• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Procedures for maintaining information about logical memory blocks.
4   *
5   * Peter Bergner, IBM Corp.	June 2001.
6   * Copyright (C) 2001 Peter Bergner.
7   */
8  
9  #include <linux/kernel.h>
10  #include <linux/slab.h>
11  #include <linux/init.h>
12  #include <linux/bitops.h>
13  #include <linux/poison.h>
14  #include <linux/pfn.h>
15  #include <linux/debugfs.h>
16  #include <linux/kmemleak.h>
17  #include <linux/seq_file.h>
18  #include <linux/memblock.h>
19  
20  #include <asm/sections.h>
21  #include <linux/io.h>
22  
23  #include "internal.h"
24  
25  #define INIT_MEMBLOCK_REGIONS			128
26  #define INIT_PHYSMEM_REGIONS			4
27  
28  #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29  # define INIT_MEMBLOCK_RESERVED_REGIONS		INIT_MEMBLOCK_REGIONS
30  #endif
31  
32  /**
33   * DOC: memblock overview
34   *
35   * Memblock is a method of managing memory regions during the early
36   * boot period when the usual kernel memory allocators are not up and
37   * running.
38   *
39   * Memblock views the system memory as collections of contiguous
40   * regions. There are several types of these collections:
41   *
42   * * ``memory`` - describes the physical memory available to the
43   *   kernel; this may differ from the actual physical memory installed
44   *   in the system, for instance when the memory is restricted with
45   *   ``mem=`` command line parameter
46   * * ``reserved`` - describes the regions that were allocated
47   * * ``physmem`` - describes the actual physical memory available during
48   *   boot regardless of the possible restrictions and memory hot(un)plug;
49   *   the ``physmem`` type is only available on some architectures.
50   *
51   * Each region is represented by struct memblock_region that
52   * defines the region extents, its attributes and NUMA node id on NUMA
53   * systems. Every memory type is described by the struct memblock_type
54   * which contains an array of memory regions along with
55   * the allocator metadata. The "memory" and "reserved" types are nicely
56   * wrapped with struct memblock. This structure is statically
57   * initialized at build time. The region arrays are initially sized to
58   * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59   * for "reserved". The region array for "physmem" is initially sized to
60   * %INIT_PHYSMEM_REGIONS.
61   * The memblock_allow_resize() enables automatic resizing of the region
62   * arrays during addition of new regions. This feature should be used
63   * with care so that memory allocated for the region array will not
64   * overlap with areas that should be reserved, for example initrd.
65   *
66   * The early architecture setup should tell memblock what the physical
67   * memory layout is by using memblock_add() or memblock_add_node()
68   * functions. The first function does not assign the region to a NUMA
69   * node and it is appropriate for UMA systems. Yet, it is possible to
70   * use it on NUMA systems as well and assign the region to a NUMA node
71   * later in the setup process using memblock_set_node(). The
72   * memblock_add_node() performs such an assignment directly.
73   *
74   * Once memblock is setup the memory can be allocated using one of the
75   * API variants:
76   *
77   * * memblock_phys_alloc*() - these functions return the **physical**
78   *   address of the allocated memory
79   * * memblock_alloc*() - these functions return the **virtual** address
80   *   of the allocated memory.
81   *
82   * Note, that both API variants use implicit assumptions about allowed
83   * memory ranges and the fallback methods. Consult the documentation
84   * of memblock_alloc_internal() and memblock_alloc_range_nid()
85   * functions for more elaborate description.
86   *
87   * As the system boot progresses, the architecture specific mem_init()
88   * function frees all the memory to the buddy page allocator.
89   *
90   * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91   * memblock data structures (except "physmem") will be discarded after the
92   * system initialization completes.
93   */
94  
95  #ifndef CONFIG_NEED_MULTIPLE_NODES
96  struct pglist_data __refdata contig_page_data;
97  EXPORT_SYMBOL(contig_page_data);
98  #endif
99  
100  unsigned long max_low_pfn;
101  unsigned long min_low_pfn;
102  unsigned long max_pfn;
103  unsigned long long max_possible_pfn;
104  
105  static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106  static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107  #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108  static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109  #endif
110  
111  struct memblock memblock __initdata_memblock = {
112  	.memory.regions		= memblock_memory_init_regions,
113  	.memory.cnt		= 1,	/* empty dummy entry */
114  	.memory.max		= INIT_MEMBLOCK_REGIONS,
115  	.memory.name		= "memory",
116  
117  	.reserved.regions	= memblock_reserved_init_regions,
118  	.reserved.cnt		= 1,	/* empty dummy entry */
119  	.reserved.max		= INIT_MEMBLOCK_RESERVED_REGIONS,
120  	.reserved.name		= "reserved",
121  
122  	.bottom_up		= false,
123  	.current_limit		= MEMBLOCK_ALLOC_ANYWHERE,
124  };
125  
126  #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127  struct memblock_type physmem = {
128  	.regions		= memblock_physmem_init_regions,
129  	.cnt			= 1,	/* empty dummy entry */
130  	.max			= INIT_PHYSMEM_REGIONS,
131  	.name			= "physmem",
132  };
133  #endif
134  
135  /*
136   * keep a pointer to &memblock.memory in the text section to use it in
137   * __next_mem_range() and its helpers.
138   *  For architectures that do not keep memblock data after init, this
139   * pointer will be reset to NULL at memblock_discard()
140   */
141  static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142  
143  #define for_each_memblock_type(i, memblock_type, rgn)			\
144  	for (i = 0, rgn = &memblock_type->regions[0];			\
145  	     i < memblock_type->cnt;					\
146  	     i++, rgn = &memblock_type->regions[i])
147  
148  #define memblock_dbg(fmt, ...)						\
149  	do {								\
150  		if (memblock_debug)					\
151  			pr_info(fmt, ##__VA_ARGS__);			\
152  	} while (0)
153  
154  static int memblock_debug __initdata_memblock;
155  static bool system_has_some_mirror __initdata_memblock = false;
156  static int memblock_can_resize __initdata_memblock;
157  static int memblock_memory_in_slab __initdata_memblock = 0;
158  static int memblock_reserved_in_slab __initdata_memblock = 0;
159  
choose_memblock_flags(void)160  static enum memblock_flags __init_memblock choose_memblock_flags(void)
161  {
162  	return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163  }
164  
165  /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)166  static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167  {
168  	return *size = min(*size, PHYS_ADDR_MAX - base);
169  }
170  
171  /*
172   * Address comparison utilities
173   */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)174  static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175  				       phys_addr_t base2, phys_addr_t size2)
176  {
177  	return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178  }
179  
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)180  bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181  					phys_addr_t base, phys_addr_t size)
182  {
183  	unsigned long i;
184  
185  	memblock_cap_size(base, &size);
186  
187  	for (i = 0; i < type->cnt; i++)
188  		if (memblock_addrs_overlap(base, size, type->regions[i].base,
189  					   type->regions[i].size))
190  			break;
191  	return i < type->cnt;
192  }
193  
194  /**
195   * __memblock_find_range_bottom_up - find free area utility in bottom-up
196   * @start: start of candidate range
197   * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198   *       %MEMBLOCK_ALLOC_ACCESSIBLE
199   * @size: size of free area to find
200   * @align: alignment of free area to find
201   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
202   * @flags: pick from blocks based on memory attributes
203   *
204   * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205   *
206   * Return:
207   * Found address on success, 0 on failure.
208   */
209  static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)210  __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
211  				phys_addr_t size, phys_addr_t align, int nid,
212  				enum memblock_flags flags)
213  {
214  	phys_addr_t this_start, this_end, cand;
215  	u64 i;
216  
217  	for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
218  		this_start = clamp(this_start, start, end);
219  		this_end = clamp(this_end, start, end);
220  
221  		cand = round_up(this_start, align);
222  		if (cand < this_end && this_end - cand >= size)
223  			return cand;
224  	}
225  
226  	return 0;
227  }
228  
229  /**
230   * __memblock_find_range_top_down - find free area utility, in top-down
231   * @start: start of candidate range
232   * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233   *       %MEMBLOCK_ALLOC_ACCESSIBLE
234   * @size: size of free area to find
235   * @align: alignment of free area to find
236   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
237   * @flags: pick from blocks based on memory attributes
238   *
239   * Utility called from memblock_find_in_range_node(), find free area top-down.
240   *
241   * Return:
242   * Found address on success, 0 on failure.
