1 /*
2 * Copyright 2016 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "src/gpu/vk/GrVkUniformHandler.h"
9
10 #include "src/gpu/GrTexture.h"
11 #include "src/gpu/glsl/GrGLSLProgramBuilder.h"
12 #include "src/gpu/vk/GrVkGpu.h"
13 #include "src/gpu/vk/GrVkPipelineStateBuilder.h"
14 #include "src/gpu/vk/GrVkTexture.h"
15
16 // To determine whether a current offset is aligned, we can just 'and' the lowest bits with the
17 // alignment mask. A value of 0 means aligned, any other value is how many bytes past alignment we
18 // are. This works since all alignments are powers of 2. The mask is always (alignment - 1).
19 // This alignment mask will give correct alignments for using the std430 block layout. If you want
20 // the std140 alignment, you can use this, but then make sure if you have an array type it is
21 // aligned to 16 bytes (i.e. has mask of 0xF).
22 // These are designated in the Vulkan spec, section 14.5.4 "Offset and Stride Assignment".
23 // https://www.khronos.org/registry/vulkan/specs/1.0-wsi_extensions/html/vkspec.html#interfaces-resources-layout
grsltype_to_alignment_mask(GrSLType type)24 static uint32_t grsltype_to_alignment_mask(GrSLType type) {
25 switch(type) {
26 case kShort_GrSLType: // fall through
27 case kUShort_GrSLType:
28 return 0x1;
29 case kShort2_GrSLType: // fall through
30 case kUShort2_GrSLType:
31 return 0x3;
32 case kShort3_GrSLType: // fall through
33 case kShort4_GrSLType:
34 case kUShort3_GrSLType:
35 case kUShort4_GrSLType:
36 return 0x7;
37 case kInt_GrSLType:
38 case kUInt_GrSLType:
39 return 0x3;
40 case kInt2_GrSLType:
41 case kUInt2_GrSLType:
42 return 0x7;
43 case kInt3_GrSLType:
44 case kUInt3_GrSLType:
45 case kInt4_GrSLType:
46 case kUInt4_GrSLType:
47 return 0xF;
48 case kHalf_GrSLType: // fall through
49 case kFloat_GrSLType:
50 return 0x3;
51 case kHalf2_GrSLType: // fall through
52 case kFloat2_GrSLType:
53 return 0x7;
54 case kHalf3_GrSLType: // fall through
55 case kFloat3_GrSLType:
56 return 0xF;
57 case kHalf4_GrSLType: // fall through
58 case kFloat4_GrSLType:
59 return 0xF;
60 case kHalf2x2_GrSLType: // fall through
61 case kFloat2x2_GrSLType:
62 return 0x7;
63 case kHalf3x3_GrSLType: // fall through
64 case kFloat3x3_GrSLType:
65 return 0xF;
66 case kHalf4x4_GrSLType: // fall through
67 case kFloat4x4_GrSLType:
68 return 0xF;
69
70 // This query is only valid for certain types.
71 case kVoid_GrSLType:
72 case kBool_GrSLType:
73 case kBool2_GrSLType:
74 case kBool3_GrSLType:
75 case kBool4_GrSLType:
76 case kTexture2DSampler_GrSLType:
77 case kTextureExternalSampler_GrSLType:
78 case kTexture2DRectSampler_GrSLType:
79 case kSampler_GrSLType:
80 case kTexture2D_GrSLType:
81 case kInput_GrSLType:
82 break;
83 }
84 SK_ABORT("Unexpected type");
85 }
86
87 /** Returns the size in bytes taken up in vulkanbuffers for GrSLTypes. */
grsltype_to_vk_size(GrSLType type,int layout)88 static inline uint32_t grsltype_to_vk_size(GrSLType type, int layout) {
89 switch(type) {
90 case kShort_GrSLType:
91 return sizeof(int16_t);
92 case kShort2_GrSLType:
93 return 2 * sizeof(int16_t);
94 case kShort3_GrSLType:
95 return 3 * sizeof(int16_t);
96 case kShort4_GrSLType:
97 return 4 * sizeof(int16_t);
98 case kUShort_GrSLType:
99 return sizeof(uint16_t);
100 case kUShort2_GrSLType:
101 return 2 * sizeof(uint16_t);
102 case kUShort3_GrSLType:
103 return 3 * sizeof(uint16_t);
104 case kUShort4_GrSLType:
105 return 4 * sizeof(uint16_t);
106 case kHalf_GrSLType: // fall through
107 case kFloat_GrSLType:
108 return sizeof(float);
109 case kHalf2_GrSLType: // fall through
110 case kFloat2_GrSLType:
111 return 2 * sizeof(float);
112 case kHalf3_GrSLType: // fall through
113 case kFloat3_GrSLType:
114 return 3 * sizeof(float);
115 case kHalf4_GrSLType: // fall through
116 case kFloat4_GrSLType:
117 return 4 * sizeof(float);
118 case kInt_GrSLType: // fall through
