• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Implementation of the Transmission Control Protocol(TCP).
8  *
9  * Authors:	Ross Biro
10  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
11  *		Mark Evans, <evansmp@uhura.aston.ac.uk>
12  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
13  *		Florian La Roche, <flla@stud.uni-sb.de>
14  *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
15  *		Linus Torvalds, <torvalds@cs.helsinki.fi>
16  *		Alan Cox, <gw4pts@gw4pts.ampr.org>
17  *		Matthew Dillon, <dillon@apollo.west.oic.com>
18  *		Arnt Gulbrandsen, <agulbra@nvg.unit.no>
19  *		Jorge Cwik, <jorge@laser.satlink.net>
20  */
21 
22 /*
23  * Changes:
24  *		Pedro Roque	:	Fast Retransmit/Recovery.
25  *					Two receive queues.
26  *					Retransmit queue handled by TCP.
27  *					Better retransmit timer handling.
28  *					New congestion avoidance.
29  *					Header prediction.
30  *					Variable renaming.
31  *
32  *		Eric		:	Fast Retransmit.
33  *		Randy Scott	:	MSS option defines.
34  *		Eric Schenk	:	Fixes to slow start algorithm.
35  *		Eric Schenk	:	Yet another double ACK bug.
36  *		Eric Schenk	:	Delayed ACK bug fixes.
37  *		Eric Schenk	:	Floyd style fast retrans war avoidance.
38  *		David S. Miller	:	Don't allow zero congestion window.
39  *		Eric Schenk	:	Fix retransmitter so that it sends
40  *					next packet on ack of previous packet.
41  *		Andi Kleen	:	Moved open_request checking here
42  *					and process RSTs for open_requests.
43  *		Andi Kleen	:	Better prune_queue, and other fixes.
44  *		Andrey Savochkin:	Fix RTT measurements in the presence of
45  *					timestamps.
46  *		Andrey Savochkin:	Check sequence numbers correctly when
47  *					removing SACKs due to in sequence incoming
48  *					data segments.
49  *		Andi Kleen:		Make sure we never ack data there is not
50  *					enough room for. Also make this condition
51  *					a fatal error if it might still happen.
52  *		Andi Kleen:		Add tcp_measure_rcv_mss to make
53  *					connections with MSS<min(MTU,ann. MSS)
54  *					work without delayed acks.
55  *		Andi Kleen:		Process packets with PSH set in the
56  *					fast path.
57  *		J Hadi Salim:		ECN support
58  *	 	Andrei Gurtov,
59  *		Pasi Sarolahti,
60  *		Panu Kuhlberg:		Experimental audit of TCP (re)transmission
61  *					engine. Lots of bugs are found.
62  *		Pasi Sarolahti:		F-RTO for dealing with spurious RTOs
63  */
64 
65 #define pr_fmt(fmt) "TCP: " fmt
66 
67 #include <linux/mm.h>
68 #include <linux/slab.h>
69 #include <linux/module.h>
70 #include <linux/sysctl.h>
71 #include <linux/kernel.h>
72 #include <linux/prefetch.h>
73 #include <net/dst.h>
74 #include <net/tcp.h>
75 #include <net/inet_common.h>
76 #include <linux/ipsec.h>
77 #include <asm/unaligned.h>
78 #include <linux/errqueue.h>
79 #include <trace/events/tcp.h>
80 #include <linux/jump_label_ratelimit.h>
81 #include <net/busy_poll.h>
82 #include <net/mptcp.h>
83 #ifdef CONFIG_LOWPOWER_PROTOCOL
84 #include <net/lowpower_protocol.h>
85 #endif /* CONFIG_LOWPOWER_PROTOCOL */
86 
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 
89 #define FLAG_DATA		0x01 /* Incoming frame contained data.		*/
90 #define FLAG_WIN_UPDATE		0x02 /* Incoming ACK was a window update.	*/
91 #define FLAG_DATA_ACKED		0x04 /* This ACK acknowledged new data.		*/
92 #define FLAG_RETRANS_DATA_ACKED	0x08 /* "" "" some of which was retransmitted.	*/
93 #define FLAG_SYN_ACKED		0x10 /* This ACK acknowledged SYN.		*/
94 #define FLAG_DATA_SACKED	0x20 /* New SACK.				*/
95 #define FLAG_ECE		0x40 /* ECE in this ACK				*/
96 #define FLAG_LOST_RETRANS	0x80 /* This ACK marks some retransmission lost */
97 #define FLAG_SLOWPATH		0x100 /* Do not skip RFC checks for window update.*/
98 #define FLAG_ORIG_SACK_ACKED	0x200 /* Never retransmitted data are (s)acked	*/
99 #define FLAG_SND_UNA_ADVANCED	0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
100 #define FLAG_DSACKING_ACK	0x800 /* SACK blocks contained D-SACK info */
101 #define FLAG_SET_XMIT_TIMER	0x1000 /* Set TLP or RTO timer */
102 #define FLAG_SACK_RENEGING	0x2000 /* snd_una advanced to a sacked seq */
103 #define FLAG_UPDATE_TS_RECENT	0x4000 /* tcp_replace_ts_recent() */
104 #define FLAG_NO_CHALLENGE_ACK	0x8000 /* do not call tcp_send_challenge_ack()	*/
105 #define FLAG_ACK_MAYBE_DELAYED	0x10000 /* Likely a delayed ACK */
106 
107 #define FLAG_ACKED		(FLAG_DATA_ACKED|FLAG_SYN_ACKED)
108 #define FLAG_NOT_DUP		(FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
109 #define FLAG_CA_ALERT		(FLAG_DATA_SACKED|FLAG_ECE|FLAG_DSACKING_ACK)
110 #define FLAG_FORWARD_PROGRESS	(FLAG_ACKED|FLAG_DATA_SACKED)
111 
112 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
113 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
114 
115 #define REXMIT_NONE	0 /* no loss recovery to do */
116 #define REXMIT_LOST	1 /* retransmit packets marked lost */
117 #define REXMIT_NEW	2 /* FRTO-style transmit of unsent/new packets */
118 
119 #if IS_ENABLED(CONFIG_TLS_DEVICE)
120 static DEFINE_STATIC_KEY_DEFERRED_FALSE(clean_acked_data_enabled, HZ);
121 
clean_acked_data_enable(struct inet_connection_sock * icsk,void (* cad)(struct sock * sk,u32 ack_seq))122 void clean_acked_data_enable(struct inet_connection_sock *icsk,
123 			     void (*cad)(struct sock *sk, u32 ack_seq))
124 {
125 	icsk->icsk_clean_acked = cad;
126 	static_branch_deferred_inc(&clean_acked_data_enabled);
127 }
128 EXPORT_SYMBOL_GPL(clean_acked_data_enable);
129 
clean_acked_data_disable(struct inet_connection_sock * icsk)130 void clean_acked_data_disable(struct inet_connection_sock *icsk)
131 {
132 	static_branch_slow_dec_deferred(&clean_acked_data_enabled);
133 	icsk->icsk_clean_acked = NULL;
134 }
135 EXPORT_SYMBOL_GPL(clean_acked_data_disable);
136 
clean_acked_data_flush(void)137 void clean_acked_data_flush(void)
138 {
139 	static_key_deferred_flush(&clean_acked_data_enabled);
140 }
141 EXPORT_SYMBOL_GPL(clean_acked_data_flush);
142 #endif
143 
144 #ifdef CONFIG_CGROUP_BPF
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)145 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
146 {
147 	bool unknown_opt = tcp_sk(sk)->rx_opt.saw_unknown &&
148 		BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
149 				       BPF_SOCK_OPS_PARSE_UNKNOWN_HDR_OPT_CB_FLAG);
150 	bool parse_all_opt = BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk),
151 						    BPF_SOCK_OPS_PARSE_ALL_HDR_OPT_CB_FLAG);
152 	struct bpf_sock_ops_kern sock_ops;
153 
154 	if (likely(!unknown_opt && !parse_all_opt))
155 		return;
156 
157 	/* The skb will be handled in the
158 	 * bpf_skops_established() or
159 	 * bpf_skops_write_hdr_opt().
160 	 */
161 	switch (sk->sk_state) {
162 	case TCP_SYN_RECV:
163 	case TCP_SYN_SENT:
164 	case TCP_LISTEN:
165 		return;
166 	}
167 
168 	sock_owned_by_me(sk);
169 
170 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
171 	sock_ops.op = BPF_SOCK_OPS_PARSE_HDR_OPT_CB;
172 	sock_ops.is_fullsock = 1;
173 	sock_ops.sk = sk;
174 	bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
175 
176 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
177 }
178 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)179 static void bpf_skops_established(struct sock *sk, int bpf_op,
180 				  struct sk_buff *skb)
181 {
182 	struct bpf_sock_ops_kern sock_ops;
183 
184 	sock_owned_by_me(sk);
185 
186 	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
187 	sock_ops.op = bpf_op;
188 	sock_ops.is_fullsock = 1;
189 	sock_ops.sk = sk;
190 	/* sk with TCP_REPAIR_ON does not have skb in tcp_finish_connect */
191 	if (skb)
192 		bpf_skops_init_skb(&sock_ops, skb, tcp_hdrlen(skb));
193 
194 	BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
195 }
196 #else
bpf_skops_parse_hdr(struct sock * sk,struct sk_buff * skb)197 static void bpf_skops_parse_hdr(struct sock *sk, struct sk_buff *skb)
198 {
199 }
200 
bpf_skops_established(struct sock * sk,int bpf_op,struct sk_buff * skb)201 static void bpf_skops_established(struct sock *sk, int bpf_op,
202 				  struct sk_buff *skb)
203 {
204 }
205 #endif
206 
tcp_gro_dev_warn(struct sock * sk,const struct sk_buff * skb,unsigned int len)207 static void tcp_gro_dev_warn(struct sock *sk, const struct sk_buff *skb,
208 			     unsigned int len)
209 {
210 	static bool __once __read_mostly;
211 
212 	if (!__once) {
213 		struct net_device *dev;
214 
215 		__once = true;
216 
217 		rcu_read_lock();
218 		dev = dev_get_by_index_rcu(sock_net(sk), skb->skb_iif);
219 		if (!dev || len >= dev->mtu)
220 			pr_warn("%s: Driver has suspect GRO implementation, TCP performance may be compromised.\n",
221 				dev ? dev->name : "Unknown driver");
222 		rcu_read_unlock();
223 	}
224 }
225 
226 /* Adapt the MSS value used to make delayed ack decision to the
227  * real world.
228  */
tcp_measure_rcv_mss(struct sock * sk,const struct sk_buff * skb)229 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
230 {
231 	struct inet_connection_sock *icsk = inet_csk(sk);
232 	const unsigned int lss = icsk->icsk_ack.last_seg_size;
233 	unsigned int len;
234 
235 	icsk->icsk_ack.last_seg_size = 0;
236 
237 	/* skb->len may jitter because of SACKs, even if peer
238 	 * sends good full-sized frames.
239 	 */
240 	len = skb_shinfo(skb)->gso_size ? : skb->len;
241 	if (len >= icsk->icsk_ack.rcv_mss) {
242 		icsk->icsk_ack.rcv_mss = min_t(unsigned int, len,
243 					       tcp_sk(sk)->advmss);
244 		/* Account for possibly-removed options */
245 		if (unlikely(len > icsk->icsk_ack.rcv_mss +
246 				   MAX_TCP_OPTION_SPACE))
247 			tcp_gro_dev_warn(sk, skb, len);
248 	} else {
249 		/* Otherwise, we make more careful check taking into account,
250 		 * that SACKs block is variable.
251 		 *
252 		 * "len" is invariant segment length, including TCP header.
253 		 */
254 		len += skb->data - skb_transport_header(skb);
255 		if (len >= TCP_MSS_DEFAULT + sizeof(struct tcphdr) ||
256 		    /* If PSH is not set, packet should be
257 		     * full sized, provided peer TCP is not badly broken.
258 		     * This observation (if it is correct 8)) allows
259 		     * to handle super-low mtu links fairly.
260 		     */
261 		    (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
262 		     !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
263 			/* Subtract also invariant (if peer is RFC compliant),
264 			 * tcp header plus fixed timestamp option length.
265 			 * Resulting "len" is MSS free of SACK jitter.
266 			 */
267 			len -= tcp_sk(sk)->tcp_header_len;
268 			icsk->icsk_ack.last_seg_size = len;
269 			if (len == lss) {
270 				icsk->icsk_ack.rcv_mss = len;
271 				return;
272 			}
273 		}
274 		if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
275 			icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
276 		icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
277 	}
278 }
279 
tcp_incr_quickack(struct sock * sk,unsigned int max_quickacks)280 static void tcp_incr_quickack(struct sock *sk, unsigned int max_quickacks)
281 {
282 	struct inet_connection_sock *icsk = inet_csk(sk);
283 	unsigned int quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
284 
285 	if (quickacks == 0)
286 		quickacks = 2;
287 	quickacks = min(quickacks, max_quickacks);
288 	if (quickacks > icsk->icsk_ack.quick)
289 		icsk->icsk_ack.quick = quickacks;
290 }
291 
tcp_enter_quickack_mode(struct sock * sk,unsigned int max_quickacks)292 static void tcp_enter_quickack_mode(struct sock *sk, unsigned int max_quickacks)
293 {
294 	struct inet_connection_sock *icsk = inet_csk(sk);
295 
296 	tcp_incr_quickack(sk, max_quickacks);
297 	inet_csk_exit_pingpong_mode(sk);
298 	icsk->icsk_ack.ato = TCP_ATO_MIN;
299 }
300 
301 /* Send ACKs quickly, if "quick" count is not exhausted
302  * and the session is not interactive.
303  */
304 
tcp_in_quickack_mode(struct sock * sk)305 static bool tcp_in_quickack_mode(struct sock *sk)
306 {
307 	const struct inet_connection_sock *icsk = inet_csk(sk);
308 	const struct dst_entry *dst = __sk_dst_get(sk);
309 
310 	return (dst && dst_metric(dst, RTAX_QUICKACK)) ||
311 		(icsk->icsk_ack.quick && !inet_csk_in_pingpong_mode(sk));
312 }
313 
tcp_ecn_queue_cwr(struct tcp_sock * tp)314 static void tcp_ecn_queue_cwr(struct tcp_sock *tp)
315 {
316 	if (tp->ecn_flags & TCP_ECN_OK)
317 		tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
318 }
319 
tcp_ecn_accept_cwr(struct sock * sk,const struct sk_buff * skb)320 static void tcp_ecn_accept_cwr(struct sock *sk, const struct sk_buff *skb)
321 {
322 	if (tcp_hdr(skb)->cwr) {
323 		tcp_sk(sk)->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
324 
325 		/* If the sender is telling us it has entered CWR, then its
326 		 * cwnd may be very low (even just 1 packet), so we should ACK
327 		 * immediately.
328 		 */
329 		if (TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq)
330 			inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
331 	}
332 }
333 
tcp_ecn_withdraw_cwr(struct tcp_sock * tp)334 static void tcp_ecn_withdraw_cwr(struct tcp_sock *tp)
335 {
336 	tp->ecn_flags &= ~TCP_ECN_QUEUE_CWR;
337 }
338 
__tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)339 static void __tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
340 {
341 	struct tcp_sock *tp = tcp_sk(sk);
342 
343 	switch (TCP_SKB_CB(skb)->ip_dsfield & INET_ECN_MASK) {
344 	case INET_ECN_NOT_ECT:
345 		/* Funny extension: if ECT is not set on a segment,
346 		 * and we already seen ECT on a previous segment,
347 		 * it is probably a retransmit.
348 		 */
349 		if (tp->ecn_flags & TCP_ECN_SEEN)
350 			tcp_enter_quickack_mode(sk, 2);
351 		break;
352 	case INET_ECN_CE:
353 		if (tcp_ca_needs_ecn(sk))
354 			tcp_ca_event(sk, CA_EVENT_ECN_IS_CE);
355 
356 		if (!(tp->ecn_flags & TCP_ECN_DEMAND_CWR)) {
357 			/* Better not delay acks, sender can have a very low cwnd */
358 			tcp_enter_quickack_mode(sk, 2);
359 			tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
360 		}
361 		tp->ecn_flags |= TCP_ECN_SEEN;
362 		break;
363 	default:
364 		if (tcp_ca_needs_ecn(sk))
365 			tcp_ca_event(sk, CA_EVENT_ECN_NO_CE);
366 		tp->ecn_flags |= TCP_ECN_SEEN;
367 		break;
368 	}
369 }
370 
tcp_ecn_check_ce(struct sock * sk,const struct sk_buff * skb)371 static void tcp_ecn_check_ce(struct sock *sk, const struct sk_buff *skb)
372 {
373 	if (tcp_sk(sk)->ecn_flags & TCP_ECN_OK)
374 		__tcp_ecn_check_ce(sk, skb);
375 }
376 
tcp_ecn_rcv_synack(struct tcp_sock * tp,const struct tcphdr * th)377 static void tcp_ecn_rcv_synack(struct tcp_sock *tp, const struct tcphdr *th)
378 {
379 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
380 		tp->ecn_flags &= ~TCP_ECN_OK;
381 }
382 
tcp_ecn_rcv_syn(struct tcp_sock * tp,const struct tcphdr * th)383 static void tcp_ecn_rcv_syn(struct tcp_sock *tp, const struct tcphdr *th)
384 {
385 	if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
386 		tp->ecn_flags &= ~TCP_ECN_OK;
387 }
388 
tcp_ecn_rcv_ecn_echo(const struct tcp_sock * tp,const struct tcphdr * th)389 static bool tcp_ecn_rcv_ecn_echo(const struct tcp_sock *tp, const struct tcphdr *th)
390 {
391 	if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
392 		return true;
393 	return false;
394 }
395 
396 /* Buffer size and advertised window tuning.
397  *
398  * 1. Tuning sk->sk_sndbuf, when connection enters established state.
399  */
400 
tcp_sndbuf_expand(struct sock * sk)401 static void tcp_sndbuf_expand(struct sock *sk)
402 {
403 	const struct tcp_sock *tp = tcp_sk(sk);
404 	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
405 	int sndmem, per_mss;
406 	u32 nr_segs;
407 
408 	/* Worst case is non GSO/TSO : each frame consumes one skb
409 	 * and skb->head is kmalloced using power of two area of memory
410 	 */
411 	per_mss = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
412 		  MAX_TCP_HEADER +
413 		  SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
414 
415 	per_mss = roundup_pow_of_two(per_mss) +
416 		  SKB_DATA_ALIGN(sizeof(struct sk_buff));
417 
418 	nr_segs = max_t(u32, TCP_INIT_CWND, tp->snd_cwnd);
419 	nr_segs = max_t(u32, nr_segs, tp->reordering + 1);
420 
421 	/* Fast Recovery (RFC 5681 3.2) :
422 	 * Cubic needs 1.7 factor, rounded to 2 to include
423 	 * extra cushion (application might react slowly to EPOLLOUT)
424 	 */
425 	sndmem = ca_ops->sndbuf_expand ? ca_ops->sndbuf_expand(sk) : 2;
426 	sndmem *= nr_segs * per_mss;
427 
428 	if (sk->sk_sndbuf < sndmem)
429 		WRITE_ONCE(sk->sk_sndbuf,
430 			   min(sndmem, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_wmem[2])));
431 }
432 
433 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
434  *
435  * All tcp_full_space() is split to two parts: "network" buffer, allocated
436  * forward and advertised in receiver window (tp->rcv_wnd) and
437  * "application buffer", required to isolate scheduling/application
438  * latencies from network.
439  * window_clamp is maximal advertised window. It can be less than
440  * tcp_full_space(), in this case tcp_full_space() - window_clamp
441  * is reserved for "application" buffer. The less window_clamp is
442  * the smoother our behaviour from viewpoint of network, but the lower
443  * throughput and the higher sensitivity of the connection to losses. 8)
444  *
445  * rcv_ssthresh is more strict window_clamp used at "slow start"
446  * phase to predict further behaviour of this connection.
447  * It is used for two goals:
448  * - to enforce header prediction at sender, even when application
449  *   requires some significant "application buffer". It is check #1.
450  * - to prevent pruning of receive queue because of misprediction
451  *   of receiver window. Check #2.
452  *
453  * The scheme does not work when sender sends good segments opening
454  * window and then starts to feed us spaghetti. But it should work
455  * in common situations. Otherwise, we have to rely on queue collapsing.
456  */
457 
458 /* Slow part of check#2. */
__tcp_grow_window(const struct sock * sk,const struct sk_buff * skb,unsigned int skbtruesize)459 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb,
460 			     unsigned int skbtruesize)
461 {
462 	struct tcp_sock *tp = tcp_sk(sk);
463 	/* Optimize this! */
464 	int truesize = tcp_win_from_space(sk, skbtruesize) >> 1;
465 	int window = tcp_win_from_space(sk, READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2])) >> 1;
466 
467 	while (tp->rcv_ssthresh <= window) {
468 		if (truesize <= skb->len)
469 			return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
470 
471 		truesize >>= 1;
472 		window >>= 1;
473 	}
474 	return 0;
475 }
476 
477 /* Even if skb appears to have a bad len/truesize ratio, TCP coalescing
478  * can play nice with us, as sk_buff and skb->head might be either
479  * freed or shared with up to MAX_SKB_FRAGS segments.
480  * Only give a boost to drivers using page frag(s) to hold the frame(s),
481  * and if no payload was pulled in skb->head before reaching us.
482  */
truesize_adjust(bool adjust,const struct sk_buff * skb)483 static u32 truesize_adjust(bool adjust, const struct sk_buff *skb)
484 {
485 	u32 truesize = skb->truesize;
486 
487 	if (adjust && !skb_headlen(skb)) {
488 		truesize -= SKB_TRUESIZE(skb_end_offset(skb));
489 		/* paranoid check, some drivers might be buggy */
490 		if (unlikely((int)truesize < (int)skb->len))
491 			truesize = skb->truesize;
492 	}
493 	return truesize;
494 }
495 
tcp_grow_window(struct sock * sk,const struct sk_buff * skb,bool adjust)496 static void tcp_grow_window(struct sock *sk, const struct sk_buff *skb,
497 			    bool adjust)
498 {
499 	struct tcp_sock *tp = tcp_sk(sk);
500 	int room;
501 
502 	room = min_t(int, tp->window_clamp, tcp_space(sk)) - tp->rcv_ssthresh;
503 
504 	/* Check #1 */
505 	if (room > 0 && !tcp_under_memory_pressure(sk)) {
506 		unsigned int truesize = truesize_adjust(adjust, skb);
507 		int incr;
508 
509 		/* Check #2. Increase window, if skb with such overhead
510 		 * will fit to rcvbuf in future.
511 		 */
512 		if (tcp_win_from_space(sk, truesize) <= skb->len)
513 			incr = 2 * tp->advmss;
514 		else
515 			incr = __tcp_grow_window(sk, skb, truesize);
516 
517 		if (incr) {
518 			incr = max_t(int, incr, 2 * skb->len);
519 			tp->rcv_ssthresh += min(room, incr);
520 			inet_csk(sk)->icsk_ack.quick |= 1;
521 		}
522 	}
523 }
524 
525 /* 3. Try to fixup all. It is made immediately after connection enters
526  *    established state.
527  */
tcp_init_buffer_space(struct sock * sk)528 static void tcp_init_buffer_space(struct sock *sk)
529 {
530 	int tcp_app_win = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_app_win);
531 	struct tcp_sock *tp = tcp_sk(sk);
532 	int maxwin;
533 
534 	if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
535 		tcp_sndbuf_expand(sk);
536 
537 	tcp_mstamp_refresh(tp);
538 	tp->rcvq_space.time = tp->tcp_mstamp;
539 	tp->rcvq_space.seq = tp->copied_seq;
540 
541 	maxwin = tcp_full_space(sk);
542 
543 	if (tp->window_clamp >= maxwin) {
544 		tp->window_clamp = maxwin;
545 
546 		if (tcp_app_win && maxwin > 4 * tp->advmss)
547 			tp->window_clamp = max(maxwin -
548 					       (maxwin >> tcp_app_win),
549 					       4 * tp->advmss);
550 	}
551 
552 	/* Force reservation of one segment. */
553 	if (tcp_app_win &&
554 	    tp->window_clamp > 2 * tp->advmss &&
555 	    tp->window_clamp + tp->advmss > maxwin)
556 		tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
557 
558 	tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
559 	tp->snd_cwnd_stamp = tcp_jiffies32;
560 	tp->rcvq_space.space = min3(tp->rcv_ssthresh, tp->rcv_wnd,
561 				    (u32)TCP_INIT_CWND * tp->advmss);
562 }
563 
564 /* 4. Recalculate window clamp after socket hit its memory bounds. */
tcp_clamp_window(struct sock * sk)565 static void tcp_clamp_window(struct sock *sk)
566 {
567 	struct tcp_sock *tp = tcp_sk(sk);
568 	struct inet_connection_sock *icsk = inet_csk(sk);
569 	struct net *net = sock_net(sk);
570 	int rmem2;
571 
572 	icsk->icsk_ack.quick = 0;
573 	rmem2 = READ_ONCE(net->ipv4.sysctl_tcp_rmem[2]);
574 
575 	if (sk->sk_rcvbuf < rmem2 &&
576 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
577 	    !tcp_under_memory_pressure(sk) &&
578 	    sk_memory_allocated(sk) < sk_prot_mem_limits(sk, 0)) {
579 		WRITE_ONCE(sk->sk_rcvbuf,
580 			   min(atomic_read(&sk->sk_rmem_alloc), rmem2));
581 	}
582 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
583 		tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
584 }
585 
586 /* Initialize RCV_MSS value.
587  * RCV_MSS is an our guess about MSS used by the peer.
588  * We haven't any direct information about the MSS.
589  * It's better to underestimate the RCV_MSS rather than overestimate.
590  * Overestimations make us ACKing less frequently than needed.
591  * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
592  */
tcp_initialize_rcv_mss(struct sock * sk)593 void tcp_initialize_rcv_mss(struct sock *sk)
594 {
595 	const struct tcp_sock *tp = tcp_sk(sk);
596 	unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
597 
598 	hint = min(hint, tp->rcv_wnd / 2);
599 	hint = min(hint, TCP_MSS_DEFAULT);
600 	hint = max(hint, TCP_MIN_MSS);
601 
602 	inet_csk(sk)->icsk_ack.rcv_mss = hint;
603 }
604 EXPORT_SYMBOL(tcp_initialize_rcv_mss);
605 
606 /* Receiver "autotuning" code.
607  *
608  * The algorithm for RTT estimation w/o timestamps is based on
609  * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
610  * <https://public.lanl.gov/radiant/pubs.html#DRS>
611  *
612  * More detail on this code can be found at
613  * <http://staff.psc.edu/jheffner/>,
614  * though this reference is out of date.  A new paper
615  * is pending.
616  */
tcp_rcv_rtt_update(struct tcp_sock * tp,u32 sample,int win_dep)617 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
618 {
619 	u32 new_sample = tp->rcv_rtt_est.rtt_us;
620 	long m = sample;
621 
622 	if (new_sample != 0) {
623 		/* If we sample in larger samples in the non-timestamp
624 		 * case, we could grossly overestimate the RTT especially
625 		 * with chatty applications or bulk transfer apps which
626 		 * are stalled on filesystem I/O.
627 		 *
628 		 * Also, since we are only going for a minimum in the
629 		 * non-timestamp case, we do not smooth things out
630 		 * else with timestamps disabled convergence takes too
631 		 * long.
632 		 */
633 		if (!win_dep) {
634 			m -= (new_sample >> 3);
635 			new_sample += m;
636 		} else {
637 			m <<= 3;
638 			if (m < new_sample)
639 				new_sample = m;
640 		}
641 	} else {
642 		/* No previous measure. */
643 		new_sample = m << 3;
644 	}
645 
646 	tp->rcv_rtt_est.rtt_us = new_sample;
647 }
648 
tcp_rcv_rtt_measure(struct tcp_sock * tp)649 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
650 {
651 	u32 delta_us;
652 
653 	if (tp->rcv_rtt_est.time == 0)
654 		goto new_measure;
655 	if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
656 		return;
657 	delta_us = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcv_rtt_est.time);
658 	if (!delta_us)
659 		delta_us = 1;
660 	tcp_rcv_rtt_update(tp, delta_us, 1);
661 
662 new_measure:
663 	tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
664 	tp->rcv_rtt_est.time = tp->tcp_mstamp;
665 }
666 
tcp_rcv_rtt_measure_ts(struct sock * sk,const struct sk_buff * skb)667 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
668 					  const struct sk_buff *skb)
669 {
670 	struct tcp_sock *tp = tcp_sk(sk);
671 
672 	if (tp->rx_opt.rcv_tsecr == tp->rcv_rtt_last_tsecr)
673 		return;
674 	tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
675 
676 	if (TCP_SKB_CB(skb)->end_seq -
677 	    TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss) {
678 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
679 		u32 delta_us;
680 
681 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
682 			if (!delta)
683 				delta = 1;
684 			delta_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
685 			tcp_rcv_rtt_update(tp, delta_us, 0);
686 		}
687 	}
688 }
689 
690 /*
691  * This function should be called every time data is copied to user space.
692  * It calculates the appropriate TCP receive buffer space.
693  */
tcp_rcv_space_adjust(struct sock * sk)694 void tcp_rcv_space_adjust(struct sock *sk)
695 {
696 	struct tcp_sock *tp = tcp_sk(sk);
697 	u32 copied;
698 	int time;
699 
700 	trace_tcp_rcv_space_adjust(sk);
701 
702 	tcp_mstamp_refresh(tp);
703 	time = tcp_stamp_us_delta(tp->tcp_mstamp, tp->rcvq_space.time);
704 	if (time < (tp->rcv_rtt_est.rtt_us >> 3) || tp->rcv_rtt_est.rtt_us == 0)
705 		return;
706 
707 	/* Number of bytes copied to user in last RTT */
708 	copied = tp->copied_seq - tp->rcvq_space.seq;
709 	if (copied <= tp->rcvq_space.space)
710 		goto new_measure;
711 
712 	/* A bit of theory :
713 	 * copied = bytes received in previous RTT, our base window
714 	 * To cope with packet losses, we need a 2x factor
715 	 * To cope with slow start, and sender growing its cwin by 100 %
716 	 * every RTT, we need a 4x factor, because the ACK we are sending
717 	 * now is for the next RTT, not the current one :
718 	 * <prev RTT . ><current RTT .. ><next RTT .... >
719 	 */
720 
721 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_moderate_rcvbuf) &&
722 	    !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
723 		int rcvmem, rcvbuf;
724 		u64 rcvwin, grow;
725 
726 		/* minimal window to cope with packet losses, assuming
727 		 * steady state. Add some cushion because of small variations.
728 		 */
729 		rcvwin = ((u64)copied << 1) + 16 * tp->advmss;
730 
731 		/* Accommodate for sender rate increase (eg. slow start) */
732 		grow = rcvwin * (copied - tp->rcvq_space.space);
733 		do_div(grow, tp->rcvq_space.space);
734 		rcvwin += (grow << 1);
735 
736 		rcvmem = SKB_TRUESIZE(tp->advmss + MAX_TCP_HEADER);
737 		while (tcp_win_from_space(sk, rcvmem) < tp->advmss)
738 			rcvmem += 128;
739 
740 		do_div(rcvwin, tp->advmss);
741 		rcvbuf = min_t(u64, rcvwin * rcvmem,
742 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_rmem[2]));
743 		if (rcvbuf > sk->sk_rcvbuf) {
744 			WRITE_ONCE(sk->sk_rcvbuf, rcvbuf);
745 
746 			/* Make the window clamp follow along.  */
747 			tp->window_clamp = tcp_win_from_space(sk, rcvbuf);
748 		}
749 	}
750 	tp->rcvq_space.space = copied;
751 
752 new_measure:
753 	tp->rcvq_space.seq = tp->copied_seq;
754 	tp->rcvq_space.time = tp->tcp_mstamp;
755 }
756 
757 /* There is something which you must keep in mind when you analyze the
758  * behavior of the tp->ato delayed ack timeout interval.  When a
759  * connection starts up, we want to ack as quickly as possible.  The
760  * problem is that "good" TCP's do slow start at the beginning of data
761  * transmission.  The means that until we send the first few ACK's the
762  * sender will sit on his end and only queue most of his data, because
763  * he can only send snd_cwnd unacked packets at any given time.  For
764  * each ACK we send, he increments snd_cwnd and transmits more of his
765  * queue.  -DaveM
766  */
tcp_event_data_recv(struct sock * sk,struct sk_buff * skb)767 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
768 {
769 	struct tcp_sock *tp = tcp_sk(sk);
770 	struct inet_connection_sock *icsk = inet_csk(sk);
771 	u32 now;
772 
773 	inet_csk_schedule_ack(sk);
774 
775 	tcp_measure_rcv_mss(sk, skb);
776 
777 	tcp_rcv_rtt_measure(tp);
778 
779 	now = tcp_jiffies32;
780 
781 	if (!icsk->icsk_ack.ato) {
782 		/* The _first_ data packet received, initialize
783 		 * delayed ACK engine.
784 		 */
785 		tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
786 		icsk->icsk_ack.ato = TCP_ATO_MIN;
787 	} else {
788 		int m = now - icsk->icsk_ack.lrcvtime;
789 
790 		if (m <= TCP_ATO_MIN / 2) {
791 			/* The fastest case is the first. */
792 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
793 		} else if (m < icsk->icsk_ack.ato) {
794 			icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
795 			if (icsk->icsk_ack.ato > icsk->icsk_rto)
796 				icsk->icsk_ack.ato = icsk->icsk_rto;
797 		} else if (m > icsk->icsk_rto) {
798 			/* Too long gap. Apparently sender failed to
799 			 * restart window, so that we send ACKs quickly.
800 			 */
801 			tcp_incr_quickack(sk, TCP_MAX_QUICKACKS);
802 			sk_mem_reclaim(sk);
803 		}
804 	}
805 	icsk->icsk_ack.lrcvtime = now;
806 
807 	tcp_ecn_check_ce(sk, skb);
808 
809 	if (skb->len >= 128)
810 		tcp_grow_window(sk, skb, true);
811 }
812 
813 /* Called to compute a smoothed rtt estimate. The data fed to this
814  * routine either comes from timestamps, or from segments that were
815  * known _not_ to have been retransmitted [see Karn/Partridge
816  * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
817  * piece by Van Jacobson.
818  * NOTE: the next three routines used to be one big routine.
819  * To save cycles in the RFC 1323 implementation it was better to break
820  * it up into three procedures. -- erics
821  */
tcp_rtt_estimator(struct sock * sk,long mrtt_us)822 static void tcp_rtt_estimator(struct sock *sk, long mrtt_us)
823 {
824 	struct tcp_sock *tp = tcp_sk(sk);
825 	long m = mrtt_us; /* RTT */
826 	u32 srtt = tp->srtt_us;
827 
828 	/*	The following amusing code comes from Jacobson's
829 	 *	article in SIGCOMM '88.  Note that rtt and mdev
830 	 *	are scaled versions of rtt and mean deviation.
831 	 *	This is designed to be as fast as possible
832 	 *	m stands for "measurement".
833 	 *
834 	 *	On a 1990 paper the rto value is changed to:
835 	 *	RTO = rtt + 4 * mdev
836 	 *
837 	 * Funny. This algorithm seems to be very broken.
838 	 * These formulae increase RTO, when it should be decreased, increase
839 	 * too slowly, when it should be increased quickly, decrease too quickly
840 	 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
841 	 * does not matter how to _calculate_ it. Seems, it was trap
842 	 * that VJ failed to avoid. 8)
843 	 */
844 	if (srtt != 0) {
845 		m -= (srtt >> 3);	/* m is now error in rtt est */
846 		srtt += m;		/* rtt = 7/8 rtt + 1/8 new */
847 		if (m < 0) {
848 			m = -m;		/* m is now abs(error) */
849 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
850 			/* This is similar to one of Eifel findings.
851 			 * Eifel blocks mdev updates when rtt decreases.
852 			 * This solution is a bit different: we use finer gain
853 			 * for mdev in this case (alpha*beta).
854 			 * Like Eifel it also prevents growth of rto,
855 			 * but also it limits too fast rto decreases,
856 			 * happening in pure Eifel.
