• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc.  All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 //     * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 //     * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 //     * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // Author: kenton@google.com (Kenton Varda)
32 //  Based on original Protocol Buffers design by
33 //  Sanjay Ghemawat, Jeff Dean, and others.
34 //
35 // Defines Message, the abstract interface implemented by non-lite
36 // protocol message objects.  Although it's possible to implement this
37 // interface manually, most users will use the protocol compiler to
38 // generate implementations.
39 //
40 // Example usage:
41 //
42 // Say you have a message defined as:
43 //
44 //   message Foo {
45 //     optional string text = 1;
46 //     repeated int32 numbers = 2;
47 //   }
48 //
49 // Then, if you used the protocol compiler to generate a class from the above
50 // definition, you could use it like so:
51 //
52 //   std::string data;  // Will store a serialized version of the message.
53 //
54 //   {
55 //     // Create a message and serialize it.
56 //     Foo foo;
57 //     foo.set_text("Hello World!");
58 //     foo.add_numbers(1);
59 //     foo.add_numbers(5);
60 //     foo.add_numbers(42);
61 //
62 //     foo.SerializeToString(&data);
63 //   }
64 //
65 //   {
66 //     // Parse the serialized message and check that it contains the
67 //     // correct data.
68 //     Foo foo;
69 //     foo.ParseFromString(data);
70 //
71 //     assert(foo.text() == "Hello World!");
72 //     assert(foo.numbers_size() == 3);
73 //     assert(foo.numbers(0) == 1);
74 //     assert(foo.numbers(1) == 5);
75 //     assert(foo.numbers(2) == 42);
76 //   }
77 //
78 //   {
79 //     // Same as the last block, but do it dynamically via the Message
80 //     // reflection interface.
81 //     Message* foo = new Foo;
82 //     const Descriptor* descriptor = foo->GetDescriptor();
83 //
84 //     // Get the descriptors for the fields we're interested in and verify
85 //     // their types.
86 //     const FieldDescriptor* text_field = descriptor->FindFieldByName("text");
87 //     assert(text_field != nullptr);
88 //     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
89 //     assert(text_field->label() == FieldDescriptor::LABEL_OPTIONAL);
90 //     const FieldDescriptor* numbers_field = descriptor->
91 //                                            FindFieldByName("numbers");
92 //     assert(numbers_field != nullptr);
93 //     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
94 //     assert(numbers_field->label() == FieldDescriptor::LABEL_REPEATED);
95 //
96 //     // Parse the message.
97 //     foo->ParseFromString(data);
98 //
99 //     // Use the reflection interface to examine the contents.
100 //     const Reflection* reflection = foo->GetReflection();
101 //     assert(reflection->GetString(*foo, text_field) == "Hello World!");
102 //     assert(reflection->FieldSize(*foo, numbers_field) == 3);
103 //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 0) == 1);
104 //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 1) == 5);
105 //     assert(reflection->GetRepeatedInt32(*foo, numbers_field, 2) == 42);
106 //
107 //     delete foo;
108 //   }
109 
110 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
111 #define GOOGLE_PROTOBUF_MESSAGE_H__
112 
113 #include <iosfwd>
114 #include <string>
115 #include <type_traits>
116 #include <vector>
117 
118 #include <google/protobuf/stubs/casts.h>
119 #include <google/protobuf/stubs/common.h>
120 #include <google/protobuf/arena.h>
121 #include <google/protobuf/descriptor.h>
122 #include <google/protobuf/generated_message_reflection.h>
123 #include <google/protobuf/message_lite.h>
124 #include <google/protobuf/port.h>
125 
126 
127 #define GOOGLE_PROTOBUF_HAS_ONEOF
128 #define GOOGLE_PROTOBUF_HAS_ARENAS
129 
130 #include <google/protobuf/port_def.inc>
131 
132 #ifdef SWIG
133 #error "You cannot SWIG proto headers"
134 #endif
135 
136 namespace google {
137 namespace protobuf {
138 
139 // Defined in this file.
140 class Message;
141 class Reflection;
142 class MessageFactory;
143 
144 // Defined in other files.
145 class AssignDescriptorsHelper;
146 class DynamicMessageFactory;
147 class MapKey;
148 class MapValueRef;
149 class MapIterator;
150 class MapReflectionTester;
151 
152 namespace internal {
153 struct DescriptorTable;
154 class MapFieldBase;
155 }
156 class UnknownFieldSet;  // unknown_field_set.h
157 namespace io {
158 class ZeroCopyInputStream;   // zero_copy_stream.h
159 class ZeroCopyOutputStream;  // zero_copy_stream.h
160 class CodedInputStream;      // coded_stream.h
161 class CodedOutputStream;     // coded_stream.h
162 }  // namespace io
163 namespace python {
164 class MapReflectionFriend;  // scalar_map_container.h
165 }
166 namespace expr {
167 class CelMapReflectionFriend;  // field_backed_map_impl.cc
168 }
169 
170 namespace internal {
171 class MapFieldPrinterHelper;  // text_format.cc
172 }
173 
174 
175 namespace internal {
176 class ReflectionAccessor;      // message.cc
177 class ReflectionOps;           // reflection_ops.h
178 class MapKeySorter;            // wire_format.cc
179 class WireFormat;              // wire_format.h
180 class MapFieldReflectionTest;  // map_test.cc
181 }  // namespace internal
182 
183 template <typename T>
184 class RepeatedField;  // repeated_field.h
185 
186 template <typename T>
187 class RepeatedPtrField;  // repeated_field.h
188 
189 // A container to hold message metadata.
190 struct Metadata {
191   const Descriptor* descriptor;
192   const Reflection* reflection;
193 };
194 
195 namespace internal {
196 template <class To>
GetPointerAtOffset(Message * message,uint32 offset)197 inline To* GetPointerAtOffset(Message* message, uint32 offset) {
198   return reinterpret_cast<To*>(reinterpret_cast<char*>(message) + offset);
199 }
200 
201 template <class To>
GetConstPointerAtOffset(const Message * message,uint32 offset)202 const To* GetConstPointerAtOffset(const Message* message, uint32 offset) {
203   return reinterpret_cast<const To*>(reinterpret_cast<const char*>(message) +
204                                      offset);
205 }
206 
207 template <class To>
GetConstRefAtOffset(const Message & message,uint32 offset)208 const To& GetConstRefAtOffset(const Message& message, uint32 offset) {
209   return *GetConstPointerAtOffset<To>(&message, offset);
210 }
211 
212 bool CreateUnknownEnumValues(const FieldDescriptor* field);
213 }  // namespace internal
214 
215 // Abstract interface for protocol messages.
216 //
217 // See also MessageLite, which contains most every-day operations.  Message
218 // adds descriptors and reflection on top of that.
219 //
220 // The methods of this class that are virtual but not pure-virtual have
221 // default implementations based on reflection.  Message classes which are
222 // optimized for speed will want to override these with faster implementations,
223 // but classes optimized for code size may be happy with keeping them.  See
224 // the optimize_for option in descriptor.proto.
225 //
226 // Users must not derive from this class. Only the protocol compiler and
227 // the internal library are allowed to create subclasses.
228 class PROTOBUF_EXPORT Message : public MessageLite {
229  public:
Message()230   inline Message() {}
231 
232   // Basic Operations ------------------------------------------------
233 
234   // Construct a new instance of the same type.  Ownership is passed to the
235   // caller.  (This is also defined in MessageLite, but is defined again here
236   // for return-type covariance.)