119 case kUInt_GrSLType:
120 return sizeof(int32_t);
121 case kInt2_GrSLType: // fall through
122 case kUInt2_GrSLType:
123 return 2 * sizeof(int32_t);
124 case kInt3_GrSLType: // fall through
125 case kUInt3_GrSLType:
126 return 3 * sizeof(int32_t);
127 case kInt4_GrSLType: // fall through
128 case kUInt4_GrSLType:
129 return 4 * sizeof(int32_t);
130 case kHalf2x2_GrSLType: // fall through
131 case kFloat2x2_GrSLType:
132 if (layout == GrVkUniformHandler::kStd430Layout) {
133 return 4 * sizeof(float);
134 } else {
135 return 8 * sizeof(float);
136 }
137 case kHalf3x3_GrSLType: // fall through
138 case kFloat3x3_GrSLType:
139 return 12 * sizeof(float);
140 case kHalf4x4_GrSLType: // fall through
141 case kFloat4x4_GrSLType:
142 return 16 * sizeof(float);
143
144 // This query is only valid for certain types.
145 case kVoid_GrSLType:
146 case kBool_GrSLType:
147 case kBool2_GrSLType:
148 case kBool3_GrSLType:
149 case kBool4_GrSLType:
150 case kTexture2DSampler_GrSLType:
151 case kTextureExternalSampler_GrSLType:
152 case kTexture2DRectSampler_GrSLType:
153 case kSampler_GrSLType:
154 case kTexture2D_GrSLType:
155 case kInput_GrSLType:
156 break;
157 }
158 SK_ABORT("Unexpected type");
159 }
160
161 // Given the current offset into the ubo data, calculate the offset for the uniform we're trying to
162 // add taking into consideration all alignment requirements. The uniformOffset is set to the offset
163 // for the new uniform, and currentOffset is updated to be the offset to the end of the new uniform.
get_aligned_offset(uint32_t * currentOffset,GrSLType type,int arrayCount,int layout)164 static uint32_t get_aligned_offset(uint32_t* currentOffset,
165 GrSLType type,
166 int arrayCount,
167 int layout) {
168 uint32_t alignmentMask = grsltype_to_alignment_mask(type);
169 // For std140 layout we must make arrays align to 16 bytes.
170 if (layout == GrVkUniformHandler::kStd140Layout && (arrayCount || type == kFloat2x2_GrSLType)) {
171 alignmentMask = 0xF;
172 }
173 uint32_t offsetDiff = *currentOffset & alignmentMask;
174 if (offsetDiff != 0) {
175 offsetDiff = alignmentMask - offsetDiff + 1;
176 }
177 int32_t uniformOffset = *currentOffset + offsetDiff;
178 SkASSERT(sizeof(float) == 4);
179 if (arrayCount) {
180 // TODO: this shouldn't be necessary for std430
181 uint32_t elementSize = std::max<uint32_t>(16, grsltype_to_vk_size(type, layout));
182 SkASSERT(0 == (elementSize & 0xF));
183 *currentOffset = uniformOffset + elementSize * arrayCount;
184 } else {
185 *currentOffset = uniformOffset + grsltype_to_vk_size(type, layout);
186 }
187 return uniformOffset;
188 }
189
~GrVkUniformHandler()190 GrVkUniformHandler::~GrVkUniformHandler() {
191 for (VkUniformInfo& sampler : fSamplers.items()) {
192 if (sampler.fImmutableSampler) {
193 sampler.fImmutableSampler->unref();
194 sampler.fImmutableSampler = nullptr;
195 }
196 }
197 }
198
internalAddUniformArray(const GrFragmentProcessor * owner,uint32_t visibility,GrSLType type,const char * name,bool mangleName,int arrayCount,const char ** outName)199 GrGLSLUniformHandler::UniformHandle GrVkUniformHandler::internalAddUniformArray(
200 const GrFragmentProcessor* owner,
201 uint32_t visibility,
202 GrSLType type,
203 const char* name,
204 bool mangleName,
205 int arrayCount,
206 const char** outName) {
207 SkASSERT(name && strlen(name));
208 SkASSERT(GrSLTypeCanBeUniformValue(type));
209
210 // TODO this is a bit hacky, lets think of a better way. Basically we need to be able to use
211 // the uniform view matrix name in the GP, and the GP is immutable so it has to tell the PB
212 // exactly what name it wants to use for the uniform view matrix. If we prefix anythings, then
213 // the names will mismatch. I think the correct solution is to have all GPs which need the
214 // uniform view matrix, they should upload the view matrix in their setData along with regular
215 // uniforms.