243   */
244  static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)245  __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
246  			       phys_addr_t size, phys_addr_t align, int nid,
247  			       enum memblock_flags flags)
248  {
249  	phys_addr_t this_start, this_end, cand;
250  	u64 i;
251  
252  	for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
253  					NULL) {
254  		this_start = clamp(this_start, start, end);
255  		this_end = clamp(this_end, start, end);
256  
257  		if (this_end < size)
258  			continue;
259  
260  		cand = round_down(this_end - size, align);
261  		if (cand >= this_start)
262  			return cand;
263  	}
264  
265  	return 0;
266  }
267  
268  /**
269   * memblock_find_in_range_node - find free area in given range and node
270   * @size: size of free area to find
271   * @align: alignment of free area to find
272   * @start: start of candidate range
273   * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274   *       %MEMBLOCK_ALLOC_ACCESSIBLE
275   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
276   * @flags: pick from blocks based on memory attributes
277   *
278   * Find @size free area aligned to @align in the specified range and node.
279   *
280   * Return:
281   * Found address on success, 0 on failure.
282   */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)283  static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
284  					phys_addr_t align, phys_addr_t start,
285  					phys_addr_t end, int nid,
286  					enum memblock_flags flags)
287  {
288  	/* pump up @end */
289  	if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290  	    end == MEMBLOCK_ALLOC_KASAN)
291  		end = memblock.current_limit;
292  
293  	/* avoid allocating the first page */
294  	start = max_t(phys_addr_t, start, PAGE_SIZE);
295  	end = max(start, end);
296  
297  	if (memblock_bottom_up())
298  		return __memblock_find_range_bottom_up(start, end, size, align,
299  						       nid, flags);
300  	else
301  		return __memblock_find_range_top_down(start, end, size, align,
302  						      nid, flags);
303  }
304  
305  /**
306   * memblock_find_in_range - find free area in given range
307   * @start: start of candidate range
308   * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309   *       %MEMBLOCK_ALLOC_ACCESSIBLE
310   * @size: size of free area to find
311   * @align: alignment of free area to find
312   *
313   * Find @size free area aligned to @align in the specified range.
314   *
315   * Return:
316   * Found address on success, 0 on failure.
317   */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)318  phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
319  					phys_addr_t end, phys_addr_t size,
320  					phys_addr_t align)
321  {
322  	phys_addr_t ret;
323  	enum memblock_flags flags = choose_memblock_flags();
324  
325  again:
326  	ret = memblock_find_in_range_node(size, align, start, end,
327  					    NUMA_NO_NODE, flags);
328  
329  	if (!ret && (flags & MEMBLOCK_MIRROR)) {
330  		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
331  			&size);
332  		flags &= ~MEMBLOCK_MIRROR;
333  		goto again;
334  	}
335  
336  	return ret;
337  }
338  
memblock_remove_region(struct memblock_type * type,unsigned long r)339  static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
340  {
341  	type->total_size -= type->regions[r].size;
342  	memmove(&type->regions[r], &type->regions[r + 1],
343  		(type->cnt - (r + 1)) * sizeof(type->regions[r]));
344  	type->cnt--;
345  
346  	/* Special case for empty arrays */
347  	if (type->cnt == 0) {
348  		WARN_ON(type->total_size != 0);
349  		type->cnt = 1;
350  		type->regions[0].base = 0;
351  		type->regions[0].size = 0;
352  		type->regions[0].flags = 0;
353  		memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
354  	}
355  }
356  
357  #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
358  /**
359   * memblock_discard - discard memory and reserved arrays if they were allocated
360   */
memblock_discard(void)361  void __init memblock_discard(void)
362  {
363  	phys_addr_t addr, size;
364  
365  	if (memblock.reserved.regions != memblock_reserved_init_regions) {
366  		addr = __pa(memblock.reserved.regions);
367  		size = PAGE_ALIGN(sizeof(struct memblock_region) *
368  				  memblock.reserved.max);
369  		if (memblock_reserved_in_slab)
370  			kfree(memblock.reserved.regions);
371  		else
372  			__memblock_free_late(addr, size);
373  	}
374  
375  	if (memblock.memory.regions != memblock_memory_init_regions) {
376  		addr = __pa(memblock.memory.regions);
377  		size = PAGE_ALIGN(sizeof(struct memblock_region) *
378  				  memblock.memory.max);
379  		if (memblock_memory_in_slab)
380  			kfree(memblock.memory.regions);
381  		else
382  			__memblock_free_late(addr, size);
383  	}
384  
385  	memblock_memory = NULL;
386  }
387  #endif
388  
389  /**
390   * memblock_double_array - double the size of the memblock regions array
391   * @type: memblock type of the regions array being doubled
392   * @new_area_start: starting address of memory range to avoid overlap with
393   * @new_area_size: size of memory range to avoid overlap with
394   *
395   * Double the size of the @type regions array. If memblock is being used to
396   * allocate memory for a new reserved regions array and there is a previously
397   * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
398   * waiting to be reserved, ensure the memory used by the new array does
399   * not overlap.
400   *
401   * Return:
402   * 0 on success, -1 on failure.
403   */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)404  static int __init_memblock memblock_double_array(struct memblock_type *type,
405  						phys_addr_t new_area_start,
406  						phys_addr_t new_area_size)
407  {
408  	struct memblock_region *new_array, *old_array;
409  	phys_addr_t old_alloc_size, new_alloc_size;
410  	phys_addr_t old_size, new_size, addr, new_end;
411  	int use_slab = slab_is_available();
412  	int *in_slab;
413  
414  	/* We don't allow resizing until we know about the reserved regions
415  	 * of memory that aren't suitable for allocation
416  	 */
417  	if (!memblock_can_resize)
418  		return -1;
419  
420  	/* Calculate new doubled size */
421  	old_size = type->max * sizeof(struct memblock_region);
422  	new_size = old_size << 1;
423  	/*
424  	 * We need to allocated new one align to PAGE_SIZE,
425  	 *   so we can free them completely later.
426  	 */
427  	old_alloc_size = PAGE_ALIGN(old_size);
428  	new_alloc_size = PAGE_ALIGN(new_size);
429  
430  	/* Retrieve the slab flag */
431  	if (type == &memblock.memory)
432  		in_slab = &memblock_memory_in_slab;
433  	else
434  		in_slab = &memblock_reserved_in_slab;
435  
436  	/* Try to find some space for it */
437  	if (use_slab) {
438  		new_array = kmalloc(new_size, GFP_KERNEL);
439  		addr = new_array ? __pa(new_array) : 0;
440  	} else {
441  		/* only exclude range when trying to double reserved.regions */
442  		if (type != &memblock.reserved)
443  			new_area_start = new_area_size = 0;
444  
445  		addr = memblock_find_in_range(new_area_start + new_area_size,
446  						memblock.current_limit,
447  						new_alloc_size, PAGE_SIZE);
448  		if (!addr && new_area_size)
449  			addr = memblock_find_in_range(0,
450  				min(new_area_start, memblock.current_limit),
451  				new_alloc_size, PAGE_SIZE);
452  
453  		new_array = addr ? __va(addr) : NULL;
454  	}
455  	if (!addr) {
456  		pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
457  		       type->name, type->max, type->max * 2);
458  		return -1;
459  	}
460  
461  	new_end = addr + new_size - 1;
462  	memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
463  			type->name, type->max * 2, &addr, &new_end);
464  
465  	/*
466  	 * Found space, we now need to move the array over before we add the
467  	 * reserved region since it may be our reserved array itself that is
468  	 * full.
469  	 */
470  	memcpy(new_array, type->regions, old_size);
471  	memset(new_array + type->max, 0, old_size);
472  	old_array = type->regions;
473  	type->regions = new_array;
474  	type->max <<= 1;
475  
476  	/* Free old array. We needn't free it if the array is the static one */
477  	if (*in_slab)
478  		kfree(old_array);
479  	else if (old_array != memblock_memory_init_regions &&
480  		 old_array != memblock_reserved_init_regions)
481  		memblock_free(__pa(old_array), old_alloc_size);
482  
483  	/*
484  	 * Reserve the new array if that comes from the memblock.  Otherwise, we
485  	 * needn't do it
486  	 */
487  	if (!use_slab)
488  		BUG_ON(memblock_reserve(addr, new_alloc_size));
489  
490  	/* Update slab flag */
491  	*in_slab = use_slab;
492  
493  	return 0;
494  }
495  
496  /**
497   * memblock_merge_regions - merge neighboring compatible regions
498   * @type: memblock type to scan
499   *
500   * Scan @type and merge neighboring compatible regions.