237   Message* New() const override = 0;
238 
239   // Construct a new instance on the arena. Ownership is passed to the caller
240   // if arena is a nullptr. Default implementation allows for API compatibility
241   // during the Arena transition.
New(Arena * arena)242   Message* New(Arena* arena) const override {
243     Message* message = New();
244     if (arena != nullptr) {
245       arena->Own(message);
246     }
247     return message;
248   }
249 
250   // Make this message into a copy of the given message.  The given message
251   // must have the same descriptor, but need not necessarily be the same class.
252   // By default this is just implemented as "Clear(); MergeFrom(from);".
253   virtual void CopyFrom(const Message& from);
254 
255   // Merge the fields from the given message into this message.  Singular
256   // fields will be overwritten, if specified in from, except for embedded
257   // messages which will be merged.  Repeated fields will be concatenated.
258   // The given message must be of the same type as this message (i.e. the
259   // exact same class).
260   virtual void MergeFrom(const Message& from);
261 
262   // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
263   // a nice error message.
264   void CheckInitialized() const;
265 
266   // Slowly build a list of all required fields that are not set.
267   // This is much, much slower than IsInitialized() as it is implemented
268   // purely via reflection.  Generally, you should not call this unless you
269   // have already determined that an error exists by calling IsInitialized().
270   void FindInitializationErrors(std::vector<std::string>* errors) const;
271 
272   // Like FindInitializationErrors, but joins all the strings, delimited by
273   // commas, and returns them.
274   std::string InitializationErrorString() const override;
275 
276   // Clears all unknown fields from this message and all embedded messages.
277   // Normally, if unknown tag numbers are encountered when parsing a message,
278   // the tag and value are stored in the message's UnknownFieldSet and
279   // then written back out when the message is serialized.  This allows servers
280   // which simply route messages to other servers to pass through messages
281   // that have new field definitions which they don't yet know about.  However,
282   // this behavior can have security implications.  To avoid it, call this
283   // method after parsing.
284   //
285   // See Reflection::GetUnknownFields() for more on unknown fields.
286   virtual void DiscardUnknownFields();
287 
288   // Computes (an estimate of) the total number of bytes currently used for
289   // storing the message in memory.  The default implementation calls the
290   // Reflection object's SpaceUsed() method.
291   //
292   // SpaceUsed() is noticeably slower than ByteSize(), as it is implemented
293   // using reflection (rather than the generated code implementation for
294   // ByteSize()). Like ByteSize(), its CPU time is linear in the number of
295   // fields defined for the proto.
296   virtual size_t SpaceUsedLong() const;
297 
298   PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
SpaceUsed()299   int SpaceUsed() const { return internal::ToIntSize(SpaceUsedLong()); }
300 
301   // Debugging & Testing----------------------------------------------
302 
303   // Generates a human readable form of this message, useful for debugging
304   // and other purposes.
305   std::string DebugString() const;
306   // Like DebugString(), but with less whitespace.
307   std::string ShortDebugString() const;
308   // Like DebugString(), but do not escape UTF-8 byte sequences.
309   std::string Utf8DebugString() const;
310   // Convenience function useful in GDB.  Prints DebugString() to stdout.
311   void PrintDebugString() const;
312 
313   // Reflection-based methods ----------------------------------------
314   // These methods are pure-virtual in MessageLite, but Message provides
315   // reflection-based default implementations.
316 
317   std::string GetTypeName() const override;
318   void Clear() override;
319 
320   // Returns whether all required fields have been set. Note that required
321   // fields no longer exist starting in proto3.
322   bool IsInitialized() const override;
323 
324   void CheckTypeAndMergeFrom(const MessageLite& other) override;
325   // Reflective parser
326   const char* _InternalParse(const char* ptr,
327                              internal::ParseContext* ctx) override;
328   size_t ByteSizeLong() const override;
329   uint8* _InternalSerialize(uint8* target,
330                             io::EpsCopyOutputStream* stream) const override;
331 
332  private:
333   // This is called only by the default implementation of ByteSize(), to
334   // update the cached size.  If you override ByteSize(), you do not need
335   // to override this.  If you do not override ByteSize(), you MUST override
336   // this; the default implementation will crash.
337   //
338   // The method is private because subclasses should never call it; only
339   // override it.  Yes, C++ lets you do that.  Crazy, huh?
340   virtual void SetCachedSize(int size) const;
341 
342  public:
343   // Introspection ---------------------------------------------------
344 
345 
346   // Get a non-owning pointer to a Descriptor for this message's type.  This
347   // describes what fields the message contains, the types of those fields, etc.
348   // This object remains property of the Message.
GetDescriptor()349   const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
350 
351   // Get a non-owning pointer to the Reflection interface for this Message,
352   // which can be used to read and modify the fields of the Message dynamically
353   // (in other words, without knowing the message type at compile time).  This
354   // object remains property of the Message.
GetReflection()355   const Reflection* GetReflection() const { return GetMetadata().reflection; }
356 
357  protected:
358   // Get a struct containing the metadata for the Message, which is used in turn
359   // to implement GetDescriptor() and GetReflection() above.
360   virtual Metadata GetMetadata() const = 0;
361 
Message(Arena * arena)362   inline explicit Message(Arena* arena) : MessageLite(arena) {}
363 
364 
365  private:
366   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
367 };
368 
369 namespace internal {
370 // Forward-declare interfaces used to implement RepeatedFieldRef.
371 // These are protobuf internals that users shouldn't care about.
372 class RepeatedFieldAccessor;
373 }  // namespace internal
374 
375 // Forward-declare RepeatedFieldRef templates. The second type parameter is
376 // used for SFINAE tricks. Users should ignore it.
377 template <typename T, typename Enable = void>
378 class RepeatedFieldRef;
379 
380 template <typename T, typename Enable = void>
381 class MutableRepeatedFieldRef;
382 
383 // This interface contains methods that can be used to dynamically access
384 // and modify the fields of a protocol message.  Their semantics are
385 // similar to the accessors the protocol compiler generates.
386 //
387 // To get the Reflection for a given Message, call Message::GetReflection().
388 //
389 // This interface is separate from Message only for efficiency reasons;
390 // the vast majority of implementations of Message will share the same
391 // implementation of Reflection (GeneratedMessageReflection,
392 // defined in generated_message.h), and all Messages of a particular class
393 // should share the same Reflection object (though you should not rely on
394 // the latter fact).
395 //
396 // There are several ways that these methods can be used incorrectly.  For
397 // example, any of the following conditions will lead to undefined
398 // results (probably assertion failures):
399 // - The FieldDescriptor is not a field of this message type.
400 // - The method called is not appropriate for the field's type.  For
401 //   each field type in FieldDescriptor::TYPE_*, there is only one
402 //   Get*() method, one Set*() method, and one Add*() method that is
403 //   valid for that type.  It should be obvious which (except maybe
404 //   for TYPE_BYTES, which are represented using strings in C++).
405 // - A Get*() or Set*() method for singular fields is called on a repeated
406 //   field.
407 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
408 //   field.
409 // - The Message object passed to any method is not of the right type for
410 //   this Reflection object (i.e. message.GetReflection() != reflection).
411 //
412 // You might wonder why there is not any abstract representation for a field
413 // of arbitrary type.  E.g., why isn't there just a "GetField()" method that
414 // returns "const Field&", where "Field" is some class with accessors like
415 // "GetInt32Value()".  The problem is that someone would have to deal with
416 // allocating these Field objects.  For generated message classes, having to
417 // allocate space for an additional object to wrap every field would at least
418 // double the message's memory footprint, probably worse.  Allocating the
419 // objects on-demand, on the other hand, would be expensive and prone to
420 // memory leaks.  So, instead we ended up with this flat interface.
