1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the declaration of the MachineInstr class, which is the 10 // basic representation for all target dependent machine instructions used by 11 // the back end. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H 16 #define LLVM_CODEGEN_MACHINEINSTR_H 17 18 #include "llvm/ADT/DenseMapInfo.h" 19 #include "llvm/ADT/PointerSumType.h" 20 #include "llvm/ADT/ilist.h" 21 #include "llvm/ADT/ilist_node.h" 22 #include "llvm/ADT/iterator_range.h" 23 #include "llvm/CodeGen/MachineMemOperand.h" 24 #include "llvm/CodeGen/MachineOperand.h" 25 #include "llvm/CodeGen/TargetOpcodes.h" 26 #include "llvm/IR/DebugLoc.h" 27 #include "llvm/IR/InlineAsm.h" 28 #include "llvm/MC/MCInstrDesc.h" 29 #include "llvm/MC/MCSymbol.h" 30 #include "llvm/Support/ArrayRecycler.h" 31 #include "llvm/Support/TrailingObjects.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstdint> 35 #include <utility> 36 37 namespace llvm { 38 39 class AAResults; 40 template <typename T> class ArrayRef; 41 class DIExpression; 42 class DILocalVariable; 43 class MachineBasicBlock; 44 class MachineFunction; 45 class MachineMemOperand; 46 class MachineRegisterInfo; 47 class ModuleSlotTracker; 48 class raw_ostream; 49 template <typename T> class SmallVectorImpl; 50 class SmallBitVector; 51 class StringRef; 52 class TargetInstrInfo; 53 class TargetRegisterClass; 54 class TargetRegisterInfo; 55 56 //===----------------------------------------------------------------------===// 57 /// Representation of each machine instruction. 58 /// 59 /// This class isn't a POD type, but it must have a trivial destructor. When a 60 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated 61 /// without having their destructor called. 62 /// 63 class MachineInstr 64 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock, 65 ilist_sentinel_tracking<true>> { 66 public: 67 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator; 68 69 /// Flags to specify different kinds of comments to output in 70 /// assembly code. These flags carry semantic information not 71 /// otherwise easily derivable from the IR text. 72 /// 73 enum CommentFlag { 74 ReloadReuse = 0x1, // higher bits are reserved for target dep comments. 75 NoSchedComment = 0x2, 76 TAsmComments = 0x4 // Target Asm comments should start from this value. 77 }; 78 79 enum MIFlag { 80 NoFlags = 0, 81 FrameSetup = 1 << 0, // Instruction is used as a part of 82 // function frame setup code. 83 FrameDestroy = 1 << 1, // Instruction is used as a part of 84 // function frame destruction code. 85 BundledPred = 1 << 2, // Instruction has bundled predecessors. 86 BundledSucc = 1 << 3, // Instruction has bundled successors. 87 FmNoNans = 1 << 4, // Instruction does not support Fast 88 // math nan values. 89 FmNoInfs = 1 << 5, // Instruction does not support Fast 90 // math infinity values. 91 FmNsz = 1 << 6, // Instruction is not required to retain 92 // signed zero values. 93 FmArcp = 1 << 7, // Instruction supports Fast math 94 // reciprocal approximations. 95 FmContract = 1 << 8, // Instruction supports Fast math 96 // contraction operations like fma. 97 FmAfn = 1 << 9, // Instruction may map to Fast math 98 // instrinsic approximation. 99 FmReassoc = 1 << 10, // Instruction supports Fast math 100 // reassociation of operand order. 101 NoUWrap = 1 << 11, // Instruction supports binary operator 102 // no unsigned wrap. 103 NoSWrap = 1 << 12, // Instruction supports binary operator 104 // no signed wrap. 105 IsExact = 1 << 13, // Instruction supports division is 106 // known to be exact. 107 NoFPExcept = 1 << 14, // Instruction does not raise 108 // floatint-point exceptions. 109 }; 110 111 private: 112 const MCInstrDesc *MCID; // Instruction descriptor. 113 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block. 114 115 // Operands are allocated by an ArrayRecycler. 116 MachineOperand *Operands = nullptr; // Pointer to the first operand. 117 unsigned NumOperands = 0; // Number of operands on instruction. 118 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity; 119 OperandCapacity CapOperands; // Capacity of the Operands array. 120 121 uint16_t Flags = 0; // Various bits of additional 122 // information about machine 123 // instruction. 124 125 uint8_t AsmPrinterFlags = 0; // Various bits of information used by 126 // the AsmPrinter to emit helpful 127 // comments. This is *not* semantic 128 // information. Do not use this for 129 // anything other than to convey comment 130 // information to AsmPrinter. 131 132 /// Internal implementation detail class that provides out-of-line storage for 133 /// extra info used by the machine instruction when this info cannot be stored 134 /// in-line within the instruction itself. 135 /// 136 /// This has to be defined eagerly due to the implementation constraints of 137 /// `PointerSumType` where it is used. 138 class ExtraInfo final 139 : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *, MDNode *> { 140 public: 141 static ExtraInfo *create(BumpPtrAllocator &Allocator, 142 ArrayRef<MachineMemOperand *> MMOs, 143 MCSymbol *PreInstrSymbol = nullptr, 144 MCSymbol *PostInstrSymbol = nullptr, 145 MDNode *HeapAllocMarker = nullptr) { 146 bool HasPreInstrSymbol = PreInstrSymbol != nullptr; 147 bool HasPostInstrSymbol = PostInstrSymbol != nullptr; 148 bool HasHeapAllocMarker = HeapAllocMarker != nullptr; 149 auto *Result = new (Allocator.Allocate( 150 totalSizeToAlloc<MachineMemOperand *, MCSymbol *, MDNode *>( 151 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol, 152 HasHeapAllocMarker), 153 alignof(ExtraInfo))) 154 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol, 155 HasHeapAllocMarker); 156 157 // Copy the actual data into the trailing objects. 158 std::copy(MMOs.begin(), MMOs.end(), 159 Result->getTrailingObjects<MachineMemOperand *>()); 160 161 if (HasPreInstrSymbol) 162 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol; 163 if (HasPostInstrSymbol) 164 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] = 165 PostInstrSymbol; 166 if (HasHeapAllocMarker) 167 Result->getTrailingObjects<MDNode *>()[0] = HeapAllocMarker; 168 169 return Result; 170 } 171 getMMOs()172 ArrayRef<MachineMemOperand *> getMMOs() const { 173 return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs); 174 } 175 getPreInstrSymbol()176 MCSymbol *getPreInstrSymbol() const { 177 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr; 178 } 179 getPostInstrSymbol()180 MCSymbol *getPostInstrSymbol() const { 181 return HasPostInstrSymbol 182 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] 183 : nullptr; 184 } 185 getHeapAllocMarker()186 MDNode *getHeapAllocMarker() const { 187 return HasHeapAllocMarker ? getTrailingObjects<MDNode *>()[0] : nullptr; 188 } 189 190 private: 191 friend TrailingObjects; 192 193 // Description of the extra info, used to interpret the actual optional 194 // data appended. 195 // 196 // Note that this is not terribly space optimized. This leaves a great deal 197 // of flexibility to fit more in here later. 198 const int NumMMOs; 199 const bool HasPreInstrSymbol; 200 const bool HasPostInstrSymbol; 201 const bool HasHeapAllocMarker; 202 203 // Implement the `TrailingObjects` internal API. numTrailingObjects(OverloadToken<MachineMemOperand * >)204 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const { 205 return NumMMOs; 206 } numTrailingObjects(OverloadToken<MCSymbol * >)207 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const { 208 return HasPreInstrSymbol + HasPostInstrSymbol; 209 } numTrailingObjects(OverloadToken<MDNode * >)210 size_t numTrailingObjects(OverloadToken<MDNode *>) const { 211 return HasHeapAllocMarker; 212 } 213 214 // Just a boring constructor to allow us to initialize the sizes. Always use 215 // the `create` routine above. ExtraInfo(int NumMMOs,bool HasPreInstrSymbol,bool HasPostInstrSymbol,bool HasHeapAllocMarker)216 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol, 217 bool HasHeapAllocMarker) 218 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol), 219 HasPostInstrSymbol(HasPostInstrSymbol), 220 HasHeapAllocMarker(HasHeapAllocMarker) {} 221 }; 222 223 /// Enumeration of the kinds of inline extra info available. It is important 224 /// that the `MachineMemOperand` inline kind has a tag value of zero to make 225 /// it accessible as an `ArrayRef`. 226 enum ExtraInfoInlineKinds { 227 EIIK_MMO = 0, 228 EIIK_PreInstrSymbol, 229 EIIK_PostInstrSymbol, 230 EIIK_OutOfLine 231 }; 232 233 // We store extra information about the instruction here. The common case is 234 // expected to be nothing or a single pointer (typically a MMO or a symbol). 235 // We work to optimize this common case by storing it inline here rather than 236 // requiring a separate allocation, but we fall back to an allocation when 237 // multiple pointers are needed. 