• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG-4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #ifndef AVCODEC_H264DEC_H
29 #define AVCODEC_H264DEC_H
30 
31 #include "libavutil/buffer.h"
32 #include "libavutil/intreadwrite.h"
33 #include "libavutil/mem_internal.h"
34 
35 #include "cabac.h"
36 #include "error_resilience.h"
37 #include "h264_parse.h"
38 #include "h264_ps.h"
39 #include "h264_sei.h"
40 #include "h2645_parse.h"
41 #include "h264chroma.h"
42 #include "h264dsp.h"
43 #include "h264pred.h"
44 #include "h264qpel.h"
45 #include "h274.h"
46 #include "mpegutils.h"
47 #include "rectangle.h"
48 #include "videodsp.h"
49 
50 #define H264_MAX_PICTURE_COUNT 36
51 
52 /* Compiling in interlaced support reduces the speed
53  * of progressive decoding by about 2%. */
54 #define ALLOW_INTERLACE
55 
56 #define FMO 0
57 
58 /**
59  * The maximum number of slices supported by the decoder.
60  * must be a power of 2
61  */
62 #define MAX_SLICES 32
63 
64 #ifdef ALLOW_INTERLACE
65 #define MB_MBAFF(h)    (h)->mb_mbaff
66 #define MB_FIELD(sl)  (sl)->mb_field_decoding_flag
67 #define FRAME_MBAFF(h) (h)->mb_aff_frame
68 #define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
69 #define LEFT_MBS 2
70 #define LTOP     0
71 #define LBOT     1
72 #define LEFT(i)  (i)
73 #else
74 #define MB_MBAFF(h)      0
75 #define MB_FIELD(sl)     0
76 #define FRAME_MBAFF(h)   0
77 #define FIELD_PICTURE(h) 0
78 #undef  IS_INTERLACED
79 #define IS_INTERLACED(mb_type) 0
80 #define LEFT_MBS 1
81 #define LTOP     0
82 #define LBOT     0
83 #define LEFT(i)  0
84 #endif
85 #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
86 
87 #ifndef CABAC
88 #define CABAC(h) (h)->ps.pps->cabac
89 #endif
90 
91 #define CHROMA(h)    ((h)->ps.sps->chroma_format_idc)
92 #define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
93 #define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
94 
95 #define IS_REF0(a)         ((a) & MB_TYPE_REF0)
96 #define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
97 
98 /**
99  * Memory management control operation.
100  */
101 typedef struct MMCO {
102     MMCOOpcode opcode;
103     int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
104     int long_arg;       ///< index, pic_num, or num long refs depending on opcode
105 } MMCO;
106 
107 typedef struct H264Picture {
108     AVFrame *f;
109     ThreadFrame tf;
110 
111     AVFrame *f_grain;
112 
113     AVBufferRef *qscale_table_buf;
114     int8_t *qscale_table;
115 
116     AVBufferRef *motion_val_buf[2];
117     int16_t (*motion_val[2])[2];
118 
119     AVBufferRef *mb_type_buf;
120     uint32_t *mb_type;
121 
122     AVBufferRef *hwaccel_priv_buf;
123     void *hwaccel_picture_private; ///< hardware accelerator private data
124 
125     AVBufferRef *ref_index_buf[2];
126     int8_t *ref_index[2];
127 
128     int field_poc[2];       ///< top/bottom POC
129     int poc;                ///< frame POC
130     int frame_num;          ///< frame_num (raw frame_num from slice header)
131     int mmco_reset;         /**< MMCO_RESET set this 1. Reordering code must
132                                  not mix pictures before and after MMCO_RESET. */
133     int pic_id;             /**< pic_num (short -> no wrap version of pic_num,
134                                  pic_num & max_pic_num; long -> long_pic_num) */
135     int long_ref;           ///< 1->long term reference 0->short term reference
136     int ref_poc[2][2][32];  ///< POCs of the frames/fields used as reference (FIXME need per slice)
137     int ref_count[2][2];    ///< number of entries in ref_poc         (FIXME need per slice)
138     int mbaff;              ///< 1 -> MBAFF frame 0-> not MBAFF
139     int field_picture;      ///< whether or not picture was encoded in separate fields
140 
141 /**
142  * H264Picture.reference has this flag set,
143  * when the picture is held for delayed output.
