1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35 #include "src/codegen/mips/assembler-mips.h"
36
37 #if V8_TARGET_ARCH_MIPS
38
39 #include "src/base/bits.h"
40 #include "src/base/cpu.h"
41 #include "src/codegen/mips/assembler-mips-inl.h"
42 #include "src/codegen/safepoint-table.h"
43 #include "src/codegen/string-constants.h"
44 #include "src/deoptimizer/deoptimizer.h"
45 #include "src/objects/heap-number-inl.h"
46
47 namespace v8 {
48 namespace internal {
49
50 // Get the CPU features enabled by the build. For cross compilation the
51 // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
52 // can be defined to enable FPU instructions when building the
53 // snapshot.
CpuFeaturesImpliedByCompiler()54 static unsigned CpuFeaturesImpliedByCompiler() {
55 unsigned answer = 0;
56 #ifdef CAN_USE_FPU_INSTRUCTIONS
57 answer |= 1u << FPU;
58 #endif // def CAN_USE_FPU_INSTRUCTIONS
59
60 // If the compiler is allowed to use FPU then we can use FPU too in our code
61 // generation even when generating snapshots. This won't work for cross
62 // compilation.
63 #if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0
64 answer |= 1u << FPU;
65 #endif
66
67 return answer;
68 }
69
SupportsWasmSimd128()70 bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); }
71
ProbeImpl(bool cross_compile)72 void CpuFeatures::ProbeImpl(bool cross_compile) {
73 supported_ |= CpuFeaturesImpliedByCompiler();
74
75 // Only use statically determined features for cross compile (snapshot).
76 if (cross_compile) return;
77
78 // If the compiler is allowed to use fpu then we can use fpu too in our
79 // code generation.
80 #ifndef __mips__
81 // For the simulator build, use FPU.
82 supported_ |= 1u << FPU;
83 #if defined(_MIPS_ARCH_MIPS32R6)
84 // FP64 mode is implied on r6.
85 supported_ |= 1u << FP64FPU;
86 #if defined(_MIPS_MSA)
87 supported_ |= 1u << MIPS_SIMD;
88 #endif
89 #endif
90 #if defined(FPU_MODE_FP64)
91 supported_ |= 1u << FP64FPU;
92 #endif
93 #else
94 // Probe for additional features at runtime.
95 base::CPU cpu;
96 if (cpu.has_fpu()) supported_ |= 1u << FPU;
97 #if defined(FPU_MODE_FPXX)
98 if (cpu.is_fp64_mode()) supported_ |= 1u << FP64FPU;
99 #elif defined(FPU_MODE_FP64)
100 supported_ |= 1u << FP64FPU;
101 #if defined(_MIPS_ARCH_MIPS32R6)
102 #if defined(_MIPS_MSA)
103 supported_ |= 1u << MIPS_SIMD;
104 #else
105 if (cpu.has_msa()) supported_ |= 1u << MIPS_SIMD;
106 #endif
107 #endif
108 #endif
109 #if defined(_MIPS_ARCH_MIPS32RX)
110 if (cpu.architecture() == 6) {
111 supported_ |= 1u << MIPSr6;
112 } else if (cpu.architecture() == 2) {
113 supported_ |= 1u << MIPSr1;
114 supported_ |= 1u << MIPSr2;
115 } else {
116 supported_ |= 1u << MIPSr1;
117 }
118 #endif
119 #endif
120
121 // Set a static value on whether Simd is supported.
122 // This variable is only used for certain archs to query SupportWasmSimd128()
123 // at runtime in builtins using an extern ref. Other callers should use
124 // CpuFeatures::SupportWasmSimd128().
