• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_SCHED_SIGNAL_H
3 #define _LINUX_SCHED_SIGNAL_H
4 
5 #include <linux/rculist.h>
6 #include <linux/signal.h>
7 #include <linux/sched.h>
8 #include <linux/sched/jobctl.h>
9 #include <linux/sched/task.h>
10 #include <linux/cred.h>
11 #include <linux/refcount.h>
12 #include <linux/posix-timers.h>
13 #include <linux/mm_types.h>
14 #include <asm/ptrace.h>
15 
16 /*
17  * Types defining task->signal and task->sighand and APIs using them:
18  */
19 
20 struct sighand_struct {
21 	spinlock_t		siglock;
22 	refcount_t		count;
23 	wait_queue_head_t	signalfd_wqh;
24 	struct k_sigaction	action[_NSIG];
25 };
26 
27 /*
28  * Per-process accounting stats:
29  */
30 struct pacct_struct {
31 	int			ac_flag;
32 	long			ac_exitcode;
33 	unsigned long		ac_mem;
34 	u64			ac_utime, ac_stime;
35 	unsigned long		ac_minflt, ac_majflt;
36 };
37 
38 struct cpu_itimer {
39 	u64 expires;
40 	u64 incr;
41 };
42 
43 /*
44  * This is the atomic variant of task_cputime, which can be used for
45  * storing and updating task_cputime statistics without locking.
46  */
47 struct task_cputime_atomic {
48 	atomic64_t utime;
49 	atomic64_t stime;
50 	atomic64_t sum_exec_runtime;
51 };
52 
53 #define INIT_CPUTIME_ATOMIC \
54 	(struct task_cputime_atomic) {				\
55 		.utime = ATOMIC64_INIT(0),			\
56 		.stime = ATOMIC64_INIT(0),			\
57 		.sum_exec_runtime = ATOMIC64_INIT(0),		\
58 	}
59 /**
60  * struct thread_group_cputimer - thread group interval timer counts
61  * @cputime_atomic:	atomic thread group interval timers.
62  *
63  * This structure contains the version of task_cputime, above, that is
64  * used for thread group CPU timer calculations.
65  */
66 struct thread_group_cputimer {
67 	struct task_cputime_atomic cputime_atomic;
68 };
69 
70 struct multiprocess_signals {
71 	sigset_t signal;
72 	struct hlist_node node;
73 };
74 
75 /*
76  * NOTE! "signal_struct" does not have its own
77  * locking, because a shared signal_struct always
78  * implies a shared sighand_struct, so locking
79  * sighand_struct is always a proper superset of
80  * the locking of signal_struct.
81  */
82 struct signal_struct {
83 	refcount_t		sigcnt;
84 	atomic_t		live;
85 	int			nr_threads;
86 	struct list_head	thread_head;
87 
88 	wait_queue_head_t	wait_chldexit;	/* for wait4() */
89 
90 	/* current thread group signal load-balancing target: */
91 	struct task_struct	*curr_target;
92 
93 	/* shared signal handling: */
94 	struct sigpending	shared_pending;
95 
96 	/* For collecting multiprocess signals during fork */
97 	struct hlist_head	multiprocess;
98 
99 	/* thread group exit support */
100 	int			group_exit_code;
101 	/* overloaded:
102 	 * - notify group_exit_task when ->count is equal to notify_count
103 	 * - everyone except group_exit_task is stopped during signal delivery
104 	 *   of fatal signals, group_exit_task processes the signal.
105 	 */
106 	int			notify_count;
107 	struct task_struct	*group_exit_task;
108 
109 	/* thread group stop support, overloads group_exit_code too */
110 	int			group_stop_count;
111 	unsigned int		flags; /* see SIGNAL_* flags below */
112 
113 	/*
114 	 * PR_SET_CHILD_SUBREAPER marks a process, like a service
115 	 * manager, to re-parent orphan (double-forking) child processes
116 	 * to this process instead of 'init'. The service manager is
117 	 * able to receive SIGCHLD signals and is able to investigate
118 	 * the process until it calls wait(). All children of this
119 	 * process will inherit a flag if they should look for a
120 	 * child_subreaper process at exit.