144  */
145 #define DELAYED_PIC_REF  (1 << 2)
146     int reference;
147     int recovered;          ///< picture at IDR or recovery point + recovery count
148     int invalid_gap;
149     int sei_recovery_frame_cnt;
150     int needs_fg;           ///< whether picture needs film grain synthesis (see `f_grain`)
151 
152     AVBufferRef *pps_buf;
153     const PPS   *pps;
154 
155     int mb_width, mb_height;
156     int mb_stride;
157 } H264Picture;
158 
159 typedef struct H264Ref {
160     uint8_t *data[3];
161     int linesize[3];
162 
163     int reference;
164     int poc;
165     int pic_id;
166 
167     H264Picture *parent;
168 } H264Ref;
169 
170 typedef struct H264SliceContext {
171     const struct H264Context *h264;
172     GetBitContext gb;
173     ERContext *er;
174 
175     int slice_num;
176     int slice_type;
177     int slice_type_nos;         ///< S free slice type (SI/SP are remapped to I/P)
178     int slice_type_fixed;
179 
180     int qscale;
181     int chroma_qp[2];   // QPc
182     int qp_thresh;      ///< QP threshold to skip loopfilter
183     int last_qscale_diff;
184 
185     // deblock
186     int deblocking_filter;          ///< disable_deblocking_filter_idc with 1 <-> 0
187     int slice_alpha_c0_offset;
188     int slice_beta_offset;
189 
190     H264PredWeightTable pwt;
191 
192     int prev_mb_skipped;
193     int next_mb_skipped;
194 
195     int chroma_pred_mode;
196     int intra16x16_pred_mode;
197 
198     int8_t intra4x4_pred_mode_cache[5 * 8];
199     int8_t(*intra4x4_pred_mode);
200 
201     int topleft_mb_xy;
202     int top_mb_xy;
203     int topright_mb_xy;
204     int left_mb_xy[LEFT_MBS];
205 
206     int topleft_type;
207     int top_type;
208     int topright_type;
209     int left_type[LEFT_MBS];
210 
211     const uint8_t *left_block;
212     int topleft_partition;
213 
214     unsigned int topleft_samples_available;
215     unsigned int top_samples_available;
216     unsigned int topright_samples_available;
217     unsigned int left_samples_available;
218 
219     ptrdiff_t linesize, uvlinesize;
220     ptrdiff_t mb_linesize;  ///< may be equal to s->linesize or s->linesize * 2, for mbaff
221     ptrdiff_t mb_uvlinesize;
222 
223     int mb_x, mb_y;
224     int mb_xy;
225     int resync_mb_x;
226     int resync_mb_y;
227     unsigned int first_mb_addr;
228     // index of the first MB of the next slice
229     int next_slice_idx;
230     int mb_skip_run;
231     int is_complex;
232 
233     int picture_structure;
234     int mb_field_decoding_flag;
235     int mb_mbaff;               ///< mb_aff_frame && mb_field_decoding_flag
236 
237     int redundant_pic_count;
238 
239     /**
240      * number of neighbors (top and/or left) that used 8x8 dct
241      */
242     int neighbor_transform_size;
243 
244     int direct_spatial_mv_pred;
245     int col_parity;
246     int col_fieldoff;
247 
248     int cbp;
249     int top_cbp;
250     int left_cbp;
251 
252     int dist_scale_factor[32];
253     int dist_scale_factor_field[2][32];
254     int map_col_to_list0[2][16 + 32];
255     int map_col_to_list0_field[2][2][16 + 32];
256 
257     /**
258      * num_ref_idx_l0/1_active_minus1 + 1
259      */
260     unsigned int ref_count[2];          ///< counts frames or fields, depending on current mb mode
261     unsigned int list_count;
262     H264Ref ref_list[2][48];        /**< 0..15: frame refs, 16..47: mbaff field refs.
263                                          *   Reordered version of default_ref_list
264                                          *   according to picture reordering in slice header */
265     struct {
266         uint8_t op;
267         uint32_t val;
268     } ref_modifications[2][32];
269     int nb_ref_modifications[2];
270 
271     unsigned int pps_id;
272 
273     const uint8_t *intra_pcm_ptr;
274 
275     uint8_t *bipred_scratchpad;
276     uint8_t *edge_emu_buffer;
277     uint8_t (*top_borders[2])[(16 * 3) * 2];
278     int bipred_scratchpad_allocated;
279     int edge_emu_buffer_allocated;
280     int top_borders_allocated[2];
281 
282     /**
283      * non zero coeff count cache.