238 PointerSumType<ExtraInfoInlineKinds, 239 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>, 240 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>, 241 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>, 242 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>> 243 Info; 244 245 DebugLoc debugLoc; // Source line information. 246 247 // Intrusive list support 248 friend struct ilist_traits<MachineInstr>; 249 friend struct ilist_callback_traits<MachineBasicBlock>; 250 void setParent(MachineBasicBlock *P) { Parent = P; } 251 252 /// This constructor creates a copy of the given 253 /// MachineInstr in the given MachineFunction. 254 MachineInstr(MachineFunction &, const MachineInstr &); 255 256 /// This constructor create a MachineInstr and add the implicit operands. 257 /// It reserves space for number of operands specified by 258 /// MCInstrDesc. An explicit DebugLoc is supplied. 259 MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl, 260 bool NoImp = false); 261 262 // MachineInstrs are pool-allocated and owned by MachineFunction. 263 friend class MachineFunction; 264 265 public: 266 MachineInstr(const MachineInstr &) = delete; 267 MachineInstr &operator=(const MachineInstr &) = delete; 268 // Use MachineFunction::DeleteMachineInstr() instead. 269 ~MachineInstr() = delete; 270 271 const MachineBasicBlock* getParent() const { return Parent; } 272 MachineBasicBlock* getParent() { return Parent; } 273 274 /// Return the function that contains the basic block that this instruction 275 /// belongs to. 276 /// 277 /// Note: this is undefined behaviour if the instruction does not have a 278 /// parent. 279 const MachineFunction *getMF() const; 280 MachineFunction *getMF() { 281 return const_cast<MachineFunction *>( 282 static_cast<const MachineInstr *>(this)->getMF()); 283 } 284 285 /// Return the asm printer flags bitvector. 286 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; } 287 288 /// Clear the AsmPrinter bitvector. 289 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; } 290 291 /// Return whether an AsmPrinter flag is set. 292 bool getAsmPrinterFlag(CommentFlag Flag) const { 293 return AsmPrinterFlags & Flag; 294 } 295 296 /// Set a flag for the AsmPrinter. 297 void setAsmPrinterFlag(uint8_t Flag) { 298 AsmPrinterFlags |= Flag; 299 } 300 301 /// Clear specific AsmPrinter flags. 302 void clearAsmPrinterFlag(CommentFlag Flag) { 303 AsmPrinterFlags &= ~Flag; 304 } 305 306 /// Return the MI flags bitvector. 307 uint16_t getFlags() const { 308 return Flags; 309 } 310 311 /// Return whether an MI flag is set. 312 bool getFlag(MIFlag Flag) const { 313 return Flags & Flag; 314 } 315 316 /// Set a MI flag. 317 void setFlag(MIFlag Flag) { 318 Flags |= (uint16_t)Flag; 319 } 320 321 void setFlags(unsigned flags) { 322 // Filter out the automatically maintained flags. 323 unsigned Mask = BundledPred | BundledSucc; 324 Flags = (Flags & Mask) | (flags & ~Mask); 325 } 326 327 /// clearFlag - Clear a MI flag. 328 void clearFlag(MIFlag Flag) { 329 Flags &= ~((uint16_t)Flag); 330 } 331 332 /// Return true if MI is in a bundle (but not the first MI in a bundle). 333 /// 334 /// A bundle looks like this before it's finalized: 335 /// ---------------- 336 /// | MI | 337 /// ---------------- 338 /// | 339 /// ---------------- 340 /// | MI * | 341 /// ---------------- 342 /// | 343 /// ---------------- 344 /// | MI * | 345 /// ---------------- 346 /// In this case, the first MI starts a bundle but is not inside a bundle, the 347 /// next 2 MIs are considered "inside" the bundle. 348 /// 349 /// After a bundle is finalized, it looks like this: 350 /// ---------------- 351 /// | Bundle | 352 /// ---------------- 353 /// | 354 /// ---------------- 355 /// | MI * | 356 /// ---------------- 357 /// | 358 /// ---------------- 359 /// | MI * | 360 /// ---------------- 361 /// | 362 /// ---------------- 363 /// | MI * | 364 /// ---------------- 365 /// The first instruction has the special opcode "BUNDLE". It's not "inside" 366 /// a bundle, but the next three MIs are. 367 bool isInsideBundle() const { 368 return getFlag(BundledPred); 369 } 370 371 /// Return true if this instruction part of a bundle. This is true 372 /// if either itself or its following instruction is marked "InsideBundle". 373 bool isBundled() const { 374 return isBundledWithPred() || isBundledWithSucc(); 375 } 376 377 /// Return true if this instruction is part of a bundle, and it is not the 378 /// first instruction in the bundle. 379 bool isBundledWithPred() const { return getFlag(BundledPred); } 380 381 /// Return true if this instruction is part of a bundle, and it is not the 382 /// last instruction in the bundle. 383 bool isBundledWithSucc() const { return getFlag(BundledSucc); } 384 385 /// Bundle this instruction with its predecessor. This can be an unbundled 386 /// instruction, or it can be the first instruction in a bundle. 387 void bundleWithPred(); 388 389 /// Bundle this instruction with its successor. This can be an unbundled 390 /// instruction, or it can be the last instruction in a bundle. 391 void bundleWithSucc(); 392 393 /// Break bundle above this instruction. 394 void unbundleFromPred(); 395 396 /// Break bundle below this instruction. 397 void unbundleFromSucc(); 398 399 /// Returns the debug location id of this MachineInstr. 400 const DebugLoc &getDebugLoc() const { return debugLoc; } 401 402 /// Return the debug variable referenced by 403 /// this DBG_VALUE instruction. 404 const DILocalVariable *getDebugVariable() const; 405 406 /// Return the complex address expression referenced by 407 /// this DBG_VALUE instruction. 408 const DIExpression *getDebugExpression() const; 409 410 /// Return the debug label referenced by 411 /// this DBG_LABEL instruction. 412 const DILabel *getDebugLabel() const; 413 414 /// Emit an error referring to the source location of this instruction. 415 /// This should only be used for inline assembly that is somehow 416 /// impossible to compile. Other errors should have been handled much 417 /// earlier. 418 /// 419 /// If this method returns, the caller should try to recover from the error. 420 void emitError(StringRef Msg) const; 421 422 /// Returns the target instruction descriptor of this MachineInstr. 423 const MCInstrDesc &getDesc() const { return *MCID; } 424 425 /// Returns the opcode of this MachineInstr. 426 unsigned getOpcode() const { return MCID->Opcode; } 427 428 /// Retuns the total number of operands. 429 unsigned getNumOperands() const { return NumOperands; } 430 431 const MachineOperand& getOperand(unsigned i) const { 432 assert(i < getNumOperands() && "getOperand() out of range!"); 433 return Operands[i]; 434 } 435 MachineOperand& getOperand(unsigned i) { 436 assert(i < getNumOperands() && "getOperand() out of range!"); 437 return Operands[i]; 438 } 439 440 /// Returns the total number of definitions. 441 unsigned getNumDefs() const { 442 return getNumExplicitDefs() + MCID->getNumImplicitDefs(); 443 } 444 445 /// Returns true if the instruction has implicit definition. 446 bool hasImplicitDef() const { 447 for (unsigned I = getNumExplicitOperands(), E = getNumOperands(); 448 I != E; ++I) { 449 const MachineOperand &MO = getOperand(I); 450 if (MO.isDef() && MO.isImplicit()) 451 return true; 452 } 453 return false; 454 } 455 456 /// Returns the implicit operands number. 457 unsigned getNumImplicitOperands() const { 458 return getNumOperands() - getNumExplicitOperands(); 459 } 460 461 /// Return true if operand \p OpIdx is a subregister index. 462 bool isOperandSubregIdx(unsigned OpIdx) const { 463 assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate && 464 "Expected MO_Immediate operand type."); 465 if (isExtractSubreg() && OpIdx == 2) 466 return true; 467 if (isInsertSubreg() && OpIdx == 3) 468 return true; 469 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0) 470 return true; 471 if (isSubregToReg() && OpIdx == 3) 472 return true; 473 return false; 474 } 475 476 /// Returns the number of non-implicit operands. 477 unsigned getNumExplicitOperands() const; 478 479 /// Returns the number of non-implicit definitions. 480 unsigned getNumExplicitDefs() const; 481 482 /// iterator/begin/end - Iterate over all operands of a machine instruction. 483 using mop_iterator = MachineOperand *; 484 using const_mop_iterator = const MachineOperand *; 485 486 mop_iterator operands_begin() { return Operands; } 487 mop_iterator operands_end() { return Operands + NumOperands; } 488 489 const_mop_iterator operands_begin() const { return Operands; } 490 const_mop_iterator operands_end() const { return Operands + NumOperands; } 491 492 iterator_range<mop_iterator> operands() { 493 return make_range(operands_begin(), operands_end()); 494 } 495 iterator_range<const_mop_iterator> operands() const { 496 return make_range(operands_begin(), operands_end()); 497 } 498 iterator_range<mop_iterator> explicit_operands() { 499 return make_range(operands_begin(), 500 operands_begin() + getNumExplicitOperands()); 501 } 502 iterator_range<const_mop_iterator> explicit_operands() const { 503 return make_range(operands_begin(), 504 operands_begin() + getNumExplicitOperands()); 505 } 506 iterator_range<mop_iterator> implicit_operands() { 507 return make_range(explicit_operands().end(), operands_end()); 508 } 509 iterator_range<const_mop_iterator> implicit_operands() const { 510 return make_range(explicit_operands().end(), operands_end()); 511 } 512 /// Returns a range over all explicit operands that are register definitions. 