216 char prefix = 'u';
217 if ('u' == name[0] || !strncmp(name, GR_NO_MANGLE_PREFIX, strlen(GR_NO_MANGLE_PREFIX))) {
218 prefix = '\0';
219 }
220 SkString resolvedName = fProgramBuilder->nameVariable(prefix, name, mangleName);
221
222 VkUniformInfo tempInfo;
223 tempInfo.fVariable = GrShaderVar{std::move(resolvedName),
224 type,
225 GrShaderVar::TypeModifier::None,
226 arrayCount};
227
228 tempInfo.fVisibility = visibility;
229 tempInfo.fOwner = owner;
230 tempInfo.fRawName = SkString(name);
231
232 for (int layout = 0; layout < kLayoutCount; ++layout) {
233 tempInfo.fOffsets[layout] = get_aligned_offset(&fCurrentOffsets[layout],
234 type,
235 arrayCount,
236 layout);
237 }
238
239 fUniforms.push_back(tempInfo);
240
241 if (outName) {
242 *outName = fUniforms.back().fVariable.c_str();
243 }
244
245 return GrGLSLUniformHandler::UniformHandle(fUniforms.count() - 1);
246 }
247
addSampler(const GrBackendFormat & backendFormat,GrSamplerState state,const GrSwizzle & swizzle,const char * name,const GrShaderCaps * shaderCaps)248 GrGLSLUniformHandler::SamplerHandle GrVkUniformHandler::addSampler(
249 const GrBackendFormat& backendFormat, GrSamplerState state, const GrSwizzle& swizzle,
250 const char* name, const GrShaderCaps* shaderCaps) {
251 SkASSERT(name && strlen(name));
252
253 const char prefix = 'u';
254 SkString mangleName = fProgramBuilder->nameVariable(prefix, name, /*mangle=*/true);
255
256 SkString layoutQualifier;
257 layoutQualifier.appendf("set=%d, binding=%d", kSamplerDescSet, fSamplers.count());
258
259 VkUniformInfo tempInfo;
260 tempInfo.fVariable =
261 GrShaderVar{std::move(mangleName),
262 GrSLCombinedSamplerTypeForTextureType(backendFormat.textureType()),
263 GrShaderVar::TypeModifier::Uniform,
264 GrShaderVar::kNonArray,
265 std::move(layoutQualifier),
266 SkString()};
267
268 tempInfo.fVisibility = kFragment_GrShaderFlag;
269 tempInfo.fOwner = nullptr;
270 tempInfo.fRawName = SkString(name);
271 tempInfo.fOffsets[0] = 0;
272 tempInfo.fOffsets[1] = 0;
273
274 fSamplers.push_back(tempInfo);
275
276 // Check if we are dealing with an external texture and store the needed information if so.