284      * is 64 if not available.
285      */
286     DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
287 
288     /**
289      * Motion vector cache.
290      */
291     DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
292     DECLARE_ALIGNED(8,  int8_t, ref_cache)[2][5 * 8];
293     DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
294     uint8_t direct_cache[5 * 8];
295 
296     DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
297 
298     ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
299     DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
300     DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
301     ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
302     ///< check that i is not too large or ensure that there is some unused stuff after mb
303     int16_t mb_padding[256 * 2];
304 
305     uint8_t (*mvd_table[2])[2];
306 
307     /**
308      * Cabac
309      */
310     CABACContext cabac;
311     uint8_t cabac_state[1024];
312     int cabac_init_idc;
313 
314     MMCO mmco[H264_MAX_MMCO_COUNT];
315     int  nb_mmco;
316     int explicit_ref_marking;
317 
318     int frame_num;
319     int idr_pic_id;
320     int poc_lsb;
321     int delta_poc_bottom;
322     int delta_poc[2];
323     int curr_pic_num;
324     int max_pic_num;
325 } H264SliceContext;
326 
327 /**
328  * H264Context
329  */
330 typedef struct H264Context {
331     const AVClass *class;
332     AVCodecContext *avctx;
333     VideoDSPContext vdsp;
334     H264DSPContext h264dsp;
335     H264ChromaContext h264chroma;
336     H264QpelContext h264qpel;
337     H274FilmGrainDatabase h274db;
338 
339     H264Picture DPB[H264_MAX_PICTURE_COUNT];
340     H264Picture *cur_pic_ptr;
341     H264Picture cur_pic;
342     H264Picture last_pic_for_ec;
343 
344     H264SliceContext *slice_ctx;
345     int            nb_slice_ctx;
346     int            nb_slice_ctx_queued;
347 
348     H2645Packet pkt;
349 
350     int pixel_shift;    ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
351 
352     /* coded dimensions -- 16 * mb w/h */
353     int width, height;
354     int chroma_x_shift, chroma_y_shift;
355 
356     int droppable;
357     int coded_picture_number;
358 
359     int context_initialized;
360     int flags;
361     int workaround_bugs;
362     int x264_build;
363     /* Set when slice threading is used and at least one slice uses deblocking
364      * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
365      * during normal MB decoding and execute it serially at the end.
366      */
367     int postpone_filter;
368 
369     /*
370      * Set to 1 when the current picture is IDR, 0 otherwise.
371      */
372     int picture_idr;
373 
374     /*
375      * Set to 1 when the current picture contains only I slices, 0 otherwise.
376      */
377     int picture_intra_only;
378 
379     int crop_left;
380     int crop_right;
381     int crop_top;
382     int crop_bottom;
383 
384     int8_t(*intra4x4_pred_mode);
385     H264PredContext hpc;
386 
387     uint8_t (*non_zero_count)[48];
388 
389 #define LIST_NOT_USED -1 // FIXME rename?
390 
391     /**
392      * block_offset[ 0..23] for frame macroblocks
393      * block_offset[24..47] for field macroblocks
394      */
395     int block_offset[2 * (16 * 3)];
396 
397     uint32_t *mb2b_xy;  // FIXME are these 4 a good idea?
