1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6 #include "xfs.h"
7 #include "xfs_fs.h"
8 #include "xfs_shared.h"
9 #include "xfs_format.h"
10 #include "xfs_log_format.h"
11 #include "xfs_trans_resv.h"
12 #include "xfs_mount.h"
13 #include "xfs_errortag.h"
14 #include "xfs_error.h"
15 #include "xfs_trans.h"
16 #include "xfs_trans_priv.h"
17 #include "xfs_log.h"
18 #include "xfs_log_priv.h"
19 #include "xfs_trace.h"
20 #include "xfs_sysfs.h"
21 #include "xfs_sb.h"
22 #include "xfs_health.h"
23
24 kmem_zone_t *xfs_log_ticket_zone;
25
26 /* Local miscellaneous function prototypes */
27 STATIC struct xlog *
28 xlog_alloc_log(
29 struct xfs_mount *mp,
30 struct xfs_buftarg *log_target,
31 xfs_daddr_t blk_offset,
32 int num_bblks);
33 STATIC int
34 xlog_space_left(
35 struct xlog *log,
36 atomic64_t *head);
37 STATIC void
38 xlog_dealloc_log(
39 struct xlog *log);
40
41 /* local state machine functions */
42 STATIC void xlog_state_done_syncing(
43 struct xlog_in_core *iclog);
44 STATIC int
45 xlog_state_get_iclog_space(
46 struct xlog *log,
47 int len,
48 struct xlog_in_core **iclog,
49 struct xlog_ticket *ticket,
50 int *continued_write,
51 int *logoffsetp);
52 STATIC void
53 xlog_state_switch_iclogs(
54 struct xlog *log,
55 struct xlog_in_core *iclog,
56 int eventual_size);
57 STATIC void
58 xlog_grant_push_ail(
59 struct xlog *log,
60 int need_bytes);
61 STATIC void
62 xlog_sync(
63 struct xlog *log,
64 struct xlog_in_core *iclog);
65 #if defined(DEBUG)
66 STATIC void
67 xlog_verify_dest_ptr(
68 struct xlog *log,
69 void *ptr);
70 STATIC void
71 xlog_verify_grant_tail(
72 struct xlog *log);
73 STATIC void
74 xlog_verify_iclog(
75 struct xlog *log,
76 struct xlog_in_core *iclog,
77 int count);
78 STATIC void
79 xlog_verify_tail_lsn(
80 struct xlog *log,
81 struct xlog_in_core *iclog,
82 xfs_lsn_t tail_lsn);
83 #else
84 #define xlog_verify_dest_ptr(a,b)
85 #define xlog_verify_grant_tail(a)
86 #define xlog_verify_iclog(a,b,c)
87 #define xlog_verify_tail_lsn(a,b,c)
88 #endif
89
90 STATIC int
91 xlog_iclogs_empty(
92 struct xlog *log);
93
94 static void
xlog_grant_sub_space(struct xlog * log,atomic64_t * head,int bytes)95 xlog_grant_sub_space(
96 struct xlog *log,
97 atomic64_t *head,
98 int bytes)
99 {
100 int64_t head_val = atomic64_read(head);
101 int64_t new, old;
102
103 do {
104 int cycle, space;
105
106 xlog_crack_grant_head_val(head_val, &cycle, &space);
107
108 space -= bytes;
109 if (space < 0) {
110 space += log->l_logsize;
111 cycle--;
112 }
113
114 old = head_val;
115 new = xlog_assign_grant_head_val(cycle, space);
116 head_val = atomic64_cmpxchg(head, old, new);
117 } while (head_val != old);
118 }
119
120 static void
xlog_grant_add_space(struct xlog * log,atomic64_t * head,int bytes)121 xlog_grant_add_space(
122 struct xlog *log,
123 atomic64_t *head,
124 int bytes)
125 {
126 int64_t head_val = atomic64_read(head);
127 int64_t new, old;
128
129 do {
130 int tmp;
131 int cycle, space;
132
133 xlog_crack_grant_head_val(head_val, &cycle, &space);
134
135 tmp = log->l_logsize - space;
136 if (tmp > bytes)
137 space += bytes;
138 else {
139 space = bytes - tmp;
140 cycle++;
141 }
142
143 old = head_val;
144 new = xlog_assign_grant_head_val(cycle, space);
145 head_val = atomic64_cmpxchg(head, old, new);
146 } while (head_val != old);
147 }
148
149 STATIC void
xlog_grant_head_init(struct xlog_grant_head * head)150 xlog_grant_head_init(
151 struct xlog_grant_head *head)
152 {
153 xlog_assign_grant_head(&head->grant, 1, 0);
154 INIT_LIST_HEAD(&head->waiters);
155 spin_lock_init(&head->lock);
156 }
157
158 STATIC void
xlog_grant_head_wake_all(struct xlog_grant_head * head)159 xlog_grant_head_wake_all(
160 struct xlog_grant_head *head)
161 {
162 struct xlog_ticket *tic;
163
164 spin_lock(&head->lock);
165 list_for_each_entry(tic, &head->waiters, t_queue)
166 wake_up_process(tic->t_task);
167 spin_unlock(&head->lock);
168 }
169
170 static inline int
xlog_ticket_reservation(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic)171 xlog_ticket_reservation(
172 struct xlog *log,
173 struct xlog_grant_head *head,
174 struct xlog_ticket *tic)
175 {
176 if (head == &log->l_write_head) {
177 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
178 return tic->t_unit_res;
179 } else {
180 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
181 return tic->t_unit_res * tic->t_cnt;
182 else
183 return tic->t_unit_res;
184 }
185 }
186
187 STATIC bool
xlog_grant_head_wake(struct xlog * log,struct xlog_grant_head * head,int * free_bytes)188 xlog_grant_head_wake(
189 struct xlog *log,
190 struct xlog_grant_head *head,
191 int *free_bytes)
192 {
193 struct xlog_ticket *tic;
194 int need_bytes;
195 bool woken_task = false;
196
197 list_for_each_entry(tic, &head->waiters, t_queue) {
198
199 /*
200 * There is a chance that the size of the CIL checkpoints in
201 * progress at the last AIL push target calculation resulted in
202 * limiting the target to the log head (l_last_sync_lsn) at the
203 * time. This may not reflect where the log head is now as the
204 * CIL checkpoints may have completed.
205 *
206 * Hence when we are woken here, it may be that the head of the
207 * log that has moved rather than the tail. As the tail didn't
208 * move, there still won't be space available for the
209 * reservation we require. However, if the AIL has already
210 * pushed to the target defined by the old log head location, we
211 * will hang here waiting for something else to update the AIL
212 * push target.
213 *
214 * Therefore, if there isn't space to wake the first waiter on
215 * the grant head, we need to push the AIL again to ensure the
216 * target reflects both the current log tail and log head
217 * position before we wait for the tail to move again.
218 */
219
220 need_bytes = xlog_ticket_reservation(log, head, tic);
221 if (*free_bytes < need_bytes) {
222 if (!woken_task)
223 xlog_grant_push_ail(log, need_bytes);
224 return false;
225 }
226
227 *free_bytes -= need_bytes;
228 trace_xfs_log_grant_wake_up(log, tic);
229 wake_up_process(tic->t_task);
230 woken_task = true;
231 }
232
233 return true;
234 }
235
236 STATIC int
xlog_grant_head_wait(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int need_bytes)237 xlog_grant_head_wait(
238 struct xlog *log,
239 struct xlog_grant_head *head,
240 struct xlog_ticket *tic,
241 int need_bytes) __releases(&head->lock)
242 __acquires(&head->lock)
243 {
244 list_add_tail(&tic->t_queue, &head->waiters);
245
246 do {
247 if (XLOG_FORCED_SHUTDOWN(log))
248 goto shutdown;
249 xlog_grant_push_ail(log, need_bytes);
250
251 __set_current_state(TASK_UNINTERRUPTIBLE);
252 spin_unlock(&head->lock);
253
254 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
255
256 trace_xfs_log_grant_sleep(log, tic);
257 schedule();
258 trace_xfs_log_grant_wake(log, tic);
259
260 spin_lock(&head->lock);
261 if (XLOG_FORCED_SHUTDOWN(log))
262 goto shutdown;
263 } while (xlog_space_left(log, &head->grant) < need_bytes);
264
265 list_del_init(&tic->t_queue);
266 return 0;
267 shutdown:
268 list_del_init(&tic->t_queue);
269 return -EIO;
270 }
271
272 /*
273 * Atomically get the log space required for a log ticket.
274 *
275 * Once a ticket gets put onto head->waiters, it will only return after the
276 * needed reservation is satisfied.
277 *
278 * This function is structured so that it has a lock free fast path. This is
279 * necessary because every new transaction reservation will come through this
280 * path. Hence any lock will be globally hot if we take it unconditionally on
281 * every pass.
282 *
283 * As tickets are only ever moved on and off head->waiters under head->lock, we
284 * only need to take that lock if we are going to add the ticket to the queue
285 * and sleep. We can avoid taking the lock if the ticket was never added to
286 * head->waiters because the t_queue list head will be empty and we hold the
287 * only reference to it so it can safely be checked unlocked.
288 */
289 STATIC int
xlog_grant_head_check(struct xlog * log,struct xlog_grant_head * head,struct xlog_ticket * tic,int * need_bytes)290 xlog_grant_head_check(
291 struct xlog *log,
292 struct xlog_grant_head *head,
293 struct xlog_ticket *tic,
294 int *need_bytes)
295 {
296 int free_bytes;
297 int error = 0;
298
299 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
300
301 /*
302 * If there are other waiters on the queue then give them a chance at
303 * logspace before us. Wake up the first waiters, if we do not wake
304 * up all the waiters then go to sleep waiting for more free space,
305 * otherwise try to get some space for this transaction.
306 */
307 *need_bytes = xlog_ticket_reservation(log, head, tic);
308 free_bytes = xlog_space_left(log, &head->grant);
309 if (!list_empty_careful(&head->waiters)) {
310 spin_lock(&head->lock);
311 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
312 free_bytes < *need_bytes) {
313 error = xlog_grant_head_wait(log, head, tic,
314 *need_bytes);
315 }
316 spin_unlock(&head->lock);
317 } else if (free_bytes < *need_bytes) {
318 spin_lock(&head->lock);
319 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
320 spin_unlock(&head->lock);
321 }
322
323 return error;
324 }
325
326 static void
xlog_tic_reset_res(xlog_ticket_t * tic)327 xlog_tic_reset_res(xlog_ticket_t *tic)
328 {
329 tic->t_res_num = 0;
330 tic->t_res_arr_sum = 0;
331 tic->t_res_num_ophdrs = 0;
332 }
333
334 static void
xlog_tic_add_region(xlog_ticket_t * tic,uint len,uint type)335 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
336 {
337 if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
338 /* add to overflow and start again */
339 tic->t_res_o_flow += tic->t_res_arr_sum;
340 tic->t_res_num = 0;
341 tic->t_res_arr_sum = 0;
342 }
343
344 tic->t_res_arr[tic->t_res_num].r_len = len;
345 tic->t_res_arr[tic->t_res_num].r_type = type;
346 tic->t_res_arr_sum += len;
347 tic->t_res_num++;
348 }
349
350 bool
xfs_log_writable(struct xfs_mount * mp)351 xfs_log_writable(
352 struct xfs_mount *mp)
353 {
354 /*
355 * Never write to the log on norecovery mounts, if the block device is
356 * read-only, or if the filesystem is shutdown. Read-only mounts still
357 * allow internal writes for log recovery and unmount purposes, so don't
358 * restrict that case here.
359 */
360 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
361 return false;
362 if (xfs_readonly_buftarg(mp->m_log->l_targ))
363 return false;
364 if (XFS_FORCED_SHUTDOWN(mp))
365 return false;
366 return true;
367 }
368
369 /*
370 * Replenish the byte reservation required by moving the grant write head.
371 */
372 int
xfs_log_regrant(struct xfs_mount * mp,struct xlog_ticket * tic)373 xfs_log_regrant(
374 struct xfs_mount *mp,
375 struct xlog_ticket *tic)
376 {
377 struct xlog *log = mp->m_log;
378 int need_bytes;
379 int error = 0;
380
381 if (XLOG_FORCED_SHUTDOWN(log))
382 return -EIO;
383
384 XFS_STATS_INC(mp, xs_try_logspace);
385
386 /*
387 * This is a new transaction on the ticket, so we need to change the
388 * transaction ID so that the next transaction has a different TID in
389 * the log. Just add one to the existing tid so that we can see chains
390 * of rolling transactions in the log easily.
391 */
392 tic->t_tid++;
393
394 xlog_grant_push_ail(log, tic->t_unit_res);
395
396 tic->t_curr_res = tic->t_unit_res;
397 xlog_tic_reset_res(tic);
398
399 if (tic->t_cnt > 0)
400 return 0;
401
402 trace_xfs_log_regrant(log, tic);
403
404 error = xlog_grant_head_check(log, &log->l_write_head, tic,
405 &need_bytes);
406 if (error)
407 goto out_error;
408
409 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
410 trace_xfs_log_regrant_exit(log, tic);
411 xlog_verify_grant_tail(log);
412 return 0;
413
414 out_error:
415 /*
416 * If we are failing, make sure the ticket doesn't have any current
417 * reservations. We don't want to add this back when the ticket/
418 * transaction gets cancelled.
419 */
420 tic->t_curr_res = 0;
421 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
422 return error;
423 }
424
425 /*
426 * Reserve log space and return a ticket corresponding to the reservation.
427 *
428 * Each reservation is going to reserve extra space for a log record header.
429 * When writes happen to the on-disk log, we don't subtract the length of the
430 * log record header from any reservation. By wasting space in each
431 * reservation, we prevent over allocation problems.
432 */
433 int
xfs_log_reserve(struct xfs_mount * mp,int unit_bytes,int cnt,struct xlog_ticket ** ticp,uint8_t client,bool permanent)434 xfs_log_reserve(
435 struct xfs_mount *mp,
436 int unit_bytes,
437 int cnt,
438 struct xlog_ticket **ticp,
439 uint8_t client,
440 bool permanent)
441 {
442 struct xlog *log = mp->m_log;
443 struct xlog_ticket *tic;
444 int need_bytes;
445 int error = 0;
446
447 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
448
449 if (XLOG_FORCED_SHUTDOWN(log))
450 return -EIO;
451
452 XFS_STATS_INC(mp, xs_try_logspace);
453
454 ASSERT(*ticp == NULL);
455 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
456 *ticp = tic;
457
458 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
459 : tic->t_unit_res);
460
461 trace_xfs_log_reserve(log, tic);
462
463 error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
464 &need_bytes);
465 if (error)
466 goto out_error;
467
468 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
469 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
470 trace_xfs_log_reserve_exit(log, tic);
471 xlog_verify_grant_tail(log);
472 return 0;
473
474 out_error:
475 /*
476 * If we are failing, make sure the ticket doesn't have any current
477 * reservations. We don't want to add this back when the ticket/
478 * transaction gets cancelled.
479 */
480 tic->t_curr_res = 0;
481 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
482 return error;
483 }
484
485 static bool
__xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)486 __xlog_state_release_iclog(
487 struct xlog *log,
488 struct xlog_in_core *iclog)
489 {
490 lockdep_assert_held(&log->l_icloglock);
491
492 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
493 /* update tail before writing to iclog */
494 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
495
496 iclog->ic_state = XLOG_STATE_SYNCING;
497 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
498 xlog_verify_tail_lsn(log, iclog, tail_lsn);
499 /* cycle incremented when incrementing curr_block */
500 return true;
501 }
502
503 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
504 return false;
505 }
506
507 /*
508 * Flush iclog to disk if this is the last reference to the given iclog and the
509 * it is in the WANT_SYNC state.