125 CpuFeatures::supports_wasm_simd_128_ = CpuFeatures::SupportsWasmSimd128();
126 }
127
PrintTarget()128 void CpuFeatures::PrintTarget() {}
PrintFeatures()129 void CpuFeatures::PrintFeatures() {}
130
ToNumber(Register reg)131 int ToNumber(Register reg) {
132 DCHECK(reg.is_valid());
133 const int kNumbers[] = {
134 0, // zero_reg
135 1, // at
136 2, // v0
137 3, // v1
138 4, // a0
139 5, // a1
140 6, // a2
141 7, // a3
142 8, // t0
143 9, // t1
144 10, // t2
145 11, // t3
146 12, // t4
147 13, // t5
148 14, // t6
149 15, // t7
150 16, // s0
151 17, // s1
152 18, // s2
153 19, // s3
154 20, // s4
155 21, // s5
156 22, // s6
157 23, // s7
158 24, // t8
159 25, // t9
160 26, // k0
161 27, // k1
162 28, // gp
163 29, // sp
164 30, // fp
165 31, // ra
166 };
167 return kNumbers[reg.code()];
168 }
169
ToRegister(int num)170 Register ToRegister(int num) {
171 DCHECK(num >= 0 && num < kNumRegisters);
172 const Register kRegisters[] = {
173 zero_reg, at, v0, v1, a0, a1, a2, a3, t0, t1, t2, t3, t4, t5, t6, t7,
174 s0, s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, fp, ra};
175 return kRegisters[num];
176 }
177
178 // -----------------------------------------------------------------------------
179 // Implementation of RelocInfo.
180
181 const int RelocInfo::kApplyMask =
182 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
183 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED) |
184 RelocInfo::ModeMask(RelocInfo::RELATIVE_CODE_TARGET);
185
IsCodedSpecially()186 bool RelocInfo::IsCodedSpecially() {
187 // The deserializer needs to know whether a pointer is specially coded. Being
188 // specially coded on MIPS means that it is a lui/ori instruction, and that is
189 // always the case inside code objects.
190 return true;
191 }
192
IsInConstantPool()193 bool RelocInfo::IsInConstantPool() { return false; }
194
wasm_call_tag() const195 uint32_t RelocInfo::wasm_call_tag() const {
196 DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
197 return static_cast<uint32_t>(
198 Assembler::target_address_at(pc_, constant_pool_));
199 }
200
201 // -----------------------------------------------------------------------------
202 // Implementation of Operand and MemOperand.
203 // See assembler-mips-inl.h for inlined constructors.
204
Operand(Handle<HeapObject> handle)205 Operand::Operand(Handle<HeapObject> handle)
206 : rm_(no_reg), rmode_(RelocInfo::FULL_EMBEDDED_OBJECT) {
207 value_.immediate = static_cast<intptr_t>(handle.address());
208 }
209
EmbeddedNumber(double value)210 Operand Operand::EmbeddedNumber(double value) {
211 int32_t smi;
212 if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi));
213 Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
214 result.is_heap_object_request_ = true;
215 result.value_.heap_object_request = HeapObjectRequest(value);
216 return result;
217 }
218
EmbeddedStringConstant(const StringConstantBase * str)219 Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) {
220 Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
221 result.is_heap_object_request_ = true;
222 result.value_.heap_object_request = HeapObjectRequest(str);
223 return result;
224 }
225
MemOperand(Register rm,int32_t offset)226 MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
227 offset_ = offset;
228 }
229
MemOperand(Register rm,int32_t unit,int32_t multiplier,OffsetAddend offset_addend)230 MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
231 OffsetAddend offset_addend)
232 : Operand(rm) {
233 offset_ = unit * multiplier + offset_addend;
234 }
235
AllocateAndInstallRequestedHeapObjects(Isolate * isolate)236 void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
237 DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty());
238 for (auto& request : heap_object_requests_) {
239 Handle<HeapObject> object;
240 switch (request.kind()) {
241 case HeapObjectRequest::kHeapNumber:
242 object = isolate->factory()->NewHeapNumber<AllocationType::kOld>(
243 request.heap_number());
244 break;
245 case HeapObjectRequest::kStringConstant:
246 const StringConstantBase* str = request.string();
247 CHECK_NOT_NULL(str);
248 object = str->AllocateStringConstant(isolate);
249 break;
250 }
251 Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset();
252 set_target_value_at(pc, reinterpret_cast<uint32_t>(object.location()));
253 }
254 }
255
256 // -----------------------------------------------------------------------------
257 // Specific instructions, constants, and masks.
258
259 static const int kNegOffset = 0x00008000;
260 // addiu(sp, sp, 4) aka Pop() operation or part of Pop(r)
261 // operations as post-increment of sp.
262 const Instr kPopInstruction = ADDIU | (sp.code() << kRsShift) |
263 (sp.code() << kRtShift) |
264 (kPointerSize & kImm16Mask);
265 // addiu(sp, sp, -4) part of Push(r) operation as pre-decrement of sp.