857 			 */
858 			if (m > 0)
859 				m >>= 3;
860 		} else {
861 			m -= (tp->mdev_us >> 2);   /* similar update on mdev */
862 		}
863 		tp->mdev_us += m;		/* mdev = 3/4 mdev + 1/4 new */
864 		if (tp->mdev_us > tp->mdev_max_us) {
865 			tp->mdev_max_us = tp->mdev_us;
866 			if (tp->mdev_max_us > tp->rttvar_us)
867 				tp->rttvar_us = tp->mdev_max_us;
868 		}
869 		if (after(tp->snd_una, tp->rtt_seq)) {
870 			if (tp->mdev_max_us < tp->rttvar_us)
871 				tp->rttvar_us -= (tp->rttvar_us - tp->mdev_max_us) >> 2;
872 			tp->rtt_seq = tp->snd_nxt;
873 			tp->mdev_max_us = tcp_rto_min_us(sk);
874 
875 			tcp_bpf_rtt(sk);
876 		}
877 	} else {
878 		/* no previous measure. */
879 		srtt = m << 3;		/* take the measured time to be rtt */
880 		tp->mdev_us = m << 1;	/* make sure rto = 3*rtt */
881 		tp->rttvar_us = max(tp->mdev_us, tcp_rto_min_us(sk));
882 		tp->mdev_max_us = tp->rttvar_us;
883 		tp->rtt_seq = tp->snd_nxt;
884 
885 		tcp_bpf_rtt(sk);
886 	}
887 	tp->srtt_us = max(1U, srtt);
888 }
889 
tcp_update_pacing_rate(struct sock * sk)890 static void tcp_update_pacing_rate(struct sock *sk)
891 {
892 	const struct tcp_sock *tp = tcp_sk(sk);
893 	u64 rate;
894 
895 	/* set sk_pacing_rate to 200 % of current rate (mss * cwnd / srtt) */
896 	rate = (u64)tp->mss_cache * ((USEC_PER_SEC / 100) << 3);
897 
898 	/* current rate is (cwnd * mss) / srtt
899 	 * In Slow Start [1], set sk_pacing_rate to 200 % the current rate.
900 	 * In Congestion Avoidance phase, set it to 120 % the current rate.
901 	 *
902 	 * [1] : Normal Slow Start condition is (tp->snd_cwnd < tp->snd_ssthresh)
903 	 *	 If snd_cwnd >= (tp->snd_ssthresh / 2), we are approaching
904 	 *	 end of slow start and should slow down.
905 	 */
906 	if (tp->snd_cwnd < tp->snd_ssthresh / 2)
907 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ss_ratio;
908 	else
909 		rate *= sock_net(sk)->ipv4.sysctl_tcp_pacing_ca_ratio;
910 
911 	rate *= max(tp->snd_cwnd, tp->packets_out);
912 
913 	if (likely(tp->srtt_us))
914 		do_div(rate, tp->srtt_us);
915 
916 	/* WRITE_ONCE() is needed because sch_fq fetches sk_pacing_rate
917 	 * without any lock. We want to make sure compiler wont store
918 	 * intermediate values in this location.
919 	 */
920 	WRITE_ONCE(sk->sk_pacing_rate, min_t(u64, rate,
921 					     sk->sk_max_pacing_rate));
922 }
923 
924 /* Calculate rto without backoff.  This is the second half of Van Jacobson's
925  * routine referred to above.
926  */
tcp_set_rto(struct sock * sk)927 static void tcp_set_rto(struct sock *sk)
928 {
929 	const struct tcp_sock *tp = tcp_sk(sk);
930 	/* Old crap is replaced with new one. 8)
931 	 *
932 	 * More seriously:
933 	 * 1. If rtt variance happened to be less 50msec, it is hallucination.
934 	 *    It cannot be less due to utterly erratic ACK generation made
935 	 *    at least by solaris and freebsd. "Erratic ACKs" has _nothing_
936 	 *    to do with delayed acks, because at cwnd>2 true delack timeout
937 	 *    is invisible. Actually, Linux-2.4 also generates erratic
938 	 *    ACKs in some circumstances.
939 	 */
940 	inet_csk(sk)->icsk_rto = __tcp_set_rto(tp);
941 
942 	/* 2. Fixups made earlier cannot be right.
943 	 *    If we do not estimate RTO correctly without them,
944 	 *    all the algo is pure shit and should be replaced
945 	 *    with correct one. It is exactly, which we pretend to do.
946 	 */
947 
948 	/* NOTE: clamping at TCP_RTO_MIN is not required, current algo
949 	 * guarantees that rto is higher.
950 	 */
951 	tcp_bound_rto(sk);
952 }
953 
tcp_init_cwnd(const struct tcp_sock * tp,const struct dst_entry * dst)954 __u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst)
955 {
956 	__u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
957 
958 	if (!cwnd)
959 		cwnd = TCP_INIT_CWND;
960 	return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
961 }
962 
963 struct tcp_sacktag_state {
964 	/* Timestamps for earliest and latest never-retransmitted segment
965 	 * that was SACKed. RTO needs the earliest RTT to stay conservative,
966 	 * but congestion control should still get an accurate delay signal.
967 	 */
968 	u64	first_sackt;
969 	u64	last_sackt;
970 	u32	reord;
971 	u32	sack_delivered;
972 	int	flag;
973 	unsigned int mss_now;
974 	struct rate_sample *rate;
975 };
976 
977 /* Take a notice that peer is sending D-SACKs. Skip update of data delivery
978  * and spurious retransmission information if this DSACK is unlikely caused by
979  * sender's action:
980  * - DSACKed sequence range is larger than maximum receiver's window.
981  * - Total no. of DSACKed segments exceed the total no. of retransmitted segs.
982  */
tcp_dsack_seen(struct tcp_sock * tp,u32 start_seq,u32 end_seq,struct tcp_sacktag_state * state)983 static u32 tcp_dsack_seen(struct tcp_sock *tp, u32 start_seq,
984 			  u32 end_seq, struct tcp_sacktag_state *state)
985 {
986 	u32 seq_len, dup_segs = 1;
987 
988 	if (!before(start_seq, end_seq))
989 		return 0;
990 
991 	seq_len = end_seq - start_seq;
992 	/* Dubious DSACK: DSACKed range greater than maximum advertised rwnd */
993 	if (seq_len > tp->max_window)
994 		return 0;
995 	if (seq_len > tp->mss_cache)
996 		dup_segs = DIV_ROUND_UP(seq_len, tp->mss_cache);
997 
998 	tp->dsack_dups += dup_segs;
999 	/* Skip the DSACK if dup segs weren't retransmitted by sender */
1000 	if (tp->dsack_dups > tp->total_retrans)
1001 		return 0;
1002 
1003 	tp->rx_opt.sack_ok |= TCP_DSACK_SEEN;
1004 	tp->rack.dsack_seen = 1;
1005 
1006 	state->flag |= FLAG_DSACKING_ACK;
1007 	/* A spurious retransmission is delivered */
1008 	state->sack_delivered += dup_segs;
1009 
1010 	return dup_segs;
1011 }
1012 
1013 /* It's reordering when higher sequence was delivered (i.e. sacked) before
1014  * some lower never-retransmitted sequence ("low_seq"). The maximum reordering
1015  * distance is approximated in full-mss packet distance ("reordering").
1016  */
tcp_check_sack_reordering(struct sock * sk,const u32 low_seq,const int ts)1017 static void tcp_check_sack_reordering(struct sock *sk, const u32 low_seq,
1018 				      const int ts)
1019 {
1020 	struct tcp_sock *tp = tcp_sk(sk);
1021 	const u32 mss = tp->mss_cache;
1022 	u32 fack, metric;
1023 
1024 	fack = tcp_highest_sack_seq(tp);
1025 	if (!before(low_seq, fack))
1026 		return;
1027 
1028 	metric = fack - low_seq;
1029 	if ((metric > tp->reordering * mss) && mss) {
1030 #if FASTRETRANS_DEBUG > 1
1031 		pr_debug("Disorder%d %d %u f%u s%u rr%d\n",
1032 			 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
1033 			 tp->reordering,
1034 			 0,
1035 			 tp->sacked_out,
1036 			 tp->undo_marker ? tp->undo_retrans : 0);
1037 #endif
1038 		tp->reordering = min_t(u32, (metric + mss - 1) / mss,
1039 				       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
1040 	}
1041 
1042 	/* This exciting event is worth to be remembered. 8) */
1043 	tp->reord_seen++;
1044 	NET_INC_STATS(sock_net(sk),
1045 		      ts ? LINUX_MIB_TCPTSREORDER : LINUX_MIB_TCPSACKREORDER);
1046 }
1047 
1048  /* This must be called before lost_out or retrans_out are updated
1049   * on a new loss, because we want to know if all skbs previously
1050   * known to be lost have already been retransmitted, indicating
1051   * that this newly lost skb is our next skb to retransmit.
1052   */
tcp_verify_retransmit_hint(struct tcp_sock * tp,struct sk_buff * skb)1053 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
1054 {
1055 	if ((!tp->retransmit_skb_hint && tp->retrans_out >= tp->lost_out) ||
1056 	    (tp->retransmit_skb_hint &&
1057 	     before(TCP_SKB_CB(skb)->seq,
1058 		    TCP_SKB_CB(tp->retransmit_skb_hint)->seq)))
1059 		tp->retransmit_skb_hint = skb;
1060 }
1061 
1062 /* Sum the number of packets on the wire we have marked as lost, and
1063  * notify the congestion control module that the given skb was marked lost.
1064  */
tcp_notify_skb_loss_event(struct tcp_sock * tp,const struct sk_buff * skb)1065 static void tcp_notify_skb_loss_event(struct tcp_sock *tp, const struct sk_buff *skb)
1066 {
1067 	tp->lost += tcp_skb_pcount(skb);
1068 }
1069 
tcp_mark_skb_lost(struct sock * sk,struct sk_buff * skb)1070 void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb)
1071 {
1072 	__u8 sacked = TCP_SKB_CB(skb)->sacked;
1073 	struct tcp_sock *tp = tcp_sk(sk);
1074 
1075 	if (sacked & TCPCB_SACKED_ACKED)
1076 		return;
1077 
1078 	tcp_verify_retransmit_hint(tp, skb);
1079 	if (sacked & TCPCB_LOST) {
1080 		if (sacked & TCPCB_SACKED_RETRANS) {
1081 			/* Account for retransmits that are lost again */
1082 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1083 			tp->retrans_out -= tcp_skb_pcount(skb);
1084 			NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT,
1085 				      tcp_skb_pcount(skb));
1086 			tcp_notify_skb_loss_event(tp, skb);
1087 		}
1088 	} else {
1089 		tp->lost_out += tcp_skb_pcount(skb);
1090 		TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1091 		tcp_notify_skb_loss_event(tp, skb);
1092 	}
1093 }
1094 
1095 /* Updates the delivered and delivered_ce counts */
tcp_count_delivered(struct tcp_sock * tp,u32 delivered,bool ece_ack)1096 static void tcp_count_delivered(struct tcp_sock *tp, u32 delivered,
1097 				bool ece_ack)
1098 {
1099 	tp->delivered += delivered;
1100 	if (ece_ack)
1101 		tp->delivered_ce += delivered;
1102 }
1103 
1104 /* This procedure tags the retransmission queue when SACKs arrive.
1105  *
1106  * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1107  * Packets in queue with these bits set are counted in variables
1108  * sacked_out, retrans_out and lost_out, correspondingly.
1109  *
1110  * Valid combinations are:
1111  * Tag  InFlight	Description
1112  * 0	1		- orig segment is in flight.
1113  * S	0		- nothing flies, orig reached receiver.
1114  * L	0		- nothing flies, orig lost by net.
1115  * R	2		- both orig and retransmit are in flight.
1116  * L|R	1		- orig is lost, retransmit is in flight.
1117  * S|R  1		- orig reached receiver, retrans is still in flight.
1118  * (L|S|R is logically valid, it could occur when L|R is sacked,
1119  *  but it is equivalent to plain S and code short-curcuits it to S.
1120  *  L|S is logically invalid, it would mean -1 packet in flight 8))
1121  *
1122  * These 6 states form finite state machine, controlled by the following events:
1123  * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1124  * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1125  * 3. Loss detection event of two flavors:
1126  *	A. Scoreboard estimator decided the packet is lost.
1127  *	   A'. Reno "three dupacks" marks head of queue lost.
1128  *	B. SACK arrives sacking SND.NXT at the moment, when the
1129  *	   segment was retransmitted.
1130  * 4. D-SACK added new rule: D-SACK changes any tag to S.
1131  *
1132  * It is pleasant to note, that state diagram turns out to be commutative,
1133  * so that we are allowed not to be bothered by order of our actions,
1134  * when multiple events arrive simultaneously. (see the function below).
1135  *
1136  * Reordering detection.
1137  * --------------------
1138  * Reordering metric is maximal distance, which a packet can be displaced
1139  * in packet stream. With SACKs we can estimate it:
1140  *
1141  * 1. SACK fills old hole and the corresponding segment was not
1142  *    ever retransmitted -> reordering. Alas, we cannot use it
1143  *    when segment was retransmitted.
1144  * 2. The last flaw is solved with D-SACK. D-SACK arrives
1145  *    for retransmitted and already SACKed segment -> reordering..
1146  * Both of these heuristics are not used in Loss state, when we cannot
1147  * account for retransmits accurately.
1148  *
1149  * SACK block validation.
1150  * ----------------------
1151  *
1152  * SACK block range validation checks that the received SACK block fits to
1153  * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1154  * Note that SND.UNA is not included to the range though being valid because
1155  * it means that the receiver is rather inconsistent with itself reporting
1156  * SACK reneging when it should advance SND.UNA. Such SACK block this is
1157  * perfectly valid, however, in light of RFC2018 which explicitly states
1158  * that "SACK block MUST reflect the newest segment.  Even if the newest
1159  * segment is going to be discarded ...", not that it looks very clever
1160  * in case of head skb. Due to potentional receiver driven attacks, we
1161  * choose to avoid immediate execution of a walk in write queue due to
1162  * reneging and defer head skb's loss recovery to standard loss recovery
1163  * procedure that will eventually trigger (nothing forbids us doing this).
1164  *
1165  * Implements also blockage to start_seq wrap-around. Problem lies in the
1166  * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1167  * there's no guarantee that it will be before snd_nxt (n). The problem
1168  * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1169  * wrap (s_w):
1170  *
1171  *         <- outs wnd ->                          <- wrapzone ->
1172  *         u     e      n                         u_w   e_w  s n_w
1173  *         |     |      |                          |     |   |  |
1174  * |<------------+------+----- TCP seqno space --------------+---------->|
1175  * ...-- <2^31 ->|                                           |<--------...
1176  * ...---- >2^31 ------>|                                    |<--------...
1177  *
1178  * Current code wouldn't be vulnerable but it's better still to discard such
1179  * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1180  * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1181  * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1182  * equal to the ideal case (infinite seqno space without wrap caused issues).
1183  *
1184  * With D-SACK the lower bound is extended to cover sequence space below
1185  * SND.UNA down to undo_marker, which is the last point of interest. Yet
1186  * again, D-SACK block must not to go across snd_una (for the same reason as
1187  * for the normal SACK blocks, explained above). But there all simplicity
1188  * ends, TCP might receive valid D-SACKs below that. As long as they reside
1189  * fully below undo_marker they do not affect behavior in anyway and can
1190  * therefore be safely ignored. In rare cases (which are more or less
1191  * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1192  * fragmentation and packet reordering past skb's retransmission. To consider
1193  * them correctly, the acceptable range must be extended even more though
1194  * the exact amount is rather hard to quantify. However, tp->max_window can
1195  * be used as an exaggerated estimate.
1196  */
tcp_is_sackblock_valid(struct tcp_sock * tp,bool is_dsack,u32 start_seq,u32 end_seq)1197 static bool tcp_is_sackblock_valid(struct tcp_sock *tp, bool is_dsack,
1198 				   u32 start_seq, u32 end_seq)
1199 {
1200 	/* Too far in future, or reversed (interpretation is ambiguous) */
1201 	if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1202 		return false;
1203 
1204 	/* Nasty start_seq wrap-around check (see comments above) */
1205 	if (!before(start_seq, tp->snd_nxt))
1206 		return false;
1207 
1208 	/* In outstanding window? ...This is valid exit for D-SACKs too.
1209 	 * start_seq == snd_una is non-sensical (see comments above)
1210 	 */
1211 	if (after(start_seq, tp->snd_una))
1212 		return true;
1213 
1214 	if (!is_dsack || !tp->undo_marker)
1215 		return false;
1216 
1217 	/* ...Then it's D-SACK, and must reside below snd_una completely */
1218 	if (after(end_seq, tp->snd_una))
1219 		return false;
1220 
1221 	if (!before(start_seq, tp->undo_marker))
1222 		return true;
1223 
1224 	/* Too old */
1225 	if (!after(end_seq, tp->undo_marker))
1226 		return false;
1227 
1228 	/* Undo_marker boundary crossing (overestimates a lot). Known already:
1229 	 *   start_seq < undo_marker and end_seq >= undo_marker.
1230 	 */
1231 	return !before(start_seq, end_seq - tp->max_window);
1232 }
1233 
tcp_check_dsack(struct sock * sk,const struct sk_buff * ack_skb,struct tcp_sack_block_wire * sp,int num_sacks,u32 prior_snd_una,struct tcp_sacktag_state * state)1234 static bool tcp_check_dsack(struct sock *sk, const struct sk_buff *ack_skb,
1235 			    struct tcp_sack_block_wire *sp, int num_sacks,
1236 			    u32 prior_snd_una, struct tcp_sacktag_state *state)
1237 {
1238 	struct tcp_sock *tp = tcp_sk(sk);
1239 	u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1240 	u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1241 	u32 dup_segs;
1242 
1243 	if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1244 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1245 	} else if (num_sacks > 1) {
1246 		u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1247 		u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1248 
1249 		if (after(end_seq_0, end_seq_1) || before(start_seq_0, start_seq_1))
1250 			return false;
1251 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKOFORECV);
1252 	} else {
1253 		return false;
1254 	}
1255 
1256 	dup_segs = tcp_dsack_seen(tp, start_seq_0, end_seq_0, state);
1257 	if (!dup_segs) {	/* Skip dubious DSACK */
1258 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKIGNOREDDUBIOUS);
1259 		return false;
1260 	}
1261 
1262 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPDSACKRECVSEGS, dup_segs);
1263 
1264 	/* D-SACK for already forgotten data... Do dumb counting. */
1265 	if (tp->undo_marker && tp->undo_retrans > 0 &&
1266 	    !after(end_seq_0, prior_snd_una) &&
1267 	    after(end_seq_0, tp->undo_marker))
1268 		tp->undo_retrans = max_t(int, 0, tp->undo_retrans - dup_segs);
1269 
1270 	return true;
1271 }
1272 
1273 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1274  * the incoming SACK may not exactly match but we can find smaller MSS
1275  * aligned portion of it that matches. Therefore we might need to fragment
1276  * which may fail and creates some hassle (caller must handle error case
1277  * returns).
1278  *
1279  * FIXME: this could be merged to shift decision code
1280  */
tcp_match_skb_to_sack(struct sock * sk,struct sk_buff * skb,u32 start_seq,u32 end_seq)1281 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1282 				  u32 start_seq, u32 end_seq)
1283 {
1284 	int err;
1285 	bool in_sack;
1286 	unsigned int pkt_len;
1287 	unsigned int mss;
1288 
1289 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1290 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1291 
1292 	if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1293 	    after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1294 		mss = tcp_skb_mss(skb);
1295 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1296 
1297 		if (!in_sack) {
1298 			pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1299 			if (pkt_len < mss)
1300 				pkt_len = mss;
1301 		} else {
1302 			pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1303 			if (pkt_len < mss)
1304 				return -EINVAL;
1305 		}
1306 
1307 		/* Round if necessary so that SACKs cover only full MSSes
1308 		 * and/or the remaining small portion (if present)
1309 		 */
1310 		if (pkt_len > mss) {
1311 			unsigned int new_len = (pkt_len / mss) * mss;
1312 			if (!in_sack && new_len < pkt_len)
1313 				new_len += mss;
1314 			pkt_len = new_len;
1315 		}
1316 
1317 		if (pkt_len >= skb->len && !in_sack)
1318 			return 0;
1319 
1320 		err = tcp_fragment(sk, TCP_FRAG_IN_RTX_QUEUE, skb,
1321 				   pkt_len, mss, GFP_ATOMIC);
1322 		if (err < 0)
1323 			return err;
1324 	}
1325 
1326 	return in_sack;
1327 }
1328 
1329 /* Mark the given newly-SACKed range as such, adjusting counters and hints. */
tcp_sacktag_one(struct sock * sk,struct tcp_sacktag_state * state,u8 sacked,u32 start_seq,u32 end_seq,int dup_sack,int pcount,u64 xmit_time)1330 static u8 tcp_sacktag_one(struct sock *sk,
1331 			  struct tcp_sacktag_state *state, u8 sacked,
1332 			  u32 start_seq, u32 end_seq,
1333 			  int dup_sack, int pcount,
1334 			  u64 xmit_time)
1335 {
1336 	struct tcp_sock *tp = tcp_sk(sk);
1337 
1338 	/* Account D-SACK for retransmitted packet. */
1339 	if (dup_sack && (sacked & TCPCB_RETRANS)) {
1340 		if (tp->undo_marker && tp->undo_retrans > 0 &&
1341 		    after(end_seq, tp->undo_marker))
1342 			tp->undo_retrans = max_t(int, 0, tp->undo_retrans - pcount);
1343 		if ((sacked & TCPCB_SACKED_ACKED) &&
1344 		    before(start_seq, state->reord))
1345 				state->reord = start_seq;
1346 	}
1347 
1348 	/* Nothing to do; acked frame is about to be dropped (was ACKed). */
1349 	if (!after(end_seq, tp->snd_una))
1350 		return sacked;
1351 
1352 	if (!(sacked & TCPCB_SACKED_ACKED)) {
1353 		tcp_rack_advance(tp, sacked, end_seq, xmit_time);
1354 
1355 		if (sacked & TCPCB_SACKED_RETRANS) {
1356 			/* If the segment is not tagged as lost,
1357 			 * we do not clear RETRANS, believing
1358 			 * that retransmission is still in flight.
1359 			 */
1360 			if (sacked & TCPCB_LOST) {
1361 				sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1362 				tp->lost_out -= pcount;
1363 				tp->retrans_out -= pcount;
1364 			}
1365 		} else {
1366 			if (!(sacked & TCPCB_RETRANS)) {
1367 				/* New sack for not retransmitted frame,
1368 				 * which was in hole. It is reordering.
1369 				 */
1370 				if (before(start_seq,
1371 					   tcp_highest_sack_seq(tp)) &&
1372 				    before(start_seq, state->reord))
1373 					state->reord = start_seq;
1374 
1375 				if (!after(end_seq, tp->high_seq))
1376 					state->flag |= FLAG_ORIG_SACK_ACKED;
1377 				if (state->first_sackt == 0)
1378 					state->first_sackt = xmit_time;
1379 				state->last_sackt = xmit_time;
1380 			}
1381 
1382 			if (sacked & TCPCB_LOST) {
1383 				sacked &= ~TCPCB_LOST;
1384 				tp->lost_out -= pcount;
1385 			}
1386 		}
1387 
1388 		sacked |= TCPCB_SACKED_ACKED;
1389 		state->flag |= FLAG_DATA_SACKED;
1390 		tp->sacked_out += pcount;
1391 		/* Out-of-order packets delivered */
1392 		state->sack_delivered += pcount;
1393 
1394 		/* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1395 		if (tp->lost_skb_hint &&
1396 		    before(start_seq, TCP_SKB_CB(tp->lost_skb_hint)->seq))
1397 			tp->lost_cnt_hint += pcount;
1398 	}
1399 
1400 	/* D-SACK. We can detect redundant retransmission in S|R and plain R
1401 	 * frames and clear it. undo_retrans is decreased above, L|R frames
1402 	 * are accounted above as well.
1403 	 */
1404 	if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1405 		sacked &= ~TCPCB_SACKED_RETRANS;
1406 		tp->retrans_out -= pcount;
1407 	}
1408 
1409 	return sacked;
1410 }
1411 
1412 /* Shift newly-SACKed bytes from this skb to the immediately previous
1413  * already-SACKed sk_buff. Mark the newly-SACKed bytes as such.
1414  */
tcp_shifted_skb(struct sock * sk,struct sk_buff * prev,struct sk_buff * skb,struct tcp_sacktag_state * state,unsigned int pcount,int shifted,int mss,bool dup_sack)1415 static bool tcp_shifted_skb(struct sock *sk, struct sk_buff *prev,
1416 			    struct sk_buff *skb,
1417 			    struct tcp_sacktag_state *state,
1418 			    unsigned int pcount, int shifted, int mss,
1419 			    bool dup_sack)
1420 {
1421 	struct tcp_sock *tp = tcp_sk(sk);
1422 	u32 start_seq = TCP_SKB_CB(skb)->seq;	/* start of newly-SACKed */
1423 	u32 end_seq = start_seq + shifted;	/* end of newly-SACKed */
1424 
1425 	BUG_ON(!pcount);
1426 
1427 	/* Adjust counters and hints for the newly sacked sequence
1428 	 * range but discard the return value since prev is already
1429 	 * marked. We must tag the range first because the seq
1430 	 * advancement below implicitly advances
1431 	 * tcp_highest_sack_seq() when skb is highest_sack.
1432 	 */
1433 	tcp_sacktag_one(sk, state, TCP_SKB_CB(skb)->sacked,
1434 			start_seq, end_seq, dup_sack, pcount,
1435 			tcp_skb_timestamp_us(skb));
1436 	tcp_rate_skb_delivered(sk, skb, state->rate);
1437 
1438 	if (skb == tp->lost_skb_hint)
1439 		tp->lost_cnt_hint += pcount;
1440 
1441 	TCP_SKB_CB(prev)->end_seq += shifted;
1442 	TCP_SKB_CB(skb)->seq += shifted;
1443 
1444 	tcp_skb_pcount_add(prev, pcount);
1445 	WARN_ON_ONCE(tcp_skb_pcount(skb) < pcount);
1446 	tcp_skb_pcount_add(skb, -pcount);
1447 
1448 	/* When we're adding to gso_segs == 1, gso_size will be zero,
1449 	 * in theory this shouldn't be necessary but as long as DSACK
1450 	 * code can come after this skb later on it's better to keep
1451 	 * setting gso_size to something.
1452 	 */
1453 	if (!TCP_SKB_CB(prev)->tcp_gso_size)
1454 		TCP_SKB_CB(prev)->tcp_gso_size = mss;
1455 
1456 	/* CHECKME: To clear or not to clear? Mimics normal skb currently */
1457 	if (tcp_skb_pcount(skb) <= 1)
1458 		TCP_SKB_CB(skb)->tcp_gso_size = 0;
1459 
1460 	/* Difference in this won't matter, both ACKed by the same cumul. ACK */
1461 	TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1462 
1463 	if (skb->len > 0) {
1464 		BUG_ON(!tcp_skb_pcount(skb));
1465 		NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1466 		return false;
1467 	}
1468 
1469 	/* Whole SKB was eaten :-) */
1470 
1471 	if (skb == tp->retransmit_skb_hint)
1472 		tp->retransmit_skb_hint = prev;
1473 	if (skb == tp->lost_skb_hint) {
1474 		tp->lost_skb_hint = prev;
1475 		tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1476 	}
1477 
1478 	TCP_SKB_CB(prev)->tcp_flags |= TCP_SKB_CB(skb)->tcp_flags;
1479 	TCP_SKB_CB(prev)->eor = TCP_SKB_CB(skb)->eor;
1480 	if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
1481 		TCP_SKB_CB(prev)->end_seq++;
1482 
1483 	if (skb == tcp_highest_sack(sk))
1484 		tcp_advance_highest_sack(sk, skb);
1485 
1486 	tcp_skb_collapse_tstamp(prev, skb);
1487 	if (unlikely(TCP_SKB_CB(prev)->tx.delivered_mstamp))
1488 		TCP_SKB_CB(prev)->tx.delivered_mstamp = 0;
1489 
1490 	tcp_rtx_queue_unlink_and_free(skb, sk);
1491 
1492 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKMERGED);
1493 
1494 	return true;
1495 }
1496 
1497 /* I wish gso_size would have a bit more sane initialization than
1498  * something-or-zero which complicates things
1499  */
tcp_skb_seglen(const struct sk_buff * skb)1500 static int tcp_skb_seglen(const struct sk_buff *skb)
1501 {
1502 	return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1503 }
1504 
1505 /* Shifting pages past head area doesn't work */
skb_can_shift(const struct sk_buff * skb)1506 static int skb_can_shift(const struct sk_buff *skb)
1507 {
1508 	return !skb_headlen(skb) && skb_is_nonlinear(skb);
1509 }
1510 
tcp_skb_shift(struct sk_buff * to,struct sk_buff * from,int pcount,int shiftlen)1511 int tcp_skb_shift(struct sk_buff *to, struct sk_buff *from,
1512 		  int pcount, int shiftlen)
1513 {
1514 	/* TCP min gso_size is 8 bytes (TCP_MIN_GSO_SIZE)
1515 	 * Since TCP_SKB_CB(skb)->tcp_gso_segs is 16 bits, we need
1516 	 * to make sure not storing more than 65535 * 8 bytes per skb,
1517 	 * even if current MSS is bigger.
1518 	 */
1519 	if (unlikely(to->len + shiftlen >= 65535 * TCP_MIN_GSO_SIZE))
1520 		return 0;
1521 	if (unlikely(tcp_skb_pcount(to) + pcount > 65535))
1522 		return 0;
1523 	return skb_shift(to, from, shiftlen);
1524 }
1525 
1526 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1527  * skb.
1528  */
tcp_shift_skb_data(struct sock * sk,struct sk_buff * skb,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack)1529 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1530 					  struct tcp_sacktag_state *state,
1531 					  u32 start_seq, u32 end_seq,
1532 					  bool dup_sack)
1533 {
1534 	struct tcp_sock *tp = tcp_sk(sk);
1535 	struct sk_buff *prev;
1536 	int mss;
1537 	int pcount = 0;
1538 	int len;
1539 	int in_sack;
1540 
1541 	/* Normally R but no L won't result in plain S */
1542 	if (!dup_sack &&
1543 	    (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1544 		goto fallback;
1545 	if (!skb_can_shift(skb))
1546 		goto fallback;
1547 	/* This frame is about to be dropped (was ACKed). */
1548 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1549 		goto fallback;
1550 
1551 	/* Can only happen with delayed DSACK + discard craziness */
1552 	prev = skb_rb_prev(skb);
1553 	if (!prev)
1554 		goto fallback;
1555 
1556 	if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1557 		goto fallback;
1558 
1559 	if (!tcp_skb_can_collapse(prev, skb))
1560 		goto fallback;
1561 
1562 	in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1563 		  !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1564 
1565 	if (in_sack) {
1566 		len = skb->len;
1567 		pcount = tcp_skb_pcount(skb);
1568 		mss = tcp_skb_seglen(skb);
1569 
1570 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1571 		 * drop this restriction as unnecessary
1572 		 */
1573 		if (mss != tcp_skb_seglen(prev))
1574 			goto fallback;
1575 	} else {
1576 		if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1577 			goto noop;
1578 		/* CHECKME: This is non-MSS split case only?, this will
1579 		 * cause skipped skbs due to advancing loop btw, original
1580 		 * has that feature too
1581 		 */
1582 		if (tcp_skb_pcount(skb) <= 1)
1583 			goto noop;
1584 
1585 		in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1586 		if (!in_sack) {
1587 			/* TODO: head merge to next could be attempted here
1588 			 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1589 			 * though it might not be worth of the additional hassle
1590 			 *
1591 			 * ...we can probably just fallback to what was done
1592 			 * previously. We could try merging non-SACKed ones
1593 			 * as well but it probably isn't going to buy off
1594 			 * because later SACKs might again split them, and
1595 			 * it would make skb timestamp tracking considerably
1596 			 * harder problem.
1597 			 */
1598 			goto fallback;
1599 		}
1600 
1601 		len = end_seq - TCP_SKB_CB(skb)->seq;
1602 		BUG_ON(len < 0);
1603 		BUG_ON(len > skb->len);
1604 
1605 		/* MSS boundaries should be honoured or else pcount will
1606 		 * severely break even though it makes things bit trickier.
1607 		 * Optimize common case to avoid most of the divides
1608 		 */
1609 		mss = tcp_skb_mss(skb);
1610 
1611 		/* TODO: Fix DSACKs to not fragment already SACKed and we can
1612 		 * drop this restriction as unnecessary
1613 		 */
1614 		if (mss != tcp_skb_seglen(prev))
1615 			goto fallback;
1616 
1617 		if (len == mss) {
1618 			pcount = 1;
1619 		} else if (len < mss) {
1620 			goto noop;
1621 		} else {
1622 			pcount = len / mss;
1623 			len = pcount * mss;
1624 		}
1625 	}
1626 
1627 	/* tcp_sacktag_one() won't SACK-tag ranges below snd_una */
1628 	if (!after(TCP_SKB_CB(skb)->seq + len, tp->snd_una))
1629 		goto fallback;
1630 
1631 	if (!tcp_skb_shift(prev, skb, pcount, len))
1632 		goto fallback;
1633 	if (!tcp_shifted_skb(sk, prev, skb, state, pcount, len, mss, dup_sack))
1634 		goto out;
1635 
1636 	/* Hole filled allows collapsing with the next as well, this is very
1637 	 * useful when hole on every nth skb pattern happens
1638 	 */
1639 	skb = skb_rb_next(prev);
1640 	if (!skb)
1641 		goto out;
1642 
1643 	if (!skb_can_shift(skb) ||
1644 	    ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1645 	    (mss != tcp_skb_seglen(skb)))
1646 		goto out;
1647 
1648 	if (!tcp_skb_can_collapse(prev, skb))
1649 		goto out;
1650 	len = skb->len;
1651 	pcount = tcp_skb_pcount(skb);
1652 	if (tcp_skb_shift(prev, skb, pcount, len))
1653 		tcp_shifted_skb(sk, prev, skb, state, pcount,
1654 				len, mss, 0);
1655 
1656 out:
1657 	return prev;
1658 
1659 noop:
1660 	return skb;
1661 
1662 fallback:
1663 	NET_INC_STATS(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1664 	return NULL;
1665 }
1666 
tcp_sacktag_walk(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 start_seq,u32 end_seq,bool dup_sack_in)1667 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1668 					struct tcp_sack_block *next_dup,
1669 					struct tcp_sacktag_state *state,
1670 					u32 start_seq, u32 end_seq,
1671 					bool dup_sack_in)
1672 {
1673 	struct tcp_sock *tp = tcp_sk(sk);
1674 	struct sk_buff *tmp;
1675 
1676 	skb_rbtree_walk_from(skb) {
1677 		int in_sack = 0;
1678 		bool dup_sack = dup_sack_in;
1679 
1680 		/* queue is in-order => we can short-circuit the walk early */
1681 		if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1682 			break;
1683 
1684 		if (next_dup  &&
1685 		    before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1686 			in_sack = tcp_match_skb_to_sack(sk, skb,
1687 							next_dup->start_seq,
1688 							next_dup->end_seq);
1689 			if (in_sack > 0)
1690 				dup_sack = true;
1691 		}
1692 
1693 		/* skb reference here is a bit tricky to get right, since
1694 		 * shifting can eat and free both this skb and the next,
1695 		 * so not even _safe variant of the loop is enough.