510 */
511 static int
xlog_state_release_iclog(struct xlog * log,struct xlog_in_core * iclog)512 xlog_state_release_iclog(
513 struct xlog *log,
514 struct xlog_in_core *iclog)
515 {
516 lockdep_assert_held(&log->l_icloglock);
517
518 if (iclog->ic_state == XLOG_STATE_IOERROR)
519 return -EIO;
520
521 if (atomic_dec_and_test(&iclog->ic_refcnt) &&
522 __xlog_state_release_iclog(log, iclog)) {
523 spin_unlock(&log->l_icloglock);
524 xlog_sync(log, iclog);
525 spin_lock(&log->l_icloglock);
526 }
527
528 return 0;
529 }
530
531 void
xfs_log_release_iclog(struct xlog_in_core * iclog)532 xfs_log_release_iclog(
533 struct xlog_in_core *iclog)
534 {
535 struct xlog *log = iclog->ic_log;
536 bool sync = false;
537
538 if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
539 if (iclog->ic_state != XLOG_STATE_IOERROR)
540 sync = __xlog_state_release_iclog(log, iclog);
541 spin_unlock(&log->l_icloglock);
542 }
543
544 if (sync)
545 xlog_sync(log, iclog);
546 }
547
548 /*
549 * Mount a log filesystem
550 *
551 * mp - ubiquitous xfs mount point structure
552 * log_target - buftarg of on-disk log device
553 * blk_offset - Start block # where block size is 512 bytes (BBSIZE)
554 * num_bblocks - Number of BBSIZE blocks in on-disk log
555 *
556 * Return error or zero.
557 */
558 int
xfs_log_mount(xfs_mount_t * mp,xfs_buftarg_t * log_target,xfs_daddr_t blk_offset,int num_bblks)559 xfs_log_mount(
560 xfs_mount_t *mp,
561 xfs_buftarg_t *log_target,
562 xfs_daddr_t blk_offset,
563 int num_bblks)
564 {
565 bool fatal = xfs_sb_version_hascrc(&mp->m_sb);
566 int error = 0;
567 int min_logfsbs;
568
569 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
570 xfs_notice(mp, "Mounting V%d Filesystem",
571 XFS_SB_VERSION_NUM(&mp->m_sb));
572 } else {
573 xfs_notice(mp,
574 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
575 XFS_SB_VERSION_NUM(&mp->m_sb));
576 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
577 }
578
579 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
580 if (IS_ERR(mp->m_log)) {
581 error = PTR_ERR(mp->m_log);
582 goto out;
583 }
584
585 /*
586 * Validate the given log space and drop a critical message via syslog
587 * if the log size is too small that would lead to some unexpected
588 * situations in transaction log space reservation stage.
589 *
590 * Note: we can't just reject the mount if the validation fails. This
591 * would mean that people would have to downgrade their kernel just to
592 * remedy the situation as there is no way to grow the log (short of
593 * black magic surgery with xfs_db).
594 *
595 * We can, however, reject mounts for CRC format filesystems, as the
596 * mkfs binary being used to make the filesystem should never create a
597 * filesystem with a log that is too small.
598 */
599 min_logfsbs = xfs_log_calc_minimum_size(mp);
600
601 if (mp->m_sb.sb_logblocks < min_logfsbs) {
602 xfs_warn(mp,
603 "Log size %d blocks too small, minimum size is %d blocks",
604 mp->m_sb.sb_logblocks, min_logfsbs);
605 error = -EINVAL;
606 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
607 xfs_warn(mp,
608 "Log size %d blocks too large, maximum size is %lld blocks",
609 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
610 error = -EINVAL;
611 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
612 xfs_warn(mp,
613 "log size %lld bytes too large, maximum size is %lld bytes",
614 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
615 XFS_MAX_LOG_BYTES);
616 error = -EINVAL;
617 } else if (mp->m_sb.sb_logsunit > 1 &&
618 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
619 xfs_warn(mp,
620 "log stripe unit %u bytes must be a multiple of block size",
621 mp->m_sb.sb_logsunit);
622 error = -EINVAL;
623 fatal = true;
624 }
625 if (error) {
626 /*
627 * Log check errors are always fatal on v5; or whenever bad
628 * metadata leads to a crash.
629 */
630 if (fatal) {
631 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
632 ASSERT(0);
633 goto out_free_log;
634 }
635 xfs_crit(mp, "Log size out of supported range.");
636 xfs_crit(mp,
637 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
638 }
639
640 /*
641 * Initialize the AIL now we have a log.
642 */
643 error = xfs_trans_ail_init(mp);
644 if (error) {
645 xfs_warn(mp, "AIL initialisation failed: error %d", error);
646 goto out_free_log;
647 }
648 mp->m_log->l_ailp = mp->m_ail;
649
650 /*
651 * skip log recovery on a norecovery mount. pretend it all
652 * just worked.
653 */
654 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
655 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
656
657 if (readonly)
658 mp->m_flags &= ~XFS_MOUNT_RDONLY;
659
660 error = xlog_recover(mp->m_log);
661
662 if (readonly)
663 mp->m_flags |= XFS_MOUNT_RDONLY;
664 if (error) {
665 xfs_warn(mp, "log mount/recovery failed: error %d",
666 error);
667 xlog_recover_cancel(mp->m_log);
668 goto out_destroy_ail;
669 }
670 }
671
672 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
673 "log");
674 if (error)
675 goto out_destroy_ail;
676
677 /* Normal transactions can now occur */
678 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
679
680 /*
681 * Now the log has been fully initialised and we know were our
682 * space grant counters are, we can initialise the permanent ticket
683 * needed for delayed logging to work.
684 */
685 xlog_cil_init_post_recovery(mp->m_log);
686
687 return 0;
688
689 out_destroy_ail:
690 xfs_trans_ail_destroy(mp);
691 out_free_log:
692 xlog_dealloc_log(mp->m_log);
693 out:
694 return error;
695 }
696
697 /*
698 * Finish the recovery of the file system. This is separate from the
699 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
700 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
701 * here.
702 *
703 * If we finish recovery successfully, start the background log work. If we are
704 * not doing recovery, then we have a RO filesystem and we don't need to start
705 * it.
706 */
707 int
xfs_log_mount_finish(struct xfs_mount * mp)708 xfs_log_mount_finish(
709 struct xfs_mount *mp)
710 {
711 int error = 0;
712 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
713 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
714
715 if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
716 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
717 return 0;
718 } else if (readonly) {
719 /* Allow unlinked processing to proceed */
720 mp->m_flags &= ~XFS_MOUNT_RDONLY;
721 }
722
723 /*
724 * During the second phase of log recovery, we need iget and
725 * iput to behave like they do for an active filesystem.
726 * xfs_fs_drop_inode needs to be able to prevent the deletion
727 * of inodes before we're done replaying log items on those
728 * inodes. Turn it off immediately after recovery finishes
729 * so that we don't leak the quota inodes if subsequent mount
730 * activities fail.
731 *
732 * We let all inodes involved in redo item processing end up on
733 * the LRU instead of being evicted immediately so that if we do
734 * something to an unlinked inode, the irele won't cause
735 * premature truncation and freeing of the inode, which results
736 * in log recovery failure. We have to evict the unreferenced
737 * lru inodes after clearing SB_ACTIVE because we don't
738 * otherwise clean up the lru if there's a subsequent failure in
739 * xfs_mountfs, which leads to us leaking the inodes if nothing
740 * else (e.g. quotacheck) references the inodes before the
741 * mount failure occurs.
742 */
743 mp->m_super->s_flags |= SB_ACTIVE;
744 error = xlog_recover_finish(mp->m_log);
745 if (!error)
746 xfs_log_work_queue(mp);
747 mp->m_super->s_flags &= ~SB_ACTIVE;
748 evict_inodes(mp->m_super);
749
750 /*
751 * Drain the buffer LRU after log recovery. This is required for v4
752 * filesystems to avoid leaving around buffers with NULL verifier ops,
753 * but we do it unconditionally to make sure we're always in a clean
754 * cache state after mount.
755 *
756 * Don't push in the error case because the AIL may have pending intents
757 * that aren't removed until recovery is cancelled.
758 */
759 if (!error && recovered) {
760 xfs_log_force(mp, XFS_LOG_SYNC);
761 xfs_ail_push_all_sync(mp->m_ail);
762 }
763 xfs_wait_buftarg(mp->m_ddev_targp);
764
765 if (readonly)
766 mp->m_flags |= XFS_MOUNT_RDONLY;
767
768 /* Make sure the log is dead if we're returning failure. */
769 ASSERT(!error || (mp->m_log->l_flags & XLOG_IO_ERROR));
770
771 return error;
772 }
773
774 /*
775 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
776 * the log.
777 */
778 void
xfs_log_mount_cancel(struct xfs_mount * mp)779 xfs_log_mount_cancel(
780 struct xfs_mount *mp)
781 {
782 xlog_recover_cancel(mp->m_log);
783 xfs_log_unmount(mp);
784 }
785
786 /*
787 * Wait for the iclog to be written disk, or return an error if the log has been
788 * shut down.
789 */
790 static int
xlog_wait_on_iclog(struct xlog_in_core * iclog)791 xlog_wait_on_iclog(
792 struct xlog_in_core *iclog)
793 __releases(iclog->ic_log->l_icloglock)
794 {
795 struct xlog *log = iclog->ic_log;
796
797 if (!XLOG_FORCED_SHUTDOWN(log) &&
798 iclog->ic_state != XLOG_STATE_ACTIVE &&
799 iclog->ic_state != XLOG_STATE_DIRTY) {
800 XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
801 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
802 } else {
803 spin_unlock(&log->l_icloglock);
804 }
805
806 if (XLOG_FORCED_SHUTDOWN(log))
807 return -EIO;
808 return 0;
809 }
810
811 /*
812 * Write out an unmount record using the ticket provided. We have to account for
813 * the data space used in the unmount ticket as this write is not done from a
814 * transaction context that has already done the accounting for us.
815 */
816 static int
xlog_write_unmount_record(struct xlog * log,struct xlog_ticket * ticket,xfs_lsn_t * lsn,uint flags)817 xlog_write_unmount_record(
818 struct xlog *log,
819 struct xlog_ticket *ticket,
820 xfs_lsn_t *lsn,
821 uint flags)
822 {
823 struct xfs_unmount_log_format ulf = {
824 .magic = XLOG_UNMOUNT_TYPE,
825 };
826 struct xfs_log_iovec reg = {
827 .i_addr = &ulf,
828 .i_len = sizeof(ulf),
829 .i_type = XLOG_REG_TYPE_UNMOUNT,
830 };
831 struct xfs_log_vec vec = {
832 .lv_niovecs = 1,
833 .lv_iovecp = ®,
834 };
835
836 /* account for space used by record data */
837 ticket->t_curr_res -= sizeof(ulf);
838 return xlog_write(log, &vec, ticket, lsn, NULL, flags, false);
839 }
840
841 /*
842 * Mark the filesystem clean by writing an unmount record to the head of the
843 * log.
844 */
845 static void
xlog_unmount_write(struct xlog * log)846 xlog_unmount_write(
847 struct xlog *log)
848 {
849 struct xfs_mount *mp = log->l_mp;
850 struct xlog_in_core *iclog;
851 struct xlog_ticket *tic = NULL;
852 xfs_lsn_t lsn;
853 uint flags = XLOG_UNMOUNT_TRANS;
854 int error;
855
856 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
857 if (error)
858 goto out_err;
859
860 error = xlog_write_unmount_record(log, tic, &lsn, flags);
861 /*
862 * At this point, we're umounting anyway, so there's no point in
863 * transitioning log state to IOERROR. Just continue...
864 */
865 out_err:
866 if (error)
867 xfs_alert(mp, "%s: unmount record failed", __func__);
868
869 spin_lock(&log->l_icloglock);
870 iclog = log->l_iclog;
871 atomic_inc(&iclog->ic_refcnt);
872 if (iclog->ic_state == XLOG_STATE_ACTIVE)
873 xlog_state_switch_iclogs(log, iclog, 0);
874 else
875 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
876 iclog->ic_state == XLOG_STATE_IOERROR);
877 error = xlog_state_release_iclog(log, iclog);
878 xlog_wait_on_iclog(iclog);
879
880 if (tic) {
881 trace_xfs_log_umount_write(log, tic);
882 xfs_log_ticket_ungrant(log, tic);
883 }
884 }
885
886 static void
xfs_log_unmount_verify_iclog(struct xlog * log)887 xfs_log_unmount_verify_iclog(
888 struct xlog *log)
889 {
890 struct xlog_in_core *iclog = log->l_iclog;
891
892 do {
893 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
894 ASSERT(iclog->ic_offset == 0);
895 } while ((iclog = iclog->ic_next) != log->l_iclog);
896 }
897
898 /*
899 * Unmount record used to have a string "Unmount filesystem--" in the
900 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
901 * We just write the magic number now since that particular field isn't
902 * currently architecture converted and "Unmount" is a bit foo.
903 * As far as I know, there weren't any dependencies on the old behaviour.
904 */
905 static void
xfs_log_unmount_write(struct xfs_mount * mp)906 xfs_log_unmount_write(
907 struct xfs_mount *mp)
908 {
909 struct xlog *log = mp->m_log;
910
911 if (!xfs_log_writable(mp))
912 return;
913
914 xfs_log_force(mp, XFS_LOG_SYNC);
915
916 if (XLOG_FORCED_SHUTDOWN(log))
917 return;
918
919 /*
920 * If we think the summary counters are bad, avoid writing the unmount
921 * record to force log recovery at next mount, after which the summary
922 * counters will be recalculated. Refer to xlog_check_unmount_rec for
923 * more details.
924 */
925 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
926 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
927 xfs_alert(mp, "%s: will fix summary counters at next mount",
928 __func__);
929 return;
930 }
931
932 xfs_log_unmount_verify_iclog(log);
933 xlog_unmount_write(log);
934 }
935
936 /*
937 * Empty the log for unmount/freeze.
938 *
939 * To do this, we first need to shut down the background log work so it is not
940 * trying to cover the log as we clean up. We then need to unpin all objects in
941 * the log so we can then flush them out. Once they have completed their IO and
942 * run the callbacks removing themselves from the AIL, we can write the unmount
943 * record.
944 */
945 void
xfs_log_quiesce(struct xfs_mount * mp)946 xfs_log_quiesce(
947 struct xfs_mount *mp)
948 {
949 cancel_delayed_work_sync(&mp->m_log->l_work);
950 xfs_log_force(mp, XFS_LOG_SYNC);
951
952 /*
953 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
954 * will push it, xfs_wait_buftarg() will not wait for it. Further,
955 * xfs_buf_iowait() cannot be used because it was pushed with the
956 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
957 * the IO to complete.
958 */
959 xfs_ail_push_all_sync(mp->m_ail);
960 xfs_wait_buftarg(mp->m_ddev_targp);
961 xfs_buf_lock(mp->m_sb_bp);
962 xfs_buf_unlock(mp->m_sb_bp);
963
964 xfs_log_unmount_write(mp);
965 }
966
967 /*
968 * Shut down and release the AIL and Log.
969 *
970 * During unmount, we need to ensure we flush all the dirty metadata objects
971 * from the AIL so that the log is empty before we write the unmount record to
972 * the log. Once this is done, we can tear down the AIL and the log.
973 */
974 void
xfs_log_unmount(struct xfs_mount * mp)975 xfs_log_unmount(
976 struct xfs_mount *mp)
977 {
978 xfs_log_quiesce(mp);
979
980 xfs_trans_ail_destroy(mp);
981
982 xfs_sysfs_del(&mp->m_log->l_kobj);
983
984 xlog_dealloc_log(mp->m_log);
985 }
986
987 void
xfs_log_item_init(struct xfs_mount * mp,struct xfs_log_item * item,int type,const struct xfs_item_ops * ops)988 xfs_log_item_init(
989 struct xfs_mount *mp,
990 struct xfs_log_item *item,
991 int type,
992 const struct xfs_item_ops *ops)
993 {
994 item->li_mountp = mp;
995 item->li_ailp = mp->m_ail;
996 item->li_type = type;
997 item->li_ops = ops;
998 item->li_lv = NULL;
999
1000 INIT_LIST_HEAD(&item->li_ail);
1001 INIT_LIST_HEAD(&item->li_cil);
1002 INIT_LIST_HEAD(&item->li_bio_list);
1003 INIT_LIST_HEAD(&item->li_trans);
1004 }
1005
1006 /*
1007 * Wake up processes waiting for log space after we have moved the log tail.
