• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #include "src/codegen/mips/assembler-mips.h"
36 
37 #if V8_TARGET_ARCH_MIPS
38 
39 #include "src/base/bits.h"
40 #include "src/base/cpu.h"
41 #include "src/codegen/mips/assembler-mips-inl.h"
42 #include "src/codegen/safepoint-table.h"
43 #include "src/codegen/string-constants.h"
44 #include "src/deoptimizer/deoptimizer.h"
45 #include "src/objects/heap-number-inl.h"
46 
47 namespace v8 {
48 namespace internal {
49 
50 // Get the CPU features enabled by the build. For cross compilation the
51 // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
52 // can be defined to enable FPU instructions when building the
53 // snapshot.
CpuFeaturesImpliedByCompiler()54 static unsigned CpuFeaturesImpliedByCompiler() {
55   unsigned answer = 0;
56 #ifdef CAN_USE_FPU_INSTRUCTIONS
57   answer |= 1u << FPU;
58 #endif  // def CAN_USE_FPU_INSTRUCTIONS
59 
60   // If the compiler is allowed to use FPU then we can use FPU too in our code
61   // generation even when generating snapshots.  This won't work for cross
62   // compilation.
63 #if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0
64   answer |= 1u << FPU;
65 #endif
66 
67   return answer;
68 }
69 
SupportsWasmSimd128()70 bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); }
71 
ProbeImpl(bool cross_compile)72 void CpuFeatures::ProbeImpl(bool cross_compile) {
73   supported_ |= CpuFeaturesImpliedByCompiler();
74 
75   // Only use statically determined features for cross compile (snapshot).
76   if (cross_compile) return;
77 
78     // If the compiler is allowed to use fpu then we can use fpu too in our
79     // code generation.
80 #ifndef __mips__
81   // For the simulator build, use FPU.
82   supported_ |= 1u << FPU;
83 #if defined(_MIPS_ARCH_MIPS32R6)
84   // FP64 mode is implied on r6.
85   supported_ |= 1u << FP64FPU;
86 #if defined(_MIPS_MSA)
87   supported_ |= 1u << MIPS_SIMD;
88 #endif
89 #endif
90 #if defined(FPU_MODE_FP64)
91   supported_ |= 1u << FP64FPU;
92 #endif
93 #else
94   // Probe for additional features at runtime.
95   base::CPU cpu;
96   if (cpu.has_fpu()) supported_ |= 1u << FPU;
97 #if defined(FPU_MODE_FPXX)
98   if (cpu.is_fp64_mode()) supported_ |= 1u << FP64FPU;
99 #elif defined(FPU_MODE_FP64)
100   supported_ |= 1u << FP64FPU;
101 #if defined(_MIPS_ARCH_MIPS32R6)
102 #if defined(_MIPS_MSA)
103   supported_ |= 1u << MIPS_SIMD;
104 #else
105   if (cpu.has_msa()) supported_ |= 1u << MIPS_SIMD;
106 #endif
107 #endif
108 #endif
109 #if defined(_MIPS_ARCH_MIPS32RX)
110   if (cpu.architecture() == 6) {
111     supported_ |= 1u << MIPSr6;
112   } else if (cpu.architecture() == 2) {
113     supported_ |= 1u << MIPSr1;
114     supported_ |= 1u << MIPSr2;
115   } else {
116     supported_ |= 1u << MIPSr1;
117   }
118 #endif
119 #endif
120 
121   // Set a static value on whether Simd is supported.
122   // This variable is only used for certain archs to query SupportWasmSimd128()
123   // at runtime in builtins using an extern ref. Other callers should use
124   // CpuFeatures::SupportWasmSimd128().
125   CpuFeatures::supports_wasm_simd_128_ = CpuFeatures::SupportsWasmSimd128();
126 }
127 
PrintTarget()128 void CpuFeatures::PrintTarget() {}
PrintFeatures()129 void CpuFeatures::PrintFeatures() {}
130 
ToNumber(Register reg)131 int ToNumber(Register reg) {
132   DCHECK(reg.is_valid());
133   const int kNumbers[] = {
134       0,   // zero_reg
135       1,   // at
136       2,   // v0
137       3,   // v1
138       4,   // a0
139       5,   // a1
140       6,   // a2
141       7,   // a3
142       8,   // t0
143       9,   // t1
144       10,  // t2
145       11,  // t3
146       12,  // t4
147       13,  // t5
148       14,  // t6
149       15,  // t7
150       16,  // s0
151       17,  // s1
152       18,  // s2
153       19,  // s3
154       20,  // s4
155       21,  // s5
156       22,  // s6
157       23,  // s7
158       24,  // t8
159       25,  // t9
160       26,  // k0
161       27,  // k1
162       28,  // gp
163       29,  // sp
164       30,  // fp
165       31,  // ra
166   };
167   return kNumbers[reg.code()];
168 }
169 
ToRegister(int num)170 Register ToRegister(int num) {
171   DCHECK(num >= 0 && num < kNumRegisters);
172   const Register kRegisters[] = {
173       zero_reg, at, v0, v1, a0, a1, a2, a3, t0, t1, t2, t3, t4, t5, t6, t7,
174       s0,       s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, fp, ra};
175   return kRegisters[num];
176 }
177 
178 // -----------------------------------------------------------------------------
179 // Implementation of RelocInfo.
180 
181 const int RelocInfo::kApplyMask =
182     RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
183     RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED) |
184     RelocInfo::ModeMask(RelocInfo::RELATIVE_CODE_TARGET);
185 
IsCodedSpecially()186 bool RelocInfo::IsCodedSpecially() {
187   // The deserializer needs to know whether a pointer is specially coded.  Being
188   // specially coded on MIPS means that it is a lui/ori instruction, and that is
189   // always the case inside code objects.
190   return true;
191 }
192 
IsInConstantPool()193 bool RelocInfo::IsInConstantPool() { return false; }
194 
wasm_call_tag() const195 uint32_t RelocInfo::wasm_call_tag() const {
196   DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
197   return static_cast<uint32_t>(
198       Assembler::target_address_at(pc_, constant_pool_));
199 }
200 
201 // -----------------------------------------------------------------------------
202 // Implementation of Operand and MemOperand.
203 // See assembler-mips-inl.h for inlined constructors.
204 
Operand(Handle<HeapObject> handle)205 Operand::Operand(Handle<HeapObject> handle)
206     : rm_(no_reg), rmode_(RelocInfo::FULL_EMBEDDED_OBJECT) {
207   value_.immediate = static_cast<intptr_t>(handle.address());
208 }
209 
EmbeddedNumber(double value)210 Operand Operand::EmbeddedNumber(double value) {
211   int32_t smi;
212   if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi));
213   Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
214   result.is_heap_object_request_ = true;
215   result.value_.heap_object_request = HeapObjectRequest(value);
216   return result;
217 }
218 
EmbeddedStringConstant(const StringConstantBase * str)219 Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) {
220   Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
221   result.is_heap_object_request_ = true;
222   result.value_.heap_object_request = HeapObjectRequest(str);
223   return result;
224 }
225 
MemOperand(Register rm,int32_t offset)226 MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
227   offset_ = offset;
228 }
229 
MemOperand(Register rm,int32_t unit,int32_t multiplier,OffsetAddend offset_addend)230 MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
231                        OffsetAddend offset_addend)
232     : Operand(rm) {
233   offset_ = unit * multiplier + offset_addend;
234 }
235 
AllocateAndInstallRequestedHeapObjects(Isolate * isolate)236 void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
237   DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty());
238   for (auto& request : heap_object_requests_) {
239     Handle<HeapObject> object;
240     switch (request.kind()) {
241       case HeapObjectRequest::kHeapNumber:
242         object = isolate->factory()->NewHeapNumber<AllocationType::kOld>(
243             request.heap_number());
244         break;
245       case HeapObjectRequest::kStringConstant:
246         const StringConstantBase* str = request.string();
247         CHECK_NOT_NULL(str);
248         object = str->AllocateStringConstant(isolate);
249         break;
250     }
251     Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset();
252     set_target_value_at(pc, reinterpret_cast<uint32_t>(object.location()));
253   }
254 }
255 
256 // -----------------------------------------------------------------------------
257 // Specific instructions, constants, and masks.
258 
259 static const int kNegOffset = 0x00008000;
260 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
261 // operations as post-increment of sp.
262 const Instr kPopInstruction = ADDIU | (sp.code() << kRsShift) |
263                               (sp.code() << kRtShift) |
264                               (kPointerSize & kImm16Mask);
265 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
266 const Instr kPushInstruction = ADDIU | (sp.code() << kRsShift) |
267                                (sp.code() << kRtShift) |
268                                (-kPointerSize & kImm16Mask);
269 // sw(r, MemOperand(sp, 0))
270 const Instr kPushRegPattern = SW | (sp.code() << kRsShift) | (0 & kImm16Mask);
271 //  lw(r, MemOperand(sp, 0))
272 const Instr kPopRegPattern = LW | (sp.code() << kRsShift) | (0 & kImm16Mask);
273 
274 const Instr kLwRegFpOffsetPattern =
275     LW | (fp.code() << kRsShift) | (0 & kImm16Mask);
276 
277 const Instr kSwRegFpOffsetPattern =
278     SW | (fp.code() << kRsShift) | (0 & kImm16Mask);
279 
280 const Instr kLwRegFpNegOffsetPattern =
281     LW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);
282 
283 const Instr kSwRegFpNegOffsetPattern =
284     SW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);
285 // A mask for the Rt register for push, pop, lw, sw instructions.
286 const Instr kRtMask = kRtFieldMask;
287 const Instr kLwSwInstrTypeMask = 0xFFE00000;
288 const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask;
289 const Instr kLwSwOffsetMask = kImm16Mask;
290 
Assembler(const AssemblerOptions & options,std::unique_ptr<AssemblerBuffer> buffer)291 Assembler::Assembler(const AssemblerOptions& options,
292                      std::unique_ptr<AssemblerBuffer> buffer)
293     : AssemblerBase(options, std::move(buffer)), scratch_register_list_({at}) {
294   reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_);
295 
296   last_trampoline_pool_end_ = 0;
297   no_trampoline_pool_before_ = 0;
298   trampoline_pool_blocked_nesting_ = 0;
299   // We leave space (16 * kTrampolineSlotsSize)
300   // for BlockTrampolinePoolScope buffer.
301   next_buffer_check_ = FLAG_force_long_branches
302                            ? kMaxInt
303                            : kMaxBranchOffset - kTrampolineSlotsSize * 16;
304   internal_trampoline_exception_ = false;
305   last_bound_pos_ = 0;
306 
307   trampoline_emitted_ = FLAG_force_long_branches;
308   unbound_labels_count_ = 0;
309   block_buffer_growth_ = false;
310 }
311 
GetCode(Isolate * isolate,CodeDesc * desc,SafepointTableBuilder * safepoint_table_builder,int handler_table_offset)312 void Assembler::GetCode(Isolate* isolate, CodeDesc* desc,
313                         SafepointTableBuilder* safepoint_table_builder,
314                         int handler_table_offset) {
315   // As a crutch to avoid having to add manual Align calls wherever we use a
316   // raw workflow to create Code objects (mostly in tests), add another Align
317   // call here. It does no harm - the end of the Code object is aligned to the
318   // (larger) kCodeAlignment anyways.
319   // TODO(jgruber): Consider moving responsibility for proper alignment to
320   // metadata table builders (safepoint, handler, constant pool, code
321   // comments).
322   DataAlign(Code::kMetadataAlignment);
323 
324   EmitForbiddenSlotInstruction();
325 
326   int code_comments_size = WriteCodeComments();
327 
328   DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
329 
330   AllocateAndInstallRequestedHeapObjects(isolate);
331 
332   // Set up code descriptor.
333   // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to
334   // this point to make CodeDesc initialization less fiddly.
335 
336   static constexpr int kConstantPoolSize = 0;
337   const int instruction_size = pc_offset();
338   const int code_comments_offset = instruction_size - code_comments_size;
339   const int constant_pool_offset = code_comments_offset - kConstantPoolSize;
340   const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable)
341                                         ? constant_pool_offset
342                                         : handler_table_offset;
343   const int safepoint_table_offset =
344       (safepoint_table_builder == kNoSafepointTable)
345           ? handler_table_offset2
346           : safepoint_table_builder->safepoint_table_offset();
347   const int reloc_info_offset =
348       static_cast<int>(reloc_info_writer.pos() - buffer_->start());
349   CodeDesc::Initialize(desc, this, safepoint_table_offset,
350                        handler_table_offset2, constant_pool_offset,
351                        code_comments_offset, reloc_info_offset);
352 }
353 
Align(int m)354 void Assembler::Align(int m) {
355   DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m));
356   EmitForbiddenSlotInstruction();
357   while ((pc_offset() & (m - 1)) != 0) {
358     nop();
359   }
360 }
361 
CodeTargetAlign()362 void Assembler::CodeTargetAlign() {
363   // No advantage to aligning branch/call targets to more than
364   // single instruction, that I am aware of.
365   Align(4);
366 }
367 
GetRtReg(Instr instr)368 Register Assembler::GetRtReg(Instr instr) {
369   return Register::from_code((instr & kRtFieldMask) >> kRtShift);
370 }
371 
GetRsReg(Instr instr)372 Register Assembler::GetRsReg(Instr instr) {
373   return Register::from_code((instr & kRsFieldMask) >> kRsShift);
374 }
375 
GetRdReg(Instr instr)376 Register Assembler::GetRdReg(Instr instr) {
377   return Register::from_code((instr & kRdFieldMask) >> kRdShift);
378 }
379 
GetRt(Instr instr)380 uint32_t Assembler::GetRt(Instr instr) {
381   return (instr & kRtFieldMask) >> kRtShift;
382 }
383 
GetRtField(Instr instr)384 uint32_t Assembler::GetRtField(Instr instr) { return instr & kRtFieldMask; }
385 
GetRs(Instr instr)386 uint32_t Assembler::GetRs(Instr instr) {
387   return (instr & kRsFieldMask) >> kRsShift;
388 }
389 
GetRsField(Instr instr)390 uint32_t Assembler::GetRsField(Instr instr) { return instr & kRsFieldMask; }
391 
GetRd(Instr instr)392 uint32_t Assembler::GetRd(Instr instr) {
393   return (instr & kRdFieldMask) >> kRdShift;
394 }
395 
GetRdField(Instr instr)396 uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; }
397 
GetSa(Instr instr)398 uint32_t Assembler::GetSa(Instr instr) {
399   return (instr & kSaFieldMask) >> kSaShift;
400 }
401 
GetSaField(Instr instr)402 uint32_t Assembler::GetSaField(Instr instr) { return instr & kSaFieldMask; }
403 
GetOpcodeField(Instr instr)404 uint32_t Assembler::GetOpcodeField(Instr instr) { return instr & kOpcodeMask; }
405 
GetFunction(Instr instr)406 uint32_t Assembler::GetFunction(Instr instr) {
407   return (instr & kFunctionFieldMask) >> kFunctionShift;
408 }
409 
GetFunctionField(Instr instr)410 uint32_t Assembler::GetFunctionField(Instr instr) {
411   return instr & kFunctionFieldMask;
412 }
413 
GetImmediate16(Instr instr)414 uint32_t Assembler::GetImmediate16(Instr instr) { return instr & kImm16Mask; }
415 
GetLabelConst(Instr instr)416 uint32_t Assembler::GetLabelConst(Instr instr) { return instr & ~kImm16Mask; }
417 
IsPop(Instr instr)418 bool Assembler::IsPop(Instr instr) {
419   return (instr & ~kRtMask) == kPopRegPattern;
420 }
421 
IsPush(Instr instr)422 bool Assembler::IsPush(Instr instr) {
423   return (instr & ~kRtMask) == kPushRegPattern;
424 }
425 
IsSwRegFpOffset(Instr instr)426 bool Assembler::IsSwRegFpOffset(Instr instr) {
427   return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
428 }
429 
IsLwRegFpOffset(Instr instr)430 bool Assembler::IsLwRegFpOffset(Instr instr) {
431   return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
432 }
433 
IsSwRegFpNegOffset(Instr instr)434 bool Assembler::IsSwRegFpNegOffset(Instr instr) {
435   return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
436           kSwRegFpNegOffsetPattern);
437 }
438 
IsLwRegFpNegOffset(Instr instr)439 bool Assembler::IsLwRegFpNegOffset(Instr instr) {
440   return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
441           kLwRegFpNegOffsetPattern);
442 }
443 
444 // Labels refer to positions in the (to be) generated code.
445 // There are bound, linked, and unused labels.
446 //
447 // Bound labels refer to known positions in the already
448 // generated code. pos() is the position the label refers to.
449 //
450 // Linked labels refer to unknown positions in the code
451 // to be generated; pos() is the position of the last
452 // instruction using the label.
453 
454 // The link chain is terminated by a value in the instruction of -1,
455 // which is an otherwise illegal value (branch -1 is inf loop).
456 // The instruction 16-bit offset field addresses 32-bit words, but in
457 // code is conv to an 18-bit value addressing bytes, hence the -4 value.
458 
459 const int kEndOfChain = -4;
460 // Determines the end of the Jump chain (a subset of the label link chain).
461 const int kEndOfJumpChain = 0;
462 
IsMsaBranch(Instr instr)463 bool Assembler::IsMsaBranch(Instr instr) {
464   uint32_t opcode = GetOpcodeField(instr);
465   uint32_t rs_field = GetRsField(instr);
466   if (opcode == COP1) {
467     switch (rs_field) {
468       case BZ_V:
469       case BZ_B:
470       case BZ_H:
471       case BZ_W:
472       case BZ_D:
473       case BNZ_V:
474       case BNZ_B:
475       case BNZ_H:
476       case BNZ_W:
477       case BNZ_D:
478         return true;
479       default:
480         return false;
481     }
482   } else {
483     return false;
484   }
485 }
486 
IsBranch(Instr instr)487 bool Assembler::IsBranch(Instr instr) {
488   uint32_t opcode = GetOpcodeField(instr);
489   uint32_t rt_field = GetRtField(instr);
490   uint32_t rs_field = GetRsField(instr);
491   // Checks if the instruction is a branch.
492   bool isBranch =
493       opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ ||
494       opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL ||
495       (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
496                             rt_field == BLTZAL || rt_field == BGEZAL)) ||
497       (opcode == COP1 && rs_field == BC1) ||  // Coprocessor branch.
498       (opcode == COP1 && rs_field == BC1EQZ) ||
499       (opcode == COP1 && rs_field == BC1NEZ) || IsMsaBranch(instr);
500   if (!isBranch && IsMipsArchVariant(kMips32r6)) {
501     // All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and
502     // POP30 (BNVC, BNEC, BNEZALC) are branch ops.
503     isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC ||
504                 opcode == BALC ||
505                 (opcode == POP66 && rs_field != 0) ||  // BEQZC
506                 (opcode == POP76 && rs_field != 0);    // BNEZC
507   }
508   return isBranch;
509 }
510 
IsBc(Instr instr)511 bool Assembler::IsBc(Instr instr) {
512   uint32_t opcode = GetOpcodeField(instr);
513   // Checks if the instruction is a BC or BALC.
514   return opcode == BC || opcode == BALC;
515 }
516 
IsNal(Instr instr)517 bool Assembler::IsNal(Instr instr) {
518   uint32_t opcode = GetOpcodeField(instr);
519   uint32_t rt_field = GetRtField(instr);
520   uint32_t rs_field = GetRsField(instr);
521   return opcode == REGIMM && rt_field == BLTZAL && rs_field == 0;
522 }
523 
IsBzc(Instr instr)524 bool Assembler::IsBzc(Instr instr) {
525   uint32_t opcode = GetOpcodeField(instr);
526   // Checks if the instruction is BEQZC or BNEZC.
527   return (opcode == POP66 && GetRsField(instr) != 0) ||
528          (opcode == POP76 && GetRsField(instr) != 0);
529 }
530 
IsEmittedConstant(Instr instr)531 bool Assembler::IsEmittedConstant(Instr instr) {
532   uint32_t label_constant = GetLabelConst(instr);
533   return label_constant == 0;  // Emitted label const in reg-exp engine.