501   */
memblock_merge_regions(struct memblock_type * type)502  static void __init_memblock memblock_merge_regions(struct memblock_type *type)
503  {
504  	int i = 0;
505  
506  	/* cnt never goes below 1 */
507  	while (i < type->cnt - 1) {
508  		struct memblock_region *this = &type->regions[i];
509  		struct memblock_region *next = &type->regions[i + 1];
510  
511  		if (this->base + this->size != next->base ||
512  		    memblock_get_region_node(this) !=
513  		    memblock_get_region_node(next) ||
514  		    this->flags != next->flags) {
515  			BUG_ON(this->base + this->size > next->base);
516  			i++;
517  			continue;
518  		}
519  
520  		this->size += next->size;
521  		/* move forward from next + 1, index of which is i + 2 */
522  		memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
523  		type->cnt--;
524  	}
525  }
526  
527  /**
528   * memblock_insert_region - insert new memblock region
529   * @type:	memblock type to insert into
530   * @idx:	index for the insertion point
531   * @base:	base address of the new region
532   * @size:	size of the new region
533   * @nid:	node id of the new region
534   * @flags:	flags of the new region
535   *
536   * Insert new memblock region [@base, @base + @size) into @type at @idx.
537   * @type must already have extra room to accommodate the new region.
538   */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)539  static void __init_memblock memblock_insert_region(struct memblock_type *type,
540  						   int idx, phys_addr_t base,
541  						   phys_addr_t size,
542  						   int nid,
543  						   enum memblock_flags flags)
544  {
545  	struct memblock_region *rgn = &type->regions[idx];
546  
547  	BUG_ON(type->cnt >= type->max);
548  	memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
549  	rgn->base = base;
550  	rgn->size = size;
551  	rgn->flags = flags;
552  	memblock_set_region_node(rgn, nid);
553  	type->cnt++;
554  	type->total_size += size;
555  }
556  
557  /**
558   * memblock_add_range - add new memblock region
559   * @type: memblock type to add new region into
560   * @base: base address of the new region
561   * @size: size of the new region
562   * @nid: nid of the new region
563   * @flags: flags of the new region
564   *
565   * Add new memblock region [@base, @base + @size) into @type.  The new region
566   * is allowed to overlap with existing ones - overlaps don't affect already
567   * existing regions.  @type is guaranteed to be minimal (all neighbouring
568   * compatible regions are merged) after the addition.
569   *
570   * Return:
571   * 0 on success, -errno on failure.
572   */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)573  static int __init_memblock memblock_add_range(struct memblock_type *type,
574  				phys_addr_t base, phys_addr_t size,
575  				int nid, enum memblock_flags flags)
576  {
577  	bool insert = false;
578  	phys_addr_t obase = base;
579  	phys_addr_t end = base + memblock_cap_size(base, &size);
580  	int idx, nr_new;
581  	struct memblock_region *rgn;
582  
583  	if (!size)
584  		return 0;
585  
586  	/* special case for empty array */
587  	if (type->regions[0].size == 0) {
588  		WARN_ON(type->cnt != 1 || type->total_size);
589  		type->regions[0].base = base;
590  		type->regions[0].size = size;
591  		type->regions[0].flags = flags;
592  		memblock_set_region_node(&type->regions[0], nid);
593  		type->total_size = size;
594  		return 0;
595  	}
596  repeat:
597  	/*
598  	 * The following is executed twice.  Once with %false @insert and
599  	 * then with %true.  The first counts the number of regions needed
600  	 * to accommodate the new area.  The second actually inserts them.
601  	 */
602  	base = obase;
603  	nr_new = 0;
604  
605  	for_each_memblock_type(idx, type, rgn) {
606  		phys_addr_t rbase = rgn->base;
607  		phys_addr_t rend = rbase + rgn->size;
608  
609  		if (rbase >= end)
610  			break;
611  		if (rend <= base)
612  			continue;
613  		/*
614  		 * @rgn overlaps.  If it separates the lower part of new
615  		 * area, insert that portion.
616  		 */
617  		if (rbase > base) {
618  #ifdef CONFIG_NEED_MULTIPLE_NODES
619  			WARN_ON(nid != memblock_get_region_node(rgn));
620  #endif
621  			WARN_ON(flags != rgn->flags);
622  			nr_new++;
623  			if (insert)
624  				memblock_insert_region(type, idx++, base,
625  						       rbase - base, nid,
626  						       flags);
627  		}
628  		/* area below @rend is dealt with, forget about it */
629  		base = min(rend, end);
630  	}
631  
632  	/* insert the remaining portion */
633  	if (base < end) {
634  		nr_new++;
635  		if (insert)
636  			memblock_insert_region(type, idx, base, end - base,
637  					       nid, flags);
638  	}
639  
640  	if (!nr_new)
641  		return 0;
642  
643  	/*
644  	 * If this was the first round, resize array and repeat for actual
645  	 * insertions; otherwise, merge and return.
646  	 */
647  	if (!insert) {
648  		while (type->cnt + nr_new > type->max)
649  			if (memblock_double_array(type, obase, size) < 0)
650  				return -ENOMEM;
651  		insert = true;
652  		goto repeat;
653  	} else {
654  		memblock_merge_regions(type);
655  		return 0;
656  	}
657  }
658  
659  /**
660   * memblock_add_node - add new memblock region within a NUMA node
661   * @base: base address of the new region
662   * @size: size of the new region
663   * @nid: nid of the new region
664   *
665   * Add new memblock region [@base, @base + @size) to the "memory"
666   * type. See memblock_add_range() description for mode details
667   *
668   * Return:
669   * 0 on success, -errno on failure.
670   */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)671  int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
672  				       int nid)
673  {
674  	return memblock_add_range(&memblock.memory, base, size, nid, 0);
675  }
676  
677  /**
678   * memblock_add - add new memblock region
679   * @base: base address of the new region
680   * @size: size of the new region
681   *
682   * Add new memblock region [@base, @base + @size) to the "memory"
683   * type. See memblock_add_range() description for mode details
684   *
685   * Return:
686   * 0 on success, -errno on failure.
687   */
memblock_add(phys_addr_t base,phys_addr_t size)688  int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
689  {
690  	phys_addr_t end = base + size - 1;
691  
692  	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
693  		     &base, &end, (void *)_RET_IP_);
694  
695  	return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
696  }
697  
698  /**
699   * memblock_isolate_range - isolate given range into disjoint memblocks
700   * @type: memblock type to isolate range for
701   * @base: base of range to isolate
702   * @size: size of range to isolate
703   * @start_rgn: out parameter for the start of isolated region
704   * @end_rgn: out parameter for the end of isolated region
705   *
706   * Walk @type and ensure that regions don't cross the boundaries defined by
707   * [@base, @base + @size).  Crossing regions are split at the boundaries,
708   * which may create at most two more regions.  The index of the first
709   * region inside the range is returned in *@start_rgn and end in *@end_rgn.
710   *
711   * Return:
712   * 0 on success, -errno on failure.
713   */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)714  static int __init_memblock memblock_isolate_range(struct memblock_type *type,
715  					phys_addr_t base, phys_addr_t size,
716  					int *start_rgn, int *end_rgn)
717  {
718  	phys_addr_t end = base + memblock_cap_size(base, &size);
719  	int idx;
720  	struct memblock_region *rgn;
721  
722  	*start_rgn = *end_rgn = 0;
723  
724  	if (!size)
725  		return 0;
726  
727  	/* we'll create at most two more regions */
728  	while (type->cnt + 2 > type->max)
729  		if (memblock_double_array(type, base, size) < 0)
730  			return -ENOMEM;
731  
732  	for_each_memblock_type(idx, type, rgn) {
733  		phys_addr_t rbase = rgn->base;
734  		phys_addr_t rend = rbase + rgn->size;
735  
736  		if (rbase >= end)
737  			break;
738  		if (rend <= base)
739  			continue;
740  
741  		if (rbase < base) {
742  			/*
743  			 * @rgn intersects from below.  Split and continue
744  			 * to process the next region - the new top half.
745  			 */
746  			rgn->base = base;
747  			rgn->size -= base - rbase;
748  			type->total_size -= base - rbase;
749  			memblock_insert_region(type, idx, rbase, base - rbase,
750  					       memblock_get_region_node(rgn),
751  					       rgn->flags);
752  		} else if (rend > end) {
753  			/*
754  			 * @rgn intersects from above.  Split and redo the
755  			 * current region - the new bottom half.