1008 */
1009 void
xfs_log_space_wake(struct xfs_mount * mp)1010 xfs_log_space_wake(
1011 struct xfs_mount *mp)
1012 {
1013 struct xlog *log = mp->m_log;
1014 int free_bytes;
1015
1016 if (XLOG_FORCED_SHUTDOWN(log))
1017 return;
1018
1019 if (!list_empty_careful(&log->l_write_head.waiters)) {
1020 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1021
1022 spin_lock(&log->l_write_head.lock);
1023 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1024 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1025 spin_unlock(&log->l_write_head.lock);
1026 }
1027
1028 if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1029 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1030
1031 spin_lock(&log->l_reserve_head.lock);
1032 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1033 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1034 spin_unlock(&log->l_reserve_head.lock);
1035 }
1036 }
1037
1038 /*
1039 * Determine if we have a transaction that has gone to disk that needs to be
1040 * covered. To begin the transition to the idle state firstly the log needs to
1041 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1042 * we start attempting to cover the log.
1043 *
1044 * Only if we are then in a state where covering is needed, the caller is
1045 * informed that dummy transactions are required to move the log into the idle
1046 * state.
1047 *
1048 * If there are any items in the AIl or CIL, then we do not want to attempt to
1049 * cover the log as we may be in a situation where there isn't log space
1050 * available to run a dummy transaction and this can lead to deadlocks when the
1051 * tail of the log is pinned by an item that is modified in the CIL. Hence
1052 * there's no point in running a dummy transaction at this point because we
1053 * can't start trying to idle the log until both the CIL and AIL are empty.
1054 */
1055 static int
xfs_log_need_covered(xfs_mount_t * mp)1056 xfs_log_need_covered(xfs_mount_t *mp)
1057 {
1058 struct xlog *log = mp->m_log;
1059 int needed = 0;
1060
1061 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1062 return 0;
1063
1064 if (!xlog_cil_empty(log))
1065 return 0;
1066
1067 spin_lock(&log->l_icloglock);
1068 switch (log->l_covered_state) {
1069 case XLOG_STATE_COVER_DONE:
1070 case XLOG_STATE_COVER_DONE2:
1071 case XLOG_STATE_COVER_IDLE:
1072 break;
1073 case XLOG_STATE_COVER_NEED:
1074 case XLOG_STATE_COVER_NEED2:
1075 if (xfs_ail_min_lsn(log->l_ailp))
1076 break;
1077 if (!xlog_iclogs_empty(log))
1078 break;
1079
1080 needed = 1;
1081 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1082 log->l_covered_state = XLOG_STATE_COVER_DONE;
1083 else
1084 log->l_covered_state = XLOG_STATE_COVER_DONE2;
1085 break;
1086 default:
1087 needed = 1;
1088 break;
1089 }
1090 spin_unlock(&log->l_icloglock);
1091 return needed;
1092 }
1093
1094 /*
1095 * We may be holding the log iclog lock upon entering this routine.
1096 */
1097 xfs_lsn_t
xlog_assign_tail_lsn_locked(struct xfs_mount * mp)1098 xlog_assign_tail_lsn_locked(
1099 struct xfs_mount *mp)
1100 {
1101 struct xlog *log = mp->m_log;
1102 struct xfs_log_item *lip;
1103 xfs_lsn_t tail_lsn;
1104
1105 assert_spin_locked(&mp->m_ail->ail_lock);
1106
1107 /*
1108 * To make sure we always have a valid LSN for the log tail we keep
1109 * track of the last LSN which was committed in log->l_last_sync_lsn,
1110 * and use that when the AIL was empty.
1111 */
1112 lip = xfs_ail_min(mp->m_ail);
1113 if (lip)
1114 tail_lsn = lip->li_lsn;
1115 else
1116 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1117 trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1118 atomic64_set(&log->l_tail_lsn, tail_lsn);
1119 return tail_lsn;
1120 }
1121
1122 xfs_lsn_t
xlog_assign_tail_lsn(struct xfs_mount * mp)1123 xlog_assign_tail_lsn(
1124 struct xfs_mount *mp)
1125 {
1126 xfs_lsn_t tail_lsn;
1127
1128 spin_lock(&mp->m_ail->ail_lock);
1129 tail_lsn = xlog_assign_tail_lsn_locked(mp);
1130 spin_unlock(&mp->m_ail->ail_lock);
1131
1132 return tail_lsn;
1133 }
1134
1135 /*
1136 * Return the space in the log between the tail and the head. The head
1137 * is passed in the cycle/bytes formal parms. In the special case where
1138 * the reserve head has wrapped passed the tail, this calculation is no
1139 * longer valid. In this case, just return 0 which means there is no space
1140 * in the log. This works for all places where this function is called
1141 * with the reserve head. Of course, if the write head were to ever
1142 * wrap the tail, we should blow up. Rather than catch this case here,
1143 * we depend on other ASSERTions in other parts of the code. XXXmiken
1144 *
1145 * This code also handles the case where the reservation head is behind
1146 * the tail. The details of this case are described below, but the end
1147 * result is that we return the size of the log as the amount of space left.
1148 */
1149 STATIC int
xlog_space_left(struct xlog * log,atomic64_t * head)1150 xlog_space_left(
1151 struct xlog *log,
1152 atomic64_t *head)
1153 {
1154 int free_bytes;
1155 int tail_bytes;
1156 int tail_cycle;
1157 int head_cycle;
1158 int head_bytes;
1159
1160 xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1161 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1162 tail_bytes = BBTOB(tail_bytes);
1163 if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1164 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1165 else if (tail_cycle + 1 < head_cycle)
1166 return 0;
1167 else if (tail_cycle < head_cycle) {
1168 ASSERT(tail_cycle == (head_cycle - 1));
1169 free_bytes = tail_bytes - head_bytes;
1170 } else {
1171 /*
1172 * The reservation head is behind the tail.
1173 * In this case we just want to return the size of the
1174 * log as the amount of space left.
1175 */
1176 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1177 xfs_alert(log->l_mp,
1178 " tail_cycle = %d, tail_bytes = %d",
1179 tail_cycle, tail_bytes);
1180 xfs_alert(log->l_mp,
1181 " GH cycle = %d, GH bytes = %d",
1182 head_cycle, head_bytes);
1183 ASSERT(0);
1184 free_bytes = log->l_logsize;
1185 }
1186 return free_bytes;
1187 }
1188
1189
1190 static void
xlog_ioend_work(struct work_struct * work)1191 xlog_ioend_work(
1192 struct work_struct *work)
1193 {
1194 struct xlog_in_core *iclog =
1195 container_of(work, struct xlog_in_core, ic_end_io_work);
1196 struct xlog *log = iclog->ic_log;
1197 int error;
1198
1199 error = blk_status_to_errno(iclog->ic_bio.bi_status);
1200 #ifdef DEBUG
1201 /* treat writes with injected CRC errors as failed */
1202 if (iclog->ic_fail_crc)
1203 error = -EIO;
1204 #endif
1205
1206 /*
1207 * Race to shutdown the filesystem if we see an error.
1208 */
1209 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1210 xfs_alert(log->l_mp, "log I/O error %d", error);
1211 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1212 }
1213
1214 xlog_state_done_syncing(iclog);
1215 bio_uninit(&iclog->ic_bio);
1216
1217 /*
1218 * Drop the lock to signal that we are done. Nothing references the
1219 * iclog after this, so an unmount waiting on this lock can now tear it
1220 * down safely. As such, it is unsafe to reference the iclog after the
1221 * unlock as we could race with it being freed.
1222 */
1223 up(&iclog->ic_sema);
1224 }
1225
1226 /*
1227 * Return size of each in-core log record buffer.
1228 *
1229 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1230 *
1231 * If the filesystem blocksize is too large, we may need to choose a
1232 * larger size since the directory code currently logs entire blocks.
1233 */
1234 STATIC void
xlog_get_iclog_buffer_size(struct xfs_mount * mp,struct xlog * log)1235 xlog_get_iclog_buffer_size(
1236 struct xfs_mount *mp,
1237 struct xlog *log)
1238 {
1239 if (mp->m_logbufs <= 0)
1240 mp->m_logbufs = XLOG_MAX_ICLOGS;
1241 if (mp->m_logbsize <= 0)
1242 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1243
1244 log->l_iclog_bufs = mp->m_logbufs;
1245 log->l_iclog_size = mp->m_logbsize;
1246
1247 /*
1248 * # headers = size / 32k - one header holds cycles from 32k of data.
1249 */
1250 log->l_iclog_heads =
1251 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1252 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1253 }
1254
1255 void
xfs_log_work_queue(struct xfs_mount * mp)1256 xfs_log_work_queue(
1257 struct xfs_mount *mp)
1258 {
1259 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1260 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1261 }
1262
1263 /*
1264 * Every sync period we need to unpin all items in the AIL and push them to
1265 * disk. If there is nothing dirty, then we might need to cover the log to
1266 * indicate that the filesystem is idle.
1267 */
1268 static void
xfs_log_worker(struct work_struct * work)1269 xfs_log_worker(
1270 struct work_struct *work)
1271 {
1272 struct xlog *log = container_of(to_delayed_work(work),
1273 struct xlog, l_work);
1274 struct xfs_mount *mp = log->l_mp;
1275
1276 /* dgc: errors ignored - not fatal and nowhere to report them */
1277 if (xfs_log_need_covered(mp)) {
1278 /*
1279 * Dump a transaction into the log that contains no real change.
1280 * This is needed to stamp the current tail LSN into the log
1281 * during the covering operation.
1282 *
1283 * We cannot use an inode here for this - that will push dirty
1284 * state back up into the VFS and then periodic inode flushing
1285 * will prevent log covering from making progress. Hence we
1286 * synchronously log the superblock instead to ensure the
1287 * superblock is immediately unpinned and can be written back.
1288 */
1289 xfs_sync_sb(mp, true);
1290 } else
1291 xfs_log_force(mp, 0);
1292
1293 /* start pushing all the metadata that is currently dirty */
1294 xfs_ail_push_all(mp->m_ail);
1295
1296 /* queue us up again */
1297 xfs_log_work_queue(mp);
1298 }
1299
1300 /*
1301 * This routine initializes some of the log structure for a given mount point.
1302 * Its primary purpose is to fill in enough, so recovery can occur. However,
1303 * some other stuff may be filled in too.
1304 */
1305 STATIC struct xlog *
xlog_alloc_log(struct xfs_mount * mp,struct xfs_buftarg * log_target,xfs_daddr_t blk_offset,int num_bblks)1306 xlog_alloc_log(
1307 struct xfs_mount *mp,
1308 struct xfs_buftarg *log_target,
1309 xfs_daddr_t blk_offset,
1310 int num_bblks)
1311 {
1312 struct xlog *log;
1313 xlog_rec_header_t *head;
1314 xlog_in_core_t **iclogp;
1315 xlog_in_core_t *iclog, *prev_iclog=NULL;
1316 int i;
1317 int error = -ENOMEM;
1318 uint log2_size = 0;
1319
1320 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1321 if (!log) {
1322 xfs_warn(mp, "Log allocation failed: No memory!");
1323 goto out;
1324 }
1325
1326 log->l_mp = mp;
1327 log->l_targ = log_target;
1328 log->l_logsize = BBTOB(num_bblks);
1329 log->l_logBBstart = blk_offset;
1330 log->l_logBBsize = num_bblks;
1331 log->l_covered_state = XLOG_STATE_COVER_IDLE;
1332 log->l_flags |= XLOG_ACTIVE_RECOVERY;
1333 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1334
1335 log->l_prev_block = -1;
1336 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1337 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1338 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1339 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */
1340
1341 xlog_grant_head_init(&log->l_reserve_head);
1342 xlog_grant_head_init(&log->l_write_head);
1343
1344 error = -EFSCORRUPTED;
1345 if (xfs_sb_version_hassector(&mp->m_sb)) {
1346 log2_size = mp->m_sb.sb_logsectlog;
1347 if (log2_size < BBSHIFT) {
1348 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1349 log2_size, BBSHIFT);
1350 goto out_free_log;
1351 }
1352
1353 log2_size -= BBSHIFT;
1354 if (log2_size > mp->m_sectbb_log) {
1355 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1356 log2_size, mp->m_sectbb_log);
1357 goto out_free_log;
1358 }
1359
1360 /* for larger sector sizes, must have v2 or external log */
1361 if (log2_size && log->l_logBBstart > 0 &&
1362 !xfs_sb_version_haslogv2(&mp->m_sb)) {
1363 xfs_warn(mp,
1364 "log sector size (0x%x) invalid for configuration.",
1365 log2_size);
1366 goto out_free_log;
1367 }
1368 }
1369 log->l_sectBBsize = 1 << log2_size;
1370
1371 xlog_get_iclog_buffer_size(mp, log);
1372
1373 spin_lock_init(&log->l_icloglock);
1374 init_waitqueue_head(&log->l_flush_wait);
1375
1376 iclogp = &log->l_iclog;
1377 /*
1378 * The amount of memory to allocate for the iclog structure is
1379 * rather funky due to the way the structure is defined. It is
1380 * done this way so that we can use different sizes for machines
1381 * with different amounts of memory. See the definition of
1382 * xlog_in_core_t in xfs_log_priv.h for details.
1383 */
1384 ASSERT(log->l_iclog_size >= 4096);
1385 for (i = 0; i < log->l_iclog_bufs; i++) {
1386 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1387 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1388 sizeof(struct bio_vec);
1389
1390 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1391 if (!iclog)
1392 goto out_free_iclog;
1393
1394 *iclogp = iclog;
1395 iclog->ic_prev = prev_iclog;
1396 prev_iclog = iclog;
1397
1398 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1399 KM_MAYFAIL | KM_ZERO);
1400 if (!iclog->ic_data)
1401 goto out_free_iclog;
1402 #ifdef DEBUG
1403 log->l_iclog_bak[i] = &iclog->ic_header;
1404 #endif
1405 head = &iclog->ic_header;
1406 memset(head, 0, sizeof(xlog_rec_header_t));
1407 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1408 head->h_version = cpu_to_be32(
1409 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1410 head->h_size = cpu_to_be32(log->l_iclog_size);
1411 /* new fields */
1412 head->h_fmt = cpu_to_be32(XLOG_FMT);
1413 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1414
1415 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1416 iclog->ic_state = XLOG_STATE_ACTIVE;
1417 iclog->ic_log = log;
1418 atomic_set(&iclog->ic_refcnt, 0);
1419 spin_lock_init(&iclog->ic_callback_lock);
1420 INIT_LIST_HEAD(&iclog->ic_callbacks);
1421 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1422
1423 init_waitqueue_head(&iclog->ic_force_wait);
1424 init_waitqueue_head(&iclog->ic_write_wait);
1425 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1426 sema_init(&iclog->ic_sema, 1);
1427
1428 iclogp = &iclog->ic_next;
1429 }
1430 *iclogp = log->l_iclog; /* complete ring */
1431 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */
1432
1433 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1434 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1435 mp->m_super->s_id);
1436 if (!log->l_ioend_workqueue)
1437 goto out_free_iclog;
1438
1439 error = xlog_cil_init(log);
1440 if (error)
1441 goto out_destroy_workqueue;
1442 return log;
1443
1444 out_destroy_workqueue:
1445 destroy_workqueue(log->l_ioend_workqueue);
1446 out_free_iclog:
1447 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1448 prev_iclog = iclog->ic_next;
1449 kmem_free(iclog->ic_data);
1450 kmem_free(iclog);
1451 if (prev_iclog == log->l_iclog)
1452 break;
1453 }
1454 out_free_log:
1455 kmem_free(log);
1456 out:
1457 return ERR_PTR(error);
1458 } /* xlog_alloc_log */
1459
1460 /*
1461 * Write out the commit record of a transaction associated with the given
1462 * ticket to close off a running log write. Return the lsn of the commit record.
1463 */
1464 int
xlog_commit_record(struct xlog * log,struct xlog_ticket * ticket,struct xlog_in_core ** iclog,xfs_lsn_t * lsn)1465 xlog_commit_record(
1466 struct xlog *log,
1467 struct xlog_ticket *ticket,
1468 struct xlog_in_core **iclog,
1469 xfs_lsn_t *lsn)
1470 {
1471 struct xfs_log_iovec reg = {
1472 .i_addr = NULL,
1473 .i_len = 0,
1474 .i_type = XLOG_REG_TYPE_COMMIT,
1475 };
1476 struct xfs_log_vec vec = {
1477 .lv_niovecs = 1,
1478 .lv_iovecp = ®,
1479 };
1480 int error;
1481
1482 if (XLOG_FORCED_SHUTDOWN(log))
1483 return -EIO;
1484
1485 error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS,
1486 false);
1487 if (error)
1488 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1489 return error;
1490 }
1491
1492 /*
1493 * Compute the LSN that we'd need to push the log tail towards in order to have
1494 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1495 * least 25% of the log space free, and (c) at least 256 blocks free. If the
1496 * log free space already meets all three thresholds, this function returns
1497 * NULLCOMMITLSN.
