1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Procedures for maintaining information about logical memory blocks. 4 * 5 * Peter Bergner, IBM Corp. June 2001. 6 * Copyright (C) 2001 Peter Bergner. 7 */ 8 9 #include <linux/kernel.h> 10 #include <linux/slab.h> 11 #include <linux/init.h> 12 #include <linux/bitops.h> 13 #include <linux/poison.h> 14 #include <linux/pfn.h> 15 #include <linux/debugfs.h> 16 #include <linux/kmemleak.h> 17 #include <linux/seq_file.h> 18 #include <linux/memblock.h> 19 20 #include <asm/sections.h> 21 #include <linux/io.h> 22 23 #include "internal.h" 24 25 #define INIT_MEMBLOCK_REGIONS 128 26 #define INIT_PHYSMEM_REGIONS 4 27 28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS 29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS 30 #endif 31 32 /** 33 * DOC: memblock overview 34 * 35 * Memblock is a method of managing memory regions during the early 36 * boot period when the usual kernel memory allocators are not up and 37 * running. 38 * 39 * Memblock views the system memory as collections of contiguous 40 * regions. There are several types of these collections: 41 * 42 * * ``memory`` - describes the physical memory available to the 43 * kernel; this may differ from the actual physical memory installed 44 * in the system, for instance when the memory is restricted with 45 * ``mem=`` command line parameter 46 * * ``reserved`` - describes the regions that were allocated 47 * * ``physmem`` - describes the actual physical memory available during 48 * boot regardless of the possible restrictions and memory hot(un)plug; 49 * the ``physmem`` type is only available on some architectures. 50 * 51 * Each region is represented by struct memblock_region that 52 * defines the region extents, its attributes and NUMA node id on NUMA 53 * systems. Every memory type is described by the struct memblock_type 54 * which contains an array of memory regions along with 55 * the allocator metadata. The "memory" and "reserved" types are nicely 56 * wrapped with struct memblock. This structure is statically 57 * initialized at build time. The region arrays are initially sized to 58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS 59 * for "reserved". The region array for "physmem" is initially sized to 60 * %INIT_PHYSMEM_REGIONS. 61 * The memblock_allow_resize() enables automatic resizing of the region 62 * arrays during addition of new regions. This feature should be used 63 * with care so that memory allocated for the region array will not 64 * overlap with areas that should be reserved, for example initrd. 65 * 66 * The early architecture setup should tell memblock what the physical 67 * memory layout is by using memblock_add() or memblock_add_node() 68 * functions. The first function does not assign the region to a NUMA 69 * node and it is appropriate for UMA systems. Yet, it is possible to 70 * use it on NUMA systems as well and assign the region to a NUMA node 71 * later in the setup process using memblock_set_node(). The 72 * memblock_add_node() performs such an assignment directly. 73 * 74 * Once memblock is setup the memory can be allocated using one of the 75 * API variants: 76 * 77 * * memblock_phys_alloc*() - these functions return the **physical** 78 * address of the allocated memory 79 * * memblock_alloc*() - these functions return the **virtual** address 80 * of the allocated memory. 81 * 82 * Note, that both API variants use implicit assumptions about allowed 83 * memory ranges and the fallback methods. Consult the documentation 84 * of memblock_alloc_internal() and memblock_alloc_range_nid() 85 * functions for more elaborate description. 86 * 87 * As the system boot progresses, the architecture specific mem_init() 88 * function frees all the memory to the buddy page allocator. 89 * 90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the 91 * memblock data structures (except "physmem") will be discarded after the 92 * system initialization completes. 93 */ 94 95 #ifndef CONFIG_NEED_MULTIPLE_NODES 96 struct pglist_data __refdata contig_page_data; 97 EXPORT_SYMBOL(contig_page_data); 98 #endif 99 100 unsigned long max_low_pfn; 101 unsigned long min_low_pfn; 102 unsigned long max_pfn; 103 unsigned long long max_possible_pfn; 104 105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock; 106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock; 107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS]; 109 #endif 110 111 struct memblock memblock __initdata_memblock = { 112 .memory.regions = memblock_memory_init_regions, 113 .memory.cnt = 1, /* empty dummy entry */ 114 .memory.max = INIT_MEMBLOCK_REGIONS, 115 .memory.name = "memory", 116 117 .reserved.regions = memblock_reserved_init_regions, 118 .reserved.cnt = 1, /* empty dummy entry */ 119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS, 120 .reserved.name = "reserved", 121 122 .bottom_up = false, 123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE, 124 }; 125 126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 127 struct memblock_type physmem = { 128 .regions = memblock_physmem_init_regions, 129 .cnt = 1, /* empty dummy entry */ 130 .max = INIT_PHYSMEM_REGIONS, 131 .name = "physmem", 132 }; 133 #endif 134 135 /* 136 * keep a pointer to &memblock.memory in the text section to use it in 137 * __next_mem_range() and its helpers. 138 * For architectures that do not keep memblock data after init, this 139 * pointer will be reset to NULL at memblock_discard() 140 */ 141 static __refdata struct memblock_type *memblock_memory = &memblock.memory; 142 143 #define for_each_memblock_type(i, memblock_type, rgn) \ 144 for (i = 0, rgn = &memblock_type->regions[0]; \ 145 i < memblock_type->cnt; \ 146 i++, rgn = &memblock_type->regions[i]) 147 148 #define memblock_dbg(fmt, ...) \ 149 do { \ 150 if (memblock_debug) \ 151 pr_info(fmt, ##__VA_ARGS__); \ 152 } while (0) 153 154 static int memblock_debug __initdata_memblock; 155 static bool system_has_some_mirror __initdata_memblock = false; 156 static int memblock_can_resize __initdata_memblock; 157 static int memblock_memory_in_slab __initdata_memblock = 0; 158 static int memblock_reserved_in_slab __initdata_memblock = 0; 159 choose_memblock_flags(void)160 static enum memblock_flags __init_memblock choose_memblock_flags(void) 161 { 162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE; 163 } 164 165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */ memblock_cap_size(phys_addr_t base,phys_addr_t * size)166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size) 167 { 168 return *size = min(*size, PHYS_ADDR_MAX - base); 169 } 170 171 /* 172 * Address comparison utilities 173 */ memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1, 175 phys_addr_t base2, phys_addr_t size2) 176 { 177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1))); 178 } 179 memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type, 181 phys_addr_t base, phys_addr_t size) 182 { 183 unsigned long i; 184 185 memblock_cap_size(base, &size); 186 187 for (i = 0; i < type->cnt; i++) 188 if (memblock_addrs_overlap(base, size, type->regions[i].base, 189 type->regions[i].size)) 190 break; 191 return i < type->cnt; 192 } 193 194 /** 195 * __memblock_find_range_bottom_up - find free area utility in bottom-up 196 * @start: start of candidate range 197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 198 * %MEMBLOCK_ALLOC_ACCESSIBLE 199 * @size: size of free area to find 200 * @align: alignment of free area to find 201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 202 * @flags: pick from blocks based on memory attributes 203 * 204 * Utility called from memblock_find_in_range_node(), find free area bottom-up. 205 * 206 * Return: 207 * Found address on success, 0 on failure. 