756  			 */
757  			rgn->base = end;
758  			rgn->size -= end - rbase;
759  			type->total_size -= end - rbase;
760  			memblock_insert_region(type, idx--, rbase, end - rbase,
761  					       memblock_get_region_node(rgn),
762  					       rgn->flags);
763  		} else {
764  			/* @rgn is fully contained, record it */
765  			if (!*end_rgn)
766  				*start_rgn = idx;
767  			*end_rgn = idx + 1;
768  		}
769  	}
770  
771  	return 0;
772  }
773  
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)774  static int __init_memblock memblock_remove_range(struct memblock_type *type,
775  					  phys_addr_t base, phys_addr_t size)
776  {
777  	int start_rgn, end_rgn;
778  	int i, ret;
779  
780  	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
781  	if (ret)
782  		return ret;
783  
784  	for (i = end_rgn - 1; i >= start_rgn; i--)
785  		memblock_remove_region(type, i);
786  	return 0;
787  }
788  
memblock_remove(phys_addr_t base,phys_addr_t size)789  int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
790  {
791  	phys_addr_t end = base + size - 1;
792  
793  	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
794  		     &base, &end, (void *)_RET_IP_);
795  
796  	return memblock_remove_range(&memblock.memory, base, size);
797  }
798  
799  /**
800   * memblock_free - free boot memory block
801   * @base: phys starting address of the  boot memory block
802   * @size: size of the boot memory block in bytes
803   *
804   * Free boot memory block previously allocated by memblock_alloc_xx() API.
805   * The freeing memory will not be released to the buddy allocator.
806   */
memblock_free(phys_addr_t base,phys_addr_t size)807  int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
808  {
809  	phys_addr_t end = base + size - 1;
810  
811  	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
812  		     &base, &end, (void *)_RET_IP_);
813  
814  	kmemleak_free_part_phys(base, size);
815  	return memblock_remove_range(&memblock.reserved, base, size);
816  }
817  
memblock_reserve(phys_addr_t base,phys_addr_t size)818  int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
819  {
820  	phys_addr_t end = base + size - 1;
821  
822  	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
823  		     &base, &end, (void *)_RET_IP_);
824  
825  	return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
826  }
827  
828  #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)829  int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
830  {
831  	phys_addr_t end = base + size - 1;
832  
833  	memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
834  		     &base, &end, (void *)_RET_IP_);
835  
836  	return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
837  }
838  #endif
839  
840  /**
841   * memblock_setclr_flag - set or clear flag for a memory region
842   * @base: base address of the region
843   * @size: size of the region
844   * @set: set or clear the flag
845   * @flag: the flag to udpate
846   *
847   * This function isolates region [@base, @base + @size), and sets/clears flag
848   *
849   * Return: 0 on success, -errno on failure.
850   */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)851  static int __init_memblock memblock_setclr_flag(phys_addr_t base,
852  				phys_addr_t size, int set, int flag)
853  {
854  	struct memblock_type *type = &memblock.memory;
855  	int i, ret, start_rgn, end_rgn;
856  
857  	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
858  	if (ret)
859  		return ret;
860  
861  	for (i = start_rgn; i < end_rgn; i++) {
862  		struct memblock_region *r = &type->regions[i];
863  
864  		if (set)
865  			r->flags |= flag;
866  		else
867  			r->flags &= ~flag;
868  	}
869  
870  	memblock_merge_regions(type);
871  	return 0;
872  }
873  
874  /**
875   * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
876   * @base: the base phys addr of the region
877   * @size: the size of the region
878   *
879   * Return: 0 on success, -errno on failure.
880   */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)881  int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
882  {
883  	return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
884  }
885  
886  /**
887   * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
888   * @base: the base phys addr of the region
889   * @size: the size of the region
890   *
891   * Return: 0 on success, -errno on failure.
892   */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)893  int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
894  {
895  	return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
896  }
897  
898  /**
899   * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
900   * @base: the base phys addr of the region
901   * @size: the size of the region
902   *
903   * Return: 0 on success, -errno on failure.
904   */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)905  int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
906  {
907  	system_has_some_mirror = true;
908  
909  	return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
910  }
911  
912  /**
913   * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
914   * @base: the base phys addr of the region
915   * @size: the size of the region
916   *
917   * Return: 0 on success, -errno on failure.
918   */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)919  int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
920  {
921  	return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
922  }
923  
924  /**
925   * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
926   * @base: the base phys addr of the region
927   * @size: the size of the region
928   *
929   * Return: 0 on success, -errno on failure.
930   */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)931  int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
932  {
933  	return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
934  }
935  
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)936  static bool should_skip_region(struct memblock_type *type,
937  			       struct memblock_region *m,
938  			       int nid, int flags)
939  {
940  	int m_nid = memblock_get_region_node(m);
941  
942  	/* we never skip regions when iterating memblock.reserved or physmem */
943  	if (type != memblock_memory)
944  		return false;
945  
946  	/* only memory regions are associated with nodes, check it */
947  	if (nid != NUMA_NO_NODE && nid != m_nid)
948  		return true;
949  
950  	/* skip hotpluggable memory regions if needed */
951  	if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
952  	    !(flags & MEMBLOCK_HOTPLUG))
953  		return true;
954  
955  	/* if we want mirror memory skip non-mirror memory regions */
956  	if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
957  		return true;
958  
959  	/* skip nomap memory unless we were asked for it explicitly */
960  	if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
961  		return true;
962  
963  	return false;
964  }
965  
966  /**
967   * __next_mem_range - next function for for_each_free_mem_range() etc.
968   * @idx: pointer to u64 loop variable
969   * @nid: node selector, %NUMA_NO_NODE for all nodes
970   * @flags: pick from blocks based on memory attributes
971   * @type_a: pointer to memblock_type from where the range is taken
972   * @type_b: pointer to memblock_type which excludes memory from being taken
973   * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
974   * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
975   * @out_nid: ptr to int for nid of the range, can be %NULL
976   *
977   * Find the first area from *@idx which matches @nid, fill the out
978   * parameters, and update *@idx for the next iteration.  The lower 32bit of
979   * *@idx contains index into type_a and the upper 32bit indexes the
980   * areas before each region in type_b.	For example, if type_b regions
981   * look like the following,
982   *
983   *	0:[0-16), 1:[32-48), 2:[128-130)
984   *
985   * The upper 32bit indexes the following regions.
986   *
987   *	0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
988   *
989   * As both region arrays are sorted, the function advances the two indices
990   * in lockstep and returns each intersection.
991   */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)992  void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
993  		      struct memblock_type *type_a,
994  		      struct memblock_type *type_b, phys_addr_t *out_start,
995  		      phys_addr_t *out_end, int *out_nid)
996  {
997  	int idx_a = *idx & 0xffffffff;
998  	int idx_b = *idx >> 32;
999  
1000  	if (WARN_ONCE(nid == MAX_NUMNODES,
1001  	"Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1002  		nid = NUMA_NO_NODE;
1003  
1004  	for (; idx_a < type_a->cnt; idx_a++) {
1005  		struct memblock_region *m = &type_a->regions[idx_a];
1006  
1007  		phys_addr_t m_start = m->base;
1008  		phys_addr_t m_end = m->base + m->size;
1009  		int	    m_nid = memblock_get_region_node(m);
1010  
1011  		if (should_skip_region(type_a, m, nid, flags))
1012  			continue;
1013  
1014  		if (!type_b) {
1015  			if (out_start)
1016  				*out_start = m_start;
1017  			if (out_end)
1018  				*out_end = m_end;
1019  			if (out_nid)
1020  				*out_nid = m_nid;
1021  			idx_a++;
1022  			*idx = (u32)idx_a | (u64)idx_b << 32;
1023  			return;
1024  		}
1025  
1026  		/* scan areas before each reservation */
1027  		for (; idx_b < type_b->cnt + 1; idx_b++) {
1028  			struct memblock_region *r;
1029  			phys_addr_t r_start;
1030  			phys_addr_t r_end;
1031  
1032  			r = &type_b->regions[idx_b];
1033  			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1034  			r_end = idx_b < type_b->cnt ?