1696 		 */
1697 		if (in_sack <= 0) {
1698 			tmp = tcp_shift_skb_data(sk, skb, state,
1699 						 start_seq, end_seq, dup_sack);
1700 			if (tmp) {
1701 				if (tmp != skb) {
1702 					skb = tmp;
1703 					continue;
1704 				}
1705 
1706 				in_sack = 0;
1707 			} else {
1708 				in_sack = tcp_match_skb_to_sack(sk, skb,
1709 								start_seq,
1710 								end_seq);
1711 			}
1712 		}
1713 
1714 		if (unlikely(in_sack < 0))
1715 			break;
1716 
1717 		if (in_sack) {
1718 			TCP_SKB_CB(skb)->sacked =
1719 				tcp_sacktag_one(sk,
1720 						state,
1721 						TCP_SKB_CB(skb)->sacked,
1722 						TCP_SKB_CB(skb)->seq,
1723 						TCP_SKB_CB(skb)->end_seq,
1724 						dup_sack,
1725 						tcp_skb_pcount(skb),
1726 						tcp_skb_timestamp_us(skb));
1727 			tcp_rate_skb_delivered(sk, skb, state->rate);
1728 			if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
1729 				list_del_init(&skb->tcp_tsorted_anchor);
1730 
1731 			if (!before(TCP_SKB_CB(skb)->seq,
1732 				    tcp_highest_sack_seq(tp)))
1733 				tcp_advance_highest_sack(sk, skb);
1734 		}
1735 	}
1736 	return skb;
1737 }
1738 
tcp_sacktag_bsearch(struct sock * sk,u32 seq)1739 static struct sk_buff *tcp_sacktag_bsearch(struct sock *sk, u32 seq)
1740 {
1741 	struct rb_node *parent, **p = &sk->tcp_rtx_queue.rb_node;
1742 	struct sk_buff *skb;
1743 
1744 	while (*p) {
1745 		parent = *p;
1746 		skb = rb_to_skb(parent);
1747 		if (before(seq, TCP_SKB_CB(skb)->seq)) {
1748 			p = &parent->rb_left;
1749 			continue;
1750 		}
1751 		if (!before(seq, TCP_SKB_CB(skb)->end_seq)) {
1752 			p = &parent->rb_right;
1753 			continue;
1754 		}
1755 		return skb;
1756 	}
1757 	return NULL;
1758 }
1759 
tcp_sacktag_skip(struct sk_buff * skb,struct sock * sk,u32 skip_to_seq)1760 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1761 					u32 skip_to_seq)
1762 {
1763 	if (skb && after(TCP_SKB_CB(skb)->seq, skip_to_seq))
1764 		return skb;
1765 
1766 	return tcp_sacktag_bsearch(sk, skip_to_seq);
1767 }
1768 
tcp_maybe_skipping_dsack(struct sk_buff * skb,struct sock * sk,struct tcp_sack_block * next_dup,struct tcp_sacktag_state * state,u32 skip_to_seq)1769 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1770 						struct sock *sk,
1771 						struct tcp_sack_block *next_dup,
1772 						struct tcp_sacktag_state *state,
1773 						u32 skip_to_seq)
1774 {
1775 	if (!next_dup)
1776 		return skb;
1777 
1778 	if (before(next_dup->start_seq, skip_to_seq)) {
1779 		skb = tcp_sacktag_skip(skb, sk, next_dup->start_seq);
1780 		skb = tcp_sacktag_walk(skb, sk, NULL, state,
1781 				       next_dup->start_seq, next_dup->end_seq,
1782 				       1);
1783 	}
1784 
1785 	return skb;
1786 }
1787 
tcp_sack_cache_ok(const struct tcp_sock * tp,const struct tcp_sack_block * cache)1788 static int tcp_sack_cache_ok(const struct tcp_sock *tp, const struct tcp_sack_block *cache)
1789 {
1790 	return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1791 }
1792 
1793 static int
tcp_sacktag_write_queue(struct sock * sk,const struct sk_buff * ack_skb,u32 prior_snd_una,struct tcp_sacktag_state * state)1794 tcp_sacktag_write_queue(struct sock *sk, const struct sk_buff *ack_skb,
1795 			u32 prior_snd_una, struct tcp_sacktag_state *state)
1796 {
1797 	struct tcp_sock *tp = tcp_sk(sk);
1798 	const unsigned char *ptr = (skb_transport_header(ack_skb) +
1799 				    TCP_SKB_CB(ack_skb)->sacked);
1800 	struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1801 	struct tcp_sack_block sp[TCP_NUM_SACKS];
1802 	struct tcp_sack_block *cache;
1803 	struct sk_buff *skb;
1804 	int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1805 	int used_sacks;
1806 	bool found_dup_sack = false;
1807 	int i, j;
1808 	int first_sack_index;
1809 
1810 	state->flag = 0;
1811 	state->reord = tp->snd_nxt;
1812 
1813 	if (!tp->sacked_out)
1814 		tcp_highest_sack_reset(sk);
1815 
1816 	found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1817 					 num_sacks, prior_snd_una, state);
1818 
1819 	/* Eliminate too old ACKs, but take into
1820 	 * account more or less fresh ones, they can
1821 	 * contain valid SACK info.
1822 	 */
1823 	if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1824 		return 0;
1825 
1826 	if (!tp->packets_out)
1827 		goto out;
1828 
1829 	used_sacks = 0;
1830 	first_sack_index = 0;
1831 	for (i = 0; i < num_sacks; i++) {
1832 		bool dup_sack = !i && found_dup_sack;
1833 
1834 		sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1835 		sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1836 
1837 		if (!tcp_is_sackblock_valid(tp, dup_sack,
1838 					    sp[used_sacks].start_seq,
1839 					    sp[used_sacks].end_seq)) {
1840 			int mib_idx;
1841 
1842 			if (dup_sack) {
1843 				if (!tp->undo_marker)
1844 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1845 				else
1846 					mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1847 			} else {
1848 				/* Don't count olds caused by ACK reordering */
1849 				if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1850 				    !after(sp[used_sacks].end_seq, tp->snd_una))
1851 					continue;
1852 				mib_idx = LINUX_MIB_TCPSACKDISCARD;
1853 			}
1854 
1855 			NET_INC_STATS(sock_net(sk), mib_idx);
1856 			if (i == 0)
1857 				first_sack_index = -1;
1858 			continue;
1859 		}
1860 
1861 		/* Ignore very old stuff early */
1862 		if (!after(sp[used_sacks].end_seq, prior_snd_una)) {
1863 			if (i == 0)
1864 				first_sack_index = -1;
1865 			continue;
1866 		}
1867 
1868 		used_sacks++;
1869 	}
1870 
1871 	/* order SACK blocks to allow in order walk of the retrans queue */
1872 	for (i = used_sacks - 1; i > 0; i--) {
1873 		for (j = 0; j < i; j++) {
1874 			if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1875 				swap(sp[j], sp[j + 1]);
1876 
1877 				/* Track where the first SACK block goes to */
1878 				if (j == first_sack_index)
1879 					first_sack_index = j + 1;
1880 			}
1881 		}
1882 	}
1883 
1884 	state->mss_now = tcp_current_mss(sk);
1885 	skb = NULL;
1886 	i = 0;
1887 
1888 	if (!tp->sacked_out) {
1889 		/* It's already past, so skip checking against it */
1890 		cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1891 	} else {
1892 		cache = tp->recv_sack_cache;
1893 		/* Skip empty blocks in at head of the cache */
1894 		while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1895 		       !cache->end_seq)
1896 			cache++;
1897 	}
1898 
1899 	while (i < used_sacks) {
1900 		u32 start_seq = sp[i].start_seq;
1901 		u32 end_seq = sp[i].end_seq;
1902 		bool dup_sack = (found_dup_sack && (i == first_sack_index));
1903 		struct tcp_sack_block *next_dup = NULL;
1904 
1905 		if (found_dup_sack && ((i + 1) == first_sack_index))
1906 			next_dup = &sp[i + 1];
1907 
1908 		/* Skip too early cached blocks */
1909 		while (tcp_sack_cache_ok(tp, cache) &&
1910 		       !before(start_seq, cache->end_seq))
1911 			cache++;
1912 
1913 		/* Can skip some work by looking recv_sack_cache? */
1914 		if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1915 		    after(end_seq, cache->start_seq)) {
1916 
1917 			/* Head todo? */
1918 			if (before(start_seq, cache->start_seq)) {
1919 				skb = tcp_sacktag_skip(skb, sk, start_seq);
1920 				skb = tcp_sacktag_walk(skb, sk, next_dup,
1921 						       state,
1922 						       start_seq,
1923 						       cache->start_seq,
1924 						       dup_sack);
1925 			}
1926 
1927 			/* Rest of the block already fully processed? */
1928 			if (!after(end_seq, cache->end_seq))
1929 				goto advance_sp;
1930 
1931 			skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1932 						       state,
1933 						       cache->end_seq);
1934 
1935 			/* ...tail remains todo... */
1936 			if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1937 				/* ...but better entrypoint exists! */
1938 				skb = tcp_highest_sack(sk);
1939 				if (!skb)
1940 					break;
1941 				cache++;
1942 				goto walk;
1943 			}
1944 
1945 			skb = tcp_sacktag_skip(skb, sk, cache->end_seq);
1946 			/* Check overlap against next cached too (past this one already) */
1947 			cache++;
1948 			continue;
1949 		}
1950 
1951 		if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1952 			skb = tcp_highest_sack(sk);
1953 			if (!skb)
1954 				break;
1955 		}
1956 		skb = tcp_sacktag_skip(skb, sk, start_seq);
1957 
1958 walk:
1959 		skb = tcp_sacktag_walk(skb, sk, next_dup, state,
1960 				       start_seq, end_seq, dup_sack);
1961 
1962 advance_sp:
1963 		i++;
1964 	}
1965 
1966 	/* Clear the head of the cache sack blocks so we can skip it next time */
1967 	for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1968 		tp->recv_sack_cache[i].start_seq = 0;
1969 		tp->recv_sack_cache[i].end_seq = 0;
1970 	}
1971 	for (j = 0; j < used_sacks; j++)
1972 		tp->recv_sack_cache[i++] = sp[j];
1973 
1974 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_Loss || tp->undo_marker)
1975 		tcp_check_sack_reordering(sk, state->reord, 0);
1976 
1977 	tcp_verify_left_out(tp);
1978 out:
1979 
1980 #if FASTRETRANS_DEBUG > 0
1981 	WARN_ON((int)tp->sacked_out < 0);
1982 	WARN_ON((int)tp->lost_out < 0);
1983 	WARN_ON((int)tp->retrans_out < 0);
1984 	WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1985 #endif
1986 	return state->flag;
1987 }
1988 
1989 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1990  * packets_out. Returns false if sacked_out adjustement wasn't necessary.
1991  */
tcp_limit_reno_sacked(struct tcp_sock * tp)1992 static bool tcp_limit_reno_sacked(struct tcp_sock *tp)
1993 {
1994 	u32 holes;
1995 
1996 	holes = max(tp->lost_out, 1U);
1997 	holes = min(holes, tp->packets_out);
1998 
1999 	if ((tp->sacked_out + holes) > tp->packets_out) {
2000 		tp->sacked_out = tp->packets_out - holes;
2001 		return true;
2002 	}
2003 	return false;
2004 }
2005 
2006 /* If we receive more dupacks than we expected counting segments
2007  * in assumption of absent reordering, interpret this as reordering.
2008  * The only another reason could be bug in receiver TCP.
2009  */
tcp_check_reno_reordering(struct sock * sk,const int addend)2010 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
2011 {
2012 	struct tcp_sock *tp = tcp_sk(sk);
2013 
2014 	if (!tcp_limit_reno_sacked(tp))
2015 		return;
2016 
2017 	tp->reordering = min_t(u32, tp->packets_out + addend,
2018 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_max_reordering));
2019 	tp->reord_seen++;
2020 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRENOREORDER);
2021 }
2022 
2023 /* Emulate SACKs for SACKless connection: account for a new dupack. */
2024 
tcp_add_reno_sack(struct sock * sk,int num_dupack,bool ece_ack)2025 static void tcp_add_reno_sack(struct sock *sk, int num_dupack, bool ece_ack)
2026 {
2027 	if (num_dupack) {
2028 		struct tcp_sock *tp = tcp_sk(sk);
2029 		u32 prior_sacked = tp->sacked_out;
2030 		s32 delivered;
2031 
2032 		tp->sacked_out += num_dupack;
2033 		tcp_check_reno_reordering(sk, 0);
2034 		delivered = tp->sacked_out - prior_sacked;
2035 		if (delivered > 0)
2036 			tcp_count_delivered(tp, delivered, ece_ack);
2037 		tcp_verify_left_out(tp);
2038 	}
2039 }
2040 
2041 /* Account for ACK, ACKing some data in Reno Recovery phase. */
2042 
tcp_remove_reno_sacks(struct sock * sk,int acked,bool ece_ack)2043 static void tcp_remove_reno_sacks(struct sock *sk, int acked, bool ece_ack)
2044 {
2045 	struct tcp_sock *tp = tcp_sk(sk);
2046 
2047 	if (acked > 0) {
2048 		/* One ACK acked hole. The rest eat duplicate ACKs. */
2049 		tcp_count_delivered(tp, max_t(int, acked - tp->sacked_out, 1),
2050 				    ece_ack);
2051 		if (acked - 1 >= tp->sacked_out)
2052 			tp->sacked_out = 0;
2053 		else
2054 			tp->sacked_out -= acked - 1;
2055 	}
2056 	tcp_check_reno_reordering(sk, acked);
2057 	tcp_verify_left_out(tp);
2058 }
2059 
tcp_reset_reno_sack(struct tcp_sock * tp)2060 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
2061 {
2062 	tp->sacked_out = 0;
2063 }
2064 
tcp_clear_retrans(struct tcp_sock * tp)2065 void tcp_clear_retrans(struct tcp_sock *tp)
2066 {
2067 	tp->retrans_out = 0;
2068 	tp->lost_out = 0;
2069 	tp->undo_marker = 0;
2070 	tp->undo_retrans = -1;
2071 	tp->sacked_out = 0;
2072 }
2073 
tcp_init_undo(struct tcp_sock * tp)2074 static inline void tcp_init_undo(struct tcp_sock *tp)
2075 {
2076 	tp->undo_marker = tp->snd_una;
2077 	/* Retransmission still in flight may cause DSACKs later. */
2078 	tp->undo_retrans = tp->retrans_out ? : -1;
2079 }
2080 
tcp_is_rack(const struct sock * sk)2081 static bool tcp_is_rack(const struct sock *sk)
2082 {
2083 	return READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_recovery) &
2084 		TCP_RACK_LOSS_DETECTION;
2085 }
2086 
2087 /* If we detect SACK reneging, forget all SACK information
2088  * and reset tags completely, otherwise preserve SACKs. If receiver
2089  * dropped its ofo queue, we will know this due to reneging detection.
2090  */
tcp_timeout_mark_lost(struct sock * sk)2091 static void tcp_timeout_mark_lost(struct sock *sk)
2092 {
2093 	struct tcp_sock *tp = tcp_sk(sk);
2094 	struct sk_buff *skb, *head;
2095 	bool is_reneg;			/* is receiver reneging on SACKs? */
2096 
2097 	head = tcp_rtx_queue_head(sk);
2098 	is_reneg = head && (TCP_SKB_CB(head)->sacked & TCPCB_SACKED_ACKED);
2099 	if (is_reneg) {
2100 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2101 		tp->sacked_out = 0;
2102 		/* Mark SACK reneging until we recover from this loss event. */
2103 		tp->is_sack_reneg = 1;
2104 	} else if (tcp_is_reno(tp)) {
2105 		tcp_reset_reno_sack(tp);
2106 	}
2107 
2108 	skb = head;
2109 	skb_rbtree_walk_from(skb) {
2110 		if (is_reneg)
2111 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2112 		else if (tcp_is_rack(sk) && skb != head &&
2113 			 tcp_rack_skb_timeout(tp, skb, 0) > 0)
2114 			continue; /* Don't mark recently sent ones lost yet */
2115 		tcp_mark_skb_lost(sk, skb);
2116 	}
2117 	tcp_verify_left_out(tp);
2118 	tcp_clear_all_retrans_hints(tp);
2119 }
2120 
2121 /* Enter Loss state. */
tcp_enter_loss(struct sock * sk)2122 void tcp_enter_loss(struct sock *sk)
2123 {
2124 	const struct inet_connection_sock *icsk = inet_csk(sk);
2125 	struct tcp_sock *tp = tcp_sk(sk);
2126 	struct net *net = sock_net(sk);
2127 	bool new_recovery = icsk->icsk_ca_state < TCP_CA_Recovery;
2128 	u8 reordering;
2129 
2130 	tcp_timeout_mark_lost(sk);
2131 
2132 	/* Reduce ssthresh if it has not yet been made inside this window. */
2133 	if (icsk->icsk_ca_state <= TCP_CA_Disorder ||
2134 	    !after(tp->high_seq, tp->snd_una) ||
2135 	    (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2136 		tp->prior_ssthresh = tcp_current_ssthresh(sk);
2137 		tp->prior_cwnd = tp->snd_cwnd;
2138 		tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2139 		tcp_ca_event(sk, CA_EVENT_LOSS);
2140 		tcp_init_undo(tp);
2141 	}
2142 	tp->snd_cwnd	   = tcp_packets_in_flight(tp) + 1;
2143 	tp->snd_cwnd_cnt   = 0;
2144 	tp->snd_cwnd_stamp = tcp_jiffies32;
2145 
2146 	/* Timeout in disordered state after receiving substantial DUPACKs
2147 	 * suggests that the degree of reordering is over-estimated.
2148 	 */
2149 	reordering = READ_ONCE(net->ipv4.sysctl_tcp_reordering);
2150 	if (icsk->icsk_ca_state <= TCP_CA_Disorder &&
2151 	    tp->sacked_out >= reordering)
2152 		tp->reordering = min_t(unsigned int, tp->reordering,
2153 				       reordering);
2154 
2155 	tcp_set_ca_state(sk, TCP_CA_Loss);
2156 	tp->high_seq = tp->snd_nxt;
2157 	tcp_ecn_queue_cwr(tp);
2158 
2159 	/* F-RTO RFC5682 sec 3.1 step 1: retransmit SND.UNA if no previous
2160 	 * loss recovery is underway except recurring timeout(s) on
2161 	 * the same SND.UNA (sec 3.2). Disable F-RTO on path MTU probing
2162 	 */
2163 	tp->frto = READ_ONCE(net->ipv4.sysctl_tcp_frto) &&
2164 		   (new_recovery || icsk->icsk_retransmits) &&
2165 		   !inet_csk(sk)->icsk_mtup.probe_size;
2166 }
2167 
2168 /* If ACK arrived pointing to a remembered SACK, it means that our
2169  * remembered SACKs do not reflect real state of receiver i.e.
2170  * receiver _host_ is heavily congested (or buggy).
2171  *
2172  * To avoid big spurious retransmission bursts due to transient SACK
2173  * scoreboard oddities that look like reneging, we give the receiver a
2174  * little time (max(RTT/2, 10ms)) to send us some more ACKs that will
2175  * restore sanity to the SACK scoreboard. If the apparent reneging
2176  * persists until this RTO then we'll clear the SACK scoreboard.
2177  */
tcp_check_sack_reneging(struct sock * sk,int flag)2178 static bool tcp_check_sack_reneging(struct sock *sk, int flag)
2179 {
2180 	if (flag & FLAG_SACK_RENEGING &&
2181 	    flag & FLAG_SND_UNA_ADVANCED) {
2182 		struct tcp_sock *tp = tcp_sk(sk);
2183 		unsigned long delay = max(usecs_to_jiffies(tp->srtt_us >> 4),
2184 					  msecs_to_jiffies(10));
2185 
2186 		inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2187 					  delay, TCP_RTO_MAX);
2188 		return true;
2189 	}
2190 	return false;
2191 }
2192 
2193 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2194  * counter when SACK is enabled (without SACK, sacked_out is used for
2195  * that purpose).
2196  *
2197  * With reordering, holes may still be in flight, so RFC3517 recovery
2198  * uses pure sacked_out (total number of SACKed segments) even though
2199  * it violates the RFC that uses duplicate ACKs, often these are equal
2200  * but when e.g. out-of-window ACKs or packet duplication occurs,
2201  * they differ. Since neither occurs due to loss, TCP should really
2202  * ignore them.
2203  */
tcp_dupack_heuristics(const struct tcp_sock * tp)2204 static inline int tcp_dupack_heuristics(const struct tcp_sock *tp)
2205 {
2206 	return tp->sacked_out + 1;
2207 }
2208 
2209 /* Linux NewReno/SACK/ECN state machine.
2210  * --------------------------------------
2211  *
2212  * "Open"	Normal state, no dubious events, fast path.
2213  * "Disorder"   In all the respects it is "Open",
2214  *		but requires a bit more attention. It is entered when
2215  *		we see some SACKs or dupacks. It is split of "Open"
2216  *		mainly to move some processing from fast path to slow one.
2217  * "CWR"	CWND was reduced due to some Congestion Notification event.
2218  *		It can be ECN, ICMP source quench, local device congestion.
2219  * "Recovery"	CWND was reduced, we are fast-retransmitting.
2220  * "Loss"	CWND was reduced due to RTO timeout or SACK reneging.
2221  *
2222  * tcp_fastretrans_alert() is entered:
2223  * - each incoming ACK, if state is not "Open"
2224  * - when arrived ACK is unusual, namely:
2225  *	* SACK
2226  *	* Duplicate ACK.
2227  *	* ECN ECE.
2228  *
2229  * Counting packets in flight is pretty simple.
2230  *
2231  *	in_flight = packets_out - left_out + retrans_out
2232  *
2233  *	packets_out is SND.NXT-SND.UNA counted in packets.
2234  *
2235  *	retrans_out is number of retransmitted segments.
2236  *
2237  *	left_out is number of segments left network, but not ACKed yet.
2238  *
2239  *		left_out = sacked_out + lost_out
2240  *
2241  *     sacked_out: Packets, which arrived to receiver out of order
2242  *		   and hence not ACKed. With SACKs this number is simply
2243  *		   amount of SACKed data. Even without SACKs
2244  *		   it is easy to give pretty reliable estimate of this number,
2245  *		   counting duplicate ACKs.
2246  *
2247  *       lost_out: Packets lost by network. TCP has no explicit
2248  *		   "loss notification" feedback from network (for now).
2249  *		   It means that this number can be only _guessed_.
2250  *		   Actually, it is the heuristics to predict lossage that
2251  *		   distinguishes different algorithms.
2252  *
2253  *	F.e. after RTO, when all the queue is considered as lost,
2254  *	lost_out = packets_out and in_flight = retrans_out.
2255  *
2256  *		Essentially, we have now a few algorithms detecting
2257  *		lost packets.
2258  *
2259  *		If the receiver supports SACK:
2260  *
2261  *		RFC6675/3517: It is the conventional algorithm. A packet is
2262  *		considered lost if the number of higher sequence packets
2263  *		SACKed is greater than or equal the DUPACK thoreshold
2264  *		(reordering). This is implemented in tcp_mark_head_lost and
2265  *		tcp_update_scoreboard.
2266  *
2267  *		RACK (draft-ietf-tcpm-rack-01): it is a newer algorithm
2268  *		(2017-) that checks timing instead of counting DUPACKs.
2269  *		Essentially a packet is considered lost if it's not S/ACKed
2270  *		after RTT + reordering_window, where both metrics are
2271  *		dynamically measured and adjusted. This is implemented in
2272  *		tcp_rack_mark_lost.
2273  *
2274  *		If the receiver does not support SACK:
2275  *
2276  *		NewReno (RFC6582): in Recovery we assume that one segment
2277  *		is lost (classic Reno). While we are in Recovery and
2278  *		a partial ACK arrives, we assume that one more packet
2279  *		is lost (NewReno). This heuristics are the same in NewReno
2280  *		and SACK.
2281  *
2282  * Really tricky (and requiring careful tuning) part of algorithm
2283  * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2284  * The first determines the moment _when_ we should reduce CWND and,
2285  * hence, slow down forward transmission. In fact, it determines the moment
2286  * when we decide that hole is caused by loss, rather than by a reorder.
2287  *
2288  * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2289  * holes, caused by lost packets.
2290  *
2291  * And the most logically complicated part of algorithm is undo
2292  * heuristics. We detect false retransmits due to both too early
2293  * fast retransmit (reordering) and underestimated RTO, analyzing
2294  * timestamps and D-SACKs. When we detect that some segments were
2295  * retransmitted by mistake and CWND reduction was wrong, we undo
2296  * window reduction and abort recovery phase. This logic is hidden
2297  * inside several functions named tcp_try_undo_<something>.
2298  */
2299 
2300 /* This function decides, when we should leave Disordered state
2301  * and enter Recovery phase, reducing congestion window.
2302  *
2303  * Main question: may we further continue forward transmission
2304  * with the same cwnd?
2305  */
tcp_time_to_recover(struct sock * sk,int flag)2306 static bool tcp_time_to_recover(struct sock *sk, int flag)
2307 {
2308 	struct tcp_sock *tp = tcp_sk(sk);
2309 
2310 	/* Trick#1: The loss is proven. */
2311 	if (tp->lost_out)
2312 		return true;
2313 
2314 	/* Not-A-Trick#2 : Classic rule... */
2315 	if (!tcp_is_rack(sk) && tcp_dupack_heuristics(tp) > tp->reordering)
2316 		return true;
2317 
2318 	return false;
2319 }
2320 
2321 /* Detect loss in event "A" above by marking head of queue up as lost.
2322  * For RFC3517 SACK, a segment is considered lost if it
2323  * has at least tp->reordering SACKed seqments above it; "packets" refers to
2324  * the maximum SACKed segments to pass before reaching this limit.
2325  */
tcp_mark_head_lost(struct sock * sk,int packets,int mark_head)2326 static void tcp_mark_head_lost(struct sock *sk, int packets, int mark_head)
2327 {
2328 	struct tcp_sock *tp = tcp_sk(sk);
2329 	struct sk_buff *skb;
2330 	int cnt;
2331 	/* Use SACK to deduce losses of new sequences sent during recovery */
2332 	const u32 loss_high = tp->snd_nxt;
2333 
2334 	WARN_ON(packets > tp->packets_out);
2335 	skb = tp->lost_skb_hint;
2336 	if (skb) {
2337 		/* Head already handled? */
2338 		if (mark_head && after(TCP_SKB_CB(skb)->seq, tp->snd_una))
2339 			return;
2340 		cnt = tp->lost_cnt_hint;
2341 	} else {
2342 		skb = tcp_rtx_queue_head(sk);
2343 		cnt = 0;
2344 	}
2345 
2346 	skb_rbtree_walk_from(skb) {
2347 		/* TODO: do this better */
2348 		/* this is not the most efficient way to do this... */
2349 		tp->lost_skb_hint = skb;
2350 		tp->lost_cnt_hint = cnt;
2351 
2352 		if (after(TCP_SKB_CB(skb)->end_seq, loss_high))
2353 			break;
2354 
2355 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
2356 			cnt += tcp_skb_pcount(skb);
2357 
2358 		if (cnt > packets)
2359 			break;
2360 
2361 		if (!(TCP_SKB_CB(skb)->sacked & TCPCB_LOST))
2362 			tcp_mark_skb_lost(sk, skb);
2363 
2364 		if (mark_head)
2365 			break;
2366 	}
2367 	tcp_verify_left_out(tp);
2368 }
2369 
2370 /* Account newly detected lost packet(s) */
2371 
tcp_update_scoreboard(struct sock * sk,int fast_rexmit)2372 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2373 {
2374 	struct tcp_sock *tp = tcp_sk(sk);
2375 
2376 	if (tcp_is_sack(tp)) {
2377 		int sacked_upto = tp->sacked_out - tp->reordering;
2378 		if (sacked_upto >= 0)
2379 			tcp_mark_head_lost(sk, sacked_upto, 0);
2380 		else if (fast_rexmit)
2381 			tcp_mark_head_lost(sk, 1, 1);
2382 	}
2383 }
2384 
tcp_tsopt_ecr_before(const struct tcp_sock * tp,u32 when)2385 static bool tcp_tsopt_ecr_before(const struct tcp_sock *tp, u32 when)
2386 {
2387 	return tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2388 	       before(tp->rx_opt.rcv_tsecr, when);
2389 }
2390 
2391 /* skb is spurious retransmitted if the returned timestamp echo
2392  * reply is prior to the skb transmission time
2393  */
tcp_skb_spurious_retrans(const struct tcp_sock * tp,const struct sk_buff * skb)2394 static bool tcp_skb_spurious_retrans(const struct tcp_sock *tp,
2395 				     const struct sk_buff *skb)
2396 {
2397 	return (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS) &&
2398 	       tcp_tsopt_ecr_before(tp, tcp_skb_timestamp(skb));
2399 }
2400 
2401 /* Nothing was retransmitted or returned timestamp is less
2402  * than timestamp of the first retransmission.
2403  */
tcp_packet_delayed(const struct tcp_sock * tp)2404 static inline bool tcp_packet_delayed(const struct tcp_sock *tp)
2405 {
2406 	return tp->retrans_stamp &&
2407 	       tcp_tsopt_ecr_before(tp, tp->retrans_stamp);
2408 }
2409 
2410 /* Undo procedures. */
2411 
2412 /* We can clear retrans_stamp when there are no retransmissions in the
2413  * window. It would seem that it is trivially available for us in
2414  * tp->retrans_out, however, that kind of assumptions doesn't consider
2415  * what will happen if errors occur when sending retransmission for the
2416  * second time. ...It could the that such segment has only
2417  * TCPCB_EVER_RETRANS set at the present time. It seems that checking
2418  * the head skb is enough except for some reneging corner cases that
2419  * are not worth the effort.
2420  *
2421  * Main reason for all this complexity is the fact that connection dying
2422  * time now depends on the validity of the retrans_stamp, in particular,
2423  * that successive retransmissions of a segment must not advance
2424  * retrans_stamp under any conditions.
2425  */
tcp_any_retrans_done(const struct sock * sk)2426 static bool tcp_any_retrans_done(const struct sock *sk)
2427 {
2428 	const struct tcp_sock *tp = tcp_sk(sk);
2429 	struct sk_buff *skb;
2430 
2431 	if (tp->retrans_out)
2432 		return true;
2433 
2434 	skb = tcp_rtx_queue_head(sk);
2435 	if (unlikely(skb && TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS))
2436 		return true;
2437 
2438 	return false;
2439 }
2440 
DBGUNDO(struct sock * sk,const char * msg)2441 static void DBGUNDO(struct sock *sk, const char *msg)
2442 {
2443 #if FASTRETRANS_DEBUG > 1
2444 	struct tcp_sock *tp = tcp_sk(sk);
2445 	struct inet_sock *inet = inet_sk(sk);
2446 
2447 	if (sk->sk_family == AF_INET) {
2448 		pr_debug("Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2449 			 msg,
2450 			 &inet->inet_daddr, ntohs(inet->inet_dport),
2451 			 tp->snd_cwnd, tcp_left_out(tp),
2452 			 tp->snd_ssthresh, tp->prior_ssthresh,
2453 			 tp->packets_out);
2454 	}
2455 #if IS_ENABLED(CONFIG_IPV6)
2456 	else if (sk->sk_family == AF_INET6) {
2457 		pr_debug("Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2458 			 msg,
2459 			 &sk->sk_v6_daddr, ntohs(inet->inet_dport),
2460 			 tp->snd_cwnd, tcp_left_out(tp),
2461 			 tp->snd_ssthresh, tp->prior_ssthresh,
2462 			 tp->packets_out);
2463 	}
2464 #endif
2465 #endif
2466 }
2467 
tcp_undo_cwnd_reduction(struct sock * sk,bool unmark_loss)2468 static void tcp_undo_cwnd_reduction(struct sock *sk, bool unmark_loss)
2469 {
2470 	struct tcp_sock *tp = tcp_sk(sk);
2471 
2472 	if (unmark_loss) {
2473 		struct sk_buff *skb;
2474 
2475 		skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2476 			TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2477 		}
2478 		tp->lost_out = 0;
2479 		tcp_clear_all_retrans_hints(tp);
2480 	}
2481 
2482 	if (tp->prior_ssthresh) {
2483 		const struct inet_connection_sock *icsk = inet_csk(sk);
2484 
2485 		tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2486 
2487 		if (tp->prior_ssthresh > tp->snd_ssthresh) {
2488 			tp->snd_ssthresh = tp->prior_ssthresh;
2489 			tcp_ecn_withdraw_cwr(tp);
2490 		}
2491 	}
2492 	tp->snd_cwnd_stamp = tcp_jiffies32;
2493 	tp->undo_marker = 0;
2494 	tp->rack.advanced = 1; /* Force RACK to re-exam losses */
2495 }
2496 
tcp_may_undo(const struct tcp_sock * tp)2497 static inline bool tcp_may_undo(const struct tcp_sock *tp)
2498 {
2499 	return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2500 }
2501 
tcp_is_non_sack_preventing_reopen(struct sock * sk)2502 static bool tcp_is_non_sack_preventing_reopen(struct sock *sk)
2503 {
2504 	struct tcp_sock *tp = tcp_sk(sk);
2505 
2506 	if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2507 		/* Hold old state until something *above* high_seq
2508 		 * is ACKed. For Reno it is MUST to prevent false
2509 		 * fast retransmits (RFC2582). SACK TCP is safe. */
2510 		if (!tcp_any_retrans_done(sk))
2511 			tp->retrans_stamp = 0;
2512 		return true;
2513 	}
2514 	return false;
2515 }
2516 
2517 /* People celebrate: "We love our President!" */
tcp_try_undo_recovery(struct sock * sk)2518 static bool tcp_try_undo_recovery(struct sock *sk)
2519 {
2520 	struct tcp_sock *tp = tcp_sk(sk);
2521 
2522 	if (tcp_may_undo(tp)) {
2523 		int mib_idx;
2524 
2525 		/* Happy end! We did not retransmit anything
2526 		 * or our original transmission succeeded.
2527 		 */
2528 		DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2529 		tcp_undo_cwnd_reduction(sk, false);
2530 		if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2531 			mib_idx = LINUX_MIB_TCPLOSSUNDO;
2532 		else
2533 			mib_idx = LINUX_MIB_TCPFULLUNDO;
2534 
2535 		NET_INC_STATS(sock_net(sk), mib_idx);
2536 	} else if (tp->rack.reo_wnd_persist) {
2537 		tp->rack.reo_wnd_persist--;
2538 	}
2539 	if (tcp_is_non_sack_preventing_reopen(sk))
2540 		return true;
2541 	tcp_set_ca_state(sk, TCP_CA_Open);
2542 	tp->is_sack_reneg = 0;
2543 	return false;
2544 }
2545 
2546 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
tcp_try_undo_dsack(struct sock * sk)2547 static bool tcp_try_undo_dsack(struct sock *sk)
2548 {
2549 	struct tcp_sock *tp = tcp_sk(sk);
2550 
2551 	if (tp->undo_marker && !tp->undo_retrans) {
2552 		tp->rack.reo_wnd_persist = min(TCP_RACK_RECOVERY_THRESH,
2553 					       tp->rack.reo_wnd_persist + 1);
2554 		DBGUNDO(sk, "D-SACK");
2555 		tcp_undo_cwnd_reduction(sk, false);
2556 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2557 		return true;
2558 	}
2559 	return false;
2560 }
2561 
2562 /* Undo during loss recovery after partial ACK or using F-RTO. */
tcp_try_undo_loss(struct sock * sk,bool frto_undo)2563 static bool tcp_try_undo_loss(struct sock *sk, bool frto_undo)
2564 {
2565 	struct tcp_sock *tp = tcp_sk(sk);
2566 
2567 	if (frto_undo || tcp_may_undo(tp)) {
2568 		tcp_undo_cwnd_reduction(sk, true);
2569 
2570 		DBGUNDO(sk, "partial loss");
2571 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2572 		if (frto_undo)
2573 			NET_INC_STATS(sock_net(sk),
2574 					LINUX_MIB_TCPSPURIOUSRTOS);
2575 		inet_csk(sk)->icsk_retransmits = 0;
2576 		if (tcp_is_non_sack_preventing_reopen(sk))
2577 			return true;
2578 		if (frto_undo || tcp_is_sack(tp)) {
2579 			tcp_set_ca_state(sk, TCP_CA_Open);
2580 			tp->is_sack_reneg = 0;
2581 		}
2582 		return true;
2583 	}
2584 	return false;
2585 }
2586 
2587 /* The cwnd reduction in CWR and Recovery uses the PRR algorithm in RFC 6937.
2588  * It computes the number of packets to send (sndcnt) based on packets newly
2589  * delivered:
2590  *   1) If the packets in flight is larger than ssthresh, PRR spreads the
2591  *	cwnd reductions across a full RTT.
2592  *   2) Otherwise PRR uses packet conservation to send as much as delivered.
2593  *      But when the retransmits are acked without further losses, PRR
2594  *      slow starts cwnd up to ssthresh to speed up the recovery.