121 	 */
122 	unsigned int		is_child_subreaper:1;
123 	unsigned int		has_child_subreaper:1;
124 
125 #ifdef CONFIG_POSIX_TIMERS
126 
127 	/* POSIX.1b Interval Timers */
128 	unsigned int		next_posix_timer_id;
129 	struct list_head	posix_timers;
130 
131 	/* ITIMER_REAL timer for the process */
132 	struct hrtimer real_timer;
133 	ktime_t it_real_incr;
134 
135 	/*
136 	 * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
137 	 * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
138 	 * values are defined to 0 and 1 respectively
139 	 */
140 	struct cpu_itimer it[2];
141 
142 	/*
143 	 * Thread group totals for process CPU timers.
144 	 * See thread_group_cputimer(), et al, for details.
145 	 */
146 	struct thread_group_cputimer cputimer;
147 
148 #endif
149 	/* Empty if CONFIG_POSIX_TIMERS=n */
150 	struct posix_cputimers posix_cputimers;
151 
152 	/* PID/PID hash table linkage. */
153 	struct pid *pids[PIDTYPE_MAX];
154 
155 #ifdef CONFIG_NO_HZ_FULL
156 	atomic_t tick_dep_mask;
157 #endif
158 
159 	struct pid *tty_old_pgrp;
160 
161 	/* boolean value for session group leader */
162 	int leader;
163 
164 	struct tty_struct *tty; /* NULL if no tty */
165 
166 #ifdef CONFIG_SCHED_AUTOGROUP
167 	struct autogroup *autogroup;
168 #endif
169 	/*
170 	 * Cumulative resource counters for dead threads in the group,
171 	 * and for reaped dead child processes forked by this group.
172 	 * Live threads maintain their own counters and add to these
173 	 * in __exit_signal, except for the group leader.
174 	 */
175 	seqlock_t stats_lock;
176 	u64 utime, stime, cutime, cstime;
177 	u64 gtime;
178 	u64 cgtime;
179 	struct prev_cputime prev_cputime;
180 	unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
181 	unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
182 	unsigned long inblock, oublock, cinblock, coublock;
183 	unsigned long maxrss, cmaxrss;
184 	struct task_io_accounting ioac;
185 
186 	/*
187 	 * Cumulative ns of schedule CPU time fo dead threads in the
188 	 * group, not including a zombie group leader, (This only differs
189 	 * from jiffies_to_ns(utime + stime) if sched_clock uses something
190 	 * other than jiffies.)
191 	 */
192 	unsigned long long sum_sched_runtime;
193 
194 	/*
195 	 * We don't bother to synchronize most readers of this at all,
196 	 * because there is no reader checking a limit that actually needs
197 	 * to get both rlim_cur and rlim_max atomically, and either one
198 	 * alone is a single word that can safely be read normally.
199 	 * getrlimit/setrlimit use task_lock(current->group_leader) to
200 	 * protect this instead of the siglock, because they really
201 	 * have no need to disable irqs.
202 	 */
203 	struct rlimit rlim[RLIM_NLIMITS];
204 
205 #ifdef CONFIG_BSD_PROCESS_ACCT
206 	struct pacct_struct pacct;	/* per-process accounting information */
207 #endif
208 #ifdef CONFIG_TASKSTATS
209 	struct taskstats *stats;
210 #endif
211 #ifdef CONFIG_AUDIT
212 	unsigned audit_tty;
213 	struct tty_audit_buf *tty_audit_buf;
214 #endif
215 
216 	/*
217 	 * Thread is the potential origin of an oom condition; kill first on
218 	 * oom
219 	 */
220 	bool oom_flag_origin;
221 	short oom_score_adj;		/* OOM kill score adjustment */
222 	short oom_score_adj_min;	/* OOM kill score adjustment min value.