421 class PROTOBUF_EXPORT Reflection final {
422  public:
423   // Get the UnknownFieldSet for the message.  This contains fields which
424   // were seen when the Message was parsed but were not recognized according
425   // to the Message's definition.
426   const UnknownFieldSet& GetUnknownFields(const Message& message) const;
427   // Get a mutable pointer to the UnknownFieldSet for the message.  This
428   // contains fields which were seen when the Message was parsed but were not
429   // recognized according to the Message's definition.
430   UnknownFieldSet* MutableUnknownFields(Message* message) const;
431 
432   // Estimate the amount of memory used by the message object.
433   size_t SpaceUsedLong(const Message& message) const;
434 
435   PROTOBUF_DEPRECATED_MSG("Please use SpaceUsedLong() instead")
SpaceUsed(const Message & message)436   int SpaceUsed(const Message& message) const {
437     return internal::ToIntSize(SpaceUsedLong(message));
438   }
439 
440   // Check if the given non-repeated field is set.
441   bool HasField(const Message& message, const FieldDescriptor* field) const;
442 
443   // Get the number of elements of a repeated field.
444   int FieldSize(const Message& message, const FieldDescriptor* field) const;
445 
446   // Clear the value of a field, so that HasField() returns false or
447   // FieldSize() returns zero.
448   void ClearField(Message* message, const FieldDescriptor* field) const;
449 
450   // Check if the oneof is set. Returns true if any field in oneof
451   // is set, false otherwise.
452   bool HasOneof(const Message& message,
453                 const OneofDescriptor* oneof_descriptor) const;
454 
455   void ClearOneof(Message* message,
456                   const OneofDescriptor* oneof_descriptor) const;
457 
458   // Returns the field descriptor if the oneof is set. nullptr otherwise.
459   const FieldDescriptor* GetOneofFieldDescriptor(
460       const Message& message, const OneofDescriptor* oneof_descriptor) const;
461 
462   // Removes the last element of a repeated field.
463   // We don't provide a way to remove any element other than the last
464   // because it invites inefficient use, such as O(n^2) filtering loops
465   // that should have been O(n).  If you want to remove an element other
466   // than the last, the best way to do it is to re-arrange the elements
467   // (using Swap()) so that the one you want removed is at the end, then
468   // call RemoveLast().
469   void RemoveLast(Message* message, const FieldDescriptor* field) const;
470   // Removes the last element of a repeated message field, and returns the
471   // pointer to the caller.  Caller takes ownership of the returned pointer.
472   Message* ReleaseLast(Message* message, const FieldDescriptor* field) const;
473 
474   // Swap the complete contents of two messages.
475   void Swap(Message* message1, Message* message2) const;
476 
477   // Swap fields listed in fields vector of two messages.
478   void SwapFields(Message* message1, Message* message2,
479                   const std::vector<const FieldDescriptor*>& fields) const;
480 
481   // Swap two elements of a repeated field.
482   void SwapElements(Message* message, const FieldDescriptor* field, int index1,
483                     int index2) const;
484 
485   // List all fields of the message which are currently set, except for unknown
486   // fields, but including extension known to the parser (i.e. compiled in).
487   // Singular fields will only be listed if HasField(field) would return true
488   // and repeated fields will only be listed if FieldSize(field) would return
489   // non-zero.  Fields (both normal fields and extension fields) will be listed
490   // ordered by field number.
491   // Use Reflection::GetUnknownFields() or message.unknown_fields() to also get
492   // access to fields/extensions unknown to the parser.
493   void ListFields(const Message& message,
494                   std::vector<const FieldDescriptor*>* output) const;
495 
496   // Singular field getters ------------------------------------------
497   // These get the value of a non-repeated field.  They return the default
498   // value for fields that aren't set.
499 
500   int32 GetInt32(const Message& message, const FieldDescriptor* field) const;
501   int64 GetInt64(const Message& message, const FieldDescriptor* field) const;
502   uint32 GetUInt32(const Message& message, const FieldDescriptor* field) const;
503   uint64 GetUInt64(const Message& message, const FieldDescriptor* field) const;
504   float GetFloat(const Message& message, const FieldDescriptor* field) const;
505   double GetDouble(const Message& message, const FieldDescriptor* field) const;
506   bool GetBool(const Message& message, const FieldDescriptor* field) const;
507   std::string GetString(const Message& message,
508                         const FieldDescriptor* field) const;
509   const EnumValueDescriptor* GetEnum(const Message& message,
510                                      const FieldDescriptor* field) const;
511 
512   // GetEnumValue() returns an enum field's value as an integer rather than
513   // an EnumValueDescriptor*. If the integer value does not correspond to a
514   // known value descriptor, a new value descriptor is created. (Such a value
515   // will only be present when the new unknown-enum-value semantics are enabled
516   // for a message.)
517   int GetEnumValue(const Message& message, const FieldDescriptor* field) const;
518 
519   // See MutableMessage() for the meaning of the "factory" parameter.
520   const Message& GetMessage(const Message& message,
521                             const FieldDescriptor* field,
522                             MessageFactory* factory = nullptr) const;
523 
524   // Get a string value without copying, if possible.
525   //
526   // GetString() necessarily returns a copy of the string.  This can be
527   // inefficient when the std::string is already stored in a std::string object
528   // in the underlying message.  GetStringReference() will return a reference to
529   // the underlying std::string in this case.  Otherwise, it will copy the
530   // string into *scratch and return that.
531   //
532   // Note:  It is perfectly reasonable and useful to write code like:
533   //     str = reflection->GetStringReference(message, field, &str);
534   //   This line would ensure that only one copy of the string is made
535   //   regardless of the field's underlying representation.  When initializing
536   //   a newly-constructed string, though, it's just as fast and more
537   //   readable to use code like:
538   //     std::string str = reflection->GetString(message, field);
539   const std::string& GetStringReference(const Message& message,
540                                         const FieldDescriptor* field,
541                                         std::string* scratch) const;
542 
543 
544   // Singular field mutators -----------------------------------------
545   // These mutate the value of a non-repeated field.
546 
547   void SetInt32(Message* message, const FieldDescriptor* field,
548                 int32 value) const;
549   void SetInt64(Message* message, const FieldDescriptor* field,
550                 int64 value) const;
551   void SetUInt32(Message* message, const FieldDescriptor* field,
552                  uint32 value) const;
553   void SetUInt64(Message* message, const FieldDescriptor* field,
554                  uint64 value) const;
555   void SetFloat(Message* message, const FieldDescriptor* field,
556                 float value) const;
557   void SetDouble(Message* message, const FieldDescriptor* field,
558                  double value) const;
559   void SetBool(Message* message, const FieldDescriptor* field,
560                bool value) const;
561   void SetString(Message* message, const FieldDescriptor* field,
562                  std::string value) const;
563   void SetEnum(Message* message, const FieldDescriptor* field,
564                const EnumValueDescriptor* value) const;
565   // Set an enum field's value with an integer rather than EnumValueDescriptor.
566   // For proto3 this is just setting the enum field to the value specified, for
567   // proto2 it's more complicated. If value is a known enum value the field is
568   // set as usual. If the value is unknown then it is added to the unknown field
569   // set. Note this matches the behavior of parsing unknown enum values.