208 */ 209 static phys_addr_t __init_memblock __memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end, 211 phys_addr_t size, phys_addr_t align, int nid, 212 enum memblock_flags flags) 213 { 214 phys_addr_t this_start, this_end, cand; 215 u64 i; 216 217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) { 218 this_start = clamp(this_start, start, end); 219 this_end = clamp(this_end, start, end); 220 221 cand = round_up(this_start, align); 222 if (cand < this_end && this_end - cand >= size) 223 return cand; 224 } 225 226 return 0; 227 } 228 229 /** 230 * __memblock_find_range_top_down - find free area utility, in top-down 231 * @start: start of candidate range 232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 233 * %MEMBLOCK_ALLOC_ACCESSIBLE 234 * @size: size of free area to find 235 * @align: alignment of free area to find 236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 237 * @flags: pick from blocks based on memory attributes 238 * 239 * Utility called from memblock_find_in_range_node(), find free area top-down. 240 * 241 * Return: 242 * Found address on success, 0 on failure. 243 */ 244 static phys_addr_t __init_memblock __memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end, 246 phys_addr_t size, phys_addr_t align, int nid, 247 enum memblock_flags flags) 248 { 249 phys_addr_t this_start, this_end, cand; 250 u64 i; 251 252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end, 253 NULL) { 254 this_start = clamp(this_start, start, end); 255 this_end = clamp(this_end, start, end); 256 257 if (this_end < size) 258 continue; 259 260 cand = round_down(this_end - size, align); 261 if (cand >= this_start) 262 return cand; 263 } 264 265 return 0; 266 } 267 268 /** 269 * memblock_find_in_range_node - find free area in given range and node 270 * @size: size of free area to find 271 * @align: alignment of free area to find 272 * @start: start of candidate range 273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 274 * %MEMBLOCK_ALLOC_ACCESSIBLE 275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 276 * @flags: pick from blocks based on memory attributes 277 * 278 * Find @size free area aligned to @align in the specified range and node. 279 * 280 * Return: 281 * Found address on success, 0 on failure. 282 */ memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size, 284 phys_addr_t align, phys_addr_t start, 285 phys_addr_t end, int nid, 286 enum memblock_flags flags) 287 { 288 /* pump up @end */ 289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE || 290 end == MEMBLOCK_ALLOC_KASAN) 291 end = memblock.current_limit; 292 293 /* avoid allocating the first page */ 294 start = max_t(phys_addr_t, start, PAGE_SIZE); 295 end = max(start, end); 296 297 if (memblock_bottom_up()) 298 return __memblock_find_range_bottom_up(start, end, size, align, 299 nid, flags); 300 else 301 return __memblock_find_range_top_down(start, end, size, align, 302 nid, flags); 303 } 304 305 /** 306 * memblock_find_in_range - find free area in given range 307 * @start: start of candidate range 308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or 309 * %MEMBLOCK_ALLOC_ACCESSIBLE 310 * @size: size of free area to find 311 * @align: alignment of free area to find 312 * 313 * Find @size free area aligned to @align in the specified range. 314 * 315 * Return: 316 * Found address on success, 0 on failure. 317 */ memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)318 phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start, 319 phys_addr_t end, phys_addr_t size, 320 phys_addr_t align) 321 { 322 phys_addr_t ret; 323 enum memblock_flags flags = choose_memblock_flags(); 324 325 again: 326 ret = memblock_find_in_range_node(size, align, start, end, 327 NUMA_NO_NODE, flags); 328 329 if (!ret && (flags & MEMBLOCK_MIRROR)) { 330 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 331 &size); 332 flags &= ~MEMBLOCK_MIRROR; 333 goto again; 334 } 335 336 return ret; 337 } 338 memblock_remove_region(struct memblock_type * type,unsigned long r)339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r) 340 { 341 type->total_size -= type->regions[r].size; 342 memmove(&type->regions[r], &type->regions[r + 1], 343 (type->cnt - (r + 1)) * sizeof(type->regions[r])); 344 type->cnt--; 345 346 /* Special case for empty arrays */ 347 if (type->cnt == 0) { 348 WARN_ON(type->total_size != 0); 349 type->cnt = 1; 350 type->regions[0].base = 0; 351 type->regions[0].size = 0; 352 type->regions[0].flags = 0; 353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES); 354 } 355 } 356 357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK 358 /** 359 * memblock_discard - discard memory and reserved arrays if they were allocated 360 */ memblock_discard(void)361 void __init memblock_discard(void) 362 { 363 phys_addr_t addr, size; 364 365 if (memblock.reserved.regions != memblock_reserved_init_regions) { 366 addr = __pa(memblock.reserved.regions); 367 size = PAGE_ALIGN(sizeof(struct memblock_region) * 368 memblock.reserved.max); 369 if (memblock_reserved_in_slab) 370 kfree(memblock.reserved.regions); 371 else 372 __memblock_free_late(addr, size); 373 } 374 375 if (memblock.memory.regions != memblock_memory_init_regions) { 376 addr = __pa(memblock.memory.regions); 377 size = PAGE_ALIGN(sizeof(struct memblock_region) * 378 memblock.memory.max); 379 if (memblock_memory_in_slab) 380 kfree(memblock.memory.regions); 381 else 382 __memblock_free_late(addr, size); 383 } 384 385 memblock_memory = NULL; 386 } 387 #endif 388 389 /** 390 * memblock_double_array - double the size of the memblock regions array 391 * @type: memblock type of the regions array being doubled 392 * @new_area_start: starting address of memory range to avoid overlap with 393 * @new_area_size: size of memory range to avoid overlap with 394 * 395 * Double the size of the @type regions array. If memblock is being used to 396 * allocate memory for a new reserved regions array and there is a previously 397 * allocated memory range [@new_area_start, @new_area_start + @new_area_size] 398 * waiting to be reserved, ensure the memory used by the new array does 399 * not overlap. 400 * 401 * Return: 402 * 0 on success, -1 on failure. 403 */ memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)404 static int __init_memblock memblock_double_array(struct memblock_type *type, 405 phys_addr_t new_area_start, 406 phys_addr_t new_area_size) 407 { 408 struct memblock_region *new_array, *old_array; 409 phys_addr_t old_alloc_size, new_alloc_size; 410 phys_addr_t old_size, new_size, addr, new_end; 411 int use_slab = slab_is_available(); 412 int *in_slab; 413 414 /* We don't allow resizing until we know about the reserved regions 415 * of memory that aren't suitable for allocation 416 */ 417 if (!memblock_can_resize) 418 return -1; 419 420 /* Calculate new doubled size */ 421 old_size = type->max * sizeof(struct memblock_region); 422 new_size = old_size << 1; 423 /* 424 * We need to allocated new one align to PAGE_SIZE, 425 * so we can free them completely later. 426 */ 427 old_alloc_size = PAGE_ALIGN(old_size); 428 new_alloc_size = PAGE_ALIGN(new_size); 429 430 /* Retrieve the slab flag */ 431 if (type == &memblock.memory) 432 in_slab = &memblock_memory_in_slab; 433 else 434 in_slab = &memblock_reserved_in_slab; 435 436 /* Try to find some space for it */ 437 if (use_slab) { 438 new_array = kmalloc(new_size, GFP_KERNEL); 439 addr = new_array ? __pa(new_array) : 0; 440 } else { 441 /* only exclude range when trying to double reserved.regions */ 442 if (type != &memblock.reserved) 443 new_area_start = new_area_size = 0; 444 445 addr = memblock_find_in_range(new_area_start + new_area_size, 446 memblock.current_limit, 447 new_alloc_size, PAGE_SIZE); 448 if (!addr && new_area_size) 449 addr = memblock_find_in_range(0, 450 min(new_area_start, memblock.current_limit), 451 new_alloc_size, PAGE_SIZE); 452 453 new_array = addr ? __va(addr) : NULL; 454 } 455 if (!addr) { 456 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n", 457 type->name, type->max, type->max * 2); 458 return -1; 459 } 460 461 new_end = addr + new_size - 1; 462 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]", 463 type->name, type->max * 2, &addr, &new_end); 464 465 /* 466 * Found space, we now need to move the array over before we add the 467 * reserved region since it may be our reserved array itself that is 468 * full. 469 */ 470 memcpy(new_array, type->regions, old_size); 471 memset(new_array + type->max, 0, old_size); 472 old_array = type->regions; 473 type->regions = new_array; 474 type->max <<= 1; 475 476 /* Free old array. We needn't free it if the array is the static one */ 477 if (*in_slab) 478 kfree(old_array); 479 else if (old_array != memblock_memory_init_regions && 480 old_array != memblock_reserved_init_regions) 481 memblock_free(__pa(old_array), old_alloc_size); 482 483 /* 484 * Reserve the new array if that comes from the memblock. Otherwise, we 485 * needn't do it 486 */ 487 if (!use_slab) 488 BUG_ON(memblock_reserve(addr, new_alloc_size)); 489 490 /* Update slab flag */ 491 *in_slab = use_slab; 492 493 return 0; 494 } 495 496 /** 497 * memblock_merge_regions - merge neighboring compatible regions 498 * @type: memblock type to scan 499 * 500 * Scan @type and merge neighboring compatible regions. 