2595  */
tcp_init_cwnd_reduction(struct sock * sk)2596 static void tcp_init_cwnd_reduction(struct sock *sk)
2597 {
2598 	struct tcp_sock *tp = tcp_sk(sk);
2599 
2600 	tp->high_seq = tp->snd_nxt;
2601 	tp->tlp_high_seq = 0;
2602 	tp->snd_cwnd_cnt = 0;
2603 	tp->prior_cwnd = tp->snd_cwnd;
2604 	tp->prr_delivered = 0;
2605 	tp->prr_out = 0;
2606 	tp->snd_ssthresh = inet_csk(sk)->icsk_ca_ops->ssthresh(sk);
2607 	tcp_ecn_queue_cwr(tp);
2608 }
2609 
tcp_cwnd_reduction(struct sock * sk,int newly_acked_sacked,int flag)2610 void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag)
2611 {
2612 	struct tcp_sock *tp = tcp_sk(sk);
2613 	int sndcnt = 0;
2614 	int delta = tp->snd_ssthresh - tcp_packets_in_flight(tp);
2615 
2616 	if (newly_acked_sacked <= 0 || WARN_ON_ONCE(!tp->prior_cwnd))
2617 		return;
2618 
2619 	tp->prr_delivered += newly_acked_sacked;
2620 	if (delta < 0) {
2621 		u64 dividend = (u64)tp->snd_ssthresh * tp->prr_delivered +
2622 			       tp->prior_cwnd - 1;
2623 		sndcnt = div_u64(dividend, tp->prior_cwnd) - tp->prr_out;
2624 	} else if ((flag & (FLAG_RETRANS_DATA_ACKED | FLAG_LOST_RETRANS)) ==
2625 		   FLAG_RETRANS_DATA_ACKED) {
2626 		sndcnt = min_t(int, delta,
2627 			       max_t(int, tp->prr_delivered - tp->prr_out,
2628 				     newly_acked_sacked) + 1);
2629 	} else {
2630 		sndcnt = min(delta, newly_acked_sacked);
2631 	}
2632 	/* Force a fast retransmit upon entering fast recovery */
2633 	sndcnt = max(sndcnt, (tp->prr_out ? 0 : 1));
2634 	tp->snd_cwnd = tcp_packets_in_flight(tp) + sndcnt;
2635 }
2636 
tcp_end_cwnd_reduction(struct sock * sk)2637 static inline void tcp_end_cwnd_reduction(struct sock *sk)
2638 {
2639 	struct tcp_sock *tp = tcp_sk(sk);
2640 
2641 	if (inet_csk(sk)->icsk_ca_ops->cong_control)
2642 		return;
2643 
2644 	/* Reset cwnd to ssthresh in CWR or Recovery (unless it's undone) */
2645 	if (tp->snd_ssthresh < TCP_INFINITE_SSTHRESH &&
2646 	    (inet_csk(sk)->icsk_ca_state == TCP_CA_CWR || tp->undo_marker)) {
2647 		tp->snd_cwnd = tp->snd_ssthresh;
2648 		tp->snd_cwnd_stamp = tcp_jiffies32;
2649 	}
2650 	tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2651 }
2652 
2653 /* Enter CWR state. Disable cwnd undo since congestion is proven with ECN */
tcp_enter_cwr(struct sock * sk)2654 void tcp_enter_cwr(struct sock *sk)
2655 {
2656 	struct tcp_sock *tp = tcp_sk(sk);
2657 
2658 	tp->prior_ssthresh = 0;
2659 	if (inet_csk(sk)->icsk_ca_state < TCP_CA_CWR) {
2660 		tp->undo_marker = 0;
2661 		tcp_init_cwnd_reduction(sk);
2662 		tcp_set_ca_state(sk, TCP_CA_CWR);
2663 	}
2664 }
2665 EXPORT_SYMBOL(tcp_enter_cwr);
2666 
tcp_try_keep_open(struct sock * sk)2667 static void tcp_try_keep_open(struct sock *sk)
2668 {
2669 	struct tcp_sock *tp = tcp_sk(sk);
2670 	int state = TCP_CA_Open;
2671 
2672 	if (tcp_left_out(tp) || tcp_any_retrans_done(sk))
2673 		state = TCP_CA_Disorder;
2674 
2675 	if (inet_csk(sk)->icsk_ca_state != state) {
2676 		tcp_set_ca_state(sk, state);
2677 		tp->high_seq = tp->snd_nxt;
2678 	}
2679 }
2680 
tcp_try_to_open(struct sock * sk,int flag)2681 static void tcp_try_to_open(struct sock *sk, int flag)
2682 {
2683 	struct tcp_sock *tp = tcp_sk(sk);
2684 
2685 	tcp_verify_left_out(tp);
2686 
2687 	if (!tcp_any_retrans_done(sk))
2688 		tp->retrans_stamp = 0;
2689 
2690 	if (flag & FLAG_ECE)
2691 		tcp_enter_cwr(sk);
2692 
2693 	if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2694 		tcp_try_keep_open(sk);
2695 	}
2696 }
2697 
tcp_mtup_probe_failed(struct sock * sk)2698 static void tcp_mtup_probe_failed(struct sock *sk)
2699 {
2700 	struct inet_connection_sock *icsk = inet_csk(sk);
2701 
2702 	icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2703 	icsk->icsk_mtup.probe_size = 0;
2704 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPFAIL);
2705 }
2706 
tcp_mtup_probe_success(struct sock * sk)2707 static void tcp_mtup_probe_success(struct sock *sk)
2708 {
2709 	struct tcp_sock *tp = tcp_sk(sk);
2710 	struct inet_connection_sock *icsk = inet_csk(sk);
2711 	u64 val;
2712 
2713 	tp->prior_ssthresh = tcp_current_ssthresh(sk);
2714 
2715 	val = (u64)tp->snd_cwnd * tcp_mss_to_mtu(sk, tp->mss_cache);
2716 	do_div(val, icsk->icsk_mtup.probe_size);
2717 	WARN_ON_ONCE((u32)val != val);
2718 	tp->snd_cwnd = max_t(u32, 1U, val);
2719 
2720 	tp->snd_cwnd_cnt = 0;
2721 	tp->snd_cwnd_stamp = tcp_jiffies32;
2722 	tp->snd_ssthresh = tcp_current_ssthresh(sk);
2723 
2724 	icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2725 	icsk->icsk_mtup.probe_size = 0;
2726 	tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2727 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPMTUPSUCCESS);
2728 }
2729 
2730 /* Do a simple retransmit without using the backoff mechanisms in
2731  * tcp_timer. This is used for path mtu discovery.
2732  * The socket is already locked here.
2733  */
tcp_simple_retransmit(struct sock * sk)2734 void tcp_simple_retransmit(struct sock *sk)
2735 {
2736 	const struct inet_connection_sock *icsk = inet_csk(sk);
2737 	struct tcp_sock *tp = tcp_sk(sk);
2738 	struct sk_buff *skb;
2739 	unsigned int mss = tcp_current_mss(sk);
2740 
2741 	skb_rbtree_walk(skb, &sk->tcp_rtx_queue) {
2742 		if (tcp_skb_seglen(skb) > mss)
2743 			tcp_mark_skb_lost(sk, skb);
2744 	}
2745 
2746 	tcp_clear_retrans_hints_partial(tp);
2747 
2748 	if (!tp->lost_out)
2749 		return;
2750 
2751 	if (tcp_is_reno(tp))
2752 		tcp_limit_reno_sacked(tp);
2753 
2754 	tcp_verify_left_out(tp);
2755 
2756 	/* Don't muck with the congestion window here.
2757 	 * Reason is that we do not increase amount of _data_
2758 	 * in network, but units changed and effective
2759 	 * cwnd/ssthresh really reduced now.
2760 	 */
2761 	if (icsk->icsk_ca_state != TCP_CA_Loss) {
2762 		tp->high_seq = tp->snd_nxt;
2763 		tp->snd_ssthresh = tcp_current_ssthresh(sk);
2764 		tp->prior_ssthresh = 0;
2765 		tp->undo_marker = 0;
2766 		tcp_set_ca_state(sk, TCP_CA_Loss);
2767 	}
2768 	tcp_xmit_retransmit_queue(sk);
2769 }
2770 EXPORT_SYMBOL(tcp_simple_retransmit);
2771 
tcp_enter_recovery(struct sock * sk,bool ece_ack)2772 void tcp_enter_recovery(struct sock *sk, bool ece_ack)
2773 {
2774 	struct tcp_sock *tp = tcp_sk(sk);
2775 	int mib_idx;
2776 
2777 	if (tcp_is_reno(tp))
2778 		mib_idx = LINUX_MIB_TCPRENORECOVERY;
2779 	else
2780 		mib_idx = LINUX_MIB_TCPSACKRECOVERY;
2781 
2782 	NET_INC_STATS(sock_net(sk), mib_idx);
2783 
2784 	tp->prior_ssthresh = 0;
2785 	tcp_init_undo(tp);
2786 
2787 	if (!tcp_in_cwnd_reduction(sk)) {
2788 		if (!ece_ack)
2789 			tp->prior_ssthresh = tcp_current_ssthresh(sk);
2790 		tcp_init_cwnd_reduction(sk);
2791 	}
2792 	tcp_set_ca_state(sk, TCP_CA_Recovery);
2793 }
2794 
2795 /* Process an ACK in CA_Loss state. Move to CA_Open if lost data are
2796  * recovered or spurious. Otherwise retransmits more on partial ACKs.
2797  */
tcp_process_loss(struct sock * sk,int flag,int num_dupack,int * rexmit)2798 static void tcp_process_loss(struct sock *sk, int flag, int num_dupack,
2799 			     int *rexmit)
2800 {
2801 	struct tcp_sock *tp = tcp_sk(sk);
2802 	bool recovered = !before(tp->snd_una, tp->high_seq);
2803 
2804 	if ((flag & FLAG_SND_UNA_ADVANCED || rcu_access_pointer(tp->fastopen_rsk)) &&
2805 	    tcp_try_undo_loss(sk, false))
2806 		return;
2807 
2808 	if (tp->frto) { /* F-RTO RFC5682 sec 3.1 (sack enhanced version). */
2809 		/* Step 3.b. A timeout is spurious if not all data are
2810 		 * lost, i.e., never-retransmitted data are (s)acked.
2811 		 */
2812 		if ((flag & FLAG_ORIG_SACK_ACKED) &&
2813 		    tcp_try_undo_loss(sk, true))
2814 			return;
2815 
2816 		if (after(tp->snd_nxt, tp->high_seq)) {
2817 			if (flag & FLAG_DATA_SACKED || num_dupack)
2818 				tp->frto = 0; /* Step 3.a. loss was real */
2819 		} else if (flag & FLAG_SND_UNA_ADVANCED && !recovered) {
2820 			tp->high_seq = tp->snd_nxt;
2821 			/* Step 2.b. Try send new data (but deferred until cwnd
2822 			 * is updated in tcp_ack()). Otherwise fall back to
2823 			 * the conventional recovery.
2824 			 */
2825 			if (!tcp_write_queue_empty(sk) &&
2826 			    after(tcp_wnd_end(tp), tp->snd_nxt)) {
2827 				*rexmit = REXMIT_NEW;
2828 				return;
2829 			}
2830 			tp->frto = 0;
2831 		}
2832 	}
2833 
2834 	if (recovered) {
2835 		/* F-RTO RFC5682 sec 3.1 step 2.a and 1st part of step 3.a */
2836 		tcp_try_undo_recovery(sk);
2837 		return;
2838 	}
2839 	if (tcp_is_reno(tp)) {
2840 		/* A Reno DUPACK means new data in F-RTO step 2.b above are
2841 		 * delivered. Lower inflight to clock out (re)tranmissions.
2842 		 */
2843 		if (after(tp->snd_nxt, tp->high_seq) && num_dupack)
2844 			tcp_add_reno_sack(sk, num_dupack, flag & FLAG_ECE);
2845 		else if (flag & FLAG_SND_UNA_ADVANCED)
2846 			tcp_reset_reno_sack(tp);
2847 	}
2848 	*rexmit = REXMIT_LOST;
2849 }
2850 
tcp_force_fast_retransmit(struct sock * sk)2851 static bool tcp_force_fast_retransmit(struct sock *sk)
2852 {
2853 	struct tcp_sock *tp = tcp_sk(sk);
2854 
2855 	return after(tcp_highest_sack_seq(tp),
2856 		     tp->snd_una + tp->reordering * tp->mss_cache);
2857 }
2858 
2859 /* Undo during fast recovery after partial ACK. */
tcp_try_undo_partial(struct sock * sk,u32 prior_snd_una,bool * do_lost)2860 static bool tcp_try_undo_partial(struct sock *sk, u32 prior_snd_una,
2861 				 bool *do_lost)
2862 {
2863 	struct tcp_sock *tp = tcp_sk(sk);
2864 
2865 	if (tp->undo_marker && tcp_packet_delayed(tp)) {
2866 		/* Plain luck! Hole if filled with delayed
2867 		 * packet, rather than with a retransmit. Check reordering.
2868 		 */
2869 		tcp_check_sack_reordering(sk, prior_snd_una, 1);
2870 
2871 		/* We are getting evidence that the reordering degree is higher
2872 		 * than we realized. If there are no retransmits out then we
2873 		 * can undo. Otherwise we clock out new packets but do not
2874 		 * mark more packets lost or retransmit more.
2875 		 */
2876 		if (tp->retrans_out)
2877 			return true;
2878 
2879 		if (!tcp_any_retrans_done(sk))
2880 			tp->retrans_stamp = 0;
2881 
2882 		DBGUNDO(sk, "partial recovery");
2883 		tcp_undo_cwnd_reduction(sk, true);
2884 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2885 		tcp_try_keep_open(sk);
2886 	} else {
2887 		/* Partial ACK arrived. Force fast retransmit. */
2888 		*do_lost = tcp_force_fast_retransmit(sk);
2889 	}
2890 	return false;
2891 }
2892 
tcp_identify_packet_loss(struct sock * sk,int * ack_flag)2893 static void tcp_identify_packet_loss(struct sock *sk, int *ack_flag)
2894 {
2895 	struct tcp_sock *tp = tcp_sk(sk);
2896 
2897 	if (tcp_rtx_queue_empty(sk))
2898 		return;
2899 
2900 	if (unlikely(tcp_is_reno(tp))) {
2901 		tcp_newreno_mark_lost(sk, *ack_flag & FLAG_SND_UNA_ADVANCED);
2902 	} else if (tcp_is_rack(sk)) {
2903 		u32 prior_retrans = tp->retrans_out;
2904 
2905 		if (tcp_rack_mark_lost(sk))
2906 			*ack_flag &= ~FLAG_SET_XMIT_TIMER;
2907 		if (prior_retrans > tp->retrans_out)
2908 			*ack_flag |= FLAG_LOST_RETRANS;
2909 	}
2910 }
2911 
2912 /* Process an event, which can update packets-in-flight not trivially.
2913  * Main goal of this function is to calculate new estimate for left_out,
2914  * taking into account both packets sitting in receiver's buffer and
2915  * packets lost by network.
2916  *
2917  * Besides that it updates the congestion state when packet loss or ECN
2918  * is detected. But it does not reduce the cwnd, it is done by the
2919  * congestion control later.
2920  *
2921  * It does _not_ decide what to send, it is made in function
2922  * tcp_xmit_retransmit_queue().
2923  */
tcp_fastretrans_alert(struct sock * sk,const u32 prior_snd_una,int num_dupack,int * ack_flag,int * rexmit)2924 static void tcp_fastretrans_alert(struct sock *sk, const u32 prior_snd_una,
2925 				  int num_dupack, int *ack_flag, int *rexmit)
2926 {
2927 	struct inet_connection_sock *icsk = inet_csk(sk);
2928 	struct tcp_sock *tp = tcp_sk(sk);
2929 	int fast_rexmit = 0, flag = *ack_flag;
2930 	bool ece_ack = flag & FLAG_ECE;
2931 	bool do_lost = num_dupack || ((flag & FLAG_DATA_SACKED) &&
2932 				      tcp_force_fast_retransmit(sk));
2933 
2934 	if (!tp->packets_out && tp->sacked_out)
2935 		tp->sacked_out = 0;
2936 
2937 	/* Now state machine starts.
2938 	 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2939 	if (ece_ack)
2940 		tp->prior_ssthresh = 0;
2941 
2942 	/* B. In all the states check for reneging SACKs. */
2943 	if (tcp_check_sack_reneging(sk, flag))
2944 		return;
2945 
2946 	/* C. Check consistency of the current state. */
2947 	tcp_verify_left_out(tp);
2948 
2949 	/* D. Check state exit conditions. State can be terminated
2950 	 *    when high_seq is ACKed. */
2951 	if (icsk->icsk_ca_state == TCP_CA_Open) {
2952 		WARN_ON(tp->retrans_out != 0);
2953 		tp->retrans_stamp = 0;
2954 	} else if (!before(tp->snd_una, tp->high_seq)) {
2955 		switch (icsk->icsk_ca_state) {
2956 		case TCP_CA_CWR:
2957 			/* CWR is to be held something *above* high_seq
2958 			 * is ACKed for CWR bit to reach receiver. */
2959 			if (tp->snd_una != tp->high_seq) {
2960 				tcp_end_cwnd_reduction(sk);
2961 				tcp_set_ca_state(sk, TCP_CA_Open);
2962 			}
2963 			break;
2964 
2965 		case TCP_CA_Recovery:
2966 			if (tcp_is_reno(tp))
2967 				tcp_reset_reno_sack(tp);
2968 			if (tcp_try_undo_recovery(sk))
2969 				return;
2970 			tcp_end_cwnd_reduction(sk);
2971 			break;
2972 		}
2973 	}
2974 
2975 	/* E. Process state. */
2976 	switch (icsk->icsk_ca_state) {
2977 	case TCP_CA_Recovery:
2978 		if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2979 			if (tcp_is_reno(tp))
2980 				tcp_add_reno_sack(sk, num_dupack, ece_ack);
2981 		} else if (tcp_try_undo_partial(sk, prior_snd_una, &do_lost))
2982 			return;
2983 
2984 		if (tcp_try_undo_dsack(sk))
2985 			tcp_try_keep_open(sk);
2986 
2987 		tcp_identify_packet_loss(sk, ack_flag);
2988 		if (icsk->icsk_ca_state != TCP_CA_Recovery) {
2989 			if (!tcp_time_to_recover(sk, flag))
2990 				return;
2991 			/* Undo reverts the recovery state. If loss is evident,
2992 			 * starts a new recovery (e.g. reordering then loss);
2993 			 */
2994 			tcp_enter_recovery(sk, ece_ack);
2995 		}
2996 		break;
2997 	case TCP_CA_Loss:
2998 		tcp_process_loss(sk, flag, num_dupack, rexmit);
2999 		tcp_identify_packet_loss(sk, ack_flag);
3000 		if (!(icsk->icsk_ca_state == TCP_CA_Open ||
3001 		      (*ack_flag & FLAG_LOST_RETRANS)))
3002 			return;
3003 		/* Change state if cwnd is undone or retransmits are lost */
3004 		fallthrough;
3005 	default:
3006 		if (tcp_is_reno(tp)) {
3007 			if (flag & FLAG_SND_UNA_ADVANCED)
3008 				tcp_reset_reno_sack(tp);
3009 			tcp_add_reno_sack(sk, num_dupack, ece_ack);
3010 		}
3011 
3012 		if (icsk->icsk_ca_state <= TCP_CA_Disorder)
3013 			tcp_try_undo_dsack(sk);
3014 
3015 		tcp_identify_packet_loss(sk, ack_flag);
3016 		if (!tcp_time_to_recover(sk, flag)) {
3017 			tcp_try_to_open(sk, flag);
3018 			return;
3019 		}
3020 
3021 		/* MTU probe failure: don't reduce cwnd */
3022 		if (icsk->icsk_ca_state < TCP_CA_CWR &&
3023 		    icsk->icsk_mtup.probe_size &&
3024 		    tp->snd_una == tp->mtu_probe.probe_seq_start) {
3025 			tcp_mtup_probe_failed(sk);
3026 			/* Restores the reduction we did in tcp_mtup_probe() */
3027 			tp->snd_cwnd++;
3028 			tcp_simple_retransmit(sk);
3029 			return;
3030 		}
3031 
3032 		/* Otherwise enter Recovery state */
3033 		tcp_enter_recovery(sk, ece_ack);
3034 		fast_rexmit = 1;
3035 	}
3036 
3037 	if (!tcp_is_rack(sk) && do_lost)
3038 		tcp_update_scoreboard(sk, fast_rexmit);
3039 	*rexmit = REXMIT_LOST;
3040 }
3041 
tcp_update_rtt_min(struct sock * sk,u32 rtt_us,const int flag)3042 static void tcp_update_rtt_min(struct sock *sk, u32 rtt_us, const int flag)
3043 {
3044 	u32 wlen = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_min_rtt_wlen) * HZ;
3045 	struct tcp_sock *tp = tcp_sk(sk);
3046 
3047 	if ((flag & FLAG_ACK_MAYBE_DELAYED) && rtt_us > tcp_min_rtt(tp)) {
3048 		/* If the remote keeps returning delayed ACKs, eventually
3049 		 * the min filter would pick it up and overestimate the
3050 		 * prop. delay when it expires. Skip suspected delayed ACKs.
3051 		 */
3052 		return;
3053 	}
3054 	minmax_running_min(&tp->rtt_min, wlen, tcp_jiffies32,
3055 			   rtt_us ? : jiffies_to_usecs(1));
3056 }
3057 
tcp_ack_update_rtt(struct sock * sk,const int flag,long seq_rtt_us,long sack_rtt_us,long ca_rtt_us,struct rate_sample * rs)3058 static bool tcp_ack_update_rtt(struct sock *sk, const int flag,
3059 			       long seq_rtt_us, long sack_rtt_us,
3060 			       long ca_rtt_us, struct rate_sample *rs)
3061 {
3062 	const struct tcp_sock *tp = tcp_sk(sk);
3063 
3064 	/* Prefer RTT measured from ACK's timing to TS-ECR. This is because
3065 	 * broken middle-boxes or peers may corrupt TS-ECR fields. But
3066 	 * Karn's algorithm forbids taking RTT if some retransmitted data
3067 	 * is acked (RFC6298).
3068 	 */
3069 	if (seq_rtt_us < 0)
3070 		seq_rtt_us = sack_rtt_us;
3071 
3072 	/* RTTM Rule: A TSecr value received in a segment is used to
3073 	 * update the averaged RTT measurement only if the segment
3074 	 * acknowledges some new data, i.e., only if it advances the
3075 	 * left edge of the send window.
3076 	 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3077 	 */
3078 	if (seq_rtt_us < 0 && tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
3079 	    flag & FLAG_ACKED) {
3080 		u32 delta = tcp_time_stamp(tp) - tp->rx_opt.rcv_tsecr;
3081 
3082 		if (likely(delta < INT_MAX / (USEC_PER_SEC / TCP_TS_HZ))) {
3083 			if (!delta)
3084 				delta = 1;
3085 			seq_rtt_us = delta * (USEC_PER_SEC / TCP_TS_HZ);
3086 			ca_rtt_us = seq_rtt_us;
3087 		}
3088 	}
3089 	rs->rtt_us = ca_rtt_us; /* RTT of last (S)ACKed packet (or -1) */
3090 	if (seq_rtt_us < 0)
3091 		return false;
3092 
3093 	/* ca_rtt_us >= 0 is counting on the invariant that ca_rtt_us is
3094 	 * always taken together with ACK, SACK, or TS-opts. Any negative
3095 	 * values will be skipped with the seq_rtt_us < 0 check above.
3096 	 */
3097 	tcp_update_rtt_min(sk, ca_rtt_us, flag);
3098 	tcp_rtt_estimator(sk, seq_rtt_us);
3099 	tcp_set_rto(sk);
3100 
3101 	/* RFC6298: only reset backoff on valid RTT measurement. */
3102 	inet_csk(sk)->icsk_backoff = 0;
3103 	return true;
3104 }
3105 
3106 /* Compute time elapsed between (last) SYNACK and the ACK completing 3WHS. */
tcp_synack_rtt_meas(struct sock * sk,struct request_sock * req)3107 void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req)
3108 {
3109 	struct rate_sample rs;
3110 	long rtt_us = -1L;
3111 
3112 	if (req && !req->num_retrans && tcp_rsk(req)->snt_synack)
3113 		rtt_us = tcp_stamp_us_delta(tcp_clock_us(), tcp_rsk(req)->snt_synack);
3114 
3115 	tcp_ack_update_rtt(sk, FLAG_SYN_ACKED, rtt_us, -1L, rtt_us, &rs);
3116 }
3117 
3118 
tcp_cong_avoid(struct sock * sk,u32 ack,u32 acked)3119 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 acked)
3120 {
3121 	const struct inet_connection_sock *icsk = inet_csk(sk);
3122 
3123 	icsk->icsk_ca_ops->cong_avoid(sk, ack, acked);
3124 	tcp_sk(sk)->snd_cwnd_stamp = tcp_jiffies32;
3125 }
3126 
3127 /* Restart timer after forward progress on connection.
3128  * RFC2988 recommends to restart timer to now+rto.
3129  */
tcp_rearm_rto(struct sock * sk)3130 void tcp_rearm_rto(struct sock *sk)
3131 {
3132 	const struct inet_connection_sock *icsk = inet_csk(sk);
3133 	struct tcp_sock *tp = tcp_sk(sk);
3134 
3135 	/* If the retrans timer is currently being used by Fast Open
3136 	 * for SYN-ACK retrans purpose, stay put.
3137 	 */
3138 	if (rcu_access_pointer(tp->fastopen_rsk))
3139 		return;
3140 
3141 	if (!tp->packets_out) {
3142 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3143 	} else {
3144 		u32 rto = inet_csk(sk)->icsk_rto;
3145 		/* Offset the time elapsed after installing regular RTO */
3146 		if (icsk->icsk_pending == ICSK_TIME_REO_TIMEOUT ||
3147 		    icsk->icsk_pending == ICSK_TIME_LOSS_PROBE) {
3148 			s64 delta_us = tcp_rto_delta_us(sk);
3149 			/* delta_us may not be positive if the socket is locked
3150 			 * when the retrans timer fires and is rescheduled.
3151 			 */
3152 			rto = usecs_to_jiffies(max_t(int, delta_us, 1));
3153 		}
3154 		tcp_reset_xmit_timer(sk, ICSK_TIME_RETRANS, rto,
3155 				     TCP_RTO_MAX);
3156 	}
3157 }
3158 
3159 /* Try to schedule a loss probe; if that doesn't work, then schedule an RTO. */
tcp_set_xmit_timer(struct sock * sk)3160 static void tcp_set_xmit_timer(struct sock *sk)
3161 {
3162 	if (!tcp_schedule_loss_probe(sk, true))
3163 		tcp_rearm_rto(sk);
3164 }
3165 
3166 /* If we get here, the whole TSO packet has not been acked. */
tcp_tso_acked(struct sock * sk,struct sk_buff * skb)3167 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3168 {
3169 	struct tcp_sock *tp = tcp_sk(sk);
3170 	u32 packets_acked;
3171 
3172 	BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3173 
3174 	packets_acked = tcp_skb_pcount(skb);
3175 	if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3176 		return 0;
3177 	packets_acked -= tcp_skb_pcount(skb);
3178 
3179 	if (packets_acked) {
3180 		BUG_ON(tcp_skb_pcount(skb) == 0);
3181 		BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3182 	}
3183 
3184 	return packets_acked;
3185 }
3186 
tcp_ack_tstamp(struct sock * sk,struct sk_buff * skb,u32 prior_snd_una)3187 static void tcp_ack_tstamp(struct sock *sk, struct sk_buff *skb,
3188 			   u32 prior_snd_una)
3189 {
3190 	const struct skb_shared_info *shinfo;
3191 
3192 	/* Avoid cache line misses to get skb_shinfo() and shinfo->tx_flags */
3193 	if (likely(!TCP_SKB_CB(skb)->txstamp_ack))
3194 		return;
3195 
3196 	shinfo = skb_shinfo(skb);
3197 	if (!before(shinfo->tskey, prior_snd_una) &&
3198 	    before(shinfo->tskey, tcp_sk(sk)->snd_una)) {
3199 		tcp_skb_tsorted_save(skb) {
3200 			__skb_tstamp_tx(skb, NULL, sk, SCM_TSTAMP_ACK);
3201 		} tcp_skb_tsorted_restore(skb);
3202 	}
3203 }
3204 
3205 /* Remove acknowledged frames from the retransmission queue. If our packet
3206  * is before the ack sequence we can discard it as it's confirmed to have
3207  * arrived at the other end.
3208  */
tcp_clean_rtx_queue(struct sock * sk,u32 prior_fack,u32 prior_snd_una,struct tcp_sacktag_state * sack,bool ece_ack)3209 static int tcp_clean_rtx_queue(struct sock *sk, u32 prior_fack,
3210 			       u32 prior_snd_una,
3211 			       struct tcp_sacktag_state *sack, bool ece_ack)
3212 {
3213 	const struct inet_connection_sock *icsk = inet_csk(sk);
3214 	u64 first_ackt, last_ackt;
3215 	struct tcp_sock *tp = tcp_sk(sk);
3216 	u32 prior_sacked = tp->sacked_out;
3217 	u32 reord = tp->snd_nxt; /* lowest acked un-retx un-sacked seq */
3218 	struct sk_buff *skb, *next;
3219 	bool fully_acked = true;
3220 	long sack_rtt_us = -1L;
3221 	long seq_rtt_us = -1L;
3222 	long ca_rtt_us = -1L;
3223 	u32 pkts_acked = 0;
3224 	u32 last_in_flight = 0;
3225 	bool rtt_update;
3226 	int flag = 0;
3227 
3228 	first_ackt = 0;
3229 
3230 	for (skb = skb_rb_first(&sk->tcp_rtx_queue); skb; skb = next) {
3231 		struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3232 		const u32 start_seq = scb->seq;
3233 		u8 sacked = scb->sacked;
3234 		u32 acked_pcount;
3235 
3236 		/* Determine how many packets and what bytes were acked, tso and else */
3237 		if (after(scb->end_seq, tp->snd_una)) {
3238 			if (tcp_skb_pcount(skb) == 1 ||
3239 			    !after(tp->snd_una, scb->seq))
3240 				break;
3241 
3242 			acked_pcount = tcp_tso_acked(sk, skb);
3243 			if (!acked_pcount)
3244 				break;
3245 			fully_acked = false;
3246 		} else {
3247 			acked_pcount = tcp_skb_pcount(skb);
3248 		}
3249 
3250 		if (unlikely(sacked & TCPCB_RETRANS)) {
3251 			if (sacked & TCPCB_SACKED_RETRANS)
3252 				tp->retrans_out -= acked_pcount;
3253 			flag |= FLAG_RETRANS_DATA_ACKED;
3254 		} else if (!(sacked & TCPCB_SACKED_ACKED)) {
3255 			last_ackt = tcp_skb_timestamp_us(skb);
3256 			WARN_ON_ONCE(last_ackt == 0);
3257 			if (!first_ackt)
3258 				first_ackt = last_ackt;
3259 
3260 			last_in_flight = TCP_SKB_CB(skb)->tx.in_flight;
3261 			if (before(start_seq, reord))
3262 				reord = start_seq;
3263 			if (!after(scb->end_seq, tp->high_seq))
3264 				flag |= FLAG_ORIG_SACK_ACKED;
3265 		}
3266 
3267 		if (sacked & TCPCB_SACKED_ACKED) {
3268 			tp->sacked_out -= acked_pcount;
3269 		} else if (tcp_is_sack(tp)) {
3270 			tcp_count_delivered(tp, acked_pcount, ece_ack);
3271 			if (!tcp_skb_spurious_retrans(tp, skb))
3272 				tcp_rack_advance(tp, sacked, scb->end_seq,
3273 						 tcp_skb_timestamp_us(skb));
3274 		}
3275 		if (sacked & TCPCB_LOST)
3276 			tp->lost_out -= acked_pcount;
3277 
3278 		tp->packets_out -= acked_pcount;
3279 		pkts_acked += acked_pcount;
3280 		tcp_rate_skb_delivered(sk, skb, sack->rate);
3281 
3282 		/* Initial outgoing SYN's get put onto the write_queue
3283 		 * just like anything else we transmit.  It is not
3284 		 * true data, and if we misinform our callers that
3285 		 * this ACK acks real data, we will erroneously exit
3286 		 * connection startup slow start one packet too
3287 		 * quickly.  This is severely frowned upon behavior.
3288 		 */
3289 		if (likely(!(scb->tcp_flags & TCPHDR_SYN))) {
3290 			flag |= FLAG_DATA_ACKED;
3291 		} else {
3292 			flag |= FLAG_SYN_ACKED;
3293 			tp->retrans_stamp = 0;
3294 		}
3295 
3296 		if (!fully_acked)
3297 			break;
3298 
3299 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3300 
3301 		next = skb_rb_next(skb);
3302 		if (unlikely(skb == tp->retransmit_skb_hint))
3303 			tp->retransmit_skb_hint = NULL;
3304 		if (unlikely(skb == tp->lost_skb_hint))
3305 			tp->lost_skb_hint = NULL;
3306 		tcp_highest_sack_replace(sk, skb, next);
3307 		tcp_rtx_queue_unlink_and_free(skb, sk);
3308 	}
3309 
3310 	if (!skb)
3311 		tcp_chrono_stop(sk, TCP_CHRONO_BUSY);
3312 
3313 	if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3314 		tp->snd_up = tp->snd_una;
3315 
3316 	if (skb) {
3317 		tcp_ack_tstamp(sk, skb, prior_snd_una);
3318 		if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)
3319 			flag |= FLAG_SACK_RENEGING;
3320 	}
3321 
3322 	if (likely(first_ackt) && !(flag & FLAG_RETRANS_DATA_ACKED)) {
3323 		seq_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, first_ackt);
3324 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, last_ackt);
3325 
3326 		if (pkts_acked == 1 && last_in_flight < tp->mss_cache &&
3327 		    last_in_flight && !prior_sacked && fully_acked &&
3328 		    sack->rate->prior_delivered + 1 == tp->delivered &&
3329 		    !(flag & (FLAG_CA_ALERT | FLAG_SYN_ACKED))) {
3330 			/* Conservatively mark a delayed ACK. It's typically
3331 			 * from a lone runt packet over the round trip to
3332 			 * a receiver w/o out-of-order or CE events.
3333 			 */
3334 			flag |= FLAG_ACK_MAYBE_DELAYED;
3335 		}
3336 	}
3337 	if (sack->first_sackt) {
3338 		sack_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->first_sackt);
3339 		ca_rtt_us = tcp_stamp_us_delta(tp->tcp_mstamp, sack->last_sackt);
3340 	}
3341 	rtt_update = tcp_ack_update_rtt(sk, flag, seq_rtt_us, sack_rtt_us,
3342 					ca_rtt_us, sack->rate);
3343 
3344 	if (flag & FLAG_ACKED) {
3345 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3346 		if (unlikely(icsk->icsk_mtup.probe_size &&
3347 			     !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3348 			tcp_mtup_probe_success(sk);
3349 		}
3350 
3351 		if (tcp_is_reno(tp)) {
3352 			tcp_remove_reno_sacks(sk, pkts_acked, ece_ack);
3353 
3354 			/* If any of the cumulatively ACKed segments was
3355 			 * retransmitted, non-SACK case cannot confirm that
3356 			 * progress was due to original transmission due to
3357 			 * lack of TCPCB_SACKED_ACKED bits even if some of
3358 			 * the packets may have been never retransmitted.
3359 			 */
3360 			if (flag & FLAG_RETRANS_DATA_ACKED)
3361 				flag &= ~FLAG_ORIG_SACK_ACKED;
3362 		} else {
3363 			int delta;
3364 
3365 			/* Non-retransmitted hole got filled? That's reordering */
3366 			if (before(reord, prior_fack))
3367 				tcp_check_sack_reordering(sk, reord, 0);
3368 
3369 			delta = prior_sacked - tp->sacked_out;
3370 			tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3371 		}
3372 	} else if (skb && rtt_update && sack_rtt_us >= 0 &&
3373 		   sack_rtt_us > tcp_stamp_us_delta(tp->tcp_mstamp,
3374 						    tcp_skb_timestamp_us(skb))) {
3375 		/* Do not re-arm RTO if the sack RTT is measured from data sent
3376 		 * after when the head was last (re)transmitted. Otherwise the
3377 		 * timeout may continue to extend in loss recovery.
3378 		 */
3379 		flag |= FLAG_SET_XMIT_TIMER;  /* set TLP or RTO timer */
3380 	}
3381 
3382 	if (icsk->icsk_ca_ops->pkts_acked) {
3383 		struct ack_sample sample = { .pkts_acked = pkts_acked,
3384 					     .rtt_us = sack->rate->rtt_us,
3385 					     .in_flight = last_in_flight };
3386 
3387 		icsk->icsk_ca_ops->pkts_acked(sk, &sample);
3388 	}
3389 
3390 #if FASTRETRANS_DEBUG > 0
3391 	WARN_ON((int)tp->sacked_out < 0);
3392 	WARN_ON((int)tp->lost_out < 0);
3393 	WARN_ON((int)tp->retrans_out < 0);
3394 	if (!tp->packets_out && tcp_is_sack(tp)) {
3395 		icsk = inet_csk(sk);
3396 		if (tp->lost_out) {
3397 			pr_debug("Leak l=%u %d\n",
3398 				 tp->lost_out, icsk->icsk_ca_state);
3399 			tp->lost_out = 0;
3400 		}
3401 		if (tp->sacked_out) {
3402 			pr_debug("Leak s=%u %d\n",
3403 				 tp->sacked_out, icsk->icsk_ca_state);
3404 			tp->sacked_out = 0;
3405 		}
3406 		if (tp->retrans_out) {
3407 			pr_debug("Leak r=%u %d\n",
3408 				 tp->retrans_out, icsk->icsk_ca_state);
3409 			tp->retrans_out = 0;
3410 		}
3411 	}
3412 #endif
3413 	return flag;
3414 }
3415 
tcp_ack_probe(struct sock * sk)3416 static void tcp_ack_probe(struct sock *sk)
3417 {
3418 	struct inet_connection_sock *icsk = inet_csk(sk);
3419 	struct sk_buff *head = tcp_send_head(sk);
3420 	const struct tcp_sock *tp = tcp_sk(sk);
3421 
3422 	/* Was it a usable window open? */
3423 	if (!head)
3424 		return;
3425 	if (!after(TCP_SKB_CB(head)->end_seq, tcp_wnd_end(tp))) {
3426 		icsk->icsk_backoff = 0;
3427 		icsk->icsk_probes_tstamp = 0;
3428 		inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3429 		/* Socket must be waked up by subsequent tcp_data_snd_check().
