• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/ADT/APSInt.h - Arbitrary Precision Signed Int -----*- C++ -*--===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the APSInt class, which is a simple class that
10 // represents an arbitrary sized integer that knows its signedness.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #ifndef LLVM_ADT_APSINT_H
15 #define LLVM_ADT_APSINT_H
16 
17 #include "llvm/ADT/APInt.h"
18 
19 namespace llvm {
20 
21 class LLVM_NODISCARD APSInt : public APInt {
22   bool IsUnsigned;
23 
24 public:
25   /// Default constructor that creates an uninitialized APInt.
APSInt()26   explicit APSInt() : IsUnsigned(false) {}
27 
28   /// APSInt ctor - Create an APSInt with the specified width, default to
29   /// unsigned.
30   explicit APSInt(uint32_t BitWidth, bool isUnsigned = true)
31    : APInt(BitWidth, 0), IsUnsigned(isUnsigned) {}
32 
33   explicit APSInt(APInt I, bool isUnsigned = true)
APInt(std::move (I))34    : APInt(std::move(I)), IsUnsigned(isUnsigned) {}
35 
36   /// Construct an APSInt from a string representation.
37   ///
38   /// This constructor interprets the string \p Str using the radix of 10.
39   /// The interpretation stops at the end of the string. The bit width of the
40   /// constructed APSInt is determined automatically.
41   ///
42   /// \param Str the string to be interpreted.
43   explicit APSInt(StringRef Str);
44 
45   /// Determine sign of this APSInt.
46   ///
47   /// \returns true if this APSInt is negative, false otherwise
isNegative()48   bool isNegative() const { return isSigned() && APInt::isNegative(); }
49 
50   /// Determine if this APSInt Value is non-negative (>= 0)
51   ///
52   /// \returns true if this APSInt is non-negative, false otherwise
isNonNegative()53   bool isNonNegative() const { return !isNegative(); }
54 
55   /// Determine if this APSInt Value is positive.
56   ///
57   /// This tests if the value of this APSInt is positive (> 0). Note
58   /// that 0 is not a positive value.
59   ///
60   /// \returns true if this APSInt is positive.
isStrictlyPositive()61   bool isStrictlyPositive() const { return isNonNegative() && !isNullValue(); }
62 
63   APSInt &operator=(APInt RHS) {
64     // Retain our current sign.
65     APInt::operator=(std::move(RHS));
66     return *this;
67   }
68 
69   APSInt &operator=(uint64_t RHS) {
70     // Retain our current sign.
71     APInt::operator=(RHS);
72     return *this;
73   }
74 
75   // Query sign information.
isSigned()76   bool isSigned() const { return !IsUnsigned; }
isUnsigned()77   bool isUnsigned() const { return IsUnsigned; }
setIsUnsigned(bool Val)78   void setIsUnsigned(bool Val) { IsUnsigned = Val; }
setIsSigned(bool Val)79   void setIsSigned(bool Val) { IsUnsigned = !Val; }
80 
81   /// toString - Append this APSInt to the specified SmallString.
82   void toString(SmallVectorImpl<char> &Str, unsigned Radix = 10) const {
83     APInt::toString(Str, Radix, isSigned());
84   }
85   /// toString - Converts an APInt to a std::string.  This is an inefficient
86   /// method; you should prefer passing in a SmallString instead.
toString(unsigned Radix)87   std::string toString(unsigned Radix) const {
88     return APInt::toString(Radix, isSigned());
89   }
90   using APInt::toString;
91 
92   /// Get the correctly-extended \c int64_t value.