398     uint32_t *mb2br_xy;
399     int b_stride;       // FIXME use s->b4_stride
400 
401     uint16_t *slice_table;      ///< slice_table_base + 2*mb_stride + 1
402 
403     // interlacing specific flags
404     int mb_aff_frame;
405     int picture_structure;
406     int first_field;
407 
408     uint8_t *list_counts;               ///< Array of list_count per MB specifying the slice type
409 
410     /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
411     uint16_t *cbp_table;
412 
413     /* chroma_pred_mode for i4x4 or i16x16, else 0 */
414     uint8_t *chroma_pred_mode_table;
415     uint8_t (*mvd_table[2])[2];
416     uint8_t *direct_table;
417 
418     uint8_t scan_padding[16];
419     uint8_t zigzag_scan[16];
420     uint8_t zigzag_scan8x8[64];
421     uint8_t zigzag_scan8x8_cavlc[64];
422     uint8_t field_scan[16];
423     uint8_t field_scan8x8[64];
424     uint8_t field_scan8x8_cavlc[64];
425     uint8_t zigzag_scan_q0[16];
426     uint8_t zigzag_scan8x8_q0[64];
427     uint8_t zigzag_scan8x8_cavlc_q0[64];
428     uint8_t field_scan_q0[16];
429     uint8_t field_scan8x8_q0[64];
430     uint8_t field_scan8x8_cavlc_q0[64];
431 
432     int mb_y;
433     int mb_height, mb_width;
434     int mb_stride;
435     int mb_num;
436 
437     // =============================================================
438     // Things below are not used in the MB or more inner code
439 
440     int nal_ref_idc;
441     int nal_unit_type;
442 
443     int has_slice;          ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
444 
445     /**
446      * Used to parse AVC variant of H.264
447      */
448     int is_avc;           ///< this flag is != 0 if codec is avc1
449     int nal_length_size;  ///< Number of bytes used for nal length (1, 2 or 4)
450 
451     int bit_depth_luma;         ///< luma bit depth from sps to detect changes
452     int chroma_format_idc;      ///< chroma format from sps to detect changes
453 
454     H264ParamSets ps;
455 
456     uint16_t *slice_table_base;
457 
458     H264POCContext poc;
459 
460     H264Ref default_ref[2];
461     H264Picture *short_ref[32];
462     H264Picture *long_ref[32];
463     H264Picture *delayed_pic[H264_MAX_DPB_FRAMES + 2]; // FIXME size?
464     int last_pocs[H264_MAX_DPB_FRAMES];
465     H264Picture *next_output_pic;
466     int next_outputed_poc;
467     int poc_offset;         ///< PicOrderCnt_offset from SMPTE RDD-2006
468 
469     /**
470      * memory management control operations buffer.
471      */
472     MMCO mmco[H264_MAX_MMCO_COUNT];
473     int  nb_mmco;
474     int mmco_reset;
475     int explicit_ref_marking;
476 
477     int long_ref_count;     ///< number of actual long term references
478     int short_ref_count;    ///< number of actual short term references
479 
480     /**
481      * @name Members for slice based multithreading
482      * @{
483      */
484     /**
485      * current slice number, used to initialize slice_num of each thread/context
486      */
487     int current_slice;
488 
489     /** @} */
490 
491     /**
492      * Complement sei_pic_struct
493      * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
494      * However, soft telecined frames may have these values.
495      * This is used in an attempt to flag soft telecine progressive.
496      */
497     int prev_interlaced_frame;
498 
499     /**
500      * Are the SEI recovery points looking valid.
501      */
502     int valid_recovery_point;
503 
504     /**
505      * recovery_frame is the frame_num at which the next frame should
506      * be fully constructed.
507      *
508      * Set to -1 when not expecting a recovery point.
509      */
510     int recovery_frame;
511 
512 /**
513  * We have seen an IDR, so all the following frames in coded order are correctly
514  * decodable.
515  */
516 #define FRAME_RECOVERED_IDR  (1 << 0)
517 /**
518  * Sufficient number of frames have been decoded since a SEI recovery point,
519  * so all the following frames in presentation order are correct.