266 const Instr kPushInstruction = ADDIU | (sp.code() << kRsShift) |
267 (sp.code() << kRtShift) |
268 (-kPointerSize & kImm16Mask);
269 // sw(r, MemOperand(sp, 0))
270 const Instr kPushRegPattern = SW | (sp.code() << kRsShift) | (0 & kImm16Mask);
271 // lw(r, MemOperand(sp, 0))
272 const Instr kPopRegPattern = LW | (sp.code() << kRsShift) | (0 & kImm16Mask);
273
274 const Instr kLwRegFpOffsetPattern =
275 LW | (fp.code() << kRsShift) | (0 & kImm16Mask);
276
277 const Instr kSwRegFpOffsetPattern =
278 SW | (fp.code() << kRsShift) | (0 & kImm16Mask);
279
280 const Instr kLwRegFpNegOffsetPattern =
281 LW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);
282
283 const Instr kSwRegFpNegOffsetPattern =
284 SW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);
285 // A mask for the Rt register for push, pop, lw, sw instructions.
286 const Instr kRtMask = kRtFieldMask;
287 const Instr kLwSwInstrTypeMask = 0xFFE00000;
288 const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask;
289 const Instr kLwSwOffsetMask = kImm16Mask;
290
Assembler(const AssemblerOptions & options,std::unique_ptr<AssemblerBuffer> buffer)291 Assembler::Assembler(const AssemblerOptions& options,
292 std::unique_ptr<AssemblerBuffer> buffer)
293 : AssemblerBase(options, std::move(buffer)), scratch_register_list_({at}) {
294 reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_);
295
296 last_trampoline_pool_end_ = 0;
297 no_trampoline_pool_before_ = 0;
298 trampoline_pool_blocked_nesting_ = 0;
299 // We leave space (16 * kTrampolineSlotsSize)
300 // for BlockTrampolinePoolScope buffer.
301 next_buffer_check_ = FLAG_force_long_branches
302 ? kMaxInt
303 : kMaxBranchOffset - kTrampolineSlotsSize * 16;
304 internal_trampoline_exception_ = false;
305 last_bound_pos_ = 0;
306
307 trampoline_emitted_ = FLAG_force_long_branches;
308 unbound_labels_count_ = 0;
309 block_buffer_growth_ = false;
310 }
311
GetCode(Isolate * isolate,CodeDesc * desc,SafepointTableBuilder * safepoint_table_builder,int handler_table_offset)312 void Assembler::GetCode(Isolate* isolate, CodeDesc* desc,
313 SafepointTableBuilder* safepoint_table_builder,
314 int handler_table_offset) {
315 // As a crutch to avoid having to add manual Align calls wherever we use a
316 // raw workflow to create Code objects (mostly in tests), add another Align
317 // call here. It does no harm - the end of the Code object is aligned to the
318 // (larger) kCodeAlignment anyways.
319 // TODO(jgruber): Consider moving responsibility for proper alignment to
320 // metadata table builders (safepoint, handler, constant pool, code
321 // comments).
322 DataAlign(Code::kMetadataAlignment);
323
324 EmitForbiddenSlotInstruction();
325
326 int code_comments_size = WriteCodeComments();
327
328 DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
329
330 AllocateAndInstallRequestedHeapObjects(isolate);
331
332 // Set up code descriptor.
333 // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to
334 // this point to make CodeDesc initialization less fiddly.
335
336 static constexpr int kConstantPoolSize = 0;
337 const int instruction_size = pc_offset();
338 const int code_comments_offset = instruction_size - code_comments_size;
339 const int constant_pool_offset = code_comments_offset - kConstantPoolSize;
340 const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable)
341 ? constant_pool_offset
342 : handler_table_offset;
343 const int safepoint_table_offset =
344 (safepoint_table_builder == kNoSafepointTable)
345 ? handler_table_offset2
346 : safepoint_table_builder->safepoint_table_offset();
347 const int reloc_info_offset =
348 static_cast<int>(reloc_info_writer.pos() - buffer_->start());
349 CodeDesc::Initialize(desc, this, safepoint_table_offset,
350 handler_table_offset2, constant_pool_offset,
351 code_comments_offset, reloc_info_offset);
352 }
353
Align(int m)354 void Assembler::Align(int m) {
355 DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m));
356 EmitForbiddenSlotInstruction();
357 while ((pc_offset() & (m - 1)) != 0) {
358 nop();
359 }
360 }
361
CodeTargetAlign()362 void Assembler::CodeTargetAlign() {
363 // No advantage to aligning branch/call targets to more than
364 // single instruction, that I am aware of.