513 /// Implicit definition are not included! 514 iterator_range<mop_iterator> defs() { 515 return make_range(operands_begin(), 516 operands_begin() + getNumExplicitDefs()); 517 } 518 /// \copydoc defs() 519 iterator_range<const_mop_iterator> defs() const { 520 return make_range(operands_begin(), 521 operands_begin() + getNumExplicitDefs()); 522 } 523 /// Returns a range that includes all operands that are register uses. 524 /// This may include unrelated operands which are not register uses. 525 iterator_range<mop_iterator> uses() { 526 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 527 } 528 /// \copydoc uses() 529 iterator_range<const_mop_iterator> uses() const { 530 return make_range(operands_begin() + getNumExplicitDefs(), operands_end()); 531 } 532 iterator_range<mop_iterator> explicit_uses() { 533 return make_range(operands_begin() + getNumExplicitDefs(), 534 operands_begin() + getNumExplicitOperands()); 535 } 536 iterator_range<const_mop_iterator> explicit_uses() const { 537 return make_range(operands_begin() + getNumExplicitDefs(), 538 operands_begin() + getNumExplicitOperands()); 539 } 540 541 /// Returns the number of the operand iterator \p I points to. 542 unsigned getOperandNo(const_mop_iterator I) const { 543 return I - operands_begin(); 544 } 545 546 /// Access to memory operands of the instruction. If there are none, that does 547 /// not imply anything about whether the function accesses memory. Instead, 548 /// the caller must behave conservatively. 549 ArrayRef<MachineMemOperand *> memoperands() const { 550 if (!Info) 551 return {}; 552 553 if (Info.is<EIIK_MMO>()) 554 return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1); 555 556 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 557 return EI->getMMOs(); 558 559 return {}; 560 } 561 562 /// Access to memory operands of the instruction. 563 /// 564 /// If `memoperands_begin() == memoperands_end()`, that does not imply 565 /// anything about whether the function accesses memory. Instead, the caller 566 /// must behave conservatively. 567 mmo_iterator memoperands_begin() const { return memoperands().begin(); } 568 569 /// Access to memory operands of the instruction. 570 /// 571 /// If `memoperands_begin() == memoperands_end()`, that does not imply 572 /// anything about whether the function accesses memory. Instead, the caller 573 /// must behave conservatively. 574 mmo_iterator memoperands_end() const { return memoperands().end(); } 575 576 /// Return true if we don't have any memory operands which described the 577 /// memory access done by this instruction. If this is true, calling code 578 /// must be conservative. 579 bool memoperands_empty() const { return memoperands().empty(); } 580 581 /// Return true if this instruction has exactly one MachineMemOperand. 582 bool hasOneMemOperand() const { return memoperands().size() == 1; } 583 584 /// Return the number of memory operands. 585 unsigned getNumMemOperands() const { return memoperands().size(); } 586 587 /// Helper to extract a pre-instruction symbol if one has been added. 588 MCSymbol *getPreInstrSymbol() const { 589 if (!Info) 590 return nullptr; 591 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>()) 592 return S; 593 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 594 return EI->getPreInstrSymbol(); 595 596 return nullptr; 597 } 598 599 /// Helper to extract a post-instruction symbol if one has been added. 600 MCSymbol *getPostInstrSymbol() const { 601 if (!Info) 602 return nullptr; 603 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>()) 604 return S; 605 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 606 return EI->getPostInstrSymbol(); 607 608 return nullptr; 609 } 610 611 /// Helper to extract a heap alloc marker if one has been added. 612 MDNode *getHeapAllocMarker() const { 613 if (!Info) 614 return nullptr; 615 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>()) 616 return EI->getHeapAllocMarker(); 617 618 return nullptr; 619 } 620 621 /// API for querying MachineInstr properties. They are the same as MCInstrDesc 622 /// queries but they are bundle aware. 623 624 enum QueryType { 625 IgnoreBundle, // Ignore bundles 626 AnyInBundle, // Return true if any instruction in bundle has property 627 AllInBundle // Return true if all instructions in bundle have property 628 }; 629 630 /// Return true if the instruction (or in the case of a bundle, 631 /// the instructions inside the bundle) has the specified property. 632 /// The first argument is the property being queried. 633 /// The second argument indicates whether the query should look inside 634 /// instruction bundles. 635 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const { 636 assert(MCFlag < 64 && 637 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle."); 638 // Inline the fast path for unbundled or bundle-internal instructions. 639 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred()) 640 return getDesc().getFlags() & (1ULL << MCFlag); 641 642 // If this is the first instruction in a bundle, take the slow path. 643 return hasPropertyInBundle(1ULL << MCFlag, Type); 644 } 645 646 /// Return true if this is an instruction that should go through the usual 647 /// legalization steps. 648 bool isPreISelOpcode(QueryType Type = IgnoreBundle) const { 649 return hasProperty(MCID::PreISelOpcode, Type); 650 } 651 652 /// Return true if this instruction can have a variable number of operands. 653 /// In this case, the variable operands will be after the normal 654 /// operands but before the implicit definitions and uses (if any are 655 /// present). 656 bool isVariadic(QueryType Type = IgnoreBundle) const { 657 return hasProperty(MCID::Variadic, Type); 658 } 659 660 /// Set if this instruction has an optional definition, e.g. 661 /// ARM instructions which can set condition code if 's' bit is set. 662 bool hasOptionalDef(QueryType Type = IgnoreBundle) const { 663 return hasProperty(MCID::HasOptionalDef, Type); 664 } 665 666 /// Return true if this is a pseudo instruction that doesn't 667 /// correspond to a real machine instruction. 668 bool isPseudo(QueryType Type = IgnoreBundle) const { 669 return hasProperty(MCID::Pseudo, Type); 670 } 671 672 bool isReturn(QueryType Type = AnyInBundle) const { 673 return hasProperty(MCID::Return, Type); 674 } 675 676 /// Return true if this is an instruction that marks the end of an EH scope, 677 /// i.e., a catchpad or a cleanuppad instruction. 678 bool isEHScopeReturn(QueryType Type = AnyInBundle) const { 679 return hasProperty(MCID::EHScopeReturn, Type); 680 } 681 682 bool isCall(QueryType Type = AnyInBundle) const { 683 return hasProperty(MCID::Call, Type); 684 } 685 686 /// Returns true if the specified instruction stops control flow 687 /// from executing the instruction immediately following it. Examples include 688 /// unconditional branches and return instructions. 689 bool isBarrier(QueryType Type = AnyInBundle) const { 690 return hasProperty(MCID::Barrier, Type); 691 } 692 693 /// Returns true if this instruction part of the terminator for a basic block. 694 /// Typically this is things like return and branch instructions. 695 /// 696 /// Various passes use this to insert code into the bottom of a basic block, 697 /// but before control flow occurs. 698 bool isTerminator(QueryType Type = AnyInBundle) const { 699 return hasProperty(MCID::Terminator, Type); 700 } 701 702 /// Returns true if this is a conditional, unconditional, or indirect branch. 703 /// Predicates below can be used to discriminate between 704 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to 705 /// get more information. 706 bool isBranch(QueryType Type = AnyInBundle) const { 707 return hasProperty(MCID::Branch, Type); 708 } 709 710 /// Return true if this is an indirect branch, such as a 711 /// branch through a register. 712 bool isIndirectBranch(QueryType Type = AnyInBundle) const { 713 return hasProperty(MCID::IndirectBranch, Type); 714 } 715 716 /// Return true if this is a branch which may fall 717 /// through to the next instruction or may transfer control flow to some other 718 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more 719 /// information about this branch. 