520  */
521 #define FRAME_RECOVERED_SEI  (1 << 1)
522 
523     int frame_recovered;    ///< Initial frame has been completely recovered
524 
525     int has_recovery_point;
526 
527     int missing_fields;
528 
529     /* for frame threading, this is set to 1
530      * after finish_setup() has been called, so we cannot modify
531      * some context properties (which are supposed to stay constant between
532      * slices) anymore */
533     int setup_finished;
534 
535     int cur_chroma_format_idc;
536     int cur_bit_depth_luma;
537     int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
538 
539     /* original AVCodecContext dimensions, used to handle container
540      * cropping */
541     int width_from_caller;
542     int height_from_caller;
543 
544     int enable_er;
545     ERContext er;
546     int16_t *dc_val_base;
547 
548     H264SEIContext sei;
549 
550     AVBufferPool *qscale_table_pool;
551     AVBufferPool *mb_type_pool;
552     AVBufferPool *motion_val_pool;
553     AVBufferPool *ref_index_pool;
554     int ref2frm[MAX_SLICES][2][64];     ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
555 } H264Context;
556 
557 extern const uint16_t ff_h264_mb_sizes[4];
558 
559 /**
560  * Reconstruct bitstream slice_type.
561  */
562 int ff_h264_get_slice_type(const H264SliceContext *sl);
563 
564 /**
565  * Allocate tables.
566  * needs width/height
567  */
568 int ff_h264_alloc_tables(H264Context *h);
569 
570 int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
571 int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
572 void ff_h264_remove_all_refs(H264Context *h);
573 
574 /**
575  * Execute the reference picture marking (memory management control operations).
576  */
577 int ff_h264_execute_ref_pic_marking(H264Context *h);
578 
579 int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
580                                    const H2645NAL *nal, void *logctx);
581 
582 void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
583 void ff_h264_decode_init_vlc(void);
584 
585 /**
586  * Decode a macroblock
587  * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
588  */
589 int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
590 
591 /**
592  * Decode a CABAC coded macroblock
593  * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
594  */
595 int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
596 
597 void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
598 
599 void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
600 void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
601 void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
602                                 int *mb_type);
603 
604 void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
605                             uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
606                             unsigned int linesize, unsigned int uvlinesize);
607 void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
608                        uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
609                        unsigned int linesize, unsigned int uvlinesize);
610 
611 /*
612  * o-o o-o
613  *  / / /
614  * o-o o-o
615  *  ,---'
616  * o-o o-o
617  *  / / /
618  * o-o o-o
619  */
620 
621 /* Scan8 organization:
622  *    0 1 2 3 4 5 6 7
623  * 0  DY    y y y y y
624  * 1        y Y Y Y Y
625  * 2        y Y Y Y Y
626  * 3        y Y Y Y Y
627  * 4        y Y Y Y Y
628  * 5  DU    u u u u u
629  * 6        u U U U U
630  * 7        u U U U U
631  * 8        u U U U U
632  * 9        u U U U U
633  * 10 DV    v v v v v
634  * 11       v V V V V
635  * 12       v V V V V
636  * 13       v V V V V
637  * 14       v V V V V
638  * DY/DU/DV are for luma/chroma DC.
639  */
640 
641 #define LUMA_DC_BLOCK_INDEX   48
642 #define CHROMA_DC_BLOCK_INDEX 49
643 
644 /**
645  * Get the chroma qp.
646  */
get_chroma_qp(const PPS * pps,int t,int qscale)647 static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
648 {
649     return pps->chroma_qp_table[t][qscale];
650 }
651 
652 /**
653  * Get the predicted intra4x4 prediction mode.
