1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Implementation of the Transmission Control Protocol(TCP).
8 *
9 * Authors: Ross Biro
10 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11 * Mark Evans, <evansmp@uhura.aston.ac.uk>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche, <flla@stud.uni-sb.de>
14 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15 * Linus Torvalds, <torvalds@cs.helsinki.fi>
16 * Alan Cox, <gw4pts@gw4pts.ampr.org>
17 * Matthew Dillon, <dillon@apollo.west.oic.com>
18 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19 * Jorge Cwik, <jorge@laser.satlink.net>
20 */
21
22 /*
23 * Changes:
24 * Pedro Roque : Fast Retransmit/Recovery.
25 * Two receive queues.
26 * Retransmit queue handled by TCP.
27 * Better retransmit timer handling.
28 * New congestion avoidance.
29 * Header prediction.
30 * Variable renaming.
31 *
32 * Eric : Fast Retransmit.
33 * Randy Scott : MSS option defines.
34 * Eric Schenk : Fixes to slow start algorithm.
35 * Eric Schenk : Yet another double ACK bug.
36 * Eric Schenk : Delayed ACK bug fixes.
37 * Eric Schenk : Floyd style fast retrans war avoidance.
38 * David S. Miller : Don't allow zero congestion window.
39 * Eric Schenk : Fix retransmitter so that it sends
40 * next packet on ack of previous packet.
41 * Andi Kleen : Moved open_request checking here
42 * and process RSTs for open_requests.
43 * Andi Kleen : Better prune_queue, and other fixes.
44 * Andrey Savochkin: Fix RTT measurements in the presence of
45 * timestamps.
46 * Andrey Savochkin: Check sequence numbers correctly when
47 * removing SACKs due to in sequence incoming
48 * data segments.
49 * Andi Kleen: Make sure we never ack data there is not
50 * enough room for. Also make this condition
51 * a fatal error if it might still happen.
52 * Andi Kleen: Add tcp_measure_rcv_mss to make
53 * connections with MSS<min(MTU,ann. MSS)
54 * work without delayed acks.
55 * Andi Kleen: Process packets with PSH set in the
56 * fast path.
57 * J Hadi Salim: ECN support
58 * Andrei Gurtov,
59 * Pasi Sarolahti,
60 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
61 * engine. Lots of bugs are found.
62 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
63 */
64
65 #define pr_fmt(fmt) "TCP: " fmt
66
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 #ifdef CONFIG_LOWPOWER_PROTOCOL
84 #include <net/lowpower_protocol.h>
85 #endif /* CONFIG_LOWPOWER_PROTOCOL */
86
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88
89 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
90 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
91 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
92 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
93 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
94 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
95 #define FLAG_ECE 0x40 /* ECE in this ACK */
96 #define FLAG_LOST_RETRANS 0x80 /* This ACK marks some retransmission lost */
97 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
98 #define FLAG_ORIG_SACK_ACKED 0x200 /* Never retransmitted data are (s)acked */
99 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
100 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
101 #define FLAG_SET_XMIT_TIMER 0x1000 /* Set TLP or RTO timer */
102 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
103 #define FLAG_UPDATE_TS_RECENT 0x4000 /* tcp_replace_ts_recent() */
104 #define FLAG_NO_CHALLENGE_ACK 0x8000 /* do not call tcp_send_challenge_ack() */
105 #define FLAG_ACK_MAYBE_DELAYED 0x10000 /* Likely a delayed ACK */
106
107 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
108 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
109 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
110 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
111
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
114
115 #define REXMIT_NONE 0 /* no loss recovery to do */
116 #define REXMIT_LOST 1 /* retransmit packets marked lost */
117 #define REXMIT_NEW 2 /* FRTO-style transmit of unsent/new packets */
118
119 #if IS_ENABLED(CONFIG_TLS_DEVICE)
120 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
121
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))122 void clean_acked_data_enable(struct inet_connection_sock *icsk,
123 void (*cad)(struct sock *sk, u32 ack_seq))
124 {
125 icsk->icsk_clean_acked = cad;
126 static_branch_deferred_inc(&clean_acked_data_enabled);
127 }
128 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
129
clean_acked_data_disable(struct inet_connection_sock * icsk)130 void clean_acked_data_disable(struct inet_connection_sock *icsk)
131 {
132 static_branch_slow_dec_deferred(&clean_acked_data_enabled);
133 icsk->icsk_clean_acked = NULL;
134 }
135 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
136
clean_acked_data_flush(void)137 void clean_acked_data_flush(void)
138 {
139 static_key_deferred_flush(&clean_acked_data_enabled);
140 }
141 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
142 #endif
143
144 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)145 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
146 {
147 bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
148 BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
150 bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
151 BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
152 struct bpf_sock_ops_kern sock_ops;
153
154 if (likely(!unknown_opt && !parse_all_opt))
155 return;
156
157 /* The skb will be handled in the
158 * bpf_skops_established() or
159 * bpf_skops_write_hdr_opt().
160 */
161 switch (sk->sk_state) {
162 case TCP_SYN_RECV:
163 case TCP_SYN_SENT:
164 case TCP_LISTEN:
165 return;
166 }
167
168 sock_owned_by_me(sk);
169
170 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
171 sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
172 sock_ops.is_fullsock = 1;
173 sock_ops.sk = sk;
174 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
175
176 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
177 }
178
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)179 static void bpf_skops_established(struct sock *sk, int bpf_op,
180 struct sk_buff *skb)
181 {
182 struct bpf_sock_ops_kern sock_ops;
183
184 sock_owned_by_me(sk);
185
186 memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
187 sock_ops.op = bpf_op;
188 sock_ops.is_fullsock = 1;
189 sock_ops.sk = sk;
190 /* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
191 if (skb)
192 bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
193
194 BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
195 }
196 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)197 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
198 {
199 }
200
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)201 static void bpf_skops_established(struct sock *sk, int bpf_op,
202 struct sk_buff *skb)
203 {
204 }
205 #endif
206
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)207 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
208 unsigned int len)
209 {
210 static bool __once __read_mostly;
211
212 if (!__once) {
213 struct net_device *dev;
214
215 __once = true;
216
217 rcu_read_lock();
218 dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
219 if (!dev || len >= dev->mtu)
220 pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
221 dev ? dev->name : "Unknown driver");
222 rcu_read_unlock();
223 }
224 }
225
226 /* Adapt the MSS value used to make delayed ack decision to the
227 * real world.
228 */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)229 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
230 {
231 struct inet_connection_sock *icsk = inet_csk(sk);
232 const unsigned int lss = icsk->icsk_ack.last_seg_size;
233 unsigned int len;
234
235 icsk->icsk_ack.last_seg_size = 0;
236
237 /* skb->len may jitter because of SACKs, even if peer
238 * sends good full-sized frames.
239 */
240 len = skb_shinfo(skb)->gso_size ? : skb->len;
241 if (len >= icsk->icsk_ack.rcv_mss) {
242 icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
243 tcp_sk(sk)->advmss);
244 /* Account for possibly-removed options */
245 if (unlikely(len > icsk->icsk_ack.rcv_mss +
246 MAX_TCP_OPTION_SPACE))
247 tcp_gro_dev_warn(sk, skb, len);
248 } else {
249 /* Otherwise, we make more careful check taking into account,
250 * that SACKs block is variable.
251 *
252 * "len" is invariant segment length, including TCP header.
253 */
254 len += skb->data - skb_transport_header(skb);
255 if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
256 /* If PSH is not set, packet should be
257 * full sized, provided peer TCP is not badly broken.
258 * This observation (if it is correct 8)) allows
259 * to handle super-low mtu links fairly.
260 */
261 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
262 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
263 /* Subtract also invariant (if peer is RFC compliant),
264 * tcp header plus fixed timestamp option length.
265 * Resulting "len" is MSS free of SACK jitter.
266 */
267 len -= tcp_sk(sk)->tcp_header_len;
268 icsk->icsk_ack.last_seg_size = len;
269 if (len == lss) {
270 icsk->icsk_ack.rcv_mss = len;
271 return;
272 }
273 }
274 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
275 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
276 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
277 }
278 }
279
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)280 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
281 {
282 struct inet_connection_sock *icsk = inet_csk(sk);
283 unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
284
285 if (quickacks == 0)
286 quickacks = 2;
287 quickacks = min(quickacks, max_quickacks);
288 if (quickacks > icsk->icsk_ack.quick)
289 icsk->icsk_ack.quick = quickacks;
290 }
291
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)292 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
293 {
294 struct inet_connection_sock *icsk = inet_csk(sk);
295
296 tcp_incr_quickack(sk, max_quickacks);
297 inet_csk_exit_pingpong_mode(sk);
298 icsk->icsk_ack.ato = TCP_ATO_MIN;
299 }
300
301 /* Send ACKs quickly, if "quick" count is not exhausted
302 * and the session is not interactive.
303 */
304
tcp_in_quickack_mode(struct sock * sk)305 static bool tcp_in_quickack_mode(struct sock *sk)
306 {
307 const struct inet_connection_sock *icsk = inet_csk(sk);
308 const struct dst_entry *dst = __sk_dst_get(sk);
309
310 return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
311 (icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
312 }
313
tcp_ecn_queue_cwr(struct tcp_sock * tp)314 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
315 {
316 if (tp->ecn_flags & TCP_ECN_OK)
317 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
318 }
319
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)320 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
321 {
322 if (tcp_hdr(skb)->cwr) {
323 tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
324
325 /* If the sender is telling us it has entered CWR, then its
326 * cwnd may be very low (even just 1 packet), so we should ACK
327 * immediately.
328 */
329 if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
330 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
331 }
332 }
333
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)334 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
335 {
336 tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
337 }
338
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)339 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
340 {
341 struct tcp_sock *tp = tcp_sk(sk);
342
343 switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
344 case INET_ECN_NOT_ECT:
345 /* Funny extension: if ECT is not set on a segment,
346 * and we already seen ECT on a previous segment,
347 * it is probably a retransmit.
348 */
349 if (tp->ecn_flags & TCP_ECN_SEEN)
350 tcp_enter_quickack_mode(sk, 2);
351 break;
352 case INET_ECN_CE:
353 if (tcp_ca_needs_ecn(sk))
354 tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
355
356 if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
357 /* Better not delay acks, sender can have a very low cwnd */
358 tcp_enter_quickack_mode(sk, 2);
359 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
360 }
361 tp->ecn_flags |= TCP_ECN_SEEN;
362 break;
363 default:
364 if (tcp_ca_needs_ecn(sk))
365 tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
366 tp->ecn_flags |= TCP_ECN_SEEN;
367 break;
368 }
369 }
370
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)371 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
372 {
373 if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
374 __tcp_ecn_check_ce(sk, skb);
375 }
376
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)377 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
378 {
379 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
380 tp->ecn_flags &= ~TCP_ECN_OK;
381 }
382
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)383 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
384 {
385 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
386 tp->ecn_flags &= ~TCP_ECN_OK;
387 }
388
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)389 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
390 {
391 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
392 return true;
393 return false;
394 }
395
396 /* Buffer size and advertised window tuning.
397 *
398 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
399 */
400
tcp_sndbuf_expand(struct sock * sk)401 static void tcp_sndbuf_expand(struct sock *sk)
402 {
403 const struct tcp_sock *tp = tcp_sk(sk);
404 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
405 int sndmem, per_mss;
406 u32 nr_segs;
407
408 /* Worst case is non GSO/TSO : each frame consumes one skb
409 * and skb->head is kmalloced using power of two area of memory
410 */
411 per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
412 MAX_TCP_HEADER +
413 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
414
415 per_mss = roundup_pow_of_two(per_mss) +
416 SKB_DATA_ALIGN(sizeof(struct sk_buff));
417
418 nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
419 nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
420
421 /* Fast Recovery (RFC 5681 3.2) :
422 * Cubic needs 1.7 factor, rounded to 2 to include
423 * extra cushion (application might react slowly to EPOLLOUT)
424 */
425 sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
426 sndmem *= nr_segs * per_mss;
427
428 if (sk->sk_sndbuf < sndmem)
429 WRITE_ONCE(sk->sk_sndbuf,
430 min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
431 }
432
433 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
434 *
435 * All tcp_full_space() is split to two parts: "network" buffer, allocated
436 * forward and advertised in receiver window (tp->rcv_wnd) and
437 * "application buffer", required to isolate scheduling/application
438 * latencies from network.
439 * window_clamp is maximal advertised window. It can be less than
440 * tcp_full_space(), in this case tcp_full_space() - window_clamp
441 * is reserved for "application" buffer. The less window_clamp is
442 * the smoother our behaviour from viewpoint of network, but the lower
443 * throughput and the higher sensitivity of the connection to losses. 8)
444 *
445 * rcv_ssthresh is more strict window_clamp used at "slow start"
446 * phase to predict further behaviour of this connection.
447 * It is used for two goals:
448 * - to enforce header prediction at sender, even when application
449 * requires some significant "application buffer". It is check #1.
450 * - to prevent pruning of receive queue because of misprediction
451 * of receiver window. Check #2.
452 *
453 * The scheme does not work when sender sends good segments opening
454 * window and then starts to feed us spaghetti. But it should work
455 * in common situations. Otherwise, we have to rely on queue collapsing.
456 */
457
458 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)459 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
460 unsigned int skbtruesize)
461 {
462 struct tcp_sock *tp = tcp_sk(sk);
463 /* Optimize this! */
464 int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
465 int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
466
467 while (tp->rcv_ssthresh <= window) {
468 if (truesize <= skb->len)
469 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
470
471 truesize >>= 1;
472 window >>= 1;
473 }
474 return 0;
475 }
476
477 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
478 * can play nice with us, as sk_buff and skb->head might be either
479 * freed or shared with up to MAX_SKB_FRAGS segments.
480 * Only give a boost to drivers using page frag(s) to hold the frame(s),
481 * and if no payload was pulled in skb->head before reaching us.
482 */
truesize_adjust(bool adjust,const struct sk_buff * skb)483 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
484 {
485 u32 truesize = skb->truesize;
486
487 if (adjust && !skb_headlen(skb)) {
488 truesize -= SKB_TRUESIZE(skb_end_offset(skb));
489 /* paranoid check, some drivers might be buggy */
490 if (unlikely((int)truesize < (int)skb->len))
491 truesize = skb->truesize;
492 }
493 return truesize;
494 }
495
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)496 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
497 bool adjust)
498 {
499 struct tcp_sock *tp = tcp_sk(sk);
500 int room;
501
502 room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
503
504 /* Check #1 */
505 if (room > 0 && !tcp_under_memory_pressure(sk)) {
506 unsigned int truesize = truesize_adjust(adjust, skb);
507 int incr;
508
509 /* Check #2. Increase window, if skb with such overhead
510 * will fit to rcvbuf in future.
511 */
512 if (tcp_win_from_space(sk, truesize) <= skb->len)
513 incr = 2 * tp->advmss;
514 else
515 incr = __tcp_grow_window(sk, skb, truesize);
516
517 if (incr) {
518 incr = max_t(int, incr, 2 * skb->len);
519 tp->rcv_ssthresh += min(room, incr);
520 inet_csk(sk)->icsk_ack.quick |= 1;
521 }
522 }
523 }
524
525 /* 3. Try to fixup all. It is made immediately after connection enters
526 * established state.
527 */
tcp_init_buffer_space(struct sock * sk)528 static void tcp_init_buffer_space(struct sock *sk)
529 {
530 int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
531 struct tcp_sock *tp = tcp_sk(sk);
532 int maxwin;
533
534 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
535 tcp_sndbuf_expand(sk);
536
537 tcp_mstamp_refresh(tp);
538 tp->rcvq_space.time = tp->tcp_mstamp;
539 tp->rcvq_space.seq = tp->copied_seq;
540
541 maxwin = tcp_full_space(sk);
542
543 if (tp->window_clamp >= maxwin) {
544 tp->window_clamp = maxwin;
545
546 if (tcp_app_win && maxwin > 4 * tp->advmss)
547 tp->window_clamp = max(maxwin -
548 (maxwin >> tcp_app_win),
549 4 * tp->advmss);
550 }
551
552 /* Force reservation of one segment. */
553 if (tcp_app_win &&
554 tp->window_clamp > 2 * tp->advmss &&
555 tp->window_clamp + tp->advmss > maxwin)
556 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
557
558 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
559 tp->snd_cwnd_stamp = tcp_jiffies32;
560 tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
561 (u32)TCP_INIT_CWND * tp->advmss);
562 }
563
564 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)565 static void tcp_clamp_window(struct sock *sk)
566 {
567 struct tcp_sock *tp = tcp_sk(sk);
568 struct inet_connection_sock *icsk = inet_csk(sk);
569 struct net *net = sock_net(sk);
570 int rmem2;
571
572 icsk->icsk_ack.quick = 0;
573 rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
574
575 if (sk->sk_rcvbuf < rmem2 &&
576 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
577 !tcp_under_memory_pressure(sk) &&
578 sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
579 WRITE_ONCE(sk->sk_rcvbuf,
580 min(atomic_read(&sk->sk_rmem_alloc), rmem2));
581 }
582 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
583 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
584 }
585
586 /* Initialize RCV_MSS value.
587 * RCV_MSS is an our guess about MSS used by the peer.
588 * We haven't any direct information about the MSS.
589 * It's better to underestimate the RCV_MSS rather than overestimate.
590 * Overestimations make us ACKing less frequently than needed.
591 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
592 */
tcp_initialize_rcv_mss(struct sock * sk)593 void tcp_initialize_rcv_mss(struct sock *sk)
594 {
595 const struct tcp_sock *tp = tcp_sk(sk);
596 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
597
598 hint = min(hint, tp->rcv_wnd / 2);
599 hint = min(hint, TCP_MSS_DEFAULT);
600 hint = max(hint, TCP_MIN_MSS);
601
602 inet_csk(sk)->icsk_ack.rcv_mss = hint;
603 }
604 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
605
606 /* Receiver "autotuning" code.
607 *
608 * The algorithm for RTT estimation w/o timestamps is based on
609 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
610 * <https://public.lanl.gov/radiant/pubs.html#DRS>
611 *
612 * More detail on this code can be found at
613 * <http://staff.psc.edu/jheffner/>,
614 * though this reference is out of date. A new paper
615 * is pending.
616 */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)617 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
618 {
619 u32 new_sample = tp->rcv_rtt_est.rtt_us;
620 long m = sample;
621
622 if (new_sample != 0) {
623 /* If we sample in larger samples in the non-timestamp
624 * case, we could grossly overestimate the RTT especially
625 * with chatty applications or bulk transfer apps which
626 * are stalled on filesystem I/O.
627 *
628 * Also, since we are only going for a minimum in the
629 * non-timestamp case, we do not smooth things out
630 * else with timestamps disabled convergence takes too
631 * long.
632 */
633 if (!win_dep) {
634 m -= (new_sample >> 3);
635 new_sample += m;
636 } else {
637 m <<= 3;
638 if (m < new_sample)
639 new_sample = m;
640 }
641 } else {
642 /* No previous measure. */
643 new_sample = m << 3;
644 }
645
646 tp->rcv_rtt_est.rtt_us = new_sample;
647 }
648
tcp_rcv_rtt_measure(struct tcp_sock * tp)649 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
650 {
651 u32 delta_us;
652
653 if (tp->rcv_rtt_est.time == 0)
654 goto new_measure;
655 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
656 return;
657 delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
658 if (!delta_us)
659 delta_us = 1;
660 tcp_rcv_rtt_update(tp, delta_us, 1);
661
662 new_measure:
663 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
664 tp->rcv_rtt_est.time = tp->tcp_mstamp;
665 }
666
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)667 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
668 const struct sk_buff *skb)
669 {
670 struct tcp_sock *tp = tcp_sk(sk);
671
672 if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
673 return;
674 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
675
676 if (TCP_SKB_CB(skb)->end_seq -
677 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
678 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
679 u32 delta_us;
680
681 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
682 if (!delta)
683 delta = 1;
684 delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
685 tcp_rcv_rtt_update(tp, delta_us, 0);
686 }
687 }
688 }
689
690 /*
691 * This function should be called every time data is copied to user space.
692 * It calculates the appropriate TCP receive buffer space.
693 */
tcp_rcv_space_adjust(struct sock * sk)694 void tcp_rcv_space_adjust(struct sock *sk)
695 {
696 struct tcp_sock *tp = tcp_sk(sk);
697 u32 copied;
698 int time;
699
700 trace_tcp_rcv_space_adjust(sk);
701
702 tcp_mstamp_refresh(tp);
703 time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
704 if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
705 return;
706
707 /* Number of bytes copied to user in last RTT */
708 copied = tp->copied_seq - tp->rcvq_space.seq;
709 if (copied <= tp->rcvq_space.space)
710 goto new_measure;
711
712 /* A bit of theory :
713 * copied = bytes received in previous RTT, our base window
714 * To cope with packet losses, we need a 2x factor
715 * To cope with slow start, and sender growing its cwin by 100 %
716 * every RTT, we need a 4x factor, because the ACK we are sending
717 * now is for the next RTT, not the current one :
718 * <prev RTT . ><current RTT .. ><next RTT .... >
719 */
720
721 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
722 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
723 int rcvmem, rcvbuf;
724 u64 rcvwin, grow;
725
726 /* minimal window to cope with packet losses, assuming
727 * steady state. Add some cushion because of small variations.
728 */
729 rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
730
731 /* Accommodate for sender rate increase (eg. slow start) */
732 grow = rcvwin * (copied - tp->rcvq_space.space);
733 do_div(grow, tp->rcvq_space.space);
734 rcvwin += (grow << 1);
735
736 rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
737 while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
738 rcvmem += 128;
739
740 do_div(rcvwin, tp->advmss);
741 rcvbuf = min_t(u64, rcvwin * rcvmem,
742 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
743 if (rcvbuf > sk->sk_rcvbuf) {
744 WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
745
746 /* Make the window clamp follow along. */
747 tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
748 }
749 }
750 tp->rcvq_space.space = copied;
751
752 new_measure:
753 tp->rcvq_space.seq = tp->copied_seq;
754 tp->rcvq_space.time = tp->tcp_mstamp;
755 }
756
757 /* There is something which you must keep in mind when you analyze the
758 * behavior of the tp->ato delayed ack timeout interval. When a
759 * connection starts up, we want to ack as quickly as possible. The
760 * problem is that "good" TCP's do slow start at the beginning of data
761 * transmission. The means that until we send the first few ACK's the
762 * sender will sit on his end and only queue most of his data, because
763 * he can only send snd_cwnd unacked packets at any given time. For
764 * each ACK we send, he increments snd_cwnd and transmits more of his
765 * queue. -DaveM
766 */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)767 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
768 {
769 struct tcp_sock *tp = tcp_sk(sk);
770 struct inet_connection_sock *icsk = inet_csk(sk);
771 u32 now;
772
773 inet_csk_schedule_ack(sk);
774
775 tcp_measure_rcv_mss(sk, skb);
776
777 tcp_rcv_rtt_measure(tp);
778
779 now = tcp_jiffies32;
780
781 if (!icsk->icsk_ack.ato) {
782 /* The _first_ data packet received, initialize
783 * delayed ACK engine.
784 */
785 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
786 icsk->icsk_ack.ato = TCP_ATO_MIN;
787 } else {
788 int m = now - icsk->icsk_ack.lrcvtime;
789
790 if (m <= TCP_ATO_MIN / 2) {
791 /* The fastest case is the first. */
792 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
793 } else if (m < icsk->icsk_ack.ato) {
794 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
795 if (icsk->icsk_ack.ato > icsk->icsk_rto)
796 icsk->icsk_ack.ato = icsk->icsk_rto;
797 } else if (m > icsk->icsk_rto) {
798 /* Too long gap. Apparently sender failed to
799 * restart window, so that we send ACKs quickly.
800 */
801 tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
802 sk_mem_reclaim(sk);
803 }
804 }
805 icsk->icsk_ack.lrcvtime = now;
806
807 tcp_ecn_check_ce(sk, skb);
808
809 if (skb->len >= 128)
810 tcp_grow_window(sk, skb, true);
811 }
812
813 /* Called to compute a smoothed rtt estimate. The data fed to this
814 * routine either comes from timestamps, or from segments that were
815 * known _not_ to have been retransmitted [see Karn/Partridge
816 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
817 * piece by Van Jacobson.
818 * NOTE: the next three routines used to be one big routine.
819 * To save cycles in the RFC 1323 implementation it was better to break
820 * it up into three procedures. -- erics
821 */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)822 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
823 {
824 struct tcp_sock *tp = tcp_sk(sk);
825 long m = mrtt_us; /* RTT */
826 u32 srtt = tp->srtt_us;
827
828 /* The following amusing code comes from Jacobson's
829 * article in SIGCOMM '88. Note that rtt and mdev
830 * are scaled versions of rtt and mean deviation.
831 * This is designed to be as fast as possible
832 * m stands for "measurement".
833 *
834 * On a 1990 paper the rto value is changed to:
835 * RTO = rtt + 4 * mdev
836 *
837 * Funny. This algorithm seems to be very broken.
838 * These formulae increase RTO, when it should be decreased, increase
839 * too slowly, when it should be increased quickly, decrease too quickly
840 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
841 * does not matter how to _calculate_ it. Seems, it was trap
842 * that VJ failed to avoid. 8)
843 */
844 if (srtt != 0) {
845 m -= (srtt >> 3); /* m is now error in rtt est */
846 srtt += m; /* rtt = 7/8 rtt + 1/8 new */
847 if (m < 0) {
848 m = -m; /* m is now abs(error) */
849 m -= (tp->mdev_us >> 2); /* similar update on mdev */
850 /* This is similar to one of Eifel findings.
851 * Eifel blocks mdev updates when rtt decreases.
852 * This solution is a bit different: we use finer gain
853 * for mdev in this case (alpha*beta).
854 * Like Eifel it also prevents growth of rto,
855 * but also it limits too fast rto decreases,
856 * happening in pure Eifel.
857 */
858 if (m > 0)
859 m >>= 3;
860 } else {
861 m -= (tp->mdev_us >> 2); /* similar update on mdev */
862 }
863 tp->mdev_us += m; /* mdev = 3/4 mdev + 1/4 new */
864 if (tp->mdev_us > tp->mdev_max_us) {
865 tp->mdev_max_us = tp->mdev_us;
866 if (tp->mdev_max_us > tp->rttvar_us)
867 tp->rttvar_us = tp->mdev_max_us;
868 }
869 if (after(tp->snd_una, tp->rtt_seq)) {
870 if (tp->mdev_max_us < tp->rttvar_us)
871 tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
872 tp->rtt_seq = tp->snd_nxt;
873 tp->mdev_max_us = tcp_rto_min_us(sk);
874
875 tcp_bpf_rtt(sk);
876 }
877 } else {
878 /* no previous measure. */
879 srtt = m << 3; /* take the measured time to be rtt */
880 tp->mdev_us = m << 1; /* make sure rto = 3*rtt */
881 tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
882 tp->mdev_max_us = tp->rttvar_us;
883 tp->rtt_seq = tp->snd_nxt;
884
885 tcp_bpf_rtt(sk);
886 }
887 tp->srtt_us = max(1U, srtt);
888 }
889
tcp_update_pacing_rate(struct sock * sk)890 static void tcp_update_pacing_rate(struct sock *sk)
891 {
892 const struct tcp_sock *tp = tcp_sk(sk);
893 u64 rate;
894
895 /* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
896 rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
897
898 /* current rate is (cwnd * mss) / srtt
899 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
900 * In Congestion Avoidance phase, set it to 120 % the current rate.