570   // If multiple calls with unknown values happen than they are all added to the
571   // unknown field set in order of the calls.
572   void SetEnumValue(Message* message, const FieldDescriptor* field,
573                     int value) const;
574 
575   // Get a mutable pointer to a field with a message type.  If a MessageFactory
576   // is provided, it will be used to construct instances of the sub-message;
577   // otherwise, the default factory is used.  If the field is an extension that
578   // does not live in the same pool as the containing message's descriptor (e.g.
579   // it lives in an overlay pool), then a MessageFactory must be provided.
580   // If you have no idea what that meant, then you probably don't need to worry
581   // about it (don't provide a MessageFactory).  WARNING:  If the
582   // FieldDescriptor is for a compiled-in extension, then
583   // factory->GetPrototype(field->message_type()) MUST return an instance of
584   // the compiled-in class for this type, NOT DynamicMessage.
585   Message* MutableMessage(Message* message, const FieldDescriptor* field,
586                           MessageFactory* factory = nullptr) const;
587   // Replaces the message specified by 'field' with the already-allocated object
588   // sub_message, passing ownership to the message.  If the field contained a
589   // message, that message is deleted.  If sub_message is nullptr, the field is
590   // cleared.
591   void SetAllocatedMessage(Message* message, Message* sub_message,
592                            const FieldDescriptor* field) const;
593   // Releases the message specified by 'field' and returns the pointer,
594   // ReleaseMessage() will return the message the message object if it exists.
595   // Otherwise, it may or may not return nullptr.  In any case, if the return
596   // value is non-null, the caller takes ownership of the pointer.
597   // If the field existed (HasField() is true), then the returned pointer will
598   // be the same as the pointer returned by MutableMessage().
599   // This function has the same effect as ClearField().
600   Message* ReleaseMessage(Message* message, const FieldDescriptor* field,
601                           MessageFactory* factory = nullptr) const;
602 
603 
604   // Repeated field getters ------------------------------------------
605   // These get the value of one element of a repeated field.
606 
607   int32 GetRepeatedInt32(const Message& message, const FieldDescriptor* field,
608                          int index) const;
609   int64 GetRepeatedInt64(const Message& message, const FieldDescriptor* field,
610                          int index) const;
611   uint32 GetRepeatedUInt32(const Message& message, const FieldDescriptor* field,
612                            int index) const;
613   uint64 GetRepeatedUInt64(const Message& message, const FieldDescriptor* field,
614                            int index) const;
615   float GetRepeatedFloat(const Message& message, const FieldDescriptor* field,
616                          int index) const;
617   double GetRepeatedDouble(const Message& message, const FieldDescriptor* field,
618                            int index) const;
619   bool GetRepeatedBool(const Message& message, const FieldDescriptor* field,
620                        int index) const;
621   std::string GetRepeatedString(const Message& message,
622                                 const FieldDescriptor* field, int index) const;
623   const EnumValueDescriptor* GetRepeatedEnum(const Message& message,
624                                              const FieldDescriptor* field,
625                                              int index) const;
626   // GetRepeatedEnumValue() returns an enum field's value as an integer rather
627   // than an EnumValueDescriptor*. If the integer value does not correspond to a
628   // known value descriptor, a new value descriptor is created. (Such a value
629   // will only be present when the new unknown-enum-value semantics are enabled
630   // for a message.)
631   int GetRepeatedEnumValue(const Message& message, const FieldDescriptor* field,
632                            int index) const;
633   const Message& GetRepeatedMessage(const Message& message,
634                                     const FieldDescriptor* field,
635                                     int index) const;
636 
637   // See GetStringReference(), above.
638   const std::string& GetRepeatedStringReference(const Message& message,
639                                                 const FieldDescriptor* field,
640                                                 int index,
641                                                 std::string* scratch) const;
642 
643 
644   // Repeated field mutators -----------------------------------------
645   // These mutate the value of one element of a repeated field.
646 
647   void SetRepeatedInt32(Message* message, const FieldDescriptor* field,
648                         int index, int32 value) const;
649   void SetRepeatedInt64(Message* message, const FieldDescriptor* field,
650                         int index, int64 value) const;
651   void SetRepeatedUInt32(Message* message, const FieldDescriptor* field,
652                          int index, uint32 value) const;
653   void SetRepeatedUInt64(Message* message, const FieldDescriptor* field,
654                          int index, uint64 value) const;
655   void SetRepeatedFloat(Message* message, const FieldDescriptor* field,
656                         int index, float value) const;
657   void SetRepeatedDouble(Message* message, const FieldDescriptor* field,
658                          int index, double value) const;
659   void SetRepeatedBool(Message* message, const FieldDescriptor* field,
660                        int index, bool value) const;
661   void SetRepeatedString(Message* message, const FieldDescriptor* field,
662                          int index, std::string value) const;
663   void SetRepeatedEnum(Message* message, const FieldDescriptor* field,
664                        int index, const EnumValueDescriptor* value) const;
665   // Set an enum field's value with an integer rather than EnumValueDescriptor.
666   // For proto3 this is just setting the enum field to the value specified, for
667   // proto2 it's more complicated. If value is a known enum value the field is
668   // set as usual. If the value is unknown then it is added to the unknown field
669   // set. Note this matches the behavior of parsing unknown enum values.
670   // If multiple calls with unknown values happen than they are all added to the
671   // unknown field set in order of the calls.
672   void SetRepeatedEnumValue(Message* message, const FieldDescriptor* field,
673                             int index, int value) const;
674   // Get a mutable pointer to an element of a repeated field with a message
675   // type.
676   Message* MutableRepeatedMessage(Message* message,
677                                   const FieldDescriptor* field,
678                                   int index) const;
679 
680 
681   // Repeated field adders -------------------------------------------
682   // These add an element to a repeated field.
683 
684   void AddInt32(Message* message, const FieldDescriptor* field,
685                 int32 value) const;
686   void AddInt64(Message* message, const FieldDescriptor* field,
687                 int64 value) const;
688   void AddUInt32(Message* message, const FieldDescriptor* field,
689                  uint32 value) const;
690   void AddUInt64(Message* message, const FieldDescriptor* field,
691                  uint64 value) const;
692   void AddFloat(Message* message, const FieldDescriptor* field,
693                 float value) const;
694   void AddDouble(Message* message, const FieldDescriptor* field,
695                  double value) const;
696   void AddBool(Message* message, const FieldDescriptor* field,
697                bool value) const;
698   void AddString(Message* message, const FieldDescriptor* field,
699                  std::string value) const;
700   void AddEnum(Message* message, const FieldDescriptor* field,
701                const EnumValueDescriptor* value) const;
702   // Add an integer value to a repeated enum field rather than
703   // EnumValueDescriptor. For proto3 this is just setting the enum field to the
704   // value specified, for proto2 it's more complicated. If value is a known enum
705   // value the field is set as usual. If the value is unknown then it is added
706   // to the unknown field set. Note this matches the behavior of parsing unknown
707   // enum values. If multiple calls with unknown values happen than they are all
708   // added to the unknown field set in order of the calls.
709   void AddEnumValue(Message* message, const FieldDescriptor* field,
710                     int value) const;
711   // See MutableMessage() for comments on the "factory" parameter.
712   Message* AddMessage(Message* message, const FieldDescriptor* field,
713                       MessageFactory* factory = nullptr) const;
714 
715   // Appends an already-allocated object 'new_entry' to the repeated field
716   // specified by 'field' passing ownership to the message.