223 					 * Only settable by CAP_SYS_RESOURCE. */
224 	struct mm_struct *oom_mm;	/* recorded mm when the thread group got
225 					 * killed by the oom killer */
226 
227 	struct mutex cred_guard_mutex;	/* guard against foreign influences on
228 					 * credential calculations
229 					 * (notably. ptrace)
230 					 * Deprecated do not use in new code.
231 					 * Use exec_update_lock instead.
232 					 */
233 	struct rw_semaphore exec_update_lock;	/* Held while task_struct is
234 						 * being updated during exec,
235 						 * and may have inconsistent
236 						 * permissions.
237 						 */
238 } __randomize_layout;
239 
240 /*
241  * Bits in flags field of signal_struct.
242  */
243 #define SIGNAL_STOP_STOPPED	0x00000001 /* job control stop in effect */
244 #define SIGNAL_STOP_CONTINUED	0x00000002 /* SIGCONT since WCONTINUED reap */
245 #define SIGNAL_GROUP_EXIT	0x00000004 /* group exit in progress */
246 #define SIGNAL_GROUP_COREDUMP	0x00000008 /* coredump in progress */
247 /*
248  * Pending notifications to parent.
249  */
250 #define SIGNAL_CLD_STOPPED	0x00000010
251 #define SIGNAL_CLD_CONTINUED	0x00000020
252 #define SIGNAL_CLD_MASK		(SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
253 
254 #define SIGNAL_UNKILLABLE	0x00000040 /* for init: ignore fatal signals */
255 
256 #define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
257 			  SIGNAL_STOP_CONTINUED)
258 
signal_set_stop_flags(struct signal_struct * sig,unsigned int flags)259 static inline void signal_set_stop_flags(struct signal_struct *sig,
260 					 unsigned int flags)
261 {
262 	WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
263 	sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
264 }
265 
266 /* If true, all threads except ->group_exit_task have pending SIGKILL */
signal_group_exit(const struct signal_struct * sig)267 static inline int signal_group_exit(const struct signal_struct *sig)
268 {
269 	return	(sig->flags & SIGNAL_GROUP_EXIT) ||
270 		(sig->group_exit_task != NULL);
271 }
272 
273 extern void flush_signals(struct task_struct *);
274 extern void ignore_signals(struct task_struct *);
275 extern void flush_signal_handlers(struct task_struct *, int force_default);
276 extern int dequeue_signal(struct task_struct *task,
277 			  sigset_t *mask, kernel_siginfo_t *info);
278 
kernel_dequeue_signal(void)279 static inline int kernel_dequeue_signal(void)
280 {
281 	struct task_struct *task = current;
282 	kernel_siginfo_t __info;
283 	int ret;
284 
285 	spin_lock_irq(&task->sighand->siglock);
286 	ret = dequeue_signal(task, &task->blocked, &__info);
287 	spin_unlock_irq(&task->sighand->siglock);
288 
289 	return ret;
290 }
291 
kernel_signal_stop(void)292 static inline void kernel_signal_stop(void)
293 {
294 	spin_lock_irq(&current->sighand->siglock);
295 	if (current->jobctl & JOBCTL_STOP_DEQUEUED)
296 		set_special_state(TASK_STOPPED);
297 	spin_unlock_irq(&current->sighand->siglock);
298 
299 	schedule();
300 }
301 #ifdef __ARCH_SI_TRAPNO
302 # define ___ARCH_SI_TRAPNO(_a1) , _a1
303 #else
304 # define ___ARCH_SI_TRAPNO(_a1)
305 #endif
306 #ifdef __ia64__
307 # define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
308 #else
309 # define ___ARCH_SI_IA64(_a1, _a2, _a3)
310 #endif
311 
312 int force_sig_fault_to_task(int sig, int code, void __user *addr
313 	___ARCH_SI_TRAPNO(int trapno)
314 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
315 	, struct task_struct *t);
316 int force_sig_fault(int sig, int code, void __user *addr
317 	___ARCH_SI_TRAPNO(int trapno)
318 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr));
319 int send_sig_fault(int sig, int code, void __user *addr
320 	___ARCH_SI_TRAPNO(int trapno)
321 	___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