501 */ memblock_merge_regions(struct memblock_type * type)502 static void __init_memblock memblock_merge_regions(struct memblock_type *type) 503 { 504 int i = 0; 505 506 /* cnt never goes below 1 */ 507 while (i < type->cnt - 1) { 508 struct memblock_region *this = &type->regions[i]; 509 struct memblock_region *next = &type->regions[i + 1]; 510 511 if (this->base + this->size != next->base || 512 memblock_get_region_node(this) != 513 memblock_get_region_node(next) || 514 this->flags != next->flags) { 515 BUG_ON(this->base + this->size > next->base); 516 i++; 517 continue; 518 } 519 520 this->size += next->size; 521 /* move forward from next + 1, index of which is i + 2 */ 522 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next)); 523 type->cnt--; 524 } 525 } 526 527 /** 528 * memblock_insert_region - insert new memblock region 529 * @type: memblock type to insert into 530 * @idx: index for the insertion point 531 * @base: base address of the new region 532 * @size: size of the new region 533 * @nid: node id of the new region 534 * @flags: flags of the new region 535 * 536 * Insert new memblock region [@base, @base + @size) into @type at @idx. 537 * @type must already have extra room to accommodate the new region. 538 */ memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)539 static void __init_memblock memblock_insert_region(struct memblock_type *type, 540 int idx, phys_addr_t base, 541 phys_addr_t size, 542 int nid, 543 enum memblock_flags flags) 544 { 545 struct memblock_region *rgn = &type->regions[idx]; 546 547 BUG_ON(type->cnt >= type->max); 548 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn)); 549 rgn->base = base; 550 rgn->size = size; 551 rgn->flags = flags; 552 memblock_set_region_node(rgn, nid); 553 type->cnt++; 554 type->total_size += size; 555 } 556 557 /** 558 * memblock_add_range - add new memblock region 559 * @type: memblock type to add new region into 560 * @base: base address of the new region 561 * @size: size of the new region 562 * @nid: nid of the new region 563 * @flags: flags of the new region 564 * 565 * Add new memblock region [@base, @base + @size) into @type. The new region 566 * is allowed to overlap with existing ones - overlaps don't affect already 567 * existing regions. @type is guaranteed to be minimal (all neighbouring 568 * compatible regions are merged) after the addition. 569 * 570 * Return: 571 * 0 on success, -errno on failure. 572 */ memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)573 static int __init_memblock memblock_add_range(struct memblock_type *type, 574 phys_addr_t base, phys_addr_t size, 575 int nid, enum memblock_flags flags) 576 { 577 bool insert = false; 578 phys_addr_t obase = base; 579 phys_addr_t end = base + memblock_cap_size(base, &size); 580 int idx, nr_new; 581 struct memblock_region *rgn; 582 583 if (!size) 584 return 0; 585 586 /* special case for empty array */ 587 if (type->regions[0].size == 0) { 588 WARN_ON(type->cnt != 1 || type->total_size); 589 type->regions[0].base = base; 590 type->regions[0].size = size; 591 type->regions[0].flags = flags; 592 memblock_set_region_node(&type->regions[0], nid); 593 type->total_size = size; 594 return 0; 595 } 596 repeat: 597 /* 598 * The following is executed twice. Once with %false @insert and 599 * then with %true. The first counts the number of regions needed 600 * to accommodate the new area. The second actually inserts them. 601 */ 602 base = obase; 603 nr_new = 0; 604 605 for_each_memblock_type(idx, type, rgn) { 606 phys_addr_t rbase = rgn->base; 607 phys_addr_t rend = rbase + rgn->size; 608 609 if (rbase >= end) 610 break; 611 if (rend <= base) 612 continue; 613 /* 614 * @rgn overlaps. If it separates the lower part of new 615 * area, insert that portion. 616 */ 617 if (rbase > base) { 618 #ifdef CONFIG_NEED_MULTIPLE_NODES 619 WARN_ON(nid != memblock_get_region_node(rgn)); 620 #endif 621 WARN_ON(flags != rgn->flags); 622 nr_new++; 623 if (insert) 624 memblock_insert_region(type, idx++, base, 625 rbase - base, nid, 626 flags); 627 } 628 /* area below @rend is dealt with, forget about it */ 629 base = min(rend, end); 630 } 631 632 /* insert the remaining portion */ 633 if (base < end) { 634 nr_new++; 635 if (insert) 636 memblock_insert_region(type, idx, base, end - base, 637 nid, flags); 638 } 639 640 if (!nr_new) 641 return 0; 642 643 /* 644 * If this was the first round, resize array and repeat for actual 645 * insertions; otherwise, merge and return. 646 */ 647 if (!insert) { 648 while (type->cnt + nr_new > type->max) 649 if (memblock_double_array(type, obase, size) < 0) 650 return -ENOMEM; 651 insert = true; 652 goto repeat; 653 } else { 654 memblock_merge_regions(type); 655 return 0; 656 } 657 } 658 659 /** 660 * memblock_add_node - add new memblock region within a NUMA node 661 * @base: base address of the new region 662 * @size: size of the new region 663 * @nid: nid of the new region 664 * 665 * Add new memblock region [@base, @base + @size) to the "memory" 666 * type. See memblock_add_range() description for mode details 667 * 668 * Return: 669 * 0 on success, -errno on failure. 670 */ memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)671 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size, 672 int nid) 673 { 674 return memblock_add_range(&memblock.memory, base, size, nid, 0); 675 } 676 677 /** 678 * memblock_add - add new memblock region 679 * @base: base address of the new region 680 * @size: size of the new region 681 * 682 * Add new memblock region [@base, @base + @size) to the "memory" 683 * type. See memblock_add_range() description for mode details 684 * 685 * Return: 686 * 0 on success, -errno on failure. 687 */ memblock_add(phys_addr_t base,phys_addr_t size)688 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size) 689 { 690 phys_addr_t end = base + size - 1; 691 692 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 693 &base, &end, (void *)_RET_IP_); 694 695 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0); 696 } 697 698 /** 699 * memblock_isolate_range - isolate given range into disjoint memblocks 700 * @type: memblock type to isolate range for 701 * @base: base of range to isolate 702 * @size: size of range to isolate 703 * @start_rgn: out parameter for the start of isolated region 704 * @end_rgn: out parameter for the end of isolated region 705 * 706 * Walk @type and ensure that regions don't cross the boundaries defined by 707 * [@base, @base + @size). Crossing regions are split at the boundaries, 708 * which may create at most two more regions. The index of the first 709 * region inside the range is returned in *@start_rgn and end in *@end_rgn. 710 * 711 * Return: 712 * 0 on success, -errno on failure. 713 */ memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)714 static int __init_memblock memblock_isolate_range(struct memblock_type *type, 715 phys_addr_t base, phys_addr_t size, 716 int *start_rgn, int *end_rgn) 717 { 718 phys_addr_t end = base + memblock_cap_size(base, &size); 719 int idx; 720 struct memblock_region *rgn; 721 722 *start_rgn = *end_rgn = 0; 723 724 if (!size) 725 return 0; 726 727 /* we'll create at most two more regions */ 728 while (type->cnt + 2 > type->max) 729 if (memblock_double_array(type, base, size) < 0) 730 return -ENOMEM; 731 732 for_each_memblock_type(idx, type, rgn) { 733 phys_addr_t rbase = rgn->base; 734 phys_addr_t rend = rbase + rgn->size; 735 736 if (rbase >= end) 737 break; 738 if (rend <= base) 739 continue; 740 741 if (rbase < base) { 742 /* 743 * @rgn intersects from below. Split and continue 744 * to process the next region - the new top half. 745 */ 746 rgn->base = base; 747 rgn->size -= base - rbase; 748 type->total_size -= base - rbase; 749 memblock_insert_region(type, idx, rbase, base - rbase, 750 memblock_get_region_node(rgn), 751 rgn->flags); 752 } else if (rend > end) { 753 /* 754 * @rgn intersects from above. Split and redo the 755 * current region - the new bottom half. 756 */ 757 rgn->base = end; 758 rgn->size -= end - rbase; 759 type->total_size -= end - rbase; 760 memblock_insert_region(type, idx--, rbase, end - rbase, 761 memblock_get_region_node(rgn), 762 rgn->flags); 763 } else { 764 /* @rgn is fully contained, record it */ 765 if (!