1035  				r->base : PHYS_ADDR_MAX;
1036  
1037  			/*
1038  			 * if idx_b advanced past idx_a,
1039  			 * break out to advance idx_a
1040  			 */
1041  			if (r_start >= m_end)
1042  				break;
1043  			/* if the two regions intersect, we're done */
1044  			if (m_start < r_end) {
1045  				if (out_start)
1046  					*out_start =
1047  						max(m_start, r_start);
1048  				if (out_end)
1049  					*out_end = min(m_end, r_end);
1050  				if (out_nid)
1051  					*out_nid = m_nid;
1052  				/*
1053  				 * The region which ends first is
1054  				 * advanced for the next iteration.
1055  				 */
1056  				if (m_end <= r_end)
1057  					idx_a++;
1058  				else
1059  					idx_b++;
1060  				*idx = (u32)idx_a | (u64)idx_b << 32;
1061  				return;
1062  			}
1063  		}
1064  	}
1065  
1066  	/* signal end of iteration */
1067  	*idx = ULLONG_MAX;
1068  }
1069  
1070  /**
1071   * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1072   *
1073   * @idx: pointer to u64 loop variable
1074   * @nid: node selector, %NUMA_NO_NODE for all nodes
1075   * @flags: pick from blocks based on memory attributes
1076   * @type_a: pointer to memblock_type from where the range is taken
1077   * @type_b: pointer to memblock_type which excludes memory from being taken
1078   * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1079   * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1080   * @out_nid: ptr to int for nid of the range, can be %NULL
1081   *
1082   * Finds the next range from type_a which is not marked as unsuitable
1083   * in type_b.
1084   *
1085   * Reverse of __next_mem_range().
1086   */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1087  void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1088  					  enum memblock_flags flags,
1089  					  struct memblock_type *type_a,
1090  					  struct memblock_type *type_b,
1091  					  phys_addr_t *out_start,
1092  					  phys_addr_t *out_end, int *out_nid)
1093  {
1094  	int idx_a = *idx & 0xffffffff;
1095  	int idx_b = *idx >> 32;
1096  
1097  	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1098  		nid = NUMA_NO_NODE;
1099  
1100  	if (*idx == (u64)ULLONG_MAX) {
1101  		idx_a = type_a->cnt - 1;
1102  		if (type_b != NULL)
1103  			idx_b = type_b->cnt;
1104  		else
1105  			idx_b = 0;
1106  	}
1107  
1108  	for (; idx_a >= 0; idx_a--) {
1109  		struct memblock_region *m = &type_a->regions[idx_a];
1110  
1111  		phys_addr_t m_start = m->base;
1112  		phys_addr_t m_end = m->base + m->size;
1113  		int m_nid = memblock_get_region_node(m);
1114  
1115  		if (should_skip_region(type_a, m, nid, flags))
1116  			continue;
1117  
1118  		if (!type_b) {
1119  			if (out_start)
1120  				*out_start = m_start;
1121  			if (out_end)
1122  				*out_end = m_end;
1123  			if (out_nid)
1124  				*out_nid = m_nid;
1125  			idx_a--;
1126  			*idx = (u32)idx_a | (u64)idx_b << 32;
1127  			return;
1128  		}
1129  
1130  		/* scan areas before each reservation */
1131  		for (; idx_b >= 0; idx_b--) {
1132  			struct memblock_region *r;
1133  			phys_addr_t r_start;
1134  			phys_addr_t r_end;
1135  
1136  			r = &type_b->regions[idx_b];
1137  			r_start = idx_b ? r[-1].base + r[-1].size : 0;
1138  			r_end = idx_b < type_b->cnt ?
1139  				r->base : PHYS_ADDR_MAX;
1140  			/*
1141  			 * if idx_b advanced past idx_a,
1142  			 * break out to advance idx_a
1143  			 */
1144  
1145  			if (r_end <= m_start)
1146  				break;
1147  			/* if the two regions intersect, we're done */
1148  			if (m_end > r_start) {
1149  				if (out_start)
1150  					*out_start = max(m_start, r_start);
1151  				if (out_end)
1152  					*out_end = min(m_end, r_end);
1153  				if (out_nid)
1154  					*out_nid = m_nid;
1155  				if (m_start >= r_start)
1156  					idx_a--;
1157  				else
1158  					idx_b--;
1159  				*idx = (u32)idx_a | (u64)idx_b << 32;
1160  				return;
1161  			}
1162  		}
1163  	}
1164  	/* signal end of iteration */
1165  	*idx = ULLONG_MAX;
1166  }
1167  
1168  /*
1169   * Common iterator interface used to define for_each_mem_pfn_range().
1170   */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1171  void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1172  				unsigned long *out_start_pfn,
1173  				unsigned long *out_end_pfn, int *out_nid)
1174  {
1175  	struct memblock_type *type = &memblock.memory;
1176  	struct memblock_region *r;
1177  	int r_nid;
1178  
1179  	while (++*idx < type->cnt) {
1180  		r = &type->regions[*idx];
1181  		r_nid = memblock_get_region_node(r);
1182  
1183  		if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1184  			continue;
1185  		if (nid == MAX_NUMNODES || nid == r_nid)
1186  			break;
1187  	}
1188  	if (*idx >= type->cnt) {
1189  		*idx = -1;
1190  		return;
1191  	}
1192  
1193  	if (out_start_pfn)
1194  		*out_start_pfn = PFN_UP(r->base);
1195  	if (out_end_pfn)
1196  		*out_end_pfn = PFN_DOWN(r->base + r->size);
1197  	if (out_nid)
1198  		*out_nid = r_nid;
1199  }
1200  
1201  /**
1202   * memblock_set_node - set node ID on memblock regions
1203   * @base: base of area to set node ID for
1204   * @size: size of area to set node ID for
1205   * @type: memblock type to set node ID for
1206   * @nid: node ID to set
1207   *
1208   * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1209   * Regions which cross the area boundaries are split as necessary.
1210   *
1211   * Return:
1212   * 0 on success, -errno on failure.
1213   */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1214  int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1215  				      struct memblock_type *type, int nid)
1216  {
1217  #ifdef CONFIG_NEED_MULTIPLE_NODES
1218  	int start_rgn, end_rgn;
1219  	int i, ret;
1220  
1221  	ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1222  	if (ret)
1223  		return ret;
1224  
1225  	for (i = start_rgn; i < end_rgn; i++)
1226  		memblock_set_region_node(&type->regions[i], nid);
1227  
1228  	memblock_merge_regions(type);
1229  #endif
1230  	return 0;
1231  }
1232  
1233  #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1234  /**
1235   * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1236   *
1237   * @idx: pointer to u64 loop variable
1238   * @zone: zone in which all of the memory blocks reside
1239   * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1240   * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1241   *
1242   * This function is meant to be a zone/pfn specific wrapper for the
1243   * for_each_mem_range type iterators. Specifically they are used in the
1244   * deferred memory init routines and as such we were duplicating much of
1245   * this logic throughout the code. So instead of having it in multiple
1246   * locations it seemed like it would make more sense to centralize this to
1247   * one new iterator that does everything they need.
1248   */
1249  void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1250  __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1251  			     unsigned long *out_spfn, unsigned long *out_epfn)
1252  {
1253  	int zone_nid = zone_to_nid(zone);
1254  	phys_addr_t spa, epa;
1255  	int nid;
1256  
1257  	__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1258  			 &memblock.memory, &memblock.reserved,
1259  			 &spa, &epa, &nid);
1260  
1261  	while (*idx != U64_MAX) {
1262  		unsigned long epfn = PFN_DOWN(epa);
1263  		unsigned long spfn = PFN_UP(spa);
1264  
1265  		/*
1266  		 * Verify the end is at least past the start of the zone and
1267  		 * that we have at least one PFN to initialize.
1268  		 */
1269  		if (zone->zone_start_pfn < epfn && spfn < epfn) {
1270  			/* if we went too far just stop searching */
1271  			if (zone_end_pfn(zone) <= spfn) {
1272  				*idx = U64_MAX;
1273  				break;
1274  			}
1275  
1276  			if (out_spfn)
1277  				*out_spfn = max(zone->zone_start_pfn, spfn);
1278  			if (out_epfn)
1279  				*out_epfn = min(zone_end_pfn(zone), epfn);
1280  
1281  			return;
1282  		}
1283  
1284  		__next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1285  				 &memblock.memory, &memblock.reserved,
1286  				 &spa, &epa, &nid);
1287  	}
1288  
1289  	/* signal end of iteration */
1290  	if (out_spfn)
1291  		*out_spfn = ULONG_MAX;
1292  	if (out_epfn)
1293  		*out_epfn = 0;
1294  }
1295  
1296  #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1297  
1298  /**
1299   * memblock_alloc_range_nid - allocate boot memory block
1300   * @size: size of memory block to be allocated in bytes
1301   * @align: alignment of the region and block's size
1302   * @start: the lower bound of the memory region to allocate (phys address)
1303   * @end: the upper bound of the memory region to allocate (phys address)
1304   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1305   * @exact_nid: control the allocation fall back to other nodes
1306   *
1307   * The allocation is performed from memory region limited by
1308   * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1309   *
1310   * If the specified node can not hold the requested memory and @exact_nid
1311   * is false, the allocation falls back to any node in the system.