322 	, struct task_struct *t);
323 
324 int force_sig_mceerr(int code, void __user *, short);
325 int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
326 
327 int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
328 int force_sig_pkuerr(void __user *addr, u32 pkey);
329 
330 int force_sig_ptrace_errno_trap(int errno, void __user *addr);
331 
332 extern int send_sig_info(int, struct kernel_siginfo *, struct task_struct *);
333 extern void force_sigsegv(int sig);
334 extern int force_sig_info(struct kernel_siginfo *);
335 extern int __kill_pgrp_info(int sig, struct kernel_siginfo *info, struct pid *pgrp);
336 extern int kill_pid_info(int sig, struct kernel_siginfo *info, struct pid *pid);
337 extern int kill_pid_usb_asyncio(int sig, int errno, sigval_t addr, struct pid *,
338 				const struct cred *);
339 extern int kill_pgrp(struct pid *pid, int sig, int priv);
340 extern int kill_pid(struct pid *pid, int sig, int priv);
341 extern __must_check bool do_notify_parent(struct task_struct *, int);
342 extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
343 extern void force_sig(int);
344 extern int send_sig(int, struct task_struct *, int);
345 extern int zap_other_threads(struct task_struct *p);
346 extern struct sigqueue *sigqueue_alloc(void);
347 extern void sigqueue_free(struct sigqueue *);
348 extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
349 extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
350 
restart_syscall(void)351 static inline int restart_syscall(void)
352 {
353 	set_tsk_thread_flag(current, TIF_SIGPENDING);
354 	return -ERESTARTNOINTR;
355 }
356 
task_sigpending(struct task_struct * p)357 static inline int task_sigpending(struct task_struct *p)
358 {
359 	return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
360 }
361 
signal_pending(struct task_struct * p)362 static inline int signal_pending(struct task_struct *p)
363 {
364 	/*
365 	 * TIF_NOTIFY_SIGNAL isn't really a signal, but it requires the same
366 	 * behavior in terms of ensuring that we break out of wait loops
367 	 * so that notify signal callbacks can be processed.
368 	 */
369 	if (unlikely(test_tsk_thread_flag(p, TIF_NOTIFY_SIGNAL)))
370 		return 1;
371 	return task_sigpending(p);
372 }
373 
__fatal_signal_pending(struct task_struct * p)374 static inline int __fatal_signal_pending(struct task_struct *p)
375 {
376 	return unlikely(sigismember(&p->pending.signal, SIGKILL));
377 }
378 
fatal_signal_pending(struct task_struct * p)379 static inline int fatal_signal_pending(struct task_struct *p)
380 {
381 	return task_sigpending(p) && __fatal_signal_pending(p);
382 }
383 
signal_pending_state(long state,struct task_struct * p)384 static inline int signal_pending_state(long state, struct task_struct *p)
385 {
386 	if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
387 		return 0;
388 	if (!signal_pending(p))
389 		return 0;
390 
391 	return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
392 }
393 
394 /*
395  * This should only be used in fault handlers to decide whether we
396  * should stop the current fault routine to handle the signals
397  * instead, especially with the case where we've got interrupted with
398  * a VM_FAULT_RETRY.
399  */
fault_signal_pending(vm_fault_t fault_flags,struct pt_regs * regs)400 static inline bool fault_signal_pending(vm_fault_t fault_flags,
401 					struct pt_regs *regs)
402 {
403 	return unlikely((fault_flags & VM_FAULT_RETRY) &&
404 			(fatal_signal_pending(current) ||
405 			 (user_mode(regs) && signal_pending(current))));
406 }
407 
408 /*
409  * Reevaluate whether the task has signals pending delivery.
410  * Wake the task if so.
411  * This is required every time the blocked sigset_t changes.
412  * callers must hold sighand->siglock.