534 }
535 
IsBeq(Instr instr)536 bool Assembler::IsBeq(Instr instr) { return GetOpcodeField(instr) == BEQ; }
537 
IsBne(Instr instr)538 bool Assembler::IsBne(Instr instr) { return GetOpcodeField(instr) == BNE; }
539 
IsBeqzc(Instr instr)540 bool Assembler::IsBeqzc(Instr instr) {
541   uint32_t opcode = GetOpcodeField(instr);
542   return opcode == POP66 && GetRsField(instr) != 0;
543 }
544 
IsBnezc(Instr instr)545 bool Assembler::IsBnezc(Instr instr) {
546   uint32_t opcode = GetOpcodeField(instr);
547   return opcode == POP76 && GetRsField(instr) != 0;
548 }
549 
IsBeqc(Instr instr)550 bool Assembler::IsBeqc(Instr instr) {
551   uint32_t opcode = GetOpcodeField(instr);
552   uint32_t rs = GetRsField(instr);
553   uint32_t rt = GetRtField(instr);
554   return opcode == POP10 && rs != 0 && rs < rt;  // && rt != 0
555 }
556 
IsBnec(Instr instr)557 bool Assembler::IsBnec(Instr instr) {
558   uint32_t opcode = GetOpcodeField(instr);
559   uint32_t rs = GetRsField(instr);
560   uint32_t rt = GetRtField(instr);
561   return opcode == POP30 && rs != 0 && rs < rt;  // && rt != 0
562 }
563 
IsJicOrJialc(Instr instr)564 bool Assembler::IsJicOrJialc(Instr instr) {
565   uint32_t opcode = GetOpcodeField(instr);
566   uint32_t rs = GetRsField(instr);
567   return (opcode == POP66 || opcode == POP76) && rs == 0;
568 }
569 
IsJump(Instr instr)570 bool Assembler::IsJump(Instr instr) {
571   uint32_t opcode = GetOpcodeField(instr);
572   uint32_t rt_field = GetRtField(instr);
573   uint32_t rd_field = GetRdField(instr);
574   uint32_t function_field = GetFunctionField(instr);
575   // Checks if the instruction is a jump.
576   return opcode == J || opcode == JAL ||
577          (opcode == SPECIAL && rt_field == 0 &&
578           ((function_field == JALR) ||
579            (rd_field == 0 && (function_field == JR))));
580 }
581 
IsJ(Instr instr)582 bool Assembler::IsJ(Instr instr) {
583   uint32_t opcode = GetOpcodeField(instr);
584   // Checks if the instruction is a jump.
585   return opcode == J;
586 }
587 
IsJal(Instr instr)588 bool Assembler::IsJal(Instr instr) { return GetOpcodeField(instr) == JAL; }
589 
IsJr(Instr instr)590 bool Assembler::IsJr(Instr instr) {
591   if (!IsMipsArchVariant(kMips32r6)) {
592     return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR;
593   } else {
594     return GetOpcodeField(instr) == SPECIAL && GetRdField(instr) == 0 &&
595            GetFunctionField(instr) == JALR;
596   }
597 }
598 
IsJalr(Instr instr)599 bool Assembler::IsJalr(Instr instr) {
600   return GetOpcodeField(instr) == SPECIAL && GetRdField(instr) != 0 &&
601          GetFunctionField(instr) == JALR;
602 }
603 
IsLui(Instr instr)604 bool Assembler::IsLui(Instr instr) {
605   uint32_t opcode = GetOpcodeField(instr);
606   // Checks if the instruction is a load upper immediate.
607   return opcode == LUI;
608 }
609 
IsOri(Instr instr)610 bool Assembler::IsOri(Instr instr) {
611   uint32_t opcode = GetOpcodeField(instr);
612   // Checks if the instruction is a load upper immediate.
613   return opcode == ORI;
614 }
615 
IsAddu(Instr instr,Register rd,Register rs,Register rt)616 bool Assembler::IsAddu(Instr instr, Register rd, Register rs, Register rt) {
617   uint32_t opcode = GetOpcodeField(instr);
618   uint32_t rd_field = GetRd(instr);
619   uint32_t rs_field = GetRs(instr);
620   uint32_t rt_field = GetRt(instr);
621   uint32_t sa_field = GetSaField(instr);
622   uint32_t rd_reg = static_cast<uint32_t>(rd.code());
623   uint32_t rs_reg = static_cast<uint32_t>(rs.code());
624   uint32_t rt_reg = static_cast<uint32_t>(rt.code());
625   uint32_t function_field = GetFunction(instr);
626   return opcode == SPECIAL && sa_field == 0 && function_field == ADDU &&
627          rd_reg == rd_field && rs_reg == rs_field && rt_reg == rt_field;
628 }
629 
IsMov(Instr instr,Register rd,Register rs)630 bool Assembler::IsMov(Instr instr, Register rd, Register rs) {
631   uint32_t opcode = GetOpcodeField(instr);
632   uint32_t rd_field = GetRd(instr);
633   uint32_t rs_field = GetRs(instr);
634   uint32_t rt_field = GetRt(instr);
635   uint32_t rd_reg = static_cast<uint32_t>(rd.code());
636   uint32_t rs_reg = static_cast<uint32_t>(rs.code());
637   uint32_t function_field = GetFunctionField(instr);
638   // Checks if the instruction is a OR with zero_reg argument (aka MOV).
639   bool res = opcode == SPECIAL && function_field == OR && rd_field == rd_reg &&
640              rs_field == rs_reg && rt_field == 0;
641   return res;
642 }
643 
IsNop(Instr instr,unsigned int type)644 bool Assembler::IsNop(Instr instr, unsigned int type) {
645   // See Assembler::nop(type).
646   DCHECK_LT(type, 32);
647   uint32_t opcode = GetOpcodeField(instr);
648   uint32_t function = GetFunctionField(instr);
649   uint32_t rt = GetRt(instr);
650   uint32_t rd = GetRd(instr);
651   uint32_t sa = GetSa(instr);
652 
653   // Traditional mips nop == sll(zero_reg, zero_reg, 0)
654   // When marking non-zero type, use sll(zero_reg, at, type)
655   // to avoid use of mips ssnop and ehb special encodings
656   // of the sll instruction.
657 
658   Register nop_rt_reg = (type == 0) ? zero_reg : at;
659   bool ret = (opcode == SPECIAL && function == SLL &&
660               rd == static_cast<uint32_t>(ToNumber(zero_reg)) &&
661               rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) && sa == type);
662 
663   return ret;
664 }
665 
GetBranchOffset(Instr instr)666 int32_t Assembler::GetBranchOffset(Instr instr) {
667   DCHECK(IsBranch(instr));
668   return (static_cast<int16_t>(instr & kImm16Mask)) << 2;
669 }
670 
IsLw(Instr instr)671 bool Assembler::IsLw(Instr instr) {
672   return (static_cast<uint32_t>(instr & kOpcodeMask) == LW);
673 }
674 
GetLwOffset(Instr instr)675 int16_t Assembler::GetLwOffset(Instr instr) {
676   DCHECK(IsLw(instr));
677   return ((instr & kImm16Mask));
678 }
679 
SetLwOffset(Instr instr,int16_t offset)680 Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
681   DCHECK(IsLw(instr));
682 
683   // We actually create a new lw instruction based on the original one.
684   Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) |
685                      (offset & kImm16Mask);
686 
687   return temp_instr;
688 }
689 
IsSw(Instr instr)690 bool Assembler::IsSw(Instr instr) {
691   return (static_cast<uint32_t>(instr & kOpcodeMask) == SW);
692 }
693 
SetSwOffset(Instr instr,int16_t offset)694 Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
695   DCHECK(IsSw(instr));
696   return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
697 }
698 
IsAddImmediate(Instr instr)699 bool Assembler::IsAddImmediate(Instr instr) {
700   return ((instr & kOpcodeMask) == ADDIU);
701 }
702 
SetAddImmediateOffset(Instr instr,int16_t offset)703 Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
704   DCHECK(IsAddImmediate(instr));
705   return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
706 }
707 
IsAndImmediate(Instr instr)708 bool Assembler::IsAndImmediate(Instr instr) {
709   return GetOpcodeField(instr) == ANDI;
710 }
711 
OffsetSizeInBits(Instr instr)712 static Assembler::OffsetSize OffsetSizeInBits(Instr instr) {
713   if (IsMipsArchVariant(kMips32r6)) {
714     if (Assembler::IsBc(instr)) {
715       return Assembler::OffsetSize::kOffset26;
716     } else if (Assembler::IsBzc(instr)) {
717       return Assembler::OffsetSize::kOffset21;
718     }
719   }
720   return Assembler::OffsetSize::kOffset16;
721 }
722 
AddBranchOffset(int pos,Instr instr)723 static inline int32_t AddBranchOffset(int pos, Instr instr) {
724   int bits = OffsetSizeInBits(instr);
725   const int32_t mask = (1 << bits) - 1;
726   bits = 32 - bits;
727 
728   // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
729   // the compiler uses arithmetic shifts for signed integers.
730   int32_t imm = ((instr & mask) << bits) >> (bits - 2);
731 
732   if (imm == kEndOfChain) {
733     // EndOfChain sentinel is returned directly, not relative to pc or pos.
734     return kEndOfChain;
735   } else {
736     return pos + Assembler::kBranchPCOffset + imm;
737   }
738 }
739 
CreateTargetAddress(Instr instr_lui,Instr instr_jic)740 uint32_t Assembler::CreateTargetAddress(Instr instr_lui, Instr instr_jic) {
741   DCHECK(IsLui(instr_lui) && IsJicOrJialc(instr_jic));
742   int16_t jic_offset = GetImmediate16(instr_jic);
743   int16_t lui_offset = GetImmediate16(instr_lui);
744 
745   if (jic_offset < 0) {
746     lui_offset += kImm16Mask;
747   }
748   uint32_t lui_offset_u = (static_cast<uint32_t>(lui_offset)) << kLuiShift;
749   uint32_t jic_offset_u = static_cast<uint32_t>(jic_offset) & kImm16Mask;
750 
751   return lui_offset_u | jic_offset_u;
752 }
753 
754 // Use just lui and jic instructions. Insert lower part of the target address in
755 // jic offset part. Since jic sign-extends offset and then add it with register,
756 // before that addition, difference between upper part of the target address and
757 // upper part of the sign-extended offset (0xFFFF or 0x0000), will be inserted
758 // in jic register with lui instruction.
UnpackTargetAddress(uint32_t address,int16_t * lui_offset,int16_t * jic_offset)759 void Assembler::UnpackTargetAddress(uint32_t address, int16_t* lui_offset,
760                                     int16_t* jic_offset) {
761   *lui_offset = (address & kHiMask) >> kLuiShift;
762   *jic_offset = address & kLoMask;
763 
764   if (*jic_offset < 0) {
765     *lui_offset -= kImm16Mask;
766   }
767 }
768 
UnpackTargetAddressUnsigned(uint32_t address,uint32_t * lui_offset,uint32_t * jic_offset)769 void Assembler::UnpackTargetAddressUnsigned(uint32_t address,
770                                             uint32_t* lui_offset,
771                                             uint32_t* jic_offset) {
772   int16_t lui_offset16 = (address & kHiMask) >> kLuiShift;
773   int16_t jic_offset16 = address & kLoMask;
774 
775   if (jic_offset16 < 0) {
776     lui_offset16 -= kImm16Mask;
777   }
778   *lui_offset = static_cast<uint32_t>(lui_offset16) & kImm16Mask;
779   *jic_offset = static_cast<uint32_t>(jic_offset16) & kImm16Mask;
780 }
781 
PatchLuiOriImmediate(int pc,int32_t imm,Instr instr_lui,Address offset_lui,Instr instr_ori,Address offset_ori)782 void Assembler::PatchLuiOriImmediate(int pc, int32_t imm, Instr instr_lui,
783                                      Address offset_lui, Instr instr_ori,
784                                      Address offset_ori) {
785   DCHECK(IsLui(instr_lui));
786   DCHECK(IsOri(instr_ori));
787   instr_at_put(static_cast<int>(pc + offset_lui),
788                instr_lui | ((imm >> kLuiShift) & kImm16Mask));
789   instr_at_put(static_cast<int>(pc + offset_ori),
790                instr_ori | (imm & kImm16Mask));
791 }
792 
PatchLuiOriImmediate(Address pc,int32_t imm,Instr instr_lui,Address offset_lui,Instr instr_ori,Address offset_ori)793 void Assembler::PatchLuiOriImmediate(Address pc, int32_t imm, Instr instr_lui,
794                                      Address offset_lui, Instr instr_ori,
795                                      Address offset_ori) {
796   DCHECK(IsLui(instr_lui));
797   DCHECK(IsOri(instr_ori));
798   instr_at_put(pc + offset_lui, instr_lui | ((imm >> kLuiShift) & kImm16Mask));
799   instr_at_put(pc + offset_ori, instr_ori | (imm & kImm16Mask));
800 }
801 
GetLuiOriImmediate(Instr instr_lui,Instr instr_ori)802 int32_t Assembler::GetLuiOriImmediate(Instr instr_lui, Instr instr_ori) {
803   DCHECK(IsLui(instr_lui));
804   DCHECK(IsOri(instr_ori));
805   int32_t imm;
806   imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
807   imm |= (instr_ori & static_cast<int32_t>(kImm16Mask));
808   return imm;
809 }
810 
target_at(int pos,bool is_internal)811 int Assembler::target_at(int pos, bool is_internal) {
812   Instr instr = instr_at(pos);
813   if (is_internal) {
814     if (instr == 0) {
815       return kEndOfChain;
816     } else {
817       int32_t instr_address = reinterpret_cast<int32_t>(buffer_start_ + pos);
818       int delta = static_cast<int>(instr_address - instr);
819       DCHECK(pos > delta);
820       return pos - delta;
821     }
822   }
823   if ((instr & ~kImm16Mask) == 0) {
824     // Emitted label constant, not part of a branch.
825     if (instr == 0) {
826       return kEndOfChain;
827     } else {
828       int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
829       return (imm18 + pos);
830     }
831   }
832   // Check we have a branch or jump instruction.
833   DCHECK(IsBranch(instr) || IsLui(instr) || IsMov(instr, t8, ra));
834   if (IsBranch(instr)) {
835     return AddBranchOffset(pos, instr);
836   } else if (IsMov(instr, t8, ra)) {
837     int32_t imm32;
838     Instr instr_lui = instr_at(pos + 2 * kInstrSize);
839     Instr instr_ori = instr_at(pos + 3 * kInstrSize);
840     imm32 = GetLuiOriImmediate(instr_lui, instr_ori);
841     if (imm32 == kEndOfJumpChain) {
842       // EndOfChain sentinel is returned directly, not relative to pc or pos.
843       return kEndOfChain;
844     }
845     return pos + Assembler::kLongBranchPCOffset + imm32;
846   } else {
847     DCHECK(IsLui(instr));
848     if (IsNal(instr_at(pos + kInstrSize))) {
849       int32_t imm32;
850       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
851       Instr instr_ori = instr_at(pos + 2 * kInstrSize);
852       imm32 = GetLuiOriImmediate(instr_lui, instr_ori);
853       if (imm32 == kEndOfJumpChain) {
854         // EndOfChain sentinel is returned directly, not relative to pc or pos.
855         return kEndOfChain;
856       }
857       return pos + Assembler::kLongBranchPCOffset + imm32;
858     } else {
859       Instr instr1 = instr_at(pos + 0 * kInstrSize);
860       Instr instr2 = instr_at(pos + 1 * kInstrSize);
861       DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
862       int32_t imm;
863       if (IsJicOrJialc(instr2)) {
864         imm = CreateTargetAddress(instr1, instr2);
865       } else {
866         imm = GetLuiOriImmediate(instr1, instr2);
867       }
868 
869       if (imm == kEndOfJumpChain) {
870         // EndOfChain sentinel is returned directly, not relative to pc or pos.
871         return kEndOfChain;
872       } else {
873         uint32_t instr_address = reinterpret_cast<int32_t>(buffer_start_ + pos);
874         int32_t delta = instr_address - imm;
875         DCHECK(pos > delta);
876         return pos - delta;
877       }
878     }
879   }
880 }
881 
SetBranchOffset(int32_t pos,int32_t target_pos,Instr instr)882 static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos,
883                                     Instr instr) {
884   int32_t bits = OffsetSizeInBits(instr);
885   int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset);
886   DCHECK_EQ(imm & 3, 0);
887   imm >>= 2;
888 
889   const int32_t mask = (1 << bits) - 1;
890   instr &= ~mask;
891   DCHECK(is_intn(imm, bits));
892 
893   return instr | (imm & mask);
894 }
895 
target_at_put(int32_t pos,int32_t target_pos,bool is_internal)896 void Assembler::target_at_put(int32_t pos, int32_t target_pos,
897                               bool is_internal) {
898   Instr instr = instr_at(pos);
899 
900   if (is_internal) {
901     uint32_t imm = reinterpret_cast<uint32_t>(buffer_start_) + target_pos;
902     instr_at_put(pos, imm);
903     return;
904   }
905   if ((instr & ~kImm16Mask) == 0) {
906     DCHECK(target_pos == kEndOfChain || target_pos >= 0);
907     // Emitted label constant, not part of a branch.
908     // Make label relative to Code pointer of generated Code object.
909     instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
910     return;
911   }
912 
913   DCHECK(IsBranch(instr) || IsLui(instr) || IsMov(instr, t8, ra));
914   if (IsBranch(instr)) {
915     instr = SetBranchOffset(pos, target_pos, instr);
916     instr_at_put(pos, instr);
917   } else if (IsMov(instr, t8, ra)) {
918     Instr instr_lui = instr_at(pos + 2 * kInstrSize);
919     Instr instr_ori = instr_at(pos + 3 * kInstrSize);
920     DCHECK(IsLui(instr_lui));
921     DCHECK(IsOri(instr_ori));
922 
923     int32_t imm_short = target_pos - (pos + Assembler::kBranchPCOffset);
924 
925     if (is_int16(imm_short)) {
926       // Optimize by converting to regular branch with 16-bit
927       // offset
928       Instr instr_b = BEQ;
929       instr_b = SetBranchOffset(pos, target_pos, instr_b);
930 
931       Instr instr_j = instr_at(pos + 5 * kInstrSize);
932       Instr instr_branch_delay;
933 
934       if (IsJump(instr_j)) {
935         // Case when branch delay slot is protected.
936         instr_branch_delay = nopInstr;
937       } else {
938         // Case when branch delay slot is used.
939         instr_branch_delay = instr_at(pos + 7 * kInstrSize);
940       }
941       instr_at_put(pos + 0 * kInstrSize, instr_b);
942       instr_at_put(pos + 1 * kInstrSize, instr_branch_delay);
943     } else {
944       int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
945       DCHECK_EQ(imm & 3, 0);
946 
947       instr_lui &= ~kImm16Mask;
948       instr_ori &= ~kImm16Mask;
949 
950       PatchLuiOriImmediate(pos, imm, instr_lui, 2 * kInstrSize, instr_ori,
951                            3 * kInstrSize);
952     }
953   } else {
954     DCHECK(IsLui(instr));
955     if (IsNal(instr_at(pos + kInstrSize))) {
956       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
957       Instr instr_ori = instr_at(pos + 2 * kInstrSize);
958       DCHECK(IsLui(instr_lui));
959       DCHECK(IsOri(instr_ori));
960       int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
961       DCHECK_EQ(imm & 3, 0);
962       if (is_int16(imm + Assembler::kLongBranchPCOffset -
963                    Assembler::kBranchPCOffset)) {
964         // Optimize by converting to regular branch and link with 16-bit
965         // offset.
966         Instr instr_b = REGIMM | BGEZAL;  // Branch and link.
967         instr_b = SetBranchOffset(pos, target_pos, instr_b);
968         // Correct ra register to point to one instruction after jalr from
969         // TurboAssembler::BranchAndLinkLong.
970         Instr instr_a = ADDIU | ra.code() << kRsShift | ra.code() << kRtShift |
971                         kOptimizedBranchAndLinkLongReturnOffset;
972 
973         instr_at_put(pos, instr_b);
974         instr_at_put(pos + 1 * kInstrSize, instr_a);
975       } else {
976         instr_lui &= ~kImm16Mask;
977         instr_ori &= ~kImm16Mask;
978         PatchLuiOriImmediate(pos, imm, instr_lui, 0 * kInstrSize, instr_ori,
979                              2 * kInstrSize);
980       }
981     } else {
982       Instr instr1 = instr_at(pos + 0 * kInstrSize);
983       Instr instr2 = instr_at(pos + 1 * kInstrSize);
984       DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
985       uint32_t imm = reinterpret_cast<uint32_t>(buffer_start_) + target_pos;
986       DCHECK_EQ(imm & 3, 0);
987       DCHECK(IsLui(instr1) && (IsJicOrJialc(instr2) || IsOri(instr2)));
988       instr1 &= ~kImm16Mask;
989       instr2 &= ~kImm16Mask;
990 
991       if (IsJicOrJialc(instr2)) {
992         uint32_t lui_offset_u, jic_offset_u;
993         UnpackTargetAddressUnsigned(imm, &lui_offset_u, &jic_offset_u);
994         instr_at_put(pos + 0 * kInstrSize, instr1 | lui_offset_u);
995         instr_at_put(pos + 1 * kInstrSize, instr2 | jic_offset_u);
996       } else {
997         PatchLuiOriImmediate(pos, imm, instr1, 0 * kInstrSize, instr2,
998                              1 * kInstrSize);
999       }
1000     }
1001   }
1002 }
1003 
print(const Label * L)1004 void Assembler::print(const Label* L) {
1005   if (L->is_unused()) {
1006     PrintF("unused label\n");
1007   } else if (L->is_bound()) {
1008     PrintF("bound label to %d\n", L->pos());
1009   } else if (L->is_linked()) {
1010     Label l;
1011     l.link_to(L->pos());
1012     PrintF("unbound label");
1013     while (l.is_linked()) {
1014       PrintF("@ %d ", l.pos());
1015       Instr instr = instr_at(l.pos());
1016       if ((instr & ~kImm16Mask) == 0) {
1017         PrintF("value\n");
1018       } else {
1019         PrintF("%d\n", instr);
1020       }
1021       next(&l, is_internal_reference(&l));
1022     }
1023   } else {
1024     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1025   }
1026 }
1027 
bind_to(Label * L,int pos)1028 void Assembler::bind_to(Label* L, int pos) {
1029   DCHECK(0 <= pos && pos <= pc_offset());  // Must have valid binding position.
1030   int32_t trampoline_pos = kInvalidSlotPos;
1031   bool is_internal = false;
1032   if (L->is_linked() && !trampoline_emitted_) {
1033     unbound_labels_count_--;
1034     if (!is_internal_reference(L)) {
1035       next_buffer_check_ += kTrampolineSlotsSize;
1036     }
1037   }
1038 
1039   while (L->is_linked()) {
1040     int32_t fixup_pos = L->pos();
1041     int32_t dist = pos - fixup_pos;
1042     is_internal = is_internal_reference(L);
1043     next(L, is_internal);  // Call next before overwriting link with target at
1044                            // fixup_pos.