1498 */
1499 xfs_lsn_t
xlog_grant_push_threshold(struct xlog * log,int need_bytes)1500 xlog_grant_push_threshold(
1501 struct xlog *log,
1502 int need_bytes)
1503 {
1504 xfs_lsn_t threshold_lsn = 0;
1505 xfs_lsn_t last_sync_lsn;
1506 int free_blocks;
1507 int free_bytes;
1508 int threshold_block;
1509 int threshold_cycle;
1510 int free_threshold;
1511
1512 ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1513
1514 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1515 free_blocks = BTOBBT(free_bytes);
1516
1517 /*
1518 * Set the threshold for the minimum number of free blocks in the
1519 * log to the maximum of what the caller needs, one quarter of the
1520 * log, and 256 blocks.
1521 */
1522 free_threshold = BTOBB(need_bytes);
1523 free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1524 free_threshold = max(free_threshold, 256);
1525 if (free_blocks >= free_threshold)
1526 return NULLCOMMITLSN;
1527
1528 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1529 &threshold_block);
1530 threshold_block += free_threshold;
1531 if (threshold_block >= log->l_logBBsize) {
1532 threshold_block -= log->l_logBBsize;
1533 threshold_cycle += 1;
1534 }
1535 threshold_lsn = xlog_assign_lsn(threshold_cycle,
1536 threshold_block);
1537 /*
1538 * Don't pass in an lsn greater than the lsn of the last
1539 * log record known to be on disk. Use a snapshot of the last sync lsn
1540 * so that it doesn't change between the compare and the set.
1541 */
1542 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1543 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1544 threshold_lsn = last_sync_lsn;
1545
1546 return threshold_lsn;
1547 }
1548
1549 /*
1550 * Push the tail of the log if we need to do so to maintain the free log space
1551 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a
1552 * policy which pushes on an lsn which is further along in the log once we
1553 * reach the high water mark. In this manner, we would be creating a low water
1554 * mark.
1555 */
1556 STATIC void
xlog_grant_push_ail(struct xlog * log,int need_bytes)1557 xlog_grant_push_ail(
1558 struct xlog *log,
1559 int need_bytes)
1560 {
1561 xfs_lsn_t threshold_lsn;
1562
1563 threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1564 if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1565 return;
1566
1567 /*
1568 * Get the transaction layer to kick the dirty buffers out to
1569 * disk asynchronously. No point in trying to do this if
1570 * the filesystem is shutting down.
1571 */
1572 xfs_ail_push(log->l_ailp, threshold_lsn);
1573 }
1574
1575 /*
1576 * Stamp cycle number in every block
1577 */
1578 STATIC void
xlog_pack_data(struct xlog * log,struct xlog_in_core * iclog,int roundoff)1579 xlog_pack_data(
1580 struct xlog *log,
1581 struct xlog_in_core *iclog,
1582 int roundoff)
1583 {
1584 int i, j, k;
1585 int size = iclog->ic_offset + roundoff;
1586 __be32 cycle_lsn;
1587 char *dp;
1588
1589 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1590
1591 dp = iclog->ic_datap;
1592 for (i = 0; i < BTOBB(size); i++) {
1593 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1594 break;
1595 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1596 *(__be32 *)dp = cycle_lsn;
1597 dp += BBSIZE;
1598 }
1599
1600 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1601 xlog_in_core_2_t *xhdr = iclog->ic_data;
1602
1603 for ( ; i < BTOBB(size); i++) {
1604 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1605 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1606 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1607 *(__be32 *)dp = cycle_lsn;
1608 dp += BBSIZE;
1609 }
1610
1611 for (i = 1; i < log->l_iclog_heads; i++)
1612 xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1613 }
1614 }
1615
1616 /*
1617 * Calculate the checksum for a log buffer.
1618 *
1619 * This is a little more complicated than it should be because the various
1620 * headers and the actual data are non-contiguous.
1621 */
1622 __le32
xlog_cksum(struct xlog * log,struct xlog_rec_header * rhead,char * dp,int size)1623 xlog_cksum(
1624 struct xlog *log,
1625 struct xlog_rec_header *rhead,
1626 char *dp,
1627 int size)
1628 {
1629 uint32_t crc;
1630
1631 /* first generate the crc for the record header ... */
1632 crc = xfs_start_cksum_update((char *)rhead,
1633 sizeof(struct xlog_rec_header),
1634 offsetof(struct xlog_rec_header, h_crc));
1635
1636 /* ... then for additional cycle data for v2 logs ... */
1637 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1638 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1639 int i;
1640 int xheads;
1641
1642 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1643
1644 for (i = 1; i < xheads; i++) {
1645 crc = crc32c(crc, &xhdr[i].hic_xheader,
1646 sizeof(struct xlog_rec_ext_header));
1647 }
1648 }
1649
1650 /* ... and finally for the payload */
1651 crc = crc32c(crc, dp, size);
1652
1653 return xfs_end_cksum(crc);
1654 }
1655
1656 static void
xlog_bio_end_io(struct bio * bio)1657 xlog_bio_end_io(
1658 struct bio *bio)
1659 {
1660 struct xlog_in_core *iclog = bio->bi_private;
1661
1662 queue_work(iclog->ic_log->l_ioend_workqueue,
1663 &iclog->ic_end_io_work);
1664 }
1665
1666 static int
xlog_map_iclog_data(struct bio * bio,void * data,size_t count)1667 xlog_map_iclog_data(
1668 struct bio *bio,
1669 void *data,
1670 size_t count)
1671 {
1672 do {
1673 struct page *page = kmem_to_page(data);
1674 unsigned int off = offset_in_page(data);
1675 size_t len = min_t(size_t, count, PAGE_SIZE - off);
1676
1677 if (bio_add_page(bio, page, len, off) != len)
1678 return -EIO;
1679
1680 data += len;
1681 count -= len;
1682 } while (count);
1683
1684 return 0;
1685 }
1686
1687 STATIC void
xlog_write_iclog(struct xlog * log,struct xlog_in_core * iclog,uint64_t bno,unsigned int count,bool need_flush)1688 xlog_write_iclog(
1689 struct xlog *log,
1690 struct xlog_in_core *iclog,
1691 uint64_t bno,
1692 unsigned int count,
1693 bool need_flush)
1694 {
1695 ASSERT(bno < log->l_logBBsize);
1696
1697 /*
1698 * We lock the iclogbufs here so that we can serialise against I/O
1699 * completion during unmount. We might be processing a shutdown
1700 * triggered during unmount, and that can occur asynchronously to the
1701 * unmount thread, and hence we need to ensure that completes before
1702 * tearing down the iclogbufs. Hence we need to hold the buffer lock
1703 * across the log IO to archieve that.
1704 */
1705 down(&iclog->ic_sema);
1706 if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1707 /*
1708 * It would seem logical to return EIO here, but we rely on
1709 * the log state machine to propagate I/O errors instead of
1710 * doing it here. We kick of the state machine and unlock
1711 * the buffer manually, the code needs to be kept in sync
1712 * with the I/O completion path.
1713 */
1714 xlog_state_done_syncing(iclog);
1715 up(&iclog->ic_sema);
1716 return;
1717 }
1718
1719 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1720 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1721 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1722 iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1723 iclog->ic_bio.bi_private = iclog;
1724
1725 /*
1726 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1727 * IOs coming immediately after this one. This prevents the block layer
1728 * writeback throttle from throttling log writes behind background
1729 * metadata writeback and causing priority inversions.
1730 */
1731 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC |
1732 REQ_IDLE | REQ_FUA;
1733 if (need_flush)
1734 iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1735
1736 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1737 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1738 return;
1739 }
1740 if (is_vmalloc_addr(iclog->ic_data))
1741 flush_kernel_vmap_range(iclog->ic_data, count);
1742
1743 /*
1744 * If this log buffer would straddle the end of the log we will have
1745 * to split it up into two bios, so that we can continue at the start.
1746 */
1747 if (bno + BTOBB(count) > log->l_logBBsize) {
1748 struct bio *split;
1749
1750 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1751 GFP_NOIO, &fs_bio_set);
1752 bio_chain(split, &iclog->ic_bio);
1753 submit_bio(split);
1754
1755 /* restart at logical offset zero for the remainder */
1756 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1757 }
1758
1759 submit_bio(&iclog->ic_bio);
1760 }
1761
1762 /*
1763 * We need to bump cycle number for the part of the iclog that is
1764 * written to the start of the log. Watch out for the header magic
1765 * number case, though.
1766 */
1767 static void
xlog_split_iclog(struct xlog * log,void * data,uint64_t bno,unsigned int count)1768 xlog_split_iclog(
1769 struct xlog *log,
1770 void *data,
1771 uint64_t bno,
1772 unsigned int count)
1773 {
1774 unsigned int split_offset = BBTOB(log->l_logBBsize - bno);
1775 unsigned int i;
1776
1777 for (i = split_offset; i < count; i += BBSIZE) {
1778 uint32_t cycle = get_unaligned_be32(data + i);
1779
1780 if (++cycle == XLOG_HEADER_MAGIC_NUM)
1781 cycle++;
1782 put_unaligned_be32(cycle, data + i);
1783 }
1784 }
1785
1786 static int
xlog_calc_iclog_size(struct xlog * log,struct xlog_in_core * iclog,uint32_t * roundoff)1787 xlog_calc_iclog_size(
1788 struct xlog *log,
1789 struct xlog_in_core *iclog,
1790 uint32_t *roundoff)
1791 {
1792 uint32_t count_init, count;
1793 bool use_lsunit;
1794
1795 use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1796 log->l_mp->m_sb.sb_logsunit > 1;
1797
1798 /* Add for LR header */
1799 count_init = log->l_iclog_hsize + iclog->ic_offset;
1800
1801 /* Round out the log write size */
1802 if (use_lsunit) {
1803 /* we have a v2 stripe unit to use */
1804 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1805 } else {
1806 count = BBTOB(BTOBB(count_init));
1807 }
1808
1809 ASSERT(count >= count_init);
1810 *roundoff = count - count_init;
1811
1812 if (use_lsunit)
1813 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1814 else
1815 ASSERT(*roundoff < BBTOB(1));
1816 return count;
1817 }
1818
1819 /*
1820 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1821 * fashion. Previously, we should have moved the current iclog
1822 * ptr in the log to point to the next available iclog. This allows further
1823 * write to continue while this code syncs out an iclog ready to go.
1824 * Before an in-core log can be written out, the data section must be scanned
1825 * to save away the 1st word of each BBSIZE block into the header. We replace
1826 * it with the current cycle count. Each BBSIZE block is tagged with the
1827 * cycle count because there in an implicit assumption that drives will
1828 * guarantee that entire 512 byte blocks get written at once. In other words,
1829 * we can't have part of a 512 byte block written and part not written. By
1830 * tagging each block, we will know which blocks are valid when recovering
1831 * after an unclean shutdown.
1832 *
1833 * This routine is single threaded on the iclog. No other thread can be in
1834 * this routine with the same iclog. Changing contents of iclog can there-
1835 * fore be done without grabbing the state machine lock. Updating the global
1836 * log will require grabbing the lock though.
1837 *
1838 * The entire log manager uses a logical block numbering scheme. Only
1839 * xlog_write_iclog knows about the fact that the log may not start with
1840 * block zero on a given device.
1841 */
1842 STATIC void
xlog_sync(struct xlog * log,struct xlog_in_core * iclog)1843 xlog_sync(
1844 struct xlog *log,
1845 struct xlog_in_core *iclog)
1846 {
1847 unsigned int count; /* byte count of bwrite */
1848 unsigned int roundoff; /* roundoff to BB or stripe */
1849 uint64_t bno;
1850 unsigned int size;
1851 bool need_flush = true, split = false;
1852
1853 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1854
1855 count = xlog_calc_iclog_size(log, iclog, &roundoff);
1856
1857 /* move grant heads by roundoff in sync */
1858 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1859 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1860
1861 /* put cycle number in every block */
1862 xlog_pack_data(log, iclog, roundoff);
1863
1864 /* real byte length */
1865 size = iclog->ic_offset;
1866 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1867 size += roundoff;
1868 iclog->ic_header.h_len = cpu_to_be32(size);
1869
1870 XFS_STATS_INC(log->l_mp, xs_log_writes);
1871 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1872
1873 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1874
1875 /* Do we need to split this write into 2 parts? */
1876 if (bno + BTOBB(count) > log->l_logBBsize) {
1877 xlog_split_iclog(log, &iclog->ic_header, bno, count);
1878 split = true;
1879 }
1880
1881 /* calculcate the checksum */
1882 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1883 iclog->ic_datap, size);
1884 /*
1885 * Intentionally corrupt the log record CRC based on the error injection
1886 * frequency, if defined. This facilitates testing log recovery in the
1887 * event of torn writes. Hence, set the IOABORT state to abort the log
1888 * write on I/O completion and shutdown the fs. The subsequent mount
1889 * detects the bad CRC and attempts to recover.
1890 */
1891 #ifdef DEBUG
1892 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1893 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1894 iclog->ic_fail_crc = true;
1895 xfs_warn(log->l_mp,
1896 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1897 be64_to_cpu(iclog->ic_header.h_lsn));
1898 }
1899 #endif
1900
1901 /*
1902 * Flush the data device before flushing the log to make sure all meta
1903 * data written back from the AIL actually made it to disk before
1904 * stamping the new log tail LSN into the log buffer. For an external
1905 * log we need to issue the flush explicitly, and unfortunately
1906 * synchronously here; for an internal log we can simply use the block
1907 * layer state machine for preflushes.
1908 */
1909 if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1910 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1911 need_flush = false;
1912 }
1913
1914 xlog_verify_iclog(log, iclog, count);
1915 xlog_write_iclog(log, iclog, bno, count, need_flush);
1916 }
1917
1918 /*
1919 * Deallocate a log structure
1920 */
1921 STATIC void
xlog_dealloc_log(struct xlog * log)1922 xlog_dealloc_log(
1923 struct xlog *log)
1924 {
1925 xlog_in_core_t *iclog, *next_iclog;
1926 int i;
1927
1928 xlog_cil_destroy(log);
1929
1930 /*
1931 * Cycle all the iclogbuf locks to make sure all log IO completion
1932 * is done before we tear down these buffers.
1933 */
1934 iclog = log->l_iclog;
1935 for (i = 0; i < log->l_iclog_bufs; i++) {
1936 down(&iclog->ic_sema);
1937 up(&iclog->ic_sema);
1938 iclog = iclog->ic_next;
1939 }
1940
1941 iclog = log->l_iclog;
1942 for (i = 0; i < log->l_iclog_bufs; i++) {
1943 next_iclog = iclog->ic_next;
1944 kmem_free(iclog->ic_data);
1945 kmem_free(iclog);
1946 iclog = next_iclog;
1947 }
1948
1949 log->l_mp->m_log = NULL;
1950 destroy_workqueue(log->l_ioend_workqueue);
1951 kmem_free(log);
1952 }
1953
1954 /*
1955 * Update counters atomically now that memcpy is done.