277 auto ycbcrInfo = backendFormat.getVkYcbcrConversionInfo();
278 if (ycbcrInfo && ycbcrInfo->isValid()) {
279 GrVkGpu* gpu = static_cast<GrVkPipelineStateBuilder*>(fProgramBuilder)->gpu();
280 GrVkSampler* sampler = gpu->resourceProvider().findOrCreateCompatibleSampler(state,
281 *ycbcrInfo);
282 fSamplers.back().fImmutableSampler = sampler;
283 if (!sampler) {
284 return {};
285 }
286 }
287
288 fSamplerSwizzles.push_back(swizzle);
289 SkASSERT(fSamplerSwizzles.count() == fSamplers.count());
290 return GrGLSLUniformHandler::SamplerHandle(fSamplers.count() - 1);
291 }
292
addInputSampler(const GrSwizzle & swizzle,const char * name)293 GrGLSLUniformHandler::SamplerHandle GrVkUniformHandler::addInputSampler(const GrSwizzle& swizzle,
294 const char* name) {
295 SkASSERT(name && strlen(name));
296 SkASSERT(fInputUniform.fVariable.getType() == kVoid_GrSLType);
297
298 const char prefix = 'u';
299 SkString mangleName = fProgramBuilder->nameVariable(prefix, name, /*mangle=*/true);
300
301 SkString layoutQualifier;
302 layoutQualifier.appendf("input_attachment_index=%d, set=%d, binding=%d",
303 kDstInputAttachmentIndex, kInputDescSet, kInputBinding);
304
305 fInputUniform = {
306 GrShaderVar{std::move(mangleName), kInput_GrSLType, GrShaderVar::TypeModifier::Uniform,
307 GrShaderVar::kNonArray, std::move(layoutQualifier), SkString()},
308 kFragment_GrShaderFlag, nullptr, SkString(name)};
309 fInputSwizzle = swizzle;
310 return GrGLSLUniformHandler::SamplerHandle(0);
311 }
312
appendUniformDecls(GrShaderFlags visibility,SkString * out) const313 void GrVkUniformHandler::appendUniformDecls(GrShaderFlags visibility, SkString* out) const {
314 for (const VkUniformInfo& sampler : fSamplers.items()) {
315 SkASSERT(sampler.fVariable.getType() == kTexture2DSampler_GrSLType ||
316 sampler.fVariable.getType() == kTextureExternalSampler_GrSLType);
317 if (visibility == sampler.fVisibility) {
318 sampler.fVariable.appendDecl(fProgramBuilder->shaderCaps(), out);
319 out->append(";\n");
320 }
321 }
322 if (fInputUniform.fVariable.getType() == kInput_GrSLType) {
323 if (visibility == fInputUniform.fVisibility) {
324 SkASSERT(visibility == kFragment_GrShaderFlag);
325 fInputUniform.fVariable.appendDecl(fProgramBuilder->shaderCaps(), out);
326 out->append(";\n");
327 }
328 }
329
330 #ifdef SK_DEBUG
331 bool firstOffsetCheck = false;
332 for (const VkUniformInfo& localUniform : fUniforms.items()) {
333 if (!firstOffsetCheck) {
334 // Check to make sure we are starting our offset at 0 so the offset qualifier we
335 // set on each variable in the uniform block is valid.
336 SkASSERT(0 == localUniform.fOffsets[kStd140Layout] &&
337 0 == localUniform.fOffsets[kStd430Layout]);
338 firstOffsetCheck = true;
339 }
340 }
341 #endif
342
343 // At this point we determine whether we'll be using push constants based on the
344 // uniforms set so far. Later checks will use the internal bool we set here to
345 // keep things consistent.
346 this->determineIfUsePushConstants();
347 SkString uniformsString;
348 for (const VkUniformInfo& localUniform : fUniforms.items()) {
349 if (visibility & localUniform.fVisibility) {
350 if (GrSLTypeCanBeUniformValue(localUniform.fVariable.getType())) {
351 Layout layout = fUsePushConstants ? kStd430Layout : kStd140Layout;
352 uniformsString.appendf("layout(offset=%d) ", localUniform.fOffsets[layout]);
353 localUniform.fVariable.appendDecl(fProgramBuilder->shaderCaps(), &uniformsString);
354 uniformsString.append(";\n");
355 }
356 }
357 }
358
359 if (!uniformsString.isEmpty()) {
360 if (fUsePushConstants) {
361 out->append("layout (push_constant) ");
362 } else {
363 out->appendf("layout (set=%d, binding=%d) ",
364 kUniformBufferDescSet, kUniformBinding);
365 }
366 out->append("uniform uniformBuffer\n{\n");
367 out->appendf("%s\n};\n", uniformsString.c_str());
368 }
369 }
370
getRTFlipOffset() const371 uint32_t GrVkUniformHandler::getRTFlipOffset() const {
372 Layout layout = fUsePushConstants ? kStd430Layout : kStd140Layout;
373 uint32_t currentOffset = fCurrentOffsets[layout];
374 return get_aligned_offset(¤tOffset, kFloat2_GrSLType, 0, layout);
375 }
376
determineIfUsePushConstants() const377 void GrVkUniformHandler::determineIfUsePushConstants() const {
378 // We may insert a uniform for flipping origin-sensitive language features (e.g. sk_FragCoord).
379 // We won't know that for sure until then but we need to make this determination now,
380 // so assume we will need it.
381 static constexpr uint32_t kPad = 2*sizeof(float);
382 fUsePushConstants =
383 fCurrentOffsets[kStd430Layout] > 0 &&
384 fCurrentOffsets[kStd430Layout] + kPad <= fProgramBuilder->caps()->maxPushConstantsSize();
385 }
386