*end_rgn) 766 *start_rgn = idx; 767 *end_rgn = idx + 1; 768 } 769 } 770 771 return 0; 772 } 773 memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)774 static int __init_memblock memblock_remove_range(struct memblock_type *type, 775 phys_addr_t base, phys_addr_t size) 776 { 777 int start_rgn, end_rgn; 778 int i, ret; 779 780 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 781 if (ret) 782 return ret; 783 784 for (i = end_rgn - 1; i >= start_rgn; i--) 785 memblock_remove_region(type, i); 786 return 0; 787 } 788 memblock_remove(phys_addr_t base,phys_addr_t size)789 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size) 790 { 791 phys_addr_t end = base + size - 1; 792 793 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 794 &base, &end, (void *)_RET_IP_); 795 796 return memblock_remove_range(&memblock.memory, base, size); 797 } 798 799 /** 800 * memblock_free - free boot memory block 801 * @base: phys starting address of the boot memory block 802 * @size: size of the boot memory block in bytes 803 * 804 * Free boot memory block previously allocated by memblock_alloc_xx() API. 805 * The freeing memory will not be released to the buddy allocator. 806 */ memblock_free(phys_addr_t base,phys_addr_t size)807 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size) 808 { 809 phys_addr_t end = base + size - 1; 810 811 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 812 &base, &end, (void *)_RET_IP_); 813 814 kmemleak_free_part_phys(base, size); 815 return memblock_remove_range(&memblock.reserved, base, size); 816 } 817 memblock_reserve(phys_addr_t base,phys_addr_t size)818 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size) 819 { 820 phys_addr_t end = base + size - 1; 821 822 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 823 &base, &end, (void *)_RET_IP_); 824 825 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0); 826 } 827 828 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP memblock_physmem_add(phys_addr_t base,phys_addr_t size)829 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size) 830 { 831 phys_addr_t end = base + size - 1; 832 833 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__, 834 &base, &end, (void *)_RET_IP_); 835 836 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0); 837 } 838 #endif 839 840 /** 841 * memblock_setclr_flag - set or clear flag for a memory region 842 * @base: base address of the region 843 * @size: size of the region 844 * @set: set or clear the flag 845 * @flag: the flag to udpate 846 * 847 * This function isolates region [@base, @base + @size), and sets/clears flag 848 * 849 * Return: 0 on success, -errno on failure. 850 */ memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)851 static int __init_memblock memblock_setclr_flag(phys_addr_t base, 852 phys_addr_t size, int set, int flag) 853 { 854 struct memblock_type *type = &memblock.memory; 855 int i, ret, start_rgn, end_rgn; 856 857 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 858 if (ret) 859 return ret; 860 861 for (i = start_rgn; i < end_rgn; i++) { 862 struct memblock_region *r = &type->regions[i]; 863 864 if (set) 865 r->flags |= flag; 866 else 867 r->flags &= ~flag; 868 } 869 870 memblock_merge_regions(type); 871 return 0; 872 } 873 874 /** 875 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG. 876 * @base: the base phys addr of the region 877 * @size: the size of the region 878 * 879 * Return: 0 on success, -errno on failure. 880 */ memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)881 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size) 882 { 883 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG); 884 } 885 886 /** 887 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region. 888 * @base: the base phys addr of the region 889 * @size: the size of the region 890 * 891 * Return: 0 on success, -errno on failure. 892 */ memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)893 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size) 894 { 895 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG); 896 } 897 898 /** 899 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR. 900 * @base: the base phys addr of the region 901 * @size: the size of the region 902 * 903 * Return: 0 on success, -errno on failure. 904 */ memblock_mark_mirror(phys_addr_t base,phys_addr_t size)905 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size) 906 { 907 system_has_some_mirror = true; 908 909 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR); 910 } 911 912 /** 913 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP. 914 * @base: the base phys addr of the region 915 * @size: the size of the region 916 * 917 * Return: 0 on success, -errno on failure. 918 */ memblock_mark_nomap(phys_addr_t base,phys_addr_t size)919 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size) 920 { 921 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP); 922 } 923 924 /** 925 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region. 926 * @base: the base phys addr of the region 927 * @size: the size of the region 928 * 929 * Return: 0 on success, -errno on failure. 930 */ memblock_clear_nomap(phys_addr_t base,phys_addr_t size)931 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size) 932 { 933 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP); 934 } 935 should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)936 static bool should_skip_region(struct memblock_type *type, 937 struct memblock_region *m, 938 int nid, int flags) 939 { 940 int m_nid = memblock_get_region_node(m); 941 942 /* we never skip regions when iterating memblock.reserved or physmem */ 943 if (type != memblock_memory) 944 return false; 945 946 /* only memory regions are associated with nodes, check it */ 947 if (nid != NUMA_NO_NODE && nid != m_nid) 948 return true; 949 950 /* skip hotpluggable memory regions if needed */ 951 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) && 952 !(flags & MEMBLOCK_HOTPLUG)) 953 return true; 954 955 /* if we want mirror memory skip non-mirror memory regions */ 956 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m)) 957 return true; 958 959 /* skip nomap memory unless we were asked for it explicitly */ 960 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m)) 961 return true; 962 963 return false; 964 } 965 966 /** 967 * __next_mem_range - next function for for_each_free_mem_range() etc. 968 * @idx: pointer to u64 loop variable 969 * @nid: node selector, %NUMA_NO_NODE for all nodes 970 * @flags: pick from blocks based on memory attributes 971 * @type_a: pointer to memblock_type from where the range is taken 972 * @type_b: pointer to memblock_type which excludes memory from being taken 973 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 974 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 975 * @out_nid: ptr to int for nid of the range, can be %NULL 976 * 977 * Find the first area from *@idx which matches @nid, fill the out 978 * parameters, and update *@idx for the next iteration. The lower 32bit of 979 * *@idx contains index into type_a and the upper 32bit indexes the 980 * areas before each region in type_b. For example, if type_b regions 981 * look like the following, 982 * 983 * 0:[0-16), 1:[32-48), 2:[128-130) 984 * 985 * The upper 32bit indexes the following regions. 986 * 987 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX) 988 * 989 * As both region arrays are sorted, the function advances the two indices 990 * in lockstep and returns each intersection. 