1956 */
1957 static inline void
xlog_state_finish_copy(struct xlog * log,struct xlog_in_core * iclog,int record_cnt,int copy_bytes)1958 xlog_state_finish_copy(
1959 struct xlog *log,
1960 struct xlog_in_core *iclog,
1961 int record_cnt,
1962 int copy_bytes)
1963 {
1964 lockdep_assert_held(&log->l_icloglock);
1965
1966 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1967 iclog->ic_offset += copy_bytes;
1968 }
1969
1970 /*
1971 * print out info relating to regions written which consume
1972 * the reservation
1973 */
1974 void
xlog_print_tic_res(struct xfs_mount * mp,struct xlog_ticket * ticket)1975 xlog_print_tic_res(
1976 struct xfs_mount *mp,
1977 struct xlog_ticket *ticket)
1978 {
1979 uint i;
1980 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1981
1982 /* match with XLOG_REG_TYPE_* in xfs_log.h */
1983 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
1984 static char *res_type_str[] = {
1985 REG_TYPE_STR(BFORMAT, "bformat"),
1986 REG_TYPE_STR(BCHUNK, "bchunk"),
1987 REG_TYPE_STR(EFI_FORMAT, "efi_format"),
1988 REG_TYPE_STR(EFD_FORMAT, "efd_format"),
1989 REG_TYPE_STR(IFORMAT, "iformat"),
1990 REG_TYPE_STR(ICORE, "icore"),
1991 REG_TYPE_STR(IEXT, "iext"),
1992 REG_TYPE_STR(IBROOT, "ibroot"),
1993 REG_TYPE_STR(ILOCAL, "ilocal"),
1994 REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
1995 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
1996 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
1997 REG_TYPE_STR(QFORMAT, "qformat"),
1998 REG_TYPE_STR(DQUOT, "dquot"),
1999 REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2000 REG_TYPE_STR(LRHEADER, "LR header"),
2001 REG_TYPE_STR(UNMOUNT, "unmount"),
2002 REG_TYPE_STR(COMMIT, "commit"),
2003 REG_TYPE_STR(TRANSHDR, "trans header"),
2004 REG_TYPE_STR(ICREATE, "inode create"),
2005 REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2006 REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2007 REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2008 REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2009 REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2010 REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2011 };
2012 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2013 #undef REG_TYPE_STR
2014
2015 xfs_warn(mp, "ticket reservation summary:");
2016 xfs_warn(mp, " unit res = %d bytes",
2017 ticket->t_unit_res);
2018 xfs_warn(mp, " current res = %d bytes",
2019 ticket->t_curr_res);
2020 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)",
2021 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2022 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)",
2023 ticket->t_res_num_ophdrs, ophdr_spc);
2024 xfs_warn(mp, " ophdr + reg = %u bytes",
2025 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2026 xfs_warn(mp, " num regions = %u",
2027 ticket->t_res_num);
2028
2029 for (i = 0; i < ticket->t_res_num; i++) {
2030 uint r_type = ticket->t_res_arr[i].r_type;
2031 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2032 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2033 "bad-rtype" : res_type_str[r_type]),
2034 ticket->t_res_arr[i].r_len);
2035 }
2036 }
2037
2038 /*
2039 * Print a summary of the transaction.
2040 */
2041 void
xlog_print_trans(struct xfs_trans * tp)2042 xlog_print_trans(
2043 struct xfs_trans *tp)
2044 {
2045 struct xfs_mount *mp = tp->t_mountp;
2046 struct xfs_log_item *lip;
2047
2048 /* dump core transaction and ticket info */
2049 xfs_warn(mp, "transaction summary:");
2050 xfs_warn(mp, " log res = %d", tp->t_log_res);
2051 xfs_warn(mp, " log count = %d", tp->t_log_count);
2052 xfs_warn(mp, " flags = 0x%x", tp->t_flags);
2053
2054 xlog_print_tic_res(mp, tp->t_ticket);
2055
2056 /* dump each log item */
2057 list_for_each_entry(lip, &tp->t_items, li_trans) {
2058 struct xfs_log_vec *lv = lip->li_lv;
2059 struct xfs_log_iovec *vec;
2060 int i;
2061
2062 xfs_warn(mp, "log item: ");
2063 xfs_warn(mp, " type = 0x%x", lip->li_type);
2064 xfs_warn(mp, " flags = 0x%lx", lip->li_flags);
2065 if (!lv)
2066 continue;
2067 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs);
2068 xfs_warn(mp, " size = %d", lv->lv_size);
2069 xfs_warn(mp, " bytes = %d", lv->lv_bytes);
2070 xfs_warn(mp, " buf len = %d", lv->lv_buf_len);
2071
2072 /* dump each iovec for the log item */
2073 vec = lv->lv_iovecp;
2074 for (i = 0; i < lv->lv_niovecs; i++) {
2075 int dumplen = min(vec->i_len, 32);
2076
2077 xfs_warn(mp, " iovec[%d]", i);
2078 xfs_warn(mp, " type = 0x%x", vec->i_type);
2079 xfs_warn(mp, " len = %d", vec->i_len);
2080 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i);
2081 xfs_hex_dump(vec->i_addr, dumplen);
2082
2083 vec++;
2084 }
2085 }
2086 }
2087
2088 /*
2089 * Calculate the potential space needed by the log vector. We may need a start
2090 * record, and each region gets its own struct xlog_op_header and may need to be
2091 * double word aligned.
2092 */
2093 static int
xlog_write_calc_vec_length(struct xlog_ticket * ticket,struct xfs_log_vec * log_vector,bool need_start_rec)2094 xlog_write_calc_vec_length(
2095 struct xlog_ticket *ticket,
2096 struct xfs_log_vec *log_vector,
2097 bool need_start_rec)
2098 {
2099 struct xfs_log_vec *lv;
2100 int headers = need_start_rec ? 1 : 0;
2101 int len = 0;
2102 int i;
2103
2104 for (lv = log_vector; lv; lv = lv->lv_next) {
2105 /* we don't write ordered log vectors */
2106 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2107 continue;
2108
2109 headers += lv->lv_niovecs;
2110
2111 for (i = 0; i < lv->lv_niovecs; i++) {
2112 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i];
2113
2114 len += vecp->i_len;
2115 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2116 }
2117 }
2118
2119 ticket->t_res_num_ophdrs += headers;
2120 len += headers * sizeof(struct xlog_op_header);
2121
2122 return len;
2123 }
2124
2125 static void
xlog_write_start_rec(struct xlog_op_header * ophdr,struct xlog_ticket * ticket)2126 xlog_write_start_rec(
2127 struct xlog_op_header *ophdr,
2128 struct xlog_ticket *ticket)
2129 {
2130 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2131 ophdr->oh_clientid = ticket->t_clientid;
2132 ophdr->oh_len = 0;
2133 ophdr->oh_flags = XLOG_START_TRANS;
2134 ophdr->oh_res2 = 0;
2135 }
2136
2137 static xlog_op_header_t *
xlog_write_setup_ophdr(struct xlog * log,struct xlog_op_header * ophdr,struct xlog_ticket * ticket,uint flags)2138 xlog_write_setup_ophdr(
2139 struct xlog *log,
2140 struct xlog_op_header *ophdr,
2141 struct xlog_ticket *ticket,
2142 uint flags)
2143 {
2144 ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2145 ophdr->oh_clientid = ticket->t_clientid;
2146 ophdr->oh_res2 = 0;
2147
2148 /* are we copying a commit or unmount record? */
2149 ophdr->oh_flags = flags;
2150
2151 /*
2152 * We've seen logs corrupted with bad transaction client ids. This
2153 * makes sure that XFS doesn't generate them on. Turn this into an EIO
2154 * and shut down the filesystem.
2155 */
2156 switch (ophdr->oh_clientid) {
2157 case XFS_TRANSACTION:
2158 case XFS_VOLUME:
2159 case XFS_LOG:
2160 break;
2161 default:
2162 xfs_warn(log->l_mp,
2163 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2164 ophdr->oh_clientid, ticket);
2165 return NULL;
2166 }
2167
2168 return ophdr;
2169 }
2170
2171 /*
2172 * Set up the parameters of the region copy into the log. This has
2173 * to handle region write split across multiple log buffers - this
2174 * state is kept external to this function so that this code can
2175 * be written in an obvious, self documenting manner.
2176 */
2177 static int
xlog_write_setup_copy(struct xlog_ticket * ticket,struct xlog_op_header * ophdr,int space_available,int space_required,int * copy_off,int * copy_len,int * last_was_partial_copy,int * bytes_consumed)2178 xlog_write_setup_copy(
2179 struct xlog_ticket *ticket,
2180 struct xlog_op_header *ophdr,
2181 int space_available,
2182 int space_required,
2183 int *copy_off,
2184 int *copy_len,
2185 int *last_was_partial_copy,
2186 int *bytes_consumed)
2187 {
2188 int still_to_copy;
2189
2190 still_to_copy = space_required - *bytes_consumed;
2191 *copy_off = *bytes_consumed;
2192
2193 if (still_to_copy <= space_available) {
2194 /* write of region completes here */
2195 *copy_len = still_to_copy;
2196 ophdr->oh_len = cpu_to_be32(*copy_len);
2197 if (*last_was_partial_copy)
2198 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2199 *last_was_partial_copy = 0;
2200 *bytes_consumed = 0;
2201 return 0;
2202 }
2203
2204 /* partial write of region, needs extra log op header reservation */
2205 *copy_len = space_available;
2206 ophdr->oh_len = cpu_to_be32(*copy_len);
2207 ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2208 if (*last_was_partial_copy)
2209 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2210 *bytes_consumed += *copy_len;
2211 (*last_was_partial_copy)++;
2212
2213 /* account for new log op header */
2214 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2215 ticket->t_res_num_ophdrs++;
2216
2217 return sizeof(struct xlog_op_header);
2218 }
2219
2220 static int
xlog_write_copy_finish(struct xlog * log,struct xlog_in_core * iclog,uint flags,int * record_cnt,int * data_cnt,int * partial_copy,int * partial_copy_len,int log_offset,struct xlog_in_core ** commit_iclog)2221 xlog_write_copy_finish(
2222 struct xlog *log,
2223 struct xlog_in_core *iclog,
2224 uint flags,
2225 int *record_cnt,
2226 int *data_cnt,
2227 int *partial_copy,
2228 int *partial_copy_len,
2229 int log_offset,
2230 struct xlog_in_core **commit_iclog)
2231 {
2232 int error;
2233
2234 if (*partial_copy) {
2235 /*
2236 * This iclog has already been marked WANT_SYNC by
2237 * xlog_state_get_iclog_space.
2238 */
2239 spin_lock(&log->l_icloglock);
2240 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2241 *record_cnt = 0;
2242 *data_cnt = 0;
2243 goto release_iclog;
2244 }
2245
2246 *partial_copy = 0;
2247 *partial_copy_len = 0;
2248
2249 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2250 /* no more space in this iclog - push it. */
2251 spin_lock(&log->l_icloglock);
2252 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2253 *record_cnt = 0;
2254 *data_cnt = 0;
2255
2256 if (iclog->ic_state == XLOG_STATE_ACTIVE)
2257 xlog_state_switch_iclogs(log, iclog, 0);
2258 else
2259 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2260 iclog->ic_state == XLOG_STATE_IOERROR);
2261 if (!commit_iclog)
2262 goto release_iclog;
2263 spin_unlock(&log->l_icloglock);
2264 ASSERT(flags & XLOG_COMMIT_TRANS);
2265 *commit_iclog = iclog;
2266 }
2267
2268 return 0;
2269
2270 release_iclog:
2271 error = xlog_state_release_iclog(log, iclog);
2272 spin_unlock(&log->l_icloglock);
2273 return error;
2274 }
2275
2276 /*
2277 * Write some region out to in-core log
2278 *
2279 * This will be called when writing externally provided regions or when
2280 * writing out a commit record for a given transaction.
2281 *
2282 * General algorithm:
2283 * 1. Find total length of this write. This may include adding to the
2284 * lengths passed in.
2285 * 2. Check whether we violate the tickets reservation.
2286 * 3. While writing to this iclog
2287 * A. Reserve as much space in this iclog as can get
2288 * B. If this is first write, save away start lsn
2289 * C. While writing this region:
2290 * 1. If first write of transaction, write start record
2291 * 2. Write log operation header (header per region)
2292 * 3. Find out if we can fit entire region into this iclog
2293 * 4. Potentially, verify destination memcpy ptr
2294 * 5. Memcpy (partial) region
2295 * 6. If partial copy, release iclog; otherwise, continue
2296 * copying more regions into current iclog
2297 * 4. Mark want sync bit (in simulation mode)
2298 * 5. Release iclog for potential flush to on-disk log.
2299 *
2300 * ERRORS:
2301 * 1. Panic if reservation is overrun. This should never happen since
2302 * reservation amounts are generated internal to the filesystem.
2303 * NOTES:
2304 * 1. Tickets are single threaded data structures.
2305 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2306 * syncing routine. When a single log_write region needs to span
2307 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2308 * on all log operation writes which don't contain the end of the
2309 * region. The XLOG_END_TRANS bit is used for the in-core log
2310 * operation which contains the end of the continued log_write region.
2311 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2312 * we don't really know exactly how much space will be used. As a result,
2313 * we don't update ic_offset until the end when we know exactly how many
2314 * bytes have been written out.
2315 */
2316 int
xlog_write(struct xlog * log,struct xfs_log_vec * log_vector,struct xlog_ticket * ticket,xfs_lsn_t * start_lsn,struct xlog_in_core ** commit_iclog,uint flags,bool need_start_rec)2317 xlog_write(
2318 struct xlog *log,
2319 struct xfs_log_vec *log_vector,
2320 struct xlog_ticket *ticket,
2321 xfs_lsn_t *start_lsn,
2322 struct xlog_in_core **commit_iclog,
2323 uint flags,
2324 bool need_start_rec)
2325 {
2326 struct xlog_in_core *iclog = NULL;
2327 struct xfs_log_vec *lv = log_vector;
2328 struct xfs_log_iovec *vecp = lv->lv_iovecp;
2329 int index = 0;
2330 int len;
2331 int partial_copy = 0;
2332 int partial_copy_len = 0;
2333 int contwr = 0;
2334 int record_cnt = 0;
2335 int data_cnt = 0;
2336 int error = 0;
2337
2338 /*
2339 * If this is a commit or unmount transaction, we don't need a start
2340 * record to be written. We do, however, have to account for the
2341 * commit or unmount header that gets written. Hence we always have
2342 * to account for an extra xlog_op_header here.
2343 */
2344 ticket->t_curr_res -= sizeof(struct xlog_op_header);
2345 if (ticket->t_curr_res < 0) {
2346 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2347 "ctx ticket reservation ran out. Need to up reservation");
2348 xlog_print_tic_res(log->l_mp, ticket);
2349 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2350 }
2351
2352 len = xlog_write_calc_vec_length(ticket, log_vector, need_start_rec);
2353 *start_lsn = 0;
2354 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2355 void *ptr;
2356 int log_offset;
2357
2358 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2359 &contwr, &log_offset);
2360 if (error)
2361 return error;
2362
2363 ASSERT(log_offset <= iclog->ic_size - 1);
2364 ptr = iclog->ic_datap + log_offset;
2365
2366 /* start_lsn is the first lsn written to. That's all we need. */
2367 if (!*start_lsn)
2368 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2369
2370 /*
2371 * This loop writes out as many regions as can fit in the amount
2372 * of space which was allocated by xlog_state_get_iclog_space().
2373 */
2374 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2375 struct xfs_log_iovec *reg;
2376 struct xlog_op_header *ophdr;
2377 int copy_len;
2378 int copy_off;
2379 bool ordered = false;
2380
2381 /* ordered log vectors have no regions to write */
2382 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2383 ASSERT(lv->lv_niovecs == 0);
2384 ordered = true;
2385 goto next_lv;
2386 }
2387
2388 reg = &vecp[index];
2389 ASSERT(reg->i_len % sizeof(int32_t) == 0);
2390 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2391
2392 /*
2393 * Before we start formatting log vectors, we need to
2394 * write a start record. Only do this for the first
2395 * iclog we write to.
2396 */
2397 if (need_start_rec) {
2398 xlog_write_start_rec(ptr, ticket);
2399 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2400 sizeof(struct xlog_op_header));
2401 }
2402
2403 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2404 if (!ophdr)
2405 return -EIO;
2406
2407 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2408 sizeof(struct xlog_op_header));
2409
2410 len += xlog_write_setup_copy(ticket, ophdr,
2411 iclog->ic_size-log_offset,
2412 reg->i_len,
2413 ©_off, ©_len,
2414 &partial_copy,
2415 &partial_copy_len);
2416 xlog_verify_dest_ptr(log, ptr);
2417
2418 /*
2419 * Copy region.
2420 *
2421 * Unmount records just log an opheader, so can have
2422 * empty payloads with no data region to copy. Hence we
2423 * only copy the payload if the vector says it has data
2424 * to copy.
2425 */
2426 ASSERT(copy_len >= 0);
2427 if (copy_len > 0) {
2428 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2429 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2430 copy_len);
2431 }
2432 copy_len += sizeof(struct xlog_op_header);
2433 record_cnt++;
2434 if (need_start_rec) {
2435 copy_len += sizeof(struct xlog_op_header);
2436 record_cnt++;
2437 need_start_rec = false;
2438 }
2439 data_cnt += contwr ? copy_len : 0;
2440
2441 error = xlog_write_copy_finish(log, iclog, flags,
2442 &record_cnt, &data_cnt,
2443 &partial_copy,
2444 &partial_copy_len,
2445 log_offset,
2446 commit_iclog);
2447 if (error)
2448 return error;
2449
2450 /*
2451 * if we had a partial copy, we need to get more iclog
2452 * space but we don't want to increment the region
2453 * index because there is still more is this region to
2454 * write.
