spin_unlock(&log->l_icloglock);
2264 		ASSERT(flags & XLOG_COMMIT_TRANS);
2265 		*commit_iclog = iclog;
2266 	}
2267 
2268 	return 0;
2269 
2270 release_iclog:
2271 	error = xlog_state_release_iclog(log, iclog);
2272 	spin_unlock(&log->l_icloglock);
2273 	return error;
2274 }
2275 
2276 /*
2277  * Write some region out to in-core log
2278  *
2279  * This will be called when writing externally provided regions or when
2280  * writing out a commit record for a given transaction.
2281  *
2282  * General algorithm:
2283  *	1. Find total length of this write.  This may include adding to the
2284  *		lengths passed in.
2285  *	2. Check whether we violate the tickets reservation.
2286  *	3. While writing to this iclog
2287  *	    A. Reserve as much space in this iclog as can get
2288  *	    B. If this is first write, save away start lsn
2289  *	    C. While writing this region:
2290  *		1. If first write of transaction, write start record
2291  *		2. Write log operation header (header per region)
2292  *		3. Find out if we can fit entire region into this iclog
2293  *		4. Potentially, verify destination memcpy ptr
2294  *		5. Memcpy (partial) region
2295  *		6. If partial copy, release iclog; otherwise, continue
2296  *			copying more regions into current iclog
2297  *	4. Mark want sync bit (in simulation mode)
2298  *	5. Release iclog for potential flush to on-disk log.
2299  *
2300  * ERRORS:
2301  * 1.	Panic if reservation is overrun.  This should never happen since
2302  *	reservation amounts are generated internal to the filesystem.
2303  * NOTES:
2304  * 1. Tickets are single threaded data structures.
2305  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2306  *	syncing routine.  When a single log_write region needs to span
2307  *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2308  *	on all log operation writes which don't contain the end of the
2309  *	region.  The XLOG_END_TRANS bit is used for the in-core log
2310  *	operation which contains the end of the continued log_write region.
2311  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2312  *	we don't really know exactly how much space will be used.  As a result,
2313  *	we don't update ic_offset until the end when we know exactly how many
2314  *	bytes have been written out.
2315  */
2316 int
xlog_write(struct xlog * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags,bool need_start_rec)2317 xlog_write(
2318 	struct xlog		*log,
2319 	struct xfs_log_vec	*log_vector,
2320 	struct xlog_ticket	*ticket,
2321 	xfs_lsn_t		*start_lsn,
2322 	struct xlog_in_core	**commit_iclog,
2323 	uint			flags,
2324 	bool			need_start_rec)
2325 {
2326 	struct xlog_in_core	*iclog = NULL;
2327 	struct xfs_log_vec	*lv = log_vector;
2328 	struct xfs_log_iovec	*vecp = lv->lv_iovecp;
2329 	int			index = 0;
2330 	int			len;
2331 	int			partial_copy = 0;
2332 	int			partial_copy_len = 0;
2333 	int			contwr = 0;
2334 	int			record_cnt = 0;
2335 	int			data_cnt = 0;
2336 	int			error = 0;
2337 
2338 	/*
2339 	 * If this is a commit or unmount transaction, we don't need a start
2340 	 * record to be written.  We do, however, have to account for the
2341 	 * commit or unmount header that gets written. Hence we always have
2342 	 * to account for an extra xlog_op_header here.
2343 	 */
2344 	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2345 	if (ticket->t_curr_res < 0) {
2346 		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2347 		     "ctx ticket reservation ran out. Need to up reservation");
2348 		xlog_print_tic_res(log->l_mp, ticket);
2349 		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2350 	}
2351 
2352 	len = xlog_write_calc_vec_length(ticket, log_vector, need_start_rec);
2353 	*start_lsn = 0;
2354 	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2355 		void		*ptr;
2356 		int		log_offset;
2357 
2358 		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2359 						   &contwr, &log_offset);
2360 		if (error)
2361 			return error;
2362 
2363 		ASSERT(log_offset <= iclog->ic_size - 1);
2364 		ptr = iclog->ic_datap + log_offset;
2365 
2366 		/* start_lsn is the first lsn written to. That's all we need. */
2367 		if (!*start_lsn)
2368 			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2369 
2370 		/*
2371 		 * This loop writes out as many regions as can fit in the amount
2372 		 * of space which was allocated by xlog_state_get_iclog_space().
2373 		 */
2374 		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2375 			struct xfs_log_iovec	*reg;
2376 			struct xlog_op_header	*ophdr;
2377 			int			copy_len;
2378 			int			copy_off;
2379 			bool			ordered = false;
2380 
2381 			/* ordered log vectors have no regions to write */
2382 			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2383 				ASSERT(lv->lv_niovecs == 0);
2384 				ordered = true;
2385 				goto next_lv;
2386 			}
2387 
2388 			reg = &vecp[index];
2389 			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2390 			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2391 
2392 			/*
2393 			 * Before we start formatting log vectors, we need to
2394 			 * write a start record. Only do this for the first
2395 			 * iclog we write to.
2396 			 */
2397 			if (need_start_rec) {
2398 				xlog_write_start_rec(ptr, ticket);
2399 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2400 						sizeof(struct xlog_op_header));
2401 			}
2402 
2403 			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2404 			if (!ophdr)
2405 				return -EIO;
2406 
2407 			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2408 					   sizeof(struct xlog_op_header));
2409 
2410 			len += xlog_write_setup_copy(ticket, ophdr,
2411 						     iclog->ic_size-log_offset,
2412 						     reg->i_len,
2413 						     &copy_off, &copy_len,
2414 						     &partial_copy,
2415 						     &partial_copy_len);
2416 			xlog_verify_dest_ptr(log, ptr);
2417 
2418 			/*
2419 			 * Copy region.
2420 			 *
2421 			 * Unmount records just log an opheader, so can have
2422 			 * empty payloads with no data region to copy. Hence we
2423 			 * only copy the payload if the vector says it has data
2424 			 * to copy.
2425 			 */
2426 			ASSERT(copy_len >= 0);
2427 			if (copy_len > 0) {
2428 				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2429 				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2430 						   copy_len);
2431 			}
2432 			copy_len += sizeof(struct xlog_op_header);
2433 			record_cnt++;
2434 			if (need_start_rec) {
2435 				copy_len += sizeof(struct xlog_op_header);
2436 				record_cnt++;
2437 				need_start_rec = false;
2438 			}
2439 			data_cnt += contwr ? copy_len : 0;
2440 
2441 			error = xlog_write_copy_finish(log, iclog, flags,
2442 						       &record_cnt, &data_cnt,
2443 						       &partial_copy,
2444 						       &partial_copy_len,
2445 						       log_offset,
2446 						       commit_iclog);
2447 			if (error)
2448 				return error;
2449 
2450 			/*
2451 			 * if we had a partial copy, we need to get more iclog
2452 			 * space but we don't want to increment the region
2453 			 * index because there is still more is this region to
2454 			 * write.
2455 			 *
2456 			 * If we completed writing this region, and we flushed
2457 			 * the iclog (indicated by resetting of the record
2458 			 * count), then we also need to get more log space. If
2459 			 * this was the last record, though, we are done and
2460 			 * can just return.
