• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1# Tests for the correctly-rounded string -> float conversions
2# introduced in Python 2.7 and 3.1.
3
4import random
5import unittest
6import re
7import sys
8import test.support
9
10if getattr(sys, 'float_repr_style', '') != 'short':
11    raise unittest.SkipTest('correctly-rounded string->float conversions '
12                            'not available on this system')
13
14# Correctly rounded str -> float in pure Python, for comparison.
15
16strtod_parser = re.compile(r"""    # A numeric string consists of:
17    (?P<sign>[-+])?          # an optional sign, followed by
18    (?=\d|\.\d)              # a number with at least one digit
19    (?P<int>\d*)             # having a (possibly empty) integer part
20    (?:\.(?P<frac>\d*))?     # followed by an optional fractional part
21    (?:E(?P<exp>[-+]?\d+))?  # and an optional exponent
22    \Z
23""", re.VERBOSE | re.IGNORECASE).match
24
25# Pure Python version of correctly rounded string->float conversion.
26# Avoids any use of floating-point by returning the result as a hex string.
27def strtod(s, mant_dig=53, min_exp = -1021, max_exp = 1024):
28    """Convert a finite decimal string to a hex string representing an
29    IEEE 754 binary64 float.  Return 'inf' or '-inf' on overflow.
30    This function makes no use of floating-point arithmetic at any
31    stage."""
32
33    # parse string into a pair of integers 'a' and 'b' such that
34    # abs(decimal value) = a/b, along with a boolean 'negative'.
35    m = strtod_parser(s)
36    if m is None:
37        raise ValueError('invalid numeric string')
38    fraction = m.group('frac') or ''
39    intpart = int(m.group('int') + fraction)
40    exp = int(m.group('exp') or '0') - len(fraction)
41    negative = m.group('sign') == '-'
42    a, b = intpart*10**max(exp, 0), 10**max(0, -exp)
43
44    # quick return for zeros
45    if not a:
46        return '-0x0.0p+0' if negative else '0x0.0p+0'
47
48    # compute exponent e for result; may be one too small in the case
49    # that the rounded value of a/b lies in a different binade from a/b
50    d = a.bit_length() - b.bit_length()
51    d += (a >> d if d >= 0 else a << -d) >= b
52    e = max(d, min_exp) - mant_dig
53
54    # approximate a/b by number of the form q * 2**e; adjust e if necessary
55    a, b = a << max(-e, 0), b << max(e, 0)
56    q, r = divmod(a, b)
57    if 2*r > b or 2*r == b and q & 1:
58        q += 1
59        if q.bit_length() == mant_dig+1:
60            q //= 2
61            e += 1
62
63    # double check that (q, e) has the right form
64    assert q.bit_length() <= mant_dig and e >= min_exp - mant_dig
65    assert q.bit_length() == mant_dig or e == min_exp - mant_dig
66
67    # check for overflow and underflow
68    if e + q.bit_length() > max_exp:
69        return '-inf' if negative else 'inf'
70    if not q:
71        return '-0x0.0p+0' if negative else '0x0.0p+0'
72
73    # for hex representation, shift so # bits after point is a multiple of 4
74    hexdigs = 1 + (mant_dig-2)//4
75    shift = 3 - (mant_dig-2)%4
76    q, e = q << shift, e - shift
77    return '{}0x{:x}.{:0{}x}p{:+d}'.format(
78        '-' if negative else '',
79        q // 16**hexdigs,
80        q % 16**hexdigs,
81        hexdigs,
82        e + 4*hexdigs)
83
84TEST_SIZE = 10
85
86class StrtodTests(unittest.TestCase):
87    def check_strtod(self, s):
88        """Compare the result of Python's builtin correctly rounded
89        string->float conversion (using float) to a pure Python
90        correctly rounded string->float implementation.  Fail if the
91        two methods give different results."""