1045     Instr instr = instr_at(fixup_pos);
1046     if (is_internal) {
1047       target_at_put(fixup_pos, pos, is_internal);
1048     } else {
1049       if (IsBranch(instr)) {
1050         int branch_offset = BranchOffset(instr);
1051         if (dist > branch_offset) {
1052           if (trampoline_pos == kInvalidSlotPos) {
1053             trampoline_pos = get_trampoline_entry(fixup_pos);
1054             CHECK_NE(trampoline_pos, kInvalidSlotPos);
1055           }
1056           CHECK((trampoline_pos - fixup_pos) <= branch_offset);
1057           target_at_put(fixup_pos, trampoline_pos, false);
1058           fixup_pos = trampoline_pos;
1059         }
1060         target_at_put(fixup_pos, pos, false);
1061       } else {
1062         target_at_put(fixup_pos, pos, false);
1063       }
1064     }
1065   }
1066   L->bind_to(pos);
1067 
1068   // Keep track of the last bound label so we don't eliminate any instructions
1069   // before a bound label.
1070   if (pos > last_bound_pos_) last_bound_pos_ = pos;
1071 }
1072 
bind(Label * L)1073 void Assembler::bind(Label* L) {
1074   DCHECK(!L->is_bound());  // Label can only be bound once.
1075   bind_to(L, pc_offset());
1076 }
1077 
next(Label * L,bool is_internal)1078 void Assembler::next(Label* L, bool is_internal) {
1079   DCHECK(L->is_linked());
1080   int link = target_at(L->pos(), is_internal);
1081   if (link == kEndOfChain) {
1082     L->Unuse();
1083   } else {
1084     DCHECK_GE(link, 0);
1085     L->link_to(link);
1086   }
1087 }
1088 
is_near(Label * L)1089 bool Assembler::is_near(Label* L) {
1090   DCHECK(L->is_bound());
1091   return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
1092 }
1093 
is_near(Label * L,OffsetSize bits)1094 bool Assembler::is_near(Label* L, OffsetSize bits) {
1095   if (L == nullptr || !L->is_bound()) return true;
1096   return pc_offset() - L->pos() < (1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize;
1097 }
1098 
is_near_branch(Label * L)1099 bool Assembler::is_near_branch(Label* L) {
1100   DCHECK(L->is_bound());
1101   return IsMipsArchVariant(kMips32r6) ? is_near_r6(L) : is_near_pre_r6(L);
1102 }
1103 
BranchOffset(Instr instr)1104 int Assembler::BranchOffset(Instr instr) {
1105   // At pre-R6 and for other R6 branches the offset is 16 bits.
1106   int bits = OffsetSize::kOffset16;
1107 
1108   if (IsMipsArchVariant(kMips32r6)) {
1109     uint32_t opcode = GetOpcodeField(instr);
1110     switch (opcode) {
1111       // Checks BC or BALC.
1112       case BC:
1113       case BALC:
1114         bits = OffsetSize::kOffset26;
1115         break;
1116 
1117       // Checks BEQZC or BNEZC.
1118       case POP66:
1119       case POP76:
1120         if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21;
1121         break;
1122       default:
1123         break;
1124     }
1125   }
1126 
1127   return (1 << (bits + 2 - 1)) - 1;
1128 }
1129 
1130 // We have to use a temporary register for things that can be relocated even
1131 // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
1132 // space.  There is no guarantee that the relocated location can be similarly
1133 // encoded.
MustUseReg(RelocInfo::Mode rmode)1134 bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
1135   return !RelocInfo::IsNoInfo(rmode);
1136 }
1137 
GenInstrRegister(Opcode opcode,Register rs,Register rt,Register rd,uint16_t sa,SecondaryField func)1138 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1139                                  Register rd, uint16_t sa,
1140                                  SecondaryField func) {
1141   DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
1142   Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1143                 (rd.code() << kRdShift) | (sa << kSaShift) | func;
1144   emit(instr);
1145 }
1146 
GenInstrRegister(Opcode opcode,Register rs,Register rt,uint16_t msb,uint16_t lsb,SecondaryField func)1147 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1148                                  uint16_t msb, uint16_t lsb,
1149                                  SecondaryField func) {
1150   DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
1151   Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1152                 (msb << kRdShift) | (lsb << kSaShift) | func;
1153   emit(instr);
1154 }
1155 
GenInstrRegister(Opcode opcode,SecondaryField fmt,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1156 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt,
1157                                  FPURegister ft, FPURegister fs, FPURegister fd,
1158                                  SecondaryField func) {
1159   DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid());
1160   Instr instr = opcode | fmt | (ft.code() << kFtShift) |
1161                 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1162   emit(instr);
1163 }
1164 
GenInstrRegister(Opcode opcode,FPURegister fr,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1165 void Assembler::GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
1166                                  FPURegister fs, FPURegister fd,
1167                                  SecondaryField func) {
1168   DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid());
1169   Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift) |
1170                 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1171   emit(instr);
1172 }
1173 
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPURegister fs,FPURegister fd,SecondaryField func)1174 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1175                                  FPURegister fs, FPURegister fd,
1176                                  SecondaryField func) {
1177   DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid());
1178   Instr instr = opcode | fmt | (rt.code() << kRtShift) |
1179                 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1180   emit(instr);
1181 }
1182 
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPUControlRegister fs,SecondaryField func)1183 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1184                                  FPUControlRegister fs, SecondaryField func) {
1185   DCHECK(fs.is_valid() && rt.is_valid());
1186   Instr instr =
1187       opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
1188   emit(instr);
1189 }
1190 
1191 // Instructions with immediate value.
1192 // Registers are in the order of the instruction encoding, from left to right.
GenInstrImmediate(Opcode opcode,Register rs,Register rt,int32_t j,CompactBranchType is_compact_branch)1193 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt,
1194                                   int32_t j,
1195                                   CompactBranchType is_compact_branch) {
1196   DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
1197   Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1198                 (j & kImm16Mask);
1199   emit(instr, is_compact_branch);
1200 }
1201 
GenInstrImmediate(Opcode opcode,Register base,Register rt,int32_t offset9,int bit6,SecondaryField func)1202 void Assembler::GenInstrImmediate(Opcode opcode, Register base, Register rt,
1203                                   int32_t offset9, int bit6,
1204                                   SecondaryField func) {
1205   DCHECK(base.is_valid() && rt.is_valid() && is_int9(offset9) &&
1206          is_uint1(bit6));
1207   Instr instr = opcode | (base.code() << kBaseShift) | (rt.code() << kRtShift) |
1208                 ((offset9 << kImm9Shift) & kImm9Mask) | bit6 << kBit6Shift |
1209                 func;
1210   emit(instr);
1211 }
1212 
GenInstrImmediate(Opcode opcode,Register rs,SecondaryField SF,int32_t j,CompactBranchType is_compact_branch)1213 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF,
1214                                   int32_t j,
1215                                   CompactBranchType is_compact_branch) {
1216   DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j)));
1217   Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
1218   emit(instr, is_compact_branch);
1219 }
1220 
GenInstrImmediate(Opcode opcode,Register rs,FPURegister ft,int32_t j,CompactBranchType is_compact_branch)1221 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft,
1222                                   int32_t j,
1223                                   CompactBranchType is_compact_branch) {
1224   DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
1225   Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
1226                 (j & kImm16Mask);
1227   emit(instr, is_compact_branch);
1228 }
1229 
GenInstrImmediate(Opcode opcode,Register rs,int32_t offset21,CompactBranchType is_compact_branch)1230 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21,
1231                                   CompactBranchType is_compact_branch) {
1232   DCHECK(rs.is_valid() && (is_int21(offset21)));
1233   Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1234   emit(instr, is_compact_branch);
1235 }
1236 
GenInstrImmediate(Opcode opcode,Register rs,uint32_t offset21)1237 void Assembler::GenInstrImmediate(Opcode opcode, Register rs,
1238                                   uint32_t offset21) {
1239   DCHECK(rs.is_valid() && (is_uint21(offset21)));
1240   Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1241   emit(instr);
1242 }
1243 
GenInstrImmediate(Opcode opcode,int32_t offset26,CompactBranchType is_compact_branch)1244 void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26,
1245                                   CompactBranchType is_compact_branch) {
1246   DCHECK(is_int26(offset26));
1247   Instr instr = opcode | (offset26 & kImm26Mask);
1248   emit(instr, is_compact_branch);
1249 }
1250 
GenInstrJump(Opcode opcode,uint32_t address)1251 void Assembler::GenInstrJump(Opcode opcode, uint32_t address) {
1252   BlockTrampolinePoolScope block_trampoline_pool(this);
1253   DCHECK(is_uint26(address));
1254   Instr instr = opcode | address;
1255   emit(instr);
1256   BlockTrampolinePoolFor(1);  // For associated delay slot.
1257 }
1258 
1259 // MSA instructions
GenInstrMsaI8(SecondaryField operation,uint32_t imm8,MSARegister ws,MSARegister wd)1260 void Assembler::GenInstrMsaI8(SecondaryField operation, uint32_t imm8,
1261                               MSARegister ws, MSARegister wd) {
1262   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1263   DCHECK(ws.is_valid() && wd.is_valid() && is_uint8(imm8));
1264   Instr instr = MSA | operation | ((imm8 & kImm8Mask) << kWtShift) |
1265                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1266   emit(instr);
1267 }
1268 
GenInstrMsaI5(SecondaryField operation,SecondaryField df,int32_t imm5,MSARegister ws,MSARegister wd)1269 void Assembler::GenInstrMsaI5(SecondaryField operation, SecondaryField df,
1270                               int32_t imm5, MSARegister ws, MSARegister wd) {
1271   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1272   DCHECK(ws.is_valid() && wd.is_valid());
1273   DCHECK((operation == MAXI_S) || (operation == MINI_S) ||
1274                  (operation == CEQI) || (operation == CLTI_S) ||
1275                  (operation == CLEI_S)
1276              ? is_int5(imm5)
1277              : is_uint5(imm5));
1278   Instr instr = MSA | operation | df | ((imm5 & kImm5Mask) << kWtShift) |
1279                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1280   emit(instr);
1281 }
1282 
GenInstrMsaBit(SecondaryField operation,SecondaryField df,uint32_t m,MSARegister ws,MSARegister wd)1283 void Assembler::GenInstrMsaBit(SecondaryField operation, SecondaryField df,
1284                                uint32_t m, MSARegister ws, MSARegister wd) {
1285   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1286   DCHECK(ws.is_valid() && wd.is_valid() && is_valid_msa_df_m(df, m));
1287   Instr instr = MSA | operation | df | (m << kWtShift) |
1288                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1289   emit(instr);
1290 }
1291 
GenInstrMsaI10(SecondaryField operation,SecondaryField df,int32_t imm10,MSARegister wd)1292 void Assembler::GenInstrMsaI10(SecondaryField operation, SecondaryField df,
1293                                int32_t imm10, MSARegister wd) {
1294   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1295   DCHECK(wd.is_valid() && is_int10(imm10));
1296   Instr instr = MSA | operation | df | ((imm10 & kImm10Mask) << kWsShift) |
1297                 (wd.code() << kWdShift);
1298   emit(instr);
1299 }
1300 
1301 template <typename RegType>
GenInstrMsa3R(SecondaryField operation,SecondaryField df,RegType t,MSARegister ws,MSARegister wd)1302 void Assembler::GenInstrMsa3R(SecondaryField operation, SecondaryField df,
1303                               RegType t, MSARegister ws, MSARegister wd) {
1304   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1305   DCHECK(t.is_valid() && ws.is_valid() && wd.is_valid());
1306   Instr instr = MSA | operation | df | (t.code() << kWtShift) |
1307                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1308   emit(instr);
1309 }
1310 
1311 template <typename DstType, typename SrcType>
GenInstrMsaElm(SecondaryField operation,SecondaryField df,uint32_t n,SrcType src,DstType dst)1312 void Assembler::GenInstrMsaElm(SecondaryField operation, SecondaryField df,
1313                                uint32_t n, SrcType src, DstType dst) {
1314   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1315   DCHECK(src.is_valid() && dst.is_valid() && is_valid_msa_df_n(df, n));
1316   Instr instr = MSA | operation | df | (n << kWtShift) |
1317                 (src.code() << kWsShift) | (dst.code() << kWdShift) |
1318                 MSA_ELM_MINOR;
1319   emit(instr);
1320 }
1321 
GenInstrMsa3RF(SecondaryField operation,uint32_t df,MSARegister wt,MSARegister ws,MSARegister wd)1322 void Assembler::GenInstrMsa3RF(SecondaryField operation, uint32_t df,
1323                                MSARegister wt, MSARegister ws, MSARegister wd) {
1324   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1325   DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1326   DCHECK_LT(df, 2);
1327   Instr instr = MSA | operation | (df << 21) | (wt.code() << kWtShift) |
1328                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1329   emit(instr);
1330 }
1331 
GenInstrMsaVec(SecondaryField operation,MSARegister wt,MSARegister ws,MSARegister wd)1332 void Assembler::GenInstrMsaVec(SecondaryField operation, MSARegister wt,
1333                                MSARegister ws, MSARegister wd) {
1334   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1335   DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1336   Instr instr = MSA | operation | (wt.code() << kWtShift) |
1337                 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1338                 MSA_VEC_2R_2RF_MINOR;
1339   emit(instr);
1340 }
1341 
GenInstrMsaMI10(SecondaryField operation,int32_t s10,Register rs,MSARegister wd)1342 void Assembler::GenInstrMsaMI10(SecondaryField operation, int32_t s10,
1343                                 Register rs, MSARegister wd) {
1344   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1345   DCHECK(rs.is_valid() && wd.is_valid() && is_int10(s10));
1346   Instr instr = MSA | operation | ((s10 & kImm10Mask) << kWtShift) |
1347                 (rs.code() << kWsShift) | (wd.code() << kWdShift);
1348   emit(instr);
1349 }
1350 
GenInstrMsa2R(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1351 void Assembler::GenInstrMsa2R(SecondaryField operation, SecondaryField df,
1352                               MSARegister ws, MSARegister wd) {
1353   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1354   DCHECK(ws.is_valid() && wd.is_valid());
1355   Instr instr = MSA | MSA_2R_FORMAT | operation | df | (ws.code() << kWsShift) |
1356                 (wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR;
1357   emit(instr);
1358 }
1359 
GenInstrMsa2RF(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1360 void Assembler::GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
1361                                MSARegister ws, MSARegister wd) {
1362   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1363   DCHECK(ws.is_valid() && wd.is_valid());
1364   Instr instr = MSA | MSA_2RF_FORMAT | operation | df |
1365                 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1366                 MSA_VEC_2R_2RF_MINOR;
1367   emit(instr);
1368 }
1369 
GenInstrMsaBranch(SecondaryField operation,MSARegister wt,int32_t offset16)1370 void Assembler::GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
1371                                   int32_t offset16) {
1372   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1373   DCHECK(wt.is_valid() && is_int16(offset16));
1374   BlockTrampolinePoolScope block_trampoline_pool(this);
1375   Instr instr =
1376       COP1 | operation | (wt.code() << kWtShift) | (offset16 & kImm16Mask);
1377   emit(instr);
1378   BlockTrampolinePoolFor(1);  // For associated delay slot.
1379 }
1380 
1381 // Returns the next free trampoline entry.
get_trampoline_entry(int32_t pos)1382 int32_t Assembler::get_trampoline_entry(int32_t pos) {
1383   int32_t trampoline_entry = kInvalidSlotPos;
1384 
1385   if (!internal_trampoline_exception_) {
1386     if (trampoline_.start() > pos) {
1387       trampoline_entry = trampoline_.take_slot();
1388     }
1389 
1390     if (kInvalidSlotPos == trampoline_entry) {
1391       internal_trampoline_exception_ = true;
1392     }
1393   }
1394   return trampoline_entry;
1395 }
1396 
jump_address(Label * L)1397 uint32_t Assembler::jump_address(Label* L) {
1398   int32_t target_pos;
1399 
1400   if (L->is_bound()) {
1401     target_pos = L->pos();
1402   } else {
1403     if (L->is_linked()) {
1404       target_pos = L->pos();  // L's link.
1405       L->link_to(pc_offset());
1406     } else {
1407       L->link_to(pc_offset());
1408       return kEndOfJumpChain;
1409     }
1410   }
1411 
1412   uint32_t imm = reinterpret_cast<uint32_t>(buffer_start_) + target_pos;
1413   DCHECK_EQ(imm & 3, 0);
1414 
1415   return imm;
1416 }
1417 
branch_long_offset(Label * L)1418 uint32_t Assembler::branch_long_offset(Label* L) {
1419   int32_t target_pos;
1420 
1421   if (L->is_bound()) {
1422     target_pos = L->pos();
1423   } else {
1424     if (L->is_linked()) {
1425       target_pos = L->pos();  // L's link.
1426       L->link_to(pc_offset());
1427     } else {
1428       L->link_to(pc_offset());
1429       return kEndOfJumpChain;
1430     }
1431   }
1432 
1433   DCHECK(is_int32(static_cast<int64_t>(target_pos) -
1434                   static_cast<int64_t>(pc_offset() + kLongBranchPCOffset)));
1435   int32_t offset = target_pos - (pc_offset() + kLongBranchPCOffset);
1436   DCHECK_EQ(offset & 3, 0);
1437 
1438   return offset;
1439 }
1440 
branch_offset_helper(Label * L,OffsetSize bits)1441 int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) {
1442   int32_t target_pos;
1443   int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1444 
1445   if (L->is_bound()) {
1446     target_pos = L->pos();
1447   } else {
1448     if (L->is_linked()) {
1449       target_pos = L->pos();
1450       L->link_to(pc_offset() + pad);
1451     } else {
1452       L->link_to(pc_offset() + pad);
1453       if (!trampoline_emitted_) {
1454         unbound_labels_count_++;
1455         next_buffer_check_ -= kTrampolineSlotsSize;
1456       }
1457       return kEndOfChain;
1458     }
1459   }
1460 
1461   int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad);
1462   DCHECK(is_intn(offset, bits + 2));
1463   DCHECK_EQ(offset & 3, 0);
1464 
1465   return offset;
1466 }
1467 
label_at_put(Label * L,int at_offset)1468 void Assembler::label_at_put(Label* L, int at_offset) {
1469   int target_pos;
1470   if (L->is_bound()) {
1471     target_pos = L->pos();
1472     instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
1473   } else {
1474     if (L->is_linked()) {
1475       target_pos = L->pos();  // L's link.