991 */ __next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)992 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags, 993 struct memblock_type *type_a, 994 struct memblock_type *type_b, phys_addr_t *out_start, 995 phys_addr_t *out_end, int *out_nid) 996 { 997 int idx_a = *idx & 0xffffffff; 998 int idx_b = *idx >> 32; 999 1000 if (WARN_ONCE(nid == MAX_NUMNODES, 1001 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1002 nid = NUMA_NO_NODE; 1003 1004 for (; idx_a < type_a->cnt; idx_a++) { 1005 struct memblock_region *m = &type_a->regions[idx_a]; 1006 1007 phys_addr_t m_start = m->base; 1008 phys_addr_t m_end = m->base + m->size; 1009 int m_nid = memblock_get_region_node(m); 1010 1011 if (should_skip_region(type_a, m, nid, flags)) 1012 continue; 1013 1014 if (!type_b) { 1015 if (out_start) 1016 *out_start = m_start; 1017 if (out_end) 1018 *out_end = m_end; 1019 if (out_nid) 1020 *out_nid = m_nid; 1021 idx_a++; 1022 *idx = (u32)idx_a | (u64)idx_b << 32; 1023 return; 1024 } 1025 1026 /* scan areas before each reservation */ 1027 for (; idx_b < type_b->cnt + 1; idx_b++) { 1028 struct memblock_region *r; 1029 phys_addr_t r_start; 1030 phys_addr_t r_end; 1031 1032 r = &type_b->regions[idx_b]; 1033 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1034 r_end = idx_b < type_b->cnt ? 1035 r->base : PHYS_ADDR_MAX; 1036 1037 /* 1038 * if idx_b advanced past idx_a, 1039 * break out to advance idx_a 1040 */ 1041 if (r_start >= m_end) 1042 break; 1043 /* if the two regions intersect, we're done */ 1044 if (m_start < r_end) { 1045 if (out_start) 1046 *out_start = 1047 max(m_start, r_start); 1048 if (out_end) 1049 *out_end = min(m_end, r_end); 1050 if (out_nid) 1051 *out_nid = m_nid; 1052 /* 1053 * The region which ends first is 1054 * advanced for the next iteration. 1055 */ 1056 if (m_end <= r_end) 1057 idx_a++; 1058 else 1059 idx_b++; 1060 *idx = (u32)idx_a | (u64)idx_b << 32; 1061 return; 1062 } 1063 } 1064 } 1065 1066 /* signal end of iteration */ 1067 *idx = ULLONG_MAX; 1068 } 1069 1070 /** 1071 * __next_mem_range_rev - generic next function for for_each_*_range_rev() 1072 * 1073 * @idx: pointer to u64 loop variable 1074 * @nid: node selector, %NUMA_NO_NODE for all nodes 1075 * @flags: pick from blocks based on memory attributes 1076 * @type_a: pointer to memblock_type from where the range is taken 1077 * @type_b: pointer to memblock_type which excludes memory from being taken 1078 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL 1079 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL 1080 * @out_nid: ptr to int for nid of the range, can be %NULL 1081 * 1082 * Finds the next range from type_a which is not marked as unsuitable 1083 * in type_b. 1084 * 1085 * Reverse of __next_mem_range(). 1086 */ __next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1087 void __init_memblock __next_mem_range_rev(u64 *idx, int nid, 1088 enum memblock_flags flags, 1089 struct memblock_type *type_a, 1090 struct memblock_type *type_b, 1091 phys_addr_t *out_start, 1092 phys_addr_t *out_end, int *out_nid) 1093 { 1094 int idx_a = *idx & 0xffffffff; 1095 int idx_b = *idx >> 32; 1096 1097 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1098 nid = NUMA_NO_NODE; 1099 1100 if (*idx == (u64)ULLONG_MAX) { 1101 idx_a = type_a->cnt - 1; 1102 if (type_b != NULL) 1103 idx_b = type_b->cnt; 1104 else 1105 idx_b = 0; 1106 } 1107 1108 for (; idx_a >= 0; idx_a--) { 1109 struct memblock_region *m = &type_a->regions[idx_a]; 1110 1111 phys_addr_t m_start = m->base; 1112 phys_addr_t m_end = m->base + m->size; 1113 int m_nid = memblock_get_region_node(m); 1114 1115 if (should_skip_region(type_a, m, nid, flags)) 1116 continue; 1117 1118 if (!type_b) { 1119 if (out_start) 1120 *out_start = m_start; 1121 if (out_end) 1122 *out_end = m_end; 1123 if (out_nid) 1124 *out_nid = m_nid; 1125 idx_a--; 1126 *idx = (u32)idx_a | (u64)idx_b << 32; 1127 return; 1128 } 1129 1130 /* scan areas before each reservation */ 1131 for (; idx_b >= 0; idx_b--) { 1132 struct memblock_region *r; 1133 phys_addr_t r_start; 1134 phys_addr_t r_end; 1135 1136 r = &type_b->regions[idx_b]; 1137 r_start = idx_b ? r[-1].base + r[-1].size : 0; 1138 r_end = idx_b < type_b->cnt ? 1139 r->base : PHYS_ADDR_MAX; 1140 /* 1141 * if idx_b advanced past idx_a, 1142 * break out to advance idx_a 1143 */ 1144 1145 if (r_end <= m_start) 1146 break; 1147 /* if the two regions intersect, we're done */ 1148 if (m_end > r_start) { 1149 if (out_start) 1150 *out_start = max(m_start, r_start); 1151 if (out_end) 1152 *out_end = min(m_end, r_end); 1153 if (out_nid) 1154 *out_nid = m_nid; 1155 if (m_start >= r_start) 1156 idx_a--; 1157 else 1158 idx_b--; 1159 *idx = (u32)idx_a | (u64)idx_b << 32; 1160 return; 1161 } 1162 } 1163 } 1164 /* signal end of iteration */ 1165 *idx = ULLONG_MAX; 1166 } 1167 1168 /* 1169 * Common iterator interface used to define for_each_mem_pfn_range(). 1170 */ __next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1171 void __init_memblock __next_mem_pfn_range(int *idx, int nid, 1172 unsigned long *out_start_pfn, 1173 unsigned long *out_end_pfn, int *out_nid) 1174 { 1175 struct memblock_type *type = &memblock.memory; 1176 struct memblock_region *r; 1177 int r_nid; 1178 1179 while (++*idx < type->cnt) { 1180 r = &type->regions[*idx]; 1181 r_nid = memblock_get_region_node(r); 1182 1183 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size)) 1184 continue; 1185 if (nid == MAX_NUMNODES || nid == r_nid) 1186 break; 1187 } 1188 if (*idx >= type->cnt) { 1189 *idx = -1; 1190 return; 1191 } 1192 1193 if (out_start_pfn) 1194 *out_start_pfn = PFN_UP(r->base); 1195 if (out_end_pfn) 1196 *out_end_pfn = PFN_DOWN(r->base + r->size); 1197 if (out_nid) 1198 *out_nid = r_nid; 1199 } 1200 1201 /** 1202 * memblock_set_node - set node ID on memblock regions 1203 * @base: base of area to set node ID for 1204 * @size: size of area to set node ID for 1205 * @type: memblock type to set node ID for 1206 * @nid: node ID to set 1207 * 1208 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid. 1209 * Regions which cross the area boundaries are split as necessary. 1210 * 1211 * Return: 1212 * 0 on success, -errno on failure. 1213 */ memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1214 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size, 1215 struct memblock_type *type, int nid) 1216 { 1217 #ifdef CONFIG_NEED_MULTIPLE_NODES 1218 int start_rgn, end_rgn; 1219 int i, ret; 1220 1221 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn); 1222 if (ret) 1223 return ret; 1224 1225 for (i = start_rgn; i < end_rgn; i++) 1226 memblock_set_region_node(&type->regions[i], nid); 1227 1228 memblock_merge_regions(type); 1229 #endif 1230 return 0; 1231 } 1232 1233 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1234 /** 1235 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone() 1236 * 1237 * @idx: pointer to u64 loop variable 1238 * @zone: zone in which all of the memory blocks reside 1239 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL 1240 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL 1241 * 1242 * This function is meant to be a zone/pfn specific wrapper for the 1243 * for_each_mem_range type iterators. Specifically they are used in the 1244 * deferred memory init routines and as such we were duplicating much of 1245 * this logic throughout the code. So instead of having it in multiple 1246 * locations it seemed like it would make more sense to centralize this to 1247 * one new iterator that does everything they need. 1248 */ 1249 void __init_memblock __next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1250 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone, 1251 unsigned long *out_spfn, unsigned long *out_epfn) 1252 { 1253 int zone_nid = zone_to_nid(zone); 1254 phys_addr_t spa, epa; 1255 int nid; 1256 1257 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1258 &memblock.memory, &memblock.reserved, 1259 &spa, &epa, &nid); 1260 1261 while (*idx != U64_MAX) { 1262 unsigned long epfn = PFN_DOWN(epa); 1263 unsigned long spfn = PFN_UP(spa); 1264 1265 /* 1266 * Verify the end is at least past the start of the zone and 1267 * that we have at least one PFN to initialize. 