3430 		 * This function is not for random using!
3431 		 */
3432 	} else {
3433 		unsigned long when = tcp_probe0_when(sk, TCP_RTO_MAX);
3434 
3435 		when = tcp_clamp_probe0_to_user_timeout(sk, when);
3436 		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0, when, TCP_RTO_MAX);
3437 	}
3438 }
3439 
tcp_ack_is_dubious(const struct sock * sk,const int flag)3440 static inline bool tcp_ack_is_dubious(const struct sock *sk, const int flag)
3441 {
3442 	return !(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3443 		inet_csk(sk)->icsk_ca_state != TCP_CA_Open;
3444 }
3445 
3446 /* Decide wheather to run the increase function of congestion control. */
tcp_may_raise_cwnd(const struct sock * sk,const int flag)3447 static inline bool tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3448 {
3449 	/* If reordering is high then always grow cwnd whenever data is
3450 	 * delivered regardless of its ordering. Otherwise stay conservative
3451 	 * and only grow cwnd on in-order delivery (RFC5681). A stretched ACK w/
3452 	 * new SACK or ECE mark may first advance cwnd here and later reduce
3453 	 * cwnd in tcp_fastretrans_alert() based on more states.
3454 	 */
3455 	if (tcp_sk(sk)->reordering >
3456 	    READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_reordering))
3457 		return flag & FLAG_FORWARD_PROGRESS;
3458 
3459 	return flag & FLAG_DATA_ACKED;
3460 }
3461 
3462 /* The "ultimate" congestion control function that aims to replace the rigid
3463  * cwnd increase and decrease control (tcp_cong_avoid,tcp_*cwnd_reduction).
3464  * It's called toward the end of processing an ACK with precise rate
3465  * information. All transmission or retransmission are delayed afterwards.
3466  */
tcp_cong_control(struct sock * sk,u32 ack,u32 acked_sacked,int flag,const struct rate_sample * rs)3467 static void tcp_cong_control(struct sock *sk, u32 ack, u32 acked_sacked,
3468 			     int flag, const struct rate_sample *rs)
3469 {
3470 	const struct inet_connection_sock *icsk = inet_csk(sk);
3471 
3472 	if (icsk->icsk_ca_ops->cong_control) {
3473 		icsk->icsk_ca_ops->cong_control(sk, rs);
3474 		return;
3475 	}
3476 
3477 	if (tcp_in_cwnd_reduction(sk)) {
3478 		/* Reduce cwnd if state mandates */
3479 		tcp_cwnd_reduction(sk, acked_sacked, flag);
3480 	} else if (tcp_may_raise_cwnd(sk, flag)) {
3481 		/* Advance cwnd if state allows */
3482 		tcp_cong_avoid(sk, ack, acked_sacked);
3483 	}
3484 	tcp_update_pacing_rate(sk);
3485 }
3486 
3487 /* Check that window update is acceptable.
3488  * The function assumes that snd_una<=ack<=snd_next.
3489  */
tcp_may_update_window(const struct tcp_sock * tp,const u32 ack,const u32 ack_seq,const u32 nwin)3490 static inline bool tcp_may_update_window(const struct tcp_sock *tp,
3491 					const u32 ack, const u32 ack_seq,
3492 					const u32 nwin)
3493 {
3494 	return	after(ack, tp->snd_una) ||
3495 		after(ack_seq, tp->snd_wl1) ||
3496 		(ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd);
3497 }
3498 
3499 /* If we update tp->snd_una, also update tp->bytes_acked */
tcp_snd_una_update(struct tcp_sock * tp,u32 ack)3500 static void tcp_snd_una_update(struct tcp_sock *tp, u32 ack)
3501 {
3502 	u32 delta = ack - tp->snd_una;
3503 
3504 	sock_owned_by_me((struct sock *)tp);
3505 	tp->bytes_acked += delta;
3506 	tp->snd_una = ack;
3507 }
3508 
3509 /* If we update tp->rcv_nxt, also update tp->bytes_received */
tcp_rcv_nxt_update(struct tcp_sock * tp,u32 seq)3510 static void tcp_rcv_nxt_update(struct tcp_sock *tp, u32 seq)
3511 {
3512 	u32 delta = seq - tp->rcv_nxt;
3513 
3514 	sock_owned_by_me((struct sock *)tp);
3515 	tp->bytes_received += delta;
3516 	WRITE_ONCE(tp->rcv_nxt, seq);
3517 }
3518 
3519 /* Update our send window.
3520  *
3521  * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3522  * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3523  */
tcp_ack_update_window(struct sock * sk,const struct sk_buff * skb,u32 ack,u32 ack_seq)3524 static int tcp_ack_update_window(struct sock *sk, const struct sk_buff *skb, u32 ack,
3525 				 u32 ack_seq)
3526 {
3527 	struct tcp_sock *tp = tcp_sk(sk);
3528 	int flag = 0;
3529 	u32 nwin = ntohs(tcp_hdr(skb)->window);
3530 
3531 	if (likely(!tcp_hdr(skb)->syn))
3532 		nwin <<= tp->rx_opt.snd_wscale;
3533 
3534 	if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3535 		flag |= FLAG_WIN_UPDATE;
3536 		tcp_update_wl(tp, ack_seq);
3537 
3538 		if (tp->snd_wnd != nwin) {
3539 			tp->snd_wnd = nwin;
3540 
3541 			/* Note, it is the only place, where
3542 			 * fast path is recovered for sending TCP.
3543 			 */
3544 			tp->pred_flags = 0;
3545 			tcp_fast_path_check(sk);
3546 
3547 			if (!tcp_write_queue_empty(sk))
3548 				tcp_slow_start_after_idle_check(sk);
3549 
3550 			if (nwin > tp->max_window) {
3551 				tp->max_window = nwin;
3552 				tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3553 			}
3554 		}
3555 	}
3556 
3557 	tcp_snd_una_update(tp, ack);
3558 
3559 	return flag;
3560 }
3561 
__tcp_oow_rate_limited(struct net * net,int mib_idx,u32 * last_oow_ack_time)3562 static bool __tcp_oow_rate_limited(struct net *net, int mib_idx,
3563 				   u32 *last_oow_ack_time)
3564 {
3565 	/* Paired with the WRITE_ONCE() in this function. */
3566 	u32 val = READ_ONCE(*last_oow_ack_time);
3567 
3568 	if (val) {
3569 		s32 elapsed = (s32)(tcp_jiffies32 - val);
3570 
3571 		if (0 <= elapsed &&
3572 		    elapsed < READ_ONCE(net->ipv4.sysctl_tcp_invalid_ratelimit)) {
3573 			NET_INC_STATS(net, mib_idx);
3574 			return true;	/* rate-limited: don't send yet! */
3575 		}
3576 	}
3577 
3578 	/* Paired with the prior READ_ONCE() and with itself,
3579 	 * as we might be lockless.
3580 	 */
3581 	WRITE_ONCE(*last_oow_ack_time, tcp_jiffies32);
3582 
3583 	return false;	/* not rate-limited: go ahead, send dupack now! */
3584 }
3585 
3586 /* Return true if we're currently rate-limiting out-of-window ACKs and
3587  * thus shouldn't send a dupack right now. We rate-limit dupacks in
3588  * response to out-of-window SYNs or ACKs to mitigate ACK loops or DoS
3589  * attacks that send repeated SYNs or ACKs for the same connection. To
3590  * do this, we do not send a duplicate SYNACK or ACK if the remote
3591  * endpoint is sending out-of-window SYNs or pure ACKs at a high rate.
3592  */
tcp_oow_rate_limited(struct net * net,const struct sk_buff * skb,int mib_idx,u32 * last_oow_ack_time)3593 bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
3594 			  int mib_idx, u32 *last_oow_ack_time)
3595 {
3596 	/* Data packets without SYNs are not likely part of an ACK loop. */
3597 	if ((TCP_SKB_CB(skb)->seq != TCP_SKB_CB(skb)->end_seq) &&
3598 	    !tcp_hdr(skb)->syn)
3599 		return false;
3600 
3601 	return __tcp_oow_rate_limited(net, mib_idx, last_oow_ack_time);
3602 }
3603 
3604 /* RFC 5961 7 [ACK Throttling] */
tcp_send_challenge_ack(struct sock * sk,const struct sk_buff * skb)3605 static void tcp_send_challenge_ack(struct sock *sk, const struct sk_buff *skb)
3606 {
3607 	/* unprotected vars, we dont care of overwrites */
3608 	static u32 challenge_timestamp;
3609 	static unsigned int challenge_count;
3610 	struct tcp_sock *tp = tcp_sk(sk);
3611 	struct net *net = sock_net(sk);
3612 	u32 count, now;
3613 
3614 	/* First check our per-socket dupack rate limit. */
3615 	if (__tcp_oow_rate_limited(net,
3616 				   LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
3617 				   &tp->last_oow_ack_time))
3618 		return;
3619 
3620 	/* Then check host-wide RFC 5961 rate limit. */
3621 	now = jiffies / HZ;
3622 	if (now != READ_ONCE(challenge_timestamp)) {
3623 		u32 ack_limit = READ_ONCE(net->ipv4.sysctl_tcp_challenge_ack_limit);
3624 		u32 half = (ack_limit + 1) >> 1;
3625 
3626 		WRITE_ONCE(challenge_timestamp, now);
3627 		WRITE_ONCE(challenge_count, half + prandom_u32_max(ack_limit));
3628 	}
3629 	count = READ_ONCE(challenge_count);
3630 	if (count > 0) {
3631 		WRITE_ONCE(challenge_count, count - 1);
3632 		NET_INC_STATS(net, LINUX_MIB_TCPCHALLENGEACK);
3633 		tcp_send_ack(sk);
3634 	}
3635 }
3636 
tcp_store_ts_recent(struct tcp_sock * tp)3637 static void tcp_store_ts_recent(struct tcp_sock *tp)
3638 {
3639 	tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3640 	tp->rx_opt.ts_recent_stamp = ktime_get_seconds();
3641 }
3642 
tcp_replace_ts_recent(struct tcp_sock * tp,u32 seq)3643 static void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3644 {
3645 	if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3646 		/* PAWS bug workaround wrt. ACK frames, the PAWS discard
3647 		 * extra check below makes sure this can only happen
3648 		 * for pure ACK frames.  -DaveM
3649 		 *
3650 		 * Not only, also it occurs for expired timestamps.
3651 		 */
3652 
3653 		if (tcp_paws_check(&tp->rx_opt, 0))
3654 			tcp_store_ts_recent(tp);
3655 	}
3656 }
3657 
3658 /* This routine deals with acks during a TLP episode and ends an episode by
3659  * resetting tlp_high_seq. Ref: TLP algorithm in draft-ietf-tcpm-rack
3660  */
tcp_process_tlp_ack(struct sock * sk,u32 ack,int flag)3661 static void tcp_process_tlp_ack(struct sock *sk, u32 ack, int flag)
3662 {
3663 	struct tcp_sock *tp = tcp_sk(sk);
3664 
3665 	if (before(ack, tp->tlp_high_seq))
3666 		return;
3667 
3668 	if (!tp->tlp_retrans) {
3669 		/* TLP of new data has been acknowledged */
3670 		tp->tlp_high_seq = 0;
3671 	} else if (flag & FLAG_DSACKING_ACK) {
3672 		/* This DSACK means original and TLP probe arrived; no loss */
3673 		tp->tlp_high_seq = 0;
3674 	} else if (after(ack, tp->tlp_high_seq)) {
3675 		/* ACK advances: there was a loss, so reduce cwnd. Reset
3676 		 * tlp_high_seq in tcp_init_cwnd_reduction()
3677 		 */
3678 		tcp_init_cwnd_reduction(sk);
3679 		tcp_set_ca_state(sk, TCP_CA_CWR);
3680 		tcp_end_cwnd_reduction(sk);
3681 		tcp_try_keep_open(sk);
3682 		NET_INC_STATS(sock_net(sk),
3683 				LINUX_MIB_TCPLOSSPROBERECOVERY);
3684 	} else if (!(flag & (FLAG_SND_UNA_ADVANCED |
3685 			     FLAG_NOT_DUP | FLAG_DATA_SACKED))) {
3686 		/* Pure dupack: original and TLP probe arrived; no loss */
3687 		tp->tlp_high_seq = 0;
3688 	}
3689 }
3690 
tcp_in_ack_event(struct sock * sk,u32 flags)3691 static inline void tcp_in_ack_event(struct sock *sk, u32 flags)
3692 {
3693 	const struct inet_connection_sock *icsk = inet_csk(sk);
3694 
3695 	if (icsk->icsk_ca_ops->in_ack_event)
3696 		icsk->icsk_ca_ops->in_ack_event(sk, flags);
3697 }
3698 
3699 /* Congestion control has updated the cwnd already. So if we're in
3700  * loss recovery then now we do any new sends (for FRTO) or
3701  * retransmits (for CA_Loss or CA_recovery) that make sense.
3702  */
tcp_xmit_recovery(struct sock * sk,int rexmit)3703 static void tcp_xmit_recovery(struct sock *sk, int rexmit)
3704 {
3705 	struct tcp_sock *tp = tcp_sk(sk);
3706 
3707 	if (rexmit == REXMIT_NONE || sk->sk_state == TCP_SYN_SENT)
3708 		return;
3709 
3710 	if (unlikely(rexmit == REXMIT_NEW)) {
3711 		__tcp_push_pending_frames(sk, tcp_current_mss(sk),
3712 					  TCP_NAGLE_OFF);
3713 		if (after(tp->snd_nxt, tp->high_seq))
3714 			return;
3715 		tp->frto = 0;
3716 	}
3717 	tcp_xmit_retransmit_queue(sk);
3718 }
3719 
3720 /* Returns the number of packets newly acked or sacked by the current ACK */
tcp_newly_delivered(struct sock * sk,u32 prior_delivered,int flag)3721 static u32 tcp_newly_delivered(struct sock *sk, u32 prior_delivered, int flag)
3722 {
3723 	const struct net *net = sock_net(sk);
3724 	struct tcp_sock *tp = tcp_sk(sk);
3725 	u32 delivered;
3726 
3727 	delivered = tp->delivered - prior_delivered;
3728 	NET_ADD_STATS(net, LINUX_MIB_TCPDELIVERED, delivered);
3729 	if (flag & FLAG_ECE)
3730 		NET_ADD_STATS(net, LINUX_MIB_TCPDELIVEREDCE, delivered);
3731 
3732 	return delivered;
3733 }
3734 
3735 /* This routine deals with incoming acks, but not outgoing ones. */
tcp_ack(struct sock * sk,const struct sk_buff * skb,int flag)3736 static int tcp_ack(struct sock *sk, const struct sk_buff *skb, int flag)
3737 {
3738 	struct inet_connection_sock *icsk = inet_csk(sk);
3739 	struct tcp_sock *tp = tcp_sk(sk);
3740 	struct tcp_sacktag_state sack_state;
3741 	struct rate_sample rs = { .prior_delivered = 0 };
3742 	u32 prior_snd_una = tp->snd_una;
3743 	bool is_sack_reneg = tp->is_sack_reneg;
3744 	u32 ack_seq = TCP_SKB_CB(skb)->seq;
3745 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
3746 	int num_dupack = 0;
3747 	int prior_packets = tp->packets_out;
3748 	u32 delivered = tp->delivered;
3749 	u32 lost = tp->lost;
3750 	int rexmit = REXMIT_NONE; /* Flag to (re)transmit to recover losses */
3751 	u32 prior_fack;
3752 
3753 	sack_state.first_sackt = 0;
3754 	sack_state.rate = &rs;
3755 	sack_state.sack_delivered = 0;
3756 
3757 	/* We very likely will need to access rtx queue. */
3758 	prefetch(sk->tcp_rtx_queue.rb_node);
3759 
3760 	/* If the ack is older than previous acks
3761 	 * then we can probably ignore it.
3762 	 */
3763 	if (before(ack, prior_snd_una)) {
3764 		/* RFC 5961 5.2 [Blind Data Injection Attack].[Mitigation] */
3765 		if (before(ack, prior_snd_una - tp->max_window)) {
3766 			if (!(flag & FLAG_NO_CHALLENGE_ACK))
3767 				tcp_send_challenge_ack(sk, skb);
3768 			return -1;
3769 		}
3770 		goto old_ack;
3771 	}
3772 
3773 	/* If the ack includes data we haven't sent yet, discard
3774 	 * this segment (RFC793 Section 3.9).
3775 	 */
3776 	if (after(ack, tp->snd_nxt))
3777 		return -1;
3778 
3779 	if (after(ack, prior_snd_una)) {
3780 		flag |= FLAG_SND_UNA_ADVANCED;
3781 		icsk->icsk_retransmits = 0;
3782 
3783 #if IS_ENABLED(CONFIG_TLS_DEVICE)
3784 		if (static_branch_unlikely(&clean_acked_data_enabled.key))
3785 			if (icsk->icsk_clean_acked)
3786 				icsk->icsk_clean_acked(sk, ack);
3787 #endif
3788 	}
3789 
3790 	prior_fack = tcp_is_sack(tp) ? tcp_highest_sack_seq(tp) : tp->snd_una;
3791 	rs.prior_in_flight = tcp_packets_in_flight(tp);
3792 
3793 	/* ts_recent update must be made after we are sure that the packet
3794 	 * is in window.
3795 	 */
3796 	if (flag & FLAG_UPDATE_TS_RECENT)
3797 		tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
3798 
3799 	if ((flag & (FLAG_SLOWPATH | FLAG_SND_UNA_ADVANCED)) ==
3800 	    FLAG_SND_UNA_ADVANCED) {
3801 		/* Window is constant, pure forward advance.
3802 		 * No more checks are required.
3803 		 * Note, we use the fact that SND.UNA>=SND.WL2.
3804 		 */
3805 		tcp_update_wl(tp, ack_seq);
3806 		tcp_snd_una_update(tp, ack);
3807 		flag |= FLAG_WIN_UPDATE;
3808 
3809 		tcp_in_ack_event(sk, CA_ACK_WIN_UPDATE);
3810 
3811 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPACKS);
3812 	} else {
3813 		u32 ack_ev_flags = CA_ACK_SLOWPATH;
3814 
3815 		if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3816 			flag |= FLAG_DATA;
3817 		else
3818 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3819 
3820 		flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3821 
3822 		if (TCP_SKB_CB(skb)->sacked)
3823 			flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3824 							&sack_state);
3825 
3826 		if (tcp_ecn_rcv_ecn_echo(tp, tcp_hdr(skb))) {
3827 			flag |= FLAG_ECE;
3828 			ack_ev_flags |= CA_ACK_ECE;
3829 		}
3830 
3831 		if (sack_state.sack_delivered)
3832 			tcp_count_delivered(tp, sack_state.sack_delivered,
3833 					    flag & FLAG_ECE);
3834 
3835 		if (flag & FLAG_WIN_UPDATE)
3836 			ack_ev_flags |= CA_ACK_WIN_UPDATE;
3837 
3838 		tcp_in_ack_event(sk, ack_ev_flags);
3839 	}
3840 
3841 	/* This is a deviation from RFC3168 since it states that:
3842 	 * "When the TCP data sender is ready to set the CWR bit after reducing
3843 	 * the congestion window, it SHOULD set the CWR bit only on the first
3844 	 * new data packet that it transmits."
3845 	 * We accept CWR on pure ACKs to be more robust
3846 	 * with widely-deployed TCP implementations that do this.
3847 	 */
3848 	tcp_ecn_accept_cwr(sk, skb);
3849 
3850 	/* We passed data and got it acked, remove any soft error
3851 	 * log. Something worked...
3852 	 */
3853 	sk->sk_err_soft = 0;
3854 	icsk->icsk_probes_out = 0;
3855 	tp->rcv_tstamp = tcp_jiffies32;
3856 	if (!prior_packets)
3857 		goto no_queue;
3858 
3859 	/* See if we can take anything off of the retransmit queue. */
3860 	flag |= tcp_clean_rtx_queue(sk, prior_fack, prior_snd_una, &sack_state,
3861 				    flag & FLAG_ECE);
3862 
3863 	tcp_rack_update_reo_wnd(sk, &rs);
3864 
3865 	if (tp->tlp_high_seq)
3866 		tcp_process_tlp_ack(sk, ack, flag);
3867 
3868 	if (tcp_ack_is_dubious(sk, flag)) {
3869 		if (!(flag & (FLAG_SND_UNA_ADVANCED |
3870 			      FLAG_NOT_DUP | FLAG_DSACKING_ACK))) {
3871 			num_dupack = 1;
3872 			/* Consider if pure acks were aggregated in tcp_add_backlog() */
3873 			if (!(flag & FLAG_DATA))
3874 				num_dupack = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
3875 		}
3876 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3877 				      &rexmit);
3878 	}
3879 
3880 	/* If needed, reset TLP/RTO timer when RACK doesn't set. */
3881 	if (flag & FLAG_SET_XMIT_TIMER)
3882 		tcp_set_xmit_timer(sk);
3883 
3884 	if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3885 		sk_dst_confirm(sk);
3886 
3887 	delivered = tcp_newly_delivered(sk, delivered, flag);
3888 	lost = tp->lost - lost;			/* freshly marked lost */
3889 	rs.is_ack_delayed = !!(flag & FLAG_ACK_MAYBE_DELAYED);
3890 	tcp_rate_gen(sk, delivered, lost, is_sack_reneg, sack_state.rate);
3891 	tcp_cong_control(sk, ack, delivered, flag, sack_state.rate);
3892 	tcp_xmit_recovery(sk, rexmit);
3893 	return 1;
3894 
3895 no_queue:
3896 	/* If data was DSACKed, see if we can undo a cwnd reduction. */
3897 	if (flag & FLAG_DSACKING_ACK) {
3898 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3899 				      &rexmit);
3900 		tcp_newly_delivered(sk, delivered, flag);
3901 	}
3902 	/* If this ack opens up a zero window, clear backoff.  It was
3903 	 * being used to time the probes, and is probably far higher than
3904 	 * it needs to be for normal retransmission.
3905 	 */
3906 	tcp_ack_probe(sk);
3907 
3908 	if (tp->tlp_high_seq)
3909 		tcp_process_tlp_ack(sk, ack, flag);
3910 	return 1;
3911 
3912 old_ack:
3913 	/* If data was SACKed, tag it and see if we should send more data.
3914 	 * If data was DSACKed, see if we can undo a cwnd reduction.
3915 	 */
3916 	if (TCP_SKB_CB(skb)->sacked) {
3917 		flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una,
3918 						&sack_state);
3919 		tcp_fastretrans_alert(sk, prior_snd_una, num_dupack, &flag,
3920 				      &rexmit);
3921 		tcp_newly_delivered(sk, delivered, flag);
3922 		tcp_xmit_recovery(sk, rexmit);
3923 	}
3924 
3925 	return 0;
3926 }
3927 
tcp_parse_fastopen_option(int len,const unsigned char * cookie,bool syn,struct tcp_fastopen_cookie * foc,bool exp_opt)3928 static void tcp_parse_fastopen_option(int len, const unsigned char *cookie,
3929 				      bool syn, struct tcp_fastopen_cookie *foc,
3930 				      bool exp_opt)
3931 {
3932 	/* Valid only in SYN or SYN-ACK with an even length.  */
3933 	if (!foc || !syn || len < 0 || (len & 1))
3934 		return;
3935 
3936 	if (len >= TCP_FASTOPEN_COOKIE_MIN &&
3937 	    len <= TCP_FASTOPEN_COOKIE_MAX)
3938 		memcpy(foc->val, cookie, len);
3939 	else if (len != 0)
3940 		len = -1;
3941 	foc->len = len;
3942 	foc->exp = exp_opt;
3943 }
3944 
smc_parse_options(const struct tcphdr * th,struct tcp_options_received * opt_rx,const unsigned char * ptr,int opsize)3945 static bool smc_parse_options(const struct tcphdr *th,
3946 			      struct tcp_options_received *opt_rx,
3947 			      const unsigned char *ptr,
3948 			      int opsize)
3949 {
3950 #if IS_ENABLED(CONFIG_SMC)
3951 	if (static_branch_unlikely(&tcp_have_smc)) {
3952 		if (th->syn && !(opsize & 1) &&
3953 		    opsize >= TCPOLEN_EXP_SMC_BASE &&
3954 		    get_unaligned_be32(ptr) == TCPOPT_SMC_MAGIC) {
3955 			opt_rx->smc_ok = 1;
3956 			return true;
3957 		}
3958 	}
3959 #endif
3960 	return false;
3961 }
3962 
3963 /* Try to parse the MSS option from the TCP header. Return 0 on failure, clamped
3964  * value on success.
3965  */
tcp_parse_mss_option(const struct tcphdr * th,u16 user_mss)3966 static u16 tcp_parse_mss_option(const struct tcphdr *th, u16 user_mss)
3967 {
3968 	const unsigned char *ptr = (const unsigned char *)(th + 1);
3969 	int length = (th->doff * 4) - sizeof(struct tcphdr);
3970 	u16 mss = 0;
3971 
3972 	while (length > 0) {
3973 		int opcode = *ptr++;
3974 		int opsize;
3975 
3976 		switch (opcode) {
3977 		case TCPOPT_EOL:
3978 			return mss;
3979 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
3980 			length--;
3981 			continue;
3982 		default:
3983 			if (length < 2)
3984 				return mss;
3985 			opsize = *ptr++;
3986 			if (opsize < 2) /* "silly options" */
3987 				return mss;
3988 			if (opsize > length)
3989 				return mss;	/* fail on partial options */
3990 			if (opcode == TCPOPT_MSS && opsize == TCPOLEN_MSS) {
3991 				u16 in_mss = get_unaligned_be16(ptr);
3992 
3993 				if (in_mss) {
3994 					if (user_mss && user_mss < in_mss)
3995 						in_mss = user_mss;
3996 					mss = in_mss;
3997 				}
3998 			}
3999 			ptr += opsize - 2;
4000 			length -= opsize;
4001 		}
4002 	}
4003 	return mss;
4004 }
4005 
4006 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
4007  * But, this can also be called on packets in the established flow when
4008  * the fast version below fails.
4009  */
tcp_parse_options(const struct net * net,const struct sk_buff * skb,struct tcp_options_received * opt_rx,int estab,struct tcp_fastopen_cookie * foc)4010 void tcp_parse_options(const struct net *net,
4011 		       const struct sk_buff *skb,
4012 		       struct tcp_options_received *opt_rx, int estab,
4013 		       struct tcp_fastopen_cookie *foc)
4014 {
4015 	const unsigned char *ptr;
4016 	const struct tcphdr *th = tcp_hdr(skb);
4017 	int length = (th->doff * 4) - sizeof(struct tcphdr);
4018 
4019 	ptr = (const unsigned char *)(th + 1);
4020 	opt_rx->saw_tstamp = 0;
4021 	opt_rx->saw_unknown = 0;
4022 
4023 	while (length > 0) {
4024 		int opcode = *ptr++;
4025 		int opsize;
4026 
4027 		switch (opcode) {
4028 		case TCPOPT_EOL:
4029 			return;
4030 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
4031 			length--;
4032 			continue;
4033 		default:
4034 			if (length < 2)
4035 				return;
4036 			opsize = *ptr++;
4037 			if (opsize < 2) /* "silly options" */
4038 				return;
4039 			if (opsize > length)
4040 				return;	/* don't parse partial options */
4041 			switch (opcode) {
4042 			case TCPOPT_MSS:
4043 				if (opsize == TCPOLEN_MSS && th->syn && !estab) {
4044 					u16 in_mss = get_unaligned_be16(ptr);
4045 					if (in_mss) {
4046 						if (opt_rx->user_mss &&
4047 						    opt_rx->user_mss < in_mss)
4048 							in_mss = opt_rx->user_mss;
4049 						opt_rx->mss_clamp = in_mss;
4050 					}
4051 				}
4052 				break;
4053 			case TCPOPT_WINDOW:
4054 				if (opsize == TCPOLEN_WINDOW && th->syn &&
4055 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_window_scaling)) {
4056 					__u8 snd_wscale = *(__u8 *)ptr;
4057 					opt_rx->wscale_ok = 1;
4058 					if (snd_wscale > TCP_MAX_WSCALE) {
4059 						net_info_ratelimited("%s: Illegal window scaling value %d > %u received\n",
4060 								     __func__,
4061 								     snd_wscale,
4062 								     TCP_MAX_WSCALE);
4063 						snd_wscale = TCP_MAX_WSCALE;
4064 					}
4065 					opt_rx->snd_wscale = snd_wscale;
4066 				}
4067 				break;
4068 			case TCPOPT_TIMESTAMP:
4069 				if ((opsize == TCPOLEN_TIMESTAMP) &&
4070 				    ((estab && opt_rx->tstamp_ok) ||
4071 				     (!estab && READ_ONCE(net->ipv4.sysctl_tcp_timestamps)))) {
4072 					opt_rx->saw_tstamp = 1;
4073 					opt_rx->rcv_tsval = get_unaligned_be32(ptr);
4074 					opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
4075 				}
4076 				break;
4077 			case TCPOPT_SACK_PERM:
4078 				if (opsize == TCPOLEN_SACK_PERM && th->syn &&
4079 				    !estab && READ_ONCE(net->ipv4.sysctl_tcp_sack)) {
4080 					opt_rx->sack_ok = TCP_SACK_SEEN;
4081 					tcp_sack_reset(opt_rx);
4082 				}
4083 				break;
4084 
4085 			case TCPOPT_SACK:
4086 				if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
4087 				   !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
4088 				   opt_rx->sack_ok) {
4089 					TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
4090 				}
4091 				break;
4092 #ifdef CONFIG_TCP_MD5SIG
4093 			case TCPOPT_MD5SIG:
4094 				/*
4095 				 * The MD5 Hash has already been
4096 				 * checked (see tcp_v{4,6}_do_rcv()).
4097 				 */
4098 				break;
4099 #endif
4100 			case TCPOPT_FASTOPEN:
4101 				tcp_parse_fastopen_option(
4102 					opsize - TCPOLEN_FASTOPEN_BASE,
4103 					ptr, th->syn, foc, false);
4104 				break;
4105 
4106 			case TCPOPT_EXP:
4107 				/* Fast Open option shares code 254 using a
4108 				 * 16 bits magic number.
4109 				 */
4110 				if (opsize >= TCPOLEN_EXP_FASTOPEN_BASE &&
4111 				    get_unaligned_be16(ptr) ==
4112 				    TCPOPT_FASTOPEN_MAGIC) {
4113 					tcp_parse_fastopen_option(opsize -
4114 						TCPOLEN_EXP_FASTOPEN_BASE,
4115 						ptr + 2, th->syn, foc, true);
4116 					break;
4117 				}
4118 
4119 				if (smc_parse_options(th, opt_rx, ptr, opsize))
4120 					break;
4121 
4122 				opt_rx->saw_unknown = 1;
4123 				break;
4124 
4125 			default:
4126 				opt_rx->saw_unknown = 1;
4127 			}
4128 			ptr += opsize-2;
4129 			length -= opsize;
4130 		}
4131 	}
4132 }
4133 EXPORT_SYMBOL(tcp_parse_options);
4134 
tcp_parse_aligned_timestamp(struct tcp_sock * tp,const struct tcphdr * th)4135 static bool tcp_parse_aligned_timestamp(struct tcp_sock *tp, const struct tcphdr *th)
4136 {
4137 	const __be32 *ptr = (const __be32 *)(th + 1);
4138 
4139 	if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
4140 			  | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
4141 		tp->rx_opt.saw_tstamp = 1;
4142 		++ptr;
4143 		tp->rx_opt.rcv_tsval = ntohl(*ptr);
4144 		++ptr;
4145 		if (*ptr)
4146 			tp->rx_opt.rcv_tsecr = ntohl(*ptr) - tp->tsoffset;
4147 		else
4148 			tp->rx_opt.rcv_tsecr = 0;
4149 		return true;
4150 	}
4151 	return false;
4152 }
4153 
4154 /* Fast parse options. This hopes to only see timestamps.
4155  * If it is wrong it falls back on tcp_parse_options().
4156  */
tcp_fast_parse_options(const struct net * net,const struct sk_buff * skb,const struct tcphdr * th,struct tcp_sock * tp)4157 static bool tcp_fast_parse_options(const struct net *net,
4158 				   const struct sk_buff *skb,
4159 				   const struct tcphdr *th, struct tcp_sock *tp)
4160 {
4161 	/* In the spirit of fast parsing, compare doff directly to constant
4162 	 * values.  Because equality is used, short doff can be ignored here.
4163 	 */
4164 	if (th->doff == (sizeof(*th) / 4)) {
4165 		tp->rx_opt.saw_tstamp = 0;
4166 		return false;
4167 	} else if (tp->rx_opt.tstamp_ok &&
4168 		   th->doff == ((sizeof(*th) + TCPOLEN_TSTAMP_ALIGNED) / 4)) {
4169 		if (tcp_parse_aligned_timestamp(tp, th))
4170 			return true;
4171 	}
4172 
4173 	tcp_parse_options(net, skb, &tp->rx_opt, 1, NULL);
4174 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
4175 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
4176 
4177 	return true;
4178 }
4179 
4180 #ifdef CONFIG_TCP_MD5SIG
4181 /*
4182  * Parse MD5 Signature option
4183  */
tcp_parse_md5sig_option(const struct tcphdr * th)4184 const u8 *tcp_parse_md5sig_option(const struct tcphdr *th)
4185 {
4186 	int length = (th->doff << 2) - sizeof(*th);
4187 	const u8 *ptr = (const u8 *)(th + 1);
4188 
4189 	/* If not enough data remaining, we can short cut */
4190 	while (length >= TCPOLEN_MD5SIG) {
4191 		int opcode = *ptr++;
4192 		int opsize;
4193 
4194 		switch (opcode) {
4195 		case TCPOPT_EOL:
4196 			return NULL;
4197 		case TCPOPT_NOP:
4198 			length--;
4199 			continue;
4200 		default:
4201 			opsize = *ptr++;
4202 			if (opsize < 2 || opsize > length)
4203 				return NULL;
4204 			if (opcode == TCPOPT_MD5SIG)
4205 				return opsize == TCPOLEN_MD5SIG ? ptr : NULL;
4206 		}
4207 		ptr += opsize - 2;
4208 		length -= opsize;
4209 	}
4210 	return NULL;
4211 }
4212 EXPORT_SYMBOL(tcp_parse_md5sig_option);
4213 #endif
4214 
4215 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
4216  *
4217  * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
4218  * it can pass through stack. So, the following predicate verifies that
4219  * this segment is not used for anything but congestion avoidance or
4220  * fast retransmit. Moreover, we even are able to eliminate most of such
4221  * second order effects, if we apply some small "replay" window (~RTO)
4222  * to timestamp space.
4223  *
4224  * All these measures still do not guarantee that we reject wrapped ACKs
4225  * on networks with high bandwidth, when sequence space is recycled fastly,
4226  * but it guarantees that such events will be very rare and do not affect
4227  * connection seriously. This doesn't look nice, but alas, PAWS is really
4228  * buggy extension.
4229  *
4230  * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
4231  * states that events when retransmit arrives after original data are rare.
4232  * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
4233  * the biggest problem on large power networks even with minor reordering.
4234  * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
4235  * up to bandwidth of 18Gigabit/sec. 8) ]
4236  */
4237 
tcp_disordered_ack(const struct sock * sk,const struct sk_buff * skb)4238 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
4239 {
4240 	const struct tcp_sock *tp = tcp_sk(sk);
4241 	const struct tcphdr *th = tcp_hdr(skb);
4242 	u32 seq = TCP_SKB_CB(skb)->seq;
4243 	u32 ack = TCP_SKB_CB(skb)->ack_seq;
4244 
4245 	return (/* 1. Pure ACK with correct sequence number. */
4246 		(th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
4247 
4248 		/* 2. ... and duplicate ACK. */
4249 		ack == tp->snd_una &&
4250 
4251 		/* 3. ... and does not update window. */
4252 		!tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
4253 
4254 		/* 4. ... and sits in replay window. */
4255 		(s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
4256 }
4257 
tcp_paws_discard(const struct sock * sk,const struct sk_buff * skb)4258 static inline bool tcp_paws_discard(const struct sock *sk,
4259 				   const struct sk_buff *skb)
4260 {
4261 	const struct tcp_sock *tp = tcp_sk(sk);
4262 
4263 	return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
4264 	       !tcp_disordered_ack(sk, skb);
4265 }
4266 
4267 /* Check segment sequence number for validity.