1312   *
1313   * For systems with memory mirroring, the allocation is attempted first
1314   * from the regions with mirroring enabled and then retried from any
1315   * memory region.
1316   *
1317   * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1318   * allocated boot memory block, so that it is never reported as leaks.
1319   *
1320   * Return:
1321   * Physical address of allocated memory block on success, %0 on failure.
1322   */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1323  phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1324  					phys_addr_t align, phys_addr_t start,
1325  					phys_addr_t end, int nid,
1326  					bool exact_nid)
1327  {
1328  	enum memblock_flags flags = choose_memblock_flags();
1329  	phys_addr_t found;
1330  
1331  	if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1332  		nid = NUMA_NO_NODE;
1333  
1334  	if (!align) {
1335  		/* Can't use WARNs this early in boot on powerpc */
1336  		dump_stack();
1337  		align = SMP_CACHE_BYTES;
1338  	}
1339  
1340  again:
1341  	found = memblock_find_in_range_node(size, align, start, end, nid,
1342  					    flags);
1343  	if (found && !memblock_reserve(found, size))
1344  		goto done;
1345  
1346  	if (nid != NUMA_NO_NODE && !exact_nid) {
1347  		found = memblock_find_in_range_node(size, align, start,
1348  						    end, NUMA_NO_NODE,
1349  						    flags);
1350  		if (found && !memblock_reserve(found, size))
1351  			goto done;
1352  	}
1353  
1354  	if (flags & MEMBLOCK_MIRROR) {
1355  		flags &= ~MEMBLOCK_MIRROR;
1356  		pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1357  			&size);
1358  		goto again;
1359  	}
1360  
1361  	return 0;
1362  
1363  done:
1364  	/* Skip kmemleak for kasan_init() due to high volume. */
1365  	if (end != MEMBLOCK_ALLOC_KASAN)
1366  		/*
1367  		 * The min_count is set to 0 so that memblock allocated
1368  		 * blocks are never reported as leaks. This is because many
1369  		 * of these blocks are only referred via the physical
1370  		 * address which is not looked up by kmemleak.
1371  		 */
1372  		kmemleak_alloc_phys(found, size, 0, 0);
1373  
1374  	return found;
1375  }
1376  
1377  /**
1378   * memblock_phys_alloc_range - allocate a memory block inside specified range
1379   * @size: size of memory block to be allocated in bytes
1380   * @align: alignment of the region and block's size
1381   * @start: the lower bound of the memory region to allocate (physical address)
1382   * @end: the upper bound of the memory region to allocate (physical address)
1383   *
1384   * Allocate @size bytes in the between @start and @end.
1385   *
1386   * Return: physical address of the allocated memory block on success,
1387   * %0 on failure.
1388   */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1389  phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1390  					     phys_addr_t align,
1391  					     phys_addr_t start,
1392  					     phys_addr_t end)
1393  {
1394  	return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1395  					false);
1396  }
1397  
1398  /**
1399   * memblock_phys_alloc_try_nid - allocate a memory block from specified MUMA node
1400   * @size: size of memory block to be allocated in bytes
1401   * @align: alignment of the region and block's size
1402   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1403   *
1404   * Allocates memory block from the specified NUMA node. If the node
1405   * has no available memory, attempts to allocated from any node in the
1406   * system.
1407   *
1408   * Return: physical address of the allocated memory block on success,
1409   * %0 on failure.
1410   */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1411  phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1412  {
1413  	return memblock_alloc_range_nid(size, align, 0,
1414  					MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1415  }
1416  
1417  /**
1418   * memblock_alloc_internal - allocate boot memory block
1419   * @size: size of memory block to be allocated in bytes
1420   * @align: alignment of the region and block's size
1421   * @min_addr: the lower bound of the memory region to allocate (phys address)
1422   * @max_addr: the upper bound of the memory region to allocate (phys address)
1423   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1424   * @exact_nid: control the allocation fall back to other nodes
1425   *
1426   * Allocates memory block using memblock_alloc_range_nid() and
1427   * converts the returned physical address to virtual.
1428   *
1429   * The @min_addr limit is dropped if it can not be satisfied and the allocation
1430   * will fall back to memory below @min_addr. Other constraints, such
1431   * as node and mirrored memory will be handled again in
1432   * memblock_alloc_range_nid().
1433   *
1434   * Return:
1435   * Virtual address of allocated memory block on success, NULL on failure.
1436   */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1437  static void * __init memblock_alloc_internal(
1438  				phys_addr_t size, phys_addr_t align,
1439  				phys_addr_t min_addr, phys_addr_t max_addr,
1440  				int nid, bool exact_nid)
1441  {
1442  	phys_addr_t alloc;
1443  
1444  	/*
1445  	 * Detect any accidental use of these APIs after slab is ready, as at
1446  	 * this moment memblock may be deinitialized already and its
1447  	 * internal data may be destroyed (after execution of memblock_free_all)
1448  	 */
1449  	if (WARN_ON_ONCE(slab_is_available()))
1450  		return kzalloc_node(size, GFP_NOWAIT, nid);
1451  
1452  	if (max_addr > memblock.current_limit)
1453  		max_addr = memblock.current_limit;
1454  
1455  	alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1456  					exact_nid);
1457  
1458  	/* retry allocation without lower limit */
1459  	if (!alloc && min_addr)
1460  		alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1461  						exact_nid);
1462  
1463  	if (!alloc)
1464  		return NULL;
1465  
1466  	return phys_to_virt(alloc);
1467  }
1468  
1469  /**
1470   * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1471   * without zeroing memory
1472   * @size: size of memory block to be allocated in bytes
1473   * @align: alignment of the region and block's size
1474   * @min_addr: the lower bound of the memory region from where the allocation
1475   *	  is preferred (phys address)
1476   * @max_addr: the upper bound of the memory region from where the allocation
1477   *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1478   *	      allocate only from memory limited by memblock.current_limit value
1479   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1480   *
1481   * Public function, provides additional debug information (including caller
1482   * info), if enabled. Does not zero allocated memory.
1483   *
1484   * Return:
1485   * Virtual address of allocated memory block on success, NULL on failure.
1486   */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1487  void * __init memblock_alloc_exact_nid_raw(
1488  			phys_addr_t size, phys_addr_t align,
1489  			phys_addr_t min_addr, phys_addr_t max_addr,
1490  			int nid)
1491  {
1492  	void *ptr;
1493  
1494  	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1495  		     __func__, (u64)size, (u64)align, nid, &min_addr,
1496  		     &max_addr, (void *)_RET_IP_);
1497  
1498  	ptr = memblock_alloc_internal(size, align,
1499  					   min_addr, max_addr, nid, true);
1500  	if (ptr && size > 0)
1501  		page_init_poison(ptr, size);
1502  
1503  	return ptr;
1504  }
1505  
1506  /**
1507   * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1508   * memory and without panicking
1509   * @size: size of memory block to be allocated in bytes
1510   * @align: alignment of the region and block's size
1511   * @min_addr: the lower bound of the memory region from where the allocation
1512   *	  is preferred (phys address)
1513   * @max_addr: the upper bound of the memory region from where the allocation
1514   *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1515   *	      allocate only from memory limited by memblock.current_limit value
1516   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1517   *
1518   * Public function, provides additional debug information (including caller
1519   * info), if enabled. Does not zero allocated memory, does not panic if request
1520   * cannot be satisfied.
1521   *
1522   * Return:
1523   * Virtual address of allocated memory block on success, NULL on failure.