901 *
902 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
903 * If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
904 * end of slow start and should slow down.
905 */
906 if (tp->snd_cwnd < tp->snd_ssthresh / 2)
907 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
908 else
909 rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
910
911 rate *= max(tp->snd_cwnd, tp->packets_out);
912
913 if (likely(tp->srtt_us))
914 do_div(rate, tp->srtt_us);
915
916 /* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
917 * without any lock. We want to make sure compiler wont store
918 * intermediate values in this location.
919 */
920 WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
921 sk->sk_max_pacing_rate));
922 }
923
924 /* Calculate rto without backoff. This is the second half of Van Jacobson's
925 * routine referred to above.
926 */
tcp_set_rto(struct sock * sk)927 static void tcp_set_rto(struct sock *sk)
928 {
929 const struct tcp_sock *tp = tcp_sk(sk);
930 /* Old crap is replaced with new one. 8)
931 *
932 * More seriously:
933 * 1. If rtt variance happened to be less 50msec, it is hallucination.
934 * It cannot be less due to utterly erratic ACK generation made
935 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
936 * to do with delayed acks, because at cwnd>2 true delack timeout
937 * is invisible. Actually, Linux-2.4 also generates erratic
938 * ACKs in some circumstances.
939 */
940 inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
941
942 /* 2. Fixups made earlier cannot be right.
943 * If we do not estimate RTO correctly without them,
944 * all the algo is pure shit and should be replaced
945 * with correct one. It is exactly, which we pretend to do.
946 */
947
948 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
949 * guarantees that rto is higher.
950 */
951 tcp_bound_rto(sk);
952 }
953
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)954 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
955 {
956 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
957
958 if (!cwnd)
959 cwnd = TCP_INIT_CWND;
960 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
961 }
962
963 struct tcp_sacktag_state {
964 /* Timestamps for earliest and latest never-retransmitted segment
965 * that was SACKed. RTO needs the earliest RTT to stay conservative,
966 * but congestion control should still get an accurate delay signal.
967 */
968 u64 first_sackt;
969 u64 last_sackt;
970 u32 reord;
971 u32 sack_delivered;
972 int flag;
973 unsigned int mss_now;
974 struct rate_sample *rate;
975 };
976
977 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
978 * and spurious retransmission information if this DSACK is unlikely caused by
979 * sender's action:
980 * - DSACKed sequence range is larger than maximum receiver's window.
981 * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
982 */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)983 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
984 u32 end_seq, struct tcp_sacktag_state *state)
985 {
986 u32 seq_len, dup_segs = 1;
987
988 if (!before(start_seq, end_seq))
989 return 0;
990
991 seq_len = end_seq - start_seq;
992 /* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
993 if (seq_len > tp->max_window)
994 return 0;
995 if (seq_len > tp->mss_cache)
996 dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
997
998 tp->dsack_dups += dup_segs;
999 /* Skip the DSACK if dup segs weren't retransmitted by sender */
1000 if (tp->dsack_dups > tp->total_retrans)
1001 return 0;
1002
1003 tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1004 tp->rack.dsack_seen = 1;
1005
1006 state->flag |= FLAG_DSACKING_ACK;
1007 /* A spurious retransmission is delivered */
1008 state->sack_delivered += dup_segs;
1009
1010 return dup_segs;
1011 }
1012
1013 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1014 * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1015 * distance is approximated in full-mss packet distance ("reordering").
1016 */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1017 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1018 const int ts)
1019 {
1020 struct tcp_sock *tp = tcp_sk(sk);
1021 const u32 mss = tp->mss_cache;
1022 u32 fack, metric;
1023
1024 fack = tcp_highest_sack_seq(tp);
1025 if (!before(low_seq, fack))
1026 return;
1027
1028 metric = fack - low_seq;
1029 if ((metric > tp->reordering * mss) && mss) {
1030 #if FASTRETRANS_DEBUG > 1
1031 pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1032 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1033 tp->reordering,
1034 0,
1035 tp->sacked_out,
1036 tp->undo_marker ? tp->undo_retrans : 0);
1037 #endif
1038 tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1039 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1040 }
1041
1042 /* This exciting event is worth to be remembered. 8) */
1043 tp->reord_seen++;
1044 NET_INC_STATS(sock_net(sk),
1045 ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1046 }
1047
1048 /* This must be called before lost_out or retrans_out are updated
1049 * on a new loss, because we want to know if all skbs previously
1050 * known to be lost have already been retransmitted, indicating
1051 * that this newly lost skb is our next skb to retransmit.
1052 */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1053 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1054 {
1055 if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1056 (tp->retransmit_skb_hint &&
1057 before(TCP_SKB_CB(skb)->seq,
1058 TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1059 tp->retransmit_skb_hint = skb;
1060 }
1061
1062 /* Sum the number of packets on the wire we have marked as lost, and
1063 * notify the congestion control module that the given skb was marked lost.
1064 */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1065 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1066 {
1067 tp->lost += tcp_skb_pcount(skb);
1068 }
1069
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1070 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1071 {
1072 __u8 sacked = TCP_SKB_CB(skb)->sacked;
1073 struct tcp_sock *tp = tcp_sk(sk);
1074
1075 if (sacked & TCPCB_SACKED_ACKED)
1076 return;
1077
1078 tcp_verify_retransmit_hint(tp, skb);
1079 if (sacked & TCPCB_LOST) {
1080 if (sacked & TCPCB_SACKED_RETRANS) {
1081 /* Account for retransmits that are lost again */
1082 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1083 tp->retrans_out -= tcp_skb_pcount(skb);
1084 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1085 tcp_skb_pcount(skb));
1086 tcp_notify_skb_loss_event(tp, skb);
1087 }
1088 } else {
1089 tp->lost_out += tcp_skb_pcount(skb);
1090 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1091 tcp_notify_skb_loss_event(tp, skb);
1092 }
1093 }
1094
1095 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1096 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1097 bool ece_ack)
1098 {
1099 tp->delivered += delivered;
1100 if (ece_ack)
1101 tp->delivered_ce += delivered;
1102 }
1103
1104 /* This procedure tags the retransmission queue when SACKs arrive.
1105 *
1106 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1107 * Packets in queue with these bits set are counted in variables
1108 * sacked_out, retrans_out and lost_out, correspondingly.
1109 *
1110 * Valid combinations are:
1111 * Tag InFlight Description
1112 * 0 1 - orig segment is in flight.
1113 * S 0 - nothing flies, orig reached receiver.
1114 * L 0 - nothing flies, orig lost by net.
1115 * R 2 - both orig and retransmit are in flight.
1116 * L|R 1 - orig is lost, retransmit is in flight.
1117 * S|R 1 - orig reached receiver, retrans is still in flight.
1118 * (L|S|R is logically valid, it could occur when L|R is sacked,
1119 * but it is equivalent to plain S and code short-curcuits it to S.
1120 * L|S is logically invalid, it would mean -1 packet in flight 8))
1121 *
1122 * These 6 states form finite state machine, controlled by the following events:
1123 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1124 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1125 * 3. Loss detection event of two flavors:
1126 * A. Scoreboard estimator decided the packet is lost.
1127 * A'. Reno "three dupacks" marks head of queue lost.
1128 * B. SACK arrives sacking SND.NXT at the moment, when the
1129 * segment was retransmitted.
1130 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1131 *
1132 * It is pleasant to note, that state diagram turns out to be commutative,
1133 * so that we are allowed not to be bothered by order of our actions,
1134 * when multiple events arrive simultaneously. (see the function below).
1135 *
1136 * Reordering detection.
1137 * --------------------
1138 * Reordering metric is maximal distance, which a packet can be displaced
1139 * in packet stream. With SACKs we can estimate it:
1140 *
1141 * 1. SACK fills old hole and the corresponding segment was not
1142 * ever retransmitted -> reordering. Alas, we cannot use it
1143 * when segment was retransmitted.
1144 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1145 * for retransmitted and already SACKed segment -> reordering..
1146 * Both of these heuristics are not used in Loss state, when we cannot
1147 * account for retransmits accurately.
1148 *
1149 * SACK block validation.
1150 * ----------------------
1151 *
1152 * SACK block range validation checks that the received SACK block fits to
1153 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1154 * Note that SND.UNA is not included to the range though being valid because
1155 * it means that the receiver is rather inconsistent with itself reporting
1156 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1157 * perfectly valid, however, in light of RFC2018 which explicitly states
1158 * that "SACK block MUST reflect the newest segment. Even if the newest
1159 * segment is going to be discarded ...", not that it looks very clever
1160 * in case of head skb. Due to potentional receiver driven attacks, we
1161 * choose to avoid immediate execution of a walk in write queue due to
1162 * reneging and defer head skb's loss recovery to standard loss recovery
1163 * procedure that will eventually trigger (nothing forbids us doing this).
1164 *
1165 * Implements also blockage to start_seq wrap-around. Problem lies in the
1166 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1167 * there's no guarantee that it will be before snd_nxt (n). The problem
1168 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1169 * wrap (s_w):
1170 *
1171 * <- outs wnd -> <- wrapzone ->
1172 * u e n u_w e_w s n_w
1173 * | | | | | | |
1174 * |<------------+------+----- TCP seqno space --------------+---------->|
1175 * ...-- <2^31 ->| |<--------...
1176 * ...---- >2^31 ------>| |<--------...
1177 *
1178 * Current code wouldn't be vulnerable but it's better still to discard such
1179 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1180 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1181 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1182 * equal to the ideal case (infinite seqno space without wrap caused issues).
1183 *
1184 * With D-SACK the lower bound is extended to cover sequence space below
1185 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1186 * again, D-SACK block must not to go across snd_una (for the same reason as
1187 * for the normal SACK blocks, explained above). But there all simplicity
1188 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1189 * fully below undo_marker they do not affect behavior in anyway and can
1190 * therefore be safely ignored. In rare cases (which are more or less
1191 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1192 * fragmentation and packet reordering past skb's retransmission. To consider
1193 * them correctly, the acceptable range must be extended even more though
1194 * the exact amount is rather hard to quantify. However, tp->max_window can
1195 * be used as an exaggerated estimate.
1196 */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1197 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1198 u32 start_seq, u32 end_seq)
1199 {
1200 /* Too far in future, or reversed (interpretation is ambiguous) */
1201 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1202 return false;
1203
1204 /* Nasty start_seq wrap-around check (see comments above) */
1205 if (!before(start_seq, tp->snd_nxt))
1206 return false;
1207
1208 /* In outstanding window? ...This is valid exit for D-SACKs too.
1209 * start_seq == snd_una is non-sensical (see comments above)
1210 */
1211 if (after(start_seq, tp->snd_una))
1212 return true;
1213
1214 if (!is_dsack || !tp->undo_marker)
1215 return false;
1216
1217 /* ...Then it's D-SACK, and must reside below snd_una completely */
1218 if (after(end_seq, tp->snd_una))
1219 return false;
1220
1221 if (!before(start_seq, tp->undo_marker))
1222 return true;
1223
1224 /* Too old */
1225 if (!after(end_seq, tp->undo_marker))
1226 return false;
1227
1228 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1229 * start_seq < undo_marker and end_seq >= undo_marker.
1230 */
1231 return !before(start_seq, end_seq - tp->max_window);
1232 }
1233
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1234 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1235 struct tcp_sack_block_wire *sp, int num_sacks,
1236 u32 prior_snd_una, struct tcp_sacktag_state *state)
1237 {
1238 struct tcp_sock *tp = tcp_sk(sk);
1239 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1240 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1241 u32 dup_segs;
1242
1243 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1244 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1245 } else if (num_sacks > 1) {
1246 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1247 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1248
1249 if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1250 return false;
1251 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1252 } else {
1253 return false;
1254 }
1255
1256 dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1257 if (!dup_segs) { /* Skip dubious DSACK */
1258 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1259 return false;
1260 }
1261
1262 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1263
1264 /* D-SACK for already forgotten data... Do dumb counting. */
1265 if (tp->undo_marker && tp->undo_retrans > 0 &&
1266 !after(end_seq_0, prior_snd_una) &&
1267 after(end_seq_0, tp->undo_marker))
1268 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1269
1270 return true;
1271 }
1272
1273 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1274 * the incoming SACK may not exactly match but we can find smaller MSS
1275 * aligned portion of it that matches. Therefore we might need to fragment
1276 * which may fail and creates some hassle (caller must handle error case
1277 * returns).
1278 *
1279 * FIXME: this could be merged to shift decision code
1280 */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1281 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1282 u32 start_seq, u32 end_seq)
1283 {
1284 int err;
1285 bool in_sack;
1286 unsigned int pkt_len;
1287 unsigned int mss;
1288
1289 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1290 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1291
1292 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1293 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1294 mss = tcp_skb_mss(skb);
1295 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1296
1297 if (!in_sack) {
1298 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1299 if (pkt_len < mss)
1300 pkt_len = mss;
1301 } else {
1302 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1303 if (pkt_len < mss)
1304 return -EINVAL;
1305 }
1306
1307 /* Round if necessary so that SACKs cover only full MSSes
1308 * and/or the remaining small portion (if present)
1309 */
1310 if (pkt_len > mss) {
1311 unsigned int new_len = (pkt_len / mss) * mss;
1312 if (!in_sack && new_len < pkt_len)
1313 new_len += mss;
1314 pkt_len = new_len;
1315 }
1316
1317 if (pkt_len >= skb->len && !in_sack)
1318 return 0;
1319
1320 err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1321 pkt_len, mss, GFP_ATOMIC);
1322 if (err < 0)
1323 return err;
1324 }
1325
1326 return in_sack;
1327 }
1328
1329 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1330 static u8 tcp_sacktag_one(struct sock *sk,
1331 struct tcp_sacktag_state *state, u8 sacked,
1332 u32 start_seq, u32 end_seq,
1333 int dup_sack, int pcount,
1334 u64 xmit_time)
1335 {
1336 struct tcp_sock *tp = tcp_sk(sk);
1337
1338 /* Account D-SACK for retransmitted packet. */
1339 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1340 if (tp->undo_marker && tp->undo_retrans > 0 &&
1341 after(end_seq, tp->undo_marker))
1342 tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1343 if ((sacked & TCPCB_SACKED_ACKED) &&
1344 before(start_seq, state->reord))
1345 state->reord = start_seq;
1346 }
1347
1348 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1349 if (!after(end_seq, tp->snd_una))
1350 return sacked;
1351
1352 if (!(sacked & TCPCB_SACKED_ACKED)) {
1353 tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1354
1355 if (sacked & TCPCB_SACKED_RETRANS) {
1356 /* If the segment is not tagged as lost,
1357 * we do not clear RETRANS, believing
1358 * that retransmission is still in flight.
1359 */
1360 if (sacked & TCPCB_LOST) {
1361 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1362 tp->lost_out -= pcount;
1363 tp->retrans_out -= pcount;
1364 }
1365 } else {
1366 if (!(sacked & TCPCB_RETRANS)) {
1367 /* New sack for not retransmitted frame,
1368 * which was in hole. It is reordering.
1369 */
1370 if (before(start_seq,
1371 tcp_highest_sack_seq(tp)) &&
1372 before(start_seq, state->reord))
1373 state->reord = start_seq;
1374
1375 if (!after(end_seq, tp->high_seq))
1376 state->flag |= FLAG_ORIG_SACK_ACKED;
1377 if (state->first_sackt == 0)
1378 state->first_sackt = xmit_time;
1379 state->last_sackt = xmit_time;
1380 }
1381
1382 if (sacked & TCPCB_LOST) {
1383 sacked &= ~TCPCB_LOST;
1384 tp->lost_out -= pcount;
1385 }
1386 }
1387
1388 sacked |= TCPCB_SACKED_ACKED;
1389 state->flag |= FLAG_DATA_SACKED;
1390 tp->sacked_out += pcount;
1391 /* Out-of-order packets delivered */
1392 state->sack_delivered += pcount;
1393
1394 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1395 if (tp->lost_skb_hint &&
1396 before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1397 tp->lost_cnt_hint += pcount;
1398 }
1399
1400 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1401 * frames and clear it. undo_retrans is decreased above, L|R frames
1402 * are accounted above as well.
1403 */
1404 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1405 sacked &= ~TCPCB_SACKED_RETRANS;
1406 tp->retrans_out -= pcount;
1407 }
1408
1409 return sacked;
1410 }
1411
1412 /* Shift newly-SACKed bytes from this skb to the immediately previous
1413 * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1414 */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1415 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1416 struct sk_buff *skb,
1417 struct tcp_sacktag_state *state,
1418 unsigned int pcount, int shifted, int mss,
1419 bool dup_sack)
1420 {
1421 struct tcp_sock *tp = tcp_sk(sk);
1422 u32 start_seq = TCP_SKB_CB(skb)->seq; /* start of newly-SACKed */
1423 u32 end_seq = start_seq + shifted; /* end of newly-SACKed */
1424
1425 BUG_ON(!pcount);
1426
1427 /* Adjust counters and hints for the newly sacked sequence
1428 * range but discard the return value since prev is already
1429 * marked. We must tag the range first because the seq
1430 * advancement below implicitly advances
1431 * tcp_highest_sack_seq() when skb is highest_sack.
1432 */
1433 tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1434 start_seq, end_seq, dup_sack, pcount,
1435 tcp_skb_timestamp_us(skb));
1436 tcp_rate_skb_delivered(sk, skb, state->rate);
1437
1438 if (skb == tp->lost_skb_hint)
1439 tp->lost_cnt_hint += pcount;
1440
1441 TCP_SKB_CB(prev)->end_seq += shifted;
1442 TCP_SKB_CB(skb)->seq += shifted;
1443
1444 tcp_skb_pcount_add(prev, pcount);
1445 WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1446 tcp_skb_pcount_add(skb, -pcount);
1447
1448 /* When we're adding to gso_segs == 1, gso_size will be zero,
1449 * in theory this shouldn't be necessary but as long as DSACK
1450 * code can come after this skb later on it's better to keep
1451 * setting gso_size to something.
1452 */
1453 if (!TCP_SKB_CB(prev)->tcp_gso_size)
1454 TCP_SKB_CB(prev)->tcp_gso_size = mss;
1455
1456 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1457 if (tcp_skb_pcount(skb) <= 1)
1458 TCP_SKB_CB(skb)->tcp_gso_size = 0;
1459
1460 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1461 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1462
1463 if (skb->len > 0) {
1464 BUG_ON(!tcp_skb_pcount(skb));
1465 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1466 return false;
1467 }
1468
1469 /* Whole SKB was eaten :-) */
1470
1471 if (skb == tp->retransmit_skb_hint)
1472 tp->retransmit_skb_hint = prev;
1473 if (skb == tp->lost_skb_hint) {
1474 tp->lost_skb_hint = prev;
1475 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1476 }
1477
1478 TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1479 TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1480 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1481 TCP_SKB_CB(prev)->end_seq++;
1482
1483 if (skb == tcp_highest_sack(sk))
1484 tcp_advance_highest_sack(sk, skb);
1485
1486 tcp_skb_collapse_tstamp(prev, skb);
1487 if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1488 TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1489
1490 tcp_rtx_queue_unlink_and_free(skb, sk);
1491
1492 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1493
1494 return true;
1495 }
1496
1497 /* I wish gso_size would have a bit more sane initialization than
1498 * something-or-zero which complicates things
1499 */
tcp_skb_seglen(const struct sk_buff * skb)1500 static int tcp_skb_seglen(const struct sk_buff *skb)
1501 {
1502 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1503 }
1504
1505 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1506 static int skb_can_shift(const struct sk_buff *skb)
1507 {
1508 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1509 }
1510
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1511 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1512 int pcount, int shiftlen)
1513 {
1514 /* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1515 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1516 * to make sure not storing more than 65535 * 8 bytes per skb,
1517 * even if current MSS is bigger.
1518 */
1519 if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1520 return 0;
1521 if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1522 return 0;
1523 return skb_shift(to, from, shiftlen);
1524 }
1525
1526 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1527 * skb.
1528 */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1529 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1530 struct tcp_sacktag_state *state,
1531 u32 start_seq, u32 end_seq,
1532 bool dup_sack)
1533 {
1534 struct tcp_sock *tp = tcp_sk(sk);
1535 struct sk_buff *prev;
1536 int mss;
1537 int pcount = 0;
1538 int len;
1539 int in_sack;
1540
1541 /* Normally R but no L won't result in plain S */
1542 if (!dup_sack &&
1543 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1544 goto fallback;
1545 if (!skb_can_shift(skb))
1546 goto fallback;
1547 /* This frame is about to be dropped (was ACKed). */
1548 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1549 goto fallback;
1550
1551 /* Can only happen with delayed DSACK + discard craziness */
1552 prev = skb_rb_prev(skb);
1553 if (!prev)
1554 goto fallback;
1555
1556 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1557 goto fallback;
1558
1559 if (!tcp_skb_can_collapse(prev, skb))
1560 goto fallback;
1561
1562 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1563 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1564
1565 if (in_sack) {
1566 len = skb->len;
1567 pcount = tcp_skb_pcount(skb);
1568 mss = tcp_skb_seglen(skb);
1569
1570 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1571 * drop this restriction as unnecessary
1572 */
1573 if (mss != tcp_skb_seglen(prev))
1574 goto fallback;
1575 } else {
1576 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1577 goto noop;
1578 /* CHECKME: This is non-MSS split case only?, this will
1579 * cause skipped skbs due to advancing loop btw, original
1580 * has that feature too
1581 */
1582 if (tcp_skb_pcount(skb) <= 1)
1583 goto noop;
1584
1585 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1586 if (!in_sack) {
1587 /* TODO: head merge to next could be attempted here
1588 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1589 * though it might not be worth of the additional hassle
1590 *
1591 * ...we can probably just fallback to what was done
1592 * previously. We could try merging non-SACKed ones
1593 * as well but it probably isn't going to buy off
1594 * because later SACKs might again split them, and
1595 * it would make skb timestamp tracking considerably
1596 * harder problem.
1597 */
1598 goto fallback;
1599 }
1600
1601 len = end_seq - TCP_SKB_CB(skb)->seq;
1602 BUG_ON(len < 0);
1603 BUG_ON(len > skb->len);
1604
1605 /* MSS boundaries should be honoured or else pcount will
1606 * severely break even though it makes things bit trickier.
1607 * Optimize common case to avoid most of the divides
1608 */
1609 mss = tcp_skb_mss(skb);
1610
1611 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1612 * drop this restriction as unnecessary
1613 */
1614 if (mss != tcp_skb_seglen(prev))
1615 goto fallback;
1616
1617 if (len == mss) {
1618 pcount = 1;
1619 } else if (len < mss) {
1620 goto noop;
1621 } else {
1622 pcount = len / mss;
1623 len = pcount * mss;
1624 }
1625 }
1626
1627 /* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1628 if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1629 goto fallback;
1630
1631 if (!tcp_skb_shift(prev, skb, pcount, len))
1632 goto fallback;
1633 if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1634 goto out;
1635
1636 /* Hole filled allows collapsing with the next as well, this is very
1637 * useful when hole on every nth skb pattern happens
1638 */
1639 skb = skb_rb_next(prev);
1640 if (!skb)
1641 goto out;
1642
1643 if (!skb_can_shift(skb) ||
1644 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1645 (mss != tcp_skb_seglen(skb)))
1646 goto out;
1647
1648 if (!tcp_skb_can_collapse(prev, skb))
1649 goto out;
1650 len = skb->len;
1651 pcount = tcp_skb_pcount(skb);
1652 if (tcp_skb_shift(prev, skb, pcount, len))
1653 tcp_shifted_skb(sk, prev, skb, state, pcount,
1654 len, mss, 0);
1655
1656 out:
1657 return prev;
1658
1659 noop:
1660 return skb;
1661
1662 fallback:
1663 NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1664 return NULL;
1665 }
1666
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1667 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1668 struct tcp_sack_block *next_dup,
1669 struct tcp_sacktag_state *state,
1670 u32 start_seq, u32 end_seq,
1671 bool dup_sack_in)
1672 {
1673 struct tcp_sock *tp = tcp_sk(sk);
1674 struct sk_buff *tmp;
1675
1676 skb_rbtree_walk_from(skb) {
1677 int in_sack = 0;
1678 bool dup_sack = dup_sack_in;
1679
1680 /* queue is in-order => we can short-circuit the walk early */
1681 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1682 break;
1683
1684 if (next_dup &&
1685 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1686 in_sack = tcp_match_skb_to_sack(sk, skb,
1687 next_dup->start_seq,
1688 next_dup->end_seq);
1689 if (in_sack > 0)
1690 dup_sack = true;
1691 }
1692
1693 /* skb reference here is a bit tricky to get right, since
1694 * shifting can eat and free both this skb and the next,
1695 * so not even _safe variant of the loop is enough.
1696 */
1697 if (in_sack <= 0) {
1698 tmp = tcp_shift_skb_data(sk, skb, state,
1699 start_seq, end_seq, dup_sack);
1700 if (tmp) {
1701 if (tmp != skb) {
1702 skb = tmp;
1703 continue;
1704 }
1705
1706 in_sack = 0;
1707 } else {
1708 in_sack = tcp_match_skb_to_sack(sk, skb,
1709 start_seq,
1710 end_seq);
1711 }
1712 }
1713
1714 if (unlikely(in_sack < 0))
1715 break;
1716
1717 if (in_sack) {
1718 TCP_SKB_CB(skb)->sacked =
1719 tcp_sacktag_one(sk,
1720 state,
1721 TCP_SKB_CB(skb)->sacked,
1722 TCP_SKB_CB(skb)->seq,
1723 TCP_SKB_CB(skb)->end_seq,
1724 dup_sack,
1725 tcp_skb_pcount(skb),
1726 tcp_skb_timestamp_us(skb));
1727 tcp_rate_skb_delivered(sk, skb, state->rate);
1728 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1729 list_del_init(&skb->tcp_tsorted_anchor);
1730
1731 if (!before(TCP_SKB_CB(skb)->seq,
1732 tcp_highest_sack_seq(tp)))
1733 tcp_advance_highest_sack(sk, skb);
1734 }
1735 }
1736 return skb;
1737 }
1738
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1739 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1740 {
1741 struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1742 struct sk_buff *skb;
1743
1744 while (*p) {
1745 parent = *p;
1746 skb = rb_to_skb(parent);
1747 if (before(seq, TCP_SKB_CB(skb)->seq)) {
1748 p = &parent->rb_left;
1749 continue;
1750 }
1751 if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1752 p = &parent->rb_right;
1753 continue;
1754 }
1755 return skb;
1756 }
1757 return NULL;
1758 }
1759
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1760 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1761 u32 skip_to_seq)
1762 {
1763 if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1764 return skb;
1765
1766 return tcp_sacktag_bsearch(sk, skip_to_seq);
1767 }
1768
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1769 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1770 struct sock *sk,
1771 struct tcp_sack_block *next_dup,
1772 struct tcp_sacktag_state *state,
1773 u32 skip_to_seq)
1774 {
1775 if (!next_dup)
1776 return skb;
1777
1778 if (before(next_dup->start_seq, skip_to_seq)) {
1779 skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1780 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1781 next_dup->start_seq, next_dup->end_seq,
1782 1);
1783 }
1784
1785 return skb;
1786 }
1787
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1788 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1789 {
1790 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1791 }
1792
1793 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1794 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1795 u32 prior_snd_una, struct tcp_sacktag_state *state)
1796 {
1797 struct tcp_sock *tp = tcp_sk(sk);
1798 const unsigned char *ptr = (skb_transport_header(ack_skb) +
1799 TCP_SKB_CB(ack_skb)->sacked);
1800 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1801 struct tcp_sack_block sp[TCP_NUM_SACKS];
1802 struct tcp_sack_block *cache;
1803 struct sk_buff *skb;
1804 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1805 int used_sacks;
1806 bool found_dup_sack = false;
1807 int i, j;
1808 int first_sack_index;
1809
1810 state->flag = 0;
1811 state->reord = tp->snd_nxt;
1812
1813 if (!tp->sacked_out)
1814 tcp_highest_sack_reset(sk);
1815
1816 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1817 num_sacks, prior_snd_una, state);
1818
1819 /* Eliminate too old ACKs, but take into
1820 * account more or less fresh ones, they can
1821 * contain valid SACK info.