717   void AddAllocatedMessage(Message* message, const FieldDescriptor* field,
718                            Message* new_entry) const;
719 
720 
721   // Get a RepeatedFieldRef object that can be used to read the underlying
722   // repeated field. The type parameter T must be set according to the
723   // field's cpp type. The following table shows the mapping from cpp type
724   // to acceptable T.
725   //
726   //   field->cpp_type()      T
727   //   CPPTYPE_INT32        int32
728   //   CPPTYPE_UINT32       uint32
729   //   CPPTYPE_INT64        int64
730   //   CPPTYPE_UINT64       uint64
731   //   CPPTYPE_DOUBLE       double
732   //   CPPTYPE_FLOAT        float
733   //   CPPTYPE_BOOL         bool
734   //   CPPTYPE_ENUM         generated enum type or int32
735   //   CPPTYPE_STRING       std::string
736   //   CPPTYPE_MESSAGE      generated message type or google::protobuf::Message
737   //
738   // A RepeatedFieldRef object can be copied and the resulted object will point
739   // to the same repeated field in the same message. The object can be used as
740   // long as the message is not destroyed.
741   //
742   // Note that to use this method users need to include the header file
743   // "reflection.h" (which defines the RepeatedFieldRef class templates).
744   template <typename T>
745   RepeatedFieldRef<T> GetRepeatedFieldRef(const Message& message,
746                                           const FieldDescriptor* field) const;
747 
748   // Like GetRepeatedFieldRef() but return an object that can also be used
749   // manipulate the underlying repeated field.
750   template <typename T>
751   MutableRepeatedFieldRef<T> GetMutableRepeatedFieldRef(
752       Message* message, const FieldDescriptor* field) const;
753 
754   // DEPRECATED. Please use Get(Mutable)RepeatedFieldRef() for repeated field
755   // access. The following repeated field accesors will be removed in the
756   // future.
757   //
758   // Repeated field accessors  -------------------------------------------------
759   // The methods above, e.g. GetRepeatedInt32(msg, fd, index), provide singular
760   // access to the data in a RepeatedField.  The methods below provide aggregate
761   // access by exposing the RepeatedField object itself with the Message.
762   // Applying these templates to inappropriate types will lead to an undefined
763   // reference at link time (e.g. GetRepeatedField<***double>), or possibly a
764   // template matching error at compile time (e.g. GetRepeatedPtrField<File>).
765   //
766   // Usage example: my_doubs = refl->GetRepeatedField<double>(msg, fd);
767 
768   // DEPRECATED. Please use GetRepeatedFieldRef().
769   //
770   // for T = Cord and all protobuf scalar types except enums.
771   template <typename T>
772   PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
GetRepeatedField(const Message & msg,const FieldDescriptor * d)773   const RepeatedField<T>& GetRepeatedField(const Message& msg,
774                                            const FieldDescriptor* d) const {
775     return GetRepeatedFieldInternal<T>(msg, d);
776   }
777 
778   // DEPRECATED. Please use GetMutableRepeatedFieldRef().
779   //
780   // for T = Cord and all protobuf scalar types except enums.
781   template <typename T>
782   PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
MutableRepeatedField(Message * msg,const FieldDescriptor * d)783   RepeatedField<T>* MutableRepeatedField(Message* msg,
784                                          const FieldDescriptor* d) const {
785     return MutableRepeatedFieldInternal<T>(msg, d);
786   }
787 
788   // DEPRECATED. Please use GetRepeatedFieldRef().
789   //
790   // for T = std::string, google::protobuf::internal::StringPieceField
791   //         google::protobuf::Message & descendants.
792   template <typename T>
793   PROTOBUF_DEPRECATED_MSG("Please use GetRepeatedFieldRef() instead")
GetRepeatedPtrField(const Message & msg,const FieldDescriptor * d)794   const RepeatedPtrField<T>& GetRepeatedPtrField(
795       const Message& msg, const FieldDescriptor* d) const {
796     return GetRepeatedPtrFieldInternal<T>(msg, d);
797   }
798 
799   // DEPRECATED. Please use GetMutableRepeatedFieldRef().
800   //
801   // for T = std::string, google::protobuf::internal::StringPieceField
802   //         google::protobuf::Message & descendants.
803   template <typename T>
804   PROTOBUF_DEPRECATED_MSG("Please use GetMutableRepeatedFieldRef() instead")
MutableRepeatedPtrField(Message * msg,const FieldDescriptor * d)805   RepeatedPtrField<T>* MutableRepeatedPtrField(Message* msg,
806                                                const FieldDescriptor* d) const {
807     return MutableRepeatedPtrFieldInternal<T>(msg, d);
808   }
809 
810   // Extensions ----------------------------------------------------------------
811 
812   // Try to find an extension of this message type by fully-qualified field
813   // name.  Returns nullptr if no extension is known for this name or number.
814   const FieldDescriptor* FindKnownExtensionByName(
815       const std::string& name) const;
816 
817   // Try to find an extension of this message type by field number.
818   // Returns nullptr if no extension is known for this name or number.
819   const FieldDescriptor* FindKnownExtensionByNumber(int number) const;
820 
821   // Feature Flags -------------------------------------------------------------
822 
823   // Does this message support storing arbitrary integer values in enum fields?
824   // If |true|, GetEnumValue/SetEnumValue and associated repeated-field versions
825   // take arbitrary integer values, and the legacy GetEnum() getter will
826   // dynamically create an EnumValueDescriptor for any integer value without
827   // one. If |false|, setting an unknown enum value via the integer-based
828   // setters results in undefined behavior (in practice, GOOGLE_DCHECK-fails).
829   //
830   // Generic code that uses reflection to handle messages with enum fields
831   // should check this flag before using the integer-based setter, and either
832   // downgrade to a compatible value or use the UnknownFieldSet if not. For
833   // example:
834   //
835   //   int new_value = GetValueFromApplicationLogic();
836   //   if (reflection->SupportsUnknownEnumValues()) {
837   //     reflection->SetEnumValue(message, field, new_value);
838   //   } else {
839   //     if (field_descriptor->enum_type()->
840   //             FindValueByNumber(new_value) != nullptr) {
841   //       reflection->SetEnumValue(message, field, new_value);
842   //     } else if (emit_unknown_enum_values) {
843   //       reflection->MutableUnknownFields(message)->AddVarint(
844   //           field->number(), new_value);
845   //     } else {
846   //       // convert value to a compatible/default value.
847   //       new_value = CompatibleDowngrade(new_value);
848   //       reflection->SetEnumValue(message, field, new_value);
849   //     }
850   //   }
851   bool SupportsUnknownEnumValues() const;
852 
853   // Returns the MessageFactory associated with this message.  This can be
854   // useful for determining if a message is a generated message or not, for
855   // example:
856   //   if (message->GetReflection()->GetMessageFactory() ==
857   //       google::protobuf::MessageFactory::generated_factory()) {
858   //     // This is a generated message.
859   //   }
860   // It can also be used to create more messages of this type, though
861   // Message::New() is an easier way to accomplish this.