getExtValue()93   int64_t getExtValue() const {
94     assert(getMinSignedBits() <= 64 && "Too many bits for int64_t");
95     return isSigned() ? getSExtValue() : getZExtValue();
96   }
97 
trunc(uint32_t width)98   APSInt trunc(uint32_t width) const {
99     return APSInt(APInt::trunc(width), IsUnsigned);
100   }
101 
extend(uint32_t width)102   APSInt extend(uint32_t width) const {
103     if (IsUnsigned)
104       return APSInt(zext(width), IsUnsigned);
105     else
106       return APSInt(sext(width), IsUnsigned);
107   }
108 
extOrTrunc(uint32_t width)109   APSInt extOrTrunc(uint32_t width) const {
110     if (IsUnsigned)
111       return APSInt(zextOrTrunc(width), IsUnsigned);
112     else
113       return APSInt(sextOrTrunc(width), IsUnsigned);
114   }
115 
116   const APSInt &operator%=(const APSInt &RHS) {
117     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
118     if (IsUnsigned)
119       *this = urem(RHS);
120     else
121       *this = srem(RHS);
122     return *this;
123   }
124   const APSInt &operator/=(const APSInt &RHS) {
125     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
126     if (IsUnsigned)
127       *this = udiv(RHS);
128     else
129       *this = sdiv(RHS);
130     return *this;
131   }
132   APSInt operator%(const APSInt &RHS) const {
133     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
134     return IsUnsigned ? APSInt(urem(RHS), true) : APSInt(srem(RHS), false);
135   }
136   APSInt operator/(const APSInt &RHS) const {
137     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
138     return IsUnsigned ? APSInt(udiv(RHS), true) : APSInt(sdiv(RHS), false);
139   }
140 
141   APSInt operator>>(unsigned Amt) const {
142     return IsUnsigned ? APSInt(lshr(Amt), true) : APSInt(ashr(Amt), false);
143   }
144   APSInt& operator>>=(unsigned Amt) {
145     if (IsUnsigned)
146       lshrInPlace(Amt);
147     else
148       ashrInPlace(Amt);
149     return *this;
150   }
151 
152   inline bool operator<(const APSInt& RHS) const {
153     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
154     return IsUnsigned ? ult(RHS) : slt(RHS);
155   }
156   inline bool operator>(const APSInt& RHS) const {
157     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
158     return IsUnsigned ? ugt(RHS) : sgt(RHS);
159   }
160   inline bool operator<=(const APSInt& RHS) const {
161     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
162     return IsUnsigned ? ule(RHS) : sle(RHS);
163   }
164   inline bool operator>=(const APSInt& RHS) const {
165     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
166     return IsUnsigned ? uge(RHS) : sge(RHS);
167   }
168   inline bool operator==(const APSInt& RHS) const {
169     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
170     return eq(RHS);
171   }
172   inline bool operator!=(const APSInt& RHS) const {
173     return !((*this) == RHS);
174   }
175 
176   bool operator==(int64_t RHS) const {
177     return compareValues(*this, get(RHS)) == 0;
178   }
179   bool operator!=(int64_t RHS) const {
180     return compareValues(*this, get(RHS)) != 0;
181   }
182   bool operator<=(int64_t RHS) const {
183     return compareValues(*this, get(RHS)) <= 0;
184   }
185   bool operator>=(int64_t RHS) const {
186     return compareValues(*this, get(RHS)) >= 0;
187   }
188   bool operator<(int64_t RHS) const {
189     return compareValues(*this, get(RHS)) < 0;
190   }
191   bool operator>(int64_t RHS) const {
192     return compareValues(*this, get(RHS)) > 0;
193   }
194 
195   // The remaining operators just wrap the logic of APInt, but retain the
196   // signedness information.
197 
198   APSInt operator<<(unsigned Bits) const {
199     return APSInt(static_cast<const APInt&>(*this) << Bits, IsUnsigned);
200   }
201   APSInt& operator<<=(unsigned Amt) {
202     static_cast<APInt&>(*this) <<= Amt;
203     return *this;
204   }
205 
206   APSInt& operator++() {
207     ++(static_cast<APInt&>(*this));
208     return *this;
209   }
210   APSInt& operator--() {
211     --(static_cast<APInt&>(*this));
212     return *this;
213   }
214   APSInt operator++(int) {
215     return APSInt(++static_cast<APInt&>(*this), IsUnsigned);
216   }
217   APSInt operator--(int) {
218     return APSInt(--static_cast<APInt&>(*this), IsUnsigned);
219   }
220   APSInt operator-() const {
221     return APSInt(-static_cast<const APInt&>(*this), IsUnsigned);
222   }
223   APSInt& operator+=(const APSInt& RHS) {
224     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
225     static_cast<APInt&>(*this) += RHS;
226     return *this;
227   }
228   APSInt& operator-=(const APSInt& RHS) {
229     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
230     static_cast<APInt&>(*this) -= RHS;
231     return *this;
232   }
233   APSInt& operator*=(const APSInt& RHS) {
234     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
235     static_cast<APInt&>(*this) *= RHS;
236     return *this;
237   }
238   APSInt& operator&=(const APSInt& RHS) {
239     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
240     static_cast<APInt&>(*this) &= RHS;
241     return *this;
242   }
243   APSInt& operator|=(const APSInt& RHS) {
244     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
245     static_cast<APInt&>(*this) |= RHS;
246     return *this;
247   }
248   APSInt& operator^=(const APSInt& RHS) {
249     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
250     static_cast<APInt&>(*this) ^= RHS;
251     return *this;
252   }
253 
254   APSInt operator&(const APSInt& RHS) const {
255     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
256     return APSInt(static_cast<const APInt&>(*this) & RHS, IsUnsigned);
257   }
258 
259   APSInt operator|(const APSInt& RHS) const {
260     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
261     return APSInt(static_cast<const APInt&>(*this) | RHS, IsUnsigned);
262   }
263 
264   APSInt operator^(const APSInt &RHS) const {
265     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
266     return APSInt(static_cast<const APInt&>(*this) ^ RHS, IsUnsigned);
267   }
268 
269   APSInt operator*(const APSInt& RHS) const {
270     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
271     return APSInt(static_cast<const APInt&>(*this) * RHS, IsUnsigned);
272   }
273   APSInt operator+(const APSInt& RHS) const {
274     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
275     return APSInt(static_cast<const APInt&>(*this) + RHS, IsUnsigned);
276   }
277   APSInt operator-(const APSInt& RHS) const {
278     assert(IsUnsigned == RHS.IsUnsigned && "Signedness mismatch!");
279     return APSInt(static_cast<const APInt&>(*this) - RHS, IsUnsigned);
280   }
281   APSInt operator~() const {
282     return APSInt(~static_cast<const APInt&>(*this), IsUnsigned);
283   }
284 
285   /// getMaxValue - Return the APSInt representing the maximum integer value
286   ///  with the given bit width and signedness.