2455 *
2456 * If we completed writing this region, and we flushed
2457 * the iclog (indicated by resetting of the record
2458 * count), then we also need to get more log space. If
2459 * this was the last record, though, we are done and
2460 * can just return.
2461 */
2462 if (partial_copy)
2463 break;
2464
2465 if (++index == lv->lv_niovecs) {
2466 next_lv:
2467 lv = lv->lv_next;
2468 index = 0;
2469 if (lv)
2470 vecp = lv->lv_iovecp;
2471 }
2472 if (record_cnt == 0 && !ordered) {
2473 if (!lv)
2474 return 0;
2475 break;
2476 }
2477 }
2478 }
2479
2480 ASSERT(len == 0);
2481
2482 spin_lock(&log->l_icloglock);
2483 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2484 if (commit_iclog) {
2485 ASSERT(flags & XLOG_COMMIT_TRANS);
2486 *commit_iclog = iclog;
2487 } else {
2488 error = xlog_state_release_iclog(log, iclog);
2489 }
2490 spin_unlock(&log->l_icloglock);
2491
2492 return error;
2493 }
2494
2495 static void
xlog_state_activate_iclog(struct xlog_in_core * iclog,int * iclogs_changed)2496 xlog_state_activate_iclog(
2497 struct xlog_in_core *iclog,
2498 int *iclogs_changed)
2499 {
2500 ASSERT(list_empty_careful(&iclog->ic_callbacks));
2501
2502 /*
2503 * If the number of ops in this iclog indicate it just contains the
2504 * dummy transaction, we can change state into IDLE (the second time
2505 * around). Otherwise we should change the state into NEED a dummy.
2506 * We don't need to cover the dummy.
2507 */
2508 if (*iclogs_changed == 0 &&
2509 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2510 *iclogs_changed = 1;
2511 } else {
2512 /*
2513 * We have two dirty iclogs so start over. This could also be
2514 * num of ops indicating this is not the dummy going out.
2515 */
2516 *iclogs_changed = 2;
2517 }
2518
2519 iclog->ic_state = XLOG_STATE_ACTIVE;
2520 iclog->ic_offset = 0;
2521 iclog->ic_header.h_num_logops = 0;
2522 memset(iclog->ic_header.h_cycle_data, 0,
2523 sizeof(iclog->ic_header.h_cycle_data));
2524 iclog->ic_header.h_lsn = 0;
2525 }
2526
2527 /*
2528 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2529 * ACTIVE after iclog I/O has completed.
2530 */
2531 static void
xlog_state_activate_iclogs(struct xlog * log,int * iclogs_changed)2532 xlog_state_activate_iclogs(
2533 struct xlog *log,
2534 int *iclogs_changed)
2535 {
2536 struct xlog_in_core *iclog = log->l_iclog;
2537
2538 do {
2539 if (iclog->ic_state == XLOG_STATE_DIRTY)
2540 xlog_state_activate_iclog(iclog, iclogs_changed);
2541 /*
2542 * The ordering of marking iclogs ACTIVE must be maintained, so
2543 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2544 */
2545 else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2546 break;
2547 } while ((iclog = iclog->ic_next) != log->l_iclog);
2548 }
2549
2550 static int
xlog_covered_state(int prev_state,int iclogs_changed)2551 xlog_covered_state(
2552 int prev_state,
2553 int iclogs_changed)
2554 {
2555 /*
2556 * We usually go to NEED. But we go to NEED2 if the changed indicates we
2557 * are done writing the dummy record. If we are done with the second
2558 * dummy recored (DONE2), then we go to IDLE.
2559 */
2560 switch (prev_state) {
2561 case XLOG_STATE_COVER_IDLE:
2562 case XLOG_STATE_COVER_NEED:
2563 case XLOG_STATE_COVER_NEED2:
2564 break;
2565 case XLOG_STATE_COVER_DONE:
2566 if (iclogs_changed == 1)
2567 return XLOG_STATE_COVER_NEED2;
2568 break;
2569 case XLOG_STATE_COVER_DONE2:
2570 if (iclogs_changed == 1)
2571 return XLOG_STATE_COVER_IDLE;
2572 break;
2573 default:
2574 ASSERT(0);
2575 }
2576
2577 return XLOG_STATE_COVER_NEED;
2578 }
2579
2580 STATIC void
xlog_state_clean_iclog(struct xlog * log,struct xlog_in_core * dirty_iclog)2581 xlog_state_clean_iclog(
2582 struct xlog *log,
2583 struct xlog_in_core *dirty_iclog)
2584 {
2585 int iclogs_changed = 0;
2586
2587 dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2588
2589 xlog_state_activate_iclogs(log, &iclogs_changed);
2590 wake_up_all(&dirty_iclog->ic_force_wait);
2591
2592 if (iclogs_changed) {
2593 log->l_covered_state = xlog_covered_state(log->l_covered_state,
2594 iclogs_changed);
2595 }
2596 }
2597
2598 STATIC xfs_lsn_t
xlog_get_lowest_lsn(struct xlog * log)2599 xlog_get_lowest_lsn(
2600 struct xlog *log)
2601 {
2602 struct xlog_in_core *iclog = log->l_iclog;
2603 xfs_lsn_t lowest_lsn = 0, lsn;
2604
2605 do {
2606 if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2607 iclog->ic_state == XLOG_STATE_DIRTY)
2608 continue;
2609
2610 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2611 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2612 lowest_lsn = lsn;
2613 } while ((iclog = iclog->ic_next) != log->l_iclog);
2614
2615 return lowest_lsn;
2616 }
2617
2618 /*
2619 * Completion of a iclog IO does not imply that a transaction has completed, as
2620 * transactions can be large enough to span many iclogs. We cannot change the
2621 * tail of the log half way through a transaction as this may be the only
2622 * transaction in the log and moving the tail to point to the middle of it
2623 * will prevent recovery from finding the start of the transaction. Hence we
2624 * should only update the last_sync_lsn if this iclog contains transaction
2625 * completion callbacks on it.
2626 *
2627 * We have to do this before we drop the icloglock to ensure we are the only one
2628 * that can update it.
2629 *
2630 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2631 * the reservation grant head pushing. This is due to the fact that the push
2632 * target is bound by the current last_sync_lsn value. Hence if we have a large
2633 * amount of log space bound up in this committing transaction then the
2634 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2635 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2636 * should push the AIL to ensure the push target (and hence the grant head) is
2637 * no longer bound by the old log head location and can move forwards and make
2638 * progress again.
2639 */
2640 static void
xlog_state_set_callback(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t header_lsn)2641 xlog_state_set_callback(
2642 struct xlog *log,
2643 struct xlog_in_core *iclog,
2644 xfs_lsn_t header_lsn)
2645 {
2646 iclog->ic_state = XLOG_STATE_CALLBACK;
2647
2648 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2649 header_lsn) <= 0);
2650
2651 if (list_empty_careful(&iclog->ic_callbacks))
2652 return;
2653
2654 atomic64_set(&log->l_last_sync_lsn, header_lsn);
2655 xlog_grant_push_ail(log, 0);
2656 }
2657
2658 /*
2659 * Return true if we need to stop processing, false to continue to the next
2660 * iclog. The caller will need to run callbacks if the iclog is returned in the
2661 * XLOG_STATE_CALLBACK state.
2662 */
2663 static bool
xlog_state_iodone_process_iclog(struct xlog * log,struct xlog_in_core * iclog,bool * ioerror)2664 xlog_state_iodone_process_iclog(
2665 struct xlog *log,
2666 struct xlog_in_core *iclog,
2667 bool *ioerror)
2668 {
2669 xfs_lsn_t lowest_lsn;
2670 xfs_lsn_t header_lsn;
2671
2672 switch (iclog->ic_state) {
2673 case XLOG_STATE_ACTIVE:
2674 case XLOG_STATE_DIRTY:
2675 /*
2676 * Skip all iclogs in the ACTIVE & DIRTY states:
2677 */
2678 return false;
2679 case XLOG_STATE_IOERROR:
2680 /*
2681 * Between marking a filesystem SHUTDOWN and stopping the log,
2682 * we do flush all iclogs to disk (if there wasn't a log I/O
2683 * error). So, we do want things to go smoothly in case of just
2684 * a SHUTDOWN w/o a LOG_IO_ERROR.
2685 */
2686 *ioerror = true;
2687 return false;
2688 case XLOG_STATE_DONE_SYNC:
2689 /*
2690 * Now that we have an iclog that is in the DONE_SYNC state, do
2691 * one more check here to see if we have chased our tail around.
2692 * If this is not the lowest lsn iclog, then we will leave it
2693 * for another completion to process.
2694 */
2695 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2696 lowest_lsn = xlog_get_lowest_lsn(log);
2697 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2698 return false;
2699 xlog_state_set_callback(log, iclog, header_lsn);
2700 return false;
2701 default:
2702 /*
2703 * Can only perform callbacks in order. Since this iclog is not
2704 * in the DONE_SYNC state, we skip the rest and just try to
2705 * clean up.
2706 */
2707 return true;
2708 }
2709 }
2710
2711 /*
2712 * Keep processing entries in the iclog callback list until we come around and
2713 * it is empty. We need to atomically see that the list is empty and change the
2714 * state to DIRTY so that we don't miss any more callbacks being added.
2715 *
2716 * This function is called with the icloglock held and returns with it held. We
2717 * drop it while running callbacks, however, as holding it over thousands of
2718 * callbacks is unnecessary and causes excessive contention if we do.
2719 */
2720 static void
xlog_state_do_iclog_callbacks(struct xlog * log,struct xlog_in_core * iclog)2721 xlog_state_do_iclog_callbacks(
2722 struct xlog *log,
2723 struct xlog_in_core *iclog)
2724 __releases(&log->l_icloglock)
2725 __acquires(&log->l_icloglock)
2726 {
2727 spin_unlock(&log->l_icloglock);
2728 spin_lock(&iclog->ic_callback_lock);
2729 while (!list_empty(&iclog->ic_callbacks)) {
2730 LIST_HEAD(tmp);
2731
2732 list_splice_init(&iclog->ic_callbacks, &tmp);
2733
2734 spin_unlock(&iclog->ic_callback_lock);
2735 xlog_cil_process_committed(&tmp);
2736 spin_lock(&iclog->ic_callback_lock);
2737 }
2738
2739 /*
2740 * Pick up the icloglock while still holding the callback lock so we
2741 * serialise against anyone trying to add more callbacks to this iclog
2742 * now we've finished processing.
2743 */
2744 spin_lock(&log->l_icloglock);
2745 spin_unlock(&iclog->ic_callback_lock);
2746 }
2747
2748 STATIC void
xlog_state_do_callback(struct xlog * log)2749 xlog_state_do_callback(
2750 struct xlog *log)
2751 {
2752 struct xlog_in_core *iclog;
2753 struct xlog_in_core *first_iclog;
2754 bool cycled_icloglock;
2755 bool ioerror;
2756 int flushcnt = 0;
2757 int repeats = 0;
2758
2759 spin_lock(&log->l_icloglock);
2760 do {
2761 /*
2762 * Scan all iclogs starting with the one pointed to by the
2763 * log. Reset this starting point each time the log is
2764 * unlocked (during callbacks).
2765 *
2766 * Keep looping through iclogs until one full pass is made
2767 * without running any callbacks.
2768 */
2769 first_iclog = log->l_iclog;
2770 iclog = log->l_iclog;
2771 cycled_icloglock = false;
2772 ioerror = false;
2773 repeats++;
2774
2775 do {
2776 if (xlog_state_iodone_process_iclog(log, iclog,
2777 &ioerror))
2778 break;
2779
2780 if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2781 iclog->ic_state != XLOG_STATE_IOERROR) {
2782 iclog = iclog->ic_next;
2783 continue;
2784 }
2785
2786 /*
2787 * Running callbacks will drop the icloglock which means
2788 * we'll have to run at least one more complete loop.
2789 */
2790 cycled_icloglock = true;
2791 xlog_state_do_iclog_callbacks(log, iclog);
2792 if (XLOG_FORCED_SHUTDOWN(log))
2793 wake_up_all(&iclog->ic_force_wait);
2794 else
2795 xlog_state_clean_iclog(log, iclog);
2796 iclog = iclog->ic_next;
2797 } while (first_iclog != iclog);
2798
2799 if (repeats > 5000) {
2800 flushcnt += repeats;
2801 repeats = 0;
2802 xfs_warn(log->l_mp,
2803 "%s: possible infinite loop (%d iterations)",
2804 __func__, flushcnt);
2805 }
2806 } while (!ioerror && cycled_icloglock);
2807
2808 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2809 log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2810 wake_up_all(&log->l_flush_wait);
2811
2812 spin_unlock(&log->l_icloglock);
2813 }
2814
2815
2816 /*
2817 * Finish transitioning this iclog to the dirty state.
2818 *
2819 * Make sure that we completely execute this routine only when this is
2820 * the last call to the iclog. There is a good chance that iclog flushes,
2821 * when we reach the end of the physical log, get turned into 2 separate
2822 * calls to bwrite. Hence, one iclog flush could generate two calls to this
2823 * routine. By using the reference count bwritecnt, we guarantee that only
2824 * the second completion goes through.
2825 *
2826 * Callbacks could take time, so they are done outside the scope of the
2827 * global state machine log lock.
2828 */
2829 STATIC void
xlog_state_done_syncing(struct xlog_in_core * iclog)2830 xlog_state_done_syncing(
2831 struct xlog_in_core *iclog)
2832 {
2833 struct xlog *log = iclog->ic_log;
2834
2835 spin_lock(&log->l_icloglock);
2836 ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2837
2838 /*
2839 * If we got an error, either on the first buffer, or in the case of
2840 * split log writes, on the second, we shut down the file system and
2841 * no iclogs should ever be attempted to be written to disk again.
2842 */
2843 if (!XLOG_FORCED_SHUTDOWN(log)) {
2844 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2845 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2846 }
2847
2848 /*
2849 * Someone could be sleeping prior to writing out the next
2850 * iclog buffer, we wake them all, one will get to do the
2851 * I/O, the others get to wait for the result.
2852 */
2853 wake_up_all(&iclog->ic_write_wait);
2854 spin_unlock(&log->l_icloglock);
2855 xlog_state_do_callback(log);
2856 }
2857
2858 /*
2859 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2860 * sleep. We wait on the flush queue on the head iclog as that should be
2861 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2862 * we will wait here and all new writes will sleep until a sync completes.
2863 *
2864 * The in-core logs are used in a circular fashion. They are not used
2865 * out-of-order even when an iclog past the head is free.
2866 *
2867 * return:
2868 * * log_offset where xlog_write() can start writing into the in-core
2869 * log's data space.
2870 * * in-core log pointer to which xlog_write() should write.
2871 * * boolean indicating this is a continued write to an in-core log.
2872 * If this is the last write, then the in-core log's offset field
2873 * needs to be incremented, depending on the amount of data which
2874 * is copied.
2875 */
2876 STATIC int
xlog_state_get_iclog_space(struct xlog * log,int len,struct xlog_in_core ** iclogp,struct xlog_ticket * ticket,int * continued_write,int * logoffsetp)2877 xlog_state_get_iclog_space(
2878 struct xlog *log,
2879 int len,
2880 struct xlog_in_core **iclogp,
2881 struct xlog_ticket *ticket,
2882 int *continued_write,
2883 int *logoffsetp)
2884 {
2885 int log_offset;
2886 xlog_rec_header_t *head;
2887 xlog_in_core_t *iclog;
2888
2889 restart:
2890 spin_lock(&log->l_icloglock);
2891 if (XLOG_FORCED_SHUTDOWN(log)) {
2892 spin_unlock(&log->l_icloglock);
2893 return -EIO;
2894 }
2895
2896 iclog = log->l_iclog;
2897 if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2898 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2899
2900 /* Wait for log writes to have flushed */
2901 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2902 goto restart;
2903 }
2904
2905 head = &iclog->ic_header;
2906
2907 atomic_inc(&iclog->ic_refcnt); /* prevents sync */
2908 log_offset = iclog->ic_offset;
2909
2910 /* On the 1st write to an iclog, figure out lsn. This works
2911 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2912 * committing to. If the offset is set, that's how many blocks
2913 * must be written.