2461 			 */
2462 			if (partial_copy)
2463 				break;
2464 
2465 			if (++index == lv->lv_niovecs) {
2466 next_lv:
2467 				lv = lv->lv_next;
2468 				index = 0;
2469 				if (lv)
2470 					vecp = lv->lv_iovecp;
2471 			}
2472 			if (record_cnt == 0 && !ordered) {
2473 				if (!lv)
2474 					return 0;
2475 				break;
2476 			}
2477 		}
2478 	}
2479 
2480 	ASSERT(len == 0);
2481 
2482 	spin_lock(&log->l_icloglock);
2483 	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2484 	if (commit_iclog) {
2485 		ASSERT(flags & XLOG_COMMIT_TRANS);
2486 		*commit_iclog = iclog;
2487 	} else {
2488 		error = xlog_state_release_iclog(log, iclog);
2489 	}
2490 	spin_unlock(&log->l_icloglock);
2491 
2492 	return error;
2493 }
2494 
2495 static void
xlog_state_activate_iclog(struct xlog_in_core * iclog,int * iclogs_changed)2496 xlog_state_activate_iclog(
2497 	struct xlog_in_core	*iclog,
2498 	int			*iclogs_changed)
2499 {
2500 	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2501 
2502 	/*
2503 	 * If the number of ops in this iclog indicate it just contains the
2504 	 * dummy transaction, we can change state into IDLE (the second time
2505 	 * around). Otherwise we should change the state into NEED a dummy.
2506 	 * We don't need to cover the dummy.
2507 	 */
2508 	if (*iclogs_changed == 0 &&
2509 	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2510 		*iclogs_changed = 1;
2511 	} else {
2512 		/*
2513 		 * We have two dirty iclogs so start over.  This could also be
2514 		 * num of ops indicating this is not the dummy going out.
2515 		 */
2516 		*iclogs_changed = 2;
2517 	}
2518 
2519 	iclog->ic_state	= XLOG_STATE_ACTIVE;
2520 	iclog->ic_offset = 0;
2521 	iclog->ic_header.h_num_logops = 0;
2522 	memset(iclog->ic_header.h_cycle_data, 0,
2523 		sizeof(iclog->ic_header.h_cycle_data));
2524 	iclog->ic_header.h_lsn = 0;
2525 }
2526 
2527 /*
2528  * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2529  * ACTIVE after iclog I/O has completed.
2530  */
2531 static void
xlog_state_activate_iclogs(struct xlog * log,int * iclogs_changed)2532 xlog_state_activate_iclogs(
2533 	struct xlog		*log,
2534 	int			*iclogs_changed)
2535 {
2536 	struct xlog_in_core	*iclog = log->l_iclog;
2537 
2538 	do {
2539 		if (iclog->ic_state == XLOG_STATE_DIRTY)
2540 			xlog_state_activate_iclog(iclog, iclogs_changed);
2541 		/*
2542 		 * The ordering of marking iclogs ACTIVE must be maintained, so
2543 		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2544 		 */
2545 		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2546 			break;
2547 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2548 }
2549 
2550 static int
xlog_covered_state(int prev_state,int iclogs_changed)2551 xlog_covered_state(
2552 	int			prev_state,
2553 	int			iclogs_changed)
2554 {
2555 	/*
2556 	 * We usually go to NEED. But we go to NEED2 if the changed indicates we
2557 	 * are done writing the dummy record.  If we are done with the second
2558 	 * dummy recored (DONE2), then we go to IDLE.
2559 	 */
2560 	switch (prev_state) {
2561 	case XLOG_STATE_COVER_IDLE:
2562 	case XLOG_STATE_COVER_NEED:
2563 	case XLOG_STATE_COVER_NEED2:
2564 		break;
2565 	case XLOG_STATE_COVER_DONE:
2566 		if (iclogs_changed == 1)
2567 			return XLOG_STATE_COVER_NEED2;
2568 		break;
2569 	case XLOG_STATE_COVER_DONE2:
2570 		if (iclogs_changed == 1)
2571 			return XLOG_STATE_COVER_IDLE;
2572 		break;
2573 	default:
2574 		ASSERT(0);
2575 	}
2576 
2577 	return XLOG_STATE_COVER_NEED;
2578 }
2579 
2580 STATIC void
xlog_state_clean_iclog(struct xlog * log,struct xlog_in_core * dirty_iclog)2581 xlog_state_clean_iclog(
2582 	struct xlog		*log,
2583 	struct xlog_in_core	*dirty_iclog)
2584 {
2585 	int			iclogs_changed = 0;
2586 
2587 	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2588 
2589 	xlog_state_activate_iclogs(log, &iclogs_changed);
2590 	wake_up_all(&dirty_iclog->ic_force_wait);
2591 
2592 	if (iclogs_changed) {
2593 		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2594 				iclogs_changed);
2595 	}
2596 }
2597 
2598 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2599 xlog_get_lowest_lsn(
2600 	struct xlog		*log)
2601 {
2602 	struct xlog_in_core	*iclog = log->l_iclog;
2603 	xfs_lsn_t		lowest_lsn = 0, lsn;
2604 
2605 	do {
2606 		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2607 		    iclog->ic_state == XLOG_STATE_DIRTY)
2608 			continue;
2609 
2610 		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2611 		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2612 			lowest_lsn = lsn;
2613 	} while ((iclog = iclog->ic_next) != log->l_iclog);
2614 
2615 	return lowest_lsn;
2616 }
2617 
2618 /*
2619  * Completion of a iclog IO does not imply that a transaction has completed, as
2620  * transactions can be large enough to span many iclogs. We cannot change the
2621  * tail of the log half way through a transaction as this may be the only
2622  * transaction in the log and moving the tail to point to the middle of it
2623  * will prevent recovery from finding the start of the transaction. Hence we
2624  * should only update the last_sync_lsn if this iclog contains transaction
2625  * completion callbacks on it.
2626  *
2627  * We have to do this before we drop the icloglock to ensure we are the only one
2628  * that can update it.
2629  *
2630  * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2631  * the reservation grant head pushing. This is due to the fact that the push
2632  * target is bound by the current last_sync_lsn value. Hence if we have a large
2633  * amount of log space bound up in this committing transaction then the
2634  * last_sync_lsn value may be the limiting factor preventing tail pushing from
2635  * freeing space in the log. Hence once we've updated the last_sync_lsn we
2636  * should push the AIL to ensure the push target (and hence the grant head) is
2637  * no longer bound by the old log head location and can move forwards and make
2638  * progress again.
2639  */
2640 static void
xlog_state_set_callback(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t header_lsn)2641 xlog_state_set_callback(
2642 	struct xlog		*log,
2643 	struct xlog_in_core	*iclog,
2644 	xfs_lsn_t		header_lsn)
2645 {
2646 	iclog->ic_state = XLOG_STATE_CALLBACK;
2647 
2648 	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2649 			   header_lsn) <= 0);
2650 
2651 	if (list_empty_careful(&iclog->ic_callbacks))
2652 		return;
2653 
2654 	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2655 	xlog_grant_push_ail(log, 0);
2656 }
2657 
2658 /*
2659  * Return true if we need to stop processing, false to continue to the next
2660  * iclog. The caller will need to run callbacks if the iclog is returned in the
2661  * XLOG_STATE_CALLBACK state.