1268 */ 1269 if (zone->zone_start_pfn < epfn && spfn < epfn) { 1270 /* if we went too far just stop searching */ 1271 if (zone_end_pfn(zone) <= spfn) { 1272 *idx = U64_MAX; 1273 break; 1274 } 1275 1276 if (out_spfn) 1277 *out_spfn = max(zone->zone_start_pfn, spfn); 1278 if (out_epfn) 1279 *out_epfn = min(zone_end_pfn(zone), epfn); 1280 1281 return; 1282 } 1283 1284 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE, 1285 &memblock.memory, &memblock.reserved, 1286 &spa, &epa, &nid); 1287 } 1288 1289 /* signal end of iteration */ 1290 if (out_spfn) 1291 *out_spfn = ULONG_MAX; 1292 if (out_epfn) 1293 *out_epfn = 0; 1294 } 1295 1296 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1297 1298 /** 1299 * memblock_alloc_range_nid - allocate boot memory block 1300 * @size: size of memory block to be allocated in bytes 1301 * @align: alignment of the region and block's size 1302 * @start: the lower bound of the memory region to allocate (phys address) 1303 * @end: the upper bound of the memory region to allocate (phys address) 1304 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1305 * @exact_nid: control the allocation fall back to other nodes 1306 * 1307 * The allocation is performed from memory region limited by 1308 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE. 1309 * 1310 * If the specified node can not hold the requested memory and @exact_nid 1311 * is false, the allocation falls back to any node in the system. 1312 * 1313 * For systems with memory mirroring, the allocation is attempted first 1314 * from the regions with mirroring enabled and then retried from any 1315 * memory region. 1316 * 1317 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for 1318 * allocated boot memory block, so that it is never reported as leaks. 1319 * 1320 * Return: 1321 * Physical address of allocated memory block on success, %0 on failure. 1322 */ memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1323 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size, 1324 phys_addr_t align, phys_addr_t start, 1325 phys_addr_t end, int nid, 1326 bool exact_nid) 1327 { 1328 enum memblock_flags flags = choose_memblock_flags(); 1329 phys_addr_t found; 1330 1331 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n")) 1332 nid = NUMA_NO_NODE; 1333 1334 if (!align) { 1335 /* Can't use WARNs this early in boot on powerpc */ 1336 dump_stack(); 1337 align = SMP_CACHE_BYTES; 1338 } 1339 1340 again: 1341 found = memblock_find_in_range_node(size, align, start, end, nid, 1342 flags); 1343 if (found && !memblock_reserve(found, size)) 1344 goto done; 1345 1346 if (nid != NUMA_NO_NODE && !exact_nid) { 1347 found = memblock_find_in_range_node(size, align, start, 1348 end, NUMA_NO_NODE, 1349 flags); 1350 if (found && !memblock_reserve(found, size)) 1351 goto done; 1352 } 1353 1354 if (flags & MEMBLOCK_MIRROR) { 1355 flags &= ~MEMBLOCK_MIRROR; 1356 pr_warn("Could not allocate %pap bytes of mirrored memory\n", 1357 &size); 1358 goto again; 1359 } 1360 1361 return 0; 1362 1363 done: 1364 /* Skip kmemleak for kasan_init() due to high volume. */ 1365 if (end != MEMBLOCK_ALLOC_KASAN) 1366 /* 1367 * The min_count is set to 0 so that memblock allocated 1368 * blocks are never reported as leaks. This is because many 1369 * of these blocks are only referred via the physical 1370 * address which is not looked up by kmemleak. 1371 */ 1372 kmemleak_alloc_phys(found, size, 0, 0); 1373 1374 return found; 1375 } 1376 1377 /** 1378 * memblock_phys_alloc_range - allocate a memory block inside specified range 1379 * @size: size of memory block to be allocated in bytes 1380 * @align: alignment of the region and block's size 1381 * @start: the lower bound of the memory region to allocate (physical address) 1382 * @end: the upper bound of the memory region to allocate (physical address) 1383 * 1384 * Allocate @size bytes in the between @start and @end. 1385 * 1386 * Return: physical address of the allocated memory block on success, 1387 * %0 on failure. 1388 */ memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1389 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size, 1390 phys_addr_t align, 1391 phys_addr_t start, 1392 phys_addr_t end) 1393 { 1394 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE, 1395 false); 1396 } 1397 1398 /** 1399 * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node 1400 * @size: size of memory block to be allocated in bytes 1401 * @align: alignment of the region and block's size 1402 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1403 * 1404 * Allocates memory block from the specified NUMA node. If the node 1405 * has no available memory, attempts to allocated from any node in the 1406 * system. 1407 * 1408 * Return: physical address of the allocated memory block on success, 1409 * %0 on failure. 1410 */ memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1411 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid) 1412 { 1413 return memblock_alloc_range_nid(size, align, 0, 1414 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false); 1415 } 1416 1417 /** 1418 * memblock_alloc_internal - allocate boot memory block 1419 * @size: size of memory block to be allocated in bytes 1420 * @align: alignment of the region and block's size 1421 * @min_addr: the lower bound of the memory region to allocate (phys address) 1422 * @max_addr: the upper bound of the memory region to allocate (phys address) 1423 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1424 * @exact_nid: control the allocation fall back to other nodes 1425 * 1426 * Allocates memory block using memblock_alloc_range_nid() and 1427 * converts the returned physical address to virtual. 1428 * 1429 * The @min_addr limit is dropped if it can not be satisfied and the allocation 1430 * will fall back to memory below @min_addr. Other constraints, such 1431 * as node and mirrored memory will be handled again in 1432 * memblock_alloc_range_nid(). 1433 * 1434 * Return: 1435 * Virtual address of allocated memory block on success, NULL on failure. 1436 */ memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1437 static void * __init memblock_alloc_internal( 1438 phys_addr_t size, phys_addr_t align, 1439 phys_addr_t min_addr, phys_addr_t max_addr, 1440 int nid, bool exact_nid) 1441 { 1442 phys_addr_t alloc; 1443 1444 /* 1445 * Detect any accidental use of these APIs after slab is ready, as at 1446 * this moment memblock may be deinitialized already and its 1447 * internal data may be destroyed (after execution of memblock_free_all) 1448 */ 1449 if (WARN_ON_ONCE(slab_is_available())) 1450 return kzalloc_node(size, GFP_NOWAIT, nid); 1451 1452 if (max_addr > memblock.current_limit) 1453 max_addr = memblock.current_limit; 1454 1455 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid, 1456 exact_nid); 1457 1458 /* retry allocation without lower limit */ 1459 if (!alloc && min_addr) 1460 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid, 1461 exact_nid); 1462 1463 if (!alloc) 1464 return NULL; 1465 1466 return phys_to_virt(alloc); 1467 } 1468 1469 /** 1470 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node 1471 * without zeroing memory 1472 * @size: size of memory block to be allocated in bytes 1473 * @align: alignment of the region and block's size 1474 * @min_addr: the lower bound of the memory region from where the allocation 1475 * is preferred (phys address) 1476 * @max_addr: the upper bound of the memory region from where the allocation 1477 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1478 * allocate only from memory limited by memblock.current_limit value 1479 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1480 * 1481 * Public function, provides additional debug information (including caller 1482 * info), if enabled. Does not zero allocated memory. 1483 * 1484 * Return: 1485 * Virtual address of allocated memory block on success, NULL on failure. 