92
93        try:
94            fs = float(s)
95        except OverflowError:
96            got = '-inf' if s[0] == '-' else 'inf'
97        except MemoryError:
98            got = 'memory error'
99        else:
100            got = fs.hex()
101        expected = strtod(s)
102        self.assertEqual(expected, got,
103                         "Incorrectly rounded str->float conversion for {}: "
104                         "expected {}, got {}".format(s, expected, got))
105
106    def test_short_halfway_cases(self):
107        # exact halfway cases with a small number of significant digits
108        for k in 0, 5, 10, 15, 20:
109            # upper = smallest integer >= 2**54/5**k
110            upper = -(-2**54//5**k)
111            # lower = smallest odd number >= 2**53/5**k
112            lower = -(-2**53//5**k)
113            if lower % 2 == 0:
114                lower += 1
115            for i in range(TEST_SIZE):
116                # Select a random odd n in [2**53/5**k,
117                # 2**54/5**k). Then n * 10**k gives a halfway case
118                # with small number of significant digits.
119                n, e = random.randrange(lower, upper, 2), k
120
121                # Remove any additional powers of 5.
122                while n % 5 == 0:
123                    n, e = n // 5, e + 1
124                assert n % 10 in (1, 3, 7, 9)
125
126                # Try numbers of the form n * 2**p2 * 10**e, p2 >= 0,
127                # until n * 2**p2 has more than 20 significant digits.
128                digits, exponent = n, e
129                while digits < 10**20:
130                    s = '{}e{}'.format(digits, exponent)
131                    self.check_strtod(s)
132                    # Same again, but with extra trailing zeros.
133                    s = '{}e{}'.format(digits * 10**40, exponent - 40)
134                    self.check_strtod(s)
135                    digits *= 2
136
137                # Try numbers of the form n * 5**p2 * 10**(e - p5), p5
138                # >= 0, with n * 5**p5 < 10**20.
139                digits, exponent = n, e
140                while digits < 10**20:
141                    s = '{}e{}'.format(digits, exponent)
142                    self.check_strtod(s)
143                    # Same again, but with extra trailing zeros.
144                    s = '{}e{}'.format(digits * 10**40, exponent - 40)
145                    self.check_strtod(s)
146                    digits *= 5
147                    exponent -= 1
148
149    def test_halfway_cases(self):
150        # test halfway cases for the round-half-to-even rule
151        for i in range(100 * TEST_SIZE):
152            # bit pattern for a random finite positive (or +0.0) float
153            bits = random.randrange(2047*2**52)
154
155            # convert bit pattern to a number of the form m * 2**e
156            e, m = divmod(bits, 2**52)
157            if e:
158                m, e = m + 2**52, e - 1
159            e -= 1074
160
161            # add 0.5 ulps
162            m, e = 2*m + 1, e - 1
163
164            # convert to a decimal string
165            if e >= 0:
166                digits = m << e
167                exponent = 0
168            else:
169                # m * 2**e = (m * 5**-e) * 10**e
170                digits = m * 5**-e
171                exponent = e
172            s = '{}e{}'.format(digits, exponent)
173            self.check_strtod(s)
174
175    def test_boundaries(self):
176        # boundaries expressed as triples (n, e, u), where
177        # n*10**e is an approximation to the boundary value and
178        # u*10**e is 1ulp
179        boundaries = [
180            (10000000000000000000, -19, 1110),   # a power of 2 boundary (1.0)
181            (17976931348623159077, 289, 1995),   # overflow boundary (2.**1024)
182            (22250738585072013831, -327, 4941),  # normal/subnormal (2.**-1022)
183            (0, -327, 4941),                     # zero
184            ]
185        for n, e, u in boundaries:
186            for j in range(1000):
187                digits = n + random.randrange(-3*u, 3*u)
188                exponent = e
189                s = '{}e{}'.format(digits, exponent)
190                self.check_strtod(s)
191                n *= 10
192                u *= 10
193                e -= 1
194
195    def test_underflow_boundary(self):
196        # test values close to 2**-1075, the underflow boundary; similar
197        # to boundary_tests, except that the random error doesn't scale
198        # with n
199        for exponent in range(-400, -320):
200            base = 10**-exponent // 2**1075