4268  *
4269  * Segment controls are considered valid, if the segment
4270  * fits to the window after truncation to the window. Acceptability
4271  * of data (and SYN, FIN, of course) is checked separately.
4272  * See tcp_data_queue(), for example.
4273  *
4274  * Also, controls (RST is main one) are accepted using RCV.WUP instead
4275  * of RCV.NXT. Peer still did not advance his SND.UNA when we
4276  * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
4277  * (borrowed from freebsd)
4278  */
4279 
tcp_sequence(const struct tcp_sock * tp,u32 seq,u32 end_seq)4280 static inline bool tcp_sequence(const struct tcp_sock *tp, u32 seq, u32 end_seq)
4281 {
4282 	return	!before(end_seq, tp->rcv_wup) &&
4283 		!after(seq, tp->rcv_nxt + tcp_receive_window(tp));
4284 }
4285 
4286 /* When we get a reset we do this. */
tcp_reset(struct sock * sk)4287 void tcp_reset(struct sock *sk)
4288 {
4289 	trace_tcp_receive_reset(sk);
4290 
4291 	/* We want the right error as BSD sees it (and indeed as we do). */
4292 	switch (sk->sk_state) {
4293 	case TCP_SYN_SENT:
4294 		sk->sk_err = ECONNREFUSED;
4295 		break;
4296 	case TCP_CLOSE_WAIT:
4297 		sk->sk_err = EPIPE;
4298 		break;
4299 	case TCP_CLOSE:
4300 		return;
4301 	default:
4302 		sk->sk_err = ECONNRESET;
4303 	}
4304 	/* This barrier is coupled with smp_rmb() in tcp_poll() */
4305 	smp_wmb();
4306 
4307 	tcp_write_queue_purge(sk);
4308 	tcp_done(sk);
4309 
4310 	if (!sock_flag(sk, SOCK_DEAD))
4311 		sk->sk_error_report(sk);
4312 }
4313 
4314 /*
4315  * 	Process the FIN bit. This now behaves as it is supposed to work
4316  *	and the FIN takes effect when it is validly part of sequence
4317  *	space. Not before when we get holes.
4318  *
4319  *	If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
4320  *	(and thence onto LAST-ACK and finally, CLOSE, we never enter
4321  *	TIME-WAIT)
4322  *
4323  *	If we are in FINWAIT-1, a received FIN indicates simultaneous
4324  *	close and we go into CLOSING (and later onto TIME-WAIT)
4325  *
4326  *	If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
4327  */
tcp_fin(struct sock * sk)4328 void tcp_fin(struct sock *sk)
4329 {
4330 	struct tcp_sock *tp = tcp_sk(sk);
4331 
4332 	inet_csk_schedule_ack(sk);
4333 
4334 	WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | RCV_SHUTDOWN);
4335 	sock_set_flag(sk, SOCK_DONE);
4336 
4337 	switch (sk->sk_state) {
4338 	case TCP_SYN_RECV:
4339 	case TCP_ESTABLISHED:
4340 		/* Move to CLOSE_WAIT */
4341 		tcp_set_state(sk, TCP_CLOSE_WAIT);
4342 		inet_csk_enter_pingpong_mode(sk);
4343 		break;
4344 
4345 	case TCP_CLOSE_WAIT:
4346 	case TCP_CLOSING:
4347 		/* Received a retransmission of the FIN, do
4348 		 * nothing.
4349 		 */
4350 		break;
4351 	case TCP_LAST_ACK:
4352 		/* RFC793: Remain in the LAST-ACK state. */
4353 		break;
4354 
4355 	case TCP_FIN_WAIT1:
4356 		/* This case occurs when a simultaneous close
4357 		 * happens, we must ack the received FIN and
4358 		 * enter the CLOSING state.
4359 		 */
4360 		tcp_send_ack(sk);
4361 		tcp_set_state(sk, TCP_CLOSING);
4362 		break;
4363 	case TCP_FIN_WAIT2:
4364 		/* Received a FIN -- send ACK and enter TIME_WAIT. */
4365 		tcp_send_ack(sk);
4366 		tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4367 		break;
4368 	default:
4369 		/* Only TCP_LISTEN and TCP_CLOSE are left, in these
4370 		 * cases we should never reach this piece of code.
4371 		 */
4372 		pr_err("%s: Impossible, sk->sk_state=%d\n",
4373 		       __func__, sk->sk_state);
4374 		break;
4375 	}
4376 
4377 	/* It _is_ possible, that we have something out-of-order _after_ FIN.
4378 	 * Probably, we should reset in this case. For now drop them.
4379 	 */
4380 	skb_rbtree_purge(&tp->out_of_order_queue);
4381 	if (tcp_is_sack(tp))
4382 		tcp_sack_reset(&tp->rx_opt);
4383 	sk_mem_reclaim(sk);
4384 
4385 	if (!sock_flag(sk, SOCK_DEAD)) {
4386 		sk->sk_state_change(sk);
4387 
4388 		/* Do not send POLL_HUP for half duplex close. */
4389 		if (sk->sk_shutdown == SHUTDOWN_MASK ||
4390 		    sk->sk_state == TCP_CLOSE)
4391 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4392 		else
4393 			sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4394 	}
4395 }
4396 
tcp_sack_extend(struct tcp_sack_block * sp,u32 seq,u32 end_seq)4397 static inline bool tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4398 				  u32 end_seq)
4399 {
4400 	if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4401 		if (before(seq, sp->start_seq))
4402 			sp->start_seq = seq;
4403 		if (after(end_seq, sp->end_seq))
4404 			sp->end_seq = end_seq;
4405 		return true;
4406 	}
4407 	return false;
4408 }
4409 
tcp_dsack_set(struct sock * sk,u32 seq,u32 end_seq)4410 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4411 {
4412 	struct tcp_sock *tp = tcp_sk(sk);
4413 
4414 	if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4415 		int mib_idx;
4416 
4417 		if (before(seq, tp->rcv_nxt))
4418 			mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4419 		else
4420 			mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4421 
4422 		NET_INC_STATS(sock_net(sk), mib_idx);
4423 
4424 		tp->rx_opt.dsack = 1;
4425 		tp->duplicate_sack[0].start_seq = seq;
4426 		tp->duplicate_sack[0].end_seq = end_seq;
4427 	}
4428 }
4429 
tcp_dsack_extend(struct sock * sk,u32 seq,u32 end_seq)4430 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4431 {
4432 	struct tcp_sock *tp = tcp_sk(sk);
4433 
4434 	if (!tp->rx_opt.dsack)
4435 		tcp_dsack_set(sk, seq, end_seq);
4436 	else
4437 		tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4438 }
4439 
tcp_rcv_spurious_retrans(struct sock * sk,const struct sk_buff * skb)4440 static void tcp_rcv_spurious_retrans(struct sock *sk, const struct sk_buff *skb)
4441 {
4442 	/* When the ACK path fails or drops most ACKs, the sender would
4443 	 * timeout and spuriously retransmit the same segment repeatedly.
4444 	 * The receiver remembers and reflects via DSACKs. Leverage the
4445 	 * DSACK state and change the txhash to re-route speculatively.
4446 	 */
4447 	if (TCP_SKB_CB(skb)->seq == tcp_sk(sk)->duplicate_sack[0].start_seq &&
4448 	    sk_rethink_txhash(sk))
4449 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPDUPLICATEDATAREHASH);
4450 }
4451 
tcp_send_dupack(struct sock * sk,const struct sk_buff * skb)4452 static void tcp_send_dupack(struct sock *sk, const struct sk_buff *skb)
4453 {
4454 	struct tcp_sock *tp = tcp_sk(sk);
4455 
4456 	if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4457 	    before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4458 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4459 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
4460 
4461 		if (tcp_is_sack(tp) && READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_dsack)) {
4462 			u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4463 
4464 			tcp_rcv_spurious_retrans(sk, skb);
4465 			if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4466 				end_seq = tp->rcv_nxt;
4467 			tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4468 		}
4469 	}
4470 
4471 	tcp_send_ack(sk);
4472 }
4473 
4474 /* These routines update the SACK block as out-of-order packets arrive or
4475  * in-order packets close up the sequence space.
4476  */
tcp_sack_maybe_coalesce(struct tcp_sock * tp)4477 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4478 {
4479 	int this_sack;
4480 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4481 	struct tcp_sack_block *swalk = sp + 1;
4482 
4483 	/* See if the recent change to the first SACK eats into
4484 	 * or hits the sequence space of other SACK blocks, if so coalesce.
4485 	 */
4486 	for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4487 		if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4488 			int i;
4489 
4490 			/* Zap SWALK, by moving every further SACK up by one slot.
4491 			 * Decrease num_sacks.
4492 			 */
4493 			tp->rx_opt.num_sacks--;
4494 			for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4495 				sp[i] = sp[i + 1];
4496 			continue;
4497 		}
4498 		this_sack++;
4499 		swalk++;
4500 	}
4501 }
4502 
tcp_sack_compress_send_ack(struct sock * sk)4503 static void tcp_sack_compress_send_ack(struct sock *sk)
4504 {
4505 	struct tcp_sock *tp = tcp_sk(sk);
4506 
4507 	if (!tp->compressed_ack)
4508 		return;
4509 
4510 	if (hrtimer_try_to_cancel(&tp->compressed_ack_timer) == 1)
4511 		__sock_put(sk);
4512 
4513 	/* Since we have to send one ack finally,
4514 	 * substract one from tp->compressed_ack to keep
4515 	 * LINUX_MIB_TCPACKCOMPRESSED accurate.
4516 	 */
4517 	NET_ADD_STATS(sock_net(sk), LINUX_MIB_TCPACKCOMPRESSED,
4518 		      tp->compressed_ack - 1);
4519 
4520 	tp->compressed_ack = 0;
4521 	tcp_send_ack(sk);
4522 }
4523 
4524 /* Reasonable amount of sack blocks included in TCP SACK option
4525  * The max is 4, but this becomes 3 if TCP timestamps are there.
4526  * Given that SACK packets might be lost, be conservative and use 2.
4527  */
4528 #define TCP_SACK_BLOCKS_EXPECTED 2
4529 
tcp_sack_new_ofo_skb(struct sock * sk,u32 seq,u32 end_seq)4530 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4531 {
4532 	struct tcp_sock *tp = tcp_sk(sk);
4533 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4534 	int cur_sacks = tp->rx_opt.num_sacks;
4535 	int this_sack;
4536 
4537 	if (!cur_sacks)
4538 		goto new_sack;
4539 
4540 	for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4541 		if (tcp_sack_extend(sp, seq, end_seq)) {
4542 			if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4543 				tcp_sack_compress_send_ack(sk);
4544 			/* Rotate this_sack to the first one. */
4545 			for (; this_sack > 0; this_sack--, sp--)
4546 				swap(*sp, *(sp - 1));
4547 			if (cur_sacks > 1)
4548 				tcp_sack_maybe_coalesce(tp);
4549 			return;
4550 		}
4551 	}
4552 
4553 	if (this_sack >= TCP_SACK_BLOCKS_EXPECTED)
4554 		tcp_sack_compress_send_ack(sk);
4555 
4556 	/* Could not find an adjacent existing SACK, build a new one,
4557 	 * put it at the front, and shift everyone else down.  We
4558 	 * always know there is at least one SACK present already here.
4559 	 *
4560 	 * If the sack array is full, forget about the last one.
4561 	 */
4562 	if (this_sack >= TCP_NUM_SACKS) {
4563 		this_sack--;
4564 		tp->rx_opt.num_sacks--;
4565 		sp--;
4566 	}
4567 	for (; this_sack > 0; this_sack--, sp--)
4568 		*sp = *(sp - 1);
4569 
4570 new_sack:
4571 	/* Build the new head SACK, and we're done. */
4572 	sp->start_seq = seq;
4573 	sp->end_seq = end_seq;
4574 	tp->rx_opt.num_sacks++;
4575 }
4576 
4577 /* RCV.NXT advances, some SACKs should be eaten. */
4578 
tcp_sack_remove(struct tcp_sock * tp)4579 static void tcp_sack_remove(struct tcp_sock *tp)
4580 {
4581 	struct tcp_sack_block *sp = &tp->selective_acks[0];
4582 	int num_sacks = tp->rx_opt.num_sacks;
4583 	int this_sack;
4584 
4585 	/* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4586 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4587 		tp->rx_opt.num_sacks = 0;
4588 		return;
4589 	}
4590 
4591 	for (this_sack = 0; this_sack < num_sacks;) {
4592 		/* Check if the start of the sack is covered by RCV.NXT. */
4593 		if (!before(tp->rcv_nxt, sp->start_seq)) {
4594 			int i;
4595 
4596 			/* RCV.NXT must cover all the block! */
4597 			WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4598 
4599 			/* Zap this SACK, by moving forward any other SACKS. */
4600 			for (i = this_sack+1; i < num_sacks; i++)
4601 				tp->selective_acks[i-1] = tp->selective_acks[i];
4602 			num_sacks--;
4603 			continue;
4604 		}
4605 		this_sack++;
4606 		sp++;
4607 	}
4608 	tp->rx_opt.num_sacks = num_sacks;
4609 }
4610 
4611 /**
4612  * tcp_try_coalesce - try to merge skb to prior one
4613  * @sk: socket
4614  * @to: prior buffer
4615  * @from: buffer to add in queue
4616  * @fragstolen: pointer to boolean
4617  *
4618  * Before queueing skb @from after @to, try to merge them
4619  * to reduce overall memory use and queue lengths, if cost is small.
4620  * Packets in ofo or receive queues can stay a long time.
4621  * Better try to coalesce them right now to avoid future collapses.
4622  * Returns true if caller should free @from instead of queueing it
4623  */
tcp_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4624 static bool tcp_try_coalesce(struct sock *sk,
4625 			     struct sk_buff *to,
4626 			     struct sk_buff *from,
4627 			     bool *fragstolen)
4628 {
4629 	int delta;
4630 
4631 	*fragstolen = false;
4632 
4633 	/* Its possible this segment overlaps with prior segment in queue */
4634 	if (TCP_SKB_CB(from)->seq != TCP_SKB_CB(to)->end_seq)
4635 		return false;
4636 
4637 	if (!mptcp_skb_can_collapse(to, from))
4638 		return false;
4639 
4640 #ifdef CONFIG_TLS_DEVICE
4641 	if (from->decrypted != to->decrypted)
4642 		return false;
4643 #endif
4644 
4645 	if (!skb_try_coalesce(to, from, fragstolen, &delta))
4646 		return false;
4647 
4648 	atomic_add(delta, &sk->sk_rmem_alloc);
4649 	sk_mem_charge(sk, delta);
4650 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOALESCE);
4651 	TCP_SKB_CB(to)->end_seq = TCP_SKB_CB(from)->end_seq;
4652 	TCP_SKB_CB(to)->ack_seq = TCP_SKB_CB(from)->ack_seq;
4653 	TCP_SKB_CB(to)->tcp_flags |= TCP_SKB_CB(from)->tcp_flags;
4654 
4655 	if (TCP_SKB_CB(from)->has_rxtstamp) {
4656 		TCP_SKB_CB(to)->has_rxtstamp = true;
4657 		to->tstamp = from->tstamp;
4658 		skb_hwtstamps(to)->hwtstamp = skb_hwtstamps(from)->hwtstamp;
4659 	}
4660 
4661 	return true;
4662 }
4663 
tcp_ooo_try_coalesce(struct sock * sk,struct sk_buff * to,struct sk_buff * from,bool * fragstolen)4664 static bool tcp_ooo_try_coalesce(struct sock *sk,
4665 			     struct sk_buff *to,
4666 			     struct sk_buff *from,
4667 			     bool *fragstolen)
4668 {
4669 	bool res = tcp_try_coalesce(sk, to, from, fragstolen);
4670 
4671 	/* In case tcp_drop() is called later, update to->gso_segs */
4672 	if (res) {
4673 		u32 gso_segs = max_t(u16, 1, skb_shinfo(to)->gso_segs) +
4674 			       max_t(u16, 1, skb_shinfo(from)->gso_segs);
4675 
4676 		skb_shinfo(to)->gso_segs = min_t(u32, gso_segs, 0xFFFF);
4677 	}
4678 	return res;
4679 }
4680 
tcp_drop(struct sock * sk,struct sk_buff * skb)4681 static void tcp_drop(struct sock *sk, struct sk_buff *skb)
4682 {
4683 	sk_drops_add(sk, skb);
4684 	__kfree_skb(skb);
4685 }
4686 
4687 /* This one checks to see if we can put data from the
4688  * out_of_order queue into the receive_queue.
4689  */
tcp_ofo_queue(struct sock * sk)4690 static void tcp_ofo_queue(struct sock *sk)
4691 {
4692 	struct tcp_sock *tp = tcp_sk(sk);
4693 	__u32 dsack_high = tp->rcv_nxt;
4694 	bool fin, fragstolen, eaten;
4695 	struct sk_buff *skb, *tail;
4696 	struct rb_node *p;
4697 
4698 	p = rb_first(&tp->out_of_order_queue);
4699 	while (p) {
4700 		skb = rb_to_skb(p);
4701 		if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4702 			break;
4703 
4704 		if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4705 			__u32 dsack = dsack_high;
4706 			if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4707 				dsack_high = TCP_SKB_CB(skb)->end_seq;
4708 			tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4709 		}
4710 		p = rb_next(p);
4711 		rb_erase(&skb->rbnode, &tp->out_of_order_queue);
4712 
4713 		if (unlikely(!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))) {
4714 			tcp_drop(sk, skb);
4715 			continue;
4716 		}
4717 
4718 		tail = skb_peek_tail(&sk->sk_receive_queue);
4719 		eaten = tail && tcp_try_coalesce(sk, tail, skb, &fragstolen);
4720 		tcp_rcv_nxt_update(tp, TCP_SKB_CB(skb)->end_seq);
4721 		fin = TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN;
4722 		if (!eaten)
4723 			__skb_queue_tail(&sk->sk_receive_queue, skb);
4724 		else
4725 			kfree_skb_partial(skb, fragstolen);
4726 
4727 		if (unlikely(fin)) {
4728 			tcp_fin(sk);
4729 			/* tcp_fin() purges tp->out_of_order_queue,
4730 			 * so we must end this loop right now.
4731 			 */
4732 			break;
4733 		}
4734 	}
4735 }
4736 
4737 static bool tcp_prune_ofo_queue(struct sock *sk);
4738 static int tcp_prune_queue(struct sock *sk);
4739 
tcp_try_rmem_schedule(struct sock * sk,struct sk_buff * skb,unsigned int size)4740 static int tcp_try_rmem_schedule(struct sock *sk, struct sk_buff *skb,
4741 				 unsigned int size)
4742 {
4743 	if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4744 	    !sk_rmem_schedule(sk, skb, size)) {
4745 
4746 		if (tcp_prune_queue(sk) < 0)
4747 			return -1;
4748 
4749 		while (!sk_rmem_schedule(sk, skb, size)) {
4750 			if (!tcp_prune_ofo_queue(sk))
4751 				return -1;
4752 		}
4753 	}
4754 	return 0;
4755 }
4756 
tcp_data_queue_ofo(struct sock * sk,struct sk_buff * skb)4757 static void tcp_data_queue_ofo(struct sock *sk, struct sk_buff *skb)
4758 {
4759 	struct tcp_sock *tp = tcp_sk(sk);
4760 	struct rb_node **p, *parent;
4761 	struct sk_buff *skb1;
4762 	u32 seq, end_seq;
4763 	bool fragstolen;
4764 
4765 	tcp_ecn_check_ce(sk, skb);
4766 
4767 	if (unlikely(tcp_try_rmem_schedule(sk, skb, skb->truesize))) {
4768 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFODROP);
4769 		sk->sk_data_ready(sk);
4770 		tcp_drop(sk, skb);
4771 		return;
4772 	}
4773 
4774 	/* Disable header prediction. */
4775 	tp->pred_flags = 0;
4776 	inet_csk_schedule_ack(sk);
4777 
4778 	tp->rcv_ooopack += max_t(u16, 1, skb_shinfo(skb)->gso_segs);
4779 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOQUEUE);
4780 	seq = TCP_SKB_CB(skb)->seq;
4781 	end_seq = TCP_SKB_CB(skb)->end_seq;
4782 
4783 	p = &tp->out_of_order_queue.rb_node;
4784 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
4785 		/* Initial out of order segment, build 1 SACK. */
4786 		if (tcp_is_sack(tp)) {
4787 			tp->rx_opt.num_sacks = 1;
4788 			tp->selective_acks[0].start_seq = seq;
4789 			tp->selective_acks[0].end_seq = end_seq;
4790 		}
4791 		rb_link_node(&skb->rbnode, NULL, p);
4792 		rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4793 		tp->ooo_last_skb = skb;
4794 		goto end;
4795 	}
4796 
4797 	/* In the typical case, we are adding an skb to the end of the list.
4798 	 * Use of ooo_last_skb avoids the O(Log(N)) rbtree lookup.
4799 	 */
4800 	if (tcp_ooo_try_coalesce(sk, tp->ooo_last_skb,
4801 				 skb, &fragstolen)) {
4802 coalesce_done:
4803 		/* For non sack flows, do not grow window to force DUPACK
4804 		 * and trigger fast retransmit.
4805 		 */
4806 		if (tcp_is_sack(tp))
4807 			tcp_grow_window(sk, skb, true);
4808 		kfree_skb_partial(skb, fragstolen);
4809 		skb = NULL;
4810 		goto add_sack;
4811 	}
4812 	/* Can avoid an rbtree lookup if we are adding skb after ooo_last_skb */
4813 	if (!before(seq, TCP_SKB_CB(tp->ooo_last_skb)->end_seq)) {
4814 		parent = &tp->ooo_last_skb->rbnode;
4815 		p = &parent->rb_right;
4816 		goto insert;
4817 	}
4818 
4819 	/* Find place to insert this segment. Handle overlaps on the way. */
4820 	parent = NULL;
4821 	while (*p) {
4822 		parent = *p;
4823 		skb1 = rb_to_skb(parent);
4824 		if (before(seq, TCP_SKB_CB(skb1)->seq)) {
4825 			p = &parent->rb_left;
4826 			continue;
4827 		}
4828 		if (before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4829 			if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4830 				/* All the bits are present. Drop. */
4831 				NET_INC_STATS(sock_net(sk),
4832 					      LINUX_MIB_TCPOFOMERGE);
4833 				tcp_drop(sk, skb);
4834 				skb = NULL;
4835 				tcp_dsack_set(sk, seq, end_seq);
4836 				goto add_sack;
4837 			}
4838 			if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4839 				/* Partial overlap. */
4840 				tcp_dsack_set(sk, seq, TCP_SKB_CB(skb1)->end_seq);
4841 			} else {
4842 				/* skb's seq == skb1's seq and skb covers skb1.
4843 				 * Replace skb1 with skb.
4844 				 */
4845 				rb_replace_node(&skb1->rbnode, &skb->rbnode,
4846 						&tp->out_of_order_queue);
4847 				tcp_dsack_extend(sk,
4848 						 TCP_SKB_CB(skb1)->seq,
4849 						 TCP_SKB_CB(skb1)->end_seq);
4850 				NET_INC_STATS(sock_net(sk),
4851 					      LINUX_MIB_TCPOFOMERGE);
4852 				tcp_drop(sk, skb1);
4853 				goto merge_right;
4854 			}
4855 		} else if (tcp_ooo_try_coalesce(sk, skb1,
4856 						skb, &fragstolen)) {
4857 			goto coalesce_done;
4858 		}
4859 		p = &parent->rb_right;
4860 	}
4861 insert:
4862 	/* Insert segment into RB tree. */
4863 	rb_link_node(&skb->rbnode, parent, p);
4864 	rb_insert_color(&skb->rbnode, &tp->out_of_order_queue);
4865 
4866 merge_right:
4867 	/* Remove other segments covered by skb. */
4868 	while ((skb1 = skb_rb_next(skb)) != NULL) {
4869 		if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4870 			break;
4871 		if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4872 			tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4873 					 end_seq);
4874 			break;
4875 		}
4876 		rb_erase(&skb1->rbnode, &tp->out_of_order_queue);
4877 		tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4878 				 TCP_SKB_CB(skb1)->end_seq);
4879 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPOFOMERGE);
4880 		tcp_drop(sk, skb1);
4881 	}
4882 	/* If there is no skb after us, we are the last_skb ! */
4883 	if (!skb1)
4884 		tp->ooo_last_skb = skb;
4885 
4886 add_sack:
4887 	if (tcp_is_sack(tp))
4888 		tcp_sack_new_ofo_skb(sk, seq, end_seq);
4889 end:
4890 	if (skb) {
4891 		/* For non sack flows, do not grow window to force DUPACK
4892 		 * and trigger fast retransmit.
4893 		 */
4894 		if (tcp_is_sack(tp))
4895 			tcp_grow_window(sk, skb, false);
4896 		skb_condense(skb);
4897 		skb_set_owner_r(skb, sk);
4898 	}
4899 }
4900 
tcp_queue_rcv(struct sock * sk,struct sk_buff * skb,bool * fragstolen)4901 static int __must_check tcp_queue_rcv(struct sock *sk, struct sk_buff *skb,
4902 				      bool *fragstolen)
4903 {
4904 	int eaten;
4905 	struct sk_buff *tail = skb_peek_tail(&sk->sk_receive_queue);
4906 
4907 	eaten = (tail &&
4908 		 tcp_try_coalesce(sk, tail,
4909 				  skb, fragstolen)) ? 1 : 0;
4910 	tcp_rcv_nxt_update(tcp_sk(sk), TCP_SKB_CB(skb)->end_seq);
4911 	if (!eaten) {
4912 		__skb_queue_tail(&sk->sk_receive_queue, skb);
4913 		skb_set_owner_r(skb, sk);
4914 	}
4915 	return eaten;
4916 }
4917 
tcp_send_rcvq(struct sock * sk,struct msghdr * msg,size_t size)4918 int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size)
4919 {
4920 	struct sk_buff *skb;
4921 	int err = -ENOMEM;
4922 	int data_len = 0;
4923 	bool fragstolen;
4924 
4925 	if (size == 0)
4926 		return 0;
4927 
4928 	if (size > PAGE_SIZE) {
4929 		int npages = min_t(size_t, size >> PAGE_SHIFT, MAX_SKB_FRAGS);
4930 
4931 		data_len = npages << PAGE_SHIFT;
4932 		size = data_len + (size & ~PAGE_MASK);
4933 	}
4934 	skb = alloc_skb_with_frags(size - data_len, data_len,
4935 				   PAGE_ALLOC_COSTLY_ORDER,
4936 				   &err, sk->sk_allocation);
4937 	if (!skb)
4938 		goto err;
4939 
4940 	skb_put(skb, size - data_len);
4941 	skb->data_len = data_len;
4942 	skb->len = size;
4943 
4944 	if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
4945 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
4946 		goto err_free;
4947 	}
4948 
4949 	err = skb_copy_datagram_from_iter(skb, 0, &msg->msg_iter, size);
4950 	if (err)
4951 		goto err_free;
4952 
4953 	TCP_SKB_CB(skb)->seq = tcp_sk(sk)->rcv_nxt;
4954 	TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + size;
4955 	TCP_SKB_CB(skb)->ack_seq = tcp_sk(sk)->snd_una - 1;
4956 
4957 	if (tcp_queue_rcv(sk, skb, &fragstolen)) {
4958 		WARN_ON_ONCE(fragstolen); /* should not happen */
4959 		__kfree_skb(skb);
4960 	}
4961 	return size;
4962 
4963 err_free:
4964 	kfree_skb(skb);
4965 err:
4966 	return err;
4967 
4968 }
4969 
tcp_data_ready(struct sock * sk)4970 void tcp_data_ready(struct sock *sk)
4971 {
4972 	const struct tcp_sock *tp = tcp_sk(sk);
4973 	int avail = tp->rcv_nxt - tp->copied_seq;
4974 
4975 	if (avail < sk->sk_rcvlowat && !tcp_rmem_pressure(sk) &&
4976 	    !sock_flag(sk, SOCK_DONE) &&
4977 	    tcp_receive_window(tp) > inet_csk(sk)->icsk_ack.rcv_mss)
4978 		return;
4979 
4980 	sk->sk_data_ready(sk);
4981 }
4982 
tcp_data_queue(struct sock * sk,struct sk_buff * skb)4983 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4984 {
4985 	struct tcp_sock *tp = tcp_sk(sk);
4986 	bool fragstolen;
4987 	int eaten;
4988 
4989 	if (sk_is_mptcp(sk))
4990 		mptcp_incoming_options(sk, skb);
4991 
4992 	if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq) {
4993 		__kfree_skb(skb);
4994 		return;
4995 	}
4996 	skb_dst_drop(skb);
4997 	__skb_pull(skb, tcp_hdr(skb)->doff * 4);
4998 
4999 	tp->rx_opt.dsack = 0;
5000 
5001 	/*  Queue data for delivery to the user.
5002 	 *  Packets in sequence go to the receive queue.
5003 	 *  Out of sequence packets to the out_of_order_queue.
5004 	 */
5005 	if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
5006 		if (tcp_receive_window(tp) == 0) {
5007 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5008 			goto out_of_window;
5009 		}
5010 
5011 		/* Ok. In sequence. In window. */
5012 queue_and_out:
5013 		if (skb_queue_len(&sk->sk_receive_queue) == 0)
5014 			sk_forced_mem_schedule(sk, skb->truesize);
5015 		else if (tcp_try_rmem_schedule(sk, skb, skb->truesize)) {
5016 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVQDROP);
5017 			sk->sk_data_ready(sk);
5018 			goto drop;
5019 		}
5020 
5021 		eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5022 		if (skb->len)
5023 			tcp_event_data_recv(sk, skb);
5024 		if (TCP_SKB_CB(skb)->tcp_flags & TCPHDR_FIN)
5025 			tcp_fin(sk);
5026 
5027 		if (!RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5028 			tcp_ofo_queue(sk);
5029 
5030 			/* RFC5681. 4.2. SHOULD send immediate ACK, when
5031 			 * gap in queue is filled.
5032 			 */
5033 			if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5034 				inet_csk(sk)->icsk_ack.pending |= ICSK_ACK_NOW;
5035 		}
5036 
5037 		if (tp->rx_opt.num_sacks)
5038 			tcp_sack_remove(tp);
5039 
5040 		tcp_fast_path_check(sk);
5041 
5042 		if (eaten > 0)
5043 			kfree_skb_partial(skb, fragstolen);
5044 		if (!sock_flag(sk, SOCK_DEAD))
5045 			tcp_data_ready(sk);
5046 		return;
5047 	}
5048 
5049 	if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
5050 		tcp_rcv_spurious_retrans(sk, skb);
5051 		/* A retransmit, 2nd most common case.  Force an immediate ack. */
5052 		NET_INC_STATS(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
5053 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
5054 
5055 out_of_window:
5056 		tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
5057 		inet_csk_schedule_ack(sk);
5058 drop:
5059 		tcp_drop(sk, skb);
5060 		return;
5061 	}
5062 
5063 	/* Out of window. F.e. zero window probe. */
5064 	if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
5065 		goto out_of_window;
5066 
5067 	if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5068 		/* Partial packet, seq < rcv_next < end_seq */
5069 		tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
5070 
5071 		/* If window is closed, drop tail of packet. But after
5072 		 * remembering D-SACK for its head made in previous line.
5073 		 */
5074 		if (!tcp_receive_window(tp)) {
5075 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPZEROWINDOWDROP);
5076 			goto out_of_window;
5077 		}
5078 		goto queue_and_out;
5079 	}
5080 
5081 	tcp_data_queue_ofo(sk, skb);
5082 }
5083 
tcp_skb_next(struct sk_buff * skb,struct sk_buff_head * list)5084 static struct sk_buff *tcp_skb_next(struct sk_buff *skb, struct sk_buff_head *list)
5085 {
5086 	if (list)
5087 		return !skb_queue_is_last(list, skb) ? skb->next : NULL;
5088 
5089 	return skb_rb_next(skb);
5090 }
5091 
tcp_collapse_one(struct sock * sk,struct sk_buff * skb,struct sk_buff_head * list,struct rb_root * root)5092 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
5093 					struct sk_buff_head *list,
5094 					struct rb_root *root)
5095 {
5096 	struct sk_buff *next = tcp_skb_next(skb, list);
5097 
5098 	if (list)
5099 		__skb_unlink(skb, list);
5100 	else
5101 		rb_erase(&skb->rbnode, root);
5102 
5103 	__kfree_skb(skb);
5104 	NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
5105 
5106 	return next;
5107 }
5108 
5109 /* Insert skb into rb tree, ordered by TCP_SKB_CB(skb)->seq */
tcp_rbtree_insert(struct rb_root * root,struct sk_buff * skb)5110 void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb)
5111 {
5112 	struct rb_node **p = &root->rb_node;
5113 	struct rb_node *parent = NULL;
5114 	struct sk_buff *skb1;
5115 
5116 	while (*p) {
5117 		parent = *p;
5118 		skb1 = rb_to_skb(parent);
5119 		if (before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb1)->seq))
5120 			p = &parent->rb_left;
5121 		else
5122 			p = &parent->rb_right;
5123 	}
5124 	rb_link_node(&skb->rbnode, parent, p);
5125 	rb_insert_color(&skb->rbnode, root);
5126 }
5127 
5128 /* Collapse contiguous sequence of skbs head..tail with
5129  * sequence numbers start..end.
5130  *
5131  * If tail is NULL, this means until the end of the queue.
5132  *
5133  * Segments with FIN/SYN are not collapsed (only because this
5134  * simplifies code)
5135  */
5136 static void
tcp_collapse(struct sock * sk,struct sk_buff_head * list,struct rb_root * root,struct sk_buff * head,struct sk_buff * tail,u32 start,u32 end)5137 tcp_collapse(struct sock *sk, struct sk_buff_head *list, struct rb_root *root,
5138 	     struct sk_buff *head, struct sk_buff *tail, u32 start, u32 end)
5139 {
5140 	struct sk_buff *skb = head, *n;
5141 	struct sk_buff_head tmp;
5142 	bool end_of_skbs;
5143 
5144 	/* First, check that queue is collapsible and find
5145 	 * the point where collapsing can be useful.
5146 	 */
5147 restart:
5148 	for (end_of_skbs = true; skb != NULL && skb != tail; skb = n) {
5149 		n = tcp_skb_next(skb, list);
5150 
5151 		/* No new bits? It is possible on ofo queue. */
5152 		if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5153 			skb = tcp_collapse_one(sk, skb, list, root);
5154 			if (!skb)
5155 				break;
5156 			goto restart;
5157 		}
5158 
5159 		/* The first skb to collapse is:
5160 		 * - not SYN/FIN and
5161 		 * - bloated or contains data before "start" or
5162 		 *   overlaps to the next one and mptcp allow collapsing.
5163 		 */
5164 		if (!(TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)) &&
5165 		    (tcp_win_from_space(sk, skb->truesize) > skb->len ||
5166 		     before(TCP_SKB_CB(skb)->seq, start))) {
5167 			end_of_skbs = false;
5168 			break;
5169 		}
5170 
5171 		if (n && n != tail && mptcp_skb_can_collapse(skb, n) &&
5172 		    TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(n)->seq) {
5173 			end_of_skbs = false;
5174 			break;
5175 		}
5176 
5177 		/* Decided to skip this, advance start seq. */
5178 		start = TCP_SKB_CB(skb)->end_seq;
5179 	}
5180 	if (end_of_skbs ||
5181 	    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5182 		return;
5183 
5184 	__skb_queue_head_init(&tmp);
5185 
5186 	while (before(start, end)) {
5187 		int copy = min_t(int, SKB_MAX_ORDER(0, 0), end - start);
5188 		struct sk_buff *nskb;
5189 
5190 		nskb = alloc_skb(copy, GFP_ATOMIC);
5191 		if (!nskb)
5192 			break;
5193 
5194 		memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
5195 #ifdef CONFIG_TLS_DEVICE
5196 		nskb->decrypted = skb->decrypted;
5197 #endif
5198 		TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
5199 		if (list)
5200 			__skb_queue_before(list, skb, nskb);
5201 		else
5202 			__skb_queue_tail(&tmp, nskb); /* defer rbtree insertion */
5203 		skb_set_owner_r(nskb, sk);
5204 		mptcp_skb_ext_move(nskb, skb);
5205 
5206 		/* Copy data, releasing collapsed skbs. */
5207 		while (copy > 0) {
5208 			int offset = start - TCP_SKB_CB(skb)->seq;
5209 			int size = TCP_SKB_CB(skb)->end_seq - start;
5210 
5211 			BUG_ON(offset < 0);
5212 			if (size > 0) {
5213 				size = min(copy, size);
5214 				if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
5215 					BUG();
5216 				TCP_SKB_CB(nskb)->end_seq += size;
5217 				copy -= size;
5218 				start += size;
5219 			}
5220 			if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
5221 				skb = tcp_collapse_one(sk, skb, list, root);
5222 				if (!skb ||
5223 				    skb == tail ||
5224 				    !mptcp_skb_can_collapse(nskb, skb) ||
5225 				    (TCP_SKB_CB(skb)->tcp_flags & (TCPHDR_SYN | TCPHDR_FIN)))
5226 					goto end;
5227 #ifdef CONFIG_TLS_DEVICE
5228 				if (skb->decrypted != nskb->decrypted)
5229 					goto end;
5230 #endif
5231 			}
5232 		}
5233 	}
5234 end:
5235 	skb_queue_walk_safe(&tmp, skb, n)
5236 		tcp_rbtree_insert(root, skb);
5237 }
5238 
5239 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
5240  * and tcp_collapse() them until all the queue is collapsed.