365 Align(4);
366 }
367
GetRtReg(Instr instr)368 Register Assembler::GetRtReg(Instr instr) {
369 return Register::from_code((instr & kRtFieldMask) >> kRtShift);
370 }
371
GetRsReg(Instr instr)372 Register Assembler::GetRsReg(Instr instr) {
373 return Register::from_code((instr & kRsFieldMask) >> kRsShift);
374 }
375
GetRdReg(Instr instr)376 Register Assembler::GetRdReg(Instr instr) {
377 return Register::from_code((instr & kRdFieldMask) >> kRdShift);
378 }
379
GetRt(Instr instr)380 uint32_t Assembler::GetRt(Instr instr) {
381 return (instr & kRtFieldMask) >> kRtShift;
382 }
383
GetRtField(Instr instr)384 uint32_t Assembler::GetRtField(Instr instr) { return instr & kRtFieldMask; }
385
GetRs(Instr instr)386 uint32_t Assembler::GetRs(Instr instr) {
387 return (instr & kRsFieldMask) >> kRsShift;
388 }
389
GetRsField(Instr instr)390 uint32_t Assembler::GetRsField(Instr instr) { return instr & kRsFieldMask; }
391
GetRd(Instr instr)392 uint32_t Assembler::GetRd(Instr instr) {
393 return (instr & kRdFieldMask) >> kRdShift;
394 }
395
GetRdField(Instr instr)396 uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; }
397
GetSa(Instr instr)398 uint32_t Assembler::GetSa(Instr instr) {
399 return (instr & kSaFieldMask) >> kSaShift;
400 }
401
GetSaField(Instr instr)402 uint32_t Assembler::GetSaField(Instr instr) { return instr & kSaFieldMask; }
403
GetOpcodeField(Instr instr)404 uint32_t Assembler::GetOpcodeField(Instr instr) { return instr & kOpcodeMask; }
405
GetFunction(Instr instr)406 uint32_t Assembler::GetFunction(Instr instr) {
407 return (instr & kFunctionFieldMask) >> kFunctionShift;
408 }
409
GetFunctionField(Instr instr)410 uint32_t Assembler::GetFunctionField(Instr instr) {
411 return instr & kFunctionFieldMask;
412 }
413
GetImmediate16(Instr instr)414 uint32_t Assembler::GetImmediate16(Instr instr) { return instr & kImm16Mask; }
415
GetLabelConst(Instr instr)416 uint32_t Assembler::GetLabelConst(Instr instr) { return instr & ~kImm16Mask; }
417
IsPop(Instr instr)418 bool Assembler::IsPop(Instr instr) {
419 return (instr & ~kRtMask) == kPopRegPattern;
420 }
421
IsPush(Instr instr)422 bool Assembler::IsPush(Instr instr) {
423 return (instr & ~kRtMask) == kPushRegPattern;
424 }
425
IsSwRegFpOffset(Instr instr)426 bool Assembler::IsSwRegFpOffset(Instr instr) {
427 return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
428 }
429
IsLwRegFpOffset(Instr instr)430 bool Assembler::IsLwRegFpOffset(Instr instr) {
431 return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
432 }
433
IsSwRegFpNegOffset(Instr instr)434 bool Assembler::IsSwRegFpNegOffset(Instr instr) {
435 return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
436 kSwRegFpNegOffsetPattern);
437 }
438
IsLwRegFpNegOffset(Instr instr)439 bool Assembler::IsLwRegFpNegOffset(Instr instr) {
440 return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
441 kLwRegFpNegOffsetPattern);
442 }
443
444 // Labels refer to positions in the (to be) generated code.
445 // There are bound, linked, and unused labels.
446 //
447 // Bound labels refer to known positions in the already
448 // generated code. pos() is the position the label refers to.
449 //
450 // Linked labels refer to unknown positions in the code
451 // to be generated; pos() is the position of the last
452 // instruction using the label.
453
454 // The link chain is terminated by a value in the instruction of -1,
455 // which is an otherwise illegal value (branch -1 is inf loop).
456 // The instruction 16-bit offset field addresses 32-bit words, but in
457 // code is conv to an 18-bit value addressing bytes, hence the -4 value.
458
459 const int kEndOfChain = -4;
460 // Determines the end of the Jump chain (a subset of the label link chain).