2662  */
2663 static bool
xlog_state_iodone_process_iclog(struct xlog * log,struct xlog_in_core * iclog,bool * ioerror)2664 xlog_state_iodone_process_iclog(
2665 	struct xlog		*log,
2666 	struct xlog_in_core	*iclog,
2667 	bool			*ioerror)
2668 {
2669 	xfs_lsn_t		lowest_lsn;
2670 	xfs_lsn_t		header_lsn;
2671 
2672 	switch (iclog->ic_state) {
2673 	case XLOG_STATE_ACTIVE:
2674 	case XLOG_STATE_DIRTY:
2675 		/*
2676 		 * Skip all iclogs in the ACTIVE & DIRTY states:
2677 		 */
2678 		return false;
2679 	case XLOG_STATE_IOERROR:
2680 		/*
2681 		 * Between marking a filesystem SHUTDOWN and stopping the log,
2682 		 * we do flush all iclogs to disk (if there wasn't a log I/O
2683 		 * error). So, we do want things to go smoothly in case of just
2684 		 * a SHUTDOWN w/o a LOG_IO_ERROR.
2685 		 */
2686 		*ioerror = true;
2687 		return false;
2688 	case XLOG_STATE_DONE_SYNC:
2689 		/*
2690 		 * Now that we have an iclog that is in the DONE_SYNC state, do
2691 		 * one more check here to see if we have chased our tail around.
2692 		 * If this is not the lowest lsn iclog, then we will leave it
2693 		 * for another completion to process.
2694 		 */
2695 		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2696 		lowest_lsn = xlog_get_lowest_lsn(log);
2697 		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2698 			return false;
2699 		xlog_state_set_callback(log, iclog, header_lsn);
2700 		return false;
2701 	default:
2702 		/*
2703 		 * Can only perform callbacks in order.  Since this iclog is not
2704 		 * in the DONE_SYNC state, we skip the rest and just try to
2705 		 * clean up.
2706 		 */
2707 		return true;
2708 	}
2709 }
2710 
2711 /*
2712  * Keep processing entries in the iclog callback list until we come around and
2713  * it is empty.  We need to atomically see that the list is empty and change the
2714  * state to DIRTY so that we don't miss any more callbacks being added.
2715  *
2716  * This function is called with the icloglock held and returns with it held. We
2717  * drop it while running callbacks, however, as holding it over thousands of
2718  * callbacks is unnecessary and causes excessive contention if we do.
2719  */
2720 static void
xlog_state_do_iclog_callbacks(struct xlog * log,struct xlog_in_core * iclog)2721 xlog_state_do_iclog_callbacks(
2722 	struct xlog		*log,
2723 	struct xlog_in_core	*iclog)
2724 		__releases(&log->l_icloglock)
2725 		__acquires(&log->l_icloglock)
2726 {
2727 	spin_unlock(&log->l_icloglock);
2728 	spin_lock(&iclog->ic_callback_lock);
2729 	while (!list_empty(&iclog->ic_callbacks)) {
2730 		LIST_HEAD(tmp);
2731 
2732 		list_splice_init(&iclog->ic_callbacks, &tmp);
2733 
2734 		spin_unlock(&iclog->ic_callback_lock);
2735 		xlog_cil_process_committed(&tmp);
2736 		spin_lock(&iclog->ic_callback_lock);
2737 	}
2738 
2739 	/*
2740 	 * Pick up the icloglock while still holding the callback lock so we
2741 	 * serialise against anyone trying to add more callbacks to this iclog
2742 	 * now we've finished processing.
2743 	 */
2744 	spin_lock(&log->l_icloglock);
2745 	spin_unlock(&iclog->ic_callback_lock);
2746 }
2747 
2748 STATIC void
xlog_state_do_callback(struct xlog * log)2749 xlog_state_do_callback(
2750 	struct xlog		*log)
2751 {
2752 	struct xlog_in_core	*iclog;
2753 	struct xlog_in_core	*first_iclog;
2754 	bool			cycled_icloglock;
2755 	bool			ioerror;
2756 	int			flushcnt = 0;
2757 	int			repeats = 0;
2758 
2759 	spin_lock(&log->l_icloglock);
2760 	do {
2761 		/*
2762 		 * Scan all iclogs starting with the one pointed to by the
2763 		 * log.  Reset this starting point each time the log is
2764 		 * unlocked (during callbacks).
2765 		 *
2766 		 * Keep looping through iclogs until one full pass is made
2767 		 * without running any callbacks.
2768 		 */
2769 		first_iclog = log->l_iclog;
2770 		iclog = log->l_iclog;
2771 		cycled_icloglock = false;
2772 		ioerror = false;
2773 		repeats++;
2774 
2775 		do {
2776 			if (xlog_state_iodone_process_iclog(log, iclog,
2777 							&ioerror))
2778 				break;
2779 
2780 			if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2781 			    iclog->ic_state != XLOG_STATE_IOERROR) {
2782 				iclog = iclog->ic_next;
2783 				continue;
2784 			}
2785 
2786 			/*
2787 			 * Running callbacks will drop the icloglock which means
2788 			 * we'll have to run at least one more complete loop.
2789 			 */
2790 			cycled_icloglock = true;
2791 			xlog_state_do_iclog_callbacks(log, iclog);
2792 			if (XLOG_FORCED_SHUTDOWN(log))
2793 				wake_up_all(&iclog->ic_force_wait);
2794 			else
2795 				xlog_state_clean_iclog(log, iclog);
2796 			iclog = iclog->ic_next;
2797 		} while (first_iclog != iclog);
2798 
2799 		if (repeats > 5000) {
2800 			flushcnt += repeats;
2801 			repeats = 0;
2802 			xfs_warn(log->l_mp,
2803 				"%s: possible infinite loop (%d iterations)",
2804 				__func__, flushcnt);
2805 		}
2806 	} while (!ioerror && cycled_icloglock);
2807 
2808 	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2809 	    log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2810 		wake_up_all(&log->l_flush_wait);
2811 
2812 	spin_unlock(&log->l_icloglock);
2813 }
2814 
2815 
2816 /*
2817  * Finish transitioning this iclog to the dirty state.
2818  *
2819  * Make sure that we completely execute this routine only when this is
2820  * the last call to the iclog.  There is a good chance that iclog flushes,
2821  * when we reach the end of the physical log, get turned into 2 separate
2822  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2823  * routine.  By using the reference count bwritecnt, we guarantee that only
2824  * the second completion goes through.
2825  *
2826  * Callbacks could take time, so they are done outside the scope of the
2827  * global state machine log lock.
2828  */
2829 STATIC void
xlog_state_done_syncing(struct xlog_in_core * iclog)2830 xlog_state_done_syncing(
2831 	struct xlog_in_core	*iclog)
2832 {
2833 	struct xlog		*log = iclog->ic_log;
2834 
2835 	spin_lock(&log->l_icloglock);
2836 	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2837 
2838 	/*
2839 	 * If we got an error, either on the first buffer, or in the case of
2840 	 * split log writes, on the second, we shut down the file system and
2841 	 * no iclogs should ever be attempted to be written to disk again.