1822 */
1823 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1824 return 0;
1825
1826 if (!tp->packets_out)
1827 goto out;
1828
1829 used_sacks = 0;
1830 first_sack_index = 0;
1831 for (i = 0; i < num_sacks; i++) {
1832 bool dup_sack = !i && found_dup_sack;
1833
1834 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1835 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1836
1837 if (!tcp_is_sackblock_valid(tp, dup_sack,
1838 sp[used_sacks].start_seq,
1839 sp[used_sacks].end_seq)) {
1840 int mib_idx;
1841
1842 if (dup_sack) {
1843 if (!tp->undo_marker)
1844 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1845 else
1846 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1847 } else {
1848 /* Don't count olds caused by ACK reordering */
1849 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1850 !after(sp[used_sacks].end_seq, tp->snd_una))
1851 continue;
1852 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1853 }
1854
1855 NET_INC_STATS(sock_net(sk), mib_idx);
1856 if (i == 0)
1857 first_sack_index = -1;
1858 continue;
1859 }
1860
1861 /* Ignore very old stuff early */
1862 if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1863 if (i == 0)
1864 first_sack_index = -1;
1865 continue;
1866 }
1867
1868 used_sacks++;
1869 }
1870
1871 /* order SACK blocks to allow in order walk of the retrans queue */
1872 for (i = used_sacks - 1; i > 0; i--) {
1873 for (j = 0; j < i; j++) {
1874 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1875 swap(sp[j], sp[j + 1]);
1876
1877 /* Track where the first SACK block goes to */
1878 if (j == first_sack_index)
1879 first_sack_index = j + 1;
1880 }
1881 }
1882 }
1883
1884 state->mss_now = tcp_current_mss(sk);
1885 skb = NULL;
1886 i = 0;
1887
1888 if (!tp->sacked_out) {
1889 /* It's already past, so skip checking against it */
1890 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1891 } else {
1892 cache = tp->recv_sack_cache;
1893 /* Skip empty blocks in at head of the cache */
1894 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1895 !cache->end_seq)
1896 cache++;
1897 }
1898
1899 while (i < used_sacks) {
1900 u32 start_seq = sp[i].start_seq;
1901 u32 end_seq = sp[i].end_seq;
1902 bool dup_sack = (found_dup_sack && (i == first_sack_index));
1903 struct tcp_sack_block *next_dup = NULL;
1904
1905 if (found_dup_sack && ((i + 1) == first_sack_index))
1906 next_dup = &sp[i + 1];
1907
1908 /* Skip too early cached blocks */
1909 while (tcp_sack_cache_ok(tp, cache) &&
1910 !before(start_seq, cache->end_seq))
1911 cache++;
1912
1913 /* Can skip some work by looking recv_sack_cache? */
1914 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1915 after(end_seq, cache->start_seq)) {
1916
1917 /* Head todo? */
1918 if (before(start_seq, cache->start_seq)) {
1919 skb = tcp_sacktag_skip(skb, sk, start_seq);
1920 skb = tcp_sacktag_walk(skb, sk, next_dup,
1921 state,
1922 start_seq,
1923 cache->start_seq,
1924 dup_sack);
1925 }
1926
1927 /* Rest of the block already fully processed? */
1928 if (!after(end_seq, cache->end_seq))
1929 goto advance_sp;
1930
1931 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1932 state,
1933 cache->end_seq);
1934
1935 /* ...tail remains todo... */
1936 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1937 /* ...but better entrypoint exists! */
1938 skb = tcp_highest_sack(sk);
1939 if (!skb)
1940 break;
1941 cache++;
1942 goto walk;
1943 }
1944
1945 skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1946 /* Check overlap against next cached too (past this one already) */
1947 cache++;
1948 continue;
1949 }
1950
1951 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1952 skb = tcp_highest_sack(sk);
1953 if (!skb)
1954 break;
1955 }
1956 skb = tcp_sacktag_skip(skb, sk, start_seq);
1957
1958 walk:
1959 skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1960 start_seq, end_seq, dup_sack);
1961
1962 advance_sp:
1963 i++;
1964 }
1965
1966 /* Clear the head of the cache sack blocks so we can skip it next time */
1967 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1968 tp->recv_sack_cache[i].start_seq = 0;
1969 tp->recv_sack_cache[i].end_seq = 0;
1970 }
1971 for (j = 0; j < used_sacks; j++)
1972 tp->recv_sack_cache[i++] = sp[j];
1973
1974 if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1975 tcp_check_sack_reordering(sk, state->reord, 0);
1976
1977 tcp_verify_left_out(tp);
1978 out:
1979
1980 #if FASTRETRANS_DEBUG > 0
1981 WARN_ON((int)tp->sacked_out < 0);
1982 WARN_ON((int)tp->lost_out < 0);
1983 WARN_ON((int)tp->retrans_out < 0);
1984 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1985 #endif
1986 return state->flag;
1987 }
1988
1989 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1990 * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1991 */
tcp_limit_reno_sacked(struct tcp_sock * tp)1992 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1993 {
1994 u32 holes;
1995
1996 holes = max(tp->lost_out, 1U);
1997 holes = min(holes, tp->packets_out);
1998
1999 if ((tp->sacked_out + holes) > tp->packets_out) {
2000 tp->sacked_out = tp->packets_out - holes;
2001 return true;
2002 }
2003 return false;
2004 }
2005
2006 /* If we receive more dupacks than we expected counting segments
2007 * in assumption of absent reordering, interpret this as reordering.
2008 * The only another reason could be bug in receiver TCP.
2009 */
tcp_check_reno_reordering(struct sock * sk,const int addend)2010 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2011 {
2012 struct tcp_sock *tp = tcp_sk(sk);
2013
2014 if (!tcp_limit_reno_sacked(tp))
2015 return;
2016
2017 tp->reordering = min_t(u32, tp->packets_out + addend,
2018 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2019 tp->reord_seen++;
2020 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2021 }
2022
2023 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2024
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2025 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2026 {
2027 if (num_dupack) {
2028 struct tcp_sock *tp = tcp_sk(sk);
2029 u32 prior_sacked = tp->sacked_out;
2030 s32 delivered;
2031
2032 tp->sacked_out += num_dupack;
2033 tcp_check_reno_reordering(sk, 0);
2034 delivered = tp->sacked_out - prior_sacked;
2035 if (delivered > 0)
2036 tcp_count_delivered(tp, delivered, ece_ack);
2037 tcp_verify_left_out(tp);
2038 }
2039 }
2040
2041 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2042
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2043 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2044 {
2045 struct tcp_sock *tp = tcp_sk(sk);
2046
2047 if (acked > 0) {
2048 /* One ACK acked hole. The rest eat duplicate ACKs. */
2049 tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2050 ece_ack);
2051 if (acked - 1 >= tp->sacked_out)
2052 tp->sacked_out = 0;
2053 else
2054 tp->sacked_out -= acked - 1;
2055 }
2056 tcp_check_reno_reordering(sk, acked);
2057 tcp_verify_left_out(tp);
2058 }
2059
tcp_reset_reno_sack(struct tcp_sock * tp)2060 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2061 {
2062 tp->sacked_out = 0;
2063 }
2064
tcp_clear_retrans(struct tcp_sock * tp)2065 void tcp_clear_retrans(struct tcp_sock *tp)
2066 {
2067 tp->retrans_out = 0;
2068 tp->lost_out = 0;
2069 tp->undo_marker = 0;
2070 tp->undo_retrans = -1;
2071 tp->sacked_out = 0;
2072 }
2073
tcp_init_undo(struct tcp_sock * tp)2074 static inline void tcp_init_undo(struct tcp_sock *tp)
2075 {
2076 tp->undo_marker = tp->snd_una;
2077 /* Retransmission still in flight may cause DSACKs later. */
2078 tp->undo_retrans = tp->retrans_out ? : -1;
2079 }
2080
tcp_is_rack(const struct sock * sk)2081 static bool tcp_is_rack(const struct sock *sk)
2082 {
2083 return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2084 TCP_RACK_LOSS_DETECTION;
2085 }
2086
2087 /* If we detect SACK reneging, forget all SACK information
2088 * and reset tags completely, otherwise preserve SACKs. If receiver
2089 * dropped its ofo queue, we will know this due to reneging detection.
2090 */
tcp_timeout_mark_lost(struct sock * sk)2091 static void tcp_timeout_mark_lost(struct sock *sk)
2092 {
2093 struct tcp_sock *tp = tcp_sk(sk);
2094 struct sk_buff *skb, *head;
2095 bool is_reneg; /* is receiver reneging on SACKs? */
2096
2097 head = tcp_rtx_queue_head(sk);
2098 is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2099 if (is_reneg) {
2100 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2101 tp->sacked_out = 0;
2102 /* Mark SACK reneging until we recover from this loss event. */
2103 tp->is_sack_reneg = 1;
2104 } else if (tcp_is_reno(tp)) {
2105 tcp_reset_reno_sack(tp);
2106 }
2107
2108 skb = head;
2109 skb_rbtree_walk_from(skb) {
2110 if (is_reneg)
2111 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2112 else if (tcp_is_rack(sk) && skb != head &&
2113 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2114 continue; /* Don't mark recently sent ones lost yet */
2115 tcp_mark_skb_lost(sk, skb);
2116 }
2117 tcp_verify_left_out(tp);
2118 tcp_clear_all_retrans_hints(tp);
2119 }
2120
2121 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2122 void tcp_enter_loss(struct sock *sk)
2123 {
2124 const struct inet_connection_sock *icsk = inet_csk(sk);
2125 struct tcp_sock *tp = tcp_sk(sk);
2126 struct net *net = sock_net(sk);
2127 bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2128 u8 reordering;
2129
2130 tcp_timeout_mark_lost(sk);
2131
2132 /* Reduce ssthresh if it has not yet been made inside this window. */
2133 if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2134 !after(tp->high_seq, tp->snd_una) ||
2135 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2136 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2137 tp->prior_cwnd = tp->snd_cwnd;
2138 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2139 tcp_ca_event(sk, CA_EVENT_LOSS);
2140 tcp_init_undo(tp);
2141 }
2142 tp->snd_cwnd = tcp_packets_in_flight(tp) + 1;
2143 tp->snd_cwnd_cnt = 0;
2144 tp->snd_cwnd_stamp = tcp_jiffies32;
2145
2146 /* Timeout in disordered state after receiving substantial DUPACKs
2147 * suggests that the degree of reordering is over-estimated.
2148 */
2149 reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2150 if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2151 tp->sacked_out >= reordering)
2152 tp->reordering = min_t(unsigned int, tp->reordering,
2153 reordering);
2154
2155 tcp_set_ca_state(sk, TCP_CA_Loss);
2156 tp->high_seq = tp->snd_nxt;
2157 tcp_ecn_queue_cwr(tp);
2158
2159 /* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2160 * loss recovery is underway except recurring timeout(s) on
2161 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2162 */
2163 tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2164 (new_recovery || icsk->icsk_retransmits) &&
2165 !inet_csk(sk)->icsk_mtup.probe_size;
2166 }
2167
2168 /* If ACK arrived pointing to a remembered SACK, it means that our
2169 * remembered SACKs do not reflect real state of receiver i.e.
2170 * receiver _host_ is heavily congested (or buggy).
2171 *
2172 * To avoid big spurious retransmission bursts due to transient SACK
2173 * scoreboard oddities that look like reneging, we give the receiver a
2174 * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2175 * restore sanity to the SACK scoreboard. If the apparent reneging
2176 * persists until this RTO then we'll clear the SACK scoreboard.
2177 */
tcp_check_sack_reneging(struct sock * sk,int flag)2178 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2179 {
2180 if (flag & FLAG_SACK_RENEGING &&
2181 flag & FLAG_SND_UNA_ADVANCED) {
2182 struct tcp_sock *tp = tcp_sk(sk);
2183 unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2184 msecs_to_jiffies(10));
2185
2186 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2187 delay, TCP_RTO_MAX);
2188 return true;
2189 }
2190 return false;
2191 }
2192
2193 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2194 * counter when SACK is enabled (without SACK, sacked_out is used for
2195 * that purpose).
2196 *
2197 * With reordering, holes may still be in flight, so RFC3517 recovery
2198 * uses pure sacked_out (total number of SACKed segments) even though
2199 * it violates the RFC that uses duplicate ACKs, often these are equal
2200 * but when e.g. out-of-window ACKs or packet duplication occurs,
2201 * they differ. Since neither occurs due to loss, TCP should really
2202 * ignore them.
2203 */
tcp_dupack_heuristics(const struct tcp_sock * tp)2204 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2205 {
2206 return tp->sacked_out + 1;
2207 }
2208
2209 /* Linux NewReno/SACK/ECN state machine.
2210 * --------------------------------------
2211 *
2212 * "Open" Normal state, no dubious events, fast path.
2213 * "Disorder" In all the respects it is "Open",
2214 * but requires a bit more attention. It is entered when
2215 * we see some SACKs or dupacks. It is split of "Open"
2216 * mainly to move some processing from fast path to slow one.
2217 * "CWR" CWND was reduced due to some Congestion Notification event.
2218 * It can be ECN, ICMP source quench, local device congestion.
2219 * "Recovery" CWND was reduced, we are fast-retransmitting.
2220 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2221 *
2222 * tcp_fastretrans_alert() is entered:
2223 * - each incoming ACK, if state is not "Open"
2224 * - when arrived ACK is unusual, namely:
2225 * * SACK
2226 * * Duplicate ACK.
2227 * * ECN ECE.
2228 *
2229 * Counting packets in flight is pretty simple.
2230 *
2231 * in_flight = packets_out - left_out + retrans_out
2232 *
2233 * packets_out is SND.NXT-SND.UNA counted in packets.
2234 *
2235 * retrans_out is number of retransmitted segments.
2236 *
2237 * left_out is number of segments left network, but not ACKed yet.
2238 *
2239 * left_out = sacked_out + lost_out
2240 *
2241 * sacked_out: Packets, which arrived to receiver out of order
2242 * and hence not ACKed. With SACKs this number is simply
2243 * amount of SACKed data. Even without SACKs
2244 * it is easy to give pretty reliable estimate of this number,
2245 * counting duplicate ACKs.
2246 *
2247 * lost_out: Packets lost by network. TCP has no explicit
2248 * "loss notification" feedback from network (for now).
2249 * It means that this number can be only _guessed_.
2250 * Actually, it is the heuristics to predict lossage that
2251 * distinguishes different algorithms.
2252 *
2253 * F.e. after RTO, when all the queue is considered as lost,
2254 * lost_out = packets_out and in_flight = retrans_out.
2255 *
2256 * Essentially, we have now a few algorithms detecting
2257 * lost packets.
2258 *
2259 * If the receiver supports SACK:
2260 *
2261 * RFC6675/3517: It is the conventional algorithm. A packet is
2262 * considered lost if the number of higher sequence packets
2263 * SACKed is greater than or equal the DUPACK thoreshold
2264 * (reordering). This is implemented in tcp_mark_head_lost and
2265 * tcp_update_scoreboard.
2266 *
2267 * RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2268 * (2017-) that checks timing instead of counting DUPACKs.
2269 * Essentially a packet is considered lost if it's not S/ACKed
2270 * after RTT + reordering_window, where both metrics are
2271 * dynamically measured and adjusted. This is implemented in
2272 * tcp_rack_mark_lost.
2273 *
2274 * If the receiver does not support SACK:
2275 *
2276 * NewReno (RFC6582): in Recovery we assume that one segment
2277 * is lost (classic Reno). While we are in Recovery and
2278 * a partial ACK arrives, we assume that one more packet
2279 * is lost (NewReno). This heuristics are the same in NewReno
2280 * and SACK.
2281 *
2282 * Really tricky (and requiring careful tuning) part of algorithm
2283 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2284 * The first determines the moment _when_ we should reduce CWND and,
2285 * hence, slow down forward transmission. In fact, it determines the moment
2286 * when we decide that hole is caused by loss, rather than by a reorder.
2287 *
2288 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2289 * holes, caused by lost packets.
2290 *
2291 * And the most logically complicated part of algorithm is undo
2292 * heuristics. We detect false retransmits due to both too early
2293 * fast retransmit (reordering) and underestimated RTO, analyzing
2294 * timestamps and D-SACKs. When we detect that some segments were
2295 * retransmitted by mistake and CWND reduction was wrong, we undo
2296 * window reduction and abort recovery phase. This logic is hidden
2297 * inside several functions named tcp_try_undo_<something>.
2298 */
2299
2300 /* This function decides, when we should leave Disordered state
2301 * and enter Recovery phase, reducing congestion window.
2302 *
2303 * Main question: may we further continue forward transmission
2304 * with the same cwnd?
2305 */
tcp_time_to_recover(struct sock * sk,int flag)2306 static bool tcp_time_to_recover(struct sock *sk, int flag)
2307 {
2308 struct tcp_sock *tp = tcp_sk(sk);
2309
2310 /* Trick#1: The loss is proven. */
2311 if (tp->lost_out)
2312 return true;
2313
2314 /* Not-A-Trick#2 : Classic rule... */
2315 if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2316 return true;
2317
2318 return false;
2319 }
2320
2321 /* Detect loss in event "A" above by marking head of queue up as lost.
2322 * For RFC3517 SACK, a segment is considered lost if it
2323 * has at least tp->reordering SACKed seqments above it; "packets" refers to
2324 * the maximum SACKed segments to pass before reaching this limit.
2325 */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2326 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2327 {
2328 struct tcp_sock *tp = tcp_sk(sk);
2329 struct sk_buff *skb;
2330 int cnt;
2331 /* Use SACK to deduce losses of new sequences sent during recovery */
2332 const u32 loss_high = tp->snd_nxt;
2333
2334 WARN_ON(packets > tp->packets_out);
2335 skb = tp->lost_skb_hint;
2336 if (skb) {
2337 /* Head already handled? */
2338 if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2339 return;
2340 cnt = tp->lost_cnt_hint;
2341 } else {
2342 skb = tcp_rtx_queue_head(sk);
2343 cnt = 0;
2344 }
2345
2346 skb_rbtree_walk_from(skb) {
2347 /* TODO: do this better */
2348 /* this is not the most efficient way to do this... */
2349 tp->lost_skb_hint = skb;
2350 tp->lost_cnt_hint = cnt;
2351
2352 if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2353 break;
2354
2355 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2356 cnt += tcp_skb_pcount(skb);
2357
2358 if (cnt > packets)
2359 break;
2360
2361 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2362 tcp_mark_skb_lost(sk, skb);
2363
2364 if (mark_head)
2365 break;
2366 }
2367 tcp_verify_left_out(tp);
2368 }
2369
2370 /* Account newly detected lost packet(s) */
2371
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2372 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2373 {
2374 struct tcp_sock *tp = tcp_sk(sk);
2375
2376 if (tcp_is_sack(tp)) {
2377 int sacked_upto = tp->sacked_out - tp->reordering;
2378 if (sacked_upto >= 0)
2379 tcp_mark_head_lost(sk, sacked_upto, 0);
2380 else if (fast_rexmit)
2381 tcp_mark_head_lost(sk, 1, 1);
2382 }
2383 }
2384
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2385 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2386 {
2387 return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2388 before(tp->rx_opt.rcv_tsecr, when);
2389 }
2390
2391 /* skb is spurious retransmitted if the returned timestamp echo
2392 * reply is prior to the skb transmission time
2393 */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2394 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2395 const struct sk_buff *skb)
2396 {
2397 return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2398 tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2399 }
2400
2401 /* Nothing was retransmitted or returned timestamp is less
2402 * than timestamp of the first retransmission.
2403 */
tcp_packet_delayed(const struct tcp_sock * tp)2404 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2405 {
2406 return tp->retrans_stamp &&
2407 tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2408 }
2409
2410 /* Undo procedures. */
2411
2412 /* We can clear retrans_stamp when there are no retransmissions in the
2413 * window. It would seem that it is trivially available for us in
2414 * tp->retrans_out, however, that kind of assumptions doesn't consider
2415 * what will happen if errors occur when sending retransmission for the
2416 * second time. ...It could the that such segment has only
2417 * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2418 * the head skb is enough except for some reneging corner cases that
2419 * are not worth the effort.
2420 *
2421 * Main reason for all this complexity is the fact that connection dying
2422 * time now depends on the validity of the retrans_stamp, in particular,
2423 * that successive retransmissions of a segment must not advance
2424 * retrans_stamp under any conditions.
2425 */
tcp_any_retrans_done(const struct sock * sk)2426 static bool tcp_any_retrans_done(const struct sock *sk)
2427 {
2428 const struct tcp_sock *tp = tcp_sk(sk);
2429 struct sk_buff *skb;
2430
2431 if (tp->retrans_out)
2432 return true;
2433
2434 skb = tcp_rtx_queue_head(sk);
2435 if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2436 return true;
2437
2438 return false;
2439 }
2440
DBGUNDO(struct sock * sk,const char * msg)2441 static void DBGUNDO(struct sock *sk, const char *msg)
2442 {
2443 #if FASTRETRANS_DEBUG > 1
2444 struct tcp_sock *tp = tcp_sk(sk);
2445 struct inet_sock *inet = inet_sk(sk);
2446
2447 if (sk->sk_family == AF_INET) {
2448 pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2449 msg,
2450 &inet->inet_daddr, ntohs(inet->inet_dport),
2451 tp->snd_cwnd, tcp_left_out(tp),
2452 tp->snd_ssthresh, tp->prior_ssthresh,
2453 tp->packets_out);
2454 }
2455 #if IS_ENABLED(CONFIG_IPV6)
2456 else if (sk->sk_family == AF_INET6) {
2457 pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2458 msg,
2459 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2460 tp->snd_cwnd, tcp_left_out(tp),
2461 tp->snd_ssthresh, tp->prior_ssthresh,
2462 tp->packets_out);
2463 }
2464 #endif
2465 #endif
2466 }
2467
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2468 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2469 {
2470 struct tcp_sock *tp = tcp_sk(sk);
2471
2472 if (unmark_loss) {
2473 struct sk_buff *skb;
2474
2475 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2476 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2477 }
2478 tp->lost_out = 0;
2479 tcp_clear_all_retrans_hints(tp);
2480 }
2481
2482 if (tp->prior_ssthresh) {
2483 const struct inet_connection_sock *icsk = inet_csk(sk);
2484
2485 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2486
2487 if (tp->prior_ssthresh > tp->snd_ssthresh) {
2488 tp->snd_ssthresh = tp->prior_ssthresh;
2489 tcp_ecn_withdraw_cwr(tp);
2490 }
2491 }
2492 tp->snd_cwnd_stamp = tcp_jiffies32;
2493 tp->undo_marker = 0;
2494 tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2495 }
2496
tcp_may_undo(const struct tcp_sock * tp)2497 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2498 {
2499 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2500 }
2501
tcp_is_non_sack_preventing_reopen(struct sock * sk)2502 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2503 {
2504 struct tcp_sock *tp = tcp_sk(sk);
2505
2506 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2507 /* Hold old state until something *above* high_seq
2508 * is ACKed. For Reno it is MUST to prevent false
2509 * fast retransmits (RFC2582). SACK TCP is safe. */
2510 if (!tcp_any_retrans_done(sk))
2511 tp->retrans_stamp = 0;
2512 return true;
2513 }
2514 return false;
2515 }
2516
2517 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2518 static bool tcp_try_undo_recovery(struct sock *sk)
2519 {
2520 struct tcp_sock *tp = tcp_sk(sk);
2521
2522 if (tcp_may_undo(tp)) {
2523 int mib_idx;
2524
2525 /* Happy end! We did not retransmit anything
2526 * or our original transmission succeeded.
2527 */
2528 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2529 tcp_undo_cwnd_reduction(sk, false);
2530 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2531 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2532 else
2533 mib_idx = LINUX_MIB_TCPFULLUNDO;
2534
2535 NET_INC_STATS(sock_net(sk), mib_idx);
2536 } else if (tp->rack.reo_wnd_persist) {
2537 tp->rack.reo_wnd_persist--;
2538 }
2539 if (tcp_is_non_sack_preventing_reopen(sk))
2540 return true;
2541 tcp_set_ca_state(sk, TCP_CA_Open);
2542 tp->is_sack_reneg = 0;
2543 return false;
2544 }
2545
2546 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2547 static bool tcp_try_undo_dsack(struct sock *sk)
2548 {
2549 struct tcp_sock *tp = tcp_sk(sk);
2550
2551 if (tp->undo_marker && !tp->undo_retrans) {
2552 tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2553 tp->rack.reo_wnd_persist + 1);
2554 DBGUNDO(sk, "D-SACK");
2555 tcp_undo_cwnd_reduction(sk, false);
2556 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2557 return true;
2558 }
2559 return false;
2560 }
2561
2562 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2563 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2564 {
2565 struct tcp_sock *tp = tcp_sk(sk);
2566
2567 if (frto_undo || tcp_may_undo(tp)) {
2568 tcp_undo_cwnd_reduction(sk, true);
2569
2570 DBGUNDO(sk, "partial loss");
2571 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2572 if (frto_undo)
2573 NET_INC_STATS(sock_net(sk),
2574 LINUX_MIB_TCPSPURIOUSRTOS);
2575 inet_csk(sk)->icsk_retransmits = 0;
2576 if (tcp_is_non_sack_preventing_reopen(sk))
2577 return true;
2578 if (frto_undo || tcp_is_sack(tp)) {
2579 tcp_set_ca_state(sk, TCP_CA_Open);
2580 tp->is_sack_reneg = 0;
2581 }
2582 return true;
2583 }
2584 return false;
2585 }
2586
2587 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2588 * It computes the number of packets to send (sndcnt) based on packets newly
2589 * delivered:
2590 * 1) If the packets in flight is larger than ssthresh, PRR spreads the
2591 * cwnd reductions across a full RTT.
2592 * 2) Otherwise PRR uses packet conservation to send as much as delivered.
2593 * But when the retransmits are acked without further losses, PRR
2594 * slow starts cwnd up to ssthresh to speed up the recovery.