862   MessageFactory* GetMessageFactory() const;
863 
864  private:
865   template <typename T>
866   const RepeatedField<T>& GetRepeatedFieldInternal(
867       const Message& message, const FieldDescriptor* field) const;
868   template <typename T>
869   RepeatedField<T>* MutableRepeatedFieldInternal(
870       Message* message, const FieldDescriptor* field) const;
871   template <typename T>
872   const RepeatedPtrField<T>& GetRepeatedPtrFieldInternal(
873       const Message& message, const FieldDescriptor* field) const;
874   template <typename T>
875   RepeatedPtrField<T>* MutableRepeatedPtrFieldInternal(
876       Message* message, const FieldDescriptor* field) const;
877   // Obtain a pointer to a Repeated Field Structure and do some type checking:
878   //   on field->cpp_type(),
879   //   on field->field_option().ctype() (if ctype >= 0)
880   //   of field->message_type() (if message_type != nullptr).
881   // We use 2 routine rather than 4 (const vs mutable) x (scalar vs pointer).
882   void* MutableRawRepeatedField(Message* message, const FieldDescriptor* field,
883                                 FieldDescriptor::CppType, int ctype,
884                                 const Descriptor* message_type) const;
885 
886   const void* GetRawRepeatedField(const Message& message,
887                                   const FieldDescriptor* field,
888                                   FieldDescriptor::CppType cpptype, int ctype,
889                                   const Descriptor* message_type) const;
890 
891   // The following methods are used to implement (Mutable)RepeatedFieldRef.
892   // A Ref object will store a raw pointer to the repeated field data (obtained
893   // from RepeatedFieldData()) and a pointer to a Accessor (obtained from
894   // RepeatedFieldAccessor) which will be used to access the raw data.
895 
896   // Returns a raw pointer to the repeated field
897   //
898   // "cpp_type" and "message_type" are deduced from the type parameter T passed
899   // to Get(Mutable)RepeatedFieldRef. If T is a generated message type,
900   // "message_type" should be set to its descriptor. Otherwise "message_type"
901   // should be set to nullptr. Implementations of this method should check
902   // whether "cpp_type"/"message_type" is consistent with the actual type of the
903   // field. We use 1 routine rather than 2 (const vs mutable) because it is
904   // protected and it doesn't change the message.
905   void* RepeatedFieldData(Message* message, const FieldDescriptor* field,
906                           FieldDescriptor::CppType cpp_type,
907                           const Descriptor* message_type) const;
908 
909   // The returned pointer should point to a singleton instance which implements
910   // the RepeatedFieldAccessor interface.
911   const internal::RepeatedFieldAccessor* RepeatedFieldAccessor(
912       const FieldDescriptor* field) const;
913 
914   // Lists all fields of the message which are currently set, except for unknown
915   // fields and stripped fields. See ListFields for details.
916   void ListFieldsOmitStripped(
917       const Message& message,
918       std::vector<const FieldDescriptor*>* output) const;
919 
IsMessageStripped(const Descriptor * descriptor)920   bool IsMessageStripped(const Descriptor* descriptor) const {
921     return schema_.IsMessageStripped(descriptor);
922   }
923 
924   friend class TextFormat;
925 
926   void ListFieldsMayFailOnStripped(
927       const Message& message, bool should_fail,
928       std::vector<const FieldDescriptor*>* output) const;
929 
930   const Descriptor* const descriptor_;
931   const internal::ReflectionSchema schema_;
932   const DescriptorPool* const descriptor_pool_;
933   MessageFactory* const message_factory_;
934 
935   // Last non weak field index. This is an optimization when most weak fields
936   // are at the end of the containing message. If a message proto doesn't
937   // contain weak fields, then this field equals descriptor_->field_count().
938   int last_non_weak_field_index_;
939 
940   template <typename T, typename Enable>
941   friend class RepeatedFieldRef;
942   template <typename T, typename Enable>
943   friend class MutableRepeatedFieldRef;
944   friend class ::PROTOBUF_NAMESPACE_ID::MessageLayoutInspector;
945   friend class ::PROTOBUF_NAMESPACE_ID::AssignDescriptorsHelper;
946   friend class DynamicMessageFactory;
947   friend class python::MapReflectionFriend;
948 #define GOOGLE_PROTOBUF_HAS_CEL_MAP_REFLECTION_FRIEND
949   friend class expr::CelMapReflectionFriend;
950   friend class internal::MapFieldReflectionTest;
951   friend class internal::MapKeySorter;
952   friend class internal::WireFormat;
953   friend class internal::ReflectionOps;
954   // Needed for implementing text format for map.
955   friend class internal::MapFieldPrinterHelper;
956 
957   Reflection(const Descriptor* descriptor,
958              const internal::ReflectionSchema& schema,
959              const DescriptorPool* pool, MessageFactory* factory);
960 
961   // Special version for specialized implementations of string.  We can't
962   // call MutableRawRepeatedField directly here because we don't have access to
963   // FieldOptions::* which are defined in descriptor.pb.h.  Including that
964   // file here is not possible because it would cause a circular include cycle.
965   // We use 1 routine rather than 2 (const vs mutable) because it is private
966   // and mutable a repeated string field doesn't change the message.
967   void* MutableRawRepeatedString(Message* message, const FieldDescriptor* field,
968                                  bool is_string) const;
969 
970   friend class MapReflectionTester;
971   // Returns true if key is in map. Returns false if key is not in map field.
972   bool ContainsMapKey(const Message& message, const FieldDescriptor* field,
973                       const MapKey& key) const;
974 
975   // If key is in map field: Saves the value pointer to val and returns
976   // false. If key in not in map field: Insert the key into map, saves
977   // value pointer to val and returns true.
978   bool InsertOrLookupMapValue(Message* message, const FieldDescriptor* field,
979                               const MapKey& key, MapValueRef* val) const;
980 
981   // Delete and returns true if key is in the map field. Returns false
982   // otherwise.
983   bool DeleteMapValue(Message* message, const FieldDescriptor* field,
984                       const MapKey& key) const;
985 
986   // Returns a MapIterator referring to the first element in the map field.
987   // If the map field is empty, this function returns the same as
988   // reflection::MapEnd. Mutation to the field may invalidate the iterator.
989   MapIterator MapBegin(Message* message, const FieldDescriptor* field) const;
990 
991   // Returns a MapIterator referring to the theoretical element that would
992   // follow the last element in the map field. It does not point to any
993   // real element. Mutation to the field may invalidate the iterator.
994   MapIterator MapEnd(Message* message, const FieldDescriptor* field) const;
995 
996   // Get the number of <key, value> pair of a map field. The result may be
997   // different from FieldSize which can have duplicate keys.
998   int MapSize(const Message& message, const FieldDescriptor* field) const;
999 
1000   // Help method for MapIterator.