720 bool isConditionalBranch(QueryType Type = AnyInBundle) const { 721 return isBranch(Type) && !isBarrier(Type) && !isIndirectBranch(Type); 722 } 723 724 /// Return true if this is a branch which always 725 /// transfers control flow to some other block. The 726 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information 727 /// about this branch. 728 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const { 729 return isBranch(Type) && isBarrier(Type) && !isIndirectBranch(Type); 730 } 731 732 /// Return true if this instruction has a predicate operand that 733 /// controls execution. It may be set to 'always', or may be set to other 734 /// values. There are various methods in TargetInstrInfo that can be used to 735 /// control and modify the predicate in this instruction. 736 bool isPredicable(QueryType Type = AllInBundle) const { 737 // If it's a bundle than all bundled instructions must be predicable for this 738 // to return true. 739 return hasProperty(MCID::Predicable, Type); 740 } 741 742 /// Return true if this instruction is a comparison. 743 bool isCompare(QueryType Type = IgnoreBundle) const { 744 return hasProperty(MCID::Compare, Type); 745 } 746 747 /// Return true if this instruction is a move immediate 748 /// (including conditional moves) instruction. 749 bool isMoveImmediate(QueryType Type = IgnoreBundle) const { 750 return hasProperty(MCID::MoveImm, Type); 751 } 752 753 /// Return true if this instruction is a register move. 754 /// (including moving values from subreg to reg) 755 bool isMoveReg(QueryType Type = IgnoreBundle) const { 756 return hasProperty(MCID::MoveReg, Type); 757 } 758 759 /// Return true if this instruction is a bitcast instruction. 760 bool isBitcast(QueryType Type = IgnoreBundle) const { 761 return hasProperty(MCID::Bitcast, Type); 762 } 763 764 /// Return true if this instruction is a select instruction. 765 bool isSelect(QueryType Type = IgnoreBundle) const { 766 return hasProperty(MCID::Select, Type); 767 } 768 769 /// Return true if this instruction cannot be safely duplicated. 770 /// For example, if the instruction has a unique labels attached 771 /// to it, duplicating it would cause multiple definition errors. 772 bool isNotDuplicable(QueryType Type = AnyInBundle) const { 773 return hasProperty(MCID::NotDuplicable, Type); 774 } 775 776 /// Return true if this instruction is convergent. 777 /// Convergent instructions can not be made control-dependent on any 778 /// additional values. 779 bool isConvergent(QueryType Type = AnyInBundle) const { 780 if (isInlineAsm()) { 781 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 782 if (ExtraInfo & InlineAsm::Extra_IsConvergent) 783 return true; 784 } 785 return hasProperty(MCID::Convergent, Type); 786 } 787 788 /// Returns true if the specified instruction has a delay slot 789 /// which must be filled by the code generator. 790 bool hasDelaySlot(QueryType Type = AnyInBundle) const { 791 return hasProperty(MCID::DelaySlot, Type); 792 } 793 794 /// Return true for instructions that can be folded as 795 /// memory operands in other instructions. The most common use for this 796 /// is instructions that are simple loads from memory that don't modify 797 /// the loaded value in any way, but it can also be used for instructions 798 /// that can be expressed as constant-pool loads, such as V_SETALLONES 799 /// on x86, to allow them to be folded when it is beneficial. 800 /// This should only be set on instructions that return a value in their 801 /// only virtual register definition. 802 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const { 803 return hasProperty(MCID::FoldableAsLoad, Type); 804 } 805 806 /// Return true if this instruction behaves 807 /// the same way as the generic REG_SEQUENCE instructions. 808 /// E.g., on ARM, 809 /// dX VMOVDRR rY, rZ 810 /// is equivalent to 811 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 812 /// 813 /// Note that for the optimizers to be able to take advantage of 814 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 815 /// override accordingly. 816 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const { 817 return hasProperty(MCID::RegSequence, Type); 818 } 819 820 /// Return true if this instruction behaves 821 /// the same way as the generic EXTRACT_SUBREG instructions. 822 /// E.g., on ARM, 823 /// rX, rY VMOVRRD dZ 824 /// is equivalent to two EXTRACT_SUBREG: 825 /// rX = EXTRACT_SUBREG dZ, ssub_0 826 /// rY = EXTRACT_SUBREG dZ, ssub_1 827 /// 828 /// Note that for the optimizers to be able to take advantage of 829 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 830 /// override accordingly. 831 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const { 832 return hasProperty(MCID::ExtractSubreg, Type); 833 } 834 835 /// Return true if this instruction behaves 836 /// the same way as the generic INSERT_SUBREG instructions. 837 /// E.g., on ARM, 838 /// dX = VSETLNi32 dY, rZ, Imm 839 /// is equivalent to a INSERT_SUBREG: 840 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 841 /// 842 /// Note that for the optimizers to be able to take advantage of 843 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 844 /// override accordingly. 845 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const { 846 return hasProperty(MCID::InsertSubreg, Type); 847 } 848 849 //===--------------------------------------------------------------------===// 850 // Side Effect Analysis 851 //===--------------------------------------------------------------------===// 852 853 /// Return true if this instruction could possibly read memory. 854 /// Instructions with this flag set are not necessarily simple load 855 /// instructions, they may load a value and modify it, for example. 856 bool mayLoad(QueryType Type = AnyInBundle) const { 857 if (isInlineAsm()) { 858 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 859 if (ExtraInfo & InlineAsm::Extra_MayLoad) 860 return true; 861 } 862 return hasProperty(MCID::MayLoad, Type); 863 } 864 865 /// Return true if this instruction could possibly modify memory. 866 /// Instructions with this flag set are not necessarily simple store 867 /// instructions, they may store a modified value based on their operands, or 868 /// may not actually modify anything, for example. 869 bool mayStore(QueryType Type = AnyInBundle) const { 870 if (isInlineAsm()) { 871 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm(); 872 if (ExtraInfo & InlineAsm::Extra_MayStore) 873 return true; 874 } 875 return hasProperty(MCID::MayStore, Type); 876 } 877 878 /// Return true if this instruction could possibly read or modify memory. 879 bool mayLoadOrStore(QueryType Type = AnyInBundle) const { 880 return mayLoad(Type) || mayStore(Type); 881 } 882 883 /// Return true if this instruction could possibly raise a floating-point 884 /// exception. This is the case if the instruction is a floating-point 885 /// instruction that can in principle raise an exception, as indicated 886 /// by the MCID::MayRaiseFPException property, *and* at the same time, 887 /// the instruction is used in a context where we expect floating-point 888 /// exceptions are not disabled, as indicated by the NoFPExcept MI flag. 889 bool mayRaiseFPException() const { 890 return hasProperty(MCID::MayRaiseFPException) && 891 !getFlag(MachineInstr::MIFlag::NoFPExcept); 892 } 893 894 //===--------------------------------------------------------------------===// 895 // Flags that indicate whether an instruction can be modified by a method. 896 //===--------------------------------------------------------------------===// 897 898 /// Return true if this may be a 2- or 3-address 899 /// instruction (of the form "X = op Y, Z, ..."), which produces the same 900 /// result if Y and Z are exchanged. If this flag is set, then the 901 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 902 /// instruction. 903 /// 904 /// Note that this flag may be set on instructions that are only commutable 905 /// sometimes. In these cases, the call to commuteInstruction will fail. 906 /// Also note that some instructions require non-trivial modification to 907 /// commute them. 908 bool isCommutable(QueryType Type = IgnoreBundle) const { 909 return hasProperty(MCID::Commutable, Type); 910 } 911 912 /// Return true if this is a 2-address instruction 913 /// which can be changed into a 3-address instruction if needed. Doing this 914 /// transformation can be profitable in the register allocator, because it 915 /// means that the instruction can use a 2-address form if possible, but 916 /// degrade into a less efficient form if the source and dest register cannot 917 /// be assigned to the same register. For example, this allows the x86 918 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which 919 /// is the same speed as the shift but has bigger code size. 920 /// 921 /// If this returns true, then the target must implement the 922 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 923 /// is allowed to fail if the transformation isn't valid for this specific 924 /// instruction (e.g. shl reg, 4 on x86). 