1524   */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1525  void * __init memblock_alloc_try_nid_raw(
1526  			phys_addr_t size, phys_addr_t align,
1527  			phys_addr_t min_addr, phys_addr_t max_addr,
1528  			int nid)
1529  {
1530  	void *ptr;
1531  
1532  	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1533  		     __func__, (u64)size, (u64)align, nid, &min_addr,
1534  		     &max_addr, (void *)_RET_IP_);
1535  
1536  	ptr = memblock_alloc_internal(size, align,
1537  					   min_addr, max_addr, nid, false);
1538  	if (ptr && size > 0)
1539  		page_init_poison(ptr, size);
1540  
1541  	return ptr;
1542  }
1543  
1544  /**
1545   * memblock_alloc_try_nid - allocate boot memory block
1546   * @size: size of memory block to be allocated in bytes
1547   * @align: alignment of the region and block's size
1548   * @min_addr: the lower bound of the memory region from where the allocation
1549   *	  is preferred (phys address)
1550   * @max_addr: the upper bound of the memory region from where the allocation
1551   *	      is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1552   *	      allocate only from memory limited by memblock.current_limit value
1553   * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1554   *
1555   * Public function, provides additional debug information (including caller
1556   * info), if enabled. This function zeroes the allocated memory.
1557   *
1558   * Return:
1559   * Virtual address of allocated memory block on success, NULL on failure.
1560   */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1561  void * __init memblock_alloc_try_nid(
1562  			phys_addr_t size, phys_addr_t align,
1563  			phys_addr_t min_addr, phys_addr_t max_addr,
1564  			int nid)
1565  {
1566  	void *ptr;
1567  
1568  	memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1569  		     __func__, (u64)size, (u64)align, nid, &min_addr,
1570  		     &max_addr, (void *)_RET_IP_);
1571  	ptr = memblock_alloc_internal(size, align,
1572  					   min_addr, max_addr, nid, false);
1573  	if (ptr)
1574  		memset(ptr, 0, size);
1575  
1576  	return ptr;
1577  }
1578  
1579  /**
1580   * __memblock_free_late - free pages directly to buddy allocator
1581   * @base: phys starting address of the  boot memory block
1582   * @size: size of the boot memory block in bytes
1583   *
1584   * This is only useful when the memblock allocator has already been torn
1585   * down, but we are still initializing the system.  Pages are released directly
1586   * to the buddy allocator.
1587   */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1588  void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1589  {
1590  	phys_addr_t cursor, end;
1591  
1592  	end = base + size - 1;
1593  	memblock_dbg("%s: [%pa-%pa] %pS\n",
1594  		     __func__, &base, &end, (void *)_RET_IP_);
1595  	kmemleak_free_part_phys(base, size);
1596  	cursor = PFN_UP(base);
1597  	end = PFN_DOWN(base + size);
1598  
1599  	for (; cursor < end; cursor++) {
1600  		memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1601  		totalram_pages_inc();
1602  	}
1603  }
1604  
1605  /*
1606   * Remaining API functions
1607   */
1608  
memblock_phys_mem_size(void)1609  phys_addr_t __init_memblock memblock_phys_mem_size(void)
1610  {
1611  	return memblock.memory.total_size;
1612  }
1613  
memblock_reserved_size(void)1614  phys_addr_t __init_memblock memblock_reserved_size(void)
1615  {
1616  	return memblock.reserved.total_size;
1617  }
1618  
1619  /* lowest address */
memblock_start_of_DRAM(void)1620  phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1621  {
1622  	return memblock.memory.regions[0].base;
1623  }
1624  
memblock_end_of_DRAM(void)1625  phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1626  {
1627  	int idx = memblock.memory.cnt - 1;
1628  
1629  	return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1630  }
1631  
__find_max_addr(phys_addr_t limit)1632  static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1633  {
1634  	phys_addr_t max_addr = PHYS_ADDR_MAX;
1635  	struct memblock_region *r;
1636  
1637  	/*
1638  	 * translate the memory @limit size into the max address within one of
1639  	 * the memory memblock regions, if the @limit exceeds the total size
1640  	 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1641  	 */
1642  	for_each_mem_region(r) {
1643  		if (limit <= r->size) {
1644  			max_addr = r->base + limit;
1645  			break;
1646  		}
1647  		limit -= r->size;
1648  	}
1649  
1650  	return max_addr;
1651  }
1652  
memblock_enforce_memory_limit(phys_addr_t limit)1653  void __init memblock_enforce_memory_limit(phys_addr_t limit)
1654  {
1655  	phys_addr_t max_addr;
1656  
1657  	if (!limit)
1658  		return;
1659  
1660  	max_addr = __find_max_addr(limit);
1661  
1662  	/* @limit exceeds the total size of the memory, do nothing */
1663  	if (max_addr == PHYS_ADDR_MAX)
1664  		return;
1665  
1666  	/* truncate both memory and reserved regions */
1667  	memblock_remove_range(&memblock.memory, max_addr,
1668  			      PHYS_ADDR_MAX);
1669  	memblock_remove_range(&memblock.reserved, max_addr,
1670  			      PHYS_ADDR_MAX);
1671  }
1672  
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1673  void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1674  {
1675  	int start_rgn, end_rgn;
1676  	int i, ret;
1677  
1678  	if (!size)
1679  		return;
1680  
1681  	ret = memblock_isolate_range(&memblock.memory, base, size,
1682  						&start_rgn, &end_rgn);
1683  	if (ret)
1684  		return;
1685  
1686  	/* remove all the MAP regions */
1687  	for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1688  		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1689  			memblock_remove_region(&memblock.memory, i);
1690  
1691  	for (i = start_rgn - 1; i >= 0; i--)
1692  		if (!memblock_is_nomap(&memblock.memory.regions[i]))
1693  			memblock_remove_region(&memblock.memory, i);
1694  
1695  	/* truncate the reserved regions */
1696  	memblock_remove_range(&memblock.reserved, 0, base);
1697  	memblock_remove_range(&memblock.reserved,
1698  			base + size, PHYS_ADDR_MAX);
1699  }
1700  
memblock_mem_limit_remove_map(phys_addr_t limit)1701  void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1702  {
1703  	phys_addr_t max_addr;
1704  
1705  	if (!limit)
1706  		return;
1707  
1708  	max_addr = __find_max_addr(limit);
1709  
1710  	/* @limit exceeds the total size of the memory, do nothing */
1711  	if (max_addr == PHYS_ADDR_MAX)
1712  		return;
1713  
1714  	memblock_cap_memory_range(0, max_addr);
1715  }
1716  
memblock_search(struct memblock_type * type,phys_addr_t addr)1717  static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1718  {
1719  	unsigned int left = 0, right = type->cnt;
1720  
1721  	do {
1722  		unsigned int mid = (right + left) / 2;
1723  
1724  		if (addr < type->regions[mid].base)
1725  			right = mid;
1726  		else if (addr >= (type->regions[mid].base +
1727  				  type->regions[mid].size))
1728  			left = mid + 1;
1729  		else
1730  			return mid;
1731  	} while (left < right);
1732  	return -1;
1733  }
1734  
memblock_is_reserved(phys_addr_t addr)1735  bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1736  {
1737  	return memblock_search(&memblock.reserved, addr) != -1;
1738  }
1739  
memblock_is_memory(phys_addr_t addr)1740  bool __init_memblock memblock_is_memory(phys_addr_t addr)
1741  {
1742  	return memblock_search(&memblock.memory, addr) != -1;
1743  }
1744  
memblock_is_map_memory(phys_addr_t addr)1745  bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1746  {
1747  	int i = memblock_search(&memblock.memory, addr);
1748  
1749  	if (i == -1)
1750  		return false;
1751  	return !memblock_is_nomap(&memblock.memory.regions[i]);
1752  }
1753  
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1754  int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1755  			 unsigned long *start_pfn, unsigned long *end_pfn)
1756  {
1757  	struct memblock_type *type = &memblock.memory;
1758  	int mid = memblock_search(type, PFN_PHYS(pfn));
1759  
1760  	if (mid == -1)
1761  		return -1;
1762  
1763  	*start_pfn = PFN_DOWN(type->regions[mid].base);
1764  	*end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1765  
1766  	return memblock_get_region_node(&type->regions[mid]);
1767  }
1768  
1769  /**
1770   * memblock_is_region_memory - check if a region is a subset of memory
1771   * @base: base of region to check
1772   * @size: size of region to check
1773   *
1774   * Check if the region [@base, @base + @size) is a subset of a memory block.