2914 */
2915 if (log_offset == 0) {
2916 ticket->t_curr_res -= log->l_iclog_hsize;
2917 xlog_tic_add_region(ticket,
2918 log->l_iclog_hsize,
2919 XLOG_REG_TYPE_LRHEADER);
2920 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2921 head->h_lsn = cpu_to_be64(
2922 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2923 ASSERT(log->l_curr_block >= 0);
2924 }
2925
2926 /* If there is enough room to write everything, then do it. Otherwise,
2927 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2928 * bit is on, so this will get flushed out. Don't update ic_offset
2929 * until you know exactly how many bytes get copied. Therefore, wait
2930 * until later to update ic_offset.
2931 *
2932 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2933 * can fit into remaining data section.
2934 */
2935 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2936 int error = 0;
2937
2938 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2939
2940 /*
2941 * If we are the only one writing to this iclog, sync it to
2942 * disk. We need to do an atomic compare and decrement here to
2943 * avoid racing with concurrent atomic_dec_and_lock() calls in
2944 * xlog_state_release_iclog() when there is more than one
2945 * reference to the iclog.
2946 */
2947 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2948 error = xlog_state_release_iclog(log, iclog);
2949 spin_unlock(&log->l_icloglock);
2950 if (error)
2951 return error;
2952 goto restart;
2953 }
2954
2955 /* Do we have enough room to write the full amount in the remainder
2956 * of this iclog? Or must we continue a write on the next iclog and
2957 * mark this iclog as completely taken? In the case where we switch
2958 * iclogs (to mark it taken), this particular iclog will release/sync
2959 * to disk in xlog_write().
2960 */
2961 if (len <= iclog->ic_size - iclog->ic_offset) {
2962 *continued_write = 0;
2963 iclog->ic_offset += len;
2964 } else {
2965 *continued_write = 1;
2966 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2967 }
2968 *iclogp = iclog;
2969
2970 ASSERT(iclog->ic_offset <= iclog->ic_size);
2971 spin_unlock(&log->l_icloglock);
2972
2973 *logoffsetp = log_offset;
2974 return 0;
2975 }
2976
2977 /*
2978 * The first cnt-1 times a ticket goes through here we don't need to move the
2979 * grant write head because the permanent reservation has reserved cnt times the
2980 * unit amount. Release part of current permanent unit reservation and reset
2981 * current reservation to be one units worth. Also move grant reservation head
2982 * forward.
2983 */
2984 void
xfs_log_ticket_regrant(struct xlog * log,struct xlog_ticket * ticket)2985 xfs_log_ticket_regrant(
2986 struct xlog *log,
2987 struct xlog_ticket *ticket)
2988 {
2989 trace_xfs_log_ticket_regrant(log, ticket);
2990
2991 if (ticket->t_cnt > 0)
2992 ticket->t_cnt--;
2993
2994 xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2995 ticket->t_curr_res);
2996 xlog_grant_sub_space(log, &log->l_write_head.grant,
2997 ticket->t_curr_res);
2998 ticket->t_curr_res = ticket->t_unit_res;
2999 xlog_tic_reset_res(ticket);
3000
3001 trace_xfs_log_ticket_regrant_sub(log, ticket);
3002
3003 /* just return if we still have some of the pre-reserved space */
3004 if (!ticket->t_cnt) {
3005 xlog_grant_add_space(log, &log->l_reserve_head.grant,
3006 ticket->t_unit_res);
3007 trace_xfs_log_ticket_regrant_exit(log, ticket);
3008
3009 ticket->t_curr_res = ticket->t_unit_res;
3010 xlog_tic_reset_res(ticket);
3011 }
3012
3013 xfs_log_ticket_put(ticket);
3014 }
3015
3016 /*
3017 * Give back the space left from a reservation.
3018 *
3019 * All the information we need to make a correct determination of space left
3020 * is present. For non-permanent reservations, things are quite easy. The
3021 * count should have been decremented to zero. We only need to deal with the
3022 * space remaining in the current reservation part of the ticket. If the
3023 * ticket contains a permanent reservation, there may be left over space which
3024 * needs to be released. A count of N means that N-1 refills of the current
3025 * reservation can be done before we need to ask for more space. The first
3026 * one goes to fill up the first current reservation. Once we run out of
3027 * space, the count will stay at zero and the only space remaining will be
3028 * in the current reservation field.
3029 */
3030 void
xfs_log_ticket_ungrant(struct xlog * log,struct xlog_ticket * ticket)3031 xfs_log_ticket_ungrant(
3032 struct xlog *log,
3033 struct xlog_ticket *ticket)
3034 {
3035 int bytes;
3036
3037 trace_xfs_log_ticket_ungrant(log, ticket);
3038
3039 if (ticket->t_cnt > 0)
3040 ticket->t_cnt--;
3041
3042 trace_xfs_log_ticket_ungrant_sub(log, ticket);
3043
3044 /*
3045 * If this is a permanent reservation ticket, we may be able to free
3046 * up more space based on the remaining count.
3047 */
3048 bytes = ticket->t_curr_res;
3049 if (ticket->t_cnt > 0) {
3050 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3051 bytes += ticket->t_unit_res*ticket->t_cnt;
3052 }
3053
3054 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3055 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3056
3057 trace_xfs_log_ticket_ungrant_exit(log, ticket);
3058
3059 xfs_log_space_wake(log->l_mp);
3060 xfs_log_ticket_put(ticket);
3061 }
3062
3063 /*
3064 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3065 * the current iclog pointer to the next iclog in the ring.
3066 */
3067 STATIC void
xlog_state_switch_iclogs(struct xlog * log,struct xlog_in_core * iclog,int eventual_size)3068 xlog_state_switch_iclogs(
3069 struct xlog *log,
3070 struct xlog_in_core *iclog,
3071 int eventual_size)
3072 {
3073 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3074 assert_spin_locked(&log->l_icloglock);
3075
3076 if (!eventual_size)
3077 eventual_size = iclog->ic_offset;
3078 iclog->ic_state = XLOG_STATE_WANT_SYNC;
3079 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3080 log->l_prev_block = log->l_curr_block;
3081 log->l_prev_cycle = log->l_curr_cycle;
3082
3083 /* roll log?: ic_offset changed later */
3084 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3085
3086 /* Round up to next log-sunit */
3087 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3088 log->l_mp->m_sb.sb_logsunit > 1) {
3089 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3090 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3091 }
3092
3093 if (log->l_curr_block >= log->l_logBBsize) {
3094 /*
3095 * Rewind the current block before the cycle is bumped to make
3096 * sure that the combined LSN never transiently moves forward
3097 * when the log wraps to the next cycle. This is to support the
3098 * unlocked sample of these fields from xlog_valid_lsn(). Most
3099 * other cases should acquire l_icloglock.
3100 */
3101 log->l_curr_block -= log->l_logBBsize;
3102 ASSERT(log->l_curr_block >= 0);
3103 smp_wmb();
3104 log->l_curr_cycle++;
3105 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3106 log->l_curr_cycle++;
3107 }
3108 ASSERT(iclog == log->l_iclog);
3109 log->l_iclog = iclog->ic_next;
3110 }
3111
3112 /*
3113 * Write out all data in the in-core log as of this exact moment in time.
3114 *
3115 * Data may be written to the in-core log during this call. However,
3116 * we don't guarantee this data will be written out. A change from past
3117 * implementation means this routine will *not* write out zero length LRs.
3118 *
3119 * Basically, we try and perform an intelligent scan of the in-core logs.
3120 * If we determine there is no flushable data, we just return. There is no
3121 * flushable data if:
3122 *
3123 * 1. the current iclog is active and has no data; the previous iclog
3124 * is in the active or dirty state.
3125 * 2. the current iclog is drity, and the previous iclog is in the
3126 * active or dirty state.
3127 *
3128 * We may sleep if:
3129 *
3130 * 1. the current iclog is not in the active nor dirty state.
3131 * 2. the current iclog dirty, and the previous iclog is not in the
3132 * active nor dirty state.
3133 * 3. the current iclog is active, and there is another thread writing
3134 * to this particular iclog.
3135 * 4. a) the current iclog is active and has no other writers
3136 * b) when we return from flushing out this iclog, it is still
3137 * not in the active nor dirty state.
3138 */
3139 int
xfs_log_force(struct xfs_mount * mp,uint flags)3140 xfs_log_force(
3141 struct xfs_mount *mp,
3142 uint flags)
3143 {
3144 struct xlog *log = mp->m_log;
3145 struct xlog_in_core *iclog;
3146 xfs_lsn_t lsn;
3147
3148 XFS_STATS_INC(mp, xs_log_force);
3149 trace_xfs_log_force(mp, 0, _RET_IP_);
3150
3151 xlog_cil_force(log);
3152
3153 spin_lock(&log->l_icloglock);
3154 iclog = log->l_iclog;
3155 if (iclog->ic_state == XLOG_STATE_IOERROR)
3156 goto out_error;
3157
3158 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3159 (iclog->ic_state == XLOG_STATE_ACTIVE &&
3160 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3161 /*
3162 * If the head is dirty or (active and empty), then we need to
3163 * look at the previous iclog.
3164 *
3165 * If the previous iclog is active or dirty we are done. There
3166 * is nothing to sync out. Otherwise, we attach ourselves to the
3167 * previous iclog and go to sleep.
3168 */
3169 iclog = iclog->ic_prev;
3170 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3171 if (atomic_read(&iclog->ic_refcnt) == 0) {
3172 /*
3173 * We are the only one with access to this iclog.
3174 *
3175 * Flush it out now. There should be a roundoff of zero
3176 * to show that someone has already taken care of the
3177 * roundoff from the previous sync.
3178 */
3179 atomic_inc(&iclog->ic_refcnt);
3180 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3181 xlog_state_switch_iclogs(log, iclog, 0);
3182 if (xlog_state_release_iclog(log, iclog))
3183 goto out_error;
3184
3185 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3186 goto out_unlock;
3187 } else {
3188 /*
3189 * Someone else is writing to this iclog.
3190 *
3191 * Use its call to flush out the data. However, the
3192 * other thread may not force out this LR, so we mark
3193 * it WANT_SYNC.
3194 */
3195 xlog_state_switch_iclogs(log, iclog, 0);
3196 }
3197 } else {
3198 /*
3199 * If the head iclog is not active nor dirty, we just attach
3200 * ourselves to the head and go to sleep if necessary.
3201 */
3202 ;
3203 }
3204
3205 if (flags & XFS_LOG_SYNC)
3206 return xlog_wait_on_iclog(iclog);
3207 out_unlock:
3208 spin_unlock(&log->l_icloglock);
3209 return 0;
3210 out_error:
3211 spin_unlock(&log->l_icloglock);
3212 return -EIO;
3213 }
3214
3215 static int
xlog_force_lsn(struct xlog * log,xfs_lsn_t lsn,uint flags,int * log_flushed,bool already_slept)3216 xlog_force_lsn(
3217 struct xlog *log,
3218 xfs_lsn_t lsn,
3219 uint flags,
3220 int *log_flushed,
3221 bool already_slept)
3222 {
3223 struct xlog_in_core *iclog;
3224
3225 spin_lock(&log->l_icloglock);
3226 iclog = log->l_iclog;
3227 if (iclog->ic_state == XLOG_STATE_IOERROR)
3228 goto out_error;
3229
3230 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3231 iclog = iclog->ic_next;
3232 if (iclog == log->l_iclog)
3233 goto out_unlock;
3234 }
3235
3236 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3237 /*
3238 * We sleep here if we haven't already slept (e.g. this is the
3239 * first time we've looked at the correct iclog buf) and the
3240 * buffer before us is going to be sync'ed. The reason for this
3241 * is that if we are doing sync transactions here, by waiting
3242 * for the previous I/O to complete, we can allow a few more
3243 * transactions into this iclog before we close it down.
3244 *
3245 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3246 * refcnt so we can release the log (which drops the ref count).
3247 * The state switch keeps new transaction commits from using
3248 * this buffer. When the current commits finish writing into
3249 * the buffer, the refcount will drop to zero and the buffer
3250 * will go out then.
3251 */
3252 if (!already_slept &&
3253 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3254 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3255 xlog_wait(&iclog->ic_prev->ic_write_wait,
3256 &log->l_icloglock);
3257 return -EAGAIN;
3258 }
3259 atomic_inc(&iclog->ic_refcnt);
3260 xlog_state_switch_iclogs(log, iclog, 0);
3261 if (xlog_state_release_iclog(log, iclog))
3262 goto out_error;
3263 if (log_flushed)
3264 *log_flushed = 1;
3265 }
3266
3267 if (flags & XFS_LOG_SYNC)
3268 return xlog_wait_on_iclog(iclog);
3269 out_unlock:
3270 spin_unlock(&log->l_icloglock);
3271 return 0;
3272 out_error:
3273 spin_unlock(&log->l_icloglock);
3274 return -EIO;
3275 }
3276
3277 /*
3278 * Force the in-core log to disk for a specific LSN.
3279 *
3280 * Find in-core log with lsn.
3281 * If it is in the DIRTY state, just return.
3282 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3283 * state and go to sleep or return.
3284 * If it is in any other state, go to sleep or return.
3285 *
3286 * Synchronous forces are implemented with a wait queue. All callers trying
3287 * to force a given lsn to disk must wait on the queue attached to the
3288 * specific in-core log. When given in-core log finally completes its write
3289 * to disk, that thread will wake up all threads waiting on the queue.
3290 */
3291 int
xfs_log_force_seq(struct xfs_mount * mp,xfs_csn_t seq,uint flags,int * log_flushed)3292 xfs_log_force_seq(
3293 struct xfs_mount *mp,
3294 xfs_csn_t seq,
3295 uint flags,
3296 int *log_flushed)
3297 {
3298 struct xlog *log = mp->m_log;
3299 xfs_lsn_t lsn;
3300 int ret;
3301 ASSERT(seq != 0);
3302
3303 XFS_STATS_INC(mp, xs_log_force);
3304 trace_xfs_log_force(mp, seq, _RET_IP_);
3305
3306 lsn = xlog_cil_force_seq(log, seq);
3307 if (lsn == NULLCOMMITLSN)
3308 return 0;
3309
3310 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3311 if (ret == -EAGAIN) {
3312 XFS_STATS_INC(mp, xs_log_force_sleep);
3313 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3314 }
3315 return ret;
3316 }
3317
3318 /*
3319 * Free a used ticket when its refcount falls to zero.
3320 */
3321 void
xfs_log_ticket_put(xlog_ticket_t * ticket)3322 xfs_log_ticket_put(
3323 xlog_ticket_t *ticket)
3324 {
3325 ASSERT(atomic_read(&ticket->t_ref) > 0);
3326 if (atomic_dec_and_test(&ticket->t_ref))
3327 kmem_cache_free(xfs_log_ticket_zone, ticket);
3328 }
3329
3330 xlog_ticket_t *
xfs_log_ticket_get(xlog_ticket_t * ticket)3331 xfs_log_ticket_get(
3332 xlog_ticket_t *ticket)
3333 {
3334 ASSERT(atomic_read(&ticket->t_ref) > 0);
3335 atomic_inc(&ticket->t_ref);
3336 return ticket;
3337 }
3338
3339 /*
3340 * Figure out the total log space unit (in bytes) that would be
3341 * required for a log ticket.
3342 */
3343 int
xfs_log_calc_unit_res(struct xfs_mount * mp,int unit_bytes)3344 xfs_log_calc_unit_res(
3345 struct xfs_mount *mp,
3346 int unit_bytes)
3347 {
3348 struct xlog *log = mp->m_log;
3349 int iclog_space;
3350 uint num_headers;
3351
3352 /*
3353 * Permanent reservations have up to 'cnt'-1 active log operations
3354 * in the log. A unit in this case is the amount of space for one
3355 * of these log operations. Normal reservations have a cnt of 1
3356 * and their unit amount is the total amount of space required.
3357 *
3358 * The following lines of code account for non-transaction data
3359 * which occupy space in the on-disk log.
3360 *
3361 * Normal form of a transaction is:
3362 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3363 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3364 *
3365 * We need to account for all the leadup data and trailer data
3366 * around the transaction data.