925 /// 926 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const { 927 return hasProperty(MCID::ConvertibleTo3Addr, Type); 928 } 929 930 /// Return true if this instruction requires 931 /// custom insertion support when the DAG scheduler is inserting it into a 932 /// machine basic block. If this is true for the instruction, it basically 933 /// means that it is a pseudo instruction used at SelectionDAG time that is 934 /// expanded out into magic code by the target when MachineInstrs are formed. 935 /// 936 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 937 /// is used to insert this into the MachineBasicBlock. 938 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const { 939 return hasProperty(MCID::UsesCustomInserter, Type); 940 } 941 942 /// Return true if this instruction requires *adjustment* 943 /// after instruction selection by calling a target hook. For example, this 944 /// can be used to fill in ARM 's' optional operand depending on whether 945 /// the conditional flag register is used. 946 bool hasPostISelHook(QueryType Type = IgnoreBundle) const { 947 return hasProperty(MCID::HasPostISelHook, Type); 948 } 949 950 /// Returns true if this instruction is a candidate for remat. 951 /// This flag is deprecated, please don't use it anymore. If this 952 /// flag is set, the isReallyTriviallyReMaterializable() method is called to 953 /// verify the instruction is really rematable. 954 bool isRematerializable(QueryType Type = AllInBundle) const { 955 // It's only possible to re-mat a bundle if all bundled instructions are 956 // re-materializable. 957 return hasProperty(MCID::Rematerializable, Type); 958 } 959 960 /// Returns true if this instruction has the same cost (or less) than a move 961 /// instruction. This is useful during certain types of optimizations 962 /// (e.g., remat during two-address conversion or machine licm) 963 /// where we would like to remat or hoist the instruction, but not if it costs 964 /// more than moving the instruction into the appropriate register. Note, we 965 /// are not marking copies from and to the same register class with this flag. 966 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const { 967 // Only returns true for a bundle if all bundled instructions are cheap. 968 return hasProperty(MCID::CheapAsAMove, Type); 969 } 970 971 /// Returns true if this instruction source operands 972 /// have special register allocation requirements that are not captured by the 973 /// operand register classes. e.g. ARM::STRD's two source registers must be an 974 /// even / odd pair, ARM::STM registers have to be in ascending order. 975 /// Post-register allocation passes should not attempt to change allocations 976 /// for sources of instructions with this flag. 977 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const { 978 return hasProperty(MCID::ExtraSrcRegAllocReq, Type); 979 } 980 981 /// Returns true if this instruction def operands 982 /// have special register allocation requirements that are not captured by the 983 /// operand register classes. e.g. ARM::LDRD's two def registers must be an 984 /// even / odd pair, ARM::LDM registers have to be in ascending order. 985 /// Post-register allocation passes should not attempt to change allocations 986 /// for definitions of instructions with this flag. 987 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const { 988 return hasProperty(MCID::ExtraDefRegAllocReq, Type); 989 } 990 991 enum MICheckType { 992 CheckDefs, // Check all operands for equality 993 CheckKillDead, // Check all operands including kill / dead markers 994 IgnoreDefs, // Ignore all definitions 995 IgnoreVRegDefs // Ignore virtual register definitions 996 }; 997 998 /// Return true if this instruction is identical to \p Other. 999 /// Two instructions are identical if they have the same opcode and all their 1000 /// operands are identical (with respect to MachineOperand::isIdenticalTo()). 1001 /// Note that this means liveness related flags (dead, undef, kill) do not 1002 /// affect the notion of identical. 1003 bool isIdenticalTo(const MachineInstr &Other, 1004 MICheckType Check = CheckDefs) const; 1005 1006 /// Unlink 'this' from the containing basic block, and return it without 1007 /// deleting it. 1008 /// 1009 /// This function can not be used on bundled instructions, use 1010 /// removeFromBundle() to remove individual instructions from a bundle. 1011 MachineInstr *removeFromParent(); 1012 1013 /// Unlink this instruction from its basic block and return it without 1014 /// deleting it. 1015 /// 1016 /// If the instruction is part of a bundle, the other instructions in the 1017 /// bundle remain bundled. 1018 MachineInstr *removeFromBundle(); 1019 1020 /// Unlink 'this' from the containing basic block and delete it. 1021 /// 1022 /// If this instruction is the header of a bundle, the whole bundle is erased. 1023 /// This function can not be used for instructions inside a bundle, use 1024 /// eraseFromBundle() to erase individual bundled instructions. 1025 void eraseFromParent(); 1026 1027 /// Unlink 'this' from the containing basic block and delete it. 1028 /// 1029 /// For all definitions mark their uses in DBG_VALUE nodes 1030 /// as undefined. Otherwise like eraseFromParent(). 1031 void eraseFromParentAndMarkDBGValuesForRemoval(); 1032 1033 /// Unlink 'this' form its basic block and delete it. 1034 /// 1035 /// If the instruction is part of a bundle, the other instructions in the 1036 /// bundle remain bundled. 1037 void eraseFromBundle(); 1038 1039 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; } 1040 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; } 1041 bool isAnnotationLabel() const { 1042 return getOpcode() == TargetOpcode::ANNOTATION_LABEL; 1043 } 1044 1045 /// Returns true if the MachineInstr represents a label. 1046 bool isLabel() const { 1047 return isEHLabel() || isGCLabel() || isAnnotationLabel(); 1048 } 1049 1050 bool isCFIInstruction() const { 1051 return getOpcode() == TargetOpcode::CFI_INSTRUCTION; 1052 } 1053 1054 // True if the instruction represents a position in the function. 1055 bool isPosition() const { return isLabel() || isCFIInstruction(); } 1056 1057 bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; } 1058 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; } 1059 bool isDebugInstr() const { return isDebugValue() || isDebugLabel(); } 1060 1061 /// A DBG_VALUE is indirect iff the first operand is a register and 1062 /// the second operand is an immediate. 1063 bool isIndirectDebugValue() const { 1064 return isDebugValue() 1065 && getOperand(0).isReg() 1066 && getOperand(1).isImm(); 1067 } 1068 1069 /// A DBG_VALUE is an entry value iff its debug expression contains the 1070 /// DW_OP_LLVM_entry_value operation. 1071 bool isDebugEntryValue() const; 1072 1073 /// Return true if the instruction is a debug value which describes a part of 1074 /// a variable as unavailable. 1075 bool isUndefDebugValue() const { 1076 return isDebugValue() && getOperand(0).isReg() && !getOperand(0).getReg().isValid(); 1077 } 1078 1079 bool isPHI() const { 1080 return getOpcode() == TargetOpcode::PHI || 1081 getOpcode() == TargetOpcode::G_PHI; 1082 } 1083 bool isKill() const { return getOpcode() == TargetOpcode::KILL; } 1084 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; } 1085 bool isInlineAsm() const { 1086 return getOpcode() == TargetOpcode::INLINEASM || 1087 getOpcode() == TargetOpcode::INLINEASM_BR; 1088 } 1089 1090 /// FIXME: Seems like a layering violation that the AsmDialect, which is X86 1091 /// specific, be attached to a generic MachineInstr. 1092 bool isMSInlineAsm() const { 1093 return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel; 1094 } 1095 1096 bool isStackAligningInlineAsm() const; 1097 InlineAsm::AsmDialect getInlineAsmDialect() const; 1098 1099 bool isInsertSubreg() const { 1100 return getOpcode() == TargetOpcode::INSERT_SUBREG; 1101 } 1102 1103 bool isSubregToReg() const { 1104 return getOpcode() == TargetOpcode::SUBREG_TO_REG; 1105 } 1106 1107 bool isRegSequence() const { 1108 return getOpcode() == TargetOpcode::REG_SEQUENCE; 1109 } 1110 1111 bool isBundle() const { 1112 return getOpcode() == TargetOpcode::BUNDLE; 1113 } 1114 1115 bool isCopy() const { 1116 return getOpcode() == TargetOpcode::COPY; 1117 } 1118 1119 bool isFullCopy() const { 1120 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg(); 1121 } 1122 1123 bool isExtractSubreg() const { 1124 return getOpcode() == TargetOpcode::EXTRACT_SUBREG; 1125 } 1126 1127 /// Return true if the instruction behaves like a copy. 1128 /// This does not include native copy instructions. 