5241  */
tcp_collapse_ofo_queue(struct sock * sk)5242 static void tcp_collapse_ofo_queue(struct sock *sk)
5243 {
5244 	struct tcp_sock *tp = tcp_sk(sk);
5245 	u32 range_truesize, sum_tiny = 0;
5246 	struct sk_buff *skb, *head;
5247 	u32 start, end;
5248 
5249 	skb = skb_rb_first(&tp->out_of_order_queue);
5250 new_range:
5251 	if (!skb) {
5252 		tp->ooo_last_skb = skb_rb_last(&tp->out_of_order_queue);
5253 		return;
5254 	}
5255 	start = TCP_SKB_CB(skb)->seq;
5256 	end = TCP_SKB_CB(skb)->end_seq;
5257 	range_truesize = skb->truesize;
5258 
5259 	for (head = skb;;) {
5260 		skb = skb_rb_next(skb);
5261 
5262 		/* Range is terminated when we see a gap or when
5263 		 * we are at the queue end.
5264 		 */
5265 		if (!skb ||
5266 		    after(TCP_SKB_CB(skb)->seq, end) ||
5267 		    before(TCP_SKB_CB(skb)->end_seq, start)) {
5268 			/* Do not attempt collapsing tiny skbs */
5269 			if (range_truesize != head->truesize ||
5270 			    end - start >= SKB_WITH_OVERHEAD(SK_MEM_QUANTUM)) {
5271 				tcp_collapse(sk, NULL, &tp->out_of_order_queue,
5272 					     head, skb, start, end);
5273 			} else {
5274 				sum_tiny += range_truesize;
5275 				if (sum_tiny > sk->sk_rcvbuf >> 3)
5276 					return;
5277 			}
5278 			goto new_range;
5279 		}
5280 
5281 		range_truesize += skb->truesize;
5282 		if (unlikely(before(TCP_SKB_CB(skb)->seq, start)))
5283 			start = TCP_SKB_CB(skb)->seq;
5284 		if (after(TCP_SKB_CB(skb)->end_seq, end))
5285 			end = TCP_SKB_CB(skb)->end_seq;
5286 	}
5287 }
5288 
5289 /*
5290  * Clean the out-of-order queue to make room.
5291  * We drop high sequences packets to :
5292  * 1) Let a chance for holes to be filled.
5293  * 2) not add too big latencies if thousands of packets sit there.
5294  *    (But if application shrinks SO_RCVBUF, we could still end up
5295  *     freeing whole queue here)
5296  * 3) Drop at least 12.5 % of sk_rcvbuf to avoid malicious attacks.
5297  *
5298  * Return true if queue has shrunk.
5299  */
tcp_prune_ofo_queue(struct sock * sk)5300 static bool tcp_prune_ofo_queue(struct sock *sk)
5301 {
5302 	struct tcp_sock *tp = tcp_sk(sk);
5303 	struct rb_node *node, *prev;
5304 	int goal;
5305 
5306 	if (RB_EMPTY_ROOT(&tp->out_of_order_queue))
5307 		return false;
5308 
5309 	NET_INC_STATS(sock_net(sk), LINUX_MIB_OFOPRUNED);
5310 	goal = sk->sk_rcvbuf >> 3;
5311 	node = &tp->ooo_last_skb->rbnode;
5312 	do {
5313 		prev = rb_prev(node);
5314 		rb_erase(node, &tp->out_of_order_queue);
5315 		goal -= rb_to_skb(node)->truesize;
5316 		tcp_drop(sk, rb_to_skb(node));
5317 		if (!prev || goal <= 0) {
5318 			sk_mem_reclaim(sk);
5319 			if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf &&
5320 			    !tcp_under_memory_pressure(sk))
5321 				break;
5322 			goal = sk->sk_rcvbuf >> 3;
5323 		}
5324 		node = prev;
5325 	} while (node);
5326 	tp->ooo_last_skb = rb_to_skb(prev);
5327 
5328 	/* Reset SACK state.  A conforming SACK implementation will
5329 	 * do the same at a timeout based retransmit.  When a connection
5330 	 * is in a sad state like this, we care only about integrity
5331 	 * of the connection not performance.
5332 	 */
5333 	if (tp->rx_opt.sack_ok)
5334 		tcp_sack_reset(&tp->rx_opt);
5335 	return true;
5336 }
5337 
5338 /* Reduce allocated memory if we can, trying to get
5339  * the socket within its memory limits again.
5340  *
5341  * Return less than zero if we should start dropping frames
5342  * until the socket owning process reads some of the data
5343  * to stabilize the situation.
5344  */
tcp_prune_queue(struct sock * sk)5345 static int tcp_prune_queue(struct sock *sk)
5346 {
5347 	struct tcp_sock *tp = tcp_sk(sk);
5348 
5349 	NET_INC_STATS(sock_net(sk), LINUX_MIB_PRUNECALLED);
5350 
5351 	if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
5352 		tcp_clamp_window(sk);
5353 	else if (tcp_under_memory_pressure(sk))
5354 		tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
5355 
5356 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5357 		return 0;
5358 
5359 	tcp_collapse_ofo_queue(sk);
5360 	if (!skb_queue_empty(&sk->sk_receive_queue))
5361 		tcp_collapse(sk, &sk->sk_receive_queue, NULL,
5362 			     skb_peek(&sk->sk_receive_queue),
5363 			     NULL,
5364 			     tp->copied_seq, tp->rcv_nxt);
5365 	sk_mem_reclaim(sk);
5366 
5367 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5368 		return 0;
5369 
5370 	/* Collapsing did not help, destructive actions follow.
5371 	 * This must not ever occur. */
5372 
5373 	tcp_prune_ofo_queue(sk);
5374 
5375 	if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
5376 		return 0;
5377 
5378 	/* If we are really being abused, tell the caller to silently
5379 	 * drop receive data on the floor.  It will get retransmitted
5380 	 * and hopefully then we'll have sufficient space.
5381 	 */
5382 	NET_INC_STATS(sock_net(sk), LINUX_MIB_RCVPRUNED);
5383 
5384 	/* Massive buffer overcommit. */
5385 	tp->pred_flags = 0;
5386 	return -1;
5387 }
5388 
tcp_should_expand_sndbuf(const struct sock * sk)5389 static bool tcp_should_expand_sndbuf(const struct sock *sk)
5390 {
5391 	const struct tcp_sock *tp = tcp_sk(sk);
5392 
5393 	/* If the user specified a specific send buffer setting, do
5394 	 * not modify it.
5395 	 */
5396 	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
5397 		return false;
5398 
5399 	/* If we are under global TCP memory pressure, do not expand.  */
5400 	if (tcp_under_memory_pressure(sk))
5401 		return false;
5402 
5403 	/* If we are under soft global TCP memory pressure, do not expand.  */
5404 	if (sk_memory_allocated(sk) >= sk_prot_mem_limits(sk, 0))
5405 		return false;
5406 
5407 	/* If we filled the congestion window, do not expand.  */
5408 	if (tcp_packets_in_flight(tp) >= tp->snd_cwnd)
5409 		return false;
5410 
5411 	return true;
5412 }
5413 
tcp_new_space(struct sock * sk)5414 static void tcp_new_space(struct sock *sk)
5415 {
5416 	struct tcp_sock *tp = tcp_sk(sk);
5417 
5418 	if (tcp_should_expand_sndbuf(sk)) {
5419 		tcp_sndbuf_expand(sk);
5420 		tp->snd_cwnd_stamp = tcp_jiffies32;
5421 	}
5422 
5423 	sk->sk_write_space(sk);
5424 }
5425 
5426 /* Caller made space either from:
5427  * 1) Freeing skbs in rtx queues (after tp->snd_una has advanced)
5428  * 2) Sent skbs from output queue (and thus advancing tp->snd_nxt)
5429  *
5430  * We might be able to generate EPOLLOUT to the application if:
5431  * 1) Space consumed in output/rtx queues is below sk->sk_sndbuf/2
5432  * 2) notsent amount (tp->write_seq - tp->snd_nxt) became
5433  *    small enough that tcp_stream_memory_free() decides it
5434  *    is time to generate EPOLLOUT.
5435  */
tcp_check_space(struct sock * sk)5436 void tcp_check_space(struct sock *sk)
5437 {
5438 	/* pairs with tcp_poll() */
5439 	smp_mb();
5440 	if (sk->sk_socket &&
5441 	    test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
5442 		tcp_new_space(sk);
5443 		if (!test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
5444 			tcp_chrono_stop(sk, TCP_CHRONO_SNDBUF_LIMITED);
5445 	}
5446 }
5447 
tcp_data_snd_check(struct sock * sk)5448 static inline void tcp_data_snd_check(struct sock *sk)
5449 {
5450 	tcp_push_pending_frames(sk);
5451 	tcp_check_space(sk);
5452 }
5453 
5454 /*
5455  * Check if sending an ack is needed.
5456  */
__tcp_ack_snd_check(struct sock * sk,int ofo_possible)5457 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
5458 {
5459 	struct tcp_sock *tp = tcp_sk(sk);
5460 	unsigned long rtt, delay;
5461 	__u16 rcv_mss = inet_csk(sk)->icsk_ack.rcv_mss;
5462 #ifdef CONFIG_LOWPOWER_PROTOCOL
5463 	rcv_mss *= tcp_ack_num(sk);
5464 #endif /* CONFIG_LOWPOWER_PROTOCOL */
5465 	    /* More than one full frame received... */
5466 	if (((tp->rcv_nxt - tp->rcv_wup) > rcv_mss &&
5467 	     /* ... and right edge of window advances far enough.
5468 	      * (tcp_recvmsg() will send ACK otherwise).
5469 	      * If application uses SO_RCVLOWAT, we want send ack now if
5470 	      * we have not received enough bytes to satisfy the condition.
5471 	      */
5472 	    (tp->rcv_nxt - tp->copied_seq < sk->sk_rcvlowat ||
5473 	     __tcp_select_window(sk) >= tp->rcv_wnd)) ||
5474 	    /* We ACK each frame or... */
5475 	    tcp_in_quickack_mode(sk) ||
5476 	    /* Protocol state mandates a one-time immediate ACK */
5477 	    inet_csk(sk)->icsk_ack.pending & ICSK_ACK_NOW) {
5478 send_now:
5479 		tcp_send_ack(sk);
5480 		return;
5481 	}
5482 
5483 	if (!ofo_possible || RB_EMPTY_ROOT(&tp->out_of_order_queue)) {
5484 		tcp_send_delayed_ack(sk);
5485 		return;
5486 	}
5487 
5488 	if (!tcp_is_sack(tp) ||
5489 	    tp->compressed_ack >= READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_nr))
5490 		goto send_now;
5491 
5492 	if (tp->compressed_ack_rcv_nxt != tp->rcv_nxt) {
5493 		tp->compressed_ack_rcv_nxt = tp->rcv_nxt;
5494 		tp->dup_ack_counter = 0;
5495 	}
5496 	if (tp->dup_ack_counter < TCP_FASTRETRANS_THRESH) {
5497 		tp->dup_ack_counter++;
5498 		goto send_now;
5499 	}
5500 	tp->compressed_ack++;
5501 	if (hrtimer_is_queued(&tp->compressed_ack_timer))
5502 		return;
5503 
5504 	/* compress ack timer : 5 % of rtt, but no more than tcp_comp_sack_delay_ns */
5505 
5506 	rtt = tp->rcv_rtt_est.rtt_us;
5507 	if (tp->srtt_us && tp->srtt_us < rtt)
5508 		rtt = tp->srtt_us;
5509 
5510 	delay = min_t(unsigned long,
5511 		      READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_delay_ns),
5512 		      rtt * (NSEC_PER_USEC >> 3)/20);
5513 	sock_hold(sk);
5514 	hrtimer_start_range_ns(&tp->compressed_ack_timer, ns_to_ktime(delay),
5515 			       READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_comp_sack_slack_ns),
5516 			       HRTIMER_MODE_REL_PINNED_SOFT);
5517 }
5518 
tcp_ack_snd_check(struct sock * sk)5519 static inline void tcp_ack_snd_check(struct sock *sk)
5520 {
5521 	if (!inet_csk_ack_scheduled(sk)) {
5522 		/* We sent a data segment already. */
5523 		return;
5524 	}
5525 	__tcp_ack_snd_check(sk, 1);
5526 }
5527 
5528 /*
5529  *	This routine is only called when we have urgent data
5530  *	signaled. Its the 'slow' part of tcp_urg. It could be
5531  *	moved inline now as tcp_urg is only called from one
5532  *	place. We handle URGent data wrong. We have to - as
5533  *	BSD still doesn't use the correction from RFC961.
5534  *	For 1003.1g we should support a new option TCP_STDURG to permit
5535  *	either form (or just set the sysctl tcp_stdurg).
5536  */
5537 
tcp_check_urg(struct sock * sk,const struct tcphdr * th)5538 static void tcp_check_urg(struct sock *sk, const struct tcphdr *th)
5539 {
5540 	struct tcp_sock *tp = tcp_sk(sk);
5541 	u32 ptr = ntohs(th->urg_ptr);
5542 
5543 	if (ptr && !READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_stdurg))
5544 		ptr--;
5545 	ptr += ntohl(th->seq);
5546 
5547 	/* Ignore urgent data that we've already seen and read. */
5548 	if (after(tp->copied_seq, ptr))
5549 		return;
5550 
5551 	/* Do not replay urg ptr.
5552 	 *
5553 	 * NOTE: interesting situation not covered by specs.
5554 	 * Misbehaving sender may send urg ptr, pointing to segment,
5555 	 * which we already have in ofo queue. We are not able to fetch
5556 	 * such data and will stay in TCP_URG_NOTYET until will be eaten
5557 	 * by recvmsg(). Seems, we are not obliged to handle such wicked
5558 	 * situations. But it is worth to think about possibility of some
5559 	 * DoSes using some hypothetical application level deadlock.
5560 	 */
5561 	if (before(ptr, tp->rcv_nxt))
5562 		return;
5563 
5564 	/* Do we already have a newer (or duplicate) urgent pointer? */
5565 	if (tp->urg_data && !after(ptr, tp->urg_seq))
5566 		return;
5567 
5568 	/* Tell the world about our new urgent pointer. */
5569 	sk_send_sigurg(sk);
5570 
5571 	/* We may be adding urgent data when the last byte read was
5572 	 * urgent. To do this requires some care. We cannot just ignore
5573 	 * tp->copied_seq since we would read the last urgent byte again
5574 	 * as data, nor can we alter copied_seq until this data arrives
5575 	 * or we break the semantics of SIOCATMARK (and thus sockatmark())
5576 	 *
5577 	 * NOTE. Double Dutch. Rendering to plain English: author of comment
5578 	 * above did something sort of 	send("A", MSG_OOB); send("B", MSG_OOB);
5579 	 * and expect that both A and B disappear from stream. This is _wrong_.
5580 	 * Though this happens in BSD with high probability, this is occasional.
5581 	 * Any application relying on this is buggy. Note also, that fix "works"
5582 	 * only in this artificial test. Insert some normal data between A and B and we will
5583 	 * decline of BSD again. Verdict: it is better to remove to trap
5584 	 * buggy users.
5585 	 */
5586 	if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
5587 	    !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
5588 		struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
5589 		tp->copied_seq++;
5590 		if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
5591 			__skb_unlink(skb, &sk->sk_receive_queue);
5592 			__kfree_skb(skb);
5593 		}
5594 	}
5595 
5596 	tp->urg_data = TCP_URG_NOTYET;
5597 	WRITE_ONCE(tp->urg_seq, ptr);
5598 
5599 	/* Disable header prediction. */
5600 	tp->pred_flags = 0;
5601 }
5602 
5603 /* This is the 'fast' part of urgent handling. */
tcp_urg(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)5604 static void tcp_urg(struct sock *sk, struct sk_buff *skb, const struct tcphdr *th)
5605 {
5606 	struct tcp_sock *tp = tcp_sk(sk);
5607 
5608 	/* Check if we get a new urgent pointer - normally not. */
5609 	if (th->urg)
5610 		tcp_check_urg(sk, th);
5611 
5612 	/* Do we wait for any urgent data? - normally not... */
5613 	if (tp->urg_data == TCP_URG_NOTYET) {
5614 		u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
5615 			  th->syn;
5616 
5617 		/* Is the urgent pointer pointing into this packet? */
5618 		if (ptr < skb->len) {
5619 			u8 tmp;
5620 			if (skb_copy_bits(skb, ptr, &tmp, 1))
5621 				BUG();
5622 			tp->urg_data = TCP_URG_VALID | tmp;
5623 			if (!sock_flag(sk, SOCK_DEAD))
5624 				sk->sk_data_ready(sk);
5625 		}
5626 	}
5627 }
5628 
5629 /* Accept RST for rcv_nxt - 1 after a FIN.
5630  * When tcp connections are abruptly terminated from Mac OSX (via ^C), a
5631  * FIN is sent followed by a RST packet. The RST is sent with the same
5632  * sequence number as the FIN, and thus according to RFC 5961 a challenge
5633  * ACK should be sent. However, Mac OSX rate limits replies to challenge
5634  * ACKs on the closed socket. In addition middleboxes can drop either the
5635  * challenge ACK or a subsequent RST.
5636  */
tcp_reset_check(const struct sock * sk,const struct sk_buff * skb)5637 static bool tcp_reset_check(const struct sock *sk, const struct sk_buff *skb)
5638 {
5639 	struct tcp_sock *tp = tcp_sk(sk);
5640 
5641 	return unlikely(TCP_SKB_CB(skb)->seq == (tp->rcv_nxt - 1) &&
5642 			(1 << sk->sk_state) & (TCPF_CLOSE_WAIT | TCPF_LAST_ACK |
5643 					       TCPF_CLOSING));
5644 }
5645 
5646 /* Does PAWS and seqno based validation of an incoming segment, flags will
5647  * play significant role here.
5648  */
tcp_validate_incoming(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th,int syn_inerr)5649 static bool tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5650 				  const struct tcphdr *th, int syn_inerr)
5651 {
5652 	struct tcp_sock *tp = tcp_sk(sk);
5653 	bool rst_seq_match = false;
5654 
5655 	/* RFC1323: H1. Apply PAWS check first. */
5656 	if (tcp_fast_parse_options(sock_net(sk), skb, th, tp) &&
5657 	    tp->rx_opt.saw_tstamp &&
5658 	    tcp_paws_discard(sk, skb)) {
5659 		if (!th->rst) {
5660 			NET_INC_STATS(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5661 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5662 						  LINUX_MIB_TCPACKSKIPPEDPAWS,
5663 						  &tp->last_oow_ack_time))
5664 				tcp_send_dupack(sk, skb);
5665 			goto discard;
5666 		}
5667 		/* Reset is accepted even if it did not pass PAWS. */
5668 	}
5669 
5670 	/* Step 1: check sequence number */
5671 	if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5672 		/* RFC793, page 37: "In all states except SYN-SENT, all reset
5673 		 * (RST) segments are validated by checking their SEQ-fields."
5674 		 * And page 69: "If an incoming segment is not acceptable,
5675 		 * an acknowledgment should be sent in reply (unless the RST
5676 		 * bit is set, if so drop the segment and return)".
5677 		 */
5678 		if (!th->rst) {
5679 			if (th->syn)
5680 				goto syn_challenge;
5681 			if (!tcp_oow_rate_limited(sock_net(sk), skb,
5682 						  LINUX_MIB_TCPACKSKIPPEDSEQ,
5683 						  &tp->last_oow_ack_time))
5684 				tcp_send_dupack(sk, skb);
5685 		} else if (tcp_reset_check(sk, skb)) {
5686 			tcp_reset(sk);
5687 		}
5688 		goto discard;
5689 	}
5690 
5691 	/* Step 2: check RST bit */
5692 	if (th->rst) {
5693 		/* RFC 5961 3.2 (extend to match against (RCV.NXT - 1) after a
5694 		 * FIN and SACK too if available):
5695 		 * If seq num matches RCV.NXT or (RCV.NXT - 1) after a FIN, or
5696 		 * the right-most SACK block,
5697 		 * then
5698 		 *     RESET the connection
5699 		 * else
5700 		 *     Send a challenge ACK
5701 		 */
5702 		if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt ||
5703 		    tcp_reset_check(sk, skb)) {
5704 			rst_seq_match = true;
5705 		} else if (tcp_is_sack(tp) && tp->rx_opt.num_sacks > 0) {
5706 			struct tcp_sack_block *sp = &tp->selective_acks[0];
5707 			int max_sack = sp[0].end_seq;
5708 			int this_sack;
5709 
5710 			for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;
5711 			     ++this_sack) {
5712 				max_sack = after(sp[this_sack].end_seq,
5713 						 max_sack) ?
5714 					sp[this_sack].end_seq : max_sack;
5715 			}
5716 
5717 			if (TCP_SKB_CB(skb)->seq == max_sack)
5718 				rst_seq_match = true;
5719 		}
5720 
5721 		if (rst_seq_match)
5722 			tcp_reset(sk);
5723 		else {
5724 			/* Disable TFO if RST is out-of-order
5725 			 * and no data has been received
5726 			 * for current active TFO socket
5727 			 */
5728 			if (tp->syn_fastopen && !tp->data_segs_in &&
5729 			    sk->sk_state == TCP_ESTABLISHED)
5730 				tcp_fastopen_active_disable(sk);
5731 			tcp_send_challenge_ack(sk, skb);
5732 		}
5733 		goto discard;
5734 	}
5735 
5736 	/* step 3: check security and precedence [ignored] */
5737 
5738 	/* step 4: Check for a SYN
5739 	 * RFC 5961 4.2 : Send a challenge ack
5740 	 */
5741 	if (th->syn) {
5742 syn_challenge:
5743 		if (syn_inerr)
5744 			TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5745 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPSYNCHALLENGE);
5746 		tcp_send_challenge_ack(sk, skb);
5747 		goto discard;
5748 	}
5749 
5750 	bpf_skops_parse_hdr(sk, skb);
5751 
5752 	return true;
5753 
5754 discard:
5755 	tcp_drop(sk, skb);
5756 	return false;
5757 }
5758 
5759 /*
5760  *	TCP receive function for the ESTABLISHED state.
5761  *
5762  *	It is split into a fast path and a slow path. The fast path is
5763  * 	disabled when:
5764  *	- A zero window was announced from us - zero window probing
5765  *        is only handled properly in the slow path.
5766  *	- Out of order segments arrived.
5767  *	- Urgent data is expected.
5768  *	- There is no buffer space left
5769  *	- Unexpected TCP flags/window values/header lengths are received
5770  *	  (detected by checking the TCP header against pred_flags)
5771  *	- Data is sent in both directions. Fast path only supports pure senders
5772  *	  or pure receivers (this means either the sequence number or the ack
5773  *	  value must stay constant)
5774  *	- Unexpected TCP option.
5775  *
5776  *	When these conditions are not satisfied it drops into a standard
5777  *	receive procedure patterned after RFC793 to handle all cases.
5778  *	The first three cases are guaranteed by proper pred_flags setting,
5779  *	the rest is checked inline. Fast processing is turned on in
5780  *	tcp_data_queue when everything is OK.
5781  */
tcp_rcv_established(struct sock * sk,struct sk_buff * skb)5782 void tcp_rcv_established(struct sock *sk, struct sk_buff *skb)
5783 {
5784 	const struct tcphdr *th = (const struct tcphdr *)skb->data;
5785 	struct tcp_sock *tp = tcp_sk(sk);
5786 	unsigned int len = skb->len;
5787 
5788 	/* TCP congestion window tracking */
5789 	trace_tcp_probe(sk, skb);
5790 
5791 	tcp_mstamp_refresh(tp);
5792 	if (unlikely(!rcu_access_pointer(sk->sk_rx_dst)))
5793 		inet_csk(sk)->icsk_af_ops->sk_rx_dst_set(sk, skb);
5794 	/*
5795 	 *	Header prediction.
5796 	 *	The code loosely follows the one in the famous
5797 	 *	"30 instruction TCP receive" Van Jacobson mail.
5798 	 *
5799 	 *	Van's trick is to deposit buffers into socket queue
5800 	 *	on a device interrupt, to call tcp_recv function
5801 	 *	on the receive process context and checksum and copy
5802 	 *	the buffer to user space. smart...
5803 	 *
5804 	 *	Our current scheme is not silly either but we take the
5805 	 *	extra cost of the net_bh soft interrupt processing...
5806 	 *	We do checksum and copy also but from device to kernel.
5807 	 */
5808 
5809 	tp->rx_opt.saw_tstamp = 0;
5810 
5811 	/*	pred_flags is 0xS?10 << 16 + snd_wnd
5812 	 *	if header_prediction is to be made
5813 	 *	'S' will always be tp->tcp_header_len >> 2
5814 	 *	'?' will be 0 for the fast path, otherwise pred_flags is 0 to
5815 	 *  turn it off	(when there are holes in the receive
5816 	 *	 space for instance)
5817 	 *	PSH flag is ignored.
5818 	 */
5819 
5820 	if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5821 	    TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5822 	    !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5823 		int tcp_header_len = tp->tcp_header_len;
5824 
5825 		/* Timestamp header prediction: tcp_header_len
5826 		 * is automatically equal to th->doff*4 due to pred_flags
5827 		 * match.
5828 		 */
5829 
5830 		/* Check timestamp */
5831 		if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5832 			/* No? Slow path! */
5833 			if (!tcp_parse_aligned_timestamp(tp, th))
5834 				goto slow_path;
5835 
5836 			/* If PAWS failed, check it more carefully in slow path */
5837 			if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5838 				goto slow_path;
5839 
5840 			/* DO NOT update ts_recent here, if checksum fails
5841 			 * and timestamp was corrupted part, it will result
5842 			 * in a hung connection since we will drop all
5843 			 * future packets due to the PAWS test.
5844 			 */
5845 		}
5846 
5847 		if (len <= tcp_header_len) {
5848 			/* Bulk data transfer: sender */
5849 			if (len == tcp_header_len) {
5850 				/* Predicted packet is in window by definition.
5851 				 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5852 				 * Hence, check seq<=rcv_wup reduces to:
5853 				 */
5854 				if (tcp_header_len ==
5855 				    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5856 				    tp->rcv_nxt == tp->rcv_wup)
5857 					tcp_store_ts_recent(tp);
5858 
5859 				/* We know that such packets are checksummed
5860 				 * on entry.
5861 				 */
5862 				tcp_ack(sk, skb, 0);
5863 				__kfree_skb(skb);
5864 				tcp_data_snd_check(sk);
5865 				/* When receiving pure ack in fast path, update
5866 				 * last ts ecr directly instead of calling
5867 				 * tcp_rcv_rtt_measure_ts()
5868 				 */
5869 				tp->rcv_rtt_last_tsecr = tp->rx_opt.rcv_tsecr;
5870 				return;
5871 			} else { /* Header too small */
5872 				TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5873 				goto discard;
5874 			}
5875 		} else {
5876 			int eaten = 0;
5877 			bool fragstolen = false;
5878 
5879 			if (tcp_checksum_complete(skb))
5880 				goto csum_error;
5881 
5882 			if ((int)skb->truesize > sk->sk_forward_alloc)
5883 				goto step5;
5884 
5885 			/* Predicted packet is in window by definition.
5886 			 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5887 			 * Hence, check seq<=rcv_wup reduces to:
5888 			 */
5889 			if (tcp_header_len ==
5890 			    (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5891 			    tp->rcv_nxt == tp->rcv_wup)
5892 				tcp_store_ts_recent(tp);
5893 
5894 			tcp_rcv_rtt_measure_ts(sk, skb);
5895 
5896 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPHPHITS);
5897 
5898 			/* Bulk data transfer: receiver */
5899 			__skb_pull(skb, tcp_header_len);
5900 			eaten = tcp_queue_rcv(sk, skb, &fragstolen);
5901 
5902 			tcp_event_data_recv(sk, skb);
5903 
5904 			if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5905 				/* Well, only one small jumplet in fast path... */
5906 				tcp_ack(sk, skb, FLAG_DATA);
5907 				tcp_data_snd_check(sk);
5908 				if (!inet_csk_ack_scheduled(sk))
5909 					goto no_ack;
5910 			} else {
5911 				tcp_update_wl(tp, TCP_SKB_CB(skb)->seq);
5912 			}
5913 
5914 			__tcp_ack_snd_check(sk, 0);
5915 no_ack:
5916 			if (eaten)
5917 				kfree_skb_partial(skb, fragstolen);
5918 			tcp_data_ready(sk);
5919 			return;
5920 		}
5921 	}
5922 
5923 slow_path:
5924 	if (len < (th->doff << 2) || tcp_checksum_complete(skb))
5925 		goto csum_error;
5926 
5927 	if (!th->ack && !th->rst && !th->syn)
5928 		goto discard;
5929 
5930 	/*
5931 	 *	Standard slow path.
5932 	 */
5933 
5934 	if (!tcp_validate_incoming(sk, skb, th, 1))
5935 		return;
5936 
5937 step5:
5938 	if (tcp_ack(sk, skb, FLAG_SLOWPATH | FLAG_UPDATE_TS_RECENT) < 0)
5939 		goto discard;
5940 
5941 	tcp_rcv_rtt_measure_ts(sk, skb);
5942 
5943 	/* Process urgent data. */
5944 	tcp_urg(sk, skb, th);
5945 
5946 	/* step 7: process the segment text */
5947 	tcp_data_queue(sk, skb);
5948 
5949 	tcp_data_snd_check(sk);
5950 	tcp_ack_snd_check(sk);
5951 	return;
5952 
5953 csum_error:
5954 	TCP_INC_STATS(sock_net(sk), TCP_MIB_CSUMERRORS);
5955 	TCP_INC_STATS(sock_net(sk), TCP_MIB_INERRS);
5956 
5957 discard:
5958 	tcp_drop(sk, skb);
5959 }
5960 EXPORT_SYMBOL(tcp_rcv_established);
5961 
tcp_init_transfer(struct sock * sk,int bpf_op,struct sk_buff * skb)5962 void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb)
5963 {
5964 	struct inet_connection_sock *icsk = inet_csk(sk);
5965 	struct tcp_sock *tp = tcp_sk(sk);
5966 
5967 	tcp_mtup_init(sk);
5968 	icsk->icsk_af_ops->rebuild_header(sk);
5969 	tcp_init_metrics(sk);
5970 
5971 	/* Initialize the congestion window to start the transfer.
5972 	 * Cut cwnd down to 1 per RFC5681 if SYN or SYN-ACK has been
5973 	 * retransmitted. In light of RFC6298 more aggressive 1sec
5974 	 * initRTO, we only reset cwnd when more than 1 SYN/SYN-ACK
5975 	 * retransmission has occurred.
5976 	 */
5977 	if (tp->total_retrans > 1 && tp->undo_marker)
5978 		tp->snd_cwnd = 1;
5979 	else
5980 		tp->snd_cwnd = tcp_init_cwnd(tp, __sk_dst_get(sk));
5981 	tp->snd_cwnd_stamp = tcp_jiffies32;
5982 
5983 	bpf_skops_established(sk, bpf_op, skb);
5984 	/* Initialize congestion control unless BPF initialized it already: */
5985 	if (!icsk->icsk_ca_initialized)
5986 		tcp_init_congestion_control(sk);
5987 	tcp_init_buffer_space(sk);
5988 }
5989 
tcp_finish_connect(struct sock * sk,struct sk_buff * skb)5990 void tcp_finish_connect(struct sock *sk, struct sk_buff *skb)
5991 {
5992 	struct tcp_sock *tp = tcp_sk(sk);
5993 	struct inet_connection_sock *icsk = inet_csk(sk);
5994 
5995 	tcp_set_state(sk, TCP_ESTABLISHED);
5996 	icsk->icsk_ack.lrcvtime = tcp_jiffies32;
5997 
5998 	if (skb) {
5999 		icsk->icsk_af_ops->sk_rx_dst_set(sk, skb);
6000 		security_inet_conn_established(sk, skb);
6001 		sk_mark_napi_id(sk, skb);
6002 	}
6003 
6004 	tcp_init_transfer(sk, BPF_SOCK_OPS_ACTIVE_ESTABLISHED_CB, skb);
6005 
6006 	/* Prevent spurious tcp_cwnd_restart() on first data
6007 	 * packet.
6008 	 */
6009 	tp->lsndtime = tcp_jiffies32;
6010 
6011 	if (sock_flag(sk, SOCK_KEEPOPEN))
6012 		inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
6013 
6014 	if (!tp->rx_opt.snd_wscale)
6015 		__tcp_fast_path_on(tp, tp->snd_wnd);
6016 	else
6017 		tp->pred_flags = 0;
6018 }
6019 
tcp_rcv_fastopen_synack(struct sock * sk,struct sk_buff * synack,struct tcp_fastopen_cookie * cookie)6020 static bool tcp_rcv_fastopen_synack(struct sock *sk, struct sk_buff *synack,
6021 				    struct tcp_fastopen_cookie *cookie)
6022 {
6023 	struct tcp_sock *tp = tcp_sk(sk);
6024 	struct sk_buff *data = tp->syn_data ? tcp_rtx_queue_head(sk) : NULL;
6025 	u16 mss = tp->rx_opt.mss_clamp, try_exp = 0;
6026 	bool syn_drop = false;
6027 
6028 	if (mss == tp->rx_opt.user_mss) {
6029 		struct tcp_options_received opt;
6030 
6031 		/* Get original SYNACK MSS value if user MSS sets mss_clamp */
6032 		tcp_clear_options(&opt);
6033 		opt.user_mss = opt.mss_clamp = 0;
6034 		tcp_parse_options(sock_net(sk), synack, &opt, 0, NULL);
6035 		mss = opt.mss_clamp;
6036 	}
6037 
6038 	if (!tp->syn_fastopen) {
6039 		/* Ignore an unsolicited cookie */
6040 		cookie->len = -1;
6041 	} else if (tp->total_retrans) {
6042 		/* SYN timed out and the SYN-ACK neither has a cookie nor
6043 		 * acknowledges data. Presumably the remote received only
6044 		 * the retransmitted (regular) SYNs: either the original
6045 		 * SYN-data or the corresponding SYN-ACK was dropped.
6046 		 */
6047 		syn_drop = (cookie->len < 0 && data);
6048 	} else if (cookie->len < 0 && !tp->syn_data) {
6049 		/* We requested a cookie but didn't get it. If we did not use
6050 		 * the (old) exp opt format then try so next time (try_exp=1).
6051 		 * Otherwise we go back to use the RFC7413 opt (try_exp=2).
6052 		 */
6053 		try_exp = tp->syn_fastopen_exp ? 2 : 1;
6054 	}
6055 
6056 	tcp_fastopen_cache_set(sk, mss, cookie, syn_drop, try_exp);
6057 
6058 	if (data) { /* Retransmit unacked data in SYN */
6059 		if (tp->total_retrans)
6060 			tp->fastopen_client_fail = TFO_SYN_RETRANSMITTED;
6061 		else
6062 			tp->fastopen_client_fail = TFO_DATA_NOT_ACKED;
6063 		skb_rbtree_walk_from(data) {
6064 			if (__tcp_retransmit_skb(sk, data, 1))
6065 				break;
6066 		}
6067 		tcp_rearm_rto(sk);
6068 		NET_INC_STATS(sock_net(sk),
6069 				LINUX_MIB_TCPFASTOPENACTIVEFAIL);
6070 		return true;
6071 	}
6072 	tp->syn_data_acked = tp->syn_data;
6073 	if (tp->syn_data_acked) {
6074 		NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPFASTOPENACTIVE);
6075 		/* SYN-data is counted as two separate packets in tcp_ack() */
6076 		if (tp->delivered > 1)
6077 			--tp->delivered;
6078 	}
6079 
6080 	tcp_fastopen_add_skb(sk, synack);
6081 
6082 	return false;
6083 }
6084 
smc_check_reset_syn(struct tcp_sock * tp)6085 static void smc_check_reset_syn(struct tcp_sock *tp)
6086 {
6087 #if IS_ENABLED(CONFIG_SMC)
6088 	if (static_branch_unlikely(&tcp_have_smc)) {
6089 		if (tp->syn_smc && !tp->rx_opt.smc_ok)
6090 			tp->syn_smc = 0;
6091 	}
6092 #endif
6093 }
6094 
tcp_try_undo_spurious_syn(struct sock * sk)6095 static void tcp_try_undo_spurious_syn(struct sock *sk)
6096 {
6097 	struct tcp_sock *tp = tcp_sk(sk);
6098 	u32 syn_stamp;
6099 
6100 	/* undo_marker is set when SYN or SYNACK times out. The timeout is
6101 	 * spurious if the ACK's timestamp option echo value matches the
6102 	 * original SYN timestamp.