201            for j in range(TEST_SIZE):
202                digits = base + random.randrange(-1000, 1000)
203                s = '{}e{}'.format(digits, exponent)
204                self.check_strtod(s)
205
206    def test_bigcomp(self):
207        for ndigs in 5, 10, 14, 15, 16, 17, 18, 19, 20, 40, 41, 50:
208            dig10 = 10**ndigs
209            for i in range(10 * TEST_SIZE):
210                digits = random.randrange(dig10)
211                exponent = random.randrange(-400, 400)
212                s = '{}e{}'.format(digits, exponent)
213                self.check_strtod(s)
214
215    def test_parsing(self):
216        # make '0' more likely to be chosen than other digits
217        digits = '000000123456789'
218        signs = ('+', '-', '')
219
220        # put together random short valid strings
221        # \d*[.\d*]?e
222        for i in range(1000):
223            for j in range(TEST_SIZE):
224                s = random.choice(signs)
225                intpart_len = random.randrange(5)
226                s += ''.join(random.choice(digits) for _ in range(intpart_len))
227                if random.choice([True, False]):
228                    s += '.'
229                    fracpart_len = random.randrange(5)
230                    s += ''.join(random.choice(digits)
231                                 for _ in range(fracpart_len))
232                else:
233                    fracpart_len = 0
234                if random.choice([True, False]):
235                    s += random.choice(['e', 'E'])
236                    s += random.choice(signs)
237                    exponent_len = random.randrange(1, 4)
238                    s += ''.join(random.choice(digits)
239                                 for _ in range(exponent_len))
240
241                if intpart_len + fracpart_len:
242                    self.check_strtod(s)
243                else:
244                    try:
245                        float(s)
246                    except ValueError:
247                        pass
248                    else:
249                        assert False, "expected ValueError"
250
251    @test.support.bigmemtest(size=test.support._2G+10, memuse=3, dry_run=False)
252    def test_oversized_digit_strings(self, maxsize):
253        # Input string whose length doesn't fit in an INT.
254        s = "1." + "1" * maxsize
255        with self.assertRaises(ValueError):
256            float(s)
257        del s
258
259        s = "0." + "0" * maxsize + "1"
260        with self.assertRaises(ValueError):
261            float(s)
262        del s
263
264    def test_large_exponents(self):
265        # Verify that the clipping of the exponent in strtod doesn't affect the
266        # output values.
267        def positive_exp(n):
268            """ Long string with value 1.0 and exponent n"""
269            return '0.{}1e+{}'.format('0'*(n-1), n)
270
271        def negative_exp(n):
272            """ Long string with value 1.0 and exponent -n"""
273            return '1{}e-{}'.format('0'*n, n)
274
275        self.assertEqual(float(positive_exp(10000)), 1.0)
276        self.assertEqual(float(positive_exp(20000)), 1.0)
277        self.assertEqual(float(positive_exp(30000)), 1.0)
278        self.assertEqual(float(negative_exp(10000)), 1.0)
279        self.assertEqual(float(negative_exp(20000)), 1.0)
280        self.assertEqual(float(negative_exp(30000)), 1.0)
281
282    def test_particular(self):
283        # inputs that produced crashes or incorrectly rounded results with
284        # previous versions of dtoa.c, for various reasons
285        test_strings = [
286            # issue 7632 bug 1, originally reported failing case
287            '2183167012312112312312.23538020374420446192e-370',
288            # 5 instances of issue 7632 bug 2
289            '12579816049008305546974391768996369464963024663104e-357',
290            '17489628565202117263145367596028389348922981857013e-357',
291            '18487398785991994634182916638542680759613590482273e-357',
292            '32002864200581033134358724675198044527469366773928e-358',
293            '94393431193180696942841837085033647913224148539854e-358',
294            '73608278998966969345824653500136787876436005957953e-358',
295            '64774478836417299491718435234611299336288082136054e-358',
296            '13704940134126574534878641876947980878824688451169e-357',
297            '46697445774047060960624497964425416610480524760471e-358',
298            # failing case for bug introduced by METD in r77451 (attempted
299            # fix for issue 7632, bug 2), and fixed in r77482.