1476       int32_t imm18 = target_pos - at_offset;
1477       DCHECK_EQ(imm18 & 3, 0);
1478       int32_t imm16 = imm18 >> 2;
1479       DCHECK(is_int16(imm16));
1480       instr_at_put(at_offset, (imm16 & kImm16Mask));
1481     } else {
1482       target_pos = kEndOfChain;
1483       instr_at_put(at_offset, 0);
1484       if (!trampoline_emitted_) {
1485         unbound_labels_count_++;
1486         next_buffer_check_ -= kTrampolineSlotsSize;
1487       }
1488     }
1489     L->link_to(at_offset);
1490   }
1491 }
1492 
1493 //------- Branch and jump instructions --------
1494 
b(int16_t offset)1495 void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); }
1496 
bal(int16_t offset)1497 void Assembler::bal(int16_t offset) { bgezal(zero_reg, offset); }
1498 
bc(int32_t offset)1499 void Assembler::bc(int32_t offset) {
1500   DCHECK(IsMipsArchVariant(kMips32r6));
1501   GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH);
1502 }
1503 
balc(int32_t offset)1504 void Assembler::balc(int32_t offset) {
1505   DCHECK(IsMipsArchVariant(kMips32r6));
1506   GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH);
1507 }
1508 
beq(Register rs,Register rt,int16_t offset)1509 void Assembler::beq(Register rs, Register rt, int16_t offset) {
1510   BlockTrampolinePoolScope block_trampoline_pool(this);
1511   GenInstrImmediate(BEQ, rs, rt, offset);
1512   BlockTrampolinePoolFor(1);  // For associated delay slot.
1513 }
1514 
bgez(Register rs,int16_t offset)1515 void Assembler::bgez(Register rs, int16_t offset) {
1516   BlockTrampolinePoolScope block_trampoline_pool(this);
1517   GenInstrImmediate(REGIMM, rs, BGEZ, offset);
1518   BlockTrampolinePoolFor(1);  // For associated delay slot.
1519 }
1520 
bgezc(Register rt,int16_t offset)1521 void Assembler::bgezc(Register rt, int16_t offset) {
1522   DCHECK(IsMipsArchVariant(kMips32r6));
1523   DCHECK(rt != zero_reg);
1524   GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1525 }
1526 
bgeuc(Register rs,Register rt,int16_t offset)1527 void Assembler::bgeuc(Register rs, Register rt, int16_t offset) {
1528   DCHECK(IsMipsArchVariant(kMips32r6));
1529   DCHECK(rs != zero_reg);
1530   DCHECK(rt != zero_reg);
1531   DCHECK(rs.code() != rt.code());
1532   GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1533 }
1534 
bgec(Register rs,Register rt,int16_t offset)1535 void Assembler::bgec(Register rs, Register rt, int16_t offset) {
1536   DCHECK(IsMipsArchVariant(kMips32r6));
1537   DCHECK(rs != zero_reg);
1538   DCHECK(rt != zero_reg);
1539   DCHECK(rs.code() != rt.code());
1540   GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1541 }
1542 
bgezal(Register rs,int16_t offset)1543 void Assembler::bgezal(Register rs, int16_t offset) {
1544   DCHECK(!IsMipsArchVariant(kMips32r6) || rs == zero_reg);
1545   DCHECK(rs != ra);
1546   BlockTrampolinePoolScope block_trampoline_pool(this);
1547   GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
1548   BlockTrampolinePoolFor(1);  // For associated delay slot.
1549 }
1550 
bgtz(Register rs,int16_t offset)1551 void Assembler::bgtz(Register rs, int16_t offset) {
1552   BlockTrampolinePoolScope block_trampoline_pool(this);
1553   GenInstrImmediate(BGTZ, rs, zero_reg, offset);
1554   BlockTrampolinePoolFor(1);  // For associated delay slot.
1555 }
1556 
bgtzc(Register rt,int16_t offset)1557 void Assembler::bgtzc(Register rt, int16_t offset) {
1558   DCHECK(IsMipsArchVariant(kMips32r6));
1559   DCHECK(rt != zero_reg);
1560   GenInstrImmediate(BGTZL, zero_reg, rt, offset,
1561                     CompactBranchType::COMPACT_BRANCH);
1562 }
1563 
blez(Register rs,int16_t offset)1564 void Assembler::blez(Register rs, int16_t offset) {
1565   BlockTrampolinePoolScope block_trampoline_pool(this);
1566   GenInstrImmediate(BLEZ, rs, zero_reg, offset);
1567   BlockTrampolinePoolFor(1);  // For associated delay slot.
1568 }
1569 
blezc(Register rt,int16_t offset)1570 void Assembler::blezc(Register rt, int16_t offset) {
1571   DCHECK(IsMipsArchVariant(kMips32r6));
1572   DCHECK(rt != zero_reg);
1573   GenInstrImmediate(BLEZL, zero_reg, rt, offset,
1574                     CompactBranchType::COMPACT_BRANCH);
1575 }
1576 
bltzc(Register rt,int16_t offset)1577 void Assembler::bltzc(Register rt, int16_t offset) {
1578   DCHECK(IsMipsArchVariant(kMips32r6));
1579   DCHECK(rt != zero_reg);
1580   GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1581 }
1582 
bltuc(Register rs,Register rt,int16_t offset)1583 void Assembler::bltuc(Register rs, Register rt, int16_t offset) {
1584   DCHECK(IsMipsArchVariant(kMips32r6));
1585   DCHECK(rs != zero_reg);
1586   DCHECK(rt != zero_reg);
1587   DCHECK(rs.code() != rt.code());
1588   GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1589 }
1590 
bltc(Register rs,Register rt,int16_t offset)1591 void Assembler::bltc(Register rs, Register rt, int16_t offset) {
1592   DCHECK(IsMipsArchVariant(kMips32r6));
1593   DCHECK(rs != zero_reg);
1594   DCHECK(rt != zero_reg);
1595   DCHECK(rs.code() != rt.code());
1596   GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1597 }
1598 
bltz(Register rs,int16_t offset)1599 void Assembler::bltz(Register rs, int16_t offset) {
1600   BlockTrampolinePoolScope block_trampoline_pool(this);
1601   GenInstrImmediate(REGIMM, rs, BLTZ, offset);
1602   BlockTrampolinePoolFor(1);  // For associated delay slot.
1603 }
1604 
bltzal(Register rs,int16_t offset)1605 void Assembler::bltzal(Register rs, int16_t offset) {
1606   DCHECK(!IsMipsArchVariant(kMips32r6) || rs == zero_reg);
1607   DCHECK(rs != ra);
1608   BlockTrampolinePoolScope block_trampoline_pool(this);
1609   GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
1610   BlockTrampolinePoolFor(1);  // For associated delay slot.
1611 }
1612 
bne(Register rs,Register rt,int16_t offset)1613 void Assembler::bne(Register rs, Register rt, int16_t offset) {
1614   BlockTrampolinePoolScope block_trampoline_pool(this);
1615   GenInstrImmediate(BNE, rs, rt, offset);
1616   BlockTrampolinePoolFor(1);  // For associated delay slot.
1617 }
1618 
bovc(Register rs,Register rt,int16_t offset)1619 void Assembler::bovc(Register rs, Register rt, int16_t offset) {
1620   DCHECK(IsMipsArchVariant(kMips32r6));
1621   if (rs.code() >= rt.code()) {
1622     GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1623   } else {
1624     GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1625   }
1626 }
1627 
bnvc(Register rs,Register rt,int16_t offset)1628 void Assembler::bnvc(Register rs, Register rt, int16_t offset) {
1629   DCHECK(IsMipsArchVariant(kMips32r6));
1630   if (rs.code() >= rt.code()) {
1631     GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1632   } else {
1633     GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1634   }
1635 }
1636 
blezalc(Register rt,int16_t offset)1637 void Assembler::blezalc(Register rt, int16_t offset) {
1638   DCHECK(IsMipsArchVariant(kMips32r6));
1639   DCHECK(rt != zero_reg);
1640   DCHECK(rt != ra);
1641   GenInstrImmediate(BLEZ, zero_reg, rt, offset,
1642                     CompactBranchType::COMPACT_BRANCH);
1643 }
1644 
bgezalc(Register rt,int16_t offset)1645 void Assembler::bgezalc(Register rt, int16_t offset) {
1646   DCHECK(IsMipsArchVariant(kMips32r6));
1647   DCHECK(rt != zero_reg);
1648   DCHECK(rt != ra);
1649   GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1650 }
1651 
bgezall(Register rs,int16_t offset)1652 void Assembler::bgezall(Register rs, int16_t offset) {
1653   DCHECK(!IsMipsArchVariant(kMips32r6));
1654   DCHECK(rs != zero_reg);
1655   DCHECK(rs != ra);
1656   BlockTrampolinePoolScope block_trampoline_pool(this);
1657   GenInstrImmediate(REGIMM, rs, BGEZALL, offset);
1658   BlockTrampolinePoolFor(1);  // For associated delay slot.
1659 }
1660 
bltzalc(Register rt,int16_t offset)1661 void Assembler::bltzalc(Register rt, int16_t offset) {
1662   DCHECK(IsMipsArchVariant(kMips32r6));
1663   DCHECK(rt != zero_reg);
1664   DCHECK(rt != ra);
1665   GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1666 }
1667 
bgtzalc(Register rt,int16_t offset)1668 void Assembler::bgtzalc(Register rt, int16_t offset) {
1669   DCHECK(IsMipsArchVariant(kMips32r6));
1670   DCHECK(rt != zero_reg);
1671   DCHECK(rt != ra);
1672   GenInstrImmediate(BGTZ, zero_reg, rt, offset,
1673                     CompactBranchType::COMPACT_BRANCH);
1674 }
1675 
beqzalc(Register rt,int16_t offset)1676 void Assembler::beqzalc(Register rt, int16_t offset) {
1677   DCHECK(IsMipsArchVariant(kMips32r6));
1678   DCHECK(rt != zero_reg);
1679   DCHECK(rt != ra);
1680   GenInstrImmediate(ADDI, zero_reg, rt, offset,
1681                     CompactBranchType::COMPACT_BRANCH);
1682 }
1683 
bnezalc(Register rt,int16_t offset)1684 void Assembler::bnezalc(Register rt, int16_t offset) {
1685   DCHECK(IsMipsArchVariant(kMips32r6));
1686   DCHECK(rt != zero_reg);
1687   DCHECK(rt != ra);
1688   GenInstrImmediate(DADDI, zero_reg, rt, offset,
1689                     CompactBranchType::COMPACT_BRANCH);
1690 }
1691 
beqc(Register rs,Register rt,int16_t offset)1692 void Assembler::beqc(Register rs, Register rt, int16_t offset) {
1693   DCHECK(IsMipsArchVariant(kMips32r6));
1694   DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1695   if (rs.code() < rt.code()) {
1696     GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1697   } else {
1698     GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1699   }
1700 }
1701 
beqzc(Register rs,int32_t offset)1702 void Assembler::beqzc(Register rs, int32_t offset) {
1703   DCHECK(IsMipsArchVariant(kMips32r6));
1704   DCHECK(rs != zero_reg);
1705   GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH);
1706 }
1707 
bnec(Register rs,Register rt,int16_t offset)1708 void Assembler::bnec(Register rs, Register rt, int16_t offset) {
1709   DCHECK(IsMipsArchVariant(kMips32r6));
1710   DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1711   if (rs.code() < rt.code()) {
1712     GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1713   } else {
1714     GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1715   }
1716 }
1717 
bnezc(Register rs,int32_t offset)1718 void Assembler::bnezc(Register rs, int32_t offset) {
1719   DCHECK(IsMipsArchVariant(kMips32r6));
1720   DCHECK(rs != zero_reg);
1721   GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH);
1722 }
1723 
j(int32_t target)1724 void Assembler::j(int32_t target) {
1725 #if DEBUG
1726   // Get pc of delay slot.
1727   uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
1728   bool in_range = ((ipc ^ static_cast<uint32_t>(target)) >>
1729                    (kImm26Bits + kImmFieldShift)) == 0;
1730   DCHECK(in_range && ((target & 3) == 0));
1731 #endif
1732   BlockTrampolinePoolScope block_trampoline_pool(this);
1733   GenInstrJump(J, (target >> 2) & kImm26Mask);
1734   BlockTrampolinePoolFor(1);  // For associated delay slot.
1735 }
1736 
jr(Register rs)1737 void Assembler::jr(Register rs) {
1738   if (!IsMipsArchVariant(kMips32r6)) {
1739     BlockTrampolinePoolScope block_trampoline_pool(this);
1740     GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
1741     BlockTrampolinePoolFor(1);  // For associated delay slot.
1742   } else {
1743     jalr(rs, zero_reg);
1744   }
1745 }
1746 
jal(int32_t target)1747 void Assembler::jal(int32_t target) {
1748 #ifdef DEBUG
1749   // Get pc of delay slot.
1750   uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
1751   bool in_range = ((ipc ^ static_cast<uint32_t>(target)) >>
1752                    (kImm26Bits + kImmFieldShift)) == 0;
1753   DCHECK(in_range && ((target & 3) == 0));
1754 #endif
1755   BlockTrampolinePoolScope block_trampoline_pool(this);
1756   GenInstrJump(JAL, (target >> 2) & kImm26Mask);
1757   BlockTrampolinePoolFor(1);  // For associated delay slot.
1758 }
1759 
jalr(Register rs,Register rd)1760 void Assembler::jalr(Register rs, Register rd) {
1761   DCHECK(rs.code() != rd.code());
1762   BlockTrampolinePoolScope block_trampoline_pool(this);
1763   GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
1764   BlockTrampolinePoolFor(1);  // For associated delay slot.
1765 }
1766 
jic(Register rt,int16_t offset)1767 void Assembler::jic(Register rt, int16_t offset) {
1768   DCHECK(IsMipsArchVariant(kMips32r6));
1769   GenInstrImmediate(POP66, zero_reg, rt, offset);
1770 }
1771 
jialc(Register rt,int16_t offset)1772 void Assembler::jialc(Register rt, int16_t offset) {
1773   DCHECK(IsMipsArchVariant(kMips32r6));
1774   GenInstrImmediate(POP76, zero_reg, rt, offset);
1775 }
1776 
1777 // -------Data-processing-instructions---------
1778 
1779 // Arithmetic.
1780 
addu(Register rd,Register rs,Register rt)1781 void Assembler::addu(Register rd, Register rs, Register rt) {
1782   GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
1783 }
1784 
addiu(Register rd,Register rs,int32_t j)1785 void Assembler::addiu(Register rd, Register rs, int32_t j) {
1786   GenInstrImmediate(ADDIU, rs, rd, j);
1787 }
1788 
subu(Register rd,Register rs,Register rt)1789 void Assembler::subu(Register rd, Register rs, Register rt) {
1790   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
1791 }
1792 
mul(Register rd,Register rs,Register rt)1793 void Assembler::mul(Register rd, Register rs, Register rt) {
1794   if (!IsMipsArchVariant(kMips32r6)) {
1795     GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
1796   } else {
1797     GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH);
1798   }
1799 }
1800 
mulu(Register rd,Register rs,Register rt)1801 void Assembler::mulu(Register rd, Register rs, Register rt) {
1802   DCHECK(IsMipsArchVariant(kMips32r6));
1803   GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U);
1804 }
1805 
muh(Register rd,Register rs,Register rt)1806 void Assembler::muh(Register rd, Register rs, Register rt) {
1807   DCHECK(IsMipsArchVariant(kMips32r6));
1808   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH);
1809 }
1810 
muhu(Register rd,Register rs,Register rt)1811 void Assembler::muhu(Register rd, Register rs, Register rt) {
1812   DCHECK(IsMipsArchVariant(kMips32r6));
1813   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U);
1814 }
1815 
mod(Register rd,Register rs,Register rt)1816 void Assembler::mod(Register rd, Register rs, Register rt) {
1817   DCHECK(IsMipsArchVariant(kMips32r6));
1818   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD);
1819 }
1820 
modu(Register rd,Register rs,Register rt)1821 void Assembler::modu(Register rd, Register rs, Register rt) {
1822   DCHECK(IsMipsArchVariant(kMips32r6));
1823   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U);
1824 }
1825 
mult(Register rs,Register rt)1826 void Assembler::mult(Register rs, Register rt) {
1827   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
1828 }
1829 
multu(Register rs,Register rt)1830 void Assembler::multu(Register rs, Register rt) {
1831   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
1832 }
1833 
div(Register rs,Register rt)1834 void Assembler::div(Register rs, Register rt) {
1835   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
1836 }
1837 
div(Register rd,Register rs,Register rt)1838 void Assembler::div(Register rd, Register rs, Register rt) {
1839   DCHECK(IsMipsArchVariant(kMips32r6));
1840   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD);
1841 }
1842 
divu(Register rs,Register rt)1843 void Assembler::divu(Register rs, Register rt) {
1844   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
1845 }
1846 
divu(Register rd,Register rs,Register rt)1847 void Assembler::divu(Register rd, Register rs, Register rt) {
1848   DCHECK(IsMipsArchVariant(kMips32r6));
1849   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U);
1850 }
1851 
1852 // Logical.
1853 
and_(Register rd,Register rs,Register rt)1854 void Assembler::and_(Register rd, Register rs, Register rt) {
1855   GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
1856 }
1857 
andi(Register rt,Register rs,int32_t j)1858 void Assembler::andi(Register rt, Register rs, int32_t j) {
1859   DCHECK(is_uint16(j));
1860   GenInstrImmediate(ANDI, rs, rt, j);
1861 }
1862 
or_(Register rd,Register rs,Register rt)1863 void Assembler::or_(Register rd, Register rs, Register rt) {
1864   GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
1865 }
1866 
ori(Register rt,Register rs,int32_t j)1867 void Assembler::ori(Register rt, Register rs, int32_t j) {
1868   DCHECK(is_uint16(j));
1869   GenInstrImmediate(ORI, rs, rt, j);
1870 }
1871 
xor_(Register rd,Register rs,Register rt)1872 void Assembler::xor_(Register rd, Register rs, Register rt) {
1873   GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
1874 }
1875 
xori(Register rt,Register rs,int32_t j)1876 void Assembler::xori(Register rt, Register rs, int32_t j) {
1877   DCHECK(is_uint16(j));
1878   GenInstrImmediate(XORI, rs, rt, j);
1879 }
1880 
nor(Register rd,Register rs,Register rt)1881 void Assembler::nor(Register rd, Register rs, Register rt) {
1882   GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
1883 }
1884 
1885 // Shifts.
sll(Register rd,Register rt,uint16_t sa,bool coming_from_nop)1886 void Assembler::sll(Register rd, Register rt, uint16_t sa,
1887                     bool coming_from_nop) {
1888   // Don't allow nop instructions in the form sll zero_reg, zero_reg to be
1889   // generated using the sll instruction. They must be generated using
1890   // nop(int/NopMarkerTypes).
1891   DCHECK(coming_from_nop || !(rd == zero_reg && rt == zero_reg));
1892   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL);
1893 }
1894 
sllv(Register rd,Register rt,Register rs)1895 void Assembler::sllv(Register rd, Register rt, Register rs) {
1896   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
1897 }
1898 
srl(Register rd,Register rt,uint16_t sa)1899 void Assembler::srl(Register rd, Register rt, uint16_t sa) {
1900   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL);
1901 }
1902 
srlv(Register rd,Register rt,Register rs)1903 void Assembler::srlv(Register rd, Register rt, Register rs) {
1904   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
1905 }
1906 
sra(Register rd,Register rt,uint16_t sa)1907 void Assembler::sra(Register rd, Register rt, uint16_t sa) {
1908   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA);
1909 }
1910 
srav(Register rd,Register rt,Register rs)1911 void Assembler::srav(Register rd, Register rt, Register rs) {
1912   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
1913 }
1914 
rotr(Register rd,Register rt,uint16_t sa)1915 void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
1916   // Should be called via MacroAssembler::Ror.
1917   DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1918   DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
1919   Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1920                 (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
1921   emit(instr);
1922 }
1923 
rotrv(Register rd,Register rt,Register rs)1924 void Assembler::rotrv(Register rd, Register rt, Register rs) {
1925   // Should be called via MacroAssembler::Ror.
1926   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1927   DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
1928   Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1929                 (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
1930   emit(instr);
1931 }
1932 
lsa(Register rd,Register rt,Register rs,uint8_t sa)1933 void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) {
1934   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1935   DCHECK_LE(sa, 3);
1936   DCHECK(IsMipsArchVariant(kMips32r6));
1937   Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
1938                 rd.code() << kRdShift | sa << kSaShift | LSA;
1939   emit(instr);
1940 }
1941 
1942 // ------------Memory-instructions-------------
1943 
AdjustBaseAndOffset(MemOperand * src,OffsetAccessType access_type,int second_access_add_to_offset)1944 void Assembler::AdjustBaseAndOffset(MemOperand* src,
1945                                     OffsetAccessType access_type,
1946                                     int second_access_add_to_offset) {
1947   // This method is used to adjust the base register and offset pair
1948   // for a load/store when the offset doesn't fit into int16_t.
1949   // It is assumed that 'base + offset' is sufficiently aligned for memory
1950   // operands that are machine word in size or smaller. For doubleword-sized
1951   // operands it's assumed that 'base' is a multiple of 8, while 'offset'
1952   // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
1953   // and spilled variables on the stack accessed relative to the stack
1954   // pointer register).
1955   // We preserve the "alignment" of 'offset' by adjusting it by a multiple of 8.
1956 
1957   bool doubleword_aligned = (src->offset() & (kDoubleSize - 1)) == 0;
1958   bool two_accesses = static_cast<bool>(access_type) || !doubleword_aligned;
1959   DCHECK_LE(second_access_add_to_offset, 7);  // Must be <= 7.
1960 
1961   // is_int16 must be passed a signed value, hence the static cast below.
1962   if (is_int16(src->offset()) &&
1963       (!two_accesses || is_int16(static_cast<int32_t>(
1964                             src->offset() + second_access_add_to_offset)))) {
1965     // Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified
1966     // value) fits into int16_t.
1967     return;
1968   }
1969   UseScratchRegisterScope temps(this);
1970   Register scratch = temps.Acquire();
1971   DCHECK(src->rm() != scratch);  // Must not overwrite the register 'base'
1972                                  // while loading 'offset'.
1973 
1974 #ifdef DEBUG
1975   // Remember the "(mis)alignment" of 'offset', it will be checked at the end.