461 const int kEndOfJumpChain = 0;
462
IsMsaBranch(Instr instr)463 bool Assembler::IsMsaBranch(Instr instr) {
464 uint32_t opcode = GetOpcodeField(instr);
465 uint32_t rs_field = GetRsField(instr);
466 if (opcode == COP1) {
467 switch (rs_field) {
468 case BZ_V:
469 case BZ_B:
470 case BZ_H:
471 case BZ_W:
472 case BZ_D:
473 case BNZ_V:
474 case BNZ_B:
475 case BNZ_H:
476 case BNZ_W:
477 case BNZ_D:
478 return true;
479 default:
480 return false;
481 }
482 } else {
483 return false;
484 }
485 }
486
IsBranch(Instr instr)487 bool Assembler::IsBranch(Instr instr) {
488 uint32_t opcode = GetOpcodeField(instr);
489 uint32_t rt_field = GetRtField(instr);
490 uint32_t rs_field = GetRsField(instr);
491 // Checks if the instruction is a branch.
492 bool isBranch =
493 opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ ||
494 opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL ||
495 (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
496 rt_field == BLTZAL || rt_field == BGEZAL)) ||
497 (opcode == COP1 && rs_field == BC1) || // Coprocessor branch.
498 (opcode == COP1 && rs_field == BC1EQZ) ||
499 (opcode == COP1 && rs_field == BC1NEZ) || IsMsaBranch(instr);
500 if (!isBranch && IsMipsArchVariant(kMips32r6)) {
501 // All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and
502 // POP30 (BNVC, BNEC, BNEZALC) are branch ops.
503 isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC ||
504 opcode == BALC ||
505 (opcode == POP66 && rs_field != 0) || // BEQZC
506 (opcode == POP76 && rs_field != 0); // BNEZC
507 }
508 return isBranch;
509 }
510
IsBc(Instr instr)511 bool Assembler::IsBc(Instr instr) {
512 uint32_t opcode = GetOpcodeField(instr);
513 // Checks if the instruction is a BC or BALC.
514 return opcode == BC || opcode == BALC;
515 }
516
IsNal(Instr instr)517 bool Assembler::IsNal(Instr instr) {
518 uint32_t opcode = GetOpcodeField(instr);
519 uint32_t rt_field = GetRtField(instr);
520 uint32_t rs_field = GetRsField(instr);
521 return opcode == REGIMM && rt_field == BLTZAL && rs_field == 0;
522 }
523
IsBzc(Instr instr)524 bool Assembler::IsBzc(Instr instr) {
525 uint32_t opcode = GetOpcodeField(instr);
526 // Checks if the instruction is BEQZC or BNEZC.
527 return (opcode == POP66 && GetRsField(instr) != 0) ||
528 (opcode == POP76 && GetRsField(instr) != 0);
529 }
530
IsEmittedConstant(Instr instr)531 bool Assembler::IsEmittedConstant(Instr instr) {
532 uint32_t label_constant = GetLabelConst(instr);
533 return label_constant == 0; // Emitted label const in reg-exp engine.
534 }
535
IsBeq(Instr instr)536 bool Assembler::IsBeq(Instr instr) { return GetOpcodeField(instr) == BEQ; }
537
IsBne(Instr instr)538 bool Assembler::IsBne(Instr instr) { return GetOpcodeField(instr) == BNE; }
539
IsBeqzc(Instr instr)540 bool Assembler::IsBeqzc(Instr instr) {
541 uint32_t opcode = GetOpcodeField(instr);
542 return opcode == POP66 && GetRsField(instr) != 0;
543 }
544
IsBnezc(Instr instr)545 bool Assembler::IsBnezc(Instr instr) {
546 uint32_t opcode = GetOpcodeField(instr);
547 return opcode == POP76 && GetRsField(instr) != 0;
548 }
549
IsBeqc(Instr instr)550 bool Assembler::IsBeqc(Instr instr) {
551 uint32_t opcode = GetOpcodeField(instr);
552 uint32_t rs = GetRsField(instr);
553 uint32_t rt = GetRtField(instr);
554 return opcode == POP10 && rs != 0 && rs < rt; // && rt != 0
555 }
556
IsBnec(Instr instr)557 bool Assembler::IsBnec(Instr instr) {
558 uint32_t opcode = GetOpcodeField(instr);
559 uint32_t rs = GetRsField(instr);
560 uint32_t rt = GetRtField(instr);
561 return opcode == POP30 && rs != 0 && rs < rt; // && rt != 0
562 }
563
IsJicOrJialc(Instr instr)564 bool Assembler::IsJicOrJialc(Instr instr) {
565 uint32_t opcode = GetOpcodeField(instr);
566 uint32_t rs = GetRsField(instr);
567 return (opcode == POP66 || opcode == POP76) && rs == 0;
568 }
569
IsJump(Instr instr)570 bool Assembler::IsJump(Instr instr) {
571 uint32_t opcode = GetOpcodeField(instr);
572 uint32_t rt_field = GetRtField(instr);
573 uint32_t rd_field = GetRdField(instr);
574 uint32_t function_field = GetFunctionField(instr);
575 // Checks if the instruction is a jump.