2595 */
tcp_init_cwnd_reduction(struct sock * sk)2596 static void tcp_init_cwnd_reduction(struct sock *sk)
2597 {
2598 struct tcp_sock *tp = tcp_sk(sk);
2599
2600 tp->high_seq = tp->snd_nxt;
2601 tp->tlp_high_seq = 0;
2602 tp->snd_cwnd_cnt = 0;
2603 tp->prior_cwnd = tp->snd_cwnd;
2604 tp->prr_delivered = 0;
2605 tp->prr_out = 0;
2606 tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2607 tcp_ecn_queue_cwr(tp);
2608 }
2609
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2610 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2611 {
2612 struct tcp_sock *tp = tcp_sk(sk);
2613 int sndcnt = 0;
2614 int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2615
2616 if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2617 return;
2618
2619 tp->prr_delivered += newly_acked_sacked;
2620 if (delta < 0) {
2621 u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2622 tp->prior_cwnd - 1;
2623 sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2624 } else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2625 FLAG_RETRANS_DATA_ACKED) {
2626 sndcnt = min_t(int, delta,
2627 max_t(int, tp->prr_delivered - tp->prr_out,
2628 newly_acked_sacked) + 1);
2629 } else {
2630 sndcnt = min(delta, newly_acked_sacked);
2631 }
2632 /* Force a fast retransmit upon entering fast recovery */
2633 sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2634 tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2635 }
2636
tcp_end_cwnd_reduction(struct sock * sk)2637 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2638 {
2639 struct tcp_sock *tp = tcp_sk(sk);
2640
2641 if (inet_csk(sk)->icsk_ca_ops->cong_control)
2642 return;
2643
2644 /* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2645 if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2646 (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2647 tp->snd_cwnd = tp->snd_ssthresh;
2648 tp->snd_cwnd_stamp = tcp_jiffies32;
2649 }
2650 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2651 }
2652
2653 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2654 void tcp_enter_cwr(struct sock *sk)
2655 {
2656 struct tcp_sock *tp = tcp_sk(sk);
2657
2658 tp->prior_ssthresh = 0;
2659 if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2660 tp->undo_marker = 0;
2661 tcp_init_cwnd_reduction(sk);
2662 tcp_set_ca_state(sk, TCP_CA_CWR);
2663 }
2664 }
2665 EXPORT_SYMBOL(tcp_enter_cwr);
2666
tcp_try_keep_open(struct sock * sk)2667 static void tcp_try_keep_open(struct sock *sk)
2668 {
2669 struct tcp_sock *tp = tcp_sk(sk);
2670 int state = TCP_CA_Open;
2671
2672 if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2673 state = TCP_CA_Disorder;
2674
2675 if (inet_csk(sk)->icsk_ca_state != state) {
2676 tcp_set_ca_state(sk, state);
2677 tp->high_seq = tp->snd_nxt;
2678 }
2679 }
2680
tcp_try_to_open(struct sock * sk,int flag)2681 static void tcp_try_to_open(struct sock *sk, int flag)
2682 {
2683 struct tcp_sock *tp = tcp_sk(sk);
2684
2685 tcp_verify_left_out(tp);
2686
2687 if (!tcp_any_retrans_done(sk))
2688 tp->retrans_stamp = 0;
2689
2690 if (flag & FLAG_ECE)
2691 tcp_enter_cwr(sk);
2692
2693 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2694 tcp_try_keep_open(sk);
2695 }
2696 }
2697
tcp_mtup_probe_failed(struct sock * sk)2698 static void tcp_mtup_probe_failed(struct sock *sk)
2699 {
2700 struct inet_connection_sock *icsk = inet_csk(sk);
2701
2702 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2703 icsk->icsk_mtup.probe_size = 0;
2704 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2705 }
2706
tcp_mtup_probe_success(struct sock * sk)2707 static void tcp_mtup_probe_success(struct sock *sk)
2708 {
2709 struct tcp_sock *tp = tcp_sk(sk);
2710 struct inet_connection_sock *icsk = inet_csk(sk);
2711 u64 val;
2712
2713 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2714
2715 val = (u64)tp->snd_cwnd * tcp_mss_to_mtu(sk, tp->mss_cache);
2716 do_div(val, icsk->icsk_mtup.probe_size);
2717 WARN_ON_ONCE((u32)val != val);
2718 tp->snd_cwnd = max_t(u32, 1U, val);
2719
2720 tp->snd_cwnd_cnt = 0;
2721 tp->snd_cwnd_stamp = tcp_jiffies32;
2722 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2723
2724 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2725 icsk->icsk_mtup.probe_size = 0;
2726 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2727 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2728 }
2729
2730 /* Do a simple retransmit without using the backoff mechanisms in
2731 * tcp_timer. This is used for path mtu discovery.
2732 * The socket is already locked here.
2733 */
tcp_simple_retransmit(struct sock * sk)2734 void tcp_simple_retransmit(struct sock *sk)
2735 {
2736 const struct inet_connection_sock *icsk = inet_csk(sk);
2737 struct tcp_sock *tp = tcp_sk(sk);
2738 struct sk_buff *skb;
2739 unsigned int mss = tcp_current_mss(sk);
2740
2741 skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2742 if (tcp_skb_seglen(skb) > mss)
2743 tcp_mark_skb_lost(sk, skb);
2744 }
2745
2746 tcp_clear_retrans_hints_partial(tp);
2747
2748 if (!tp->lost_out)
2749 return;
2750
2751 if (tcp_is_reno(tp))
2752 tcp_limit_reno_sacked(tp);
2753
2754 tcp_verify_left_out(tp);
2755
2756 /* Don't muck with the congestion window here.
2757 * Reason is that we do not increase amount of _data_
2758 * in network, but units changed and effective
2759 * cwnd/ssthresh really reduced now.
2760 */
2761 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2762 tp->high_seq = tp->snd_nxt;
2763 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2764 tp->prior_ssthresh = 0;
2765 tp->undo_marker = 0;
2766 tcp_set_ca_state(sk, TCP_CA_Loss);
2767 }
2768 tcp_xmit_retransmit_queue(sk);
2769 }
2770 EXPORT_SYMBOL(tcp_simple_retransmit);
2771
tcp_enter_recovery(struct sock * sk,bool ece_ack)2772 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2773 {
2774 struct tcp_sock *tp = tcp_sk(sk);
2775 int mib_idx;
2776
2777 if (tcp_is_reno(tp))
2778 mib_idx = LINUX_MIB_TCPRENORECOVERY;
2779 else
2780 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2781
2782 NET_INC_STATS(sock_net(sk), mib_idx);
2783
2784 tp->prior_ssthresh = 0;
2785 tcp_init_undo(tp);
2786
2787 if (!tcp_in_cwnd_reduction(sk)) {
2788 if (!ece_ack)
2789 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2790 tcp_init_cwnd_reduction(sk);
2791 }
2792 tcp_set_ca_state(sk, TCP_CA_Recovery);
2793 }
2794
2795 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2796 * recovered or spurious. Otherwise retransmits more on partial ACKs.
2797 */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2798 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2799 int *rexmit)
2800 {
2801 struct tcp_sock *tp = tcp_sk(sk);
2802 bool recovered = !before(tp->snd_una, tp->high_seq);
2803
2804 if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2805 tcp_try_undo_loss(sk, false))
2806 return;
2807
2808 if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2809 /* Step 3.b. A timeout is spurious if not all data are
2810 * lost, i.e., never-retransmitted data are (s)acked.
2811 */
2812 if ((flag & FLAG_ORIG_SACK_ACKED) &&
2813 tcp_try_undo_loss(sk, true))
2814 return;
2815
2816 if (after(tp->snd_nxt, tp->high_seq)) {
2817 if (flag & FLAG_DATA_SACKED || num_dupack)
2818 tp->frto = 0; /* Step 3.a. loss was real */
2819 } else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2820 tp->high_seq = tp->snd_nxt;
2821 /* Step 2.b. Try send new data (but deferred until cwnd
2822 * is updated in tcp_ack()). Otherwise fall back to
2823 * the conventional recovery.
2824 */
2825 if (!tcp_write_queue_empty(sk) &&
2826 after(tcp_wnd_end(tp), tp->snd_nxt)) {
2827 *rexmit = REXMIT_NEW;
2828 return;
2829 }
2830 tp->frto = 0;
2831 }
2832 }
2833
2834 if (recovered) {
2835 /* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2836 tcp_try_undo_recovery(sk);
2837 return;
2838 }
2839 if (tcp_is_reno(tp)) {
2840 /* A Reno DUPACK means new data in F-RTO step 2.b above are
2841 * delivered. Lower inflight to clock out (re)tranmissions.
2842 */
2843 if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2844 tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2845 else if (flag & FLAG_SND_UNA_ADVANCED)
2846 tcp_reset_reno_sack(tp);
2847 }
2848 *rexmit = REXMIT_LOST;
2849 }
2850
tcp_force_fast_retransmit(struct sock * sk)2851 static bool tcp_force_fast_retransmit(struct sock *sk)
2852 {
2853 struct tcp_sock *tp = tcp_sk(sk);
2854
2855 return after(tcp_highest_sack_seq(tp),
2856 tp->snd_una + tp->reordering * tp->mss_cache);
2857 }
2858
2859 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2860 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2861 bool *do_lost)
2862 {
2863 struct tcp_sock *tp = tcp_sk(sk);
2864
2865 if (tp->undo_marker && tcp_packet_delayed(tp)) {
2866 /* Plain luck! Hole if filled with delayed
2867 * packet, rather than with a retransmit. Check reordering.
2868 */
2869 tcp_check_sack_reordering(sk, prior_snd_una, 1);
2870
2871 /* We are getting evidence that the reordering degree is higher
2872 * than we realized. If there are no retransmits out then we
2873 * can undo. Otherwise we clock out new packets but do not
2874 * mark more packets lost or retransmit more.
2875 */
2876 if (tp->retrans_out)
2877 return true;
2878
2879 if (!tcp_any_retrans_done(sk))
2880 tp->retrans_stamp = 0;
2881
2882 DBGUNDO(sk, "partial recovery");
2883 tcp_undo_cwnd_reduction(sk, true);
2884 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2885 tcp_try_keep_open(sk);
2886 } else {
2887 /* Partial ACK arrived. Force fast retransmit. */
2888 *do_lost = tcp_force_fast_retransmit(sk);
2889 }
2890 return false;
2891 }
2892
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2893 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2894 {
2895 struct tcp_sock *tp = tcp_sk(sk);
2896
2897 if (tcp_rtx_queue_empty(sk))
2898 return;
2899
2900 if (unlikely(tcp_is_reno(tp))) {
2901 tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2902 } else if (tcp_is_rack(sk)) {
2903 u32 prior_retrans = tp->retrans_out;
2904
2905 if (tcp_rack_mark_lost(sk))
2906 *ack_flag &= ~FLAG_SET_XMIT_TIMER;
2907 if (prior_retrans > tp->retrans_out)
2908 *ack_flag |= FLAG_LOST_RETRANS;
2909 }
2910 }
2911
2912 /* Process an event, which can update packets-in-flight not trivially.
2913 * Main goal of this function is to calculate new estimate for left_out,
2914 * taking into account both packets sitting in receiver's buffer and
2915 * packets lost by network.
2916 *
2917 * Besides that it updates the congestion state when packet loss or ECN
2918 * is detected. But it does not reduce the cwnd, it is done by the
2919 * congestion control later.
2920 *
2921 * It does _not_ decide what to send, it is made in function
2922 * tcp_xmit_retransmit_queue().
2923 */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2924 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2925 int num_dupack, int *ack_flag, int *rexmit)
2926 {
2927 struct inet_connection_sock *icsk = inet_csk(sk);
2928 struct tcp_sock *tp = tcp_sk(sk);
2929 int fast_rexmit = 0, flag = *ack_flag;
2930 bool ece_ack = flag & FLAG_ECE;
2931 bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2932 tcp_force_fast_retransmit(sk));
2933
2934 if (!tp->packets_out && tp->sacked_out)
2935 tp->sacked_out = 0;
2936
2937 /* Now state machine starts.
2938 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2939 if (ece_ack)
2940 tp->prior_ssthresh = 0;
2941
2942 /* B. In all the states check for reneging SACKs. */
2943 if (tcp_check_sack_reneging(sk, flag))
2944 return;
2945
2946 /* C. Check consistency of the current state. */
2947 tcp_verify_left_out(tp);
2948
2949 /* D. Check state exit conditions. State can be terminated
2950 * when high_seq is ACKed. */
2951 if (icsk->icsk_ca_state == TCP_CA_Open) {
2952 WARN_ON(tp->retrans_out != 0);
2953 tp->retrans_stamp = 0;
2954 } else if (!before(tp->snd_una, tp->high_seq)) {
2955 switch (icsk->icsk_ca_state) {
2956 case TCP_CA_CWR:
2957 /* CWR is to be held something *above* high_seq
2958 * is ACKed for CWR bit to reach receiver. */
2959 if (tp->snd_una != tp->high_seq) {
2960 tcp_end_cwnd_reduction(sk);
2961 tcp_set_ca_state(sk, TCP_CA_Open);
2962 }
2963 break;
2964
2965 case TCP_CA_Recovery:
2966 if (tcp_is_reno(tp))
2967 tcp_reset_reno_sack(tp);
2968 if (tcp_try_undo_recovery(sk))
2969 return;
2970 tcp_end_cwnd_reduction(sk);
2971 break;
2972 }
2973 }
2974
2975 /* E. Process state. */
2976 switch (icsk->icsk_ca_state) {
2977 case TCP_CA_Recovery:
2978 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2979 if (tcp_is_reno(tp))
2980 tcp_add_reno_sack(sk, num_dupack, ece_ack);
2981 } else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2982 return;
2983
2984 if (tcp_try_undo_dsack(sk))
2985 tcp_try_keep_open(sk);
2986
2987 tcp_identify_packet_loss(sk, ack_flag);
2988 if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2989 if (!tcp_time_to_recover(sk, flag))
2990 return;
2991 /* Undo reverts the recovery state. If loss is evident,
2992 * starts a new recovery (e.g. reordering then loss);
2993 */
2994 tcp_enter_recovery(sk, ece_ack);
2995 }
2996 break;
2997 case TCP_CA_Loss:
2998 tcp_process_loss(sk, flag, num_dupack, rexmit);
2999 tcp_identify_packet_loss(sk, ack_flag);
3000 if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3001 (*ack_flag & FLAG_LOST_RETRANS)))
3002 return;
3003 /* Change state if cwnd is undone or retransmits are lost */
3004 fallthrough;
3005 default:
3006 if (tcp_is_reno(tp)) {
3007 if (flag & FLAG_SND_UNA_ADVANCED)
3008 tcp_reset_reno_sack(tp);
3009 tcp_add_reno_sack(sk, num_dupack, ece_ack);
3010 }
3011
3012 if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3013 tcp_try_undo_dsack(sk);
3014
3015 tcp_identify_packet_loss(sk, ack_flag);
3016 if (!tcp_time_to_recover(sk, flag)) {
3017 tcp_try_to_open(sk, flag);
3018 return;
3019 }
3020
3021 /* MTU probe failure: don't reduce cwnd */
3022 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3023 icsk->icsk_mtup.probe_size &&
3024 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3025 tcp_mtup_probe_failed(sk);
3026 /* Restores the reduction we did in tcp_mtup_probe() */
3027 tp->snd_cwnd++;
3028 tcp_simple_retransmit(sk);
3029 return;
3030 }
3031
3032 /* Otherwise enter Recovery state */
3033 tcp_enter_recovery(sk, ece_ack);
3034 fast_rexmit = 1;
3035 }
3036
3037 if (!tcp_is_rack(sk) && do_lost)
3038 tcp_update_scoreboard(sk, fast_rexmit);
3039 *rexmit = REXMIT_LOST;
3040 }
3041
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3042 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3043 {
3044 u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3045 struct tcp_sock *tp = tcp_sk(sk);
3046
3047 if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3048 /* If the remote keeps returning delayed ACKs, eventually
3049 * the min filter would pick it up and overestimate the
3050 * prop. delay when it expires. Skip suspected delayed ACKs.
3051 */
3052 return;
3053 }
3054 minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3055 rtt_us ? : jiffies_to_usecs(1));
3056 }
3057
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3058 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3059 long seq_rtt_us, long sack_rtt_us,
3060 long ca_rtt_us, struct rate_sample *rs)
3061 {
3062 const struct tcp_sock *tp = tcp_sk(sk);
3063
3064 /* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3065 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3066 * Karn's algorithm forbids taking RTT if some retransmitted data
3067 * is acked (RFC6298).
3068 */
3069 if (seq_rtt_us < 0)
3070 seq_rtt_us = sack_rtt_us;
3071
3072 /* RTTM Rule: A TSecr value received in a segment is used to
3073 * update the averaged RTT measurement only if the segment
3074 * acknowledges some new data, i.e., only if it advances the
3075 * left edge of the send window.
3076 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3077 */
3078 if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3079 flag & FLAG_ACKED) {
3080 u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3081
3082 if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3083 if (!delta)
3084 delta = 1;
3085 seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3086 ca_rtt_us = seq_rtt_us;
3087 }
3088 }
3089 rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3090 if (seq_rtt_us < 0)
3091 return false;
3092
3093 /* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3094 * always taken together with ACK, SACK, or TS-opts. Any negative
3095 * values will be skipped with the seq_rtt_us < 0 check above.
3096 */
3097 tcp_update_rtt_min(sk, ca_rtt_us, flag);
3098 tcp_rtt_estimator(sk, seq_rtt_us);
3099 tcp_set_rto(sk);
3100
3101 /* RFC6298: only reset backoff on valid RTT measurement. */
3102 inet_csk(sk)->icsk_backoff = 0;
3103 return true;
3104 }
3105
3106 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3107 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3108 {
3109 struct rate_sample rs;
3110 long rtt_us = -1L;
3111
3112 if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3113 rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3114
3115 tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3116 }
3117
3118
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3119 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3120 {
3121 const struct inet_connection_sock *icsk = inet_csk(sk);
3122
3123 icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3124 tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3125 }
3126
3127 /* Restart timer after forward progress on connection.
3128 * RFC2988 recommends to restart timer to now+rto.
3129 */
tcp_rearm_rto(struct sock * sk)3130 void tcp_rearm_rto(struct sock *sk)
3131 {
3132 const struct inet_connection_sock *icsk = inet_csk(sk);
3133 struct tcp_sock *tp = tcp_sk(sk);
3134
3135 /* If the retrans timer is currently being used by Fast Open
3136 * for SYN-ACK retrans purpose, stay put.
3137 */
3138 if (rcu_access_pointer(tp->fastopen_rsk))
3139 return;
3140
3141 if (!tp->packets_out) {
3142 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3143 } else {
3144 u32 rto = inet_csk(sk)->icsk_rto;
3145 /* Offset the time elapsed after installing regular RTO */
3146 if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3147 icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3148 s64 delta_us = tcp_rto_delta_us(sk);
3149 /* delta_us may not be positive if the socket is locked
3150 * when the retrans timer fires and is rescheduled.
3151 */
3152 rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3153 }
3154 tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3155 TCP_RTO_MAX);
3156 }
3157 }
3158
3159 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3160 static void tcp_set_xmit_timer(struct sock *sk)
3161 {
3162 if (!tcp_schedule_loss_probe(sk, true))
3163 tcp_rearm_rto(sk);
3164 }
3165
3166 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3167 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3168 {
3169 struct tcp_sock *tp = tcp_sk(sk);
3170 u32 packets_acked;
3171
3172 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3173
3174 packets_acked = tcp_skb_pcount(skb);
3175 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3176 return 0;
3177 packets_acked -= tcp_skb_pcount(skb);
3178
3179 if (packets_acked) {
3180 BUG_ON(tcp_skb_pcount(skb) == 0);
3181 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3182 }
3183
3184 return packets_acked;
3185 }
3186
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3187 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3188 u32 prior_snd_una)
3189 {
3190 const struct skb_shared_info *shinfo;
3191
3192 /* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3193 if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3194 return;
3195
3196 shinfo = skb_shinfo(skb);
3197 if (!before(shinfo->tskey, prior_snd_una) &&
3198 before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3199 tcp_skb_tsorted_save(skb) {
3200 __skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3201 } tcp_skb_tsorted_restore(skb);
3202 }
3203 }
3204
3205 /* Remove acknowledged frames from the retransmission queue. If our packet
3206 * is before the ack sequence we can discard it as it's confirmed to have
3207 * arrived at the other end.
3208 */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3209 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3210 u32 prior_snd_una,
3211 struct tcp_sacktag_state *sack, bool ece_ack)
3212 {
3213 const struct inet_connection_sock *icsk = inet_csk(sk);
3214 u64 first_ackt, last_ackt;
3215 struct tcp_sock *tp = tcp_sk(sk);
3216 u32 prior_sacked = tp->sacked_out;
3217 u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3218 struct sk_buff *skb, *next;
3219 bool fully_acked = true;
3220 long sack_rtt_us = -1L;
3221 long seq_rtt_us = -1L;
3222 long ca_rtt_us = -1L;
3223 u32 pkts_acked = 0;
3224 u32 last_in_flight = 0;
3225 bool rtt_update;
3226 int flag = 0;
3227
3228 first_ackt = 0;
3229
3230 for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3231 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3232 const u32 start_seq = scb->seq;
3233 u8 sacked = scb->sacked;
3234 u32 acked_pcount;
3235
3236 /* Determine how many packets and what bytes were acked, tso and else */
3237 if (after(scb->end_seq, tp->snd_una)) {
3238 if (tcp_skb_pcount(skb) == 1 ||
3239 !after(tp->snd_una, scb->seq))
3240 break;
3241
3242 acked_pcount = tcp_tso_acked(sk, skb);
3243 if (!acked_pcount)
3244 break;
3245 fully_acked = false;
3246 } else {
3247 acked_pcount = tcp_skb_pcount(skb);
3248 }
3249
3250 if (unlikely(sacked & TCPCB_RETRANS)) {
3251 if (sacked & TCPCB_SACKED_RETRANS)
3252 tp->retrans_out -= acked_pcount;
3253 flag |= FLAG_RETRANS_DATA_ACKED;
3254 } else if (!(sacked & TCPCB_SACKED_ACKED)) {
3255 last_ackt = tcp_skb_timestamp_us(skb);
3256 WARN_ON_ONCE(last_ackt == 0);
3257 if (!first_ackt)
3258 first_ackt = last_ackt;
3259
3260 last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3261 if (before(start_seq, reord))
3262 reord = start_seq;
3263 if (!after(scb->end_seq, tp->high_seq))
3264 flag |= FLAG_ORIG_SACK_ACKED;
3265 }
3266
3267 if (sacked & TCPCB_SACKED_ACKED) {
3268 tp->sacked_out -= acked_pcount;
3269 } else if (tcp_is_sack(tp)) {
3270 tcp_count_delivered(tp, acked_pcount, ece_ack);
3271 if (!tcp_skb_spurious_retrans(tp, skb))
3272 tcp_rack_advance(tp, sacked, scb->end_seq,
3273 tcp_skb_timestamp_us(skb));
3274 }
3275 if (sacked & TCPCB_LOST)
3276 tp->lost_out -= acked_pcount;
3277
3278 tp->packets_out -= acked_pcount;
3279 pkts_acked += acked_pcount;
3280 tcp_rate_skb_delivered(sk, skb, sack->rate);
3281
3282 /* Initial outgoing SYN's get put onto the write_queue
3283 * just like anything else we transmit. It is not
3284 * true data, and if we misinform our callers that
3285 * this ACK acks real data, we will erroneously exit
3286 * connection startup slow start one packet too
3287 * quickly. This is severely frowned upon behavior.
3288 */
3289 if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3290 flag |= FLAG_DATA_ACKED;
3291 } else {
3292 flag |= FLAG_SYN_ACKED;
3293 tp->retrans_stamp = 0;
3294 }
3295
3296 if (!fully_acked)
3297 break;
3298
3299 tcp_ack_tstamp(sk, skb, prior_snd_una);
3300
3301 next = skb_rb_next(skb);
3302 if (unlikely(skb == tp->retransmit_skb_hint))
3303 tp->retransmit_skb_hint = NULL;
3304 if (unlikely(skb == tp->lost_skb_hint))
3305 tp->lost_skb_hint = NULL;
3306 tcp_highest_sack_replace(sk, skb, next);
3307 tcp_rtx_queue_unlink_and_free(skb, sk);
3308 }
3309
3310 if (!skb)
3311 tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3312
3313 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3314 tp->snd_up = tp->snd_una;
3315
3316 if (skb) {
3317 tcp_ack_tstamp(sk, skb, prior_snd_una);
3318 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3319 flag |= FLAG_SACK_RENEGING;
3320 }
3321
3322 if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3323 seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3324 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3325
3326 if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3327 last_in_flight && !prior_sacked && fully_acked &&
3328 sack->rate->prior_delivered + 1 == tp->delivered &&
3329 !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3330 /* Conservatively mark a delayed ACK. It's typically
3331 * from a lone runt packet over the round trip to
3332 * a receiver w/o out-of-order or CE events.
3333 */
3334 flag |= FLAG_ACK_MAYBE_DELAYED;
3335 }
3336 }
3337 if (sack->first_sackt) {
3338 sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3339 ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3340 }
3341 rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3342 ca_rtt_us, sack->rate);
3343
3344 if (flag & FLAG_ACKED) {
3345 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3346 if (unlikely(icsk->icsk_mtup.probe_size &&
3347 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3348 tcp_mtup_probe_success(sk);
3349 }
3350
3351 if (tcp_is_reno(tp)) {
3352 tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3353
3354 /* If any of the cumulatively ACKed segments was
3355 * retransmitted, non-SACK case cannot confirm that
3356 * progress was due to original transmission due to
3357 * lack of TCPCB_SACKED_ACKED bits even if some of
3358 * the packets may have been never retransmitted.
3359 */
3360 if (flag & FLAG_RETRANS_DATA_ACKED)
3361 flag &= ~FLAG_ORIG_SACK_ACKED;
3362 } else {
3363 int delta;
3364
3365 /* Non-retransmitted hole got filled? That's reordering */
3366 if (before(reord, prior_fack))
3367 tcp_check_sack_reordering(sk, reord, 0);
3368
3369 delta = prior_sacked - tp->sacked_out;
3370 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3371 }
3372 } else if (skb && rtt_update && sack_rtt_us >= 0 &&
3373 sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3374 tcp_skb_timestamp_us(skb))) {
3375 /* Do not re-arm RTO if the sack RTT is measured from data sent
3376 * after when the head was last (re)transmitted. Otherwise the
3377 * timeout may continue to extend in loss recovery.
3378 */
3379 flag |= FLAG_SET_XMIT_TIMER; /* set TLP or RTO timer */
3380 }
3381
3382 if (icsk->icsk_ca_ops->pkts_acked) {
3383 struct ack_sample sample = { .pkts_acked = pkts_acked,
3384 .rtt_us = sack->rate->rtt_us,
3385 .in_flight = last_in_flight };
3386
3387 icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3388 }
3389
3390 #if FASTRETRANS_DEBUG > 0
3391 WARN_ON((int)tp->sacked_out < 0);
3392 WARN_ON((int)tp->lost_out < 0);
3393 WARN_ON((int)tp->retrans_out < 0);
3394 if (!tp->packets_out && tcp_is_sack(tp)) {
3395 icsk = inet_csk(sk);
3396 if (tp->lost_out) {
3397 pr_debug("Leak l=%u %d\n",
3398 tp->lost_out, icsk->icsk_ca_state);
3399 tp->lost_out = 0;
3400 }
3401 if (tp->sacked_out) {
3402 pr_debug("Leak s=%u %d\n",
3403 tp->sacked_out, icsk->icsk_ca_state);
3404 tp->sacked_out = 0;
3405 }
3406 if (tp->retrans_out) {
3407 pr_debug("Leak r=%u %d\n",
3408 tp->retrans_out, icsk->icsk_ca_state);
3409 tp->retrans_out = 0;
3410 }
3411 }
3412 #endif
3413 return flag;
3414 }
3415
tcp_ack_probe(struct sock * sk)3416 static void tcp_ack_probe(struct sock *sk)
3417 {
3418 struct inet_connection_sock *icsk = inet_csk(sk);
3419 struct sk_buff *head = tcp_send_head(sk);
3420 const struct tcp_sock *tp = tcp_sk(sk);
3421
3422 /* Was it a usable window open? */
3423 if (!head)
3424 return;
3425 if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3426 icsk->icsk_backoff = 0;
3427 icsk->icsk_probes_tstamp = 0;
3428 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3429 /* Socket must be waked up by subsequent tcp_data_snd_check().