1976   uint32_t misalignment = src->offset() & (kDoubleSize - 1);
1977 #endif
1978 
1979   // Do not load the whole 32-bit 'offset' if it can be represented as
1980   // a sum of two 16-bit signed offsets. This can save an instruction or two.
1981   // To simplify matters, only do this for a symmetric range of offsets from
1982   // about -64KB to about +64KB, allowing further addition of 4 when accessing
1983   // 64-bit variables with two 32-bit accesses.
1984   constexpr int32_t kMinOffsetForSimpleAdjustment =
1985       0x7FF8;  // Max int16_t that's a multiple of 8.
1986   constexpr int32_t kMaxOffsetForSimpleAdjustment =
1987       2 * kMinOffsetForSimpleAdjustment;
1988   if (0 <= src->offset() && src->offset() <= kMaxOffsetForSimpleAdjustment) {
1989     addiu(scratch, src->rm(), kMinOffsetForSimpleAdjustment);
1990     src->offset_ -= kMinOffsetForSimpleAdjustment;
1991   } else if (-kMaxOffsetForSimpleAdjustment <= src->offset() &&
1992              src->offset() < 0) {
1993     addiu(scratch, src->rm(), -kMinOffsetForSimpleAdjustment);
1994     src->offset_ += kMinOffsetForSimpleAdjustment;
1995   } else if (IsMipsArchVariant(kMips32r6)) {
1996     // On r6 take advantage of the aui instruction, e.g.:
1997     //   aui   at, base, offset_high
1998     //   lw    reg_lo, offset_low(at)
1999     //   lw    reg_hi, (offset_low+4)(at)
2000     // or when offset_low+4 overflows int16_t:
2001     //   aui   at, base, offset_high
2002     //   addiu at, at, 8
2003     //   lw    reg_lo, (offset_low-8)(at)
2004     //   lw    reg_hi, (offset_low-4)(at)
2005     int16_t offset_high = static_cast<uint16_t>(src->offset() >> 16);
2006     int16_t offset_low = static_cast<uint16_t>(src->offset());
2007     offset_high += (offset_low < 0)
2008                        ? 1
2009                        : 0;  // Account for offset sign extension in load/store.
2010     aui(scratch, src->rm(), static_cast<uint16_t>(offset_high));
2011     if (two_accesses && !is_int16(static_cast<int32_t>(
2012                             offset_low + second_access_add_to_offset))) {
2013       // Avoid overflow in the 16-bit offset of the load/store instruction when
2014       // adding 4.
2015       addiu(scratch, scratch, kDoubleSize);
2016       offset_low -= kDoubleSize;
2017     }
2018     src->offset_ = offset_low;
2019   } else {
2020     // Do not load the whole 32-bit 'offset' if it can be represented as
2021     // a sum of three 16-bit signed offsets. This can save an instruction.
2022     // To simplify matters, only do this for a symmetric range of offsets from
2023     // about -96KB to about +96KB, allowing further addition of 4 when accessing
2024     // 64-bit variables with two 32-bit accesses.
2025     constexpr int32_t kMinOffsetForMediumAdjustment =
2026         2 * kMinOffsetForSimpleAdjustment;
2027     constexpr int32_t kMaxOffsetForMediumAdjustment =
2028         3 * kMinOffsetForSimpleAdjustment;
2029     if (0 <= src->offset() && src->offset() <= kMaxOffsetForMediumAdjustment) {
2030       addiu(scratch, src->rm(), kMinOffsetForMediumAdjustment / 2);
2031       addiu(scratch, scratch, kMinOffsetForMediumAdjustment / 2);
2032       src->offset_ -= kMinOffsetForMediumAdjustment;
2033     } else if (-kMaxOffsetForMediumAdjustment <= src->offset() &&
2034                src->offset() < 0) {
2035       addiu(scratch, src->rm(), -kMinOffsetForMediumAdjustment / 2);
2036       addiu(scratch, scratch, -kMinOffsetForMediumAdjustment / 2);
2037       src->offset_ += kMinOffsetForMediumAdjustment;
2038     } else {
2039       // Now that all shorter options have been exhausted, load the full 32-bit
2040       // offset.
2041       int32_t loaded_offset = RoundDown(src->offset(), kDoubleSize);
2042       lui(scratch, (loaded_offset >> kLuiShift) & kImm16Mask);
2043       ori(scratch, scratch, loaded_offset & kImm16Mask);  // Load 32-bit offset.
2044       addu(scratch, scratch, src->rm());
2045       src->offset_ -= loaded_offset;
2046     }
2047   }
2048   src->rm_ = scratch;
2049 
2050   DCHECK(is_int16(src->offset()));
2051   if (two_accesses) {
2052     DCHECK(is_int16(
2053         static_cast<int32_t>(src->offset() + second_access_add_to_offset)));
2054   }
2055   DCHECK(misalignment == (src->offset() & (kDoubleSize - 1)));
2056 }
2057 
lb(Register rd,const MemOperand & rs)2058 void Assembler::lb(Register rd, const MemOperand& rs) {
2059   MemOperand source = rs;
2060   AdjustBaseAndOffset(&source);
2061   GenInstrImmediate(LB, source.rm(), rd, source.offset());
2062 }
2063 
lbu(Register rd,const MemOperand & rs)2064 void Assembler::lbu(Register rd, const MemOperand& rs) {
2065   MemOperand source = rs;
2066   AdjustBaseAndOffset(&source);
2067   GenInstrImmediate(LBU, source.rm(), rd, source.offset());
2068 }
2069 
lh(Register rd,const MemOperand & rs)2070 void Assembler::lh(Register rd, const MemOperand& rs) {
2071   MemOperand source = rs;
2072   AdjustBaseAndOffset(&source);
2073   GenInstrImmediate(LH, source.rm(), rd, source.offset());
2074 }
2075 
lhu(Register rd,const MemOperand & rs)2076 void Assembler::lhu(Register rd, const MemOperand& rs) {
2077   MemOperand source = rs;
2078   AdjustBaseAndOffset(&source);
2079   GenInstrImmediate(LHU, source.rm(), rd, source.offset());
2080 }
2081 
lw(Register rd,const MemOperand & rs)2082 void Assembler::lw(Register rd, const MemOperand& rs) {
2083   MemOperand source = rs;
2084   AdjustBaseAndOffset(&source);
2085   GenInstrImmediate(LW, source.rm(), rd, source.offset());
2086 }
2087 
lwl(Register rd,const MemOperand & rs)2088 void Assembler::lwl(Register rd, const MemOperand& rs) {
2089   DCHECK(is_int16(rs.offset_));
2090   DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2091          IsMipsArchVariant(kMips32r2));
2092   GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
2093 }
2094 
lwr(Register rd,const MemOperand & rs)2095 void Assembler::lwr(Register rd, const MemOperand& rs) {
2096   DCHECK(is_int16(rs.offset_));
2097   DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2098          IsMipsArchVariant(kMips32r2));
2099   GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
2100 }
2101 
sb(Register rd,const MemOperand & rs)2102 void Assembler::sb(Register rd, const MemOperand& rs) {
2103   MemOperand source = rs;
2104   AdjustBaseAndOffset(&source);
2105   GenInstrImmediate(SB, source.rm(), rd, source.offset());
2106 }
2107 
sh(Register rd,const MemOperand & rs)2108 void Assembler::sh(Register rd, const MemOperand& rs) {
2109   MemOperand source = rs;
2110   AdjustBaseAndOffset(&source);
2111   GenInstrImmediate(SH, source.rm(), rd, source.offset());
2112 }
2113 
sw(Register rd,const MemOperand & rs)2114 void Assembler::sw(Register rd, const MemOperand& rs) {
2115   MemOperand source = rs;
2116   AdjustBaseAndOffset(&source);
2117   GenInstrImmediate(SW, source.rm(), rd, source.offset());
2118 }
2119 
swl(Register rd,const MemOperand & rs)2120 void Assembler::swl(Register rd, const MemOperand& rs) {
2121   DCHECK(is_int16(rs.offset_));
2122   DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2123          IsMipsArchVariant(kMips32r2));
2124   GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
2125 }
2126 
swr(Register rd,const MemOperand & rs)2127 void Assembler::swr(Register rd, const MemOperand& rs) {
2128   DCHECK(is_int16(rs.offset_));
2129   DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2130          IsMipsArchVariant(kMips32r2));
2131   GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
2132 }
2133 
ll(Register rd,const MemOperand & rs)2134 void Assembler::ll(Register rd, const MemOperand& rs) {
2135   if (IsMipsArchVariant(kMips32r6)) {
2136     DCHECK(is_int9(rs.offset_));
2137     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LL_R6);
2138   } else {
2139     DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2140            IsMipsArchVariant(kMips32r2));
2141     DCHECK(is_int16(rs.offset_));
2142     GenInstrImmediate(LL, rs.rm(), rd, rs.offset_);
2143   }
2144 }
2145 
sc(Register rd,const MemOperand & rs)2146 void Assembler::sc(Register rd, const MemOperand& rs) {
2147   if (IsMipsArchVariant(kMips32r6)) {
2148     DCHECK(is_int9(rs.offset_));
2149     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SC_R6);
2150   } else {
2151     DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2152            IsMipsArchVariant(kMips32r2));
2153     GenInstrImmediate(SC, rs.rm(), rd, rs.offset_);
2154   }
2155 }
2156 
llx(Register rd,const MemOperand & rs)2157 void Assembler::llx(Register rd, const MemOperand& rs) {
2158   DCHECK(IsMipsArchVariant(kMips32r6));
2159   DCHECK(is_int9(rs.offset_));
2160   GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 1, LL_R6);
2161 }
2162 
scx(Register rd,const MemOperand & rs)2163 void Assembler::scx(Register rd, const MemOperand& rs) {
2164   DCHECK(IsMipsArchVariant(kMips32r6));
2165   DCHECK(is_int9(rs.offset_));
2166   GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 1, SC_R6);
2167 }
2168 
lui(Register rd,int32_t j)2169 void Assembler::lui(Register rd, int32_t j) {
2170   DCHECK(is_uint16(j) || is_int16(j));
2171   GenInstrImmediate(LUI, zero_reg, rd, j);
2172 }
2173 
aui(Register rt,Register rs,int32_t j)2174 void Assembler::aui(Register rt, Register rs, int32_t j) {
2175   // This instruction uses same opcode as 'lui'. The difference in encoding is
2176   // 'lui' has zero reg. for rs field.
2177   DCHECK(IsMipsArchVariant(kMips32r6));
2178   DCHECK(rs != zero_reg);
2179   DCHECK(is_uint16(j));
2180   GenInstrImmediate(LUI, rs, rt, j);
2181 }
2182 
2183 // ---------PC-Relative instructions-----------
2184 
addiupc(Register rs,int32_t imm19)2185 void Assembler::addiupc(Register rs, int32_t imm19) {
2186   DCHECK(IsMipsArchVariant(kMips32r6));
2187   DCHECK(rs.is_valid() && is_int19(imm19));
2188   uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask);
2189   GenInstrImmediate(PCREL, rs, imm21);
2190 }
2191 
lwpc(Register rs,int32_t offset19)2192 void Assembler::lwpc(Register rs, int32_t offset19) {
2193   DCHECK(IsMipsArchVariant(kMips32r6));
2194   DCHECK(rs.is_valid() && is_int19(offset19));
2195   uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask);
2196   GenInstrImmediate(PCREL, rs, imm21);
2197 }
2198 
auipc(Register rs,int16_t imm16)2199 void Assembler::auipc(Register rs, int16_t imm16) {
2200   DCHECK(IsMipsArchVariant(kMips32r6));
2201   DCHECK(rs.is_valid());
2202   uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask);
2203   GenInstrImmediate(PCREL, rs, imm21);
2204 }
2205 
aluipc(Register rs,int16_t imm16)2206 void Assembler::aluipc(Register rs, int16_t imm16) {
2207   DCHECK(IsMipsArchVariant(kMips32r6));
2208   DCHECK(rs.is_valid());
2209   uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask);
2210   GenInstrImmediate(PCREL, rs, imm21);
2211 }
2212 
2213 // -------------Misc-instructions--------------
2214 
2215 // Break / Trap instructions.
break_(uint32_t code,bool break_as_stop)2216 void Assembler::break_(uint32_t code, bool break_as_stop) {
2217   DCHECK_EQ(code & ~0xFFFFF, 0);
2218   // We need to invalidate breaks that could be stops as well because the
2219   // simulator expects a char pointer after the stop instruction.
2220   // See constants-mips.h for explanation.
2221   DCHECK(
2222       (break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) ||
2223       (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode)));
2224   Instr break_instr = SPECIAL | BREAK | (code << 6);
2225   emit(break_instr);
2226 }
2227 
stop(uint32_t code)2228 void Assembler::stop(uint32_t code) {
2229   DCHECK_GT(code, kMaxWatchpointCode);
2230   DCHECK_LE(code, kMaxStopCode);
2231 #if V8_HOST_ARCH_MIPS
2232   break_(0x54321);
2233 #else  // V8_HOST_ARCH_MIPS
2234   break_(code, true);
2235 #endif
2236 }
2237 
tge(Register rs,Register rt,uint16_t code)2238 void Assembler::tge(Register rs, Register rt, uint16_t code) {
2239   DCHECK(is_uint10(code));
2240   Instr instr =
2241       SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2242   emit(instr);
2243 }
2244 
tgeu(Register rs,Register rt,uint16_t code)2245 void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
2246   DCHECK(is_uint10(code));
2247   Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift |
2248                 code << 6;
2249   emit(instr);
2250 }
2251 
tlt(Register rs,Register rt,uint16_t code)2252 void Assembler::tlt(Register rs, Register rt, uint16_t code) {
2253   DCHECK(is_uint10(code));
2254   Instr instr =
2255       SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2256   emit(instr);
2257 }
2258 
tltu(Register rs,Register rt,uint16_t code)2259 void Assembler::tltu(Register rs, Register rt, uint16_t code) {
2260   DCHECK(is_uint10(code));
2261   Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift |
2262                 code << 6;
2263   emit(instr);
2264 }
2265 
teq(Register rs,Register rt,uint16_t code)2266 void Assembler::teq(Register rs, Register rt, uint16_t code) {
2267   DCHECK(is_uint10(code));
2268   Instr instr =
2269       SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2270   emit(instr);
2271 }
2272 
tne(Register rs,Register rt,uint16_t code)2273 void Assembler::tne(Register rs, Register rt, uint16_t code) {
2274   DCHECK(is_uint10(code));
2275   Instr instr =
2276       SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2277   emit(instr);
2278 }
2279 
sync()2280 void Assembler::sync() {
2281   Instr sync_instr = SPECIAL | SYNC;
2282   emit(sync_instr);
2283 }
2284 
2285 // Move from HI/LO register.
2286 
mfhi(Register rd)2287 void Assembler::mfhi(Register rd) {
2288   GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
2289 }
2290 
mflo(Register rd)2291 void Assembler::mflo(Register rd) {
2292   GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
2293 }
2294 
2295 // Set on less than instructions.
slt(Register rd,Register rs,Register rt)2296 void Assembler::slt(Register rd, Register rs, Register rt) {
2297   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
2298 }
2299 
sltu(Register rd,Register rs,Register rt)2300 void Assembler::sltu(Register rd, Register rs, Register rt) {
2301   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
2302 }
2303 
slti(Register rt,Register rs,int32_t j)2304 void Assembler::slti(Register rt, Register rs, int32_t j) {
2305   GenInstrImmediate(SLTI, rs, rt, j);
2306 }
2307 
sltiu(Register rt,Register rs,int32_t j)2308 void Assembler::sltiu(Register rt, Register rs, int32_t j) {
2309   GenInstrImmediate(SLTIU, rs, rt, j);
2310 }
2311 
2312 // Conditional move.
movz(Register rd,Register rs,Register rt)2313 void Assembler::movz(Register rd, Register rs, Register rt) {
2314   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
2315 }
2316 
movn(Register rd,Register rs,Register rt)2317 void Assembler::movn(Register rd, Register rs, Register rt) {
2318   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
2319 }
2320 
movt(Register rd,Register rs,uint16_t cc)2321 void Assembler::movt(Register rd, Register rs, uint16_t cc) {
2322   Register rt = Register::from_code((cc & 0x0007) << 2 | 1);
2323   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2324 }
2325 
movf(Register rd,Register rs,uint16_t cc)2326 void Assembler::movf(Register rd, Register rs, uint16_t cc) {
2327   Register rt = Register::from_code((cc & 0x0007) << 2 | 0);
2328   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2329 }
2330 
seleqz(Register rd,Register rs,Register rt)2331 void Assembler::seleqz(Register rd, Register rs, Register rt) {
2332   DCHECK(IsMipsArchVariant(kMips32r6));
2333   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S);
2334 }
2335 
2336 // Bit twiddling.
clz(Register rd,Register rs)2337 void Assembler::clz(Register rd, Register rs) {
2338   if (!IsMipsArchVariant(kMips32r6)) {
2339     // Clz instr requires same GPR number in 'rd' and 'rt' fields.
2340     GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
2341   } else {
2342     GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6);
2343   }
2344 }
2345 
ins_(Register rt,Register rs,uint16_t pos,uint16_t size)2346 void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2347   // Should be called via MacroAssembler::Ins.
2348   // Ins instr has 'rt' field as dest, and two uint5: msb, lsb.
2349   DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2350   GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
2351 }
2352 
ext_(Register rt,Register rs,uint16_t pos,uint16_t size)2353 void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2354   // Should be called via MacroAssembler::Ext.
2355   // Ext instr has 'rt' field as dest, and two uint5: msb, lsb.
2356   DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2357   GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
2358 }
2359 
bitswap(Register rd,Register rt)2360 void Assembler::bitswap(Register rd, Register rt) {
2361   DCHECK(IsMipsArchVariant(kMips32r6));
2362   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, BSHFL);
2363 }
2364 
pref(int32_t hint,const MemOperand & rs)2365 void Assembler::pref(int32_t hint, const MemOperand& rs) {
2366   DCHECK(!IsMipsArchVariant(kLoongson));
2367   DCHECK(is_uint5(hint) && is_uint16(rs.offset_));
2368   Instr instr =
2369       PREF | (rs.rm().code() << kRsShift) | (hint << kRtShift) | (rs.offset_);
2370   emit(instr);
2371 }
2372 
align(Register rd,Register rs,Register rt,uint8_t bp)2373 void Assembler::align(Register rd, Register rs, Register rt, uint8_t bp) {
2374   DCHECK(IsMipsArchVariant(kMips32r6));
2375   DCHECK(is_uint3(bp));
2376   uint16_t sa = (ALIGN << kBp2Bits) | bp;
2377   GenInstrRegister(SPECIAL3, rs, rt, rd, sa, BSHFL);
2378 }
2379 
2380 // Byte swap.
wsbh(Register rd,Register rt)2381 void Assembler::wsbh(Register rd, Register rt) {
2382   DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2383   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, WSBH, BSHFL);
2384 }
2385 
seh(Register rd,Register rt)2386 void Assembler::seh(Register rd, Register rt) {
2387   DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2388   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEH, BSHFL);
2389 }
2390 
seb(Register rd,Register rt)2391 void Assembler::seb(Register rd, Register rt) {
2392   DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2393   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEB, BSHFL);
2394 }
2395 
2396 // --------Coprocessor-instructions----------------
2397 
2398 // Load, store, move.
