1 //===-- llvm/ADT/APSInt.h - Arbitrary Precision Signed Int -----*- C++ -*--===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the APSInt class, which is a simple class that 10 // represents an arbitrary sized integer that knows its signedness. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_ADT_APSINT_H 15 #define LLVM_ADT_APSINT_H 16 17 #include "llvm/ADT/APInt.h" 18 19 namespace llvm { 20 21 class LLVM_NODISCARD APSInt : public APInt { 22 bool IsUnsigned; 23 24 public: 25 /// Default constructor that creates an uninitialized APInt. APSInt()26 explicit APSInt() : IsUnsigned(false) {} 27 28 /// APSInt ctor - Create an APSInt with the specified width, default to 29 /// unsigned. 30 explicit APSInt(uint32_t BitWidth, bool isUnsigned = true) 31 : APInt(BitWidth, 0), IsUnsigned(isUnsigned) {} 32 33 explicit APSInt(APInt I, bool isUnsigned = true) APInt(std::move (I))34 : APInt(std::move(I)), IsUnsigned(isUnsigned) {} 35 36 /// Construct an APSInt from a string representation. 37 /// 38 /// This constructor interprets the string \p Str using the radix of 10. 39 /// The interpretation stops at the end of the string. The bit width of the 40 /// constructed APSInt is determined automatically. 41 /// 42 /// \param Str the string to be interpreted. 43 explicit APSInt(StringRef Str); 44 45 /// Determine sign of this APSInt. 46 /// 47 /// \returns true if this APSInt is negative, false otherwise isNegative()48 bool isNegative() const { return isSigned() && APInt::isNegative(); } 49 50 /// Determine if this APSInt Value is non-negative (>= 0) 51 /// 52 /// \returns true if this APSInt is non-negative, false otherwise isNonNegative()53 bool isNonNegative() const { return !isNegative(); } 54 55 /// Determine if this APSInt Value is positive. 56 /// 57 /// This tests if the value of this APSInt is positive (> 0). Note 58 /// that 0 is not a positive value. 59 /// 60 /// \returns true if this APSInt is positive. isStrictlyPositive()61 bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); } 62 63 APSInt &operator=(APInt RHS) { 64 // Retain our current sign. 65 APInt::operator=(std::move(RHS)); 66 return *this; 67 } 68 69 APSInt &operator=(uint64_t RHS) { 70 // Retain our current sign. 71 APInt::operator=(RHS); 72 return *this; 73 } 74 75 // Query sign information. isSigned()76 bool isSigned() const { return !IsUnsigned; } isUnsigned()77 bool isUnsigned() const { return IsUnsigned; } setIsUnsigned(bool Val)78 void setIsUnsigned(bool Val) { IsUnsigned = Val; } setIsSigned(bool Val)79 void setIsSigned(bool Val) { IsUnsigned = !Val; } 80 81 /// toString - Append this APSInt to the specified SmallString. 82 void toString(SmallVectorImpl<char> &Str, unsigned Radix = 10) const { 83 APInt::toString(Str, Radix, isSigned()); 84 } 85 /// toString - Converts an APInt to a std::string. This is an inefficient 86 /// method; you should prefer passing in a SmallString instead. toString(unsigned Radix)87 std::string toString(unsigned Radix) const { 88 return APInt::toString(Radix, isSigned()); 89 } 90 using APInt::toString; 91 92 /// Get the correctly-extended \c int64_t value. getExtValue()93 int64_t getExtValue() const { 94 assert(getMinSignedBits() <= 64 && "Too many bits for int64_t"); 95 return isSigned() ? getSExtValue() : getZExtValue(); 96 } 97 trunc(uint32_t width)98 APSInt trunc(uint32_t width) const { 99 return APSInt(APInt::trunc(width), IsUnsigned); 100 } 101 extend(uint32_t width)102 APSInt extend(uint32_t width) const { 103 if (IsUnsigned) 104 return APSInt(zext(width), IsUnsigned); 105 else 106 return APSInt(sext(width), IsUnsigned); 107 } 108 extOrTrunc(uint32_t width)109 APSInt extOrTrunc(uint32_t width) const { 110 if (IsUnsigned) 111 return APSInt(zextOrTrunc(width), IsUnsigned); 112 else 113 return APSInt(sextOrTrunc(width), IsUnsigned); 114 } 115 116 const APSInt &operator%=(const APSInt &RHS) { 117 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 118 if (IsUnsigned) 119 *this = urem(RHS); 120 else 121 *this = srem(RHS); 122 return *this; 123 } 124 const APSInt &operator/=(const APSInt &RHS) { 125 