413  */
414 extern void recalc_sigpending_and_wake(struct task_struct *t);
415 extern void recalc_sigpending(void);
416 extern void calculate_sigpending(void);
417 
418 extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
419 
signal_wake_up(struct task_struct * t,bool resume)420 static inline void signal_wake_up(struct task_struct *t, bool resume)
421 {
422 	signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
423 }
ptrace_signal_wake_up(struct task_struct * t,bool resume)424 static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
425 {
426 	signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
427 }
428 
429 void task_join_group_stop(struct task_struct *task);
430 
431 #ifdef TIF_RESTORE_SIGMASK
432 /*
433  * Legacy restore_sigmask accessors.  These are inefficient on
434  * SMP architectures because they require atomic operations.
435  */
436 
437 /**
438  * set_restore_sigmask() - make sure saved_sigmask processing gets done
439  *
440  * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
441  * will run before returning to user mode, to process the flag.  For
442  * all callers, TIF_SIGPENDING is already set or it's no harm to set
443  * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
444  * arch code will notice on return to user mode, in case those bits
445  * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
446  * signal code always gets run when TIF_RESTORE_SIGMASK is set.
447  */
set_restore_sigmask(void)448 static inline void set_restore_sigmask(void)
449 {
450 	set_thread_flag(TIF_RESTORE_SIGMASK);
451 }
452 
clear_tsk_restore_sigmask(struct task_struct * task)453 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
454 {
455 	clear_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
456 }
457 
clear_restore_sigmask(void)458 static inline void clear_restore_sigmask(void)
459 {
460 	clear_thread_flag(TIF_RESTORE_SIGMASK);
461 }
test_tsk_restore_sigmask(struct task_struct * task)462 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
463 {
464 	return test_tsk_thread_flag(task, TIF_RESTORE_SIGMASK);
465 }
test_restore_sigmask(void)466 static inline bool test_restore_sigmask(void)
467 {
468 	return test_thread_flag(TIF_RESTORE_SIGMASK);
469 }
test_and_clear_restore_sigmask(void)470 static inline bool test_and_clear_restore_sigmask(void)
471 {
472 	return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
473 }
474 
475 #else	/* TIF_RESTORE_SIGMASK */
476 
477 /* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
set_restore_sigmask(void)478 static inline void set_restore_sigmask(void)
479 {
480 	current->restore_sigmask = true;
481 }
clear_tsk_restore_sigmask(struct task_struct * task)482 static inline void clear_tsk_restore_sigmask(struct task_struct *task)
483 {
484 	task->restore_sigmask = false;
485 }
clear_restore_sigmask(void)486 static inline void clear_restore_sigmask(void)
487 {
488 	current->restore_sigmask = false;
489 }
test_restore_sigmask(void)490 static inline bool test_restore_sigmask(void)
491 {
492 	return current->restore_sigmask;
493 }
test_tsk_restore_sigmask(struct task_struct * task)494 static inline bool test_tsk_restore_sigmask(struct task_struct *task)
495 {
496 	return task->restore_sigmask;
497 }
test_and_clear_restore_sigmask(void)498 static inline bool test_and_clear_restore_sigmask(void)
499 {
500 	if (!current->restore_sigmask)
501 		return false;
502 	current->restore_sigmask = false;
503 	return true;
504 }
505 #endif
506 
restore_saved_sigmask(void)507 static inline void restore_saved_sigmask(void)
508 {
509 	if (test_and_clear_restore_sigmask())
510 		__set_current_blocked(&current->saved_sigmask);
511 }
512 
513 extern int set_user_sigmask(const sigset_t __user *umask, size_t sigsetsize);
514 
restore_saved_sigmask_unless(bool interrupted)515 static inline void restore_saved_sigmask_unless(bool interrupted)
516 {
517 	if (interrupted)
518 		WARN_ON(!signal_pending(current));
519 	else
520 		restore_saved_sigmask();
521 }
522 
sigmask_to_save(void)523 static inline sigset_t *sigmask_to_save(void)
524 {
525 	sigset_t *res = &current->blocked;
526 	if (unlikely(test_restore_sigmask()))
527 		res = &current->saved_sigmask;
528 	return res;
529 }
530 
kill_cad_pid(int sig,int priv)531 static inline int kill_cad_pid(int sig, int priv)
532 {
533 	return kill_pid(cad_pid, sig, priv);
534 }
535 
536 /* These can be the second arg to send_sig_info/send_group_sig_info.  */
537 #define SEND_SIG_NOINFO ((struct kernel_siginfo *) 0)
538 #define SEND_SIG_PRIV	((struct kernel_siginfo *) 1)
539 
__on_sig_stack(unsigned long sp)540 static inline int __on_sig_stack(unsigned long sp)
541 {
542 #ifdef CONFIG_STACK_GROWSUP
543 	return sp >= current->sas_ss_sp &&
544 		sp - current->sas_ss_sp < current->sas_ss_size;
545 #else
546 	return sp > current->sas_ss_sp &&
547 		sp - current->sas_ss_sp <= current->sas_ss_size;
548 #endif
549 }
550 
551 /*
552  * True if we are on the alternate signal stack.