3430 * This function is not for random using!
3431 */
3432 } else {
3433 unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3434
3435 when = tcp_clamp_probe0_to_user_timeout(sk, when);
3436 tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3437 }
3438 }
3439
tcp_ack_is_dubious(const struct sock * sk,const int flag)3440 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3441 {
3442 return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3443 inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3444 }
3445
3446 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3447 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3448 {
3449 /* If reordering is high then always grow cwnd whenever data is
3450 * delivered regardless of its ordering. Otherwise stay conservative
3451 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3452 * new SACK or ECE mark may first advance cwnd here and later reduce
3453 * cwnd in tcp_fastretrans_alert() based on more states.
3454 */
3455 if (tcp_sk(sk)->reordering >
3456 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3457 return flag & FLAG_FORWARD_PROGRESS;
3458
3459 return flag & FLAG_DATA_ACKED;
3460 }
3461
3462 /* The "ultimate" congestion control function that aims to replace the rigid
3463 * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3464 * It's called toward the end of processing an ACK with precise rate
3465 * information. All transmission or retransmission are delayed afterwards.
3466 */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3467 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3468 int flag, const struct rate_sample *rs)
3469 {
3470 const struct inet_connection_sock *icsk = inet_csk(sk);
3471
3472 if (icsk->icsk_ca_ops->cong_control) {
3473 icsk->icsk_ca_ops->cong_control(sk, rs);
3474 return;
3475 }
3476
3477 if (tcp_in_cwnd_reduction(sk)) {
3478 /* Reduce cwnd if state mandates */
3479 tcp_cwnd_reduction(sk, acked_sacked, flag);
3480 } else if (tcp_may_raise_cwnd(sk, flag)) {
3481 /* Advance cwnd if state allows */
3482 tcp_cong_avoid(sk, ack, acked_sacked);
3483 }
3484 tcp_update_pacing_rate(sk);
3485 }
3486
3487 /* Check that window update is acceptable.
3488 * The function assumes that snd_una<=ack<=snd_next.
3489 */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3490 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3491 const u32 ack, const u32 ack_seq,
3492 const u32 nwin)
3493 {
3494 return after(ack, tp->snd_una) ||
3495 after(ack_seq, tp->snd_wl1) ||
3496 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3497 }
3498
3499 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3500 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3501 {
3502 u32 delta = ack - tp->snd_una;
3503
3504 sock_owned_by_me((struct sock *)tp);
3505 tp->bytes_acked += delta;
3506 tp->snd_una = ack;
3507 }
3508
3509 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3510 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3511 {
3512 u32 delta = seq - tp->rcv_nxt;
3513
3514 sock_owned_by_me((struct sock *)tp);
3515 tp->bytes_received += delta;
3516 WRITE_ONCE(tp->rcv_nxt, seq);
3517 }
3518
3519 /* Update our send window.
3520 *
3521 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3522 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3523 */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3524 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3525 u32 ack_seq)
3526 {
3527 struct tcp_sock *tp = tcp_sk(sk);
3528 int flag = 0;
3529 u32 nwin = ntohs(tcp_hdr(skb)->window);
3530
3531 if (likely(!tcp_hdr(skb)->syn))
3532 nwin <<= tp->rx_opt.snd_wscale;
3533
3534 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3535 flag |= FLAG_WIN_UPDATE;
3536 tcp_update_wl(tp, ack_seq);
3537
3538 if (tp->snd_wnd != nwin) {
3539 tp->snd_wnd = nwin;
3540
3541 /* Note, it is the only place, where
3542 * fast path is recovered for sending TCP.
3543 */
3544 tp->pred_flags = 0;
3545 tcp_fast_path_check(sk);
3546
3547 if (!tcp_write_queue_empty(sk))
3548 tcp_slow_start_after_idle_check(sk);
3549
3550 if (nwin > tp->max_window) {
3551 tp->max_window = nwin;
3552 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3553 }
3554 }
3555 }
3556
3557 tcp_snd_una_update(tp, ack);
3558
3559 return flag;
3560 }
3561
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3562 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3563 u32 *last_oow_ack_time)
3564 {
3565 /* Paired with the WRITE_ONCE() in this function. */
3566 u32 val = READ_ONCE(*last_oow_ack_time);
3567
3568 if (val) {
3569 s32 elapsed = (s32)(tcp_jiffies32 - val);
3570
3571 if (0 <= elapsed &&
3572 elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3573 NET_INC_STATS(net, mib_idx);
3574 return true; /* rate-limited: don't send yet! */
3575 }
3576 }
3577
3578 /* Paired with the prior READ_ONCE() and with itself,
3579 * as we might be lockless.
3580 */
3581 WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3582
3583 return false; /* not rate-limited: go ahead, send dupack now! */
3584 }
3585
3586 /* Return true if we're currently rate-limiting out-of-window ACKs and
3587 * thus shouldn't send a dupack right now. We rate-limit dupacks in
3588 * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3589 * attacks that send repeated SYNs or ACKs for the same connection. To
3590 * do this, we do not send a duplicate SYNACK or ACK if the remote
3591 * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3592 */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3593 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3594 int mib_idx, u32 *last_oow_ack_time)
3595 {
3596 /* Data packets without SYNs are not likely part of an ACK loop. */
3597 if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3598 !tcp_hdr(skb)->syn)
3599 return false;
3600
3601 return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3602 }
3603
3604 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3605 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3606 {
3607 /* unprotected vars, we dont care of overwrites */
3608 static u32 challenge_timestamp;
3609 static unsigned int challenge_count;
3610 struct tcp_sock *tp = tcp_sk(sk);
3611 struct net *net = sock_net(sk);
3612 u32 count, now;
3613
3614 /* First check our per-socket dupack rate limit. */
3615 if (__tcp_oow_rate_limited(net,
3616 LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3617 &tp->last_oow_ack_time))
3618 return;
3619
3620 /* Then check host-wide RFC 5961 rate limit. */
3621 now = jiffies / HZ;
3622 if (now != READ_ONCE(challenge_timestamp)) {
3623 u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3624 u32 half = (ack_limit + 1) >> 1;
3625
3626 WRITE_ONCE(challenge_timestamp, now);
3627 WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3628 }
3629 count = READ_ONCE(challenge_count);
3630 if (count > 0) {
3631 WRITE_ONCE(challenge_count, count - 1);
3632 NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3633 tcp_send_ack(sk);
3634 }
3635 }
3636
tcp_store_ts_recent(struct tcp_sock * tp)3637 static void tcp_store_ts_recent(struct tcp_sock *tp)
3638 {
3639 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3640 tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3641 }
3642
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3643 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3644 {
3645 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3646 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3647 * extra check below makes sure this can only happen
3648 * for pure ACK frames. -DaveM
3649 *
3650 * Not only, also it occurs for expired timestamps.
3651 */
3652
3653 if (tcp_paws_check(&tp->rx_opt, 0))
3654 tcp_store_ts_recent(tp);
3655 }
3656 }
3657
3658 /* This routine deals with acks during a TLP episode and ends an episode by
3659 * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3660 */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3661 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3662 {
3663 struct tcp_sock *tp = tcp_sk(sk);
3664
3665 if (before(ack, tp->tlp_high_seq))
3666 return;
3667
3668 if (!tp->tlp_retrans) {
3669 /* TLP of new data has been acknowledged */
3670 tp->tlp_high_seq = 0;
3671 } else if (flag & FLAG_DSACKING_ACK) {
3672 /* This DSACK means original and TLP probe arrived; no loss */
3673 tp->tlp_high_seq = 0;
3674 } else if (after(ack, tp->tlp_high_seq)) {
3675 /* ACK advances: there was a loss, so reduce cwnd. Reset
3676 * tlp_high_seq in tcp_init_cwnd_reduction()
3677 */
3678 tcp_init_cwnd_reduction(sk);
3679 tcp_set_ca_state(sk, TCP_CA_CWR);
3680 tcp_end_cwnd_reduction(sk);
3681 tcp_try_keep_open(sk);
3682 NET_INC_STATS(sock_net(sk),
3683 LINUX_MIB_TCPLOSSPROBERECOVERY);
3684 } else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3685 FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3686 /* Pure dupack: original and TLP probe arrived; no loss */
3687 tp->tlp_high_seq = 0;
3688 }
3689 }
3690
tcp_in_ack_event(struct sock * sk,u32 flags)3691 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3692 {
3693 const struct inet_connection_sock *icsk = inet_csk(sk);
3694
3695 if (icsk->icsk_ca_ops->in_ack_event)
3696 icsk->icsk_ca_ops->in_ack_event(sk, flags);
3697 }
3698
3699 /* Congestion control has updated the cwnd already. So if we're in
3700 * loss recovery then now we do any new sends (for FRTO) or
3701 * retransmits (for CA_Loss or CA_recovery) that make sense.
3702 */
tcp_xmit_recovery(struct sock * sk,int rexmit)3703 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3704 {
3705 struct tcp_sock *tp = tcp_sk(sk);
3706
3707 if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3708 return;
3709
3710 if (unlikely(rexmit == REXMIT_NEW)) {
3711 __tcp_push_pending_frames(sk, tcp_current_mss(sk),
3712 TCP_NAGLE_OFF);
3713 if (after(tp->snd_nxt, tp->high_seq))
3714 return;
3715 tp->frto = 0;
3716 }
3717 tcp_xmit_retransmit_queue(sk);
3718 }
3719
3720 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3721 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3722 {
3723 const struct net *net = sock_net(sk);
3724 struct tcp_sock *tp = tcp_sk(sk);
3725 u32 delivered;
3726
3727 delivered = tp->delivered - prior_delivered;
3728 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3729 if (flag & FLAG_ECE)
3730 NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3731
3732 return delivered;
3733 }
3734
3735 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3736 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3737 {
3738 struct inet_connection_sock *icsk = inet_csk(sk);
3739 struct tcp_sock *tp = tcp_sk(sk);
3740 struct tcp_sacktag_state sack_state;
3741 struct rate_sample rs = { .prior_delivered = 0 };
3742 u32 prior_snd_una = tp->snd_una;
3743 bool is_sack_reneg = tp->is_sack_reneg;
3744 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3745 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3746 int num_dupack = 0;
3747 int prior_packets = tp->packets_out;
3748 u32 delivered = tp->delivered;
3749 u32 lost = tp->lost;
3750 int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3751 u32 prior_fack;
3752
3753 sack_state.first_sackt = 0;
3754 sack_state.rate = &rs;
3755 sack_state.sack_delivered = 0;
3756
3757 /* We very likely will need to access rtx queue. */
3758 prefetch(sk->tcp_rtx_queue.rb_node);
3759
3760 /* If the ack is older than previous acks
3761 * then we can probably ignore it.
3762 */
3763 if (before(ack, prior_snd_una)) {
3764 /* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3765 if (before(ack, prior_snd_una - tp->max_window)) {
3766 if (!(flag & FLAG_NO_CHALLENGE_ACK))
3767 tcp_send_challenge_ack(sk, skb);
3768 return -1;
3769 }
3770 goto old_ack;
3771 }
3772
3773 /* If the ack includes data we haven't sent yet, discard
3774 * this segment (RFC793 Section 3.9).
3775 */
3776 if (after(ack, tp->snd_nxt))
3777 return -1;
3778
3779 if (after(ack, prior_snd_una)) {
3780 flag |= FLAG_SND_UNA_ADVANCED;
3781 icsk->icsk_retransmits = 0;
3782
3783 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3784 if (static_branch_unlikely(&clean_acked_data_enabled.key))
3785 if (icsk->icsk_clean_acked)
3786 icsk->icsk_clean_acked(sk, ack);
3787 #endif
3788 }
3789
3790 prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3791 rs.prior_in_flight = tcp_packets_in_flight(tp);
3792
3793 /* ts_recent update must be made after we are sure that the packet
3794 * is in window.
3795 */
3796 if (flag & FLAG_UPDATE_TS_RECENT)
3797 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3798
3799 if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3800 FLAG_SND_UNA_ADVANCED) {
3801 /* Window is constant, pure forward advance.
3802 * No more checks are required.
3803 * Note, we use the fact that SND.UNA>=SND.WL2.
3804 */
3805 tcp_update_wl(tp, ack_seq);
3806 tcp_snd_una_update(tp, ack);
3807 flag |= FLAG_WIN_UPDATE;
3808
3809 tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3810
3811 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3812 } else {
3813 u32 ack_ev_flags = CA_ACK_SLOWPATH;
3814
3815 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3816 flag |= FLAG_DATA;
3817 else
3818 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3819
3820 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3821
3822 if (TCP_SKB_CB(skb)->sacked)
3823 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3824 &sack_state);
3825
3826 if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3827 flag |= FLAG_ECE;
3828 ack_ev_flags |= CA_ACK_ECE;
3829 }
3830
3831 if (sack_state.sack_delivered)
3832 tcp_count_delivered(tp, sack_state.sack_delivered,
3833 flag & FLAG_ECE);
3834
3835 if (flag & FLAG_WIN_UPDATE)
3836 ack_ev_flags |= CA_ACK_WIN_UPDATE;
3837
3838 tcp_in_ack_event(sk, ack_ev_flags);
3839 }
3840
3841 /* This is a deviation from RFC3168 since it states that:
3842 * "When the TCP data sender is ready to set the CWR bit after reducing
3843 * the congestion window, it SHOULD set the CWR bit only on the first
3844 * new data packet that it transmits."
3845 * We accept CWR on pure ACKs to be more robust
3846 * with widely-deployed TCP implementations that do this.
3847 */
3848 tcp_ecn_accept_cwr(sk, skb);
3849
3850 /* We passed data and got it acked, remove any soft error
3851 * log. Something worked...
3852 */
3853 sk->sk_err_soft = 0;
3854 icsk->icsk_probes_out = 0;
3855 tp->rcv_tstamp = tcp_jiffies32;
3856 if (!prior_packets)
3857 goto no_queue;
3858
3859 /* See if we can take anything off of the retransmit queue. */
3860 flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3861 flag & FLAG_ECE);
3862
3863 tcp_rack_update_reo_wnd(sk, &rs);
3864
3865 if (tp->tlp_high_seq)
3866 tcp_process_tlp_ack(sk, ack, flag);
3867
3868 if (tcp_ack_is_dubious(sk, flag)) {
3869 if (!(flag & (FLAG_SND_UNA_ADVANCED |
3870 FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3871 num_dupack = 1;
3872 /* Consider if pure acks were aggregated in tcp_add_backlog() */
3873 if (!(flag & FLAG_DATA))
3874 num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3875 }
3876 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3877 &rexmit);
3878 }
3879
3880 /* If needed, reset TLP/RTO timer when RACK doesn't set. */
3881 if (flag & FLAG_SET_XMIT_TIMER)
3882 tcp_set_xmit_timer(sk);
3883
3884 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3885 sk_dst_confirm(sk);
3886
3887 delivered = tcp_newly_delivered(sk, delivered, flag);
3888 lost = tp->lost - lost; /* freshly marked lost */
3889 rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3890 tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3891 tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3892 tcp_xmit_recovery(sk, rexmit);
3893 return 1;
3894
3895 no_queue:
3896 /* If data was DSACKed, see if we can undo a cwnd reduction. */
3897 if (flag & FLAG_DSACKING_ACK) {
3898 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3899 &rexmit);
3900 tcp_newly_delivered(sk, delivered, flag);
3901 }
3902 /* If this ack opens up a zero window, clear backoff. It was
3903 * being used to time the probes, and is probably far higher than
3904 * it needs to be for normal retransmission.
3905 */
3906 tcp_ack_probe(sk);
3907
3908 if (tp->tlp_high_seq)
3909 tcp_process_tlp_ack(sk, ack, flag);
3910 return 1;
3911
3912 old_ack:
3913 /* If data was SACKed, tag it and see if we should send more data.
3914 * If data was DSACKed, see if we can undo a cwnd reduction.
3915 */
3916 if (TCP_SKB_CB(skb)->sacked) {
3917 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3918 &sack_state);
3919 tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3920 &rexmit);
3921 tcp_newly_delivered(sk, delivered, flag);
3922 tcp_xmit_recovery(sk, rexmit);
3923 }
3924
3925 return 0;
3926 }
3927
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3928 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3929 bool syn, struct tcp_fastopen_cookie *foc,
3930 bool exp_opt)
3931 {
3932 /* Valid only in SYN or SYN-ACK with an even length. */
3933 if (!foc || !syn || len < 0 || (len & 1))
3934 return;
3935
3936 if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3937 len <= TCP_FASTOPEN_COOKIE_MAX)
3938 memcpy(foc->val, cookie, len);
3939 else if (len != 0)
3940 len = -1;
3941 foc->len = len;
3942 foc->exp = exp_opt;
3943 }
3944
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3945 static bool smc_parse_options(const struct tcphdr *th,
3946 struct tcp_options_received *opt_rx,
3947 const unsigned char *ptr,
3948 int opsize)
3949 {
3950 #if IS_ENABLED(CONFIG_SMC)
3951 if (static_branch_unlikely(&tcp_have_smc)) {
3952 if (th->syn && !(opsize & 1) &&
3953 opsize >= TCPOLEN_EXP_SMC_BASE &&
3954 get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3955 opt_rx->smc_ok = 1;
3956 return true;
3957 }
3958 }
3959 #endif
3960 return false;
3961 }
3962
3963 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3964 * value on success.
3965 */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3966 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3967 {
3968 const unsigned char *ptr = (const unsigned char *)(th + 1);
3969 int length = (th->doff * 4) - sizeof(struct tcphdr);
3970 u16 mss = 0;
3971
3972 while (length > 0) {
3973 int opcode = *ptr++;
3974 int opsize;
3975
3976 switch (opcode) {
3977 case TCPOPT_EOL:
3978 return mss;
3979 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3980 length--;
3981 continue;
3982 default:
3983 if (length < 2)
3984 return mss;
3985 opsize = *ptr++;
3986 if (opsize < 2) /* "silly options" */
3987 return mss;
3988 if (opsize > length)
3989 return mss; /* fail on partial options */
3990 if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3991 u16 in_mss = get_unaligned_be16(ptr);
3992
3993 if (in_mss) {
3994 if (user_mss && user_mss < in_mss)
3995 in_mss = user_mss;
3996 mss = in_mss;
3997 }
3998 }
3999 ptr += opsize - 2;
4000 length -= opsize;
4001 }
4002 }
4003 return mss;
4004 }
4005
4006 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4007 * But, this can also be called on packets in the established flow when
4008 * the fast version below fails.
4009 */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4010 void tcp_parse_options(const struct net *net,
4011 const struct sk_buff *skb,
4012 struct tcp_options_received *opt_rx, int estab,
4013 struct tcp_fastopen_cookie *foc)
4014 {
4015 const unsigned char *ptr;
4016 const struct tcphdr *th = tcp_hdr(skb);
4017 int length = (th->doff * 4) - sizeof(struct tcphdr);
4018
4019 ptr = (const unsigned char *)(th + 1);
4020 opt_rx->saw_tstamp = 0;
4021 opt_rx->saw_unknown = 0;
4022
4023 while (length > 0) {
4024 int opcode = *ptr++;
4025 int opsize;
4026
4027 switch (opcode) {
4028 case TCPOPT_EOL:
4029 return;
4030 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
4031 length--;
4032 continue;
4033 default:
4034 if (length < 2)
4035 return;
4036 opsize = *ptr++;
4037 if (opsize < 2) /* "silly options" */
4038 return;
4039 if (opsize > length)
4040 return; /* don't parse partial options */
4041 switch (opcode) {
4042 case TCPOPT_MSS:
4043 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4044 u16 in_mss = get_unaligned_be16(ptr);
4045 if (in_mss) {
4046 if (opt_rx->user_mss &&
4047 opt_rx->user_mss < in_mss)
4048 in_mss = opt_rx->user_mss;
4049 opt_rx->mss_clamp = in_mss;
4050 }
4051 }
4052 break;
4053 case TCPOPT_WINDOW:
4054 if (opsize == TCPOLEN_WINDOW && th->syn &&
4055 !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4056 __u8 snd_wscale = *(__u8 *)ptr;
4057 opt_rx->wscale_ok = 1;
4058 if (snd_wscale > TCP_MAX_WSCALE) {
4059 net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4060 __func__,
4061 snd_wscale,
4062 TCP_MAX_WSCALE);
4063 snd_wscale = TCP_MAX_WSCALE;
4064 }
4065 opt_rx->snd_wscale = snd_wscale;
4066 }
4067 break;
4068 case TCPOPT_TIMESTAMP:
4069 if ((opsize == TCPOLEN_TIMESTAMP) &&
4070 ((estab && opt_rx->tstamp_ok) ||
4071 (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4072 opt_rx->saw_tstamp = 1;
4073 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4074 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4075 }
4076 break;
4077 case TCPOPT_SACK_PERM:
4078 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4079 !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4080 opt_rx->sack_ok = TCP_SACK_SEEN;
4081 tcp_sack_reset(opt_rx);
4082 }
4083 break;
4084
4085 case TCPOPT_SACK:
4086 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4087 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4088 opt_rx->sack_ok) {
4089 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4090 }
4091 break;
4092 #ifdef CONFIG_TCP_MD5SIG
4093 case TCPOPT_MD5SIG:
4094 /*
4095 * The MD5 Hash has already been
4096 * checked (see tcp_v{4,6}_do_rcv()).
4097 */
4098 break;
4099 #endif
4100 case TCPOPT_FASTOPEN:
4101 tcp_parse_fastopen_option(
4102 opsize - TCPOLEN_FASTOPEN_BASE,
4103 ptr, th->syn, foc, false);
4104 break;
4105
4106 case TCPOPT_EXP:
4107 /* Fast Open option shares code 254 using a
4108 * 16 bits magic number.
4109 */
4110 if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4111 get_unaligned_be16(ptr) ==
4112 TCPOPT_FASTOPEN_MAGIC) {
4113 tcp_parse_fastopen_option(opsize -
4114 TCPOLEN_EXP_FASTOPEN_BASE,
4115 ptr + 2, th->syn, foc, true);
4116 break;
4117 }
4118
4119 if (smc_parse_options(th, opt_rx, ptr, opsize))
4120 break;
4121
4122 opt_rx->saw_unknown = 1;
4123 break;
4124
4125 default:
4126 opt_rx->saw_unknown = 1;
4127 }
4128 ptr += opsize-2;
4129 length -= opsize;
4130 }
4131 }
4132 }
4133 EXPORT_SYMBOL(tcp_parse_options);
4134
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4135 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4136 {
4137 const __be32 *ptr = (const __be32 *)(th + 1);
4138
4139 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4140 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4141 tp->rx_opt.saw_tstamp = 1;
4142 ++ptr;
4143 tp->rx_opt.rcv_tsval = ntohl(*ptr);
4144 ++ptr;
4145 if (*ptr)
4146 tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4147 else
4148 tp->rx_opt.rcv_tsecr = 0;
4149 return true;
4150 }
4151 return false;
4152 }
4153
4154 /* Fast parse options. This hopes to only see timestamps.
4155 * If it is wrong it falls back on tcp_parse_options().
4156 */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4157 static bool tcp_fast_parse_options(const struct net *net,
4158 const struct sk_buff *skb,
4159 const struct tcphdr *th, struct tcp_sock *tp)
4160 {
4161 /* In the spirit of fast parsing, compare doff directly to constant
4162 * values. Because equality is used, short doff can be ignored here.
4163 */
4164 if (th->doff == (sizeof(*th) / 4)) {
4165 tp->rx_opt.saw_tstamp = 0;
4166 return false;
4167 } else if (tp->rx_opt.tstamp_ok &&
4168 th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4169 if (tcp_parse_aligned_timestamp(tp, th))
4170 return true;
4171 }
4172
4173 tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4174 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4175 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4176
4177 return true;
4178 }
4179
4180 #ifdef CONFIG_TCP_MD5SIG
4181 /*
4182 * Parse MD5 Signature option
4183 */
tcp_parse_md5sig_option(const struct tcphdr * th)4184 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4185 {
4186 int length = (th->doff << 2) - sizeof(*th);
4187 const u8 *ptr = (const u8 *)(th + 1);
4188
4189 /* If not enough data remaining, we can short cut */
4190 while (length >= TCPOLEN_MD5SIG) {
4191 int opcode = *ptr++;
4192 int opsize;
4193
4194 switch (opcode) {
4195 case TCPOPT_EOL:
4196 return NULL;
4197 case TCPOPT_NOP:
4198 length--;
4199 continue;
4200 default:
4201 opsize = *ptr++;
4202 if (opsize < 2 || opsize > length)
4203 return NULL;
4204 if (opcode == TCPOPT_MD5SIG)
4205 return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4206 }
4207 ptr += opsize - 2;
4208 length -= opsize;
4209 }
4210 return NULL;
4211 }
4212 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4213 #endif
4214
4215 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4216 *
4217 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4218 * it can pass through stack. So, the following predicate verifies that
4219 * this segment is not used for anything but congestion avoidance or
4220 * fast retransmit. Moreover, we even are able to eliminate most of such
4221 * second order effects, if we apply some small "replay" window (~RTO)
4222 * to timestamp space.
4223 *
4224 * All these measures still do not guarantee that we reject wrapped ACKs
4225 * on networks with high bandwidth, when sequence space is recycled fastly,
4226 * but it guarantees that such events will be very rare and do not affect
4227 * connection seriously. This doesn't look nice, but alas, PAWS is really
4228 * buggy extension.
4229 *
4230 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4231 * states that events when retransmit arrives after original data are rare.
4232 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4233 * the biggest problem on large power networks even with minor reordering.
4234 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4235 * up to bandwidth of 18Gigabit/sec. 8) ]
4236 */
4237
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4238 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4239 {
4240 const struct tcp_sock *tp = tcp_sk(sk);
4241 const struct tcphdr *th = tcp_hdr(skb);
4242 u32 seq = TCP_SKB_CB(skb)->seq;
4243 u32 ack = TCP_SKB_CB(skb)->ack_seq;
4244
4245 return (/* 1. Pure ACK with correct sequence number. */
4246 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4247
4248 /* 2. ... and duplicate ACK. */
4249 ack == tp->snd_una &&
4250
4251 /* 3. ... and does not update window. */
4252 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4253
4254 /* 4. ... and sits in replay window. */
4255 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4256 }
4257
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4258 static inline bool tcp_paws_discard(const struct sock *sk,
4259 const struct sk_buff *skb)
4260 {
4261 const struct tcp_sock *tp = tcp_sk(sk);
4262
4263 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4264 !tcp_disordered_ack(sk, skb);
4265 }
4266
4267 /* Check segment sequence number for validity.
4268 *
4269 * Segment controls are considered valid, if the segment
4270 * fits to the window after truncation to the window. Acceptability
4271 * of data (and SYN, FIN, of course) is checked separately.
4272 * See tcp_data_queue(), for example.