1486 */ memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1487 void * __init memblock_alloc_exact_nid_raw( 1488 phys_addr_t size, phys_addr_t align, 1489 phys_addr_t min_addr, phys_addr_t max_addr, 1490 int nid) 1491 { 1492 void *ptr; 1493 1494 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1495 __func__, (u64)size, (u64)align, nid, &min_addr, 1496 &max_addr, (void *)_RET_IP_); 1497 1498 ptr = memblock_alloc_internal(size, align, 1499 min_addr, max_addr, nid, true); 1500 if (ptr && size > 0) 1501 page_init_poison(ptr, size); 1502 1503 return ptr; 1504 } 1505 1506 /** 1507 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing 1508 * memory and without panicking 1509 * @size: size of memory block to be allocated in bytes 1510 * @align: alignment of the region and block's size 1511 * @min_addr: the lower bound of the memory region from where the allocation 1512 * is preferred (phys address) 1513 * @max_addr: the upper bound of the memory region from where the allocation 1514 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1515 * allocate only from memory limited by memblock.current_limit value 1516 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1517 * 1518 * Public function, provides additional debug information (including caller 1519 * info), if enabled. Does not zero allocated memory, does not panic if request 1520 * cannot be satisfied. 1521 * 1522 * Return: 1523 * Virtual address of allocated memory block on success, NULL on failure. 1524 */ memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1525 void * __init memblock_alloc_try_nid_raw( 1526 phys_addr_t size, phys_addr_t align, 1527 phys_addr_t min_addr, phys_addr_t max_addr, 1528 int nid) 1529 { 1530 void *ptr; 1531 1532 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1533 __func__, (u64)size, (u64)align, nid, &min_addr, 1534 &max_addr, (void *)_RET_IP_); 1535 1536 ptr = memblock_alloc_internal(size, align, 1537 min_addr, max_addr, nid, false); 1538 if (ptr && size > 0) 1539 page_init_poison(ptr, size); 1540 1541 return ptr; 1542 } 1543 1544 /** 1545 * memblock_alloc_try_nid - allocate boot memory block 1546 * @size: size of memory block to be allocated in bytes 1547 * @align: alignment of the region and block's size 1548 * @min_addr: the lower bound of the memory region from where the allocation 1549 * is preferred (phys address) 1550 * @max_addr: the upper bound of the memory region from where the allocation 1551 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to 1552 * allocate only from memory limited by memblock.current_limit value 1553 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node 1554 * 1555 * Public function, provides additional debug information (including caller 1556 * info), if enabled. This function zeroes the allocated memory. 1557 * 1558 * Return: 1559 * Virtual address of allocated memory block on success, NULL on failure. 1560 */ memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1561 void * __init memblock_alloc_try_nid( 1562 phys_addr_t size, phys_addr_t align, 1563 phys_addr_t min_addr, phys_addr_t max_addr, 1564 int nid) 1565 { 1566 void *ptr; 1567 1568 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n", 1569 __func__, (u64)size, (u64)align, nid, &min_addr, 1570 &max_addr, (void *)_RET_IP_); 1571 ptr = memblock_alloc_internal(size, align, 1572 min_addr, max_addr, nid, false); 1573 if (ptr) 1574 memset(ptr, 0, size); 1575 1576 return ptr; 1577 } 1578 1579 /** 1580 * __memblock_free_late - free pages directly to buddy allocator 1581 * @base: phys starting address of the boot memory block 1582 * @size: size of the boot memory block in bytes 1583 * 1584 * This is only useful when the memblock allocator has already been torn 1585 * down, but we are still initializing the system. Pages are released directly 1586 * to the buddy allocator. 1587 */ __memblock_free_late(phys_addr_t base,phys_addr_t size)1588 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size) 1589 { 1590 phys_addr_t cursor, end; 1591 1592 end = base + size - 1; 1593 memblock_dbg("%s: [%pa-%pa] %pS\n", 1594 __func__, &base, &end, (void *)_RET_IP_); 1595 kmemleak_free_part_phys(base, size); 1596 cursor = PFN_UP(base); 1597 end = PFN_DOWN(base + size); 1598 1599 for (; cursor < end; cursor++) { 1600 memblock_free_pages(pfn_to_page(cursor), cursor, 0); 1601 totalram_pages_inc(); 1602 } 1603 } 1604 1605 /* 1606 * Remaining API functions 1607 */ 1608 memblock_phys_mem_size(void)1609 phys_addr_t __init_memblock memblock_phys_mem_size(void) 1610 { 1611 return memblock.memory.total_size; 1612 } 1613 memblock_reserved_size(void)1614 phys_addr_t __init_memblock memblock_reserved_size(void) 1615 { 1616 return memblock.reserved.total_size; 1617 } 1618 1619 /* lowest address */ memblock_start_of_DRAM(void)1620 phys_addr_t __init_memblock memblock_start_of_DRAM(void) 1621 { 1622 return memblock.memory.regions[0].base; 1623 } 1624 memblock_end_of_DRAM(void)1625 phys_addr_t __init_memblock memblock_end_of_DRAM(void) 1626 { 1627 int idx = memblock.memory.cnt - 1; 1628 1629 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size); 1630 } 1631 __find_max_addr(phys_addr_t limit)1632 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit) 1633 { 1634 phys_addr_t max_addr = PHYS_ADDR_MAX; 1635 struct memblock_region *r; 1636 1637 /* 1638 * translate the memory @limit size into the max address within one of 1639 * the memory memblock regions, if the @limit exceeds the total size 1640 * of those regions, max_addr will keep original value PHYS_ADDR_MAX 1641 */ 1642 for_each_mem_region(r) { 1643 if (limit <= r->size) { 1644 max_addr = r->base + limit; 1645 break; 1646 } 1647 limit -= r->size; 1648 } 1649 1650 return max_addr; 1651 } 1652 memblock_enforce_memory_limit(phys_addr_t limit)1653 void __init memblock_enforce_memory_limit(phys_addr_t limit) 1654 { 1655 phys_addr_t max_addr; 1656 1657 if (!limit) 1658 return; 1659 1660 max_addr = __find_max_addr(limit); 1661 1662 /* @limit exceeds the total size of the memory, do nothing */ 1663 if (max_addr == PHYS_ADDR_MAX) 1664 return; 1665 1666 /* truncate both memory and reserved regions */ 1667 memblock_remove_range(&memblock.memory, max_addr, 1668 PHYS_ADDR_MAX); 1669 memblock_remove_range(&memblock.reserved, max_addr, 1670 PHYS_ADDR_MAX); 1671 } 1672 memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1673 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size) 1674 { 1675 int start_rgn, end_rgn; 1676 int i, ret; 1677 1678 if (!size) 1679 return; 1680 1681 ret = memblock_isolate_range(&memblock.memory, base, size, 1682 &start_rgn, &end_rgn); 1683 if (ret) 1684 return; 1685 1686 /* remove all the MAP regions */ 1687 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--) 1688 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1689 memblock_remove_region(&memblock.memory, i); 1690 1691 for (i = start_rgn - 1; i >= 0; i--) 1692 if (!memblock_is_nomap(&memblock.memory.regions[i])) 1693 memblock_remove_region(&memblock.memory, i); 1694 1695 /* truncate the reserved regions */ 1696 memblock_remove_range(&memblock.reserved, 0, base); 1697 memblock_remove_range(&memblock.reserved, 1698 base + size, PHYS_ADDR_MAX); 1699 } 1700 memblock_mem_limit_remove_map(phys_addr_t limit)1701 void __init memblock_mem_limit_remove_map(phys_addr_t limit) 1702 { 1703 phys_addr_t max_addr; 1704 1705 if (!limit) 1706 return; 1707 1708 max_addr = __find_max_addr(limit); 1709 1710 /* @limit exceeds the total size of the memory, do nothing */ 1711 if (max_addr == PHYS_ADDR_MAX) 1712 return; 1713 1714 memblock_cap_memory_range(0, max_addr); 1715 } 1716 memblock_search(struct memblock_type * type,phys_addr_t addr)1717 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr) 1718 { 1719 unsigned int left = 0, right = type->cnt; 1720 1721 do { 1722 unsigned int mid = (right + left) / 2; 1723 1724 if (addr < type->regions[mid].base) 1725 right = mid; 1726 else if (addr >= (type->regions[mid].base + 1727 type->regions[mid].size)) 1728 left = mid + 1; 1729 else 1730 return mid; 1731 } while (left < right); 1732 return -1; 1733 } 1734 memblock_is_reserved(phys_addr_t addr)1735 bool __init_memblock memblock_is_reserved(phys_addr_t addr) 1736 { 1737 return memblock_search(&memblock.reserved, addr) != -1; 1738 } 1739 memblock_is_memory(phys_addr_t addr)1740 bool __init_memblock memblock_is_memory(phys_addr_t addr) 1741 { 1742 return memblock_search(&memblock.memory, addr) != -1; 1743 } 1744 memblock_is_map_memory(phys_addr_t addr)1745 bool __init_memblock memblock_is_map_memory(phys_addr_t addr) 1746 { 1747 int i = memblock_search(&memblock.memory, addr); 1748 1749 if (i == -1) 1750 return false; 1751 return !memblock_is_nomap(&memblock.memory.regions[i]); 1752 } 1753 memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1754 int __init_memblock memblock_search_pfn_nid(unsigned long pfn, 1755 unsigned long *start_pfn, unsigned long *end_pfn) 1756 { 1757 struct memblock_type *type = &memblock.memory; 1758 int mid = memblock_search(type, PFN_PHYS(pfn)); 1759 1760 if (mid == -1) 1761 return -1; 1762 1763 *start_pfn = PFN_DOWN(type->regions[mid].base); 1764 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size); 1765 1766 return memblock_get_region_node(&type->regions[mid]); 1767 } 1768 1769 /** 1770 * memblock_is_region_memory - check if a region is a subset of memory 1771 * @base: base of region to check 1772 * @size: size of region to check 1773 * 1774 * Check if the region [@base, @base + @size) is a subset of a memory block. 