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 126 if (IsUnsigned) 127 *this = udiv(RHS); 128 else 129 *this = sdiv(RHS); 130 return *this; 131 } 132 APSInt operator%(const APSInt &RHS) const { 133 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 134 return IsUnsigned ? APSInt(urem(RHS), true) : APSInt(srem(RHS), false); 135 } 136 APSInt operator/(const APSInt &RHS) const { 137 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 138 return IsUnsigned ? APSInt(udiv(RHS), true) : APSInt(sdiv(RHS), false); 139 } 140 141 APSInt operator>>(unsigned Amt) const { 142 return IsUnsigned ? APSInt(lshr(Amt), true) : APSInt(ashr(Amt), false); 143 } 144 APSInt& operator>>=(unsigned Amt) { 145 if (IsUnsigned) 146 lshrInPlace(Amt); 147 else 148 ashrInPlace(Amt); 149 return *this; 150 } 151 152 inline bool operator<(const APSInt& RHS) const { 153 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 154 return IsUnsigned ? ult(RHS) : slt(RHS); 155 } 156 inline bool operator>(const APSInt& RHS) const { 157 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 158 return IsUnsigned ? ugt(RHS) : sgt(RHS); 159 } 160 inline bool operator<=(const APSInt& RHS) const { 161 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 162 return IsUnsigned ? ule(RHS) : sle(RHS); 163 } 164 inline bool operator>=(const APSInt& RHS) const { 165 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 166 return IsUnsigned ? uge(RHS) : sge(RHS); 167 } 168 inline bool operator==(const APSInt& RHS) const { 169 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 170 return eq(RHS); 171 } 172 inline bool operator!=(const APSInt& RHS) const { 173 return !((*this) == RHS); 174 } 175 176 bool operator==(int64_t RHS) const { 177 return compareValues(*this, get(RHS)) == 0; 178 } 179 bool operator!=(int64_t RHS) const { 180 return compareValues(*this, get(RHS)) != 0; 181 } 182 bool operator<=(int64_t RHS) const { 183 return compareValues(*this, get(RHS)) <= 0; 184 } 185 bool operator>=(int64_t RHS) const { 186 return compareValues(*this, get(RHS)) >= 0; 187 } 188 bool operator<(int64_t RHS) const { 189 return compareValues(*this, get(RHS)) < 0; 190 } 191 bool operator>(int64_t RHS) const { 192 return compareValues(*this, get(RHS)) > 0; 193 } 194 195 // The remaining operators just wrap the logic of APInt, but retain the 196 // signedness information. 197 198 APSInt operator<<(unsigned Bits) const { 199 return APSInt(static_cast<const APInt&>(*this) << Bits, IsUnsigned); 200 } 201 APSInt& operator<<=(unsigned Amt) { 202 static_cast<APInt&>(*this) <<= Amt; 203 return *this; 204 } 205 206 APSInt& operator++() { 207 ++(static_cast<APInt&>(*this)); 208 return *this; 209 } 210 APSInt& operator--() { 211 --(static_cast<APInt&>(*this)); 212 return *this; 213 } 214 APSInt operator++(int) { 215 return APSInt(++static_cast<APInt&>(*this), IsUnsigned); 216 } 217 APSInt operator--(int) { 218 return APSInt(--static_cast<APInt&>(*this), IsUnsigned); 219 } 220 APSInt operator-() const { 221 return APSInt(-static_cast<const APInt&>(*this), IsUnsigned); 222 } 223 APSInt& operator+=(const APSInt& RHS) { 224 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 225 static_cast<APInt&>(*this) += RHS; 226 return *this; 227 } 228 APSInt& operator-=(const APSInt& RHS) { 229 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 230 static_cast<APInt&>(*this) -= RHS; 231 return *this; 232 } 233 APSInt& operator*=(const APSInt& RHS) { 234 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 235 static_cast<APInt&>(*this) *= RHS; 236 return *this; 237 } 238 APSInt& operator&=(const APSInt& RHS) { 239 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 240 static_cast<APInt&>(*this) &= RHS; 241 return *this; 242 } 243 APSInt& operator|=(const APSInt& RHS) { 244 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 245 static_cast<APInt&>(*this) |= RHS; 246 return *this; 247 } 248 APSInt& operator^=(const APSInt& RHS) { 249 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 250 static_cast<APInt&>(*this) ^= RHS; 251 return *this; 252 } 253 254 APSInt operator&(const APSInt& RHS) const { 255 