3367 * And then we need to account for the worst case in terms of using
3368 * more space.
3369 * The worst case will happen if:
3370 * - the placement of the transaction happens to be such that the
3371 * roundoff is at its maximum
3372 * - the transaction data is synced before the commit record is synced
3373 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3374 * Therefore the commit record is in its own Log Record.
3375 * This can happen as the commit record is called with its
3376 * own region to xlog_write().
3377 * This then means that in the worst case, roundoff can happen for
3378 * the commit-rec as well.
3379 * The commit-rec is smaller than padding in this scenario and so it is
3380 * not added separately.
3381 */
3382
3383 /* for trans header */
3384 unit_bytes += sizeof(xlog_op_header_t);
3385 unit_bytes += sizeof(xfs_trans_header_t);
3386
3387 /* for start-rec */
3388 unit_bytes += sizeof(xlog_op_header_t);
3389
3390 /*
3391 * for LR headers - the space for data in an iclog is the size minus
3392 * the space used for the headers. If we use the iclog size, then we
3393 * undercalculate the number of headers required.
3394 *
3395 * Furthermore - the addition of op headers for split-recs might
3396 * increase the space required enough to require more log and op
3397 * headers, so take that into account too.
3398 *
3399 * IMPORTANT: This reservation makes the assumption that if this
3400 * transaction is the first in an iclog and hence has the LR headers
3401 * accounted to it, then the remaining space in the iclog is
3402 * exclusively for this transaction. i.e. if the transaction is larger
3403 * than the iclog, it will be the only thing in that iclog.
3404 * Fundamentally, this means we must pass the entire log vector to
3405 * xlog_write to guarantee this.
3406 */
3407 iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3408 num_headers = howmany(unit_bytes, iclog_space);
3409
3410 /* for split-recs - ophdrs added when data split over LRs */
3411 unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3412
3413 /* add extra header reservations if we overrun */
3414 while (!num_headers ||
3415 howmany(unit_bytes, iclog_space) > num_headers) {
3416 unit_bytes += sizeof(xlog_op_header_t);
3417 num_headers++;
3418 }
3419 unit_bytes += log->l_iclog_hsize * num_headers;
3420
3421 /* for commit-rec LR header - note: padding will subsume the ophdr */
3422 unit_bytes += log->l_iclog_hsize;
3423
3424 /* for roundoff padding for transaction data and one for commit record */
3425 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3426 /* log su roundoff */
3427 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3428 } else {
3429 /* BB roundoff */
3430 unit_bytes += 2 * BBSIZE;
3431 }
3432
3433 return unit_bytes;
3434 }
3435
3436 /*
3437 * Allocate and initialise a new log ticket.
3438 */
3439 struct xlog_ticket *
xlog_ticket_alloc(struct xlog * log,int unit_bytes,int cnt,char client,bool permanent)3440 xlog_ticket_alloc(
3441 struct xlog *log,
3442 int unit_bytes,
3443 int cnt,
3444 char client,
3445 bool permanent)
3446 {
3447 struct xlog_ticket *tic;
3448 int unit_res;
3449
3450 tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
3451
3452 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3453
3454 atomic_set(&tic->t_ref, 1);
3455 tic->t_task = current;
3456 INIT_LIST_HEAD(&tic->t_queue);
3457 tic->t_unit_res = unit_res;
3458 tic->t_curr_res = unit_res;
3459 tic->t_cnt = cnt;
3460 tic->t_ocnt = cnt;
3461 tic->t_tid = prandom_u32();
3462 tic->t_clientid = client;
3463 if (permanent)
3464 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3465
3466 xlog_tic_reset_res(tic);
3467
3468 return tic;
3469 }
3470
3471 #if defined(DEBUG)
3472 /*
3473 * Make sure that the destination ptr is within the valid data region of
3474 * one of the iclogs. This uses backup pointers stored in a different
3475 * part of the log in case we trash the log structure.
3476 */
3477 STATIC void
xlog_verify_dest_ptr(struct xlog * log,void * ptr)3478 xlog_verify_dest_ptr(
3479 struct xlog *log,
3480 void *ptr)
3481 {
3482 int i;
3483 int good_ptr = 0;
3484
3485 for (i = 0; i < log->l_iclog_bufs; i++) {
3486 if (ptr >= log->l_iclog_bak[i] &&
3487 ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3488 good_ptr++;
3489 }
3490
3491 if (!good_ptr)
3492 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3493 }
3494
3495 /*
3496 * Check to make sure the grant write head didn't just over lap the tail. If
3497 * the cycles are the same, we can't be overlapping. Otherwise, make sure that
3498 * the cycles differ by exactly one and check the byte count.
3499 *
3500 * This check is run unlocked, so can give false positives. Rather than assert
3501 * on failures, use a warn-once flag and a panic tag to allow the admin to
3502 * determine if they want to panic the machine when such an error occurs. For
3503 * debug kernels this will have the same effect as using an assert but, unlinke
3504 * an assert, it can be turned off at runtime.
3505 */
3506 STATIC void
xlog_verify_grant_tail(struct xlog * log)3507 xlog_verify_grant_tail(
3508 struct xlog *log)
3509 {
3510 int tail_cycle, tail_blocks;
3511 int cycle, space;
3512
3513 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3514 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3515 if (tail_cycle != cycle) {
3516 if (cycle - 1 != tail_cycle &&
3517 !(log->l_flags & XLOG_TAIL_WARN)) {
3518 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3519 "%s: cycle - 1 != tail_cycle", __func__);
3520 log->l_flags |= XLOG_TAIL_WARN;
3521 }
3522
3523 if (space > BBTOB(tail_blocks) &&
3524 !(log->l_flags & XLOG_TAIL_WARN)) {
3525 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3526 "%s: space > BBTOB(tail_blocks)", __func__);
3527 log->l_flags |= XLOG_TAIL_WARN;
3528 }
3529 }
3530 }
3531
3532 /* check if it will fit */
3533 STATIC void
xlog_verify_tail_lsn(struct xlog * log,struct xlog_in_core * iclog,xfs_lsn_t tail_lsn)3534 xlog_verify_tail_lsn(
3535 struct xlog *log,
3536 struct xlog_in_core *iclog,
3537 xfs_lsn_t tail_lsn)
3538 {
3539 int blocks;
3540
3541 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3542 blocks =
3543 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3544 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3545 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3546 } else {
3547 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3548
3549 if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3550 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3551
3552 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3553 if (blocks < BTOBB(iclog->ic_offset) + 1)
3554 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3555 }
3556 }
3557
3558 /*
3559 * Perform a number of checks on the iclog before writing to disk.
3560 *
3561 * 1. Make sure the iclogs are still circular
3562 * 2. Make sure we have a good magic number
3563 * 3. Make sure we don't have magic numbers in the data
3564 * 4. Check fields of each log operation header for:
3565 * A. Valid client identifier
3566 * B. tid ptr value falls in valid ptr space (user space code)
3567 * C. Length in log record header is correct according to the
3568 * individual operation headers within record.
3569 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3570 * log, check the preceding blocks of the physical log to make sure all
3571 * the cycle numbers agree with the current cycle number.
3572 */
3573 STATIC void
xlog_verify_iclog(struct xlog * log,struct xlog_in_core * iclog,int count)3574 xlog_verify_iclog(
3575 struct xlog *log,
3576 struct xlog_in_core *iclog,
3577 int count)
3578 {
3579 xlog_op_header_t *ophead;
3580 xlog_in_core_t *icptr;
3581 xlog_in_core_2_t *xhdr;
3582 void *base_ptr, *ptr, *p;
3583 ptrdiff_t field_offset;
3584 uint8_t clientid;
3585 int len, i, j, k, op_len;
3586 int idx;
3587
3588 /* check validity of iclog pointers */
3589 spin_lock(&log->l_icloglock);
3590 icptr = log->l_iclog;
3591 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3592 ASSERT(icptr);
3593
3594 if (icptr != log->l_iclog)
3595 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3596 spin_unlock(&log->l_icloglock);
3597
3598 /* check log magic numbers */
3599 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3600 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3601
3602 base_ptr = ptr = &iclog->ic_header;
3603 p = &iclog->ic_header;
3604 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3605 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3606 xfs_emerg(log->l_mp, "%s: unexpected magic num",
3607 __func__);
3608 }
3609
3610 /* check fields */
3611 len = be32_to_cpu(iclog->ic_header.h_num_logops);
3612 base_ptr = ptr = iclog->ic_datap;
3613 ophead = ptr;
3614 xhdr = iclog->ic_data;
3615 for (i = 0; i < len; i++) {
3616 ophead = ptr;
3617
3618 /* clientid is only 1 byte */
3619 p = &ophead->oh_clientid;
3620 field_offset = p - base_ptr;
3621 if (field_offset & 0x1ff) {
3622 clientid = ophead->oh_clientid;
3623 } else {
3624 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3625 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3626 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3627 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3628 clientid = xlog_get_client_id(
3629 xhdr[j].hic_xheader.xh_cycle_data[k]);
3630 } else {
3631 clientid = xlog_get_client_id(
3632 iclog->ic_header.h_cycle_data[idx]);
3633 }
3634 }
3635 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3636 xfs_warn(log->l_mp,
3637 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3638 __func__, clientid, ophead,
3639 (unsigned long)field_offset);
3640
3641 /* check length */
3642 p = &ophead->oh_len;
3643 field_offset = p - base_ptr;
3644 if (field_offset & 0x1ff) {
3645 op_len = be32_to_cpu(ophead->oh_len);
3646 } else {
3647 idx = BTOBBT((uintptr_t)&ophead->oh_len -
3648 (uintptr_t)iclog->ic_datap);
3649 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3650 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3651 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3652 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3653 } else {
3654 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3655 }
3656 }
3657 ptr += sizeof(xlog_op_header_t) + op_len;
3658 }
3659 }
3660 #endif
3661
3662 /*
3663 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3664 */
3665 STATIC int
xlog_state_ioerror(struct xlog * log)3666 xlog_state_ioerror(
3667 struct xlog *log)
3668 {
3669 xlog_in_core_t *iclog, *ic;
3670
3671 iclog = log->l_iclog;
3672 if (iclog->ic_state != XLOG_STATE_IOERROR) {
3673 /*
3674 * Mark all the incore logs IOERROR.
3675 * From now on, no log flushes will result.
3676 */
3677 ic = iclog;
3678 do {
3679 ic->ic_state = XLOG_STATE_IOERROR;
3680 ic = ic->ic_next;
3681 } while (ic != iclog);
3682 return 0;
3683 }
3684 /*
3685 * Return non-zero, if state transition has already happened.
3686 */
3687 return 1;
3688 }
3689
3690 /*
3691 * This is called from xfs_force_shutdown, when we're forcibly
3692 * shutting down the filesystem, typically because of an IO error.
3693 * Our main objectives here are to make sure that:
3694 * a. if !logerror, flush the logs to disk. Anything modified
3695 * after this is ignored.
3696 * b. the filesystem gets marked 'SHUTDOWN' for all interested
3697 * parties to find out, 'atomically'.
3698 * c. those who're sleeping on log reservations, pinned objects and
3699 * other resources get woken up, and be told the bad news.
3700 * d. nothing new gets queued up after (b) and (c) are done.
3701 *
3702 * Note: for the !logerror case we need to flush the regions held in memory out
3703 * to disk first. This needs to be done before the log is marked as shutdown,
3704 * otherwise the iclog writes will fail.
3705 */
3706 int
xfs_log_force_umount(struct xfs_mount * mp,int logerror)3707 xfs_log_force_umount(
3708 struct xfs_mount *mp,
3709 int logerror)
3710 {
3711 struct xlog *log;
3712 int retval;
3713
3714 log = mp->m_log;
3715
3716 /*
3717 * If this happens during log recovery, don't worry about
3718 * locking; the log isn't open for business yet.
3719 */
3720 if (!log ||
3721 log->l_flags & XLOG_ACTIVE_RECOVERY) {
3722 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3723 if (mp->m_sb_bp)
3724 mp->m_sb_bp->b_flags |= XBF_DONE;
3725 return 0;
3726 }
3727
3728 /*
3729 * Somebody could've already done the hard work for us.
3730 * No need to get locks for this.
3731 */
3732 if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3733 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3734 return 1;
3735 }
3736
3737 /*
3738 * Flush all the completed transactions to disk before marking the log
3739 * being shut down. We need to do it in this order to ensure that
3740 * completed operations are safely on disk before we shut down, and that
3741 * we don't have to issue any buffer IO after the shutdown flags are set
3742 * to guarantee this.
3743 */
3744 if (!logerror)
3745 xfs_log_force(mp, XFS_LOG_SYNC);
3746
3747 /*
3748 * mark the filesystem and the as in a shutdown state and wake
3749 * everybody up to tell them the bad news.
3750 */
3751 spin_lock(&log->l_icloglock);
3752 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3753 if (mp->m_sb_bp)
3754 mp->m_sb_bp->b_flags |= XBF_DONE;
3755
3756 /*
3757 * Mark the log and the iclogs with IO error flags to prevent any
3758 * further log IO from being issued or completed.
3759 */
3760 log->l_flags |= XLOG_IO_ERROR;
3761 retval = xlog_state_ioerror(log);
3762 spin_unlock(&log->l_icloglock);
3763
3764 /*
3765 * We don't want anybody waiting for log reservations after this. That
3766 * means we have to wake up everybody queued up on reserveq as well as
3767 * writeq. In addition, we make sure in xlog_{re}grant_log_space that
3768 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3769 * action is protected by the grant locks.
3770 */
3771 xlog_grant_head_wake_all(&log->l_reserve_head);
3772 xlog_grant_head_wake_all(&log->l_write_head);
3773
3774 /*
3775 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3776 * as if the log writes were completed. The abort handling in the log
3777 * item committed callback functions will do this again under lock to
3778 * avoid races.
3779 */
3780 spin_lock(&log->l_cilp->xc_push_lock);
3781 wake_up_all(&log->l_cilp->xc_commit_wait);
3782 spin_unlock(&log->l_cilp->xc_push_lock);
3783 xlog_state_do_callback(log);
3784
3785 /* return non-zero if log IOERROR transition had already happened */
3786 return retval;
3787 }
3788
3789 STATIC int
xlog_iclogs_empty(struct xlog * log)3790 xlog_iclogs_empty(
3791 struct xlog *log)
3792 {
3793 xlog_in_core_t *iclog;
3794
3795 iclog = log->l_iclog;
3796 do {
3797 /* endianness does not matter here, zero is zero in
3798 * any language.
3799 */
3800 if (iclog->ic_header.h_num_logops)
3801 return 0;
3802 iclog = iclog->ic_next;
3803 } while (iclog != log->l_iclog);
3804 return 1;
3805 }
3806
3807 /*
3808 * Verify that an LSN stamped into a piece of metadata is valid. This is
3809 * intended for use in read verifiers on v5 superblocks.
3810 */
3811 bool
xfs_log_check_lsn(struct xfs_mount * mp,xfs_lsn_t lsn)3812 xfs_log_check_lsn(
3813 struct xfs_mount *mp,
3814 xfs_lsn_t lsn)
3815 {
3816 struct xlog *log = mp->m_log;
3817 bool valid;
3818
3819 /*
3820 * norecovery mode skips mount-time log processing and unconditionally
3821 * resets the in-core LSN. We can't validate in this mode, but
3822 * modifications are not allowed anyways so just return true.
3823 */
3824 if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3825 return true;
3826
3827 /*
3828 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3829 * handled by recovery and thus safe to ignore here.
3830 */
3831 if (lsn == NULLCOMMITLSN)
3832 return true;
3833
3834 valid = xlog_valid_lsn(mp->m_log, lsn);
3835
3836 /* warn the user about what's gone wrong before verifier failure */
3837 if (!valid) {
3838 spin_lock(&log->l_icloglock);
3839 xfs_warn(mp,
3840 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3841 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
3842 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3843 log->l_curr_cycle, log->l_curr_block);
3844 spin_unlock(&log->l_icloglock);
3845 }
3846
3847 return valid;
3848 }
3849
3850 bool
xfs_log_in_recovery(struct xfs_mount * mp)3851 xfs_log_in_recovery(
3852 struct xfs_mount *mp)
3853 {
3854 struct xlog *log = mp->m_log;
3855
3856 return log->l_flags & XLOG_ACTIVE_RECOVERY;
3857 }
3858