2842 	 */
2843 	if (!XLOG_FORCED_SHUTDOWN(log)) {
2844 		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2845 		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2846 	}
2847 
2848 	/*
2849 	 * Someone could be sleeping prior to writing out the next
2850 	 * iclog buffer, we wake them all, one will get to do the
2851 	 * I/O, the others get to wait for the result.
2852 	 */
2853 	wake_up_all(&iclog->ic_write_wait);
2854 	spin_unlock(&log->l_icloglock);
2855 	xlog_state_do_callback(log);
2856 }
2857 
2858 /*
2859  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2860  * sleep.  We wait on the flush queue on the head iclog as that should be
2861  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2862  * we will wait here and all new writes will sleep until a sync completes.
2863  *
2864  * The in-core logs are used in a circular fashion. They are not used
2865  * out-of-order even when an iclog past the head is free.
2866  *
2867  * return:
2868  *	* log_offset where xlog_write() can start writing into the in-core
2869  *		log's data space.
2870  *	* in-core log pointer to which xlog_write() should write.
2871  *	* boolean indicating this is a continued write to an in-core log.
2872  *		If this is the last write, then the in-core log's offset field
2873  *		needs to be incremented, depending on the amount of data which
2874  *		is copied.
2875  */
2876 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * continued_write,int * logoffsetp)2877 xlog_state_get_iclog_space(
2878 	struct xlog		*log,
2879 	int			len,
2880 	struct xlog_in_core	**iclogp,
2881 	struct xlog_ticket	*ticket,
2882 	int			*continued_write,
2883 	int			*logoffsetp)
2884 {
2885 	int		  log_offset;
2886 	xlog_rec_header_t *head;
2887 	xlog_in_core_t	  *iclog;
2888 
2889 restart:
2890 	spin_lock(&log->l_icloglock);
2891 	if (XLOG_FORCED_SHUTDOWN(log)) {
2892 		spin_unlock(&log->l_icloglock);
2893 		return -EIO;
2894 	}
2895 
2896 	iclog = log->l_iclog;
2897 	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2898 		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2899 
2900 		/* Wait for log writes to have flushed */
2901 		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2902 		goto restart;
2903 	}
2904 
2905 	head = &iclog->ic_header;
2906 
2907 	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2908 	log_offset = iclog->ic_offset;
2909 
2910 	/* On the 1st write to an iclog, figure out lsn.  This works
2911 	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2912 	 * committing to.  If the offset is set, that's how many blocks
2913 	 * must be written.
2914 	 */
2915 	if (log_offset == 0) {
2916 		ticket->t_curr_res -= log->l_iclog_hsize;
2917 		xlog_tic_add_region(ticket,
2918 				    log->l_iclog_hsize,
2919 				    XLOG_REG_TYPE_LRHEADER);
2920 		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2921 		head->h_lsn = cpu_to_be64(
2922 			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2923 		ASSERT(log->l_curr_block >= 0);
2924 	}
2925 
2926 	/* If there is enough room to write everything, then do it.  Otherwise,
2927 	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2928 	 * bit is on, so this will get flushed out.  Don't update ic_offset
2929 	 * until you know exactly how many bytes get copied.  Therefore, wait
2930 	 * until later to update ic_offset.
2931 	 *
2932 	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2933 	 * can fit into remaining data section.
2934 	 */
2935 	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2936 		int		error = 0;
2937 
2938 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2939 
2940 		/*
2941 		 * If we are the only one writing to this iclog, sync it to
2942 		 * disk.  We need to do an atomic compare and decrement here to
2943 		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2944 		 * xlog_state_release_iclog() when there is more than one
2945 		 * reference to the iclog.
2946 		 */
2947 		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2948 			error = xlog_state_release_iclog(log, iclog);
2949 		spin_unlock(&log->l_icloglock);
2950 		if (error)
2951 			return error;
2952 		goto restart;
2953 	}
2954 
2955 	/* Do we have enough room to write the full amount in the remainder
2956 	 * of this iclog?  Or must we continue a write on the next iclog and
2957 	 * mark this iclog as completely taken?  In the case where we switch
2958 	 * iclogs (to mark it taken), this particular iclog will release/sync
2959 	 * to disk in xlog_write().
2960 	 */
2961 	if (len <= iclog->ic_size - iclog->ic_offset) {
2962 		*continued_write = 0;
2963 		iclog->ic_offset += len;
2964 	} else {
2965 		*continued_write = 1;
2966 		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2967 	}
2968 	*iclogp = iclog;
2969 
2970 	ASSERT(iclog->ic_offset <= iclog->ic_size);
2971 	spin_unlock(&log->l_icloglock);
2972 
2973 	*logoffsetp = log_offset;
2974 	return 0;
2975 }
2976 
2977 /*
2978  * The first cnt-1 times a ticket goes through here we don't need to move the
2979  * grant write head because the permanent reservation has reserved cnt times the
2980  * unit amount.  Release part of current permanent unit reservation and reset
2981  * current reservation to be one units worth.  Also move grant reservation head
2982  * forward.
2983  */
2984 void
xfs_log_ticket_regrant(struct xlog * log,struct xlog_ticket * ticket)2985 xfs_log_ticket_regrant(
2986 	struct xlog		*log,
2987 	struct xlog_ticket	*ticket)
2988 {
2989 	trace_xfs_log_ticket_regrant(log, ticket);
2990 
2991 	if (ticket->t_cnt > 0)
2992 		ticket->t_cnt--;
2993 
2994 	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2995 					ticket->t_curr_res);
2996 	xlog_grant_sub_space(log, &log->l_write_head.grant,
2997 					ticket->t_curr_res);
2998 	ticket->t_curr_res = ticket->t_unit_res;
2999 	xlog_tic_reset_res(ticket);
3000 
3001 	trace_xfs_log_ticket_regrant_sub(log, ticket);
3002 
3003 	/* just return if we still have some of the pre-reserved space */
3004 	if (!ticket->t_cnt) {
3005 		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3006 				     ticket->t_unit_res);
3007 		trace_xfs_log_ticket_regrant_exit(log, ticket);
3008 
3009 		ticket->t_curr_res = ticket->t_unit_res;
3010 		xlog_tic_reset_res(ticket);
3011 	}
3012 
3013 	xfs_log_ticket_put(ticket);
3014 }
3015 
3016 /*
3017  * Give back the space left from a reservation.
3018  *
3019  * All the information we need to make a correct determination of space left
3020  * is present.  For non-permanent reservations, things are quite easy.  The
3021  * count should have been decremented to zero.  We only need to deal with the
3022  * space remaining in the current reservation part of the ticket.  If the
3023  * ticket contains a permanent reservation, there may be left over space which
3024  * needs to be released.  A count of N means that N-1 refills of the current
3025  * reservation can be done before we need to ask for more space.  The first
3026  * one goes to fill up the first current reservation.  Once we run out of
3027  * space, the count will stay at zero and the only space remaining will be
3028  * in the current reservation field.