1775   *
1776   * Return:
1777   * 0 if false, non-zero if true
1778   */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1779  bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1780  {
1781  	int idx = memblock_search(&memblock.memory, base);
1782  	phys_addr_t end = base + memblock_cap_size(base, &size);
1783  
1784  	if (idx == -1)
1785  		return false;
1786  	return (memblock.memory.regions[idx].base +
1787  		 memblock.memory.regions[idx].size) >= end;
1788  }
1789  
1790  /**
1791   * memblock_is_region_reserved - check if a region intersects reserved memory
1792   * @base: base of region to check
1793   * @size: size of region to check
1794   *
1795   * Check if the region [@base, @base + @size) intersects a reserved
1796   * memory block.
1797   *
1798   * Return:
1799   * True if they intersect, false if not.
1800   */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1801  bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1802  {
1803  	return memblock_overlaps_region(&memblock.reserved, base, size);
1804  }
1805  
memblock_trim_memory(phys_addr_t align)1806  void __init_memblock memblock_trim_memory(phys_addr_t align)
1807  {
1808  	phys_addr_t start, end, orig_start, orig_end;
1809  	struct memblock_region *r;
1810  
1811  	for_each_mem_region(r) {
1812  		orig_start = r->base;
1813  		orig_end = r->base + r->size;
1814  		start = round_up(orig_start, align);
1815  		end = round_down(orig_end, align);
1816  
1817  		if (start == orig_start && end == orig_end)
1818  			continue;
1819  
1820  		if (start < end) {
1821  			r->base = start;
1822  			r->size = end - start;
1823  		} else {
1824  			memblock_remove_region(&memblock.memory,
1825  					       r - memblock.memory.regions);
1826  			r--;
1827  		}
1828  	}
1829  }
1830  
memblock_set_current_limit(phys_addr_t limit)1831  void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1832  {
1833  	memblock.current_limit = limit;
1834  }
1835  
memblock_get_current_limit(void)1836  phys_addr_t __init_memblock memblock_get_current_limit(void)
1837  {
1838  	return memblock.current_limit;
1839  }
1840  
memblock_dump(struct memblock_type * type)1841  static void __init_memblock memblock_dump(struct memblock_type *type)
1842  {
1843  	phys_addr_t base, end, size;
1844  	enum memblock_flags flags;
1845  	int idx;
1846  	struct memblock_region *rgn;
1847  
1848  	pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1849  
1850  	for_each_memblock_type(idx, type, rgn) {
1851  		char nid_buf[32] = "";
1852  
1853  		base = rgn->base;
1854  		size = rgn->size;
1855  		end = base + size - 1;
1856  		flags = rgn->flags;
1857  #ifdef CONFIG_NEED_MULTIPLE_NODES
1858  		if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1859  			snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1860  				 memblock_get_region_node(rgn));
1861  #endif
1862  		pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1863  			type->name, idx, &base, &end, &size, nid_buf, flags);
1864  	}
1865  }
1866  
__memblock_dump_all(void)1867  static void __init_memblock __memblock_dump_all(void)
1868  {
1869  	pr_info("MEMBLOCK configuration:\n");
1870  	pr_info(" memory size = %pa reserved size = %pa\n",
1871  		&memblock.memory.total_size,
1872  		&memblock.reserved.total_size);
1873  
1874  	memblock_dump(&memblock.memory);
1875  	memblock_dump(&memblock.reserved);
1876  #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1877  	memblock_dump(&physmem);
1878  #endif
1879  }
1880  
memblock_dump_all(void)1881  void __init_memblock memblock_dump_all(void)
1882  {
1883  	if (memblock_debug)
1884  		__memblock_dump_all();
1885  }
1886  
memblock_allow_resize(void)1887  void __init memblock_allow_resize(void)
1888  {
1889  	memblock_can_resize = 1;
1890  }
1891  
early_memblock(char * p)1892  static int __init early_memblock(char *p)
1893  {
1894  	if (p && strstr(p, "debug"))
1895  		memblock_debug = 1;
1896  	return 0;
1897  }
1898  early_param("memblock", early_memblock);
1899  
__free_pages_memory(unsigned long start,unsigned long end)1900  static void __init __free_pages_memory(unsigned long start, unsigned long end)
1901  {
1902  	int order;
1903  
1904  	while (start < end) {
1905  		order = min(MAX_ORDER - 1UL, __ffs(start));
1906  
1907  		while (start + (1UL << order) > end)
1908  			order--;
1909  
1910  		memblock_free_pages(pfn_to_page(start), start, order);
1911  
1912  		start += (1UL << order);
1913  	}
1914  }
1915  
__free_memory_core(phys_addr_t start,phys_addr_t end)1916  static unsigned long __init __free_memory_core(phys_addr_t start,
1917  				 phys_addr_t end)
1918  {
1919  	unsigned long start_pfn = PFN_UP(start);
1920  	unsigned long end_pfn = min_t(unsigned long,
1921  				      PFN_DOWN(end), max_low_pfn);
1922  
1923  	if (start_pfn >= end_pfn)
1924  		return 0;
1925  
1926  	__free_pages_memory(start_pfn, end_pfn);
1927  
1928  	return end_pfn - start_pfn;
1929  }
1930  
free_low_memory_core_early(void)1931  static unsigned long __init free_low_memory_core_early(void)
1932  {
1933  	unsigned long count = 0;
1934  	phys_addr_t start, end;
1935  	u64 i;
1936  
1937  	memblock_clear_hotplug(0, -1);
1938  
1939  	for_each_reserved_mem_range(i, &start, &end)
1940  		reserve_bootmem_region(start, end);
1941  
1942  	/*
1943  	 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
1944  	 *  because in some case like Node0 doesn't have RAM installed
1945  	 *  low ram will be on Node1
1946  	 */
1947  	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
1948  				NULL)
1949  		count += __free_memory_core(start, end);
1950  
1951  	return count;
1952  }
1953  
1954  static int reset_managed_pages_done __initdata;
1955  
reset_node_managed_pages(pg_data_t * pgdat)1956  void reset_node_managed_pages(pg_data_t *pgdat)
1957  {
1958  	struct zone *z;
1959  
1960  	for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1961  		atomic_long_set(&z->managed_pages, 0);
1962  }
1963  
reset_all_zones_managed_pages(void)1964  void __init reset_all_zones_managed_pages(void)
1965  {
1966  	struct pglist_data *pgdat;
1967  
1968  	if (reset_managed_pages_done)
1969  		return;
1970  
1971  	for_each_online_pgdat(pgdat)
1972  		reset_node_managed_pages(pgdat);
1973  
1974  	reset_managed_pages_done = 1;
1975  }
1976  
1977  /**
1978   * memblock_free_all - release free pages to the buddy allocator
1979   *
1980   * Return: the number of pages actually released.
1981   */
memblock_free_all(void)1982  unsigned long __init memblock_free_all(void)
1983  {
1984  	unsigned long pages;
1985  
1986  	reset_all_zones_managed_pages();
1987  
1988  	pages = free_low_memory_core_early();
1989  	totalram_pages_add(pages);
1990  
1991  	return pages;
1992  }
1993  
1994  #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
1995  
memblock_debug_show(struct seq_file * m,void * private)1996  static int memblock_debug_show(struct seq_file *m, void *private)
1997  {
1998  	struct memblock_type *type = m->private;
1999  	struct memblock_region *reg;
2000  	int i;
2001  	phys_addr_t end;
2002  
2003  	for (i = 0; i < type->cnt; i++) {
2004  		reg = &type->regions[i];
2005  		end = reg->base + reg->size - 1;
2006  
2007  		seq_printf(m, "%4d: ", i);
2008  		seq_printf(m, "%pa..%pa\n", &reg->base, &end);
2009  	}
2010  	return 0;
2011  }
2012  DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2013  
memblock_init_debugfs(void)2014  static int __init memblock_init_debugfs(void)
2015  {
2016  	struct dentry *root = debugfs_create_dir("memblock", NULL);
2017  
2018  	debugfs_create_file("memory", 0444, root,
2019  			    &memblock.memory, &memblock_debug_fops);
2020  	debugfs_create_file("reserved", 0444, root,
2021  			    &memblock.reserved, &memblock_debug_fops);
2022  #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2023  	debugfs_create_file("physmem", 0444, root, &physmem,
2024  			    &memblock_debug_fops);
2025  #endif
2026  
2027  	return 0;
2028  }
2029  __initcall(memblock_init_debugfs);
2030  
2031  #endif /* CONFIG_DEBUG_FS */
2032