576 return opcode == J || opcode == JAL ||
577 (opcode == SPECIAL && rt_field == 0 &&
578 ((function_field == JALR) ||
579 (rd_field == 0 && (function_field == JR))));
580 }
581
IsJ(Instr instr)582 bool Assembler::IsJ(Instr instr) {
583 uint32_t opcode = GetOpcodeField(instr);
584 // Checks if the instruction is a jump.
585 return opcode == J;
586 }
587
IsJal(Instr instr)588 bool Assembler::IsJal(Instr instr) { return GetOpcodeField(instr) == JAL; }
589
IsJr(Instr instr)590 bool Assembler::IsJr(Instr instr) {
591 if (!IsMipsArchVariant(kMips32r6)) {
592 return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR;
593 } else {
594 return GetOpcodeField(instr) == SPECIAL && GetRdField(instr) == 0 &&
595 GetFunctionField(instr) == JALR;
596 }
597 }
598
IsJalr(Instr instr)599 bool Assembler::IsJalr(Instr instr) {
600 return GetOpcodeField(instr) == SPECIAL && GetRdField(instr) != 0 &&
601 GetFunctionField(instr) == JALR;
602 }
603
IsLui(Instr instr)604 bool Assembler::IsLui(Instr instr) {
605 uint32_t opcode = GetOpcodeField(instr);
606 // Checks if the instruction is a load upper immediate.
607 return opcode == LUI;
608 }
609
IsOri(Instr instr)610 bool Assembler::IsOri(Instr instr) {
611 uint32_t opcode = GetOpcodeField(instr);
612 // Checks if the instruction is a load upper immediate.
613 return opcode == ORI;
614 }
615
IsAddu(Instr instr,Register rd,Register rs,Register rt)616 bool Assembler::IsAddu(Instr instr, Register rd, Register rs, Register rt) {
617 uint32_t opcode = GetOpcodeField(instr);
618 uint32_t rd_field = GetRd(instr);
619 uint32_t rs_field = GetRs(instr);
620 uint32_t rt_field = GetRt(instr);
621 uint32_t sa_field = GetSaField(instr);
622 uint32_t rd_reg = static_cast<uint32_t>(rd.code());
623 uint32_t rs_reg = static_cast<uint32_t>(rs.code());
624 uint32_t rt_reg = static_cast<uint32_t>(rt.code());
625 uint32_t function_field = GetFunction(instr);
626 return opcode == SPECIAL && sa_field == 0 && function_field == ADDU &&
627 rd_reg == rd_field && rs_reg == rs_field && rt_reg == rt_field;
628 }
629
IsMov(Instr instr,Register rd,Register rs)630 bool Assembler::IsMov(Instr instr, Register rd, Register rs) {
631 uint32_t opcode = GetOpcodeField(instr);
632 uint32_t rd_field = GetRd(instr);
633 uint32_t rs_field = GetRs(instr);
634 uint32_t rt_field = GetRt(instr);
635 uint32_t rd_reg = static_cast<uint32_t>(rd.code());
636 uint32_t rs_reg = static_cast<uint32_t>(rs.code());
637 uint32_t function_field = GetFunctionField(instr);
638 // Checks if the instruction is a OR with zero_reg argument (aka MOV).
639 bool res = opcode == SPECIAL && function_field == OR && rd_field == rd_reg &&
640 rs_field == rs_reg && rt_field == 0;
641 return res;
642 }
643
IsNop(Instr instr,unsigned int type)644 bool Assembler::IsNop(Instr instr, unsigned int type) {
645 // See Assembler::nop(type).