3029  */
3030 void
xfs_log_ticket_ungrant(struct xlog * log,struct xlog_ticket * ticket)3031 xfs_log_ticket_ungrant(
3032 	struct xlog		*log,
3033 	struct xlog_ticket	*ticket)
3034 {
3035 	int			bytes;
3036 
3037 	trace_xfs_log_ticket_ungrant(log, ticket);
3038 
3039 	if (ticket->t_cnt > 0)
3040 		ticket->t_cnt--;
3041 
3042 	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3043 
3044 	/*
3045 	 * If this is a permanent reservation ticket, we may be able to free
3046 	 * up more space based on the remaining count.
3047 	 */
3048 	bytes = ticket->t_curr_res;
3049 	if (ticket->t_cnt > 0) {
3050 		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3051 		bytes += ticket->t_unit_res*ticket->t_cnt;
3052 	}
3053 
3054 	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3055 	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3056 
3057 	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3058 
3059 	xfs_log_space_wake(log->l_mp);
3060 	xfs_log_ticket_put(ticket);
3061 }
3062 
3063 /*
3064  * This routine will mark the current iclog in the ring as WANT_SYNC and move
3065  * the current iclog pointer to the next iclog in the ring.
3066  */
3067 STATIC void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3068 xlog_state_switch_iclogs(
3069 	struct xlog		*log,
3070 	struct xlog_in_core	*iclog,
3071 	int			eventual_size)
3072 {
3073 	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3074 	assert_spin_locked(&log->l_icloglock);
3075 
3076 	if (!eventual_size)
3077 		eventual_size = iclog->ic_offset;
3078 	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3079 	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3080 	log->l_prev_block = log->l_curr_block;
3081 	log->l_prev_cycle = log->l_curr_cycle;
3082 
3083 	/* roll log?: ic_offset changed later */
3084 	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3085 
3086 	/* Round up to next log-sunit */
3087 	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3088 	    log->l_mp->m_sb.sb_logsunit > 1) {
3089 		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3090 		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3091 	}
3092 
3093 	if (log->l_curr_block >= log->l_logBBsize) {
3094 		/*
3095 		 * Rewind the current block before the cycle is bumped to make
3096 		 * sure that the combined LSN never transiently moves forward
3097 		 * when the log wraps to the next cycle. This is to support the
3098 		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3099 		 * other cases should acquire l_icloglock.
3100 		 */
3101 		log->l_curr_block -= log->l_logBBsize;
3102 		ASSERT(log->l_curr_block >= 0);
3103 		smp_wmb();
3104 		log->l_curr_cycle++;
3105 		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3106 			log->l_curr_cycle++;
3107 	}
3108 	ASSERT(iclog == log->l_iclog);
3109 	log->l_iclog = iclog->ic_next;
3110 }
3111 
3112 /*
3113  * Write out all data in the in-core log as of this exact moment in time.
3114  *
3115  * Data may be written to the in-core log during this call.  However,
3116  * we don't guarantee this data will be written out.  A change from past
3117  * implementation means this routine will *not* write out zero length LRs.
3118  *
3119  * Basically, we try and perform an intelligent scan of the in-core logs.
3120  * If we determine there is no flushable data, we just return.  There is no
3121  * flushable data if:
3122  *
3123  *	1. the current iclog is active and has no data; the previous iclog
3124  *		is in the active or dirty state.
3125  *	2. the current iclog is drity, and the previous iclog is in the
3126  *		active or dirty state.
3127  *
3128  * We may sleep if:
3129  *
3130  *	1. the current iclog is not in the active nor dirty state.
3131  *	2. the current iclog dirty, and the previous iclog is not in the
3132  *		active nor dirty state.
3133  *	3. the current iclog is active, and there is another thread writing
3134  *		to this particular iclog.
3135  *	4. a) the current iclog is active and has no other writers
3136  *	   b) when we return from flushing out this iclog, it is still
3137  *		not in the active nor dirty state.
3138  */
3139 int
xfs_log_force(struct xfs_mount * mp,uint flags)3140 xfs_log_force(
3141 	struct xfs_mount	*mp,
3142 	uint			flags)
3143 {
3144 	struct xlog		*log = mp->m_log;
3145 	struct xlog_in_core	*iclog;
3146 	xfs_lsn_t		lsn;
3147 
3148 	XFS_STATS_INC(mp, xs_log_force);
3149 	trace_xfs_log_force(mp, 0, _RET_IP_);
3150 
3151 	xlog_cil_force(log);
3152 
3153 	spin_lock(&log->l_icloglock);
3154 	iclog = log->l_iclog;
3155 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3156 		goto out_error;
3157 
3158 	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3159 	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3160 	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3161 		/*
3162 		 * If the head is dirty or (active and empty), then we need to
3163 		 * look at the previous iclog.
3164 		 *
3165 		 * If the previous iclog is active or dirty we are done.  There
3166 		 * is nothing to sync out. Otherwise, we attach ourselves to the
3167 		 * previous iclog and go to sleep.
3168 		 */
3169 		iclog = iclog->ic_prev;
3170 	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3171 		if (atomic_read(&iclog->ic_refcnt) == 0) {
3172 			/*
3173 			 * We are the only one with access to this iclog.
3174 			 *
3175 			 * Flush it out now.  There should be a roundoff of zero
3176 			 * to show that someone has already taken care of the
3177 			 * roundoff from the previous sync.
3178 			 */
3179 			atomic_inc(&iclog->ic_refcnt);
3180 			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3181 			xlog_state_switch_iclogs(log, iclog, 0);
3182 			if (xlog_state_release_iclog(log, iclog))
3183 				goto out_error;
3184 
3185 			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3186 				goto out_unlock;
3187 		} else {
3188 			/*
3189 			 * Someone else is writing to this iclog.
3190 			 *
3191 			 * Use its call to flush out the data.  However, the
3192 			 * other thread may not force out this LR, so we mark
3193 			 * it WANT_SYNC.
3194 			 */
3195 			xlog_state_switch_iclogs(log, iclog, 0);
3196 		}
3197 	} else {
3198 		/*
3199 		 * If the head iclog is not active nor dirty, we just attach
3200 		 * ourselves to the head and go to sleep if necessary.
3201 		 */
3202 		;
3203 	}
3204 
3205 	if (flags & XFS_LOG_SYNC)
3206 		return xlog_wait_on_iclog(iclog);
3207 out_unlock:
3208 	spin_unlock(&log->l_icloglock);
3209 	return 0;
3210 out_error:
3211 	spin_unlock(&log->l_icloglock);
3212 	return -EIO;
3213 }
3214 
3215 static int
xlog_force_lsn(struct xlog * log,xfs_lsn_t lsn,uint flags,int * log_flushed,bool already_slept)3216 xlog_force_lsn(
3217 	struct xlog		*log,
3218 	xfs_lsn_t		lsn,
3219 	uint			flags,
3220 	int			*log_flushed,
3221 	bool			already_slept)
3222 {
3223 	struct xlog_in_core	*iclog;
3224 
3225 	spin_lock(&log->l_icloglock);
3226 	iclog = log->l_iclog;
3227 	if (iclog->ic_state == XLOG_STATE_IOERROR)
3228 		goto out_error;
3229 
3230 	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3231 		iclog = iclog->ic_next;
3232 		if (iclog == log->l_iclog)
3233 			goto out_unlock;
3234 	}
3235 
3236 	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3237 		/*
3238 		 * We sleep here if we haven't already slept (e.g. this is the
3239 		 * first time we've looked at the correct iclog buf) and the
3240 		 * buffer before us is going to be sync'ed.  The reason for this
3241 		 * is that if we are doing sync transactions here, by waiting
3242 		 * for the previous I/O to complete, we can allow a few more
3243 		 * transactions into this iclog before we close it down.