4273 *
4274 * Also, controls (RST is main one) are accepted using RCV.WUP instead
4275 * of RCV.NXT. Peer still did not advance his SND.UNA when we
4276 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4277 * (borrowed from freebsd)
4278 */
4279
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4280 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4281 {
4282 return !before(end_seq, tp->rcv_wup) &&
4283 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4284 }
4285
4286 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4287 void tcp_reset(struct sock *sk)
4288 {
4289 trace_tcp_receive_reset(sk);
4290
4291 /* We want the right error as BSD sees it (and indeed as we do). */
4292 switch (sk->sk_state) {
4293 case TCP_SYN_SENT:
4294 sk->sk_err = ECONNREFUSED;
4295 break;
4296 case TCP_CLOSE_WAIT:
4297 sk->sk_err = EPIPE;
4298 break;
4299 case TCP_CLOSE:
4300 return;
4301 default:
4302 sk->sk_err = ECONNRESET;
4303 }
4304 /* This barrier is coupled with smp_rmb() in tcp_poll() */
4305 smp_wmb();
4306
4307 tcp_write_queue_purge(sk);
4308 tcp_done(sk);
4309
4310 if (!sock_flag(sk, SOCK_DEAD))
4311 sk->sk_error_report(sk);
4312 }
4313
4314 /*
4315 * Process the FIN bit. This now behaves as it is supposed to work
4316 * and the FIN takes effect when it is validly part of sequence
4317 * space. Not before when we get holes.
4318 *
4319 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4320 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
4321 * TIME-WAIT)
4322 *
4323 * If we are in FINWAIT-1, a received FIN indicates simultaneous
4324 * close and we go into CLOSING (and later onto TIME-WAIT)
4325 *
4326 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4327 */
tcp_fin(struct sock * sk)4328 void tcp_fin(struct sock *sk)
4329 {
4330 struct tcp_sock *tp = tcp_sk(sk);
4331
4332 inet_csk_schedule_ack(sk);
4333
4334 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4335 sock_set_flag(sk, SOCK_DONE);
4336
4337 switch (sk->sk_state) {
4338 case TCP_SYN_RECV:
4339 case TCP_ESTABLISHED:
4340 /* Move to CLOSE_WAIT */
4341 tcp_set_state(sk, TCP_CLOSE_WAIT);
4342 inet_csk_enter_pingpong_mode(sk);
4343 break;
4344
4345 case TCP_CLOSE_WAIT:
4346 case TCP_CLOSING:
4347 /* Received a retransmission of the FIN, do
4348 * nothing.
4349 */
4350 break;
4351 case TCP_LAST_ACK:
4352 /* RFC793: Remain in the LAST-ACK state. */
4353 break;
4354
4355 case TCP_FIN_WAIT1:
4356 /* This case occurs when a simultaneous close
4357 * happens, we must ack the received FIN and
4358 * enter the CLOSING state.
4359 */
4360 tcp_send_ack(sk);
4361 tcp_set_state(sk, TCP_CLOSING);
4362 break;
4363 case TCP_FIN_WAIT2:
4364 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4365 tcp_send_ack(sk);
4366 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4367 break;
4368 default:
4369 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4370 * cases we should never reach this piece of code.
4371 */
4372 pr_err("%s: Impossible, sk->sk_state=%d\n",
4373 __func__, sk->sk_state);
4374 break;
4375 }
4376
4377 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4378 * Probably, we should reset in this case. For now drop them.
4379 */
4380 skb_rbtree_purge(&tp->out_of_order_queue);
4381 if (tcp_is_sack(tp))
4382 tcp_sack_reset(&tp->rx_opt);
4383 sk_mem_reclaim(sk);
4384
4385 if (!sock_flag(sk, SOCK_DEAD)) {
4386 sk->sk_state_change(sk);
4387
4388 /* Do not send POLL_HUP for half duplex close. */
4389 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4390 sk->sk_state == TCP_CLOSE)
4391 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4392 else
4393 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4394 }
4395 }
4396
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4397 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4398 u32 end_seq)
4399 {
4400 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4401 if (before(seq, sp->start_seq))
4402 sp->start_seq = seq;
4403 if (after(end_seq, sp->end_seq))
4404 sp->end_seq = end_seq;
4405 return true;
4406 }
4407 return false;
4408 }
4409
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4410 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4411 {
4412 struct tcp_sock *tp = tcp_sk(sk);
4413
4414 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4415 int mib_idx;
4416
4417 if (before(seq, tp->rcv_nxt))
4418 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4419 else
4420 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4421
4422 NET_INC_STATS(sock_net(sk), mib_idx);
4423
4424 tp->rx_opt.dsack = 1;
4425 tp->duplicate_sack[0].start_seq = seq;
4426 tp->duplicate_sack[0].end_seq = end_seq;
4427 }
4428 }
4429
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4430 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4431 {
4432 struct tcp_sock *tp = tcp_sk(sk);
4433
4434 if (!tp->rx_opt.dsack)
4435 tcp_dsack_set(sk, seq, end_seq);
4436 else
4437 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4438 }
4439
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4440 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4441 {
4442 /* When the ACK path fails or drops most ACKs, the sender would
4443 * timeout and spuriously retransmit the same segment repeatedly.
4444 * The receiver remembers and reflects via DSACKs. Leverage the
4445 * DSACK state and change the txhash to re-route speculatively.
4446 */
4447 if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4448 sk_rethink_txhash(sk))
4449 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4450 }
4451
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4452 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4453 {
4454 struct tcp_sock *tp = tcp_sk(sk);
4455
4456 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4457 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4458 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4459 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4460
4461 if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4462 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4463
4464 tcp_rcv_spurious_retrans(sk, skb);
4465 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4466 end_seq = tp->rcv_nxt;
4467 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4468 }
4469 }
4470
4471 tcp_send_ack(sk);
4472 }
4473
4474 /* These routines update the SACK block as out-of-order packets arrive or
4475 * in-order packets close up the sequence space.
4476 */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4477 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4478 {
4479 int this_sack;
4480 struct tcp_sack_block *sp = &tp->selective_acks[0];
4481 struct tcp_sack_block *swalk = sp + 1;
4482
4483 /* See if the recent change to the first SACK eats into
4484 * or hits the sequence space of other SACK blocks, if so coalesce.
4485 */
4486 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4487 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4488 int i;
4489
4490 /* Zap SWALK, by moving every further SACK up by one slot.
4491 * Decrease num_sacks.
4492 */
4493 tp->rx_opt.num_sacks--;
4494 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4495 sp[i] = sp[i + 1];
4496 continue;
4497 }
4498 this_sack++;
4499 swalk++;
4500 }
4501 }
4502
tcp_sack_compress_send_ack(struct sock * sk)4503 static void tcp_sack_compress_send_ack(struct sock *sk)
4504 {
4505 struct tcp_sock *tp = tcp_sk(sk);
4506
4507 if (!tp->compressed_ack)
4508 return;
4509
4510 if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4511 __sock_put(sk);
4512
4513 /* Since we have to send one ack finally,
4514 * substract one from tp->compressed_ack to keep
4515 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4516 */
4517 NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4518 tp->compressed_ack - 1);
4519
4520 tp->compressed_ack = 0;
4521 tcp_send_ack(sk);
4522 }
4523
4524 /* Reasonable amount of sack blocks included in TCP SACK option
4525 * The max is 4, but this becomes 3 if TCP timestamps are there.
4526 * Given that SACK packets might be lost, be conservative and use 2.
4527 */
4528 #define TCP_SACK_BLOCKS_EXPECTED 2
4529
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4530 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4531 {
4532 struct tcp_sock *tp = tcp_sk(sk);
4533 struct tcp_sack_block *sp = &tp->selective_acks[0];
4534 int cur_sacks = tp->rx_opt.num_sacks;
4535 int this_sack;
4536
4537 if (!cur_sacks)
4538 goto new_sack;
4539
4540 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4541 if (tcp_sack_extend(sp, seq, end_seq)) {
4542 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4543 tcp_sack_compress_send_ack(sk);
4544 /* Rotate this_sack to the first one. */
4545 for (; this_sack > 0; this_sack--, sp--)
4546 swap(*sp, *(sp - 1));
4547 if (cur_sacks > 1)
4548 tcp_sack_maybe_coalesce(tp);
4549 return;
4550 }
4551 }
4552
4553 if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4554 tcp_sack_compress_send_ack(sk);
4555
4556 /* Could not find an adjacent existing SACK, build a new one,
4557 * put it at the front, and shift everyone else down. We
4558 * always know there is at least one SACK present already here.
4559 *
4560 * If the sack array is full, forget about the last one.
4561 */
4562 if (this_sack >= TCP_NUM_SACKS) {
4563 this_sack--;
4564 tp->rx_opt.num_sacks--;
4565 sp--;
4566 }
4567 for (; this_sack > 0; this_sack--, sp--)
4568 *sp = *(sp - 1);
4569
4570 new_sack:
4571 /* Build the new head SACK, and we're done. */
4572 sp->start_seq = seq;
4573 sp->end_seq = end_seq;
4574 tp->rx_opt.num_sacks++;
4575 }
4576
4577 /* RCV.NXT advances, some SACKs should be eaten. */
4578
tcp_sack_remove(struct tcp_sock * tp)4579 static void tcp_sack_remove(struct tcp_sock *tp)
4580 {
4581 struct tcp_sack_block *sp = &tp->selective_acks[0];
4582 int num_sacks = tp->rx_opt.num_sacks;
4583 int this_sack;
4584
4585 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4586 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4587 tp->rx_opt.num_sacks = 0;
4588 return;
4589 }
4590
4591 for (this_sack = 0; this_sack < num_sacks;) {
4592 /* Check if the start of the sack is covered by RCV.NXT. */
4593 if (!before(tp->rcv_nxt, sp->start_seq)) {
4594 int i;
4595
4596 /* RCV.NXT must cover all the block! */
4597 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4598
4599 /* Zap this SACK, by moving forward any other SACKS. */
4600 for (i = this_sack+1; i < num_sacks; i++)
4601 tp->selective_acks[i-1] = tp->selective_acks[i];
4602 num_sacks--;
4603 continue;
4604 }
4605 this_sack++;
4606 sp++;
4607 }
4608 tp->rx_opt.num_sacks = num_sacks;
4609 }
4610
4611 /**
4612 * tcp_try_coalesce - try to merge skb to prior one
4613 * @sk: socket
4614 * @to: prior buffer
4615 * @from: buffer to add in queue
4616 * @fragstolen: pointer to boolean
4617 *
4618 * Before queueing skb @from after @to, try to merge them
4619 * to reduce overall memory use and queue lengths, if cost is small.
4620 * Packets in ofo or receive queues can stay a long time.
4621 * Better try to coalesce them right now to avoid future collapses.
4622 * Returns true if caller should free @from instead of queueing it
4623 */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4624 static bool tcp_try_coalesce(struct sock *sk,
4625 struct sk_buff *to,
4626 struct sk_buff *from,
4627 bool *fragstolen)
4628 {
4629 int delta;
4630
4631 *fragstolen = false;
4632
4633 /* Its possible this segment overlaps with prior segment in queue */
4634 if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4635 return false;
4636
4637 if (!mptcp_skb_can_collapse(to, from))
4638 return false;
4639
4640 #ifdef CONFIG_TLS_DEVICE
4641 if (from->decrypted != to->decrypted)
4642 return false;
4643 #endif
4644
4645 if (!skb_try_coalesce(to, from, fragstolen, &delta))
4646 return false;
4647
4648 atomic_add(delta, &sk->sk_rmem_alloc);
4649 sk_mem_charge(sk, delta);
4650 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4651 TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4652 TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4653 TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4654
4655 if (TCP_SKB_CB(from)->has_rxtstamp) {
4656 TCP_SKB_CB(to)->has_rxtstamp = true;
4657 to->tstamp = from->tstamp;
4658 skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4659 }
4660
4661 return true;
4662 }
4663
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4664 static bool tcp_ooo_try_coalesce(struct sock *sk,
4665 struct sk_buff *to,
4666 struct sk_buff *from,
4667 bool *fragstolen)
4668 {
4669 bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4670
4671 /* In case tcp_drop() is called later, update to->gso_segs */
4672 if (res) {
4673 u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4674 max_t(u16, 1, skb_shinfo(from)->gso_segs);
4675
4676 skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4677 }
4678 return res;
4679 }
4680
tcp_drop(struct sock * sk,struct sk_buff * skb)4681 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4682 {
4683 sk_drops_add(sk, skb);
4684 __kfree_skb(skb);
4685 }
4686
4687 /* This one checks to see if we can put data from the
4688 * out_of_order queue into the receive_queue.
4689 */
tcp_ofo_queue(struct sock * sk)4690 static void tcp_ofo_queue(struct sock *sk)
4691 {
4692 struct tcp_sock *tp = tcp_sk(sk);
4693 __u32 dsack_high = tp->rcv_nxt;
4694 bool fin, fragstolen, eaten;
4695 struct sk_buff *skb, *tail;
4696 struct rb_node *p;
4697
4698 p = rb_first(&tp->out_of_order_queue);
4699 while (p) {
4700 skb = rb_to_skb(p);
4701 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4702 break;
4703
4704 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4705 __u32 dsack = dsack_high;
4706 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4707 dsack_high = TCP_SKB_CB(skb)->end_seq;
4708 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4709 }
4710 p = rb_next(p);
4711 rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4712
4713 if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4714 tcp_drop(sk, skb);
4715 continue;
4716 }
4717
4718 tail = skb_peek_tail(&sk->sk_receive_queue);
4719 eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4720 tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4721 fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4722 if (!eaten)
4723 __skb_queue_tail(&sk->sk_receive_queue, skb);
4724 else
4725 kfree_skb_partial(skb, fragstolen);
4726
4727 if (unlikely(fin)) {
4728 tcp_fin(sk);
4729 /* tcp_fin() purges tp->out_of_order_queue,
4730 * so we must end this loop right now.
4731 */
4732 break;
4733 }
4734 }
4735 }
4736
4737 static bool tcp_prune_ofo_queue(struct sock *sk);
4738 static int tcp_prune_queue(struct sock *sk);
4739
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4740 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4741 unsigned int size)
4742 {
4743 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4744 !sk_rmem_schedule(sk, skb, size)) {
4745
4746 if (tcp_prune_queue(sk) < 0)
4747 return -1;
4748
4749 while (!sk_rmem_schedule(sk, skb, size)) {
4750 if (!tcp_prune_ofo_queue(sk))
4751 return -1;
4752 }
4753 }
4754 return 0;
4755 }
4756
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4757 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4758 {
4759 struct tcp_sock *tp = tcp_sk(sk);
4760 struct rb_node **p, *parent;
4761 struct sk_buff *skb1;
4762 u32 seq, end_seq;
4763 bool fragstolen;
4764
4765 tcp_ecn_check_ce(sk, skb);
4766
4767 if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4768 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4769 sk->sk_data_ready(sk);
4770 tcp_drop(sk, skb);
4771 return;
4772 }
4773
4774 /* Disable header prediction. */
4775 tp->pred_flags = 0;
4776 inet_csk_schedule_ack(sk);
4777
4778 tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4779 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4780 seq = TCP_SKB_CB(skb)->seq;
4781 end_seq = TCP_SKB_CB(skb)->end_seq;
4782
4783 p = &tp->out_of_order_queue.rb_node;
4784 if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4785 /* Initial out of order segment, build 1 SACK. */
4786 if (tcp_is_sack(tp)) {
4787 tp->rx_opt.num_sacks = 1;
4788 tp->selective_acks[0].start_seq = seq;
4789 tp->selective_acks[0].end_seq = end_seq;
4790 }
4791 rb_link_node(&skb->rbnode, NULL, p);
4792 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4793 tp->ooo_last_skb = skb;
4794 goto end;
4795 }
4796
4797 /* In the typical case, we are adding an skb to the end of the list.
4798 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4799 */
4800 if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4801 skb, &fragstolen)) {
4802 coalesce_done:
4803 /* For non sack flows, do not grow window to force DUPACK
4804 * and trigger fast retransmit.
4805 */
4806 if (tcp_is_sack(tp))
4807 tcp_grow_window(sk, skb, true);
4808 kfree_skb_partial(skb, fragstolen);
4809 skb = NULL;
4810 goto add_sack;
4811 }
4812 /* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4813 if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4814 parent = &tp->ooo_last_skb->rbnode;
4815 p = &parent->rb_right;
4816 goto insert;
4817 }
4818
4819 /* Find place to insert this segment. Handle overlaps on the way. */
4820 parent = NULL;
4821 while (*p) {
4822 parent = *p;
4823 skb1 = rb_to_skb(parent);
4824 if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4825 p = &parent->rb_left;
4826 continue;
4827 }
4828 if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4829 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4830 /* All the bits are present. Drop. */
4831 NET_INC_STATS(sock_net(sk),
4832 LINUX_MIB_TCPOFOMERGE);
4833 tcp_drop(sk, skb);
4834 skb = NULL;
4835 tcp_dsack_set(sk, seq, end_seq);
4836 goto add_sack;
4837 }
4838 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4839 /* Partial overlap. */
4840 tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4841 } else {
4842 /* skb's seq == skb1's seq and skb covers skb1.
4843 * Replace skb1 with skb.
4844 */
4845 rb_replace_node(&skb1->rbnode, &skb->rbnode,
4846 &tp->out_of_order_queue);
4847 tcp_dsack_extend(sk,
4848 TCP_SKB_CB(skb1)->seq,
4849 TCP_SKB_CB(skb1)->end_seq);
4850 NET_INC_STATS(sock_net(sk),
4851 LINUX_MIB_TCPOFOMERGE);
4852 tcp_drop(sk, skb1);
4853 goto merge_right;
4854 }
4855 } else if (tcp_ooo_try_coalesce(sk, skb1,
4856 skb, &fragstolen)) {
4857 goto coalesce_done;
4858 }
4859 p = &parent->rb_right;
4860 }
4861 insert:
4862 /* Insert segment into RB tree. */
4863 rb_link_node(&skb->rbnode, parent, p);
4864 rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4865
4866 merge_right:
4867 /* Remove other segments covered by skb. */
4868 while ((skb1 = skb_rb_next(skb)) != NULL) {
4869 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4870 break;
4871 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4872 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4873 end_seq);
4874 break;
4875 }
4876 rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4877 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4878 TCP_SKB_CB(skb1)->end_seq);
4879 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4880 tcp_drop(sk, skb1);
4881 }
4882 /* If there is no skb after us, we are the last_skb ! */
4883 if (!skb1)
4884 tp->ooo_last_skb = skb;
4885
4886 add_sack:
4887 if (tcp_is_sack(tp))
4888 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4889 end:
4890 if (skb) {
4891 /* For non sack flows, do not grow window to force DUPACK
4892 * and trigger fast retransmit.
4893 */
4894 if (tcp_is_sack(tp))
4895 tcp_grow_window(sk, skb, false);
4896 skb_condense(skb);
4897 skb_set_owner_r(skb, sk);
4898 }
4899 }
4900
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4901 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4902 bool *fragstolen)
4903 {
4904 int eaten;
4905 struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4906
4907 eaten = (tail &&
4908 tcp_try_coalesce(sk, tail,
4909 skb, fragstolen)) ? 1 : 0;
4910 tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4911 if (!eaten) {
4912 __skb_queue_tail(&sk->sk_receive_queue, skb);
4913 skb_set_owner_r(skb, sk);
4914 }
4915 return eaten;
4916 }
4917
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4918 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4919 {
4920 struct sk_buff *skb;
4921 int err = -ENOMEM;
4922 int data_len = 0;
4923 bool fragstolen;
4924
4925 if (size == 0)
4926 return 0;
4927
4928 if (size > PAGE_SIZE) {
4929 int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4930
4931 data_len = npages << PAGE_SHIFT;
4932 size = data_len + (size & ~PAGE_MASK);
4933 }
4934 skb = alloc_skb_with_frags(size - data_len, data_len,
4935 PAGE_ALLOC_COSTLY_ORDER,
4936 &err, sk->sk_allocation);
4937 if (!skb)
4938 goto err;
4939
4940 skb_put(skb, size - data_len);
4941 skb->data_len = data_len;
4942 skb->len = size;
4943
4944 if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4945 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4946 goto err_free;
4947 }
4948
4949 err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4950 if (err)
4951 goto err_free;
4952
4953 TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4954 TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4955 TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4956
4957 if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4958 WARN_ON_ONCE(fragstolen); /* should not happen */
4959 __kfree_skb(skb);
4960 }
4961 return size;
4962
4963 err_free:
4964 kfree_skb(skb);
4965 err:
4966 return err;
4967
4968 }
4969
tcp_data_ready(struct sock * sk)4970 void tcp_data_ready(struct sock *sk)
4971 {
4972 const struct tcp_sock *tp = tcp_sk(sk);
4973 int avail = tp->rcv_nxt - tp->copied_seq;
4974
4975 if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4976 !sock_flag(sk, SOCK_DONE) &&
4977 tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4978 return;
4979
4980 sk->sk_data_ready(sk);
4981 }
4982
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4983 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4984 {
4985 struct tcp_sock *tp = tcp_sk(sk);
4986 bool fragstolen;
4987 int eaten;
4988
4989 if (sk_is_mptcp(sk))
4990 mptcp_incoming_options(sk, skb);
4991
4992 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4993 __kfree_skb(skb);
4994 return;
4995 }
4996 skb_dst_drop(skb);
4997 __skb_pull(skb, tcp_hdr(skb)->doff * 4);
4998
4999 tp->rx_opt.dsack = 0;
5000
5001 /* Queue data for delivery to the user.
5002 * Packets in sequence go to the receive queue.
5003 * Out of sequence packets to the out_of_order_queue.
5004 */
5005 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5006 if (tcp_receive_window(tp) == 0) {
5007 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5008 goto out_of_window;
5009 }
5010
5011 /* Ok. In sequence. In window. */
5012 queue_and_out:
5013 if (skb_queue_len(&sk->sk_receive_queue) == 0)
5014 sk_forced_mem_schedule(sk, skb->truesize);
5015 else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5016 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5017 sk->sk_data_ready(sk);
5018 goto drop;
5019 }
5020
5021 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5022 if (skb->len)
5023 tcp_event_data_recv(sk, skb);
5024 if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5025 tcp_fin(sk);
5026
5027 if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5028 tcp_ofo_queue(sk);
5029
5030 /* RFC5681. 4.2. SHOULD send immediate ACK, when
5031 * gap in queue is filled.
5032 */
5033 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5034 inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5035 }
5036
5037 if (tp->rx_opt.num_sacks)
5038 tcp_sack_remove(tp);
5039
5040 tcp_fast_path_check(sk);
5041
5042 if (eaten > 0)
5043 kfree_skb_partial(skb, fragstolen);
5044 if (!sock_flag(sk, SOCK_DEAD))
5045 tcp_data_ready(sk);
5046 return;
5047 }
5048
5049 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5050 tcp_rcv_spurious_retrans(sk, skb);
5051 /* A retransmit, 2nd most common case. Force an immediate ack. */
5052 NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5053 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5054
5055 out_of_window:
5056 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5057 inet_csk_schedule_ack(sk);
5058 drop:
5059 tcp_drop(sk, skb);
5060 return;
5061 }
5062
5063 /* Out of window. F.e. zero window probe. */
5064 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5065 goto out_of_window;
5066
5067 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5068 /* Partial packet, seq < rcv_next < end_seq */
5069 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5070
5071 /* If window is closed, drop tail of packet. But after
5072 * remembering D-SACK for its head made in previous line.
5073 */
5074 if (!tcp_receive_window(tp)) {
5075 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5076 goto out_of_window;
5077 }
5078 goto queue_and_out;
5079 }
5080
5081 tcp_data_queue_ofo(sk, skb);
5082 }
5083
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5084 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5085 {
5086 if (list)
5087 return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5088
5089 return skb_rb_next(skb);
5090 }
5091
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5092 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5093 struct sk_buff_head *list,
5094 struct rb_root *root)
5095 {
5096 struct sk_buff *next = tcp_skb_next(skb, list);
5097
5098 if (list)
5099 __skb_unlink(skb, list);
5100 else
5101 rb_erase(&skb->rbnode, root);
5102
5103 __kfree_skb(skb);
5104 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5105
5106 return next;
5107 }
5108
5109 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5110 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5111 {
5112 struct rb_node **p = &root->rb_node;
5113 struct rb_node *parent = NULL;
5114 struct sk_buff *skb1;
5115
5116 while (*p) {
5117 parent = *p;
5118 skb1 = rb_to_skb(parent);
5119 if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5120 p = &parent->rb_left;
5121 else
5122 p = &parent->rb_right;
5123 }
5124 rb_link_node(&skb->rbnode, parent, p);
5125 rb_insert_color(&skb->rbnode, root);
5126 }
5127
5128 /* Collapse contiguous sequence of skbs head..tail with
5129 * sequence numbers start..end.
5130 *
5131 * If tail is NULL, this means until the end of the queue.
5132 *
5133 * Segments with FIN/SYN are not collapsed (only because this
5134 * simplifies code)
5135 */
5136 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5137 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5138 struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5139 {
5140 struct sk_buff *skb = head, *n;
5141 struct sk_buff_head tmp;
5142 bool end_of_skbs;
5143
5144 /* First, check that queue is collapsible and find
5145 * the point where collapsing can be useful.
5146 */
5147 restart:
5148 for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5149 n = tcp_skb_next(skb, list);
5150
5151 /* No new bits? It is possible on ofo queue. */
5152 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5153 skb = tcp_collapse_one(sk, skb, list, root);
5154 if (!skb)
5155 break;
5156 goto restart;
5157 }
5158
5159 /* The first skb to collapse is:
5160 * - not SYN/FIN and
5161 * - bloated or contains data before "start" or
5162 * overlaps to the next one and mptcp allow collapsing.
5163 */
5164 if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5165 (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5166 before(TCP_SKB_CB(skb)->seq, start))) {
5167 end_of_skbs = false;
5168 break;
5169 }
5170
5171 if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5172 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5173 end_of_skbs = false;
5174 break;
5175 }
5176
5177 /* Decided to skip this, advance start seq. */
5178 start = TCP_SKB_CB(skb)->end_seq;
5179 }
5180 if (end_of_skbs ||
5181 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5182 return;
5183
5184 __skb_queue_head_init(&tmp);
5185
5186 while (before(start, end)) {
5187 int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5188 struct sk_buff *nskb;
5189
5190 nskb = alloc_skb(copy, GFP_ATOMIC);
5191 if (!nskb)
5192 break;
5193
5194 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5195 #ifdef CONFIG_TLS_DEVICE
5196 nskb->decrypted = skb->decrypted;
5197 #endif
5198 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5199 if (list)
5200 __skb_queue_before(list, skb, nskb);
5201 else
5202 __skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5203 skb_set_owner_r(nskb, sk);
5204 mptcp_skb_ext_move(nskb, skb);
5205
5206 /* Copy data, releasing collapsed skbs. */
5207 while (copy > 0) {
5208 int offset = start - TCP_SKB_CB(skb)->seq;
5209 int size = TCP_SKB_CB(skb)->end_seq - start;
5210
5211 BUG_ON(offset < 0);
5212 if (size > 0) {
5213 size = min(copy, size);
5214 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5215 BUG();
5216 TCP_SKB_CB(nskb)->end_seq += size;
5217 copy -= size;
5218 start += size;
5219 }
5220 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5221 skb = tcp_collapse_one(sk, skb, list, root);
5222 if (!skb ||
5223 skb == tail ||
5224 !mptcp_skb_can_collapse(nskb, skb) ||
5225 (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5226 goto end;
5227 #ifdef CONFIG_TLS_DEVICE
5228 if (skb->decrypted != nskb->decrypted)
5229 goto end;
5230 #endif
5231 }
5232 }
5233 }
5234 end:
5235 skb_queue_walk_safe(&tmp, skb, n)
5236 tcp_rbtree_insert(root, skb);
5237 }
5238
5239 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5240 * and tcp_collapse() them until all the queue is collapsed.