lwc1(FPURegister fd,const MemOperand & src)2399 void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
2400   MemOperand tmp = src;
2401   AdjustBaseAndOffset(&tmp);
2402   GenInstrImmediate(LWC1, tmp.rm(), fd, tmp.offset());
2403 }
2404 
swc1(FPURegister fd,const MemOperand & src)2405 void Assembler::swc1(FPURegister fd, const MemOperand& src) {
2406   MemOperand tmp = src;
2407   AdjustBaseAndOffset(&tmp);
2408   GenInstrImmediate(SWC1, tmp.rm(), fd, tmp.offset());
2409 }
2410 
mtc1(Register rt,FPURegister fs)2411 void Assembler::mtc1(Register rt, FPURegister fs) {
2412   GenInstrRegister(COP1, MTC1, rt, fs, f0);
2413 }
2414 
mthc1(Register rt,FPURegister fs)2415 void Assembler::mthc1(Register rt, FPURegister fs) {
2416   GenInstrRegister(COP1, MTHC1, rt, fs, f0);
2417 }
2418 
mfc1(Register rt,FPURegister fs)2419 void Assembler::mfc1(Register rt, FPURegister fs) {
2420   GenInstrRegister(COP1, MFC1, rt, fs, f0);
2421 }
2422 
mfhc1(Register rt,FPURegister fs)2423 void Assembler::mfhc1(Register rt, FPURegister fs) {
2424   GenInstrRegister(COP1, MFHC1, rt, fs, f0);
2425 }
2426 
ctc1(Register rt,FPUControlRegister fs)2427 void Assembler::ctc1(Register rt, FPUControlRegister fs) {
2428   GenInstrRegister(COP1, CTC1, rt, fs);
2429 }
2430 
cfc1(Register rt,FPUControlRegister fs)2431 void Assembler::cfc1(Register rt, FPUControlRegister fs) {
2432   GenInstrRegister(COP1, CFC1, rt, fs);
2433 }
2434 
movn_s(FPURegister fd,FPURegister fs,Register rt)2435 void Assembler::movn_s(FPURegister fd, FPURegister fs, Register rt) {
2436   DCHECK(!IsMipsArchVariant(kMips32r6));
2437   GenInstrRegister(COP1, S, rt, fs, fd, MOVN_C);
2438 }
2439 
movn_d(FPURegister fd,FPURegister fs,Register rt)2440 void Assembler::movn_d(FPURegister fd, FPURegister fs, Register rt) {
2441   DCHECK(!IsMipsArchVariant(kMips32r6));
2442   GenInstrRegister(COP1, D, rt, fs, fd, MOVN_C);
2443 }
2444 
sel(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2445 void Assembler::sel(SecondaryField fmt, FPURegister fd, FPURegister fs,
2446                     FPURegister ft) {
2447   DCHECK(IsMipsArchVariant(kMips32r6));
2448   DCHECK((fmt == D) || (fmt == S));
2449 
2450   GenInstrRegister(COP1, fmt, ft, fs, fd, SEL);
2451 }
2452 
sel_s(FPURegister fd,FPURegister fs,FPURegister ft)2453 void Assembler::sel_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2454   sel(S, fd, fs, ft);
2455 }
2456 
sel_d(FPURegister fd,FPURegister fs,FPURegister ft)2457 void Assembler::sel_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2458   sel(D, fd, fs, ft);
2459 }
2460 
seleqz(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2461 void Assembler::seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
2462                        FPURegister ft) {
2463   DCHECK(IsMipsArchVariant(kMips32r6));
2464   DCHECK((fmt == D) || (fmt == S));
2465   GenInstrRegister(COP1, fmt, ft, fs, fd, SELEQZ_C);
2466 }
2467 
selnez(Register rd,Register rs,Register rt)2468 void Assembler::selnez(Register rd, Register rs, Register rt) {
2469   DCHECK(IsMipsArchVariant(kMips32r6));
2470   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S);
2471 }
2472 
selnez(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2473 void Assembler::selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
2474                        FPURegister ft) {
2475   DCHECK(IsMipsArchVariant(kMips32r6));
2476   DCHECK((fmt == D) || (fmt == S));
2477   GenInstrRegister(COP1, fmt, ft, fs, fd, SELNEZ_C);
2478 }
2479 
seleqz_d(FPURegister fd,FPURegister fs,FPURegister ft)2480 void Assembler::seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2481   seleqz(D, fd, fs, ft);
2482 }
2483 
seleqz_s(FPURegister fd,FPURegister fs,FPURegister ft)2484 void Assembler::seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2485   seleqz(S, fd, fs, ft);
2486 }
2487 
selnez_d(FPURegister fd,FPURegister fs,FPURegister ft)2488 void Assembler::selnez_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2489   selnez(D, fd, fs, ft);
2490 }
2491 
selnez_s(FPURegister fd,FPURegister fs,FPURegister ft)2492 void Assembler::selnez_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2493   selnez(S, fd, fs, ft);
2494 }
2495 
movz_s(FPURegister fd,FPURegister fs,Register rt)2496 void Assembler::movz_s(FPURegister fd, FPURegister fs, Register rt) {
2497   DCHECK(!IsMipsArchVariant(kMips32r6));
2498   GenInstrRegister(COP1, S, rt, fs, fd, MOVZ_C);
2499 }
2500 
movz_d(FPURegister fd,FPURegister fs,Register rt)2501 void Assembler::movz_d(FPURegister fd, FPURegister fs, Register rt) {
2502   DCHECK(!IsMipsArchVariant(kMips32r6));
2503   GenInstrRegister(COP1, D, rt, fs, fd, MOVZ_C);
2504 }
2505 
movt_s(FPURegister fd,FPURegister fs,uint16_t cc)2506 void Assembler::movt_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2507   DCHECK(!IsMipsArchVariant(kMips32r6));
2508   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2509   GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2510 }
2511 
movt_d(FPURegister fd,FPURegister fs,uint16_t cc)2512 void Assembler::movt_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2513   DCHECK(!IsMipsArchVariant(kMips32r6));
2514   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2515   GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2516 }
2517 
movf_s(FPURegister fd,FPURegister fs,uint16_t cc)2518 void Assembler::movf_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2519   DCHECK(!IsMipsArchVariant(kMips32r6));
2520   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2521   GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2522 }
2523 
movf_d(FPURegister fd,FPURegister fs,uint16_t cc)2524 void Assembler::movf_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2525   DCHECK(!IsMipsArchVariant(kMips32r6));
2526   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2527   GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2528 }
2529 
2530 // Arithmetic.
2531 
add_s(FPURegister fd,FPURegister fs,FPURegister ft)2532 void Assembler::add_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2533   GenInstrRegister(COP1, S, ft, fs, fd, ADD_S);
2534 }
2535 
add_d(FPURegister fd,FPURegister fs,FPURegister ft)2536 void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2537   GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
2538 }
2539 
sub_s(FPURegister fd,FPURegister fs,FPURegister ft)2540 void Assembler::sub_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2541   GenInstrRegister(COP1, S, ft, fs, fd, SUB_S);
2542 }
2543 
sub_d(FPURegister fd,FPURegister fs,FPURegister ft)2544 void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2545   GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
2546 }
2547 
mul_s(FPURegister fd,FPURegister fs,FPURegister ft)2548 void Assembler::mul_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2549   GenInstrRegister(COP1, S, ft, fs, fd, MUL_S);
2550 }
2551 
mul_d(FPURegister fd,FPURegister fs,FPURegister ft)2552 void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2553   GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
2554 }
2555 
madd_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2556 void Assembler::madd_s(FPURegister fd, FPURegister fr, FPURegister fs,
2557                        FPURegister ft) {
2558   DCHECK(IsMipsArchVariant(kMips32r2));
2559   GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_S);
2560 }
2561 
madd_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2562 void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
2563                        FPURegister ft) {
2564   DCHECK(IsMipsArchVariant(kMips32r2));
2565   GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_D);
2566 }
2567 
msub_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2568 void Assembler::msub_s(FPURegister fd, FPURegister fr, FPURegister fs,
2569                        FPURegister ft) {
2570   DCHECK(IsMipsArchVariant(kMips32r2));
2571   GenInstrRegister(COP1X, fr, ft, fs, fd, MSUB_S);
2572 }
2573 
msub_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2574 void Assembler::msub_d(FPURegister fd, FPURegister fr, FPURegister fs,
2575                        FPURegister ft) {
2576   DCHECK(IsMipsArchVariant(kMips32r2));
2577   GenInstrRegister(COP1X, fr, ft, fs, fd, MSUB_D);
2578 }
2579 
maddf_s(FPURegister fd,FPURegister fs,FPURegister ft)2580 void Assembler::maddf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2581   DCHECK(IsMipsArchVariant(kMips32r6));
2582   GenInstrRegister(COP1, S, ft, fs, fd, MADDF_S);
2583 }
2584 
maddf_d(FPURegister fd,FPURegister fs,FPURegister ft)2585 void Assembler::maddf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2586   DCHECK(IsMipsArchVariant(kMips32r6));
2587   GenInstrRegister(COP1, D, ft, fs, fd, MADDF_D);
2588 }
2589 
msubf_s(FPURegister fd,FPURegister fs,FPURegister ft)2590 void Assembler::msubf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2591   DCHECK(IsMipsArchVariant(kMips32r6));
2592   GenInstrRegister(COP1, S, ft, fs, fd, MSUBF_S);
2593 }
2594 
msubf_d(FPURegister fd,FPURegister fs,FPURegister ft)2595 void Assembler::msubf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2596   DCHECK(IsMipsArchVariant(kMips32r6));
2597   GenInstrRegister(COP1, D, ft, fs, fd, MSUBF_D);
2598 }
2599 
div_s(FPURegister fd,FPURegister fs,FPURegister ft)2600 void Assembler::div_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2601   GenInstrRegister(COP1, S, ft, fs, fd, DIV_S);
2602 }
2603 
div_d(FPURegister fd,FPURegister fs,FPURegister ft)2604 void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2605   GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
2606 }
2607 
abs_s(FPURegister fd,FPURegister fs)2608 void Assembler::abs_s(FPURegister fd, FPURegister fs) {
2609   GenInstrRegister(COP1, S, f0, fs, fd, ABS_S);
2610 }
2611 
abs_d(FPURegister fd,FPURegister fs)2612 void Assembler::abs_d(FPURegister fd, FPURegister fs) {
2613   GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
2614 }
2615 
mov_d(FPURegister fd,FPURegister fs)2616 void Assembler::mov_d(FPURegister fd, FPURegister fs) {
2617   GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
2618 }
2619 
mov_s(FPURegister fd,FPURegister fs)2620 void Assembler::mov_s(FPURegister fd, FPURegister fs) {
2621   GenInstrRegister(COP1, S, f0, fs, fd, MOV_S);
2622 }
2623 
neg_s(FPURegister fd,FPURegister fs)2624 void Assembler::neg_s(FPURegister fd, FPURegister fs) {
2625   GenInstrRegister(COP1, S, f0, fs, fd, NEG_S);
2626 }
2627 
neg_d(FPURegister fd,FPURegister fs)2628 void Assembler::neg_d(FPURegister fd, FPURegister fs) {
2629   GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
2630 }
2631 
sqrt_s(FPURegister fd,FPURegister fs)2632 void Assembler::sqrt_s(FPURegister fd, FPURegister fs) {
2633   GenInstrRegister(COP1, S, f0, fs, fd, SQRT_S);
2634 }
2635 
sqrt_d(FPURegister fd,FPURegister fs)2636 void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
2637   GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
2638 }
2639 
rsqrt_s(FPURegister fd,FPURegister fs)2640 void Assembler::rsqrt_s(FPURegister fd, FPURegister fs) {
2641   DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2642   GenInstrRegister(COP1, S, f0, fs, fd, RSQRT_S);
2643 }
2644 
rsqrt_d(FPURegister fd,FPURegister fs)2645 void Assembler::rsqrt_d(FPURegister fd, FPURegister fs) {
2646   DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2647   GenInstrRegister(COP1, D, f0, fs, fd, RSQRT_D);
2648 }
2649 
recip_d(FPURegister fd,FPURegister fs)2650 void Assembler::recip_d(FPURegister fd, FPURegister fs) {
2651   DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2652   GenInstrRegister(COP1, D, f0, fs, fd, RECIP_D);
2653 }
2654 
recip_s(FPURegister fd,FPURegister fs)2655 void Assembler::recip_s(FPURegister fd, FPURegister fs) {
2656   DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2657   GenInstrRegister(COP1, S, f0, fs, fd, RECIP_S);
2658 }
2659 
2660 // Conversions.
2661 
cvt_w_s(FPURegister fd,FPURegister fs)2662 void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
2663   GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
2664 }
2665 
cvt_w_d(FPURegister fd,FPURegister fs)2666 void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
2667   GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
2668 }
2669 
trunc_w_s(FPURegister fd,FPURegister fs)2670 void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
2671   GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
2672 }
2673 
trunc_w_d(FPURegister fd,FPURegister fs)2674 void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
2675   GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
2676 }
2677 
round_w_s(FPURegister fd,FPURegister fs)2678 void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
2679   GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
2680 }
2681 
round_w_d(FPURegister fd,FPURegister fs)2682 void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
2683   GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
2684 }
2685 
floor_w_s(FPURegister fd,FPURegister fs)2686 void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
2687   GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
2688 }
2689 
floor_w_d(FPURegister fd,FPURegister fs)2690 void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
2691   GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
2692 }
2693 
ceil_w_s(FPURegister fd,FPURegister fs)2694 void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
2695   GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
2696 }
2697 
ceil_w_d(FPURegister fd,FPURegister fs)2698 void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
2699   GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
2700 }
2701 
rint_s(FPURegister fd,FPURegister fs)2702 void Assembler::rint_s(FPURegister fd, FPURegister fs) { rint(S, fd, fs); }
2703 
rint(SecondaryField fmt,FPURegister fd,FPURegister fs)2704 void Assembler::rint(SecondaryField fmt, FPURegister fd, FPURegister fs) {
2705   DCHECK(IsMipsArchVariant(kMips32r6));
2706   DCHECK((fmt == D) || (fmt == S));
2707   GenInstrRegister(COP1, fmt, f0, fs, fd, RINT);
2708 }
2709 
rint_d(FPURegister fd,FPURegister fs)2710 void Assembler::rint_d(FPURegister fd, FPURegister fs) { rint(D, fd, fs); }
2711 
cvt_l_s(FPURegister fd,FPURegister fs)2712 void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
2713   DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2714          IsFp64Mode());
2715   GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
2716 }
2717 
cvt_l_d(FPURegister fd,FPURegister fs)2718 void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
2719   DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2720          IsFp64Mode());
2721   GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
2722 }
2723 
trunc_l_s(FPURegister fd,FPURegister fs)2724 void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
2725   DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2726          IsFp64Mode());
2727   GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
2728 }
2729 
trunc_l_d(FPURegister fd,FPURegister fs)2730 void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
2731   DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2732          IsFp64Mode());
2733   GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
2734 }
2735 
round_l_s(FPURegister fd,FPURegister fs)2736 void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
2737   DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2738          IsFp64Mode());
2739   GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
2740 }
2741 
round_l_d(FPURegister fd,FPURegister fs)2742 void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
2743   DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2744          IsFp64Mode());
2745   GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
2746 }
2747 
floor_l_s(FPURegister fd,FPURegister fs)2748 void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
2749   DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2750          IsFp64Mode());
2751   GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
2752 }
2753 
floor_l_d(FPURegister fd,FPURegister fs)2754 void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
2755   DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2756          IsFp64Mode());
2757   GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
2758 }
2759 
ceil_l_s(FPURegister fd,FPURegister fs)2760 void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
2761   DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2762          IsFp64Mode());
2763   GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
2764 }
2765 
ceil_l_d(FPURegister fd,FPURegister fs)2766 void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
2767   DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2768          IsFp64Mode());
2769   GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
2770 }
2771 
class_s(FPURegister fd,FPURegister fs)2772 void Assembler::class_s(FPURegister fd, FPURegister fs) {
2773   DCHECK(IsMipsArchVariant(kMips32r6));
2774   GenInstrRegister(COP1, S, f0, fs, fd, CLASS_S);
2775 }
2776 
class_d(FPURegister fd,FPURegister fs)2777 void Assembler::class_d(FPURegister fd, FPURegister fs) {
2778   DCHECK(IsMipsArchVariant(kMips32r6));
2779   GenInstrRegister(COP1, D, f0, fs, fd, CLASS_D);
2780 }
2781 
min(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2782 void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs,
2783                     FPURegister ft) {
2784   DCHECK(IsMipsArchVariant(kMips32r6));
2785   DCHECK((fmt == D) || (fmt == S));
2786   GenInstrRegister(COP1, fmt, ft, fs, fd, MIN);
2787 }
2788 
mina(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2789 void Assembler::mina(SecondaryField fmt, FPURegister fd, FPURegister fs,
2790                      FPURegister ft) {
2791   DCHECK(IsMipsArchVariant(kMips32r6));
2792   DCHECK((fmt == D) || (fmt == S));
2793   GenInstrRegister(COP1, fmt, ft, fs, fd, MINA);
2794 }
2795 
max(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2796 void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs,
2797                     FPURegister ft) {
2798   DCHECK(IsMipsArchVariant(kMips32r6));
2799   DCHECK((fmt == D) || (fmt == S));
2800   GenInstrRegister(COP1, fmt, ft, fs, fd, MAX);
2801 }
2802 
maxa(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2803 void Assembler::maxa(SecondaryField fmt, FPURegister fd, FPURegister fs,
2804                      FPURegister ft) {
2805   DCHECK(IsMipsArchVariant(kMips32r6));
2806   DCHECK((fmt == D) || (fmt == S));
2807   GenInstrRegister(COP1, fmt, ft, fs, fd, MAXA);
2808 }
2809 
min_s(FPURegister fd,FPURegister fs,FPURegister ft)2810 void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2811   min(S, fd, fs, ft);
2812 }
2813 
min_d(FPURegister fd,FPURegister fs,FPURegister ft)2814 void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2815   min(D, fd, fs, ft);
2816 }
2817 
max_s(FPURegister fd,FPURegister fs,FPURegister ft)2818 void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2819   max(S, fd, fs, ft);
2820 }
2821 
max_d(FPURegister fd,FPURegister fs,FPURegister ft)2822 void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2823   max(D, fd, fs, ft);
2824 }
2825 
mina_s(FPURegister fd,FPURegister fs,FPURegister ft)2826 void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2827   mina(S, fd, fs, ft);
2828 }
2829 
mina_d(FPURegister fd,FPURegister fs,FPURegister ft)2830 void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2831   mina(D, fd, fs, ft);
2832 }
2833 
maxa_s(FPURegister fd,FPURegister fs,FPURegister ft)2834 void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2835   maxa(S, fd, fs, ft);
2836 }
2837 
maxa_d(FPURegister fd,FPURegister fs,FPURegister ft)2838 void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2839   maxa(D, fd, fs, ft);
2840 }
2841 
cvt_s_w(FPURegister fd,FPURegister fs)2842 void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
2843   GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
2844 }
2845 
cvt_s_l(FPURegister fd,FPURegister fs)2846 void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
2847   DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2848          IsFp64Mode());
2849   GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
2850 }
2851 
cvt_s_d(FPURegister fd,FPURegister fs)2852 void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
2853   GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
2854 }
2855 
cvt_d_w(FPURegister fd,FPURegister fs)2856 void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
2857   GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
2858 }
2859 
cvt_d_l(FPURegister fd,FPURegister fs)2860 void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
2861   DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2862          IsFp64Mode());
2863   GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
2864 }
2865 
cvt_d_s(FPURegister fd,FPURegister fs)2866 void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
2867   GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
2868 }
2869 
2870 // Conditions for >= MIPSr6.
cmp(FPUCondition cond,SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2871 void Assembler::cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd,
2872                     FPURegister fs, FPURegister ft) {
2873   DCHECK(IsMipsArchVariant(kMips32r6));
2874   DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
2875   Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift |
2876                 fd.code() << kFdShift | (0 << 5) | cond;
2877   emit(instr);
2878 }
2879 
cmp_s(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)2880 void Assembler::cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs,
2881                       FPURegister ft) {
2882   cmp(cond, W, fd, fs, ft);
2883 }
2884 
cmp_d(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)2885 void Assembler::cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs,
2886                       FPURegister ft) {
2887   cmp(cond, L, fd, fs, ft);
2888 }
2889 
bc1eqz(int16_t offset,FPURegister ft)2890 void Assembler::bc1eqz(int16_t offset, FPURegister ft) {
2891   DCHECK(IsMipsArchVariant(kMips32r6));
2892   BlockTrampolinePoolScope block_trampoline_pool(this);
2893   Instr instr = COP1 | BC1EQZ | ft.code() << kFtShift | (offset & kImm16Mask);
2894   emit(instr);
2895   BlockTrampolinePoolFor(1);  // For associated delay slot.
2896 }
2897 
bc1nez(int16_t offset,FPURegister ft)2898 void Assembler::bc1nez(int16_t offset, FPURegister ft) {
2899   DCHECK(IsMipsArchVariant(kMips32r6));
2900   BlockTrampolinePoolScope block_trampoline_pool(this);
2901   Instr instr = COP1 | BC1NEZ | ft.code() << kFtShift | (offset & kImm16Mask);
2902   emit(instr);
2903   BlockTrampolinePoolFor(1);  // For associated delay slot.
2904 }
2905 
2906 // Conditions for < MIPSr6.