1775 * 1776 * Return: 1777 * 0 if false, non-zero if true 1778 */ memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1779 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size) 1780 { 1781 int idx = memblock_search(&memblock.memory, base); 1782 phys_addr_t end = base + memblock_cap_size(base, &size); 1783 1784 if (idx == -1) 1785 return false; 1786 return (memblock.memory.regions[idx].base + 1787 memblock.memory.regions[idx].size) >= end; 1788 } 1789 1790 /** 1791 * memblock_is_region_reserved - check if a region intersects reserved memory 1792 * @base: base of region to check 1793 * @size: size of region to check 1794 * 1795 * Check if the region [@base, @base + @size) intersects a reserved 1796 * memory block. 1797 * 1798 * Return: 1799 * True if they intersect, false if not. 1800 */ memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1801 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size) 1802 { 1803 return memblock_overlaps_region(&memblock.reserved, base, size); 1804 } 1805 memblock_trim_memory(phys_addr_t align)1806 void __init_memblock memblock_trim_memory(phys_addr_t align) 1807 { 1808 phys_addr_t start, end, orig_start, orig_end; 1809 struct memblock_region *r; 1810 1811 for_each_mem_region(r) { 1812 orig_start = r->base; 1813 orig_end = r->base + r->size; 1814 start = round_up(orig_start, align); 1815 end = round_down(orig_end, align); 1816 1817 if (start == orig_start && end == orig_end) 1818 continue; 1819 1820 if (start < end) { 1821 r->base = start; 1822 r->size = end - start; 1823 } else { 1824 memblock_remove_region(&memblock.memory, 1825 r - memblock.memory.regions); 1826 r--; 1827 } 1828 } 1829 } 1830 memblock_set_current_limit(phys_addr_t limit)1831 void __init_memblock memblock_set_current_limit(phys_addr_t limit) 1832 { 1833 memblock.current_limit = limit; 1834 } 1835 memblock_get_current_limit(void)1836 phys_addr_t __init_memblock memblock_get_current_limit(void) 1837 { 1838 return memblock.current_limit; 1839 } 1840 memblock_dump(struct memblock_type * type)1841 static void __init_memblock memblock_dump(struct memblock_type *type) 1842 { 1843 phys_addr_t base, end, size; 1844 enum memblock_flags flags; 1845 int idx; 1846 struct memblock_region *rgn; 1847 1848 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt); 1849 1850 for_each_memblock_type(idx, type, rgn) { 1851 char nid_buf[32] = ""; 1852 1853 base = rgn->base; 1854 size = rgn->size; 1855 end = base + size - 1; 1856 flags = rgn->flags; 1857 #ifdef CONFIG_NEED_MULTIPLE_NODES 1858 if (memblock_get_region_node(rgn) != MAX_NUMNODES) 1859 snprintf(nid_buf, sizeof(nid_buf), " on node %d", 1860 memblock_get_region_node(rgn)); 1861 #endif 1862 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n", 1863 type->name, idx, &base, &end, &size, nid_buf, flags); 1864 } 1865 } 1866 __memblock_dump_all(void)1867 static void __init_memblock __memblock_dump_all(void) 1868 { 1869 pr_info("MEMBLOCK configuration:\n"); 1870 pr_info(" memory size = %pa reserved size = %pa\n", 1871 &memblock.memory.total_size, 1872 &memblock.reserved.total_size); 1873 1874 memblock_dump(&memblock.memory); 1875 memblock_dump(&memblock.reserved); 1876 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 1877 memblock_dump(&physmem); 1878 #endif 1879 } 1880 memblock_dump_all(void)1881 void __init_memblock memblock_dump_all(void) 1882 { 1883 if (memblock_debug) 1884 __memblock_dump_all(); 1885 } 1886 memblock_allow_resize(void)1887 void __init memblock_allow_resize(void) 1888 { 1889 memblock_can_resize = 1; 1890 } 1891 early_memblock(char * p)1892 static int __init early_memblock(char *p) 1893 { 1894 if (p && strstr(p, "debug")) 1895 memblock_debug = 1; 1896 return 0; 1897 } 1898 early_param("memblock", early_memblock); 1899 __free_pages_memory(unsigned long start,unsigned long end)1900 static void __init __free_pages_memory(unsigned long start, unsigned long end) 1901 { 1902 int order; 1903 1904 while (start < end) { 1905 order = min(MAX_ORDER - 1UL, __ffs(start)); 1906 1907 while (start + (1UL << order) > end) 1908 order--; 1909 1910 memblock_free_pages(pfn_to_page(start), start, order); 1911 1912 start += (1UL << order); 1913 } 1914 } 1915 __free_memory_core(phys_addr_t start,phys_addr_t end)1916 static unsigned long __init __free_memory_core(phys_addr_t start, 1917 phys_addr_t end) 1918 { 1919 unsigned long start_pfn = PFN_UP(start); 1920 unsigned long end_pfn = min_t(unsigned long, 1921 PFN_DOWN(end), max_low_pfn); 1922 1923 if (start_pfn >= end_pfn) 1924 return 0; 1925 1926 __free_pages_memory(start_pfn, end_pfn); 1927 1928 return end_pfn - start_pfn; 1929 } 1930 free_low_memory_core_early(void)1931 static unsigned long __init free_low_memory_core_early(void) 1932 { 1933 unsigned long count = 0; 1934 phys_addr_t start, end; 1935 u64 i; 1936 1937 memblock_clear_hotplug(0, -1); 1938 1939 for_each_reserved_mem_range(i, &start, &end) 1940 reserve_bootmem_region(start, end); 1941 1942 /* 1943 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id 1944 * because in some case like Node0 doesn't have RAM installed 1945 * low ram will be on Node1 1946 */ 1947 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, 1948 NULL) 1949 count += __free_memory_core(start, end); 1950 1951 return count; 1952 } 1953 1954 static int reset_managed_pages_done __initdata; 1955 reset_node_managed_pages(pg_data_t * pgdat)1956 void reset_node_managed_pages(pg_data_t *pgdat) 1957 { 1958 struct zone *z; 1959 1960 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) 1961 atomic_long_set(&z->managed_pages, 0); 1962 } 1963 reset_all_zones_managed_pages(void)1964 void __init reset_all_zones_managed_pages(void) 1965 { 1966 struct pglist_data *pgdat; 1967 1968 if (reset_managed_pages_done) 1969 return; 1970 1971 for_each_online_pgdat(pgdat) 1972 reset_node_managed_pages(pgdat); 1973 1974 reset_managed_pages_done = 1; 1975 } 1976 1977 /** 1978 * memblock_free_all - release free pages to the buddy allocator 1979 * 1980 * Return: the number of pages actually released. 1981 */ memblock_free_all(void)1982 unsigned long __init memblock_free_all(void) 1983 { 1984 unsigned long pages; 1985 1986 reset_all_zones_managed_pages(); 1987 1988 pages = free_low_memory_core_early(); 1989 totalram_pages_add(pages); 1990 1991 return pages; 1992 } 1993 1994 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK) 1995 memblock_debug_show(struct seq_file * m,void * private)1996 static int memblock_debug_show(struct seq_file *m, void *private) 1997 { 1998 struct memblock_type *type = m->private; 1999 struct memblock_region *reg; 2000 int i; 2001 phys_addr_t end; 2002 2003 for (i = 0; i < type->cnt; i++) { 2004 reg = &type->regions[i]; 2005 end = reg->base + reg->size - 1; 2006 2007 seq_printf(m, "%4d: ", i); 2008 seq_printf(m, "%pa..%pa\n", ®->base, &end); 2009 } 2010 return 0; 2011 } 2012 DEFINE_SHOW_ATTRIBUTE(memblock_debug); 2013 memblock_init_debugfs(void)2014 static int __init memblock_init_debugfs(void) 2015 { 2016 struct dentry *root = debugfs_create_dir("memblock", NULL); 2017 2018 debugfs_create_file("memory", 0444, root, 2019 &memblock.memory, &memblock_debug_fops); 2020 debugfs_create_file("reserved", 0444, root, 2021 &memblock.reserved, &memblock_debug_fops); 2022 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP 2023 debugfs_create_file("physmem", 0444, root, &physmem, 2024 &memblock_debug_fops); 2025 #endif 2026 2027 return 0; 2028 } 2029 __initcall(memblock_init_debugfs); 2030 2031 #endif /* CONFIG_DEBUG_FS */ 2032