646 DCHECK_LT(type, 32);
647 uint32_t opcode = GetOpcodeField(instr);
648 uint32_t function = GetFunctionField(instr);
649 uint32_t rt = GetRt(instr);
650 uint32_t rd = GetRd(instr);
651 uint32_t sa = GetSa(instr);
652
653 // Traditional mips nop == sll(zero_reg, zero_reg, 0)
654 // When marking non-zero type, use sll(zero_reg, at, type)
655 // to avoid use of mips ssnop and ehb special encodings
656 // of the sll instruction.
657
658 Register nop_rt_reg = (type == 0) ? zero_reg : at;
659 bool ret = (opcode == SPECIAL && function == SLL &&
660 rd == static_cast<uint32_t>(ToNumber(zero_reg)) &&
661 rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) && sa == type);
662
663 return ret;
664 }
665
GetBranchOffset(Instr instr)666 int32_t Assembler::GetBranchOffset(Instr instr) {
667 DCHECK(IsBranch(instr));
668 return (static_cast<int16_t>(instr & kImm16Mask)) << 2;
669 }
670
IsLw(Instr instr)671 bool Assembler::IsLw(Instr instr) {
672 return (static_cast<uint32_t>(instr & kOpcodeMask) == LW);
673 }
674
GetLwOffset(Instr instr)675 int16_t Assembler::GetLwOffset(Instr instr) {
676 DCHECK(IsLw(instr));
677 return ((instr & kImm16Mask));
678 }
679
SetLwOffset(Instr instr,int16_t offset)680 Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
681 DCHECK(IsLw(instr));
682
683 // We actually create a new lw instruction based on the original one.
684 Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) |
685 (offset & kImm16Mask);
686
687 return temp_instr;
688 }
689
IsSw(Instr instr)690 bool Assembler::IsSw(Instr instr) {
691 return (static_cast<uint32_t>(instr & kOpcodeMask) == SW);
692 }
693
SetSwOffset(Instr instr,int16_t offset)694 Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
695 DCHECK(IsSw(instr));
696 return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
697 }
698
IsAddImmediate(Instr instr)699 bool Assembler::IsAddImmediate(Instr instr) {
700 return ((instr & kOpcodeMask) == ADDIU);
701 }
702
SetAddImmediateOffset(Instr instr,int16_t offset)703 Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
704 DCHECK(IsAddImmediate(instr));
705 return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
706 }
707
IsAndImmediate(Instr instr)708 bool Assembler::IsAndImmediate(Instr instr) {
709 return GetOpcodeField(instr) == ANDI;
710 }
711
OffsetSizeInBits(Instr instr)712 static Assembler::OffsetSize OffsetSizeInBits(Instr instr) {
713 if (IsMipsArchVariant(kMips32r6)) {
714 if (Assembler::IsBc(instr)) {
715 return Assembler::OffsetSize::kOffset26;
716 } else if (Assembler::IsBzc(instr)) {
717 return Assembler::OffsetSize::kOffset21;
718 }
719 }
720 return Assembler::OffsetSize::kOffset16;
721 }
722
AddBranchOffset(int pos,Instr instr)723 static inline int32_t AddBranchOffset(int pos, Instr instr) {
724 int bits = OffsetSizeInBits(instr);
725 const int32_t mask = (1 << bits) - 1;
726 bits = 32 - bits;
727
728 // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
729 // the compiler uses arithmetic shifts for signed integers.
730 int32_t imm = ((instr & mask) << bits) >> (bits - 2);
731
732 if (imm == kEndOfChain) {
733 // EndOfChain sentinel is returned directly, not relative to pc or pos.
734 return kEndOfChain;
735 } else {
736 return pos + Assembler::kBranchPCOffset + imm;
737 }
738 }
739
CreateTargetAddress(Instr instr_lui,Instr instr_jic)740 uint32_t Assembler::CreateTargetAddress(Instr instr_lui, Instr instr_jic) {
741 DCHECK(IsLui(instr_lui) && IsJicOrJialc(instr_jic));
742 int16_t jic_offset = GetImmediate16(instr_jic);
743 int16_t lui_offset = GetImmediate16(instr_lui);
744
745 if (jic_offset < 0) {
746 lui_offset += kImm16Mask;
747 }
748 uint32_t lui_offset_u = (static_cast<uint32_t>(lui_offset)) << kLuiShift;
749 uint32_t jic_offset_u = static_cast<uint32_t>(jic_offset) & kImm16Mask;
750
751 return lui_offset_u | jic_offset_u;
752 }
753
754 // Use just lui and jic instructions. Insert lower part of the target address in
755 // jic offset part. Since jic sign-extends offset and then add it with register,
756 // before that addition, difference between upper part of the target address and
757 // upper part of the sign-extended offset (0xFFFF or 0x0000), will be inserted
758 // in jic register with lui instruction.