1129 bool isCopyLike() const { 1130 return isCopy() || isSubregToReg(); 1131 } 1132 1133 /// Return true is the instruction is an identity copy. 1134 bool isIdentityCopy() const { 1135 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() && 1136 getOperand(0).getSubReg() == getOperand(1).getSubReg(); 1137 } 1138 1139 /// Return true if this instruction doesn't produce any output in the form of 1140 /// executable instructions. 1141 bool isMetaInstruction() const { 1142 switch (getOpcode()) { 1143 default: 1144 return false; 1145 case TargetOpcode::IMPLICIT_DEF: 1146 case TargetOpcode::KILL: 1147 case TargetOpcode::CFI_INSTRUCTION: 1148 case TargetOpcode::EH_LABEL: 1149 case TargetOpcode::GC_LABEL: 1150 case TargetOpcode::DBG_VALUE: 1151 case TargetOpcode::DBG_LABEL: 1152 case TargetOpcode::LIFETIME_START: 1153 case TargetOpcode::LIFETIME_END: 1154 return true; 1155 } 1156 } 1157 1158 /// Return true if this is a transient instruction that is either very likely 1159 /// to be eliminated during register allocation (such as copy-like 1160 /// instructions), or if this instruction doesn't have an execution-time cost. 1161 bool isTransient() const { 1162 switch (getOpcode()) { 1163 default: 1164 return isMetaInstruction(); 1165 // Copy-like instructions are usually eliminated during register allocation. 1166 case TargetOpcode::PHI: 1167 case TargetOpcode::G_PHI: 1168 case TargetOpcode::COPY: 1169 case TargetOpcode::INSERT_SUBREG: 1170 case TargetOpcode::SUBREG_TO_REG: 1171 case TargetOpcode::REG_SEQUENCE: 1172 return true; 1173 } 1174 } 1175 1176 /// Return the number of instructions inside the MI bundle, excluding the 1177 /// bundle header. 1178 /// 1179 /// This is the number of instructions that MachineBasicBlock::iterator 1180 /// skips, 0 for unbundled instructions. 1181 unsigned getBundleSize() const; 1182 1183 /// Return true if the MachineInstr reads the specified register. 1184 /// If TargetRegisterInfo is passed, then it also checks if there 1185 /// is a read of a super-register. 1186 /// This does not count partial redefines of virtual registers as reads: 1187 /// %reg1024:6 = OP. 1188 bool readsRegister(Register Reg, 1189 const TargetRegisterInfo *TRI = nullptr) const { 1190 return findRegisterUseOperandIdx(Reg, false, TRI) != -1; 1191 } 1192 1193 /// Return true if the MachineInstr reads the specified virtual register. 1194 /// Take into account that a partial define is a 1195 /// read-modify-write operation. 1196 bool readsVirtualRegister(Register Reg) const { 1197 return readsWritesVirtualRegister(Reg).first; 1198 } 1199 1200 /// Return a pair of bools (reads, writes) indicating if this instruction 1201 /// reads or writes Reg. This also considers partial defines. 1202 /// If Ops is not null, all operand indices for Reg are added. 1203 std::pair<bool,bool> readsWritesVirtualRegister(Register Reg, 1204 SmallVectorImpl<unsigned> *Ops = nullptr) const; 1205 1206 /// Return true if the MachineInstr kills the specified register. 1207 /// If TargetRegisterInfo is passed, then it also checks if there is 1208 /// a kill of a super-register. 1209 bool killsRegister(Register Reg, 1210 const TargetRegisterInfo *TRI = nullptr) const { 1211 return findRegisterUseOperandIdx(Reg, true, TRI) != -1; 1212 } 1213 1214 /// Return true if the MachineInstr fully defines the specified register. 1215 /// If TargetRegisterInfo is passed, then it also checks 1216 /// if there is a def of a super-register. 1217 /// NOTE: It's ignoring subreg indices on virtual registers. 1218 bool definesRegister(Register Reg, 1219 const TargetRegisterInfo *TRI = nullptr) const { 1220 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1; 1221 } 1222 1223 /// Return true if the MachineInstr modifies (fully define or partially 1224 /// define) the specified register. 1225 /// NOTE: It's ignoring subreg indices on virtual registers. 1226 bool modifiesRegister(Register Reg, const TargetRegisterInfo *TRI) const { 1227 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1; 1228 } 1229 1230 /// Returns true if the register is dead in this machine instruction. 1231 /// If TargetRegisterInfo is passed, then it also checks 1232 /// if there is a dead def of a super-register. 1233 bool registerDefIsDead(Register Reg, 1234 const TargetRegisterInfo *TRI = nullptr) const { 1235 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1; 1236 } 1237 1238 /// Returns true if the MachineInstr has an implicit-use operand of exactly 1239 /// the given register (not considering sub/super-registers). 1240 bool hasRegisterImplicitUseOperand(Register Reg) const; 1241 1242 /// Returns the operand index that is a use of the specific register or -1 1243 /// if it is not found. It further tightens the search criteria to a use 1244 /// that kills the register if isKill is true. 1245 int findRegisterUseOperandIdx(Register Reg, bool isKill = false, 1246 const TargetRegisterInfo *TRI = nullptr) const; 1247 1248 /// Wrapper for findRegisterUseOperandIdx, it returns 1249 /// a pointer to the MachineOperand rather than an index. 1250 MachineOperand *findRegisterUseOperand(Register Reg, bool isKill = false, 1251 const TargetRegisterInfo *TRI = nullptr) { 1252 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI); 1253 return (Idx == -1) ? nullptr : &getOperand(Idx); 1254 } 1255 1256 const MachineOperand *findRegisterUseOperand( 1257 Register Reg, bool isKill = false, 1258 const TargetRegisterInfo *TRI = nullptr) const { 1259 return const_cast<MachineInstr *>(this)-> 1260 findRegisterUseOperand(Reg, isKill, TRI); 1261 } 1262 1263 /// Returns the operand index that is a def of the specified register or 1264 /// -1 if it is not found. If isDead is true, defs that are not dead are 1265 /// skipped. If Overlap is true, then it also looks for defs that merely 1266 /// overlap the specified register. If TargetRegisterInfo is non-null, 1267 /// then it also checks if there is a def of a super-register. 1268 /// This may also return a register mask operand when Overlap is true. 1269 int findRegisterDefOperandIdx(Register Reg, 1270 bool isDead = false, bool Overlap = false, 1271 const TargetRegisterInfo *TRI = nullptr) const; 1272 1273 /// Wrapper for findRegisterDefOperandIdx, it returns 1274 /// a pointer to the MachineOperand rather than an index. 1275 MachineOperand * 1276 findRegisterDefOperand(Register Reg, bool isDead = false, 1277 bool Overlap = false, 1278 const TargetRegisterInfo *TRI = nullptr) { 1279 int Idx = findRegisterDefOperandIdx(Reg, isDead, Overlap, TRI); 1280 return (Idx == -1) ? nullptr : &getOperand(Idx); 1281 } 1282 1283 const MachineOperand * 1284 findRegisterDefOperand(Register Reg, bool isDead = false, 1285 bool Overlap = false, 1286 const TargetRegisterInfo *TRI = nullptr) const { 1287 return const_cast<MachineInstr *>(this)->findRegisterDefOperand( 1288 Reg, isDead, Overlap, TRI); 1289 } 1290 1291 /// Find the index of the first operand in the 1292 /// operand list that is used to represent the predicate. It returns -1 if 1293 /// none is found. 1294 int findFirstPredOperandIdx() const; 1295 1296 /// Find the index of the flag word operand that 1297 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if 1298 /// getOperand(OpIdx) does not belong to an inline asm operand group. 1299 /// 1300 /// If GroupNo is not NULL, it will receive the number of the operand group 1301 /// containing OpIdx. 1302 /// 1303 /// The flag operand is an immediate that can be decoded with methods like 1304 /// InlineAsm::hasRegClassConstraint(). 1305 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const; 1306 1307 /// Compute the static register class constraint for operand OpIdx. 1308 /// For normal instructions, this is derived from the MCInstrDesc. 1309 /// For inline assembly it is derived from the flag words. 1310 /// 1311 /// Returns NULL if the static register class constraint cannot be 1312 /// determined. 1313 const TargetRegisterClass* 1314 getRegClassConstraint(unsigned OpIdx, 1315 const TargetInstrInfo *TII, 1316 const TargetRegisterInfo *TRI) const; 1317 1318 /// Applies the constraints (def/use) implied by this MI on \p Reg to 1319 /// the given \p CurRC. 1320 /// If \p ExploreBundle is set and MI is part of a bundle, all the 1321 /// instructions inside the bundle will be taken into account. In other words, 1322 /// this method accumulates all the constraints of the operand of this MI and 1323 /// the related bundle if MI is a bundle or inside a bundle. 1324 /// 1325 /// Returns the register class that satisfies both \p CurRC and the 1326 /// constraints set by MI. Returns NULL if such a register class does not 1327 /// exist. 1328 /// 1329 /// \pre CurRC must not be NULL. 1330 const TargetRegisterClass *getRegClassConstraintEffectForVReg( 1331 Register Reg, const TargetRegisterClass *CurRC, 1332 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI, 1333 bool ExploreBundle = false) const; 1334 1335 /// Applies the constraints (def/use) implied by the \p OpIdx operand 1336 /// to the given \p CurRC. 