3244 		 *
3245 		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3246 		 * refcnt so we can release the log (which drops the ref count).
3247 		 * The state switch keeps new transaction commits from using
3248 		 * this buffer.  When the current commits finish writing into
3249 		 * the buffer, the refcount will drop to zero and the buffer
3250 		 * will go out then.
3251 		 */
3252 		if (!already_slept &&
3253 		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3254 		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3255 			xlog_wait(&iclog->ic_prev->ic_write_wait,
3256 					&log->l_icloglock);
3257 			return -EAGAIN;
3258 		}
3259 		atomic_inc(&iclog->ic_refcnt);
3260 		xlog_state_switch_iclogs(log, iclog, 0);
3261 		if (xlog_state_release_iclog(log, iclog))
3262 			goto out_error;
3263 		if (log_flushed)
3264 			*log_flushed = 1;
3265 	}
3266 
3267 	if (flags & XFS_LOG_SYNC)
3268 		return xlog_wait_on_iclog(iclog);
3269 out_unlock:
3270 	spin_unlock(&log->l_icloglock);
3271 	return 0;
3272 out_error:
3273 	spin_unlock(&log->l_icloglock);
3274 	return -EIO;
3275 }
3276 
3277 /*
3278  * Force the in-core log to disk for a specific LSN.
3279  *
3280  * Find in-core log with lsn.
3281  *	If it is in the DIRTY state, just return.
3282  *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3283  *		state and go to sleep or return.
3284  *	If it is in any other state, go to sleep or return.
3285  *
3286  * Synchronous forces are implemented with a wait queue.  All callers trying
3287  * to force a given lsn to disk must wait on the queue attached to the
3288  * specific in-core log.  When given in-core log finally completes its write
3289  * to disk, that thread will wake up all threads waiting on the queue.
3290  */
3291 int
xfs_log_force_seq(struct xfs_mount * mp,xfs_csn_t seq,uint flags,int * log_flushed)3292 xfs_log_force_seq(
3293 	struct xfs_mount	*mp,
3294 	xfs_csn_t		seq,
3295 	uint			flags,
3296 	int			*log_flushed)
3297 {
3298 	struct xlog		*log = mp->m_log;
3299 	xfs_lsn_t		lsn;
3300 	int			ret;
3301 	ASSERT(seq != 0);
3302 
3303 	XFS_STATS_INC(mp, xs_log_force);
3304 	trace_xfs_log_force(mp, seq, _RET_IP_);
3305 
3306 	lsn = xlog_cil_force_seq(log, seq);
3307 	if (lsn == NULLCOMMITLSN)
3308 		return 0;
3309 
3310 	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3311 	if (ret == -EAGAIN) {
3312 		XFS_STATS_INC(mp, xs_log_force_sleep);
3313 		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3314 	}
3315 	return ret;
3316 }
3317 
3318 /*
3319  * Free a used ticket when its refcount falls to zero.
3320  */
3321 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3322 xfs_log_ticket_put(
3323 	xlog_ticket_t	*ticket)
3324 {
3325 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3326 	if (atomic_dec_and_test(&ticket->t_ref))
3327 		kmem_cache_free(xfs_log_ticket_zone, ticket);
3328 }
3329 
3330 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3331 xfs_log_ticket_get(
3332 	xlog_ticket_t	*ticket)
3333 {
3334 	ASSERT(atomic_read(&ticket->t_ref) > 0);
3335 	atomic_inc(&ticket->t_ref);
3336 	return ticket;
3337 }
3338 
3339 /*
3340  * Figure out the total log space unit (in bytes) that would be
3341  * required for a log ticket.
3342  */
3343 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3344 xfs_log_calc_unit_res(
3345 	struct xfs_mount	*mp,
3346 	int			unit_bytes)
3347 {
3348 	struct xlog		*log = mp->m_log;
3349 	int			iclog_space;
3350 	uint			num_headers;
3351 
3352 	/*
3353 	 * Permanent reservations have up to 'cnt'-1 active log operations
3354 	 * in the log.  A unit in this case is the amount of space for one
3355 	 * of these log operations.  Normal reservations have a cnt of 1
3356 	 * and their unit amount is the total amount of space required.
3357 	 *
3358 	 * The following lines of code account for non-transaction data
3359 	 * which occupy space in the on-disk log.
3360 	 *
3361 	 * Normal form of a transaction is:
3362 	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3363 	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3364 	 *
3365 	 * We need to account for all the leadup data and trailer data
3366 	 * around the transaction data.
3367 	 * And then we need to account for the worst case in terms of using
3368 	 * more space.
3369 	 * The worst case will happen if:
3370 	 * - the placement of the transaction happens to be such that the
3371 	 *   roundoff is at its maximum
3372 	 * - the transaction data is synced before the commit record is synced
3373 	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3374 	 *   Therefore the commit record is in its own Log Record.
3375 	 *   This can happen as the commit record is called with its
3376 	 *   own region to xlog_write().
3377 	 *   This then means that in the worst case, roundoff can happen for
3378 	 *   the commit-rec as well.
3379 	 *   The commit-rec is smaller than padding in this scenario and so it is
3380 	 *   not added separately.
3381 	 */
3382 
3383 	/* for trans header */
3384 	unit_bytes += sizeof(xlog_op_header_t);
3385 	unit_bytes += sizeof(xfs_trans_header_t);
3386 
3387 	/* for start-rec */
3388 	unit_bytes += sizeof(xlog_op_header_t);
3389 
3390 	/*
3391 	 * for LR headers - the space for data in an iclog is the size minus
3392 	 * the space used for the headers. If we use the iclog size, then we
3393 	 * undercalculate the number of headers required.
3394 	 *
3395 	 * Furthermore - the addition of op headers for split-recs might
3396 	 * increase the space required enough to require more log and op
3397 	 * headers, so take that into account too.
3398 	 *
3399 	 * IMPORTANT: This reservation makes the assumption that if this
3400 	 * transaction is the first in an iclog and hence has the LR headers
3401 	 * accounted to it, then the remaining space in the iclog is
3402 	 * exclusively for this transaction.  i.e. if the transaction is larger
3403 	 * than the iclog, it will be the only thing in that iclog.
3404 	 * Fundamentally, this means we must pass the entire log vector to
3405 	 * xlog_write to guarantee this.
3406 	 */
3407 	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3408 	num_headers = howmany(unit_bytes, iclog_space);
3409 
3410 	/* for split-recs - ophdrs added when data split over LRs */
3411 	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3412 
3413 	/* add extra header reservations if we overrun */
3414 	while (!num_headers ||
3415 	       howmany(unit_bytes, iclog_space) > num_headers) {
3416 		unit_bytes += sizeof(xlog_op_header_t);
3417 		num_headers++;
3418 	}
3419 	unit_bytes += log->l_iclog_hsize * num_headers;
3420 
3421 	/* for commit-rec LR header - note: padding will subsume the ophdr */
3422 	unit_bytes += log->l_iclog_hsize;
3423 
3424 	/* for roundoff padding for transaction data and one for commit record */
3425 	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3426 		/* log su roundoff */
3427 		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3428 	} else {
3429 		/* BB roundoff */
3430 		unit_bytes += 2 * BBSIZE;
3431         }
3432 
3433 	return unit_bytes;
3434 }
3435 
3436 /*
3437  * Allocate and initialise a new log ticket.