5241 */
tcp_collapse_ofo_queue(struct sock * sk)5242 static void tcp_collapse_ofo_queue(struct sock *sk)
5243 {
5244 struct tcp_sock *tp = tcp_sk(sk);
5245 u32 range_truesize, sum_tiny = 0;
5246 struct sk_buff *skb, *head;
5247 u32 start, end;
5248
5249 skb = skb_rb_first(&tp->out_of_order_queue);
5250 new_range:
5251 if (!skb) {
5252 tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5253 return;
5254 }
5255 start = TCP_SKB_CB(skb)->seq;
5256 end = TCP_SKB_CB(skb)->end_seq;
5257 range_truesize = skb->truesize;
5258
5259 for (head = skb;;) {
5260 skb = skb_rb_next(skb);
5261
5262 /* Range is terminated when we see a gap or when
5263 * we are at the queue end.
5264 */
5265 if (!skb ||
5266 after(TCP_SKB_CB(skb)->seq, end) ||
5267 before(TCP_SKB_CB(skb)->end_seq, start)) {
5268 /* Do not attempt collapsing tiny skbs */
5269 if (range_truesize != head->truesize ||
5270 end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5271 tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5272 head, skb, start, end);
5273 } else {
5274 sum_tiny += range_truesize;
5275 if (sum_tiny > sk->sk_rcvbuf >> 3)
5276 return;
5277 }
5278 goto new_range;
5279 }
5280
5281 range_truesize += skb->truesize;
5282 if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5283 start = TCP_SKB_CB(skb)->seq;
5284 if (after(TCP_SKB_CB(skb)->end_seq, end))
5285 end = TCP_SKB_CB(skb)->end_seq;
5286 }
5287 }
5288
5289 /*
5290 * Clean the out-of-order queue to make room.
5291 * We drop high sequences packets to :
5292 * 1) Let a chance for holes to be filled.
5293 * 2) not add too big latencies if thousands of packets sit there.
5294 * (But if application shrinks SO_RCVBUF, we could still end up
5295 * freeing whole queue here)
5296 * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5297 *
5298 * Return true if queue has shrunk.
5299 */
tcp_prune_ofo_queue(struct sock * sk)5300 static bool tcp_prune_ofo_queue(struct sock *sk)
5301 {
5302 struct tcp_sock *tp = tcp_sk(sk);
5303 struct rb_node *node, *prev;
5304 int goal;
5305
5306 if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5307 return false;
5308
5309 NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5310 goal = sk->sk_rcvbuf >> 3;
5311 node = &tp->ooo_last_skb->rbnode;
5312 do {
5313 prev = rb_prev(node);
5314 rb_erase(node, &tp->out_of_order_queue);
5315 goal -= rb_to_skb(node)->truesize;
5316 tcp_drop(sk, rb_to_skb(node));
5317 if (!prev || goal <= 0) {
5318 sk_mem_reclaim(sk);
5319 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5320 !tcp_under_memory_pressure(sk))
5321 break;
5322 goal = sk->sk_rcvbuf >> 3;
5323 }
5324 node = prev;
5325 } while (node);
5326 tp->ooo_last_skb = rb_to_skb(prev);
5327
5328 /* Reset SACK state. A conforming SACK implementation will
5329 * do the same at a timeout based retransmit. When a connection
5330 * is in a sad state like this, we care only about integrity
5331 * of the connection not performance.
5332 */
5333 if (tp->rx_opt.sack_ok)
5334 tcp_sack_reset(&tp->rx_opt);
5335 return true;
5336 }
5337
5338 /* Reduce allocated memory if we can, trying to get
5339 * the socket within its memory limits again.
5340 *
5341 * Return less than zero if we should start dropping frames
5342 * until the socket owning process reads some of the data
5343 * to stabilize the situation.
5344 */
tcp_prune_queue(struct sock * sk)5345 static int tcp_prune_queue(struct sock *sk)
5346 {
5347 struct tcp_sock *tp = tcp_sk(sk);
5348
5349 NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5350
5351 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5352 tcp_clamp_window(sk);
5353 else if (tcp_under_memory_pressure(sk))
5354 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5355
5356 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5357 return 0;
5358
5359 tcp_collapse_ofo_queue(sk);
5360 if (!skb_queue_empty(&sk->sk_receive_queue))
5361 tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5362 skb_peek(&sk->sk_receive_queue),
5363 NULL,
5364 tp->copied_seq, tp->rcv_nxt);
5365 sk_mem_reclaim(sk);
5366
5367 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5368 return 0;
5369
5370 /* Collapsing did not help, destructive actions follow.
5371 * This must not ever occur. */
5372
5373 tcp_prune_ofo_queue(sk);
5374
5375 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5376 return 0;
5377
5378 /* If we are really being abused, tell the caller to silently
5379 * drop receive data on the floor. It will get retransmitted
5380 * and hopefully then we'll have sufficient space.
5381 */
5382 NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5383
5384 /* Massive buffer overcommit. */
5385 tp->pred_flags = 0;
5386 return -1;
5387 }
5388
tcp_should_expand_sndbuf(const struct sock * sk)5389 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5390 {
5391 const struct tcp_sock *tp = tcp_sk(sk);
5392
5393 /* If the user specified a specific send buffer setting, do
5394 * not modify it.
5395 */
5396 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5397 return false;
5398
5399 /* If we are under global TCP memory pressure, do not expand. */
5400 if (tcp_under_memory_pressure(sk))
5401 return false;
5402
5403 /* If we are under soft global TCP memory pressure, do not expand. */
5404 if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5405 return false;
5406
5407 /* If we filled the congestion window, do not expand. */
5408 if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5409 return false;
5410
5411 return true;
5412 }
5413
tcp_new_space(struct sock * sk)5414 static void tcp_new_space(struct sock *sk)
5415 {
5416 struct tcp_sock *tp = tcp_sk(sk);
5417
5418 if (tcp_should_expand_sndbuf(sk)) {
5419 tcp_sndbuf_expand(sk);
5420 tp->snd_cwnd_stamp = tcp_jiffies32;
5421 }
5422
5423 sk->sk_write_space(sk);
5424 }
5425
5426 /* Caller made space either from:
5427 * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5428 * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5429 *
5430 * We might be able to generate EPOLLOUT to the application if:
5431 * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5432 * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5433 * small enough that tcp_stream_memory_free() decides it
5434 * is time to generate EPOLLOUT.
5435 */
tcp_check_space(struct sock * sk)5436 void tcp_check_space(struct sock *sk)
5437 {
5438 /* pairs with tcp_poll() */
5439 smp_mb();
5440 if (sk->sk_socket &&
5441 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5442 tcp_new_space(sk);
5443 if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5444 tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5445 }
5446 }
5447
tcp_data_snd_check(struct sock * sk)5448 static inline void tcp_data_snd_check(struct sock *sk)
5449 {
5450 tcp_push_pending_frames(sk);
5451 tcp_check_space(sk);
5452 }
5453
5454 /*
5455 * Check if sending an ack is needed.
5456 */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5457 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5458 {
5459 struct tcp_sock *tp = tcp_sk(sk);
5460 unsigned long rtt, delay;
5461 __u16 rcv_mss = inet_csk(sk)->icsk_ack.rcv_mss;
5462 #ifdef CONFIG_LOWPOWER_PROTOCOL
5463 rcv_mss *= tcp_ack_num(sk);
5464 #endif /* CONFIG_LOWPOWER_PROTOCOL */
5465 /* More than one full frame received... */
5466 if (((tp->rcv_nxt - tp->rcv_wup) > rcv_mss &&
5467 /* ... and right edge of window advances far enough.
5468 * (tcp_recvmsg() will send ACK otherwise).
5469 * If application uses SO_RCVLOWAT, we want send ack now if
5470 * we have not received enough bytes to satisfy the condition.
5471 */
5472 (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5473 __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5474 /* We ACK each frame or... */
5475 tcp_in_quickack_mode(sk) ||
5476 /* Protocol state mandates a one-time immediate ACK */
5477 inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5478 send_now:
5479 tcp_send_ack(sk);
5480 return;
5481 }
5482
5483 if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5484 tcp_send_delayed_ack(sk);
5485 return;
5486 }
5487
5488 if (!tcp_is_sack(tp) ||
5489 tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5490 goto send_now;
5491
5492 if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5493 tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5494 tp->dup_ack_counter = 0;
5495 }
5496 if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5497 tp->dup_ack_counter++;
5498 goto send_now;
5499 }
5500 tp->compressed_ack++;
5501 if (hrtimer_is_queued(&tp->compressed_ack_timer))
5502 return;
5503
5504 /* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5505
5506 rtt = tp->rcv_rtt_est.rtt_us;
5507 if (tp->srtt_us && tp->srtt_us < rtt)
5508 rtt = tp->srtt_us;
5509
5510 delay = min_t(unsigned long,
5511 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5512 rtt * (NSEC_PER_USEC >> 3)/20);
5513 sock_hold(sk);
5514 hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5515 READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5516 HRTIMER_MODE_REL_PINNED_SOFT);
5517 }
5518
tcp_ack_snd_check(struct sock * sk)5519 static inline void tcp_ack_snd_check(struct sock *sk)
5520 {
5521 if (!inet_csk_ack_scheduled(sk)) {
5522 /* We sent a data segment already. */
5523 return;
5524 }
5525 __tcp_ack_snd_check(sk, 1);
5526 }
5527
5528 /*
5529 * This routine is only called when we have urgent data
5530 * signaled. Its the 'slow' part of tcp_urg. It could be
5531 * moved inline now as tcp_urg is only called from one
5532 * place. We handle URGent data wrong. We have to - as
5533 * BSD still doesn't use the correction from RFC961.
5534 * For 1003.1g we should support a new option TCP_STDURG to permit
5535 * either form (or just set the sysctl tcp_stdurg).
5536 */
5537
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5538 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5539 {
5540 struct tcp_sock *tp = tcp_sk(sk);
5541 u32 ptr = ntohs(th->urg_ptr);
5542
5543 if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5544 ptr--;
5545 ptr += ntohl(th->seq);
5546
5547 /* Ignore urgent data that we've already seen and read. */
5548 if (after(tp->copied_seq, ptr))
5549 return;
5550
5551 /* Do not replay urg ptr.
5552 *
5553 * NOTE: interesting situation not covered by specs.
5554 * Misbehaving sender may send urg ptr, pointing to segment,
5555 * which we already have in ofo queue. We are not able to fetch
5556 * such data and will stay in TCP_URG_NOTYET until will be eaten
5557 * by recvmsg(). Seems, we are not obliged to handle such wicked
5558 * situations. But it is worth to think about possibility of some
5559 * DoSes using some hypothetical application level deadlock.
5560 */
5561 if (before(ptr, tp->rcv_nxt))
5562 return;
5563
5564 /* Do we already have a newer (or duplicate) urgent pointer? */
5565 if (tp->urg_data && !after(ptr, tp->urg_seq))
5566 return;
5567
5568 /* Tell the world about our new urgent pointer. */
5569 sk_send_sigurg(sk);
5570
5571 /* We may be adding urgent data when the last byte read was
5572 * urgent. To do this requires some care. We cannot just ignore
5573 * tp->copied_seq since we would read the last urgent byte again
5574 * as data, nor can we alter copied_seq until this data arrives
5575 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5576 *
5577 * NOTE. Double Dutch. Rendering to plain English: author of comment
5578 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
5579 * and expect that both A and B disappear from stream. This is _wrong_.
5580 * Though this happens in BSD with high probability, this is occasional.
5581 * Any application relying on this is buggy. Note also, that fix "works"
5582 * only in this artificial test. Insert some normal data between A and B and we will
5583 * decline of BSD again. Verdict: it is better to remove to trap
5584 * buggy users.
5585 */
5586 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5587 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5588 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5589 tp->copied_seq++;
5590 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5591 __skb_unlink(skb, &sk->sk_receive_queue);
5592 __kfree_skb(skb);
5593 }
5594 }
5595
5596 tp->urg_data = TCP_URG_NOTYET;
5597 WRITE_ONCE(tp->urg_seq, ptr);
5598
5599 /* Disable header prediction. */
5600 tp->pred_flags = 0;
5601 }
5602
5603 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5604 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5605 {
5606 struct tcp_sock *tp = tcp_sk(sk);
5607
5608 /* Check if we get a new urgent pointer - normally not. */
5609 if (th->urg)
5610 tcp_check_urg(sk, th);
5611
5612 /* Do we wait for any urgent data? - normally not... */
5613 if (tp->urg_data == TCP_URG_NOTYET) {
5614 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5615 th->syn;
5616
5617 /* Is the urgent pointer pointing into this packet? */
5618 if (ptr < skb->len) {
5619 u8 tmp;
5620 if (skb_copy_bits(skb, ptr, &tmp, 1))
5621 BUG();
5622 tp->urg_data = TCP_URG_VALID | tmp;
5623 if (!sock_flag(sk, SOCK_DEAD))
5624 sk->sk_data_ready(sk);
5625 }
5626 }
5627 }
5628
5629 /* Accept RST for rcv_nxt - 1 after a FIN.
5630 * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5631 * FIN is sent followed by a RST packet. The RST is sent with the same
5632 * sequence number as the FIN, and thus according to RFC 5961 a challenge
5633 * ACK should be sent. However, Mac OSX rate limits replies to challenge
5634 * ACKs on the closed socket. In addition middleboxes can drop either the
5635 * challenge ACK or a subsequent RST.
5636 */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5637 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5638 {
5639 struct tcp_sock *tp = tcp_sk(sk);
5640
5641 return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5642 (1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5643 TCPF_CLOSING));
5644 }
5645
5646 /* Does PAWS and seqno based validation of an incoming segment, flags will
5647 * play significant role here.
5648 */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5649 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5650 const struct tcphdr *th, int syn_inerr)
5651 {
5652 struct tcp_sock *tp = tcp_sk(sk);
5653 bool rst_seq_match = false;
5654
5655 /* RFC1323: H1. Apply PAWS check first. */
5656 if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5657 tp->rx_opt.saw_tstamp &&
5658 tcp_paws_discard(sk, skb)) {
5659 if (!th->rst) {
5660 NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5661 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5662 LINUX_MIB_TCPACKSKIPPEDPAWS,
5663 &tp->last_oow_ack_time))
5664 tcp_send_dupack(sk, skb);
5665 goto discard;
5666 }
5667 /* Reset is accepted even if it did not pass PAWS. */
5668 }
5669
5670 /* Step 1: check sequence number */
5671 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5672 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5673 * (RST) segments are validated by checking their SEQ-fields."
5674 * And page 69: "If an incoming segment is not acceptable,
5675 * an acknowledgment should be sent in reply (unless the RST
5676 * bit is set, if so drop the segment and return)".
5677 */
5678 if (!th->rst) {
5679 if (th->syn)
5680 goto syn_challenge;
5681 if (!tcp_oow_rate_limited(sock_net(sk), skb,
5682 LINUX_MIB_TCPACKSKIPPEDSEQ,
5683 &tp->last_oow_ack_time))
5684 tcp_send_dupack(sk, skb);
5685 } else if (tcp_reset_check(sk, skb)) {
5686 tcp_reset(sk);
5687 }
5688 goto discard;
5689 }
5690
5691 /* Step 2: check RST bit */
5692 if (th->rst) {
5693 /* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5694 * FIN and SACK too if available):
5695 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5696 * the right-most SACK block,
5697 * then
5698 * RESET the connection
5699 * else
5700 * Send a challenge ACK
5701 */
5702 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5703 tcp_reset_check(sk, skb)) {
5704 rst_seq_match = true;
5705 } else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5706 struct tcp_sack_block *sp = &tp->selective_acks[0];
5707 int max_sack = sp[0].end_seq;
5708 int this_sack;
5709
5710 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5711 ++this_sack) {
5712 max_sack = after(sp[this_sack].end_seq,
5713 max_sack) ?
5714 sp[this_sack].end_seq : max_sack;
5715 }
5716
5717 if (TCP_SKB_CB(skb)->seq == max_sack)
5718 rst_seq_match = true;
5719 }
5720
5721 if (rst_seq_match)
5722 tcp_reset(sk);
5723 else {
5724 /* Disable TFO if RST is out-of-order
5725 * and no data has been received
5726 * for current active TFO socket
5727 */
5728 if (tp->syn_fastopen && !tp->data_segs_in &&
5729 sk->sk_state == TCP_ESTABLISHED)
5730 tcp_fastopen_active_disable(sk);
5731 tcp_send_challenge_ack(sk, skb);
5732 }
5733 goto discard;
5734 }
5735
5736 /* step 3: check security and precedence [ignored] */
5737
5738 /* step 4: Check for a SYN
5739 * RFC 5961 4.2 : Send a challenge ack
5740 */
5741 if (th->syn) {
5742 syn_challenge:
5743 if (syn_inerr)
5744 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5745 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5746 tcp_send_challenge_ack(sk, skb);
5747 goto discard;
5748 }
5749
5750 bpf_skops_parse_hdr(sk, skb);
5751
5752 return true;
5753
5754 discard:
5755 tcp_drop(sk, skb);
5756 return false;
5757 }
5758
5759 /*
5760 * TCP receive function for the ESTABLISHED state.
5761 *
5762 * It is split into a fast path and a slow path. The fast path is
5763 * disabled when:
5764 * - A zero window was announced from us - zero window probing
5765 * is only handled properly in the slow path.
5766 * - Out of order segments arrived.
5767 * - Urgent data is expected.
5768 * - There is no buffer space left
5769 * - Unexpected TCP flags/window values/header lengths are received
5770 * (detected by checking the TCP header against pred_flags)
5771 * - Data is sent in both directions. Fast path only supports pure senders
5772 * or pure receivers (this means either the sequence number or the ack
5773 * value must stay constant)
5774 * - Unexpected TCP option.
5775 *
5776 * When these conditions are not satisfied it drops into a standard
5777 * receive procedure patterned after RFC793 to handle all cases.
5778 * The first three cases are guaranteed by proper pred_flags setting,
5779 * the rest is checked inline. Fast processing is turned on in
5780 * tcp_data_queue when everything is OK.
5781 */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5782 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5783 {
5784 const struct tcphdr *th = (const struct tcphdr *)skb->data;
5785 struct tcp_sock *tp = tcp_sk(sk);
5786 unsigned int len = skb->len;
5787
5788 /* TCP congestion window tracking */
5789 trace_tcp_probe(sk, skb);
5790
5791 tcp_mstamp_refresh(tp);
5792 if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5793 inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5794 /*
5795 * Header prediction.
5796 * The code loosely follows the one in the famous
5797 * "30 instruction TCP receive" Van Jacobson mail.
5798 *
5799 * Van's trick is to deposit buffers into socket queue
5800 * on a device interrupt, to call tcp_recv function
5801 * on the receive process context and checksum and copy
5802 * the buffer to user space. smart...
5803 *
5804 * Our current scheme is not silly either but we take the
5805 * extra cost of the net_bh soft interrupt processing...
5806 * We do checksum and copy also but from device to kernel.
5807 */
5808
5809 tp->rx_opt.saw_tstamp = 0;
5810
5811 /* pred_flags is 0xS?10 << 16 + snd_wnd
5812 * if header_prediction is to be made
5813 * 'S' will always be tp->tcp_header_len >> 2
5814 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5815 * turn it off (when there are holes in the receive
5816 * space for instance)
5817 * PSH flag is ignored.
5818 */
5819
5820 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5821 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5822 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5823 int tcp_header_len = tp->tcp_header_len;
5824
5825 /* Timestamp header prediction: tcp_header_len
5826 * is automatically equal to th->doff*4 due to pred_flags
5827 * match.
5828 */
5829
5830 /* Check timestamp */
5831 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5832 /* No? Slow path! */
5833 if (!tcp_parse_aligned_timestamp(tp, th))
5834 goto slow_path;
5835
5836 /* If PAWS failed, check it more carefully in slow path */
5837 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5838 goto slow_path;
5839
5840 /* DO NOT update ts_recent here, if checksum fails
5841 * and timestamp was corrupted part, it will result
5842 * in a hung connection since we will drop all
5843 * future packets due to the PAWS test.
5844 */
5845 }
5846
5847 if (len <= tcp_header_len) {
5848 /* Bulk data transfer: sender */
5849 if (len == tcp_header_len) {
5850 /* Predicted packet is in window by definition.
5851 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5852 * Hence, check seq<=rcv_wup reduces to:
5853 */
5854 if (tcp_header_len ==
5855 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5856 tp->rcv_nxt == tp->rcv_wup)
5857 tcp_store_ts_recent(tp);
5858
5859 /* We know that such packets are checksummed
5860 * on entry.
5861 */
5862 tcp_ack(sk, skb, 0);
5863 __kfree_skb(skb);
5864 tcp_data_snd_check(sk);
5865 /* When receiving pure ack in fast path, update
5866 * last ts ecr directly instead of calling
5867 * tcp_rcv_rtt_measure_ts()
5868 */
5869 tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5870 return;
5871 } else { /* Header too small */
5872 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5873 goto discard;
5874 }
5875 } else {
5876 int eaten = 0;
5877 bool fragstolen = false;
5878
5879 if (tcp_checksum_complete(skb))
5880 goto csum_error;
5881
5882 if ((int)skb->truesize > sk->sk_forward_alloc)
5883 goto step5;
5884
5885 /* Predicted packet is in window by definition.
5886 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5887 * Hence, check seq<=rcv_wup reduces to:
5888 */
5889 if (tcp_header_len ==
5890 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5891 tp->rcv_nxt == tp->rcv_wup)
5892 tcp_store_ts_recent(tp);
5893
5894 tcp_rcv_rtt_measure_ts(sk, skb);
5895
5896 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5897
5898 /* Bulk data transfer: receiver */
5899 __skb_pull(skb, tcp_header_len);
5900 eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5901
5902 tcp_event_data_recv(sk, skb);
5903
5904 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5905 /* Well, only one small jumplet in fast path... */
5906 tcp_ack(sk, skb, FLAG_DATA);
5907 tcp_data_snd_check(sk);
5908 if (!inet_csk_ack_scheduled(sk))
5909 goto no_ack;
5910 } else {
5911 tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5912 }
5913
5914 __tcp_ack_snd_check(sk, 0);
5915 no_ack:
5916 if (eaten)
5917 kfree_skb_partial(skb, fragstolen);
5918 tcp_data_ready(sk);
5919 return;
5920 }
5921 }
5922
5923 slow_path:
5924 if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5925 goto csum_error;
5926
5927 if (!th->ack && !th->rst && !th->syn)
5928 goto discard;
5929
5930 /*
5931 * Standard slow path.
5932 */
5933
5934 if (!tcp_validate_incoming(sk, skb, th, 1))
5935 return;
5936
5937 step5:
5938 if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5939 goto discard;
5940
5941 tcp_rcv_rtt_measure_ts(sk, skb);
5942
5943 /* Process urgent data. */
5944 tcp_urg(sk, skb, th);
5945
5946 /* step 7: process the segment text */
5947 tcp_data_queue(sk, skb);
5948
5949 tcp_data_snd_check(sk);
5950 tcp_ack_snd_check(sk);
5951 return;
5952
5953 csum_error:
5954 TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5955 TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5956
5957 discard:
5958 tcp_drop(sk, skb);
5959 }
5960 EXPORT_SYMBOL(tcp_rcv_established);
5961
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)5962 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5963 {
5964 struct inet_connection_sock *icsk = inet_csk(sk);
5965 struct tcp_sock *tp = tcp_sk(sk);
5966
5967 tcp_mtup_init(sk);
5968 icsk->icsk_af_ops->rebuild_header(sk);
5969 tcp_init_metrics(sk);
5970
5971 /* Initialize the congestion window to start the transfer.
5972 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5973 * retransmitted. In light of RFC6298 more aggressive 1sec
5974 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5975 * retransmission has occurred.
5976 */
5977 if (tp->total_retrans > 1 && tp->undo_marker)
5978 tp->snd_cwnd = 1;
5979 else
5980 tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5981 tp->snd_cwnd_stamp = tcp_jiffies32;
5982
5983 bpf_skops_established(sk, bpf_op, skb);
5984 /* Initialize congestion control unless BPF initialized it already: */
5985 if (!icsk->icsk_ca_initialized)
5986 tcp_init_congestion_control(sk);
5987 tcp_init_buffer_space(sk);
5988 }
5989
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5990 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5991 {
5992 struct tcp_sock *tp = tcp_sk(sk);
5993 struct inet_connection_sock *icsk = inet_csk(sk);
5994
5995 tcp_set_state(sk, TCP_ESTABLISHED);
5996 icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5997
5998 if (skb) {
5999 icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6000 security_inet_conn_established(sk, skb);
6001 sk_mark_napi_id(sk, skb);
6002 }
6003
6004 tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6005
6006 /* Prevent spurious tcp_cwnd_restart() on first data
6007 * packet.
6008 */
6009 tp->lsndtime = tcp_jiffies32;
6010
6011 if (sock_flag(sk, SOCK_KEEPOPEN))
6012 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6013
6014 if (!tp->rx_opt.snd_wscale)
6015 __tcp_fast_path_on(tp, tp->snd_wnd);
6016 else
6017 tp->pred_flags = 0;
6018 }
6019
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6020 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6021 struct tcp_fastopen_cookie *cookie)
6022 {
6023 struct tcp_sock *tp = tcp_sk(sk);
6024 struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6025 u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6026 bool syn_drop = false;
6027
6028 if (mss == tp->rx_opt.user_mss) {
6029 struct tcp_options_received opt;
6030
6031 /* Get original SYNACK MSS value if user MSS sets mss_clamp */
6032 tcp_clear_options(&opt);
6033 opt.user_mss = opt.mss_clamp = 0;
6034 tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6035 mss = opt.mss_clamp;
6036 }
6037
6038 if (!tp->syn_fastopen) {
6039 /* Ignore an unsolicited cookie */
6040 cookie->len = -1;
6041 } else if (tp->total_retrans) {
6042 /* SYN timed out and the SYN-ACK neither has a cookie nor
6043 * acknowledges data. Presumably the remote received only
6044 * the retransmitted (regular) SYNs: either the original
6045 * SYN-data or the corresponding SYN-ACK was dropped.
6046 */
6047 syn_drop = (cookie->len < 0 && data);
6048 } else if (cookie->len < 0 && !tp->syn_data) {
6049 /* We requested a cookie but didn't get it. If we did not use
6050 * the (old) exp opt format then try so next time (try_exp=1).
6051 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6052 */
6053 try_exp = tp->syn_fastopen_exp ? 2 : 1;
6054 }
6055
6056 tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6057
6058 if (data) { /* Retransmit unacked data in SYN */
6059 if (tp->total_retrans)
6060 tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6061 else
6062 tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6063 skb_rbtree_walk_from(data) {
6064 if (__tcp_retransmit_skb(sk, data, 1))
6065 break;
6066 }
6067 tcp_rearm_rto(sk);
6068 NET_INC_STATS(sock_net(sk),
6069 LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6070 return true;
6071 }
6072 tp->syn_data_acked = tp->syn_data;
6073 if (tp->syn_data_acked) {
6074 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6075 /* SYN-data is counted as two separate packets in tcp_ack() */
6076 if (tp->delivered > 1)
6077 --tp->delivered;
6078 }
6079
6080 tcp_fastopen_add_skb(sk, synack);
6081
6082 return false;
6083 }
6084
smc_check_reset_syn(struct tcp_sock * tp)6085 static void smc_check_reset_syn(struct tcp_sock *tp)
6086 {
6087 #if IS_ENABLED(CONFIG_SMC)
6088 if (static_branch_unlikely(&tcp_have_smc)) {
6089 if (tp->syn_smc && !tp->rx_opt.smc_ok)
6090 tp->syn_smc = 0;
6091 }
6092 #endif
6093 }
6094
tcp_try_undo_spurious_syn(struct sock * sk)6095 static void tcp_try_undo_spurious_syn(struct sock *sk)
6096 {
6097 struct tcp_sock *tp = tcp_sk(sk);
6098 u32 syn_stamp;
6099
6100 /* undo_marker is set when SYN or SYNACK times out. The timeout is
6101 * spurious if the ACK's timestamp option echo value matches the
6102 * original SYN timestamp.