1337 /// 1338 /// Returns the register class that satisfies both \p CurRC and the 1339 /// constraints set by \p OpIdx MI. Returns NULL if such a register class 1340 /// does not exist. 1341 /// 1342 /// \pre CurRC must not be NULL. 1343 /// \pre The operand at \p OpIdx must be a register. 1344 const TargetRegisterClass * 1345 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC, 1346 const TargetInstrInfo *TII, 1347 const TargetRegisterInfo *TRI) const; 1348 1349 /// Add a tie between the register operands at DefIdx and UseIdx. 1350 /// The tie will cause the register allocator to ensure that the two 1351 /// operands are assigned the same physical register. 1352 /// 1353 /// Tied operands are managed automatically for explicit operands in the 1354 /// MCInstrDesc. This method is for exceptional cases like inline asm. 1355 void tieOperands(unsigned DefIdx, unsigned UseIdx); 1356 1357 /// Given the index of a tied register operand, find the 1358 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the 1359 /// index of the tied operand which must exist. 1360 unsigned findTiedOperandIdx(unsigned OpIdx) const; 1361 1362 /// Given the index of a register def operand, 1363 /// check if the register def is tied to a source operand, due to either 1364 /// two-address elimination or inline assembly constraints. Returns the 1365 /// first tied use operand index by reference if UseOpIdx is not null. 1366 bool isRegTiedToUseOperand(unsigned DefOpIdx, 1367 unsigned *UseOpIdx = nullptr) const { 1368 const MachineOperand &MO = getOperand(DefOpIdx); 1369 if (!MO.isReg() || !MO.isDef() || !MO.isTied()) 1370 return false; 1371 if (UseOpIdx) 1372 *UseOpIdx = findTiedOperandIdx(DefOpIdx); 1373 return true; 1374 } 1375 1376 /// Return true if the use operand of the specified index is tied to a def 1377 /// operand. It also returns the def operand index by reference if DefOpIdx 1378 /// is not null. 1379 bool isRegTiedToDefOperand(unsigned UseOpIdx, 1380 unsigned *DefOpIdx = nullptr) const { 1381 const MachineOperand &MO = getOperand(UseOpIdx); 1382 if (!MO.isReg() || !MO.isUse() || !MO.isTied()) 1383 return false; 1384 if (DefOpIdx) 1385 *DefOpIdx = findTiedOperandIdx(UseOpIdx); 1386 return true; 1387 } 1388 1389 /// Clears kill flags on all operands. 1390 void clearKillInfo(); 1391 1392 /// Replace all occurrences of FromReg with ToReg:SubIdx, 1393 /// properly composing subreg indices where necessary. 1394 void substituteRegister(Register FromReg, Register ToReg, unsigned SubIdx, 1395 const TargetRegisterInfo &RegInfo); 1396 1397 /// We have determined MI kills a register. Look for the 1398 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true, 1399 /// add a implicit operand if it's not found. Returns true if the operand 1400 /// exists / is added. 1401 bool addRegisterKilled(Register IncomingReg, 1402 const TargetRegisterInfo *RegInfo, 1403 bool AddIfNotFound = false); 1404 1405 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes 1406 /// all aliasing registers. 1407 void clearRegisterKills(Register Reg, const TargetRegisterInfo *RegInfo); 1408 1409 /// We have determined MI defined a register without a use. 1410 /// Look for the operand that defines it and mark it as IsDead. If 1411 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns 1412 /// true if the operand exists / is added. 1413 bool addRegisterDead(Register Reg, const TargetRegisterInfo *RegInfo, 1414 bool AddIfNotFound = false); 1415 1416 /// Clear all dead flags on operands defining register @p Reg. 1417 void clearRegisterDeads(Register Reg); 1418 1419 /// Mark all subregister defs of register @p Reg with the undef flag. 1420 /// This function is used when we determined to have a subregister def in an 1421 /// otherwise undefined super register. 1422 void setRegisterDefReadUndef(Register Reg, bool IsUndef = true); 1423 1424 /// We have determined MI defines a register. Make sure there is an operand 1425 /// defining Reg. 1426 void addRegisterDefined(Register Reg, 1427 const TargetRegisterInfo *RegInfo = nullptr); 1428 1429 /// Mark every physreg used by this instruction as 1430 /// dead except those in the UsedRegs list. 1431 /// 1432 /// On instructions with register mask operands, also add implicit-def 1433 /// operands for all registers in UsedRegs. 1434 void setPhysRegsDeadExcept(ArrayRef<Register> UsedRegs, 1435 const TargetRegisterInfo &TRI); 1436 1437 /// Return true if it is safe to move this instruction. If 1438 /// SawStore is set to true, it means that there is a store (or call) between 1439 /// the instruction's location and its intended destination. 1440 bool isSafeToMove(AAResults *AA, bool &SawStore) const; 1441 1442 /// Returns true if this instruction's memory access aliases the memory 1443 /// access of Other. 1444 // 1445 /// Assumes any physical registers used to compute addresses 1446 /// have the same value for both instructions. Returns false if neither 1447 /// instruction writes to memory. 1448 /// 1449 /// @param AA Optional alias analysis, used to compare memory operands. 1450 /// @param Other MachineInstr to check aliasing against. 1451 /// @param UseTBAA Whether to pass TBAA information to alias analysis. 1452 bool mayAlias(AAResults *AA, const MachineInstr &Other, bool UseTBAA) const; 1453 1454 /// Return true if this instruction may have an ordered 1455 /// or volatile memory reference, or if the information describing the memory 1456 /// reference is not available. Return false if it is known to have no 1457 /// ordered or volatile memory references. 1458 bool hasOrderedMemoryRef() const; 1459 1460 /// Return true if this load instruction never traps and points to a memory 1461 /// location whose value doesn't change during the execution of this function. 1462 /// 1463 /// Examples include loading a value from the constant pool or from the 1464 /// argument area of a function (if it does not change). If the instruction 1465 /// does multiple loads, this returns true only if all of the loads are 1466 /// dereferenceable and invariant. 1467 bool isDereferenceableInvariantLoad(AAResults *AA) const; 1468 1469 /// If the specified instruction is a PHI that always merges together the 1470 /// same virtual register, return the register, otherwise return 0. 1471 unsigned isConstantValuePHI() const; 1472 1473 /// Return true if this instruction has side effects that are not modeled 1474 /// by mayLoad / mayStore, etc. 1475 /// For all instructions, the property is encoded in MCInstrDesc::Flags 1476 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is 1477 /// INLINEASM instruction, in which case the side effect property is encoded 1478 /// in one of its operands (see InlineAsm::Extra_HasSideEffect). 1479 /// 1480 bool hasUnmodeledSideEffects() const; 1481 1482 /// Returns true if it is illegal to fold a load across this instruction. 1483 bool isLoadFoldBarrier() const; 1484 1485 /// Return true if all the defs of this instruction are dead. 1486 bool allDefsAreDead() const; 1487 1488 /// Return a valid size if the instruction is a spill instruction. 1489 Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const; 1490 1491 /// Return a valid size if the instruction is a folded spill instruction. 1492 Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const; 1493 1494 /// Return a valid size if the instruction is a restore instruction. 1495 Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const; 1496 1497 /// Return a valid size if the instruction is a folded restore instruction. 1498 Optional<unsigned> 1499 getFoldedRestoreSize(const TargetInstrInfo *TII) const; 1500 1501 /// Copy implicit register operands from specified 1502 /// instruction to this instruction. 1503 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI); 1504 1505 /// Debugging support 1506 /// @{ 1507 /// Determine the generic type to be printed (if needed) on uses and defs. 1508 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes, 1509 const MachineRegisterInfo &MRI) const; 1510 1511 /// Return true when an instruction has tied register that can't be determined 1512 /// by the instruction's descriptor. This is useful for MIR printing, to 1513 /// determine whether we need to print the ties or not. 1514 bool hasComplexRegisterTies() const; 1515 1516 /// Print this MI to \p OS. 1517 /// Don't print information that can be inferred from other instructions if 1518 /// \p IsStandalone is false. It is usually true when only a fragment of the 1519 /// function is printed. 1520 /// Only print the defs and the opcode if \p SkipOpers is true. 1521 /// Otherwise, also print operands if \p SkipDebugLoc is true. 1522 /// Otherwise, also print the debug loc, with a terminating newline. 