553  */
on_sig_stack(unsigned long sp)554 static inline int on_sig_stack(unsigned long sp)
555 {
556 	/*
557 	 * If the signal stack is SS_AUTODISARM then, by construction, we
558 	 * can't be on the signal stack unless user code deliberately set
559 	 * SS_AUTODISARM when we were already on it.
560 	 *
561 	 * This improves reliability: if user state gets corrupted such that
562 	 * the stack pointer points very close to the end of the signal stack,
563 	 * then this check will enable the signal to be handled anyway.
564 	 */
565 	if (current->sas_ss_flags & SS_AUTODISARM)
566 		return 0;
567 
568 	return __on_sig_stack(sp);
569 }
570 
sas_ss_flags(unsigned long sp)571 static inline int sas_ss_flags(unsigned long sp)
572 {
573 	if (!current->sas_ss_size)
574 		return SS_DISABLE;
575 
576 	return on_sig_stack(sp) ? SS_ONSTACK : 0;
577 }
578 
sas_ss_reset(struct task_struct * p)579 static inline void sas_ss_reset(struct task_struct *p)
580 {
581 	p->sas_ss_sp = 0;
582 	p->sas_ss_size = 0;
583 	p->sas_ss_flags = SS_DISABLE;
584 }
585 
sigsp(unsigned long sp,struct ksignal * ksig)586 static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
587 {
588 	if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
589 #ifdef CONFIG_STACK_GROWSUP
590 		return current->sas_ss_sp;
591 #else
592 		return current->sas_ss_sp + current->sas_ss_size;
593 #endif
594 	return sp;
595 }
596 
597 extern void __cleanup_sighand(struct sighand_struct *);
598 extern void flush_itimer_signals(void);
599 
600 #define tasklist_empty() \
601 	list_empty(&init_task.tasks)
602 
603 #define next_task(p) \
604 	list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
605 
606 #define for_each_process(p) \
607 	for (p = &init_task ; (p = next_task(p)) != &init_task ; )
608 
609 extern bool current_is_single_threaded(void);
610 
611 /*
612  * Careful: do_each_thread/while_each_thread is a double loop so
613  *          'break' will not work as expected - use goto instead.