300            '28639097178261763178489759107321392745108491825303e-311',
301            # two numbers demonstrating a flaw in the bigcomp 'dig == 0'
302            # correction block (issue 7632, bug 3)
303            '1.00000000000000001e44',
304            '1.0000000000000000100000000000000000000001e44',
305            # dtoa.c bug for numbers just smaller than a power of 2 (issue
306            # 7632, bug 4)
307            '99999999999999994487665465554760717039532578546e-47',
308            # failing case for off-by-one error introduced by METD in
309            # r77483 (dtoa.c cleanup), fixed in r77490
310            '965437176333654931799035513671997118345570045914469' #...
311            '6213413350821416312194420007991306908470147322020121018368e0',
312            # incorrect lsb detection for round-half-to-even when
313            # bc->scale != 0 (issue 7632, bug 6).
314            '104308485241983990666713401708072175773165034278685' #...
315            '682646111762292409330928739751702404658197872319129' #...
316            '036519947435319418387839758990478549477777586673075' #...
317            '945844895981012024387992135617064532141489278815239' #...
318            '849108105951619997829153633535314849999674266169258' #...
319            '928940692239684771590065027025835804863585454872499' #...
320            '320500023126142553932654370362024104462255244034053' #...
321            '203998964360882487378334860197725139151265590832887' #...
322            '433736189468858614521708567646743455601905935595381' #...
323            '852723723645799866672558576993978025033590728687206' #...
324            '296379801363024094048327273913079612469982585674824' #...
325            '156000783167963081616214710691759864332339239688734' #...
326            '656548790656486646106983450809073750535624894296242' #...
327            '072010195710276073042036425579852459556183541199012' #...
328            '652571123898996574563824424330960027873516082763671875e-1075',
329            # demonstration that original fix for issue 7632 bug 1 was
330            # buggy; the exit condition was too strong
331            '247032822920623295e-341',
332            # demonstrate similar problem to issue 7632 bug1: crash
333            # with 'oversized quotient in quorem' message.
334            '99037485700245683102805043437346965248029601286431e-373',
335            '99617639833743863161109961162881027406769510558457e-373',
336            '98852915025769345295749278351563179840130565591462e-372',
337            '99059944827693569659153042769690930905148015876788e-373',
338            '98914979205069368270421829889078356254059760327101e-372',
339            # issue 7632 bug 5: the following 2 strings convert differently
340            '1000000000000000000000000000000000000000e-16',
341            '10000000000000000000000000000000000000000e-17',
342            # issue 7632 bug 7
343            '991633793189150720000000000000000000000000000000000000000e-33',
344            # And another, similar, failing halfway case
345            '4106250198039490000000000000000000000000000000000000000e-38',
346            # issue 7632 bug 8:  the following produced 10.0
347            '10.900000000000000012345678912345678912345',
348
349            # two humongous values from issue 7743
350            '116512874940594195638617907092569881519034793229385' #...
351            '228569165191541890846564669771714896916084883987920' #...
352            '473321268100296857636200926065340769682863349205363' #...
353            '349247637660671783209907949273683040397979984107806' #...
354            '461822693332712828397617946036239581632976585100633' #...
355            '520260770761060725403904123144384571612073732754774' #...
356            '588211944406465572591022081973828448927338602556287' #...
357            '851831745419397433012491884869454462440536895047499' #...
358            '436551974649731917170099387762871020403582994193439' #...
359            '761933412166821484015883631622539314203799034497982' #...
360            '130038741741727907429575673302461380386596501187482' #...
361            '006257527709842179336488381672818798450229339123527' #...