3438  */
3439 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,char client,bool permanent)3440 xlog_ticket_alloc(
3441 	struct xlog		*log,
3442 	int			unit_bytes,
3443 	int			cnt,
3444 	char			client,
3445 	bool			permanent)
3446 {
3447 	struct xlog_ticket	*tic;
3448 	int			unit_res;
3449 
3450 	tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
3451 
3452 	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3453 
3454 	atomic_set(&tic->t_ref, 1);
3455 	tic->t_task		= current;
3456 	INIT_LIST_HEAD(&tic->t_queue);
3457 	tic->t_unit_res		= unit_res;
3458 	tic->t_curr_res		= unit_res;
3459 	tic->t_cnt		= cnt;
3460 	tic->t_ocnt		= cnt;
3461 	tic->t_tid		= prandom_u32();
3462 	tic->t_clientid		= client;
3463 	if (permanent)
3464 		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3465 
3466 	xlog_tic_reset_res(tic);
3467 
3468 	return tic;
3469 }
3470 
3471 #if defined(DEBUG)
3472 /*
3473  * Make sure that the destination ptr is within the valid data region of
3474  * one of the iclogs.  This uses backup pointers stored in a different
3475  * part of the log in case we trash the log structure.
3476  */
3477 STATIC void
xlog_verify_dest_ptr(struct xlog * log,void * ptr)3478 xlog_verify_dest_ptr(
3479 	struct xlog	*log,
3480 	void		*ptr)
3481 {
3482 	int i;
3483 	int good_ptr = 0;
3484 
3485 	for (i = 0; i < log->l_iclog_bufs; i++) {
3486 		if (ptr >= log->l_iclog_bak[i] &&
3487 		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3488 			good_ptr++;
3489 	}
3490 
3491 	if (!good_ptr)
3492 		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3493 }
3494 
3495 /*
3496  * Check to make sure the grant write head didn't just over lap the tail.  If
3497  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3498  * the cycles differ by exactly one and check the byte count.
3499  *
3500  * This check is run unlocked, so can give false positives. Rather than assert
3501  * on failures, use a warn-once flag and a panic tag to allow the admin to
3502  * determine if they want to panic the machine when such an error occurs. For
3503  * debug kernels this will have the same effect as using an assert but, unlinke
3504  * an assert, it can be turned off at runtime.
3505  */
3506 STATIC void
xlog_verify_grant_tail(struct xlog * log)3507 xlog_verify_grant_tail(
3508 	struct xlog	*log)
3509 {
3510 	int		tail_cycle, tail_blocks;
3511 	int		cycle, space;
3512 
3513 	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3514 	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3515 	if (tail_cycle != cycle) {
3516 		if (cycle - 1 != tail_cycle &&
3517 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3518 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3519 				"%s: cycle - 1 != tail_cycle", __func__);
3520 			log->l_flags |= XLOG_TAIL_WARN;
3521 		}
3522 
3523 		if (space > BBTOB(tail_blocks) &&
3524 		    !(log->l_flags & XLOG_TAIL_WARN)) {
3525 			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3526 				"%s: space > BBTOB(tail_blocks)", __func__);
3527 			log->l_flags |= XLOG_TAIL_WARN;
3528 		}
3529 	}
3530 }
3531 
3532 /* check if it will fit */
3533 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t tail_lsn)3534 xlog_verify_tail_lsn(
3535 	struct xlog		*log,
3536 	struct xlog_in_core	*iclog,
3537 	xfs_lsn_t		tail_lsn)
3538 {
3539     int blocks;
3540 
3541     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3542 	blocks =
3543 	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3544 	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3545 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3546     } else {
3547 	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3548 
3549 	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3550 		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3551 
3552 	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3553 	if (blocks < BTOBB(iclog->ic_offset) + 1)
3554 		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3555     }
3556 }
3557 
3558 /*
3559  * Perform a number of checks on the iclog before writing to disk.
3560  *
3561  * 1. Make sure the iclogs are still circular
3562  * 2. Make sure we have a good magic number
3563  * 3. Make sure we don't have magic numbers in the data
3564  * 4. Check fields of each log operation header for:
3565  *	A. Valid client identifier
3566  *	B. tid ptr value falls in valid ptr space (user space code)
3567  *	C. Length in log record header is correct according to the
3568  *		individual operation headers within record.
3569  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3570  *	log, check the preceding blocks of the physical log to make sure all
3571  *	the cycle numbers agree with the current cycle number.
3572  */
3573 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count)3574 xlog_verify_iclog(
3575 	struct xlog		*log,
3576 	struct xlog_in_core	*iclog,
3577 	int			count)
3578 {
3579 	xlog_op_header_t	*ophead;
3580 	xlog_in_core_t		*icptr;
3581 	xlog_in_core_2_t	*xhdr;
3582 	void			*base_ptr, *ptr, *p;
3583 	ptrdiff_t		field_offset;
3584 	uint8_t			clientid;
3585 	int			len, i, j, k, op_len;
3586 	int			idx;
3587 
3588 	/* check validity of iclog pointers */
3589 	spin_lock(&log->l_icloglock);
3590 	icptr = log->l_iclog;
3591 	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3592 		ASSERT(icptr);
3593 
3594 	if (icptr != log->l_iclog)
3595 		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3596 	spin_unlock(&log->l_icloglock);
3597 
3598 	/* check log magic numbers */
3599 	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3600 		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3601 
3602 	base_ptr = ptr = &iclog->ic_header;
3603 	p = &iclog->ic_header;
3604 	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3605 		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3606 			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3607 				__func__);
3608 	}
3609 
3610 	/* check fields */
3611 	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3612 	base_ptr = ptr = iclog->ic_datap;
3613 	ophead = ptr;
3614 	xhdr = iclog->ic_data;
3615 	for (i = 0; i < len; i++) {
3616 		ophead = ptr;
3617 
3618 		/* clientid is only 1 byte */
3619 		p = &ophead->oh_clientid;
3620 		field_offset = p - base_ptr;
3621 		if (field_offset & 0x1ff) {
3622 			clientid = ophead->oh_clientid;
3623 		} else {
3624 			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3625 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3626 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3627 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3628 				clientid = xlog_get_client_id(
3629 					xhdr[j].hic_xheader.xh_cycle_data[k]);
3630 			} else {
3631 				clientid = xlog_get_client_id(
3632 					iclog->ic_header.h_cycle_data[idx]);
3633 			}
3634 		}
3635 		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3636 			xfs_warn(log->l_mp,
3637 				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3638 				__func__, clientid, ophead,
3639 				(unsigned long)field_offset);
3640 
3641 		/* check length */
3642 		p = &ophead->oh_len;
3643 		field_offset = p - base_ptr;
3644 		if (field_offset & 0x1ff) {
3645 			op_len = be32_to_cpu(ophead->oh_len);
3646 		} else {
3647 			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3648 				    (uintptr_t)iclog->ic_datap);
3649 			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3650 				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3651 				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3652 				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3653 			} else {
3654 				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3655 			}
3656 		}
3657 		ptr += sizeof(xlog_op_header_t) + op_len;
3658 	}
3659 }
3660 #endif
3661 
3662 /*
3663  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3664  */
3665 STATIC int
xlog_state_ioerror(struct xlog * log)3666 xlog_state_ioerror(
3667 	struct xlog	*log)
3668 {
3669 	xlog_in_core_t	*iclog, *ic;
3670 
3671 	iclog = log->l_iclog;
3672 	if (iclog->ic_state != XLOG_STATE_IOERROR) {
3673 		/*
3674 		 * Mark all the incore logs IOERROR.