getMaxValue(uint32_t numBits,bool Unsigned)287   static APSInt getMaxValue(uint32_t numBits, bool Unsigned) {
288     return APSInt(Unsigned ? APInt::getMaxValue(numBits)
289                            : APInt::getSignedMaxValue(numBits), Unsigned);
290   }
291 
292   /// getMinValue - Return the APSInt representing the minimum integer value
293   ///  with the given bit width and signedness.
getMinValue(uint32_t numBits,bool Unsigned)294   static APSInt getMinValue(uint32_t numBits, bool Unsigned) {
295     return APSInt(Unsigned ? APInt::getMinValue(numBits)
296                            : APInt::getSignedMinValue(numBits), Unsigned);
297   }
298 
299   /// Determine if two APSInts have the same value, zero- or
300   /// sign-extending as needed.
isSameValue(const APSInt & I1,const APSInt & I2)301   static bool isSameValue(const APSInt &I1, const APSInt &I2) {
302     return !compareValues(I1, I2);
303   }
304 
305   /// Compare underlying values of two numbers.
compareValues(const APSInt & I1,const APSInt & I2)306   static int compareValues(const APSInt &I1, const APSInt &I2) {
307     if (I1.getBitWidth() == I2.getBitWidth() && I1.isSigned() == I2.isSigned())
308       return I1.IsUnsigned ? I1.compare(I2) : I1.compareSigned(I2);
309 
310     // Check for a bit-width mismatch.
311     if (I1.getBitWidth() > I2.getBitWidth())
312       return compareValues(I1, I2.extend(I1.getBitWidth()));
313     if (I2.getBitWidth() > I1.getBitWidth())
314       return compareValues(I1.extend(I2.getBitWidth()), I2);
315 
316     // We have a signedness mismatch. Check for negative values and do an
317     // unsigned compare if both are positive.
318     if (I1.isSigned()) {
319       assert(!I2.isSigned() && "Expected signed mismatch");
320       if (I1.isNegative())
321         return -1;
322     } else {
323       assert(I2.isSigned() && "Expected signed mismatch");
324       if (I2.isNegative())
325         return 1;
326     }
327 
328     return I1.compare(I2);
329   }
330 
get(int64_t X)331   static APSInt get(int64_t X) { return APSInt(APInt(64, X), false); }
getUnsigned(uint64_t X)332   static APSInt getUnsigned(uint64_t X) { return APSInt(APInt(64, X), true); }
333 
334   /// Profile - Used to insert APSInt objects, or objects that contain APSInt
335   ///  objects, into FoldingSets.
336   void Profile(FoldingSetNodeID& ID) const;
337 };
338 
339 inline bool operator==(int64_t V1, const APSInt &V2) { return V2 == V1; }
340 inline bool operator!=(int64_t V1, const APSInt &V2) { return V2 != V1; }
341 inline bool operator<=(int64_t V1, const APSInt &V2) { return V2 >= V1; }
342 inline bool operator>=(int64_t V1, const APSInt &V2) { return V2 <= V1; }
343 inline bool operator<(int64_t V1, const APSInt &V2) { return V2 > V1; }
344 inline bool operator>(int64_t V1, const APSInt &V2) { return V2 < V1; }
345 
346 inline raw_ostream &operator<<(raw_ostream &OS, const APSInt &I) {
347   I.print(OS, I.isSigned());
348   return OS;
349 }
350 
351 } // end namespace llvm
352 
353 #endif
354