614  */
615 #define do_each_thread(g, t) \
616 	for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
617 
618 #define while_each_thread(g, t) \
619 	while ((t = next_thread(t)) != g)
620 
621 #define __for_each_thread(signal, t)	\
622 	list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
623 
624 #define for_each_thread(p, t)		\
625 	__for_each_thread((p)->signal, t)
626 
627 /* Careful: this is a double loop, 'break' won't work as expected. */
628 #define for_each_process_thread(p, t)	\
629 	for_each_process(p) for_each_thread(p, t)
630 
631 typedef int (*proc_visitor)(struct task_struct *p, void *data);
632 void walk_process_tree(struct task_struct *top, proc_visitor, void *);
633 
634 static inline
task_pid_type(struct task_struct * task,enum pid_type type)635 struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
636 {
637 	struct pid *pid;
638 	if (type == PIDTYPE_PID)
639 		pid = task_pid(task);
640 	else
641 		pid = task->signal->pids[type];
642 	return pid;
643 }
644 
task_tgid(struct task_struct * task)645 static inline struct pid *task_tgid(struct task_struct *task)
646 {
647 	return task->signal->pids[PIDTYPE_TGID];
648 }
649 
650 /*
651  * Without tasklist or RCU lock it is not safe to dereference
652  * the result of task_pgrp/task_session even if task == current,
653  * we can race with another thread doing sys_setsid/sys_setpgid.
654  */
task_pgrp(struct task_struct * task)655 static inline struct pid *task_pgrp(struct task_struct *task)
656 {
657 	return task->signal->pids[PIDTYPE_PGID];
658 }
659 
task_session(struct task_struct * task)660 static inline struct pid *task_session(struct task_struct *task)
661 {
662 	return task->signal->pids[PIDTYPE_SID];
663 }
664 
get_nr_threads(struct task_struct * task)665 static inline int get_nr_threads(struct task_struct *task)
666 {
667 	return task->signal->nr_threads;
668 }
669 
thread_group_leader(struct task_struct * p)670 static inline bool thread_group_leader(struct task_struct *p)
671 {
672 	return p->exit_signal >= 0;
673 }
674 
675 static inline
same_thread_group(struct task_struct * p1,struct task_struct * p2)676 bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
677 {
678 	return p1->signal == p2->signal;
679 }
680 
next_thread(const struct task_struct * p)681 static inline struct task_struct *next_thread(const struct task_struct *p)
682 {
683 	return list_entry_rcu(p->thread_group.next,
684 			      struct task_struct, thread_group);
685 }
686 
thread_group_empty(struct task_struct * p)687 static inline int thread_group_empty(struct task_struct *p)
688 {
689 	return list_empty(&p->thread_group);
690 }
691 
692 #define delay_group_leader(p) \
693 		(thread_group_leader(p) && !thread_group_empty(p))
694 
695 extern bool thread_group_exited(struct pid *pid);
696 
697 extern struct sighand_struct *__lock_task_sighand(struct task_struct *task,
698 							unsigned long *flags);
699 
lock_task_sighand(struct task_struct * task,unsigned long * flags)700 static inline struct sighand_struct *lock_task_sighand(struct task_struct *task,
701 						       unsigned long *flags)
702 {
703 	struct sighand_struct *ret;
704 
705 	ret = __lock_task_sighand(task, flags);
706 	(void)__cond_lock(&task->sighand->siglock, ret);
707 	return ret;
708 }
709 
unlock_task_sighand(struct task_struct * task,unsigned long * flags)710 static inline void unlock_task_sighand(struct task_struct *task,
711 						unsigned long *flags)
712 {
713 	spin_unlock_irqrestore(&task->sighand->siglock, *flags);
714 }
715 
task_rlimit(const struct task_struct * task,unsigned int limit)716 static inline unsigned long task_rlimit(const struct task_struct *task,
717 		unsigned int limit)
718 {
719 	return READ_ONCE(task->signal->rlim[limit].rlim_cur);
720 }
721 
task_rlimit_max(const struct task_struct * task,unsigned int limit)722 static inline unsigned long task_rlimit_max(const struct task_struct *task,
723 		unsigned int limit)
724 {
725 	return READ_ONCE(task->signal->rlim[limit].rlim_max);
726 }
727 
rlimit(unsigned int limit)728 static inline unsigned long rlimit(unsigned int limit)
729 {
730 	return task_rlimit(current, limit);
731 }
732 
rlimit_max(unsigned int limit)733 static inline unsigned long rlimit_max(unsigned int limit)
734 {
735 	return task_rlimit_max(current, limit);
736 }
737 
738 #endif /* _LINUX_SCHED_SIGNAL_H */
739