6103 	 */
6104 	syn_stamp = tp->retrans_stamp;
6105 	if (tp->undo_marker && syn_stamp && tp->rx_opt.saw_tstamp &&
6106 	    syn_stamp == tp->rx_opt.rcv_tsecr)
6107 		tp->undo_marker = 0;
6108 }
6109 
tcp_rcv_synsent_state_process(struct sock * sk,struct sk_buff * skb,const struct tcphdr * th)6110 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
6111 					 const struct tcphdr *th)
6112 {
6113 	struct inet_connection_sock *icsk = inet_csk(sk);
6114 	struct tcp_sock *tp = tcp_sk(sk);
6115 	struct tcp_fastopen_cookie foc = { .len = -1 };
6116 	int saved_clamp = tp->rx_opt.mss_clamp;
6117 	bool fastopen_fail;
6118 
6119 	tcp_parse_options(sock_net(sk), skb, &tp->rx_opt, 0, &foc);
6120 	if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
6121 		tp->rx_opt.rcv_tsecr -= tp->tsoffset;
6122 
6123 	if (th->ack) {
6124 		/* rfc793:
6125 		 * "If the state is SYN-SENT then
6126 		 *    first check the ACK bit
6127 		 *      If the ACK bit is set
6128 		 *	  If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
6129 		 *        a reset (unless the RST bit is set, if so drop
6130 		 *        the segment and return)"
6131 		 */
6132 		if (!after(TCP_SKB_CB(skb)->ack_seq, tp->snd_una) ||
6133 		    after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
6134 			/* Previous FIN/ACK or RST/ACK might be ignored. */
6135 			if (icsk->icsk_retransmits == 0)
6136 				inet_csk_reset_xmit_timer(sk,
6137 						ICSK_TIME_RETRANS,
6138 						TCP_TIMEOUT_MIN, TCP_RTO_MAX);
6139 			goto reset_and_undo;
6140 		}
6141 
6142 		if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
6143 		    !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
6144 			     tcp_time_stamp(tp))) {
6145 			NET_INC_STATS(sock_net(sk),
6146 					LINUX_MIB_PAWSACTIVEREJECTED);
6147 			goto reset_and_undo;
6148 		}
6149 
6150 		/* Now ACK is acceptable.
6151 		 *
6152 		 * "If the RST bit is set
6153 		 *    If the ACK was acceptable then signal the user "error:
6154 		 *    connection reset", drop the segment, enter CLOSED state,
6155 		 *    delete TCB, and return."
6156 		 */
6157 
6158 		if (th->rst) {
6159 			tcp_reset(sk);
6160 			goto discard;
6161 		}
6162 
6163 		/* rfc793:
6164 		 *   "fifth, if neither of the SYN or RST bits is set then
6165 		 *    drop the segment and return."
6166 		 *
6167 		 *    See note below!
6168 		 *                                        --ANK(990513)
6169 		 */
6170 		if (!th->syn)
6171 			goto discard_and_undo;
6172 
6173 		/* rfc793:
6174 		 *   "If the SYN bit is on ...
6175 		 *    are acceptable then ...
6176 		 *    (our SYN has been ACKed), change the connection
6177 		 *    state to ESTABLISHED..."
6178 		 */
6179 
6180 		tcp_ecn_rcv_synack(tp, th);
6181 
6182 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6183 		tcp_try_undo_spurious_syn(sk);
6184 		tcp_ack(sk, skb, FLAG_SLOWPATH);
6185 
6186 		/* Ok.. it's good. Set up sequence numbers and
6187 		 * move to established.
6188 		 */
6189 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6190 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6191 
6192 		/* RFC1323: The window in SYN & SYN/ACK segments is
6193 		 * never scaled.
6194 		 */
6195 		tp->snd_wnd = ntohs(th->window);
6196 
6197 		if (!tp->rx_opt.wscale_ok) {
6198 			tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
6199 			tp->window_clamp = min(tp->window_clamp, 65535U);
6200 		}
6201 
6202 		if (tp->rx_opt.saw_tstamp) {
6203 			tp->rx_opt.tstamp_ok	   = 1;
6204 			tp->tcp_header_len =
6205 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6206 			tp->advmss	    -= TCPOLEN_TSTAMP_ALIGNED;
6207 			tcp_store_ts_recent(tp);
6208 		} else {
6209 			tp->tcp_header_len = sizeof(struct tcphdr);
6210 		}
6211 
6212 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6213 		tcp_initialize_rcv_mss(sk);
6214 
6215 		/* Remember, tcp_poll() does not lock socket!
6216 		 * Change state from SYN-SENT only after copied_seq
6217 		 * is initialized. */
6218 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6219 
6220 		smc_check_reset_syn(tp);
6221 
6222 		smp_mb();
6223 
6224 		tcp_finish_connect(sk, skb);
6225 
6226 		fastopen_fail = (tp->syn_fastopen || tp->syn_data) &&
6227 				tcp_rcv_fastopen_synack(sk, skb, &foc);
6228 
6229 		if (!sock_flag(sk, SOCK_DEAD)) {
6230 			sk->sk_state_change(sk);
6231 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6232 		}
6233 		if (fastopen_fail)
6234 			return -1;
6235 		if (sk->sk_write_pending ||
6236 		    icsk->icsk_accept_queue.rskq_defer_accept ||
6237 		    inet_csk_in_pingpong_mode(sk)) {
6238 			/* Save one ACK. Data will be ready after
6239 			 * several ticks, if write_pending is set.
6240 			 *
6241 			 * It may be deleted, but with this feature tcpdumps
6242 			 * look so _wonderfully_ clever, that I was not able
6243 			 * to stand against the temptation 8)     --ANK
6244 			 */
6245 			inet_csk_schedule_ack(sk);
6246 			tcp_enter_quickack_mode(sk, TCP_MAX_QUICKACKS);
6247 			inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
6248 						  TCP_DELACK_MAX, TCP_RTO_MAX);
6249 
6250 discard:
6251 			tcp_drop(sk, skb);
6252 			return 0;
6253 		} else {
6254 			tcp_send_ack(sk);
6255 		}
6256 		return -1;
6257 	}
6258 
6259 	/* No ACK in the segment */
6260 
6261 	if (th->rst) {
6262 		/* rfc793:
6263 		 * "If the RST bit is set
6264 		 *
6265 		 *      Otherwise (no ACK) drop the segment and return."
6266 		 */
6267 
6268 		goto discard_and_undo;
6269 	}
6270 
6271 	/* PAWS check. */
6272 	if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
6273 	    tcp_paws_reject(&tp->rx_opt, 0))
6274 		goto discard_and_undo;
6275 
6276 	if (th->syn) {
6277 		/* We see SYN without ACK. It is attempt of
6278 		 * simultaneous connect with crossed SYNs.
6279 		 * Particularly, it can be connect to self.
6280 		 */
6281 		tcp_set_state(sk, TCP_SYN_RECV);
6282 
6283 		if (tp->rx_opt.saw_tstamp) {
6284 			tp->rx_opt.tstamp_ok = 1;
6285 			tcp_store_ts_recent(tp);
6286 			tp->tcp_header_len =
6287 				sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
6288 		} else {
6289 			tp->tcp_header_len = sizeof(struct tcphdr);
6290 		}
6291 
6292 		WRITE_ONCE(tp->rcv_nxt, TCP_SKB_CB(skb)->seq + 1);
6293 		WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6294 		tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
6295 
6296 		/* RFC1323: The window in SYN & SYN/ACK segments is
6297 		 * never scaled.
6298 		 */
6299 		tp->snd_wnd    = ntohs(th->window);
6300 		tp->snd_wl1    = TCP_SKB_CB(skb)->seq;
6301 		tp->max_window = tp->snd_wnd;
6302 
6303 		tcp_ecn_rcv_syn(tp, th);
6304 
6305 		tcp_mtup_init(sk);
6306 		tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
6307 		tcp_initialize_rcv_mss(sk);
6308 
6309 		tcp_send_synack(sk);
6310 #if 0
6311 		/* Note, we could accept data and URG from this segment.
6312 		 * There are no obstacles to make this (except that we must
6313 		 * either change tcp_recvmsg() to prevent it from returning data
6314 		 * before 3WHS completes per RFC793, or employ TCP Fast Open).
6315 		 *
6316 		 * However, if we ignore data in ACKless segments sometimes,
6317 		 * we have no reasons to accept it sometimes.
6318 		 * Also, seems the code doing it in step6 of tcp_rcv_state_process
6319 		 * is not flawless. So, discard packet for sanity.
6320 		 * Uncomment this return to process the data.
6321 		 */
6322 		return -1;
6323 #else
6324 		goto discard;
6325 #endif
6326 	}
6327 	/* "fifth, if neither of the SYN or RST bits is set then
6328 	 * drop the segment and return."
6329 	 */
6330 
6331 discard_and_undo:
6332 	tcp_clear_options(&tp->rx_opt);
6333 	tp->rx_opt.mss_clamp = saved_clamp;
6334 	goto discard;
6335 
6336 reset_and_undo:
6337 	tcp_clear_options(&tp->rx_opt);
6338 	tp->rx_opt.mss_clamp = saved_clamp;
6339 	return 1;
6340 }
6341 
tcp_rcv_synrecv_state_fastopen(struct sock * sk)6342 static void tcp_rcv_synrecv_state_fastopen(struct sock *sk)
6343 {
6344 	struct request_sock *req;
6345 
6346 	/* If we are still handling the SYNACK RTO, see if timestamp ECR allows
6347 	 * undo. If peer SACKs triggered fast recovery, we can't undo here.
6348 	 */
6349 	if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
6350 		tcp_try_undo_loss(sk, false);
6351 
6352 	/* Reset rtx states to prevent spurious retransmits_timed_out() */
6353 	tcp_sk(sk)->retrans_stamp = 0;
6354 	inet_csk(sk)->icsk_retransmits = 0;
6355 
6356 	/* Once we leave TCP_SYN_RECV or TCP_FIN_WAIT_1,
6357 	 * we no longer need req so release it.
6358 	 */
6359 	req = rcu_dereference_protected(tcp_sk(sk)->fastopen_rsk,
6360 					lockdep_sock_is_held(sk));
6361 	reqsk_fastopen_remove(sk, req, false);
6362 
6363 	/* Re-arm the timer because data may have been sent out.
6364 	 * This is similar to the regular data transmission case
6365 	 * when new data has just been ack'ed.
6366 	 *
6367 	 * (TFO) - we could try to be more aggressive and
6368 	 * retransmitting any data sooner based on when they
6369 	 * are sent out.
6370 	 */
6371 	tcp_rearm_rto(sk);
6372 }
6373 
6374 /*
6375  *	This function implements the receiving procedure of RFC 793 for
6376  *	all states except ESTABLISHED and TIME_WAIT.
6377  *	It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
6378  *	address independent.
6379  */
6380 
tcp_rcv_state_process(struct sock * sk,struct sk_buff * skb)6381 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb)
6382 {
6383 	struct tcp_sock *tp = tcp_sk(sk);
6384 	struct inet_connection_sock *icsk = inet_csk(sk);
6385 	const struct tcphdr *th = tcp_hdr(skb);
6386 	struct request_sock *req;
6387 	int queued = 0;
6388 	bool acceptable;
6389 
6390 	switch (sk->sk_state) {
6391 	case TCP_CLOSE:
6392 		goto discard;
6393 
6394 	case TCP_LISTEN:
6395 		if (th->ack)
6396 			return 1;
6397 
6398 		if (th->rst)
6399 			goto discard;
6400 
6401 		if (th->syn) {
6402 			if (th->fin)
6403 				goto discard;
6404 			/* It is possible that we process SYN packets from backlog,
6405 			 * so we need to make sure to disable BH and RCU right there.
6406 			 */
6407 			rcu_read_lock();
6408 			local_bh_disable();
6409 			acceptable = icsk->icsk_af_ops->conn_request(sk, skb) >= 0;
6410 			local_bh_enable();
6411 			rcu_read_unlock();
6412 
6413 			if (!acceptable)
6414 				return 1;
6415 			consume_skb(skb);
6416 			return 0;
6417 		}
6418 		goto discard;
6419 
6420 	case TCP_SYN_SENT:
6421 		tp->rx_opt.saw_tstamp = 0;
6422 		tcp_mstamp_refresh(tp);
6423 		queued = tcp_rcv_synsent_state_process(sk, skb, th);
6424 		if (queued >= 0)
6425 			return queued;
6426 
6427 		/* Do step6 onward by hand. */
6428 		tcp_urg(sk, skb, th);
6429 		__kfree_skb(skb);
6430 		tcp_data_snd_check(sk);
6431 		return 0;
6432 	}
6433 
6434 	tcp_mstamp_refresh(tp);
6435 	tp->rx_opt.saw_tstamp = 0;
6436 	req = rcu_dereference_protected(tp->fastopen_rsk,
6437 					lockdep_sock_is_held(sk));
6438 	if (req) {
6439 		bool req_stolen;
6440 
6441 		WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
6442 		    sk->sk_state != TCP_FIN_WAIT1);
6443 
6444 		if (!tcp_check_req(sk, skb, req, true, &req_stolen))
6445 			goto discard;
6446 	}
6447 
6448 	if (!th->ack && !th->rst && !th->syn)
6449 		goto discard;
6450 
6451 	if (!tcp_validate_incoming(sk, skb, th, 0))
6452 		return 0;
6453 
6454 	/* step 5: check the ACK field */
6455 	acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH |
6456 				      FLAG_UPDATE_TS_RECENT |
6457 				      FLAG_NO_CHALLENGE_ACK) > 0;
6458 
6459 	if (!acceptable) {
6460 		if (sk->sk_state == TCP_SYN_RECV)
6461 			return 1;	/* send one RST */
6462 		tcp_send_challenge_ack(sk, skb);
6463 		goto discard;
6464 	}
6465 	switch (sk->sk_state) {
6466 	case TCP_SYN_RECV:
6467 		tp->delivered++; /* SYN-ACK delivery isn't tracked in tcp_ack */
6468 		if (!tp->srtt_us)
6469 			tcp_synack_rtt_meas(sk, req);
6470 
6471 		if (req) {
6472 			tcp_rcv_synrecv_state_fastopen(sk);
6473 		} else {
6474 			tcp_try_undo_spurious_syn(sk);
6475 			tp->retrans_stamp = 0;
6476 			tcp_init_transfer(sk, BPF_SOCK_OPS_PASSIVE_ESTABLISHED_CB,
6477 					  skb);
6478 			WRITE_ONCE(tp->copied_seq, tp->rcv_nxt);
6479 		}
6480 		smp_mb();
6481 		tcp_set_state(sk, TCP_ESTABLISHED);
6482 		sk->sk_state_change(sk);
6483 
6484 		/* Note, that this wakeup is only for marginal crossed SYN case.
6485 		 * Passively open sockets are not waked up, because
6486 		 * sk->sk_sleep == NULL and sk->sk_socket == NULL.
6487 		 */
6488 		if (sk->sk_socket)
6489 			sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
6490 
6491 		tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
6492 		tp->snd_wnd = ntohs(th->window) << tp->rx_opt.snd_wscale;
6493 		tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
6494 
6495 		if (tp->rx_opt.tstamp_ok)
6496 			tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
6497 
6498 		if (!inet_csk(sk)->icsk_ca_ops->cong_control)
6499 			tcp_update_pacing_rate(sk);
6500 
6501 		/* Prevent spurious tcp_cwnd_restart() on first data packet */
6502 		tp->lsndtime = tcp_jiffies32;
6503 
6504 		tcp_initialize_rcv_mss(sk);
6505 		tcp_fast_path_on(tp);
6506 		break;
6507 
6508 	case TCP_FIN_WAIT1: {
6509 		int tmo;
6510 
6511 		if (req)
6512 			tcp_rcv_synrecv_state_fastopen(sk);
6513 
6514 		if (tp->snd_una != tp->write_seq)
6515 			break;
6516 
6517 		tcp_set_state(sk, TCP_FIN_WAIT2);
6518 		WRITE_ONCE(sk->sk_shutdown, sk->sk_shutdown | SEND_SHUTDOWN);
6519 
6520 		sk_dst_confirm(sk);
6521 
6522 		if (!sock_flag(sk, SOCK_DEAD)) {
6523 			/* Wake up lingering close() */
6524 			sk->sk_state_change(sk);
6525 			break;
6526 		}
6527 
6528 		if (tp->linger2 < 0) {
6529 			tcp_done(sk);
6530 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6531 			return 1;
6532 		}
6533 		if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6534 		    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6535 			/* Receive out of order FIN after close() */
6536 			if (tp->syn_fastopen && th->fin)
6537 				tcp_fastopen_active_disable(sk);
6538 			tcp_done(sk);
6539 			NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6540 			return 1;
6541 		}
6542 
6543 		tmo = tcp_fin_time(sk);
6544 		if (tmo > TCP_TIMEWAIT_LEN) {
6545 			inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
6546 		} else if (th->fin || sock_owned_by_user(sk)) {
6547 			/* Bad case. We could lose such FIN otherwise.
6548 			 * It is not a big problem, but it looks confusing
6549 			 * and not so rare event. We still can lose it now,
6550 			 * if it spins in bh_lock_sock(), but it is really
6551 			 * marginal case.
6552 			 */
6553 			inet_csk_reset_keepalive_timer(sk, tmo);
6554 		} else {
6555 			tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
6556 			goto discard;
6557 		}
6558 		break;
6559 	}
6560 
6561 	case TCP_CLOSING:
6562 		if (tp->snd_una == tp->write_seq) {
6563 			tcp_time_wait(sk, TCP_TIME_WAIT, 0);
6564 			goto discard;
6565 		}
6566 		break;
6567 
6568 	case TCP_LAST_ACK:
6569 		if (tp->snd_una == tp->write_seq) {
6570 			tcp_update_metrics(sk);
6571 			tcp_done(sk);
6572 			goto discard;
6573 		}
6574 		break;
6575 	}
6576 
6577 	/* step 6: check the URG bit */
6578 	tcp_urg(sk, skb, th);
6579 
6580 	/* step 7: process the segment text */
6581 	switch (sk->sk_state) {
6582 	case TCP_CLOSE_WAIT:
6583 	case TCP_CLOSING:
6584 	case TCP_LAST_ACK:
6585 		if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
6586 			if (sk_is_mptcp(sk))
6587 				mptcp_incoming_options(sk, skb);
6588 			break;
6589 		}
6590 		fallthrough;
6591 	case TCP_FIN_WAIT1:
6592 	case TCP_FIN_WAIT2:
6593 		/* RFC 793 says to queue data in these states,
6594 		 * RFC 1122 says we MUST send a reset.
6595 		 * BSD 4.4 also does reset.
6596 		 */
6597 		if (sk->sk_shutdown & RCV_SHUTDOWN) {
6598 			if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
6599 			    after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
6600 				NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
6601 				tcp_reset(sk);
6602 				return 1;
6603 			}
6604 		}
6605 		fallthrough;
6606 	case TCP_ESTABLISHED:
6607 		tcp_data_queue(sk, skb);
6608 		queued = 1;
6609 		break;
6610 	}
6611 
6612 	/* tcp_data could move socket to TIME-WAIT */
6613 	if (sk->sk_state != TCP_CLOSE) {
6614 		tcp_data_snd_check(sk);
6615 		tcp_ack_snd_check(sk);
6616 	}
6617 
6618 	if (!queued) {
6619 discard:
6620 		tcp_drop(sk, skb);
6621 	}
6622 	return 0;
6623 }
6624 EXPORT_SYMBOL(tcp_rcv_state_process);
6625 
pr_drop_req(struct request_sock * req,__u16 port,int family)6626 static inline void pr_drop_req(struct request_sock *req, __u16 port, int family)
6627 {
6628 	struct inet_request_sock *ireq = inet_rsk(req);
6629 
6630 	if (family == AF_INET)
6631 		net_dbg_ratelimited("drop open request from %pI4/%u\n",
6632 				    &ireq->ir_rmt_addr, port);
6633 #if IS_ENABLED(CONFIG_IPV6)
6634 	else if (family == AF_INET6)
6635 		net_dbg_ratelimited("drop open request from %pI6/%u\n",
6636 				    &ireq->ir_v6_rmt_addr, port);
6637 #endif
6638 }
6639 
6640 /* RFC3168 : 6.1.1 SYN packets must not have ECT/ECN bits set
6641  *
6642  * If we receive a SYN packet with these bits set, it means a
6643  * network is playing bad games with TOS bits. In order to
6644  * avoid possible false congestion notifications, we disable
6645  * TCP ECN negotiation.
6646  *
6647  * Exception: tcp_ca wants ECN. This is required for DCTCP
6648  * congestion control: Linux DCTCP asserts ECT on all packets,
6649  * including SYN, which is most optimal solution; however,
6650  * others, such as FreeBSD do not.
6651  *
6652  * Exception: At least one of the reserved bits of the TCP header (th->res1) is
6653  * set, indicating the use of a future TCP extension (such as AccECN). See
6654  * RFC8311 §4.3 which updates RFC3168 to allow the development of such
6655  * extensions.
6656  */
tcp_ecn_create_request(struct request_sock * req,const struct sk_buff * skb,const struct sock * listen_sk,const struct dst_entry * dst)6657 static void tcp_ecn_create_request(struct request_sock *req,
6658 				   const struct sk_buff *skb,
6659 				   const struct sock *listen_sk,
6660 				   const struct dst_entry *dst)
6661 {
6662 	const struct tcphdr *th = tcp_hdr(skb);
6663 	const struct net *net = sock_net(listen_sk);
6664 	bool th_ecn = th->ece && th->cwr;
6665 	bool ect, ecn_ok;
6666 	u32 ecn_ok_dst;
6667 
6668 	if (!th_ecn)
6669 		return;
6670 
6671 	ect = !INET_ECN_is_not_ect(TCP_SKB_CB(skb)->ip_dsfield);
6672 	ecn_ok_dst = dst_feature(dst, DST_FEATURE_ECN_MASK);
6673 	ecn_ok = net->ipv4.sysctl_tcp_ecn || ecn_ok_dst;
6674 
6675 	if (((!ect || th->res1) && ecn_ok) || tcp_ca_needs_ecn(listen_sk) ||
6676 	    (ecn_ok_dst & DST_FEATURE_ECN_CA) ||
6677 	    tcp_bpf_ca_needs_ecn((struct sock *)req))
6678 		inet_rsk(req)->ecn_ok = 1;
6679 }
6680 
tcp_openreq_init(struct request_sock * req,const struct tcp_options_received * rx_opt,struct sk_buff * skb,const struct sock * sk)6681 static void tcp_openreq_init(struct request_sock *req,
6682 			     const struct tcp_options_received *rx_opt,
6683 			     struct sk_buff *skb, const struct sock *sk)
6684 {
6685 	struct inet_request_sock *ireq = inet_rsk(req);
6686 
6687 	req->rsk_rcv_wnd = 0;		/* So that tcp_send_synack() knows! */
6688 	tcp_rsk(req)->rcv_isn = TCP_SKB_CB(skb)->seq;
6689 	tcp_rsk(req)->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
6690 	tcp_rsk(req)->snt_synack = 0;
6691 	tcp_rsk(req)->last_oow_ack_time = 0;
6692 	req->mss = rx_opt->mss_clamp;
6693 	req->ts_recent = rx_opt->saw_tstamp ? rx_opt->rcv_tsval : 0;
6694 	ireq->tstamp_ok = rx_opt->tstamp_ok;
6695 	ireq->sack_ok = rx_opt->sack_ok;
6696 	ireq->snd_wscale = rx_opt->snd_wscale;
6697 	ireq->wscale_ok = rx_opt->wscale_ok;
6698 	ireq->acked = 0;
6699 	ireq->ecn_ok = 0;
6700 	ireq->ir_rmt_port = tcp_hdr(skb)->source;
6701 	ireq->ir_num = ntohs(tcp_hdr(skb)->dest);
6702 	ireq->ir_mark = inet_request_mark(sk, skb);
6703 #if IS_ENABLED(CONFIG_SMC)
6704 	ireq->smc_ok = rx_opt->smc_ok;
6705 #endif
6706 }
6707 
inet_reqsk_alloc(const struct request_sock_ops * ops,struct sock * sk_listener,bool attach_listener)6708 struct request_sock *inet_reqsk_alloc(const struct request_sock_ops *ops,
6709 				      struct sock *sk_listener,
6710 				      bool attach_listener)
6711 {
6712 	struct request_sock *req = reqsk_alloc(ops, sk_listener,
6713 					       attach_listener);
6714 
6715 	if (req) {
6716 		struct inet_request_sock *ireq = inet_rsk(req);
6717 
6718 		ireq->ireq_opt = NULL;
6719 #if IS_ENABLED(CONFIG_IPV6)
6720 		ireq->pktopts = NULL;
6721 #endif
6722 		atomic64_set(&ireq->ir_cookie, 0);
6723 		ireq->ireq_state = TCP_NEW_SYN_RECV;
6724 		write_pnet(&ireq->ireq_net, sock_net(sk_listener));
6725 		ireq->ireq_family = sk_listener->sk_family;
6726 	}
6727 
6728 	return req;
6729 }
6730 EXPORT_SYMBOL(inet_reqsk_alloc);
6731 
6732 /*
6733  * Return true if a syncookie should be sent
6734  */
tcp_syn_flood_action(const struct sock * sk,const char * proto)6735 static bool tcp_syn_flood_action(const struct sock *sk, const char *proto)
6736 {
6737 	struct request_sock_queue *queue = &inet_csk(sk)->icsk_accept_queue;
6738 	const char *msg = "Dropping request";
6739 	struct net *net = sock_net(sk);
6740 	bool want_cookie = false;
6741 	u8 syncookies;
6742 
6743 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6744 
6745 #ifdef CONFIG_SYN_COOKIES
6746 	if (syncookies) {
6747 		msg = "Sending cookies";
6748 		want_cookie = true;
6749 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDOCOOKIES);
6750 	} else
6751 #endif
6752 		__NET_INC_STATS(sock_net(sk), LINUX_MIB_TCPREQQFULLDROP);
6753 
6754 	if (!queue->synflood_warned && syncookies != 2 &&
6755 	    xchg(&queue->synflood_warned, 1) == 0)
6756 		net_info_ratelimited("%s: Possible SYN flooding on port %d. %s.  Check SNMP counters.\n",
6757 				     proto, sk->sk_num, msg);
6758 
6759 	return want_cookie;
6760 }
6761 
tcp_reqsk_record_syn(const struct sock * sk,struct request_sock * req,const struct sk_buff * skb)6762 static void tcp_reqsk_record_syn(const struct sock *sk,
6763 				 struct request_sock *req,
6764 				 const struct sk_buff *skb)
6765 {
6766 	if (tcp_sk(sk)->save_syn) {
6767 		u32 len = skb_network_header_len(skb) + tcp_hdrlen(skb);
6768 		struct saved_syn *saved_syn;
6769 		u32 mac_hdrlen;
6770 		void *base;
6771 
6772 		if (tcp_sk(sk)->save_syn == 2) {  /* Save full header. */
6773 			base = skb_mac_header(skb);
6774 			mac_hdrlen = skb_mac_header_len(skb);
6775 			len += mac_hdrlen;
6776 		} else {
6777 			base = skb_network_header(skb);
6778 			mac_hdrlen = 0;
6779 		}
6780 
6781 		saved_syn = kmalloc(struct_size(saved_syn, data, len),
6782 				    GFP_ATOMIC);
6783 		if (saved_syn) {
6784 			saved_syn->mac_hdrlen = mac_hdrlen;
6785 			saved_syn->network_hdrlen = skb_network_header_len(skb);
6786 			saved_syn->tcp_hdrlen = tcp_hdrlen(skb);
6787 			memcpy(saved_syn->data, base, len);
6788 			req->saved_syn = saved_syn;
6789 		}
6790 	}
6791 }
6792 
6793 /* If a SYN cookie is required and supported, returns a clamped MSS value to be
6794  * used for SYN cookie generation.
6795  */
tcp_get_syncookie_mss(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct tcphdr * th)6796 u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
6797 			  const struct tcp_request_sock_ops *af_ops,
6798 			  struct sock *sk, struct tcphdr *th)
6799 {
6800 	struct tcp_sock *tp = tcp_sk(sk);
6801 	u16 mss;
6802 
6803 	if (READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_syncookies) != 2 &&
6804 	    !inet_csk_reqsk_queue_is_full(sk))
6805 		return 0;
6806 
6807 	if (!tcp_syn_flood_action(sk, rsk_ops->slab_name))
6808 		return 0;
6809 
6810 	if (sk_acceptq_is_full(sk)) {
6811 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6812 		return 0;
6813 	}
6814 
6815 	mss = tcp_parse_mss_option(th, tp->rx_opt.user_mss);
6816 	if (!mss)
6817 		mss = af_ops->mss_clamp;
6818 
6819 	return mss;
6820 }
6821 EXPORT_SYMBOL_GPL(tcp_get_syncookie_mss);
6822 
tcp_conn_request(struct request_sock_ops * rsk_ops,const struct tcp_request_sock_ops * af_ops,struct sock * sk,struct sk_buff * skb)6823 int tcp_conn_request(struct request_sock_ops *rsk_ops,
6824 		     const struct tcp_request_sock_ops *af_ops,
6825 		     struct sock *sk, struct sk_buff *skb)
6826 {
6827 	struct tcp_fastopen_cookie foc = { .len = -1 };
6828 	__u32 isn = TCP_SKB_CB(skb)->tcp_tw_isn;
6829 	struct tcp_options_received tmp_opt;
6830 	struct tcp_sock *tp = tcp_sk(sk);
6831 	struct net *net = sock_net(sk);
6832 	struct sock *fastopen_sk = NULL;
6833 	struct request_sock *req;
6834 	bool want_cookie = false;
6835 	struct dst_entry *dst;
6836 	struct flowi fl;
6837 	u8 syncookies;
6838 
6839 	syncookies = READ_ONCE(net->ipv4.sysctl_tcp_syncookies);
6840 
6841 	/* TW buckets are converted to open requests without
6842 	 * limitations, they conserve resources and peer is
6843 	 * evidently real one.
6844 	 */
6845 	if ((syncookies == 2 || inet_csk_reqsk_queue_is_full(sk)) && !isn) {
6846 		want_cookie = tcp_syn_flood_action(sk, rsk_ops->slab_name);
6847 		if (!want_cookie)
6848 			goto drop;
6849 	}
6850 
6851 	if (sk_acceptq_is_full(sk)) {
6852 		NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENOVERFLOWS);
6853 		goto drop;
6854 	}
6855 
6856 	req = inet_reqsk_alloc(rsk_ops, sk, !want_cookie);
6857 	if (!req)
6858 		goto drop;
6859 
6860 	req->syncookie = want_cookie;
6861 	tcp_rsk(req)->af_specific = af_ops;
6862 	tcp_rsk(req)->ts_off = 0;
6863 #if IS_ENABLED(CONFIG_MPTCP)
6864 	tcp_rsk(req)->is_mptcp = 0;
6865 #endif
6866 
6867 	tcp_clear_options(&tmp_opt);
6868 	tmp_opt.mss_clamp = af_ops->mss_clamp;
6869 	tmp_opt.user_mss  = tp->rx_opt.user_mss;
6870 	tcp_parse_options(sock_net(sk), skb, &tmp_opt, 0,
6871 			  want_cookie ? NULL : &foc);
6872 
6873 	if (want_cookie && !tmp_opt.saw_tstamp)
6874 		tcp_clear_options(&tmp_opt);
6875 
6876 	if (IS_ENABLED(CONFIG_SMC) && want_cookie)
6877 		tmp_opt.smc_ok = 0;
6878 
6879 	tmp_opt.tstamp_ok = tmp_opt.saw_tstamp;
6880 	tcp_openreq_init(req, &tmp_opt, skb, sk);
6881 	inet_rsk(req)->no_srccheck = inet_sk(sk)->transparent;
6882 
6883 	/* Note: tcp_v6_init_req() might override ir_iif for link locals */
6884 	inet_rsk(req)->ir_iif = inet_request_bound_dev_if(sk, skb);
6885 
6886 	af_ops->init_req(req, sk, skb);
6887 
6888 	if (security_inet_conn_request(sk, skb, req))
6889 		goto drop_and_free;
6890 
6891 	if (tmp_opt.tstamp_ok)
6892 		tcp_rsk(req)->ts_off = af_ops->init_ts_off(net, skb);
6893 
6894 	dst = af_ops->route_req(sk, &fl, req);
6895 	if (!dst)
6896 		goto drop_and_free;
6897 
6898 	if (!want_cookie && !isn) {
6899 		int max_syn_backlog = READ_ONCE(net->ipv4.sysctl_max_syn_backlog);
6900 
6901 		/* Kill the following clause, if you dislike this way. */
6902 		if (!syncookies &&
6903 		    (max_syn_backlog - inet_csk_reqsk_queue_len(sk) <
6904 		     (max_syn_backlog >> 2)) &&
6905 		    !tcp_peer_is_proven(req, dst)) {
6906 			/* Without syncookies last quarter of
6907 			 * backlog is filled with destinations,
6908 			 * proven to be alive.
6909 			 * It means that we continue to communicate
6910 			 * to destinations, already remembered
6911 			 * to the moment of synflood.
6912 			 */
6913 			pr_drop_req(req, ntohs(tcp_hdr(skb)->source),
6914 				    rsk_ops->family);
6915 			goto drop_and_release;
6916 		}
6917 
6918 		isn = af_ops->init_seq(skb);
6919 	}
6920 
6921 	tcp_ecn_create_request(req, skb, sk, dst);
6922 
6923 	if (want_cookie) {
6924 		isn = cookie_init_sequence(af_ops, sk, skb, &req->mss);
6925 		if (!tmp_opt.tstamp_ok)
6926 			inet_rsk(req)->ecn_ok = 0;
6927 	}
6928 
6929 	tcp_rsk(req)->snt_isn = isn;
6930 	tcp_rsk(req)->txhash = net_tx_rndhash();
6931 	tcp_rsk(req)->syn_tos = TCP_SKB_CB(skb)->ip_dsfield;
6932 	tcp_openreq_init_rwin(req, sk, dst);
6933 	sk_rx_queue_set(req_to_sk(req), skb);
6934 	if (!want_cookie) {
6935 		tcp_reqsk_record_syn(sk, req, skb);
6936 		fastopen_sk = tcp_try_fastopen(sk, skb, req, &foc, dst);
6937 	}
6938 	if (fastopen_sk) {
6939 		af_ops->send_synack(fastopen_sk, dst, &fl, req,
6940 				    &foc, TCP_SYNACK_FASTOPEN, skb);
6941 		/* Add the child socket directly into the accept queue */
6942 		if (!inet_csk_reqsk_queue_add(sk, req, fastopen_sk)) {
6943 			reqsk_fastopen_remove(fastopen_sk, req, false);
6944 			bh_unlock_sock(fastopen_sk);
6945 			sock_put(fastopen_sk);
6946 			goto drop_and_free;
6947 		}
6948 		sk->sk_data_ready(sk);
6949 		bh_unlock_sock(fastopen_sk);
6950 		sock_put(fastopen_sk);
6951 	} else {
6952 		tcp_rsk(req)->tfo_listener = false;
6953 		if (!want_cookie)
6954 			inet_csk_reqsk_queue_hash_add(sk, req,
6955 				tcp_timeout_init((struct sock *)req));
6956 		af_ops->send_synack(sk, dst, &fl, req, &foc,
6957 				    !want_cookie ? TCP_SYNACK_NORMAL :
6958 						   TCP_SYNACK_COOKIE,
6959 				    skb);
6960 		if (want_cookie) {
6961 			reqsk_free(req);
6962 			return 0;
6963 		}
6964 	}
6965 	reqsk_put(req);
6966 	return 0;
6967 
6968 drop_and_release:
6969 	dst_release(dst);
6970 drop_and_free:
6971 	__reqsk_free(req);
6972 drop:
6973 	tcp_listendrop(sk);
6974 	return 0;
6975 }
6976 EXPORT_SYMBOL(tcp_conn_request);
6977