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 256 return APSInt(static_cast<const APInt&>(*this) & RHS, IsUnsigned); 257 } 258 259 APSInt operator|(const APSInt& RHS) const { 260 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 261 return APSInt(static_cast<const APInt&>(*this) | RHS, IsUnsigned); 262 } 263 264 APSInt operator^(const APSInt &RHS) const { 265 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 266 return APSInt(static_cast<const APInt&>(*this) ^ RHS, IsUnsigned); 267 } 268 269 APSInt operator*(const APSInt& RHS) const { 270 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 271 return APSInt(static_cast<const APInt&>(*this) * RHS, IsUnsigned); 272 } 273 APSInt operator+(const APSInt& RHS) const { 274 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 275 return APSInt(static_cast<const APInt&>(*this) + RHS, IsUnsigned); 276 } 277 APSInt operator-(const APSInt& RHS) const { 278 assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!"); 279 return APSInt(static_cast<const APInt&>(*this) - RHS, IsUnsigned); 280 } 281 APSInt operator~() const { 282 return APSInt(~static_cast<const APInt&>(*this), IsUnsigned); 283 } 284 285 /// getMaxValue - Return the APSInt representing the maximum integer value 286 /// with the given bit width and signedness. getMaxValue(uint32_t numBits,bool Unsigned)287 static APSInt getMaxValue(uint32_t numBits, bool Unsigned) { 288 return APSInt(Unsigned ? APInt::getMaxValue(numBits) 289 : APInt::getSignedMaxValue(numBits), Unsigned); 290 } 291 292 /// getMinValue - Return the APSInt representing the minimum integer value 293 /// with the given bit width and signedness. getMinValue(uint32_t numBits,bool Unsigned)294 static APSInt getMinValue(uint32_t numBits, bool Unsigned) { 295 return APSInt(Unsigned ? APInt::getMinValue(numBits) 296 : APInt::getSignedMinValue(numBits), Unsigned); 297 } 298 299 /// Determine if two APSInts have the same value, zero- or 300 /// sign-extending as needed. isSameValue(const APSInt & I1,const APSInt & I2)301 static bool isSameValue(const APSInt &I1, const APSInt &I2) { 302 return !compareValues(I1, I2); 303 } 304 305 /// Compare underlying values of two numbers. compareValues(const APSInt & I1,const APSInt & I2)306 static int compareValues(const APSInt &I1, const APSInt &I2) { 307 if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned()) 308 return I1.IsUnsigned ? I1.compare(I2) : I1.compareSigned(I2); 309 310 // Check for a bit-width mismatch. 311 if (I1.getBitWidth() > I2.getBitWidth()) 312 return compareValues(I1, I2.extend(I1.getBitWidth())); 313 if (I2.getBitWidth() > I1.getBitWidth()) 314 return compareValues(I1.extend(I2.getBitWidth()), I2); 315 316 // We have a signedness mismatch. Check for negative values and do an 317 // unsigned compare if both are positive. 318 if (I1.isSigned()) { 319 assert(!I2.isSigned() && "Expected signed mismatch"); 320 if (I1.isNegative()) 321 return -1; 322 } else { 323 assert(I2.isSigned() && "Expected signed mismatch"); 324 if (I2.isNegative()) 325 return 1; 326 } 327 328 return I1.compare(I2); 329 } 330 get(int64_t X)331 static APSInt get(int64_t X) { return APSInt(APInt(64, X), false); } getUnsigned(uint64_t X)332 static APSInt getUnsigned(uint64_t X) { return APSInt(APInt(64, X), true); } 333 334 /// Profile - Used to insert APSInt objects, or objects that contain APSInt 335 /// objects, into FoldingSets. 336 void Profile(FoldingSetNodeID& ID) const; 337 }; 338 339 inline bool operator==(int64_t V1, const APSInt &V2) { return V2 == V1; } 340 inline bool operator!=(int64_t V1, const APSInt &V2) { return V2 != V1; } 341 inline bool operator<=(int64_t V1, const APSInt &V2) { return V2 >= V1; } 342 inline bool operator>=(int64_t V1, const APSInt &V2) { return V2 <= V1; } 343 inline bool operator<(int64_t V1, const APSInt &V2) { return V2 > V1; } 344 inline bool operator>(int64_t V1, const APSInt &V2) { return V2 < V1; } 345 346 inline raw_ostream &operator<<(raw_ostream &OS, const APSInt &I) { 347 I.print(OS, I.isSigned()); 348 return OS; 349 } 350 351 } // end namespace llvm 352 353 #endif 354