1001   friend class MapIterator;
1002   friend class WireFormatForMapFieldTest;
1003   internal::MapFieldBase* MutableMapData(Message* message,
1004                                          const FieldDescriptor* field) const;
1005 
1006   const internal::MapFieldBase* GetMapData(const Message& message,
1007                                            const FieldDescriptor* field) const;
1008 
1009   template <class T>
1010   const T& GetRawNonOneof(const Message& message,
1011                           const FieldDescriptor* field) const;
1012   template <class T>
1013   T* MutableRawNonOneof(Message* message, const FieldDescriptor* field) const;
1014 
1015   template <typename Type>
1016   const Type& GetRaw(const Message& message,
1017                      const FieldDescriptor* field) const;
1018   template <typename Type>
1019   inline Type* MutableRaw(Message* message, const FieldDescriptor* field) const;
1020   template <typename Type>
1021   const Type& DefaultRaw(const FieldDescriptor* field) const;
1022 
1023   inline const uint32* GetHasBits(const Message& message) const;
1024   inline uint32* MutableHasBits(Message* message) const;
1025   inline uint32 GetOneofCase(const Message& message,
1026                              const OneofDescriptor* oneof_descriptor) const;
1027   inline uint32* MutableOneofCase(
1028       Message* message, const OneofDescriptor* oneof_descriptor) const;
HasExtensionSet(const Message & message)1029   inline bool HasExtensionSet(const Message& message) const {
1030     return schema_.HasExtensionSet();
1031   }
1032   const internal::ExtensionSet& GetExtensionSet(const Message& message) const;
1033   internal::ExtensionSet* MutableExtensionSet(Message* message) const;
1034   inline Arena* GetArena(Message* message) const;
1035 
1036   inline const internal::InternalMetadata& GetInternalMetadata(
1037       const Message& message) const;
1038 
1039   internal::InternalMetadata* MutableInternalMetadata(Message* message) const;
1040 
1041   inline bool IsInlined(const FieldDescriptor* field) const;
1042 
1043   inline bool HasBit(const Message& message,
1044                      const FieldDescriptor* field) const;
1045   inline void SetBit(Message* message, const FieldDescriptor* field) const;
1046   inline void ClearBit(Message* message, const FieldDescriptor* field) const;
1047   inline void SwapBit(Message* message1, Message* message2,
1048                       const FieldDescriptor* field) const;
1049 
1050   // This function only swaps the field. Should swap corresponding has_bit
1051   // before or after using this function.
1052   void SwapField(Message* message1, Message* message2,
1053                  const FieldDescriptor* field) const;
1054 
1055   void SwapOneofField(Message* message1, Message* message2,
1056                       const OneofDescriptor* oneof_descriptor) const;
1057 
1058   inline bool HasOneofField(const Message& message,
1059                             const FieldDescriptor* field) const;
1060   inline void SetOneofCase(Message* message,
1061                            const FieldDescriptor* field) const;
1062   inline void ClearOneofField(Message* message,
1063                               const FieldDescriptor* field) const;
1064 
1065   template <typename Type>
1066   inline const Type& GetField(const Message& message,
1067                               const FieldDescriptor* field) const;
1068   template <typename Type>
1069   inline void SetField(Message* message, const FieldDescriptor* field,
1070                        const Type& value) const;
1071   template <typename Type>
1072   inline Type* MutableField(Message* message,
1073                             const FieldDescriptor* field) const;
1074   template <typename Type>
1075   inline const Type& GetRepeatedField(const Message& message,
1076                                       const FieldDescriptor* field,
1077                                       int index) const;
1078   template <typename Type>
1079   inline const Type& GetRepeatedPtrField(const Message& message,
1080                                          const FieldDescriptor* field,
1081                                          int index) const;
1082   template <typename Type>
1083   inline void SetRepeatedField(Message* message, const FieldDescriptor* field,
1084                                int index, Type value) const;
1085   template <typename Type>
1086   inline Type* MutableRepeatedField(Message* message,
1087                                     const FieldDescriptor* field,
1088                                     int index) const;
1089   template <typename Type>
1090   inline void AddField(Message* message, const FieldDescriptor* field,
1091                        const Type& value) const;
1092   template <typename Type>
1093   inline Type* AddField(Message* message, const FieldDescriptor* field) const;
1094 
1095   int GetExtensionNumberOrDie(const Descriptor* type) const;
1096 
1097   // Internal versions of EnumValue API perform no checking. Called after checks
1098   // by public methods.
1099   void SetEnumValueInternal(Message* message, const FieldDescriptor* field,
1100                             int value) const;
1101   void SetRepeatedEnumValueInternal(Message* message,
1102                                     const FieldDescriptor* field, int index,
1103                                     int value) const;
1104   void AddEnumValueInternal(Message* message, const FieldDescriptor* field,
1105                             int value) const;
1106 
1107   Message* UnsafeArenaReleaseMessage(Message* message,
1108                                      const FieldDescriptor* field,
1109                                      MessageFactory* factory = nullptr) const;
1110 
1111   void UnsafeArenaSetAllocatedMessage(Message* message, Message* sub_message,
1112                                       const FieldDescriptor* field) const;
1113 
1114   friend inline  // inline so nobody can call this function.
1115       void
1116       RegisterAllTypesInternal(const Metadata* file_level_metadata, int size);
1117   friend inline const char* ParseLenDelim(int field_number,
1118                                           const FieldDescriptor* field,
1119                                           Message* msg,
1120                                           const Reflection* reflection,
1121                                           const char* ptr,
1122                                           internal::ParseContext* ctx);
1123   friend inline const char* ParsePackedField(const FieldDescriptor* field,
1124                                              Message* msg,
1125                                              const Reflection* reflection,
1126                                              const char* ptr,
1127                                              internal::ParseContext* ctx);
1128 
1129   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
1130 };
1131 
1132 // Abstract interface for a factory for message objects.
1133 class PROTOBUF_EXPORT MessageFactory {
1134  public:
MessageFactory()1135   inline MessageFactory() {}
1136   virtual ~MessageFactory();
1137 
1138   // Given a Descriptor, gets or constructs the default (prototype) Message
1139   // of that type.  You can then call that message's New() method to construct
1140   // a mutable message of that type.
1141   //
1142   // Calling this method twice with the same Descriptor returns the same
1143   // object.  The returned object remains property of the factory.  Also, any
1144   // objects created by calling the prototype's New() method share some data
1145   // with the prototype, so these must be destroyed before the MessageFactory
1146   // is destroyed.
1147   //
1148   // The given descriptor must outlive the returned message, and hence must
1149   // outlive the MessageFactory.
1150   //
1151   // Some implementations do not support all types.  GetPrototype() will
1152   // return nullptr if the descriptor passed in is not supported.
1153   //
1154   // This method may or may not be thread-safe depending on the implementation.
1155   // Each implementation should document its own degree thread-safety.
1156   virtual const Message* GetPrototype(const Descriptor* type) = 0;
1157 
1158   // Gets a MessageFactory which supports all generated, compiled-in messages.
1159   // In other words, for any compiled-in type FooMessage, the following is true:
1160   //   MessageFactory::generated_factory()->GetPrototype(
1161   //     FooMessage::descriptor()) == FooMessage::default_instance()
1162   // This factory supports all types which are found in
1163   // DescriptorPool::generated_pool().  If given a descriptor from any other
1164   // pool, GetPrototype() will return nullptr.  (You can also check if a
1165   // descriptor is for a generated message by checking if
1166   // descriptor->file()->pool() == DescriptorPool::generated_pool().)
1167   //
1168   // This factory is 100% thread-safe; calling GetPrototype() does not modify
1169   // any shared data.
1170   //
1171   // This factory is a singleton.  The caller must not delete the object.
1172   static MessageFactory* generated_factory();
1173 
1174   // For internal use only:  Registers a .proto file at static initialization
1175   // time, to be placed in generated_factory.  The first time GetPrototype()
1176   // is called with a descriptor from this file, |register_messages| will be
1177   // called, with the file name as the parameter.  It must call
1178   // InternalRegisterGeneratedMessage() (below) to register each message type
1179   // in the file.  This strange mechanism is necessary because descriptors are
1180   // built lazily, so we can't register types by their descriptor until we
1181   // know that the descriptor exists.  |filename| must be a permanent string.
1182   static void InternalRegisterGeneratedFile(
1183       const google::protobuf::internal::DescriptorTable* table);
1184 
1185   // For internal use only:  Registers a message type.  Called only by the
1186   // functions which are registered with InternalRegisterGeneratedFile(),
1187   // above.