1523 /// \p TII is used to print the opcode name. If it's not present, but the 1524 /// MI is in a function, the opcode will be printed using the function's TII. 1525 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false, 1526 bool SkipDebugLoc = false, bool AddNewLine = true, 1527 const TargetInstrInfo *TII = nullptr) const; 1528 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true, 1529 bool SkipOpers = false, bool SkipDebugLoc = false, 1530 bool AddNewLine = true, 1531 const TargetInstrInfo *TII = nullptr) const; 1532 void dump() const; 1533 /// @} 1534 1535 //===--------------------------------------------------------------------===// 1536 // Accessors used to build up machine instructions. 1537 1538 /// Add the specified operand to the instruction. If it is an implicit 1539 /// operand, it is added to the end of the operand list. If it is an 1540 /// explicit operand it is added at the end of the explicit operand list 1541 /// (before the first implicit operand). 1542 /// 1543 /// MF must be the machine function that was used to allocate this 1544 /// instruction. 1545 /// 1546 /// MachineInstrBuilder provides a more convenient interface for creating 1547 /// instructions and adding operands. 1548 void addOperand(MachineFunction &MF, const MachineOperand &Op); 1549 1550 /// Add an operand without providing an MF reference. This only works for 1551 /// instructions that are inserted in a basic block. 1552 /// 1553 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be 1554 /// preferred. 1555 void addOperand(const MachineOperand &Op); 1556 1557 /// Replace the instruction descriptor (thus opcode) of 1558 /// the current instruction with a new one. 1559 void setDesc(const MCInstrDesc &tid) { MCID = &tid; } 1560 1561 /// Replace current source information with new such. 1562 /// Avoid using this, the constructor argument is preferable. 1563 void setDebugLoc(DebugLoc dl) { 1564 debugLoc = std::move(dl); 1565 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor"); 1566 } 1567 1568 /// Erase an operand from an instruction, leaving it with one 1569 /// fewer operand than it started with. 1570 void RemoveOperand(unsigned OpNo); 1571 1572 /// Clear this MachineInstr's memory reference descriptor list. This resets 1573 /// the memrefs to their most conservative state. This should be used only 1574 /// as a last resort since it greatly pessimizes our knowledge of the memory 1575 /// access performed by the instruction. 1576 void dropMemRefs(MachineFunction &MF); 1577 1578 /// Assign this MachineInstr's memory reference descriptor list. 1579 /// 1580 /// Unlike other methods, this *will* allocate them into a new array 1581 /// associated with the provided `MachineFunction`. 1582 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs); 1583 1584 /// Add a MachineMemOperand to the machine instruction. 1585 /// This function should be used only occasionally. The setMemRefs function 1586 /// is the primary method for setting up a MachineInstr's MemRefs list. 1587 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO); 1588 1589 /// Clone another MachineInstr's memory reference descriptor list and replace 1590 /// ours with it. 1591 /// 1592 /// Note that `*this` may be the incoming MI! 1593 /// 1594 /// Prefer this API whenever possible as it can avoid allocations in common 1595 /// cases. 1596 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI); 1597 1598 /// Clone the merge of multiple MachineInstrs' memory reference descriptors 1599 /// list and replace ours with it. 1600 /// 1601 /// Note that `*this` may be one of the incoming MIs! 1602 /// 1603 /// Prefer this API whenever possible as it can avoid allocations in common 1604 /// cases. 1605 void cloneMergedMemRefs(MachineFunction &MF, 1606 ArrayRef<const MachineInstr *> MIs); 1607 1608 /// Set a symbol that will be emitted just prior to the instruction itself. 1609 /// 1610 /// Setting this to a null pointer will remove any such symbol. 1611 /// 1612 /// FIXME: This is not fully implemented yet. 1613 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1614 1615 /// Set a symbol that will be emitted just after the instruction itself. 1616 /// 1617 /// Setting this to a null pointer will remove any such symbol. 1618 /// 1619 /// FIXME: This is not fully implemented yet. 1620 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol); 1621 1622 /// Clone another MachineInstr's pre- and post- instruction symbols and 1623 /// replace ours with it. 1624 void cloneInstrSymbols(MachineFunction &MF, const MachineInstr &MI); 1625 1626 /// Set a marker on instructions that denotes where we should create and emit 1627 /// heap alloc site labels. This waits until after instruction selection and 1628 /// optimizations to create the label, so it should still work if the 1629 /// instruction is removed or duplicated. 1630 void setHeapAllocMarker(MachineFunction &MF, MDNode *MD); 1631 1632 /// Return the MIFlags which represent both MachineInstrs. This 1633 /// should be used when merging two MachineInstrs into one. This routine does 1634 /// not modify the MIFlags of this MachineInstr. 1635 uint16_t mergeFlagsWith(const MachineInstr& Other) const; 1636 1637 static uint16_t copyFlagsFromInstruction(const Instruction &I); 1638 1639 /// Copy all flags to MachineInst MIFlags 1640 void copyIRFlags(const Instruction &I); 1641 1642 /// Break any tie involving OpIdx. 1643 void untieRegOperand(unsigned OpIdx) { 1644 MachineOperand &MO = getOperand(OpIdx); 1645 if (MO.isReg() && MO.isTied()) { 1646 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0; 1647 MO.TiedTo = 0; 1648 } 1649 } 1650 1651 /// Add all implicit def and use operands to this instruction. 1652 void addImplicitDefUseOperands(MachineFunction &MF); 1653 1654 /// Scan instructions immediately following MI and collect any matching 1655 /// DBG_VALUEs. 1656 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues); 1657 1658 /// Find all DBG_VALUEs that point to the register def in this instruction 1659 /// and point them to \p Reg instead. 1660 void changeDebugValuesDefReg(Register Reg); 1661 1662 /// Returns the Intrinsic::ID for this instruction. 1663 /// \pre Must have an intrinsic ID operand. 1664 unsigned getIntrinsicID() const { 1665 return getOperand(getNumExplicitDefs()).getIntrinsicID(); 1666 } 1667 1668 private: 1669 /// If this instruction is embedded into a MachineFunction, return the 1670 /// MachineRegisterInfo object for the current function, otherwise 1671 /// return null. 1672 MachineRegisterInfo *getRegInfo(); 1673 1674 /// Unlink all of the register operands in this instruction from their 1675 /// respective use lists. This requires that the operands already be on their 1676 /// use lists. 1677 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&); 1678 1679 /// Add all of the register operands in this instruction from their 1680 /// respective use lists. This requires that the operands not be on their 1681 /// use lists yet. 1682 void AddRegOperandsToUseLists(MachineRegisterInfo&); 1683 1684 /// Slow path for hasProperty when we're dealing with a bundle. 1685 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const; 1686 1687 /// Implements the logic of getRegClassConstraintEffectForVReg for the 1688 /// this MI and the given operand index \p OpIdx. 1689 /// If the related operand does not constrained Reg, this returns CurRC. 1690 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl( 1691 unsigned OpIdx, Register Reg, const TargetRegisterClass *CurRC, 1692 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const; 1693 1694 /// Stores extra instruction information inline or allocates as ExtraInfo 1695 /// based on the number of pointers. 1696 void setExtraInfo(MachineFunction &MF, ArrayRef<MachineMemOperand *> MMOs, 1697 MCSymbol *PreInstrSymbol, MCSymbol *PostInstrSymbol, 1698 MDNode *HeapAllocMarker); 1699 }; 1700 1701 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the 1702 /// instruction rather than by pointer value. 1703 /// The hashing and equality testing functions ignore definitions so this is 1704 /// useful for CSE, etc. 1705 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> { 1706 static inline MachineInstr *getEmptyKey() { 1707 return nullptr; 1708 } 1709 1710 static inline MachineInstr *getTombstoneKey() { 1711 return reinterpret_cast<MachineInstr*>(-1); 1712 } 1713 1714 static unsigned getHashValue(const MachineInstr* const &MI); 1715 1716 static bool isEqual(const MachineInstr* const &LHS, 1717 const MachineInstr* const &RHS) { 1718 if (RHS == getEmptyKey() || RHS == getTombstoneKey() || 1719 LHS == getEmptyKey() || LHS == getTombstoneKey()) 1720 return LHS == RHS; 1721 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs); 1722 } 1723 }; 1724 1725 //===----------------------------------------------------------------------===// 1726 // Debugging Support 1727 1728 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) { 1729 MI.print(OS); 1730 return OS; 1731 } 1732 1733 } // end namespace llvm 1734 1735 #endif // LLVM_CODEGEN_MACHINEINSTR_H 1736