3675 		 * From now on, no log flushes will result.
3676 		 */
3677 		ic = iclog;
3678 		do {
3679 			ic->ic_state = XLOG_STATE_IOERROR;
3680 			ic = ic->ic_next;
3681 		} while (ic != iclog);
3682 		return 0;
3683 	}
3684 	/*
3685 	 * Return non-zero, if state transition has already happened.
3686 	 */
3687 	return 1;
3688 }
3689 
3690 /*
3691  * This is called from xfs_force_shutdown, when we're forcibly
3692  * shutting down the filesystem, typically because of an IO error.
3693  * Our main objectives here are to make sure that:
3694  *	a. if !logerror, flush the logs to disk. Anything modified
3695  *	   after this is ignored.
3696  *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3697  *	   parties to find out, 'atomically'.
3698  *	c. those who're sleeping on log reservations, pinned objects and
3699  *	    other resources get woken up, and be told the bad news.
3700  *	d. nothing new gets queued up after (b) and (c) are done.
3701  *
3702  * Note: for the !logerror case we need to flush the regions held in memory out
3703  * to disk first. This needs to be done before the log is marked as shutdown,
3704  * otherwise the iclog writes will fail.
3705  */
3706 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3707 xfs_log_force_umount(
3708 	struct xfs_mount	*mp,
3709 	int			logerror)
3710 {
3711 	struct xlog	*log;
3712 	int		retval;
3713 
3714 	log = mp->m_log;
3715 
3716 	/*
3717 	 * If this happens during log recovery, don't worry about
3718 	 * locking; the log isn't open for business yet.
3719 	 */
3720 	if (!log ||
3721 	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3722 		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3723 		if (mp->m_sb_bp)
3724 			mp->m_sb_bp->b_flags |= XBF_DONE;
3725 		return 0;
3726 	}
3727 
3728 	/*
3729 	 * Somebody could've already done the hard work for us.
3730 	 * No need to get locks for this.
3731 	 */
3732 	if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3733 		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3734 		return 1;
3735 	}
3736 
3737 	/*
3738 	 * Flush all the completed transactions to disk before marking the log
3739 	 * being shut down. We need to do it in this order to ensure that
3740 	 * completed operations are safely on disk before we shut down, and that
3741 	 * we don't have to issue any buffer IO after the shutdown flags are set
3742 	 * to guarantee this.
3743 	 */
3744 	if (!logerror)
3745 		xfs_log_force(mp, XFS_LOG_SYNC);
3746 
3747 	/*
3748 	 * mark the filesystem and the as in a shutdown state and wake
3749 	 * everybody up to tell them the bad news.
3750 	 */
3751 	spin_lock(&log->l_icloglock);
3752 	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3753 	if (mp->m_sb_bp)
3754 		mp->m_sb_bp->b_flags |= XBF_DONE;
3755 
3756 	/*
3757 	 * Mark the log and the iclogs with IO error flags to prevent any
3758 	 * further log IO from being issued or completed.
3759 	 */
3760 	log->l_flags |= XLOG_IO_ERROR;
3761 	retval = xlog_state_ioerror(log);
3762 	spin_unlock(&log->l_icloglock);
3763 
3764 	/*
3765 	 * We don't want anybody waiting for log reservations after this. That
3766 	 * means we have to wake up everybody queued up on reserveq as well as
3767 	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3768 	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3769 	 * action is protected by the grant locks.
3770 	 */
3771 	xlog_grant_head_wake_all(&log->l_reserve_head);
3772 	xlog_grant_head_wake_all(&log->l_write_head);
3773 
3774 	/*
3775 	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3776 	 * as if the log writes were completed. The abort handling in the log
3777 	 * item committed callback functions will do this again under lock to
3778 	 * avoid races.
3779 	 */
3780 	spin_lock(&log->l_cilp->xc_push_lock);
3781 	wake_up_all(&log->l_cilp->xc_commit_wait);
3782 	spin_unlock(&log->l_cilp->xc_push_lock);
3783 	xlog_state_do_callback(log);
3784 
3785 	/* return non-zero if log IOERROR transition had already happened */
3786 	return retval;
3787 }
3788 
3789 STATIC int
xlog_iclogs_empty(struct xlog * log)3790 xlog_iclogs_empty(
3791 	struct xlog	*log)
3792 {
3793 	xlog_in_core_t	*iclog;
3794 
3795 	iclog = log->l_iclog;
3796 	do {
3797 		/* endianness does not matter here, zero is zero in
3798 		 * any language.
3799 		 */
3800 		if (iclog->ic_header.h_num_logops)
3801 			return 0;
3802 		iclog = iclog->ic_next;
3803 	} while (iclog != log->l_iclog);
3804 	return 1;
3805 }
3806 
3807 /*
3808  * Verify that an LSN stamped into a piece of metadata is valid. This is
3809  * intended for use in read verifiers on v5 superblocks.
3810  */
3811 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)3812 xfs_log_check_lsn(
3813 	struct xfs_mount	*mp,
3814 	xfs_lsn_t		lsn)
3815 {
3816 	struct xlog		*log = mp->m_log;
3817 	bool			valid;
3818 
3819 	/*
3820 	 * norecovery mode skips mount-time log processing and unconditionally
3821 	 * resets the in-core LSN. We can't validate in this mode, but
3822 	 * modifications are not allowed anyways so just return true.
3823 	 */
3824 	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3825 		return true;
3826 
3827 	/*
3828 	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3829 	 * handled by recovery and thus safe to ignore here.
3830 	 */
3831 	if (lsn == NULLCOMMITLSN)
3832 		return true;
3833 
3834 	valid = xlog_valid_lsn(mp->m_log, lsn);
3835 
3836 	/* warn the user about what's gone wrong before verifier failure */
3837 	if (!valid) {
3838 		spin_lock(&log->l_icloglock);
3839 		xfs_warn(mp,
3840 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3841 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3842 			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3843 			 log->l_curr_cycle, log->l_curr_block);
3844 		spin_unlock(&log->l_icloglock);
3845 	}
3846 
3847 	return valid;
3848 }
3849 
3850 bool
xfs_log_in_recovery(struct xfs_mount * mp)3851 xfs_log_in_recovery(
3852 	struct xfs_mount	*mp)
3853 {
3854 	struct xlog		*log = mp->m_log;
3855 
3856 	return log->l_flags & XLOG_ACTIVE_RECOVERY;
3857 }
3858