c(FPUCondition cond,SecondaryField fmt,FPURegister fs,FPURegister ft,uint16_t cc)2907 void Assembler::c(FPUCondition cond, SecondaryField fmt, FPURegister fs,
2908                   FPURegister ft, uint16_t cc) {
2909   DCHECK(is_uint3(cc));
2910   DCHECK(fmt == S || fmt == D);
2911   DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
2912   Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift | cc << 8 |
2913                 3 << 4 | cond;
2914   emit(instr);
2915 }
2916 
c_s(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)2917 void Assembler::c_s(FPUCondition cond, FPURegister fs, FPURegister ft,
2918                     uint16_t cc) {
2919   c(cond, S, fs, ft, cc);
2920 }
2921 
c_d(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)2922 void Assembler::c_d(FPUCondition cond, FPURegister fs, FPURegister ft,
2923                     uint16_t cc) {
2924   c(cond, D, fs, ft, cc);
2925 }
2926 
fcmp(FPURegister src1,const double src2,FPUCondition cond)2927 void Assembler::fcmp(FPURegister src1, const double src2, FPUCondition cond) {
2928   DCHECK_EQ(src2, 0.0);
2929   mtc1(zero_reg, f14);
2930   cvt_d_w(f14, f14);
2931   c(cond, D, src1, f14, 0);
2932 }
2933 
bc1f(int16_t offset,uint16_t cc)2934 void Assembler::bc1f(int16_t offset, uint16_t cc) {
2935   BlockTrampolinePoolScope block_trampoline_pool(this);
2936   DCHECK(is_uint3(cc));
2937   Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
2938   emit(instr);
2939   BlockTrampolinePoolFor(1);  // For associated delay slot.
2940 }
2941 
bc1t(int16_t offset,uint16_t cc)2942 void Assembler::bc1t(int16_t offset, uint16_t cc) {
2943   BlockTrampolinePoolScope block_trampoline_pool(this);
2944   DCHECK(is_uint3(cc));
2945   Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
2946   emit(instr);
2947   BlockTrampolinePoolFor(1);  // For associated delay slot.
2948 }
2949 
2950 // ---------- MSA instructions ------------
2951 #define MSA_BRANCH_LIST(V) \
2952   V(bz_v, BZ_V)            \
2953   V(bz_b, BZ_B)            \
2954   V(bz_h, BZ_H)            \
2955   V(bz_w, BZ_W)            \
2956   V(bz_d, BZ_D)            \
2957   V(bnz_v, BNZ_V)          \
2958   V(bnz_b, BNZ_B)          \
2959   V(bnz_h, BNZ_H)          \
2960   V(bnz_w, BNZ_W)          \
2961   V(bnz_d, BNZ_D)
2962 
2963 #define MSA_BRANCH(name, opcode)                         \
2964   void Assembler::name(MSARegister wt, int16_t offset) { \
2965     GenInstrMsaBranch(opcode, wt, offset);               \
2966   }
2967 
2968 MSA_BRANCH_LIST(MSA_BRANCH)
2969 #undef MSA_BRANCH
2970 #undef MSA_BRANCH_LIST
2971 
2972 #define MSA_LD_ST_LIST(V) \
2973   V(ld_b, LD_B)           \
2974   V(ld_h, LD_H)           \
2975   V(ld_w, LD_W)           \
2976   V(ld_d, LD_D)           \
2977   V(st_b, ST_B)           \
2978   V(st_h, ST_H)           \
2979   V(st_w, ST_W)           \
2980   V(st_d, ST_D)
2981 
2982 #define MSA_LD_ST(name, opcode)                                  \
2983   void Assembler::name(MSARegister wd, const MemOperand& rs) {   \
2984     MemOperand source = rs;                                      \
2985     AdjustBaseAndOffset(&source);                                 \
2986     if (is_int10(source.offset())) {                             \
2987       GenInstrMsaMI10(opcode, source.offset(), source.rm(), wd); \
2988     } else {                                                     \
2989       UseScratchRegisterScope temps(this);                       \
2990       Register scratch = temps.Acquire();                        \
2991       DCHECK(rs.rm() != scratch);                                \
2992       addiu(scratch, source.rm(), source.offset());              \
2993       GenInstrMsaMI10(opcode, 0, scratch, wd);                   \
2994     }                                                            \
2995   }
2996 
MSA_LD_ST_LIST(MSA_LD_ST)2997 MSA_LD_ST_LIST(MSA_LD_ST)
2998 #undef MSA_LD_ST
2999 #undef MSA_LD_ST_LIST
3000 
3001 #define MSA_I10_LIST(V) \
3002   V(ldi_b, I5_DF_b)     \
3003   V(ldi_h, I5_DF_h)     \
3004   V(ldi_w, I5_DF_w)     \
3005   V(ldi_d, I5_DF_d)
3006 
3007 #define MSA_I10(name, format)                           \
3008   void Assembler::name(MSARegister wd, int32_t imm10) { \
3009     GenInstrMsaI10(LDI, format, imm10, wd);             \
3010   }
3011 MSA_I10_LIST(MSA_I10)
3012 #undef MSA_I10
3013 #undef MSA_I10_LIST
3014 
3015 #define MSA_I5_LIST(V) \
3016   V(addvi, ADDVI)      \
3017   V(subvi, SUBVI)      \
3018   V(maxi_s, MAXI_S)    \
3019   V(maxi_u, MAXI_U)    \
3020   V(mini_s, MINI_S)    \
3021   V(mini_u, MINI_U)    \
3022   V(ceqi, CEQI)        \
3023   V(clti_s, CLTI_S)    \
3024   V(clti_u, CLTI_U)    \
3025   V(clei_s, CLEI_S)    \
3026   V(clei_u, CLEI_U)
3027 
3028 #define MSA_I5_FORMAT(name, opcode, format)                       \
3029   void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3030                                   uint32_t imm5) {                \
3031     GenInstrMsaI5(opcode, I5_DF_##format, imm5, ws, wd);          \
3032   }
3033 
3034 #define MSA_I5(name, opcode)     \
3035   MSA_I5_FORMAT(name, opcode, b) \
3036   MSA_I5_FORMAT(name, opcode, h) \
3037   MSA_I5_FORMAT(name, opcode, w) \
3038   MSA_I5_FORMAT(name, opcode, d)
3039 
3040 MSA_I5_LIST(MSA_I5)
3041 #undef MSA_I5
3042 #undef MSA_I5_FORMAT
3043 #undef MSA_I5_LIST
3044 
3045 #define MSA_I8_LIST(V) \
3046   V(andi_b, ANDI_B)    \
3047   V(ori_b, ORI_B)      \
3048   V(nori_b, NORI_B)    \
3049   V(xori_b, XORI_B)    \
3050   V(bmnzi_b, BMNZI_B)  \
3051   V(bmzi_b, BMZI_B)    \
3052   V(bseli_b, BSELI_B)  \
3053   V(shf_b, SHF_B)      \
3054   V(shf_h, SHF_H)      \
3055   V(shf_w, SHF_W)
3056 
3057 #define MSA_I8(name, opcode)                                            \
3058   void Assembler::name(MSARegister wd, MSARegister ws, uint32_t imm8) { \
3059     GenInstrMsaI8(opcode, imm8, ws, wd);                                \
3060   }
3061 
3062 MSA_I8_LIST(MSA_I8)
3063 #undef MSA_I8
3064 #undef MSA_I8_LIST
3065 
3066 #define MSA_VEC_LIST(V) \
3067   V(and_v, AND_V)       \
3068   V(or_v, OR_V)         \
3069   V(nor_v, NOR_V)       \
3070   V(xor_v, XOR_V)       \
3071   V(bmnz_v, BMNZ_V)     \
3072   V(bmz_v, BMZ_V)       \
3073   V(bsel_v, BSEL_V)
3074 
3075 #define MSA_VEC(name, opcode)                                            \
3076   void Assembler::name(MSARegister wd, MSARegister ws, MSARegister wt) { \
3077     GenInstrMsaVec(opcode, wt, ws, wd);                                  \
3078   }
3079 
3080 MSA_VEC_LIST(MSA_VEC)
3081 #undef MSA_VEC
3082 #undef MSA_VEC_LIST
3083 
3084 #define MSA_2R_LIST(V) \
3085   V(pcnt, PCNT)        \
3086   V(nloc, NLOC)        \
3087   V(nlzc, NLZC)
3088 
3089 #define MSA_2R_FORMAT(name, opcode, format)                         \
3090   void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3091     GenInstrMsa2R(opcode, MSA_2R_DF_##format, ws, wd);              \
3092   }
3093 
3094 #define MSA_2R(name, opcode)     \
3095   MSA_2R_FORMAT(name, opcode, b) \
3096   MSA_2R_FORMAT(name, opcode, h) \
3097   MSA_2R_FORMAT(name, opcode, w) \
3098   MSA_2R_FORMAT(name, opcode, d)
3099 
3100 MSA_2R_LIST(MSA_2R)
3101 #undef MSA_2R
3102 #undef MSA_2R_FORMAT
3103 #undef MSA_2R_LIST
3104 
3105 #define MSA_FILL(format)                                              \
3106   void Assembler::fill_##format(MSARegister wd, Register rs) {        \
3107     DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));     \
3108     DCHECK(rs.is_valid() && wd.is_valid());                           \
3109     Instr instr = MSA | MSA_2R_FORMAT | FILL | MSA_2R_DF_##format |   \
3110                   (rs.code() << kWsShift) | (wd.code() << kWdShift) | \
3111                   MSA_VEC_2R_2RF_MINOR;                               \
3112     emit(instr);                                                      \
3113   }
3114 
3115 MSA_FILL(b)
3116 MSA_FILL(h)
3117 MSA_FILL(w)
3118 #undef MSA_FILL
3119 
3120 #define MSA_2RF_LIST(V) \
3121   V(fclass, FCLASS)     \
3122   V(ftrunc_s, FTRUNC_S) \
3123   V(ftrunc_u, FTRUNC_U) \
3124   V(fsqrt, FSQRT)       \
3125   V(frsqrt, FRSQRT)     \
3126   V(frcp, FRCP)         \
3127   V(frint, FRINT)       \
3128   V(flog2, FLOG2)       \
3129   V(fexupl, FEXUPL)     \
3130   V(fexupr, FEXUPR)     \
3131   V(ffql, FFQL)         \
3132   V(ffqr, FFQR)         \
3133   V(ftint_s, FTINT_S)   \
3134   V(ftint_u, FTINT_U)   \
3135   V(ffint_s, FFINT_S)   \
3136   V(ffint_u, FFINT_U)
3137 
3138 #define MSA_2RF_FORMAT(name, opcode, format)                        \
3139   void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3140     GenInstrMsa2RF(opcode, MSA_2RF_DF_##format, ws, wd);            \
3141   }
3142 
3143 #define MSA_2RF(name, opcode)     \
3144   MSA_2RF_FORMAT(name, opcode, w) \
3145   MSA_2RF_FORMAT(name, opcode, d)
3146 
3147 MSA_2RF_LIST(MSA_2RF)
3148 #undef MSA_2RF
3149 #undef MSA_2RF_FORMAT
3150 #undef MSA_2RF_LIST
3151 
3152 #define MSA_3R_LIST(V)  \
3153   V(sll, SLL_MSA)       \
3154   V(sra, SRA_MSA)       \
3155   V(srl, SRL_MSA)       \
3156   V(bclr, BCLR)         \
3157   V(bset, BSET)         \
3158   V(bneg, BNEG)         \
3159   V(binsl, BINSL)       \
3160   V(binsr, BINSR)       \
3161   V(addv, ADDV)         \
3162   V(subv, SUBV)         \
3163   V(max_s, MAX_S)       \
3164   V(max_u, MAX_U)       \
3165   V(min_s, MIN_S)       \
3166   V(min_u, MIN_U)       \
3167   V(max_a, MAX_A)       \
3168   V(min_a, MIN_A)       \
3169   V(ceq, CEQ)           \
3170   V(clt_s, CLT_S)       \
3171   V(clt_u, CLT_U)       \
3172   V(cle_s, CLE_S)       \
3173   V(cle_u, CLE_U)       \
3174   V(add_a, ADD_A)       \
3175   V(adds_a, ADDS_A)     \
3176   V(adds_s, ADDS_S)     \
3177   V(adds_u, ADDS_U)     \
3178   V(ave_s, AVE_S)       \
3179   V(ave_u, AVE_U)       \
3180   V(aver_s, AVER_S)     \
3181   V(aver_u, AVER_U)     \
3182   V(subs_s, SUBS_S)     \
3183   V(subs_u, SUBS_U)     \
3184   V(subsus_u, SUBSUS_U) \
3185   V(subsuu_s, SUBSUU_S) \
3186   V(asub_s, ASUB_S)     \
3187   V(asub_u, ASUB_U)     \
3188   V(mulv, MULV)         \
3189   V(maddv, MADDV)       \
3190   V(msubv, MSUBV)       \
3191   V(div_s, DIV_S_MSA)   \
3192   V(div_u, DIV_U)       \
3193   V(mod_s, MOD_S)       \
3194   V(mod_u, MOD_U)       \
3195   V(dotp_s, DOTP_S)     \
3196   V(dotp_u, DOTP_U)     \
3197   V(dpadd_s, DPADD_S)   \
3198   V(dpadd_u, DPADD_U)   \
3199   V(dpsub_s, DPSUB_S)   \
3200   V(dpsub_u, DPSUB_U)   \
3201   V(pckev, PCKEV)       \
3202   V(pckod, PCKOD)       \
3203   V(ilvl, ILVL)         \
3204   V(ilvr, ILVR)         \
3205   V(ilvev, ILVEV)       \
3206   V(ilvod, ILVOD)       \
3207   V(vshf, VSHF)         \
3208   V(srar, SRAR)         \
3209   V(srlr, SRLR)         \
3210   V(hadd_s, HADD_S)     \
3211   V(hadd_u, HADD_U)     \
3212   V(hsub_s, HSUB_S)     \
3213   V(hsub_u, HSUB_U)
3214 
3215 #define MSA_3R_FORMAT(name, opcode, format)                             \
3216   void Assembler::name##_##format(MSARegister wd, MSARegister ws,       \
3217                                   MSARegister wt) {                     \
3218     GenInstrMsa3R<MSARegister>(opcode, MSA_3R_DF_##format, wt, ws, wd); \
3219   }
3220 
3221 #define MSA_3R_FORMAT_SLD_SPLAT(name, opcode, format)                \
3222   void Assembler::name##_##format(MSARegister wd, MSARegister ws,    \
3223                                   Register rt) {                     \
3224     GenInstrMsa3R<Register>(opcode, MSA_3R_DF_##format, rt, ws, wd); \
3225   }
3226 
3227 #define MSA_3R(name, opcode)     \
3228   MSA_3R_FORMAT(name, opcode, b) \
3229   MSA_3R_FORMAT(name, opcode, h) \
3230   MSA_3R_FORMAT(name, opcode, w) \
3231   MSA_3R_FORMAT(name, opcode, d)
3232 
3233 #define MSA_3R_SLD_SPLAT(name, opcode)     \
3234   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, b) \
3235   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, h) \
3236   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, w) \
3237   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, d)
3238 
3239 MSA_3R_LIST(MSA_3R)
3240 MSA_3R_SLD_SPLAT(sld, SLD)
3241 MSA_3R_SLD_SPLAT(splat, SPLAT)
3242 
3243 #undef MSA_3R
3244 #undef MSA_3R_FORMAT
3245 #undef MSA_3R_FORMAT_SLD_SPLAT
3246 #undef MSA_3R_SLD_SPLAT
3247 #undef MSA_3R_LIST
3248 
3249 #define MSA_3RF_LIST1(V) \
3250   V(fcaf, FCAF)          \
3251   V(fcun, FCUN)          \
3252   V(fceq, FCEQ)          \
3253   V(fcueq, FCUEQ)        \
3254   V(fclt, FCLT)          \
3255   V(fcult, FCULT)        \
3256   V(fcle, FCLE)          \
3257   V(fcule, FCULE)        \
3258   V(fsaf, FSAF)          \
3259   V(fsun, FSUN)          \
3260   V(fseq, FSEQ)          \
3261   V(fsueq, FSUEQ)        \
3262   V(fslt, FSLT)          \
3263   V(fsult, FSULT)        \
3264   V(fsle, FSLE)          \
3265   V(fsule, FSULE)        \
3266   V(fadd, FADD)          \
3267   V(fsub, FSUB)          \
3268   V(fmul, FMUL)          \
3269   V(fdiv, FDIV)          \
3270   V(fmadd, FMADD)        \
3271   V(fmsub, FMSUB)        \
3272   V(fexp2, FEXP2)        \
3273   V(fmin, FMIN)          \
3274   V(fmin_a, FMIN_A)      \
3275   V(fmax, FMAX)          \
3276   V(fmax_a, FMAX_A)      \
3277   V(fcor, FCOR)          \
3278   V(fcune, FCUNE)        \
3279   V(fcne, FCNE)          \
3280   V(fsor, FSOR)          \
3281   V(fsune, FSUNE)        \
3282   V(fsne, FSNE)
3283 
3284 #define MSA_3RF_LIST2(V) \
3285   V(fexdo, FEXDO)        \
3286   V(ftq, FTQ)            \
3287   V(mul_q, MUL_Q)        \
3288   V(madd_q, MADD_Q)      \
3289   V(msub_q, MSUB_Q)      \
3290   V(mulr_q, MULR_Q)      \
3291   V(maddr_q, MADDR_Q)    \
3292   V(msubr_q, MSUBR_Q)
3293 
3294 #define MSA_3RF_FORMAT(name, opcode, df, df_c)                \
3295   void Assembler::name##_##df(MSARegister wd, MSARegister ws, \
3296                               MSARegister wt) {               \
3297     GenInstrMsa3RF(opcode, df_c, wt, ws, wd);                 \
3298   }
3299 
3300 #define MSA_3RF_1(name, opcode)      \
3301   MSA_3RF_FORMAT(name, opcode, w, 0) \
3302   MSA_3RF_FORMAT(name, opcode, d, 1)
3303 
3304 #define MSA_3RF_2(name, opcode)      \
3305   MSA_3RF_FORMAT(name, opcode, h, 0) \
3306   MSA_3RF_FORMAT(name, opcode, w, 1)
3307 
3308 MSA_3RF_LIST1(MSA_3RF_1)
3309 MSA_3RF_LIST2(MSA_3RF_2)
3310 #undef MSA_3RF_1
3311 #undef MSA_3RF_2
3312 #undef MSA_3RF_FORMAT
3313 #undef MSA_3RF_LIST1
3314 #undef MSA_3RF_LIST2
3315 
3316 void Assembler::sldi_b(MSARegister wd, MSARegister ws, uint32_t n) {
3317   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_B, n, ws, wd);
3318 }
3319 
sldi_h(MSARegister wd,MSARegister ws,uint32_t n)3320 void Assembler::sldi_h(MSARegister wd, MSARegister ws, uint32_t n) {
3321   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_H, n, ws, wd);
3322 }
3323 
sldi_w(MSARegister wd,MSARegister ws,uint32_t n)3324 void Assembler::sldi_w(MSARegister wd, MSARegister ws, uint32_t n) {
3325   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_W, n, ws, wd);
3326 }
3327 
sldi_d(MSARegister wd,MSARegister ws,uint32_t n)3328 void Assembler::sldi_d(MSARegister wd, MSARegister ws, uint32_t n) {
3329   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_D, n, ws, wd);
3330 }
3331 
splati_b(MSARegister wd,MSARegister ws,uint32_t n)3332 void Assembler::splati_b(MSARegister wd, MSARegister ws, uint32_t n) {
3333   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_B, n, ws, wd);
3334 }
3335 
splati_h(MSARegister wd,MSARegister ws,uint32_t n)3336 void Assembler::splati_h(MSARegister wd, MSARegister ws, uint32_t n) {
3337   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_H, n, ws, wd);
3338 }
3339 
splati_w(MSARegister wd,MSARegister ws,uint32_t n)3340 void Assembler::splati_w(MSARegister wd, MSARegister ws, uint32_t n) {
3341   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_W, n, ws, wd);
3342 }
3343 
splati_d(MSARegister wd,MSARegister ws,uint32_t n)3344 void Assembler::splati_d(MSARegister wd, MSARegister ws, uint32_t n) {
3345   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_D, n, ws, wd);
3346 }
3347 
copy_s_b(Register rd,MSARegister ws,uint32_t n)3348 void Assembler::copy_s_b(Register rd, MSARegister ws, uint32_t n) {
3349   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_B, n, ws, rd);
3350 }
3351 
copy_s_h(Register rd,MSARegister ws,uint32_t n)3352 void Assembler::copy_s_h(Register rd, MSARegister ws, uint32_t n) {
3353   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_H, n, ws, rd);
3354 }
3355 
copy_s_w(Register rd,MSARegister ws,uint32_t n)3356 void Assembler::copy_s_w(Register rd, MSARegister ws, uint32_t n) {
3357   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_W, n, ws, rd);
3358 }
3359 
copy_u_b(Register rd,MSARegister ws,uint32_t n)3360 void Assembler::copy_u_b(Register rd, MSARegister ws, uint32_t n) {
3361   GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_B, n, ws, rd);
3362 }
3363 
copy_u_h(Register rd,MSARegister ws,uint32_t n)3364 void Assembler::copy_u_h(Register rd, MSARegister ws, uint32_t n) {
3365   GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_H, n, ws, rd);
3366 }
3367 
copy_u_w(Register rd,MSARegister ws,uint32_t n)3368 void Assembler::copy_u_w(Register rd, MSARegister ws, uint32_t n) {
3369   GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_W, n, ws, rd);
3370 }
3371 
insert_b(MSARegister wd,uint32_t n,Register rs)3372 void Assembler::insert_b(MSARegister wd, uint32_t n, Register rs) {
3373   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_B, n, rs, wd);
3374 }
3375 
insert_h(MSARegister wd,uint32_t n,Register rs)3376 void Assembler::insert_h(MSARegister wd, uint32_t n, Register rs) {
3377   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_H, n, rs, wd);
3378 }
3379 
insert_w(MSARegister wd,uint32_t n,Register rs)3380 void Assembler::insert_w(MSARegister wd, uint32_t n, Register rs) {
3381   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_W, n, rs, wd);
3382 }
3383 
insve_b(MSARegister wd,uint32_t n,MSARegister ws)3384 void Assembler::insve_b(MSARegister wd, uint32_t n, MSARegister ws) {
3385   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_B, n, ws, wd);
3386 }
3387 
insve_h(MSARegister wd,uint32_t n,MSARegister ws)3388 void Assembler::insve_h(MSARegister wd, uint32_t n, MSARegister ws) {
3389   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_H, n, ws, wd);
3390 }
3391 
insve_w(MSARegister wd,uint32_t n,MSARegister ws)3392 void Assembler::insve_w(MSARegister wd, uint32_t n, MSARegister ws) {
3393   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_W, n, ws, wd);
3394 }
3395 
insve_d(MSARegister wd,uint32_t n,MSARegister ws)3396 void Assembler::insve_d(MSARegister wd, uint32_t n, MSARegister ws) {
3397   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_D, n, ws, wd);
3398 }
3399 
move_v(MSARegister wd,MSARegister ws)3400 void Assembler::move_v(MSARegister wd, MSARegister ws) {
3401   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
3402   DCHECK(ws.is_valid() && wd.is_valid());
3403   Instr instr = MSA | MOVE_V | (ws.code() << kWsShift) |
3404                 (wd.code() << kWdShift) | MSA_ELM_MINOR;
3405   emit(instr);
3406 }
3407 
ctcmsa(MSAControlRegister cd,Register rs)3408 void Assembler::ctcmsa(MSAControlRegister cd, Register rs) {
3409   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
3410   DCHECK(cd.is_valid() && rs.is_valid());
3411   Instr instr = MSA | CTCMSA | (rs.code() << kWsShift) |
3412                 (cd.code() << kWdShift) | MSA_ELM_MINOR;
3413   emit(instr);
3414 }
3415 
cfcmsa(Register rd,MSAControlRegister cs)3416 void Assembler::cfcmsa(Register rd, MSAControlRegister cs) {
3417   DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
3418   DCHECK(rd.is_valid() && cs.is_valid());
3419   Instr instr = MSA | CFCMSA | (cs.code() << kWsShift) |
3420                 (rd.code() << kWdShift) | MSA_ELM_MINOR;
3421   emit(instr);
3422 }
3423 
3424 #define MSA_BIT_LIST(V) \
3425   V(slli, SLLI)         \
3426   V(srai, SRAI)         \
3427   V(srli, SRLI)         \
3428   V(bclri, BCLRI)       \
3429   V(bseti, BSETI)       \
3430   V(bnegi, BNEGI)       \
3431   V(binsli, BINSLI)     \
3432   V(binsri, BINSRI)     \
3433   V(sat_s, SAT_S)       \
3434   V(sat_u, SAT_U)       \
3435   V(srari, SRARI)       \
3436   V(srlri, SRLRI)
3437 
3438 #define MSA_BIT_FORMAT(name, opcode, format)                      \
3439   void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3440                                   uint32_t m) {                   \
3441     GenInstrMsaBit(opcode, BIT_DF_##format, m, ws, wd);           \
3442   }
3443 
3444 #define MSA_BIT(name, opcode)     \
3445   MSA_BIT_FORMAT(name, opcode, b) \
3446   MSA_BIT_FORMAT(name, opcode, h) \
3447   MSA_BIT_FORMAT(name, opcode, w) \
3448   MSA_BIT_FORMAT(name, opcode, d)
3449 
MSA_BIT_LIST(MSA_BIT)3450 MSA_BIT_LIST(MSA_BIT)
3451 #undef MSA_BIT
3452 #undef MSA_BIT_FORMAT
3453 #undef MSA_BIT_LIST
3454 
3455 int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
3456                                          intptr_t pc_delta) {
3457   Instr instr = instr_at(pc);
3458 
3459   if (RelocInfo::IsInternalReference(rmode)) {
3460     int32_t* p = reinterpret_cast<int32_t*>(pc);
3461     if (*p == 0) {
3462       return 0;  // Number of instructions patched.