654  */
pred_intra_mode(const H264Context * h,H264SliceContext * sl,int n)655 static av_always_inline int pred_intra_mode(const H264Context *h,
656                                             H264SliceContext *sl, int n)
657 {
658     const int index8 = scan8[n];
659     const int left   = sl->intra4x4_pred_mode_cache[index8 - 1];
660     const int top    = sl->intra4x4_pred_mode_cache[index8 - 8];
661     const int min    = FFMIN(left, top);
662 
663     ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
664 
665     if (min < 0)
666         return DC_PRED;
667     else
668         return min;
669 }
670 
write_back_intra_pred_mode(const H264Context * h,H264SliceContext * sl)671 static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
672                                                         H264SliceContext *sl)
673 {
674     int8_t *i4x4       = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
675     int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
676 
677     AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
678     i4x4[4] = i4x4_cache[7 + 8 * 3];
679     i4x4[5] = i4x4_cache[7 + 8 * 2];
680     i4x4[6] = i4x4_cache[7 + 8 * 1];
681 }
682 
write_back_non_zero_count(const H264Context * h,H264SliceContext * sl)683 static av_always_inline void write_back_non_zero_count(const H264Context *h,
684                                                        H264SliceContext *sl)
685 {
686     const int mb_xy    = sl->mb_xy;
687     uint8_t *nnz       = h->non_zero_count[mb_xy];
688     uint8_t *nnz_cache = sl->non_zero_count_cache;
689 
690     AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
691     AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
692     AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
693     AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
694     AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
695     AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
696     AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
697     AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
698 
699     if (!h->chroma_y_shift) {
700         AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
701         AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
702         AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
703         AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
704     }
705 }
706 
write_back_motion_list(const H264Context * h,H264SliceContext * sl,int b_stride,int b_xy,int b8_xy,int mb_type,int list)707 static av_always_inline void write_back_motion_list(const H264Context *h,
708                                                     H264SliceContext *sl,
709                                                     int b_stride,
710                                                     int b_xy, int b8_xy,
711                                                     int mb_type, int list)
712 {
713     int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
714     int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
715     AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
716     AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
717     AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
718     AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
719     if (CABAC(h)) {
720         uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
721                                                         : h->mb2br_xy[sl->mb_xy]];
722         uint8_t(*mvd_src)[2]  = &sl->mvd_cache[list][scan8[0]];
723         if (IS_SKIP(mb_type)) {
724             AV_ZERO128(mvd_dst);
725         } else {
726             AV_COPY64(mvd_dst, mvd_src + 8 * 3);
727             AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
728             AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
729             AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
730         }
731     }
732 
733     {
734         int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
735         int8_t *ref_cache = sl->ref_cache[list];
736         ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
737         ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
738         ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
739         ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
740     }
741 }
742 
write_back_motion(const H264Context * h,H264SliceContext * sl,int mb_type)743 static av_always_inline void write_back_motion(const H264Context *h,
744                                                H264SliceContext *sl,
745                                                int mb_type)
746 {
747     const int b_stride      = h->b_stride;
748     const int b_xy  = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
749     const int b8_xy = 4 * sl->mb_xy;
750 
751     if (USES_LIST(mb_type, 0)) {
752         write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
753     } else {
754         fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
755                        2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
756     }
757     if (USES_LIST(mb_type, 1))
758         write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
759 
760     if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
761         if (IS_8X8(mb_type)) {
762             uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
763             direct_table[1] = sl->sub_mb_type[1] >> 1;
764             direct_table[2] = sl->sub_mb_type[2] >> 1;
765             direct_table[3] = sl->sub_mb_type[3] >> 1;
766         }
767     }
768 }
769 
get_dct8x8_allowed(const H264Context * h,H264SliceContext * sl)770 static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
771 {
772     if (h->ps.sps->direct_8x8_inference_flag)
773         return !(AV_RN64A(sl->sub_mb_type) &
774                  ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
775                   0x0001000100010001ULL));
776     else
777         return !(AV_RN64A(sl->sub_mb_type) &
778                  ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
779                   0x0001000100010001ULL));
780 }
781 
782 int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
783 
784 int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
785 int ff_h264_replace_picture(H264Context *h, H264Picture *dst, const H264Picture *src);
786 void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
787 
788 void ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
789 
790 void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
791 
792 /**
793  * Submit a slice for decoding.
794  *
795  * Parse the slice header, starting a new field/frame if necessary. If any
796  * slices are queued for the previous field, they are decoded.
797  */
798 int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
799 int ff_h264_execute_decode_slices(H264Context *h);
800 int ff_h264_update_thread_context(AVCodecContext *dst,
801                                   const AVCodecContext *src);
802 int ff_h264_update_thread_context_for_user(AVCodecContext *dst,
803                                            const AVCodecContext *src);
804 
805 void ff_h264_flush_change(H264Context *h);
806 
807 void ff_h264_free_tables(H264Context *h);
808 
809 void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
810 
811 #endif /* AVCODEC_H264DEC_H */
812