6103 */
6104 syn_stamp = tp->retrans_stamp;
6105 if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6106 syn_stamp == tp->rx_opt.rcv_tsecr)
6107 tp->undo_marker = 0;
6108 }
6109
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6110 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6111 const struct tcphdr *th)
6112 {
6113 struct inet_connection_sock *icsk = inet_csk(sk);
6114 struct tcp_sock *tp = tcp_sk(sk);
6115 struct tcp_fastopen_cookie foc = { .len = -1 };
6116 int saved_clamp = tp->rx_opt.mss_clamp;
6117 bool fastopen_fail;
6118
6119 tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6120 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6121 tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6122
6123 if (th->ack) {
6124 /* rfc793:
6125 * "If the state is SYN-SENT then
6126 * first check the ACK bit
6127 * If the ACK bit is set
6128 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6129 * a reset (unless the RST bit is set, if so drop
6130 * the segment and return)"
6131 */
6132 if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6133 after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6134 /* Previous FIN/ACK or RST/ACK might be ignored. */
6135 if (icsk->icsk_retransmits == 0)
6136 inet_csk_reset_xmit_timer(sk,
6137 ICSK_TIME_RETRANS,
6138 TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6139 goto reset_and_undo;
6140 }
6141
6142 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6143 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6144 tcp_time_stamp(tp))) {
6145 NET_INC_STATS(sock_net(sk),
6146 LINUX_MIB_PAWSACTIVEREJECTED);
6147 goto reset_and_undo;
6148 }
6149
6150 /* Now ACK is acceptable.
6151 *
6152 * "If the RST bit is set
6153 * If the ACK was acceptable then signal the user "error:
6154 * connection reset", drop the segment, enter CLOSED state,
6155 * delete TCB, and return."
6156 */
6157
6158 if (th->rst) {
6159 tcp_reset(sk);
6160 goto discard;
6161 }
6162
6163 /* rfc793:
6164 * "fifth, if neither of the SYN or RST bits is set then
6165 * drop the segment and return."
6166 *
6167 * See note below!
6168 * --ANK(990513)
6169 */
6170 if (!th->syn)
6171 goto discard_and_undo;
6172
6173 /* rfc793:
6174 * "If the SYN bit is on ...
6175 * are acceptable then ...
6176 * (our SYN has been ACKed), change the connection
6177 * state to ESTABLISHED..."
6178 */
6179
6180 tcp_ecn_rcv_synack(tp, th);
6181
6182 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6183 tcp_try_undo_spurious_syn(sk);
6184 tcp_ack(sk, skb, FLAG_SLOWPATH);
6185
6186 /* Ok.. it's good. Set up sequence numbers and
6187 * move to established.
6188 */
6189 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6190 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6191
6192 /* RFC1323: The window in SYN & SYN/ACK segments is
6193 * never scaled.
6194 */
6195 tp->snd_wnd = ntohs(th->window);
6196
6197 if (!tp->rx_opt.wscale_ok) {
6198 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6199 tp->window_clamp = min(tp->window_clamp, 65535U);
6200 }
6201
6202 if (tp->rx_opt.saw_tstamp) {
6203 tp->rx_opt.tstamp_ok = 1;
6204 tp->tcp_header_len =
6205 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6206 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6207 tcp_store_ts_recent(tp);
6208 } else {
6209 tp->tcp_header_len = sizeof(struct tcphdr);
6210 }
6211
6212 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6213 tcp_initialize_rcv_mss(sk);
6214
6215 /* Remember, tcp_poll() does not lock socket!
6216 * Change state from SYN-SENT only after copied_seq
6217 * is initialized. */
6218 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6219
6220 smc_check_reset_syn(tp);
6221
6222 smp_mb();
6223
6224 tcp_finish_connect(sk, skb);
6225
6226 fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6227 tcp_rcv_fastopen_synack(sk, skb, &foc);
6228
6229 if (!sock_flag(sk, SOCK_DEAD)) {
6230 sk->sk_state_change(sk);
6231 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6232 }
6233 if (fastopen_fail)
6234 return -1;
6235 if (sk->sk_write_pending ||
6236 icsk->icsk_accept_queue.rskq_defer_accept ||
6237 inet_csk_in_pingpong_mode(sk)) {
6238 /* Save one ACK. Data will be ready after
6239 * several ticks, if write_pending is set.
6240 *
6241 * It may be deleted, but with this feature tcpdumps
6242 * look so _wonderfully_ clever, that I was not able
6243 * to stand against the temptation 8) --ANK
6244 */
6245 inet_csk_schedule_ack(sk);
6246 tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6247 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6248 TCP_DELACK_MAX, TCP_RTO_MAX);
6249
6250 discard:
6251 tcp_drop(sk, skb);
6252 return 0;
6253 } else {
6254 tcp_send_ack(sk);
6255 }
6256 return -1;
6257 }
6258
6259 /* No ACK in the segment */
6260
6261 if (th->rst) {
6262 /* rfc793:
6263 * "If the RST bit is set
6264 *
6265 * Otherwise (no ACK) drop the segment and return."
6266 */
6267
6268 goto discard_and_undo;
6269 }
6270
6271 /* PAWS check. */
6272 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6273 tcp_paws_reject(&tp->rx_opt, 0))
6274 goto discard_and_undo;
6275
6276 if (th->syn) {
6277 /* We see SYN without ACK. It is attempt of
6278 * simultaneous connect with crossed SYNs.
6279 * Particularly, it can be connect to self.
6280 */
6281 tcp_set_state(sk, TCP_SYN_RECV);
6282
6283 if (tp->rx_opt.saw_tstamp) {
6284 tp->rx_opt.tstamp_ok = 1;
6285 tcp_store_ts_recent(tp);
6286 tp->tcp_header_len =
6287 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6288 } else {
6289 tp->tcp_header_len = sizeof(struct tcphdr);
6290 }
6291
6292 WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6293 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6294 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6295
6296 /* RFC1323: The window in SYN & SYN/ACK segments is
6297 * never scaled.
6298 */
6299 tp->snd_wnd = ntohs(th->window);
6300 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
6301 tp->max_window = tp->snd_wnd;
6302
6303 tcp_ecn_rcv_syn(tp, th);
6304
6305 tcp_mtup_init(sk);
6306 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6307 tcp_initialize_rcv_mss(sk);
6308
6309 tcp_send_synack(sk);
6310 #if 0
6311 /* Note, we could accept data and URG from this segment.
6312 * There are no obstacles to make this (except that we must
6313 * either change tcp_recvmsg() to prevent it from returning data
6314 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6315 *
6316 * However, if we ignore data in ACKless segments sometimes,
6317 * we have no reasons to accept it sometimes.
6318 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6319 * is not flawless. So, discard packet for sanity.
6320 * Uncomment this return to process the data.
6321 */
6322 return -1;
6323 #else
6324 goto discard;
6325 #endif
6326 }
6327 /* "fifth, if neither of the SYN or RST bits is set then
6328 * drop the segment and return."
6329 */
6330
6331 discard_and_undo:
6332 tcp_clear_options(&tp->rx_opt);
6333 tp->rx_opt.mss_clamp = saved_clamp;
6334 goto discard;
6335
6336 reset_and_undo:
6337 tcp_clear_options(&tp->rx_opt);
6338 tp->rx_opt.mss_clamp = saved_clamp;
6339 return 1;
6340 }
6341
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6342 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6343 {
6344 struct request_sock *req;
6345
6346 /* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6347 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6348 */
6349 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6350 tcp_try_undo_loss(sk, false);
6351
6352 /* Reset rtx states to prevent spurious retransmits_timed_out() */
6353 tcp_sk(sk)->retrans_stamp = 0;
6354 inet_csk(sk)->icsk_retransmits = 0;
6355
6356 /* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6357 * we no longer need req so release it.
6358 */
6359 req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6360 lockdep_sock_is_held(sk));
6361 reqsk_fastopen_remove(sk, req, false);
6362
6363 /* Re-arm the timer because data may have been sent out.
6364 * This is similar to the regular data transmission case
6365 * when new data has just been ack'ed.
6366 *
6367 * (TFO) - we could try to be more aggressive and
6368 * retransmitting any data sooner based on when they
6369 * are sent out.
6370 */
6371 tcp_rearm_rto(sk);
6372 }
6373
6374 /*
6375 * This function implements the receiving procedure of RFC 793 for
6376 * all states except ESTABLISHED and TIME_WAIT.
6377 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6378 * address independent.
6379 */
6380
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6381 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6382 {
6383 struct tcp_sock *tp = tcp_sk(sk);
6384 struct inet_connection_sock *icsk = inet_csk(sk);
6385 const struct tcphdr *th = tcp_hdr(skb);
6386 struct request_sock *req;
6387 int queued = 0;
6388 bool acceptable;
6389
6390 switch (sk->sk_state) {
6391 case TCP_CLOSE:
6392 goto discard;
6393
6394 case TCP_LISTEN:
6395 if (th->ack)
6396 return 1;
6397
6398 if (th->rst)
6399 goto discard;
6400
6401 if (th->syn) {
6402 if (th->fin)
6403 goto discard;
6404 /* It is possible that we process SYN packets from backlog,
6405 * so we need to make sure to disable BH and RCU right there.
6406 */
6407 rcu_read_lock();
6408 local_bh_disable();
6409 acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6410 local_bh_enable();
6411 rcu_read_unlock();
6412
6413 if (!acceptable)
6414 return 1;
6415 consume_skb(skb);
6416 return 0;
6417 }
6418 goto discard;
6419
6420 case TCP_SYN_SENT:
6421 tp->rx_opt.saw_tstamp = 0;
6422 tcp_mstamp_refresh(tp);
6423 queued = tcp_rcv_synsent_state_process(sk, skb, th);
6424 if (queued >= 0)
6425 return queued;
6426
6427 /* Do step6 onward by hand. */
6428 tcp_urg(sk, skb, th);
6429 __kfree_skb(skb);
6430 tcp_data_snd_check(sk);
6431 return 0;
6432 }
6433
6434 tcp_mstamp_refresh(tp);
6435 tp->rx_opt.saw_tstamp = 0;
6436 req = rcu_dereference_protected(tp->fastopen_rsk,
6437 lockdep_sock_is_held(sk));
6438 if (req) {
6439 bool req_stolen;
6440
6441 WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6442 sk->sk_state != TCP_FIN_WAIT1);
6443
6444 if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6445 goto discard;
6446 }
6447
6448 if (!th->ack && !th->rst && !th->syn)
6449 goto discard;
6450
6451 if (!tcp_validate_incoming(sk, skb, th, 0))
6452 return 0;
6453
6454 /* step 5: check the ACK field */
6455 acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6456 FLAG_UPDATE_TS_RECENT |
6457 FLAG_NO_CHALLENGE_ACK) > 0;
6458
6459 if (!acceptable) {
6460 if (sk->sk_state == TCP_SYN_RECV)
6461 return 1; /* send one RST */
6462 tcp_send_challenge_ack(sk, skb);
6463 goto discard;
6464 }
6465 switch (sk->sk_state) {
6466 case TCP_SYN_RECV:
6467 tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6468 if (!tp->srtt_us)
6469 tcp_synack_rtt_meas(sk, req);
6470
6471 if (req) {
6472 tcp_rcv_synrecv_state_fastopen(sk);
6473 } else {
6474 tcp_try_undo_spurious_syn(sk);
6475 tp->retrans_stamp = 0;
6476 tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6477 skb);
6478 WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6479 }
6480 smp_mb();
6481 tcp_set_state(sk, TCP_ESTABLISHED);
6482 sk->sk_state_change(sk);
6483
6484 /* Note, that this wakeup is only for marginal crossed SYN case.
6485 * Passively open sockets are not waked up, because
6486 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6487 */
6488 if (sk->sk_socket)
6489 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6490
6491 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6492 tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6493 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6494
6495 if (tp->rx_opt.tstamp_ok)
6496 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6497
6498 if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6499 tcp_update_pacing_rate(sk);
6500
6501 /* Prevent spurious tcp_cwnd_restart() on first data packet */
6502 tp->lsndtime = tcp_jiffies32;
6503
6504 tcp_initialize_rcv_mss(sk);
6505 tcp_fast_path_on(tp);
6506 break;
6507
6508 case TCP_FIN_WAIT1: {
6509 int tmo;
6510
6511 if (req)
6512 tcp_rcv_synrecv_state_fastopen(sk);
6513
6514 if (tp->snd_una != tp->write_seq)
6515 break;
6516
6517 tcp_set_state(sk, TCP_FIN_WAIT2);
6518 WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6519
6520 sk_dst_confirm(sk);
6521
6522 if (!sock_flag(sk, SOCK_DEAD)) {
6523 /* Wake up lingering close() */
6524 sk->sk_state_change(sk);
6525 break;
6526 }
6527
6528 if (tp->linger2 < 0) {
6529 tcp_done(sk);
6530 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6531 return 1;
6532 }
6533 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6534 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6535 /* Receive out of order FIN after close() */
6536 if (tp->syn_fastopen && th->fin)
6537 tcp_fastopen_active_disable(sk);
6538 tcp_done(sk);
6539 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6540 return 1;
6541 }
6542
6543 tmo = tcp_fin_time(sk);
6544 if (tmo > TCP_TIMEWAIT_LEN) {
6545 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6546 } else if (th->fin || sock_owned_by_user(sk)) {
6547 /* Bad case. We could lose such FIN otherwise.
6548 * It is not a big problem, but it looks confusing
6549 * and not so rare event. We still can lose it now,
6550 * if it spins in bh_lock_sock(), but it is really
6551 * marginal case.
6552 */
6553 inet_csk_reset_keepalive_timer(sk, tmo);
6554 } else {
6555 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6556 goto discard;
6557 }
6558 break;
6559 }
6560
6561 case TCP_CLOSING:
6562 if (tp->snd_una == tp->write_seq) {
6563 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6564 goto discard;
6565 }
6566 break;
6567
6568 case TCP_LAST_ACK:
6569 if (tp->snd_una == tp->write_seq) {
6570 tcp_update_metrics(sk);
6571 tcp_done(sk);
6572 goto discard;
6573 }
6574 break;
6575 }
6576
6577 /* step 6: check the URG bit */
6578 tcp_urg(sk, skb, th);
6579
6580 /* step 7: process the segment text */
6581 switch (sk->sk_state) {
6582 case TCP_CLOSE_WAIT:
6583 case TCP_CLOSING:
6584 case TCP_LAST_ACK:
6585 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6586 if (sk_is_mptcp(sk))
6587 mptcp_incoming_options(sk, skb);
6588 break;
6589 }
6590 fallthrough;
6591 case TCP_FIN_WAIT1:
6592 case TCP_FIN_WAIT2:
6593 /* RFC 793 says to queue data in these states,
6594 * RFC 1122 says we MUST send a reset.
6595 * BSD 4.4 also does reset.
6596 */
6597 if (sk->sk_shutdown & RCV_SHUTDOWN) {
6598 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6599 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6600 NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6601 tcp_reset(sk);
6602 return 1;
6603 }
6604 }
6605 fallthrough;
6606 case TCP_ESTABLISHED:
6607 tcp_data_queue(sk, skb);
6608 queued = 1;
6609 break;
6610 }
6611
6612 /* tcp_data could move socket to TIME-WAIT */
6613 if (sk->sk_state != TCP_CLOSE) {
6614 tcp_data_snd_check(sk);
6615 tcp_ack_snd_check(sk);
6616 }
6617
6618 if (!queued) {
6619 discard:
6620 tcp_drop(sk, skb);
6621 }
6622 return 0;
6623 }
6624 EXPORT_SYMBOL(tcp_rcv_state_process);
6625
pr_drop_req(struct request_sock * req,__u16 port,int family)6626 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6627 {
6628 struct inet_request_sock *ireq = inet_rsk(req);
6629
6630 if (family == AF_INET)
6631 net_dbg_ratelimited("drop open request from %pI4/%u\n",
6632 &ireq->ir_rmt_addr, port);
6633 #if IS_ENABLED(CONFIG_IPV6)
6634 else if (family == AF_INET6)
6635 net_dbg_ratelimited("drop open request from %pI6/%u\n",
6636 &ireq->ir_v6_rmt_addr, port);
6637 #endif
6638 }
6639
6640 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6641 *
6642 * If we receive a SYN packet with these bits set, it means a
6643 * network is playing bad games with TOS bits. In order to
6644 * avoid possible false congestion notifications, we disable
6645 * TCP ECN negotiation.
6646 *
6647 * Exception: tcp_ca wants ECN. This is required for DCTCP
6648 * congestion control: Linux DCTCP asserts ECT on all packets,
6649 * including SYN, which is most optimal solution; however,
6650 * others, such as FreeBSD do not.
6651 *
6652 * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6653 * set, indicating the use of a future TCP extension (such as AccECN). See
6654 * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6655 * extensions.
6656 */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6657 static void tcp_ecn_create_request(struct request_sock *req,
6658 const struct sk_buff *skb,
6659 const struct sock *listen_sk,
6660 const struct dst_entry *dst)
6661 {
6662 const struct tcphdr *th = tcp_hdr(skb);
6663 const struct net *net = sock_net(listen_sk);
6664 bool th_ecn = th->ece && th->cwr;
6665 bool ect, ecn_ok;
6666 u32 ecn_ok_dst;
6667
6668 if (!th_ecn)
6669 return;
6670
6671 ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6672 ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6673 ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6674
6675 if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6676 (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6677 tcp_bpf_ca_needs_ecn((struct sock *)req))
6678 inet_rsk(req)->ecn_ok = 1;
6679 }
6680
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6681 static void tcp_openreq_init(struct request_sock *req,
6682 const struct tcp_options_received *rx_opt,
6683 struct sk_buff *skb, const struct sock *sk)
6684 {
6685 struct inet_request_sock *ireq = inet_rsk(req);
6686
6687 req->rsk_rcv_wnd = 0; /* So that tcp_send_synack() knows! */
6688 tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6689 tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6690 tcp_rsk(req)->snt_synack = 0;
6691 tcp_rsk(req)->last_oow_ack_time = 0;
6692 req->mss = rx_opt->mss_clamp;
6693 req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6694 ireq->tstamp_ok = rx_opt->tstamp_ok;
6695 ireq->sack_ok = rx_opt->sack_ok;
6696 ireq->snd_wscale = rx_opt->snd_wscale;
6697 ireq->wscale_ok = rx_opt->wscale_ok;
6698 ireq->acked = 0;
6699 ireq->ecn_ok = 0;
6700 ireq->ir_rmt_port = tcp_hdr(skb)->source;
6701 ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6702 ireq->ir_mark = inet_request_mark(sk, skb);
6703 #if IS_ENABLED(CONFIG_SMC)
6704 ireq->smc_ok = rx_opt->smc_ok;
6705 #endif
6706 }
6707
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6708 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6709 struct sock *sk_listener,
6710 bool attach_listener)
6711 {
6712 struct request_sock *req = reqsk_alloc(ops, sk_listener,
6713 attach_listener);
6714
6715 if (req) {
6716 struct inet_request_sock *ireq = inet_rsk(req);
6717
6718 ireq->ireq_opt = NULL;
6719 #if IS_ENABLED(CONFIG_IPV6)
6720 ireq->pktopts = NULL;
6721 #endif
6722 atomic64_set(&ireq->ir_cookie, 0);
6723 ireq->ireq_state = TCP_NEW_SYN_RECV;
6724 write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6725 ireq->ireq_family = sk_listener->sk_family;
6726 }
6727
6728 return req;
6729 }
6730 EXPORT_SYMBOL(inet_reqsk_alloc);
6731
6732 /*
6733 * Return true if a syncookie should be sent
6734 */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6735 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6736 {
6737 struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6738 const char *msg = "Dropping request";
6739 struct net *net = sock_net(sk);
6740 bool want_cookie = false;
6741 u8 syncookies;
6742
6743 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6744
6745 #ifdef CONFIG_SYN_COOKIES
6746 if (syncookies) {
6747 msg = "Sending cookies";
6748 want_cookie = true;
6749 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6750 } else
6751 #endif
6752 __NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6753
6754 if (!queue->synflood_warned && syncookies != 2 &&
6755 xchg(&queue->synflood_warned, 1) == 0)
6756 net_info_ratelimited("%s: Possible SYN flooding on port %d. %s. Check SNMP counters.\n",
6757 proto, sk->sk_num, msg);
6758
6759 return want_cookie;
6760 }
6761
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6762 static void tcp_reqsk_record_syn(const struct sock *sk,
6763 struct request_sock *req,
6764 const struct sk_buff *skb)
6765 {
6766 if (tcp_sk(sk)->save_syn) {
6767 u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6768 struct saved_syn *saved_syn;
6769 u32 mac_hdrlen;
6770 void *base;
6771
6772 if (tcp_sk(sk)->save_syn == 2) { /* Save full header. */
6773 base = skb_mac_header(skb);
6774 mac_hdrlen = skb_mac_header_len(skb);
6775 len += mac_hdrlen;
6776 } else {
6777 base = skb_network_header(skb);
6778 mac_hdrlen = 0;
6779 }
6780
6781 saved_syn = kmalloc(struct_size(saved_syn, data, len),
6782 GFP_ATOMIC);
6783 if (saved_syn) {
6784 saved_syn->mac_hdrlen = mac_hdrlen;
6785 saved_syn->network_hdrlen = skb_network_header_len(skb);
6786 saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6787 memcpy(saved_syn->data, base, len);
6788 req->saved_syn = saved_syn;
6789 }
6790 }
6791 }
6792
6793 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6794 * used for SYN cookie generation.
6795 */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6796 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6797 const struct tcp_request_sock_ops *af_ops,
6798 struct sock *sk, struct tcphdr *th)
6799 {
6800 struct tcp_sock *tp = tcp_sk(sk);
6801 u16 mss;
6802
6803 if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6804 !inet_csk_reqsk_queue_is_full(sk))
6805 return 0;
6806
6807 if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6808 return 0;
6809
6810 if (sk_acceptq_is_full(sk)) {
6811 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6812 return 0;
6813 }
6814
6815 mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6816 if (!mss)
6817 mss = af_ops->mss_clamp;
6818
6819 return mss;
6820 }
6821 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6822
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6823 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6824 const struct tcp_request_sock_ops *af_ops,
6825 struct sock *sk, struct sk_buff *skb)
6826 {
6827 struct tcp_fastopen_cookie foc = { .len = -1 };
6828 __u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6829 struct tcp_options_received tmp_opt;
6830 struct tcp_sock *tp = tcp_sk(sk);
6831 struct net *net = sock_net(sk);
6832 struct sock *fastopen_sk = NULL;
6833 struct request_sock *req;
6834 bool want_cookie = false;
6835 struct dst_entry *dst;
6836 struct flowi fl;
6837 u8 syncookies;
6838
6839 syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6840
6841 /* TW buckets are converted to open requests without
6842 * limitations, they conserve resources and peer is
6843 * evidently real one.
6844 */
6845 if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6846 want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6847 if (!want_cookie)
6848 goto drop;
6849 }
6850
6851 if (sk_acceptq_is_full(sk)) {
6852 NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6853 goto drop;
6854 }
6855
6856 req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6857 if (!req)
6858 goto drop;
6859
6860 req->syncookie = want_cookie;
6861 tcp_rsk(req)->af_specific = af_ops;
6862 tcp_rsk(req)->ts_off = 0;
6863 #if IS_ENABLED(CONFIG_MPTCP)
6864 tcp_rsk(req)->is_mptcp = 0;
6865 #endif
6866
6867 tcp_clear_options(&tmp_opt);
6868 tmp_opt.mss_clamp = af_ops->mss_clamp;
6869 tmp_opt.user_mss = tp->rx_opt.user_mss;
6870 tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6871 want_cookie ? NULL : &foc);
6872
6873 if (want_cookie && !tmp_opt.saw_tstamp)
6874 tcp_clear_options(&tmp_opt);
6875
6876 if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6877 tmp_opt.smc_ok = 0;
6878
6879 tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6880 tcp_openreq_init(req, &tmp_opt, skb, sk);
6881 inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6882
6883 /* Note: tcp_v6_init_req() might override ir_iif for link locals */
6884 inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6885
6886 af_ops->init_req(req, sk, skb);
6887
6888 if (security_inet_conn_request(sk, skb, req))
6889 goto drop_and_free;
6890
6891 if (tmp_opt.tstamp_ok)
6892 tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6893
6894 dst = af_ops->route_req(sk, &fl, req);
6895 if (!dst)
6896 goto drop_and_free;
6897
6898 if (!want_cookie && !isn) {
6899 int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6900
6901 /* Kill the following clause, if you dislike this way. */
6902 if (!syncookies &&
6903 (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6904 (max_syn_backlog >> 2)) &&
6905 !tcp_peer_is_proven(req, dst)) {
6906 /* Without syncookies last quarter of
6907 * backlog is filled with destinations,
6908 * proven to be alive.
6909 * It means that we continue to communicate
6910 * to destinations, already remembered
6911 * to the moment of synflood.
6912 */
6913 pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6914 rsk_ops->family);
6915 goto drop_and_release;
6916 }
6917
6918 isn = af_ops->init_seq(skb);
6919 }
6920
6921 tcp_ecn_create_request(req, skb, sk, dst);
6922
6923 if (want_cookie) {
6924 isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6925 if (!tmp_opt.tstamp_ok)
6926 inet_rsk(req)->ecn_ok = 0;
6927 }
6928
6929 tcp_rsk(req)->snt_isn = isn;
6930 tcp_rsk(req)->txhash = net_tx_rndhash();
6931 tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6932 tcp_openreq_init_rwin(req, sk, dst);
6933 sk_rx_queue_set(req_to_sk(req), skb);
6934 if (!want_cookie) {
6935 tcp_reqsk_record_syn(sk, req, skb);
6936 fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6937 }
6938 if (fastopen_sk) {
6939 af_ops->send_synack(fastopen_sk, dst, &fl, req,
6940 &foc, TCP_SYNACK_FASTOPEN, skb);
6941 /* Add the child socket directly into the accept queue */
6942 if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6943 reqsk_fastopen_remove(fastopen_sk, req, false);
6944 bh_unlock_sock(fastopen_sk);
6945 sock_put(fastopen_sk);
6946 goto drop_and_free;
6947 }
6948 sk->sk_data_ready(sk);
6949 bh_unlock_sock(fastopen_sk);
6950 sock_put(fastopen_sk);
6951 } else {
6952 tcp_rsk(req)->tfo_listener = false;
6953 if (!want_cookie)
6954 inet_csk_reqsk_queue_hash_add(sk, req,
6955 tcp_timeout_init((struct sock *)req));
6956 af_ops->send_synack(sk, dst, &fl, req, &foc,
6957 !want_cookie ? TCP_SYNACK_NORMAL :
6958 TCP_SYNACK_COOKIE,
6959 skb);
6960 if (want_cookie) {
6961 reqsk_free(req);
6962 return 0;
6963 }
6964 }
6965 reqsk_put(req);
6966 return 0;
6967
6968 drop_and_release:
6969 dst_release(dst);
6970 drop_and_free:
6971 __reqsk_free(req);
6972 drop:
6973 tcp_listendrop(sk);
6974 return 0;
6975 }
6976 EXPORT_SYMBOL(tcp_conn_request);
6977