3463     }
3464     *p += pc_delta;
3465     return 1;  // Number of instructions patched.
3466   } else {
3467     DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode));
3468     if (IsLui(instr)) {
3469       Instr instr1 = instr_at(pc + 0 * kInstrSize);
3470       Instr instr2 = instr_at(pc + 1 * kInstrSize);
3471       DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
3472       int32_t imm;
3473       if (IsJicOrJialc(instr2)) {
3474         imm = CreateTargetAddress(instr1, instr2);
3475       } else {
3476         imm = GetLuiOriImmediate(instr1, instr2);
3477       }
3478 
3479       if (imm == kEndOfJumpChain) {
3480         return 0;  // Number of instructions patched.
3481       }
3482       imm += pc_delta;
3483       DCHECK_EQ(imm & 3, 0);
3484       instr1 &= ~kImm16Mask;
3485       instr2 &= ~kImm16Mask;
3486 
3487       if (IsJicOrJialc(instr2)) {
3488         uint32_t lui_offset_u, jic_offset_u;
3489         Assembler::UnpackTargetAddressUnsigned(imm,
3490                                                &lui_offset_u, &jic_offset_u);
3491         instr_at_put(pc + 0 * kInstrSize, instr1 | lui_offset_u);
3492         instr_at_put(pc + 1 * kInstrSize, instr2 | jic_offset_u);
3493       } else {
3494         PatchLuiOriImmediate(pc, imm, instr1, 0 * kInstrSize, instr2,
3495                              1 * kInstrSize);
3496       }
3497       return 2;  // Number of instructions patched.
3498     } else {
3499       UNREACHABLE();
3500     }
3501   }
3502 }
3503 
RelocateRelativeReference(RelocInfo::Mode rmode,Address pc,intptr_t pc_delta)3504 void Assembler::RelocateRelativeReference(RelocInfo::Mode rmode, Address pc,
3505                                           intptr_t pc_delta) {
3506   Instr instr = instr_at(pc);
3507 
3508   DCHECK(RelocInfo::IsRelativeCodeTarget(rmode));
3509   if (IsLui(instr)) {
3510     Instr instr1 = instr_at(pc + 0 * kInstrSize);
3511     Instr instr2 = instr_at(pc + 1 * kInstrSize);
3512     Instr instr3 = instr_at(pc + 2 * kInstrSize);
3513     int32_t imm;
3514     Address ori_offset;
3515     if (IsNal(instr2)) {
3516       instr2 = instr3;
3517       ori_offset = 2 * kInstrSize;
3518     } else {
3519       ori_offset = 1 * kInstrSize;
3520     }
3521     DCHECK(IsOri(instr2));
3522     imm = GetLuiOriImmediate(instr1, instr2);
3523     instr1 &= ~kImm16Mask;
3524     instr2 &= ~kImm16Mask;
3525 
3526     if (imm == kEndOfJumpChain) {
3527       return;
3528     }
3529     imm -= pc_delta;
3530     DCHECK_EQ(imm & 3, 0);
3531     PatchLuiOriImmediate(pc, imm, instr1, 0 * kInstrSize, instr2, ori_offset);
3532     return;
3533   } else {
3534     UNREACHABLE();
3535   }
3536 }
3537 
GrowBuffer()3538 void Assembler::GrowBuffer() {
3539   // Compute new buffer size.
3540   int old_size = buffer_->size();
3541   int new_size = std::min(2 * old_size, old_size + 1 * MB);
3542 
3543   // Some internal data structures overflow for very large buffers,
3544   // they must ensure that kMaximalBufferSize is not too large.
3545   if (new_size > kMaximalBufferSize) {
3546     V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer");
3547   }
3548 
3549   // Set up new buffer.
3550   std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size);
3551   DCHECK_EQ(new_size, new_buffer->size());
3552   byte* new_start = new_buffer->start();
3553 
3554   // Copy the data.
3555   int pc_delta = new_start - buffer_start_;
3556   int rc_delta = (new_start + new_size) - (buffer_start_ + old_size);
3557   size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos();
3558   MemMove(new_start, buffer_start_, pc_offset());
3559   MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
3560           reloc_size);
3561 
3562   // Switch buffers.
3563   buffer_ = std::move(new_buffer);
3564   buffer_start_ = new_start;
3565   pc_ += pc_delta;
3566   pc_for_safepoint_ += pc_delta;
3567   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
3568                                reloc_info_writer.last_pc() + pc_delta);
3569 
3570   // Relocate runtime entries.
3571   base::Vector<byte> instructions{buffer_start_,
3572                                   static_cast<size_t>(pc_offset())};
3573   base::Vector<const byte> reloc_info{reloc_info_writer.pos(), reloc_size};
3574   for (RelocIterator it(instructions, reloc_info, 0); !it.done(); it.next()) {
3575     RelocInfo::Mode rmode = it.rinfo()->rmode();
3576     if (rmode == RelocInfo::INTERNAL_REFERENCE_ENCODED ||
3577         rmode == RelocInfo::INTERNAL_REFERENCE) {
3578       RelocateInternalReference(rmode, it.rinfo()->pc(), pc_delta);
3579     }
3580   }
3581 
3582   DCHECK(!overflow());
3583 }
3584 
db(uint8_t data)3585 void Assembler::db(uint8_t data) {
3586   CheckForEmitInForbiddenSlot();
3587   *reinterpret_cast<uint8_t*>(pc_) = data;
3588   pc_ += sizeof(uint8_t);
3589 }
3590 
dd(uint32_t data,RelocInfo::Mode rmode)3591 void Assembler::dd(uint32_t data, RelocInfo::Mode rmode) {
3592   CheckForEmitInForbiddenSlot();
3593   if (!RelocInfo::IsNoInfo(rmode)) {
3594     DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) ||
3595            RelocInfo::IsLiteralConstant(rmode));
3596     RecordRelocInfo(rmode);
3597   }
3598   *reinterpret_cast<uint32_t*>(pc_) = data;
3599   pc_ += sizeof(uint32_t);
3600 }
3601 
dq(uint64_t data,RelocInfo::Mode rmode)3602 void Assembler::dq(uint64_t data, RelocInfo::Mode rmode) {
3603   CheckForEmitInForbiddenSlot();
3604   if (!RelocInfo::IsNoInfo(rmode)) {
3605     DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) ||
3606            RelocInfo::IsLiteralConstant(rmode));
3607     RecordRelocInfo(rmode);
3608   }
3609   *reinterpret_cast<uint64_t*>(pc_) = data;
3610   pc_ += sizeof(uint64_t);
3611 }
3612 
dd(Label * label)3613 void Assembler::dd(Label* label) {
3614   uint32_t data;
3615   CheckForEmitInForbiddenSlot();
3616   if (label->is_bound()) {
3617     data = reinterpret_cast<uint32_t>(buffer_start_ + label->pos());
3618   } else {
3619     data = jump_address(label);
3620     unbound_labels_count_++;
3621     internal_reference_positions_.insert(label->pos());
3622   }
3623   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3624   EmitHelper(data);
3625 }
3626 
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3627 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3628   if (!ShouldRecordRelocInfo(rmode)) return;
3629   // We do not try to reuse pool constants.
3630   RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, Code());
3631   DCHECK_GE(buffer_space(), kMaxRelocSize);  // Too late to grow buffer here.
3632   reloc_info_writer.Write(&rinfo);
3633 }
3634 
BlockTrampolinePoolFor(int instructions)3635 void Assembler::BlockTrampolinePoolFor(int instructions) {
3636   CheckTrampolinePoolQuick(instructions);
3637   BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
3638 }
3639 
CheckTrampolinePool()3640 void Assembler::CheckTrampolinePool() {
3641   // Some small sequences of instructions must not be broken up by the
3642   // insertion of a trampoline pool; such sequences are protected by setting
3643   // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
3644   // which are both checked here. Also, recursive calls to CheckTrampolinePool
3645   // are blocked by trampoline_pool_blocked_nesting_.
3646   if ((trampoline_pool_blocked_nesting_ > 0) ||
3647       (pc_offset() < no_trampoline_pool_before_)) {
3648     // Emission is currently blocked; make sure we try again as soon as
3649     // possible.
3650     if (trampoline_pool_blocked_nesting_ > 0) {
3651       next_buffer_check_ = pc_offset() + kInstrSize;
3652     } else {
3653       next_buffer_check_ = no_trampoline_pool_before_;
3654     }
3655     return;
3656   }
3657 
3658   DCHECK(!trampoline_emitted_);
3659   DCHECK_GE(unbound_labels_count_, 0);
3660   if (unbound_labels_count_ > 0) {
3661     // First we emit jump (2 instructions), then we emit trampoline pool.
3662     {
3663       BlockTrampolinePoolScope block_trampoline_pool(this);
3664       Label after_pool;
3665       if (IsMipsArchVariant(kMips32r6)) {
3666         bc(&after_pool);
3667       } else {
3668         b(&after_pool);
3669       }
3670       nop();
3671 
3672       int pool_start = pc_offset();
3673       for (int i = 0; i < unbound_labels_count_; i++) {
3674         {
3675           if (IsMipsArchVariant(kMips32r6)) {
3676             bc(&after_pool);
3677             nop();
3678           } else {
3679             GenPCRelativeJump(t8, t9, 0, RelocInfo::NO_INFO,
3680                               BranchDelaySlot::PROTECT);
3681           }
3682         }
3683       }
3684       // If unbound_labels_count_ is big enough, label after_pool will
3685       // need a trampoline too, so we must create the trampoline before
3686       // the bind operation to make sure function 'bind' can get this
3687       // information.
3688       trampoline_ = Trampoline(pool_start, unbound_labels_count_);
3689       bind(&after_pool);
3690 
3691       trampoline_emitted_ = true;
3692       // As we are only going to emit trampoline once, we need to prevent any
3693       // further emission.
3694       next_buffer_check_ = kMaxInt;
3695     }
3696   } else {
3697     // Number of branches to unbound label at this point is zero, so we can
3698     // move next buffer check to maximum.
3699     next_buffer_check_ =
3700         pc_offset() + kMaxBranchOffset - kTrampolineSlotsSize * 16;
3701   }
3702   return;
3703 }
3704 
target_address_at(Address pc)3705 Address Assembler::target_address_at(Address pc) {
3706   Instr instr1 = instr_at(pc);
3707   Instr instr2 = instr_at(pc + kInstrSize);
3708   Instr instr3 = instr_at(pc + 2 * kInstrSize);
3709   // Interpret 2 instructions generated by li (lui/ori) or optimized pairs
3710   // lui/jic, aui/jic or lui/jialc.
3711   if (IsLui(instr1)) {
3712     if (IsOri(instr2)) {
3713       Address target_address;
3714       // Assemble the 32 bit value.
3715       target_address = GetLuiOriImmediate(instr1, instr2);
3716       if (IsAddu(instr3, t9, ra, t9)) {
3717         target_address += pc + kRelativeJumpForBuiltinsOffset;
3718       }
3719       return target_address;
3720     } else if (IsJicOrJialc(instr2)) {
3721       // Assemble the 32 bit value.
3722       return static_cast<Address>(CreateTargetAddress(instr1, instr2));
3723     } else if (IsNal(instr2)) {
3724       DCHECK(IsOri(instr3));
3725       Address target_address;
3726       target_address = GetLuiOriImmediate(instr1, instr3);
3727       return target_address + pc + kRelativeCallForBuiltinsOffset;
3728     }
3729   }
3730 
3731   // We should never get here, force a bad address if we do.
3732   UNREACHABLE();
3733 }
3734 
3735 // On Mips, a target address is stored in a lui/ori instruction pair, each
3736 // of which load 16 bits of the 32-bit address to a register.
3737 // Patching the address must replace both instr, and flush the i-cache.
3738 // On r6, target address is stored in a lui/jic pair, and both instr have to be
3739 // patched.
set_target_value_at(Address pc,uint32_t target,ICacheFlushMode icache_flush_mode)3740 void Assembler::set_target_value_at(Address pc, uint32_t target,
3741                                     ICacheFlushMode icache_flush_mode) {
3742   Instr instr1 = instr_at(pc);
3743   Instr instr2 = instr_at(pc + kInstrSize);
3744 
3745 #ifdef DEBUG
3746   // Check we have the result from a li macro-instruction, using instr pair.
3747   DCHECK(IsLui(instr1) &&
3748          (IsOri(instr2) || IsJicOrJialc(instr2) || IsNal(instr2)));
3749 #endif
3750 
3751   if (IsJicOrJialc(instr2)) {
3752     // Must use 2 instructions to insure patchable code => use lui and jic
3753     uint32_t lui_offset, jic_offset;
3754     Assembler::UnpackTargetAddressUnsigned(target, &lui_offset, &jic_offset);
3755 
3756     instr1 &= ~kImm16Mask;
3757     instr2 &= ~kImm16Mask;
3758 
3759     instr1 |= lui_offset;
3760     instr2 |= jic_offset;
3761 
3762     instr_at_put(pc, instr1);
3763     instr_at_put(pc + kInstrSize, instr2);
3764   } else {
3765     Instr instr3 = instr_at(pc + 2 * kInstrSize);
3766     // If we are using relative calls/jumps for builtins.
3767     if (IsNal(instr2)) {
3768       target -= pc + kRelativeCallForBuiltinsOffset;
3769     }
3770     if (IsAddu(instr3, t9, ra, t9)) {
3771       target -= pc + kRelativeJumpForBuiltinsOffset;
3772     }
3773     // Must use 2 instructions to insure patchable code => just use lui and ori.
3774     // lui rt, upper-16.
3775     // ori rt rt, lower-16.
3776     if (IsNal(instr2)) {
3777       instr1 &= ~kImm16Mask;
3778       instr3 &= ~kImm16Mask;
3779       PatchLuiOriImmediate(pc, target, instr1, 0 * kInstrSize, instr3,
3780                            2 * kInstrSize);
3781     } else {
3782       instr1 &= ~kImm16Mask;
3783       instr2 &= ~kImm16Mask;
3784       PatchLuiOriImmediate(pc, target, instr1, 0 * kInstrSize, instr2,
3785                            1 * kInstrSize);
3786     }
3787   }
3788 
3789   if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
3790     FlushInstructionCache(pc, 2 * sizeof(int32_t));
3791   }
3792 }
3793 
GenPCRelativeJump(Register tf,Register ts,int32_t imm32,RelocInfo::Mode rmode,BranchDelaySlot bdslot)3794 void Assembler::GenPCRelativeJump(Register tf, Register ts, int32_t imm32,
3795                                   RelocInfo::Mode rmode,
3796                                   BranchDelaySlot bdslot) {
3797   // Order of these instructions is relied upon when patching them
3798   // or when changing imm32 that lui/ori pair loads.
3799   or_(tf, ra, zero_reg);
3800   nal();  // Relative place of nal instruction determines kLongBranchPCOffset.
3801   if (!RelocInfo::IsNoInfo(rmode)) {
3802     RecordRelocInfo(rmode);
3803   }
3804   lui(ts, (imm32 & kHiMask) >> kLuiShift);
3805   ori(ts, ts, (imm32 & kImm16Mask));
3806   addu(ts, ra, ts);
3807   if (bdslot == USE_DELAY_SLOT) {
3808     or_(ra, tf, zero_reg);
3809   }
3810   jr(ts);
3811   if (bdslot == PROTECT) {
3812     or_(ra, tf, zero_reg);
3813   }
3814 }
3815 
GenPCRelativeJumpAndLink(Register t,int32_t imm32,RelocInfo::Mode rmode,BranchDelaySlot bdslot)3816 void Assembler::GenPCRelativeJumpAndLink(Register t, int32_t imm32,
3817                                          RelocInfo::Mode rmode,
3818                                          BranchDelaySlot bdslot) {
3819   if (!RelocInfo::IsNoInfo(rmode)) {
3820     RecordRelocInfo(rmode);
3821   }
3822   // Order of these instructions is relied upon when patching them
3823   // or when changing imm32 that lui/ori pair loads.
3824   lui(t, (imm32 & kHiMask) >> kLuiShift);
3825   nal();  // Relative place of nal instruction determines kLongBranchPCOffset.
3826   ori(t, t, (imm32 & kImm16Mask));
3827   addu(t, ra, t);
3828   jalr(t);
3829   if (bdslot == PROTECT) nop();
3830   set_pc_for_safepoint();
3831 }
3832 
UseScratchRegisterScope(Assembler * assembler)3833 UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler)
3834     : available_(assembler->GetScratchRegisterList()),
3835       old_available_(*available_) {}
3836 
~UseScratchRegisterScope()3837 UseScratchRegisterScope::~UseScratchRegisterScope() {
3838   *available_ = old_available_;
3839 }
3840 
Acquire()3841 Register UseScratchRegisterScope::Acquire() {
3842   DCHECK_NOT_NULL(available_);
3843   return available_->PopFirst();
3844 }
3845 
hasAvailable() const3846 bool UseScratchRegisterScope::hasAvailable() const {
3847   return !available_->is_empty();
3848 }
3849 
3850 }  // namespace internal
3851 }  // namespace v8
3852 
3853 #endif  // V8_TARGET_ARCH_MIPS
3854