1188   static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
1189                                                const Message* prototype);
1190 
1191 
1192  private:
1193   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
1194 };
1195 
1196 #define DECLARE_GET_REPEATED_FIELD(TYPE)                           \
1197   template <>                                                      \
1198   PROTOBUF_EXPORT const RepeatedField<TYPE>&                       \
1199   Reflection::GetRepeatedFieldInternal<TYPE>(                      \
1200       const Message& message, const FieldDescriptor* field) const; \
1201                                                                    \
1202   template <>                                                      \
1203   PROTOBUF_EXPORT RepeatedField<TYPE>*                             \
1204   Reflection::MutableRepeatedFieldInternal<TYPE>(                  \
1205       Message * message, const FieldDescriptor* field) const;
1206 
1207 DECLARE_GET_REPEATED_FIELD(int32)
DECLARE_GET_REPEATED_FIELD(int64)1208 DECLARE_GET_REPEATED_FIELD(int64)
1209 DECLARE_GET_REPEATED_FIELD(uint32)
1210 DECLARE_GET_REPEATED_FIELD(uint64)
1211 DECLARE_GET_REPEATED_FIELD(float)
1212 DECLARE_GET_REPEATED_FIELD(double)
1213 DECLARE_GET_REPEATED_FIELD(bool)
1214 
1215 #undef DECLARE_GET_REPEATED_FIELD
1216 
1217 // Tries to downcast this message to a generated message type.  Returns nullptr
1218 // if this class is not an instance of T.  This works even if RTTI is disabled.
1219 //
1220 // This also has the effect of creating a strong reference to T that will
1221 // prevent the linker from stripping it out at link time.  This can be important
1222 // if you are using a DynamicMessageFactory that delegates to the generated
1223 // factory.
1224 template <typename T>
1225 const T* DynamicCastToGenerated(const Message* from) {
1226   // Compile-time assert that T is a generated type that has a
1227   // default_instance() accessor, but avoid actually calling it.
1228   const T& (*get_default_instance)() = &T::default_instance;
1229   (void)get_default_instance;
1230 
1231   // Compile-time assert that T is a subclass of google::protobuf::Message.
1232   const Message* unused = static_cast<T*>(nullptr);
1233   (void)unused;
1234 
1235 #if PROTOBUF_RTTI
1236   return dynamic_cast<const T*>(from);
1237 #else
1238   bool ok = T::default_instance().GetReflection() == from->GetReflection();
1239   return ok ? down_cast<const T*>(from) : nullptr;
1240 #endif
1241 }
1242 
1243 template <typename T>
DynamicCastToGenerated(Message * from)1244 T* DynamicCastToGenerated(Message* from) {
1245   const Message* message_const = from;
1246   return const_cast<T*>(DynamicCastToGenerated<T>(message_const));
1247 }
1248 
1249 // Call this function to ensure that this message's reflection is linked into
1250 // the binary:
1251 //
1252 //   google::protobuf::LinkMessageReflection<FooMessage>();
1253 //
1254 // This will ensure that the following lookup will succeed:
1255 //
1256 //   DescriptorPool::generated_pool()->FindMessageTypeByName("FooMessage");
1257 //
1258 // As a side-effect, it will also guarantee that anything else from the same
1259 // .proto file will also be available for lookup in the generated pool.
1260 //
1261 // This function does not actually register the message, so it does not need
1262 // to be called before the lookup.  However it does need to occur in a function
1263 // that cannot be stripped from the binary (ie. it must be reachable from main).
1264 //
1265 // Best practice is to call this function as close as possible to where the
1266 // reflection is actually needed.  This function is very cheap to call, so you
1267 // should not need to worry about its runtime overhead except in the tightest
1268 // of loops (on x86-64 it compiles into two "mov" instructions).
1269 template <typename T>
LinkMessageReflection()1270 void LinkMessageReflection() {
1271   internal::StrongReference(T::default_instance);
1272 }
1273 
1274 // =============================================================================
1275 // Implementation details for {Get,Mutable}RawRepeatedPtrField.  We provide
1276 // specializations for <std::string>, <StringPieceField> and <Message> and
1277 // handle everything else with the default template which will match any type
1278 // having a method with signature "static const google::protobuf::Descriptor*
1279 // descriptor()". Such a type presumably is a descendant of google::protobuf::Message.
1280 
1281 template <>
1282 inline const RepeatedPtrField<std::string>&
1283 Reflection::GetRepeatedPtrFieldInternal<std::string>(
1284     const Message& message, const FieldDescriptor* field) const {
1285   return *static_cast<RepeatedPtrField<std::string>*>(
1286       MutableRawRepeatedString(const_cast<Message*>(&message), field, true));
1287 }
1288 
1289 template <>
1290 inline RepeatedPtrField<std::string>*
1291 Reflection::MutableRepeatedPtrFieldInternal<std::string>(
1292     Message* message, const FieldDescriptor* field) const {
1293   return static_cast<RepeatedPtrField<std::string>*>(
1294       MutableRawRepeatedString(message, field, true));
1295 }
1296 
1297 
1298 // -----
1299 
1300 template <>
GetRepeatedPtrFieldInternal(const Message & message,const FieldDescriptor * field)1301 inline const RepeatedPtrField<Message>& Reflection::GetRepeatedPtrFieldInternal(
1302     const Message& message, const FieldDescriptor* field) const {
1303   return *static_cast<const RepeatedPtrField<Message>*>(GetRawRepeatedField(
1304       message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1305 }
1306 
1307 template <>
MutableRepeatedPtrFieldInternal(Message * message,const FieldDescriptor * field)1308 inline RepeatedPtrField<Message>* Reflection::MutableRepeatedPtrFieldInternal(
1309     Message* message, const FieldDescriptor* field) const {
1310   return static_cast<RepeatedPtrField<Message>*>(MutableRawRepeatedField(
1311       message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1, nullptr));
1312 }
1313 
1314 template <typename PB>
GetRepeatedPtrFieldInternal(const Message & message,const FieldDescriptor * field)1315 inline const RepeatedPtrField<PB>& Reflection::GetRepeatedPtrFieldInternal(
1316     const Message& message, const FieldDescriptor* field) const {
1317   return *static_cast<const RepeatedPtrField<PB>*>(
1318       GetRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE, -1,
1319                           PB::default_instance().GetDescriptor()));
1320 }
1321 
1322 template <typename PB>
MutableRepeatedPtrFieldInternal(Message * message,const FieldDescriptor * field)1323 inline RepeatedPtrField<PB>* Reflection::MutableRepeatedPtrFieldInternal(
1324     Message* message, const FieldDescriptor* field) const {
1325   return static_cast<RepeatedPtrField<PB>*>(
1326       MutableRawRepeatedField(message, field, FieldDescriptor::CPPTYPE_MESSAGE,
1327                               -1, PB::default_instance().GetDescriptor()));
1328 }
1329 
1330 template <typename Type>
DefaultRaw(const FieldDescriptor * field)1331 const Type& Reflection::DefaultRaw(const FieldDescriptor* field) const {
1332   return *reinterpret_cast<const Type*>(schema_.GetFieldDefault(field));
1333 }
1334 }  // namespace protobuf
1335 }  // namespace google
1336 
1337 #include <google/protobuf/port_undef.inc>
1338 
1339 #endif  // GOOGLE_PROTOBUF_MESSAGE_H__
1340