362            '858844448336815912020452294624916993546388956561522' #...
363            '161875352572590420823607478788399460162228308693742' #...
364            '05287663441403533948204085390898399055004119873046875e-1075',
365
366            '525440653352955266109661060358202819561258984964913' #...
367            '892256527849758956045218257059713765874251436193619' #...
368            '443248205998870001633865657517447355992225852945912' #...
369            '016668660000210283807209850662224417504752264995360' #...
370            '631512007753855801075373057632157738752800840302596' #...
371            '237050247910530538250008682272783660778181628040733' #...
372            '653121492436408812668023478001208529190359254322340' #...
373            '397575185248844788515410722958784640926528544043090' #...
374            '115352513640884988017342469275006999104519620946430' #...
375            '818767147966495485406577703972687838176778993472989' #...
376            '561959000047036638938396333146685137903018376496408' #...
377            '319705333868476925297317136513970189073693314710318' #...
378            '991252811050501448326875232850600451776091303043715' #...
379            '157191292827614046876950225714743118291034780466325' #...
380            '085141343734564915193426994587206432697337118211527' #...
381            '278968731294639353354774788602467795167875117481660' #...
382            '4738791256853675690543663283782215866825e-1180',
383
384            # exercise exit conditions in bigcomp comparison loop
385            '2602129298404963083833853479113577253105939995688e2',
386            '260212929840496308383385347911357725310593999568896e0',
387            '26021292984049630838338534791135772531059399956889601e-2',
388            '260212929840496308383385347911357725310593999568895e0',
389            '260212929840496308383385347911357725310593999568897e0',
390            '260212929840496308383385347911357725310593999568996e0',
391            '260212929840496308383385347911357725310593999568866e0',
392            # 2**53
393            '9007199254740992.00',
394            # 2**1024 - 2**970:  exact overflow boundary.  All values
395            # smaller than this should round to something finite;  any value
396            # greater than or equal to this one overflows.
397            '179769313486231580793728971405303415079934132710037' #...
398            '826936173778980444968292764750946649017977587207096' #...
399            '330286416692887910946555547851940402630657488671505' #...
400            '820681908902000708383676273854845817711531764475730' #...
401            '270069855571366959622842914819860834936475292719074' #...
402            '168444365510704342711559699508093042880177904174497792',
403            # 2**1024 - 2**970 - tiny
404            '179769313486231580793728971405303415079934132710037' #...
405            '826936173778980444968292764750946649017977587207096' #...
406            '330286416692887910946555547851940402630657488671505' #...
407            '820681908902000708383676273854845817711531764475730' #...
408            '270069855571366959622842914819860834936475292719074' #...
409            '168444365510704342711559699508093042880177904174497791.999',
410            # 2**1024 - 2**970 + tiny
411            '179769313486231580793728971405303415079934132710037' #...
412            '826936173778980444968292764750946649017977587207096' #...
413            '330286416692887910946555547851940402630657488671505' #...
414            '820681908902000708383676273854845817711531764475730' #...
415            '270069855571366959622842914819860834936475292719074' #...
416            '168444365510704342711559699508093042880177904174497792.001',
417            # 1 - 2**-54, +-tiny
418            '999999999999999944488848768742172978818416595458984375e-54',
419            '9999999999999999444888487687421729788184165954589843749999999e-54',
420            '9999999999999999444888487687421729788184165954589843750000001e-54',
421            # Value found by Rick Regan that gives a result of 2**-968
422            # under Gay's dtoa.c (as of Nov 04, 2010);  since fixed.
423            # (Fixed some time ago in Python's dtoa.c.)
424            '0.0000000000000000000000000000000000000000100000000' #...
425            '000000000576129113423785429971690421191214034235435' #...
426            '087147763178149762956868991692289869941246658073194' #...
427            '51982237978882039897143840789794921875',
428            ]
429        for s in test_strings:
430            self.check_strtod(s)
431
432if __name__ == "__main__":
433    unittest.main()
434