UnpackTargetAddress(uint32_t address,int16_t * lui_offset,int16_t * jic_offset)759 void Assembler::UnpackTargetAddress(uint32_t address, int16_t* lui_offset,
760 int16_t* jic_offset) {
761 *lui_offset = (address & kHiMask) >> kLuiShift;
762 *jic_offset = address & kLoMask;
763
764 if (*jic_offset < 0) {
765 *lui_offset -= kImm16Mask;
766 }
767 }
768
UnpackTargetAddressUnsigned(uint32_t address,uint32_t * lui_offset,uint32_t * jic_offset)769 void Assembler::UnpackTargetAddressUnsigned(uint32_t address,
770 uint32_t* lui_offset,
771 uint32_t* jic_offset) {
772 int16_t lui_offset16 = (address & kHiMask) >> kLuiShift;
773 int16_t jic_offset16 = address & kLoMask;
774
775 if (jic_offset16 < 0) {
776 lui_offset16 -= kImm16Mask;
777 }
778 *lui_offset = static_cast<uint32_t>(lui_offset16) & kImm16Mask;
779 *jic_offset = static_cast<uint32_t>(jic_offset16) & kImm16Mask;
780 }
781
PatchLuiOriImmediate(int pc,int32_t imm,Instr instr_lui,Address offset_lui,Instr instr_ori,Address offset_ori)782 void Assembler::PatchLuiOriImmediate(int pc, int32_t imm, Instr instr_lui,
783 Address offset_lui, Instr instr_ori,
784 Address offset_ori) {
785 DCHECK(IsLui(instr_lui));
786 DCHECK(IsOri(instr_ori));
787 instr_at_put(static_cast<int>(pc + offset_lui),
788 instr_lui | ((imm >> kLuiShift) & kImm16Mask));
789 instr_at_put(static_cast<int>(pc + offset_ori),
790 instr_ori | (imm & kImm16Mask));
791 }
792
PatchLuiOriImmediate(Address pc,int32_t imm,Instr instr_lui,Address offset_lui,Instr instr_ori,Address offset_ori)793 void Assembler::PatchLuiOriImmediate(Address pc, int32_t imm, Instr instr_lui,
794 Address offset_lui, Instr instr_ori,
795 Address offset_ori) {
796 DCHECK(IsLui(instr_lui));
797 DCHECK(IsOri(instr_ori));
798 instr_at_put(pc + offset_lui, instr_lui | ((imm >> kLuiShift) & kImm16Mask));
799 instr_at_put(pc + offset_ori, instr_ori | (imm & kImm16Mask));
800 }
801
GetLuiOriImmediate(Instr instr_lui,Instr instr_ori)802 int32_t Assembler::GetLuiOriImmediate(Instr instr_lui, Instr instr_ori) {
803 DCHECK(IsLui(instr_lui));
804 DCHECK(IsOri(instr_ori));
805 int32_t imm;
806 imm = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
807 imm |= (instr_ori & static_cast<int32_t>(kImm16Mask));
808 return imm;
809 }
810
target_at(int pos,bool is_internal)811 int Assembler::target_at(int pos, bool is_internal) {
812 Instr instr = instr_at(pos);
813 if (is_internal) {
814 if (instr == 0) {
815 return kEndOfChain;
816 } else {
817 int32_t instr_address = reinterpret_cast<int32_t>(buffer_start_ + pos);
818 int delta = static_cast<int>(instr_address - instr);
819 DCHECK(pos > delta);
820 return pos - delta;
821 }
822 }
823 if ((instr & ~kImm16Mask) == 0) {
824 // Emitted label constant, not part of a branch.
825 if (instr == 0) {
826 return kEndOfChain;
827 } else {
828 int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
829 return (imm18 + pos);
830 }
831 }
832 // Check we have a branch or jump instruction.
833 DCHECK(IsBranch(instr) || IsLui(instr) || IsMov(instr, t8, ra));
834 if (IsBranch(instr)) {
835 return AddBranchOffset(pos, instr);
836 } else if (IsMov(instr, t8, ra)) {
837 int32_t imm32;
838 Instr instr_lui = instr_at(pos + 2 * kInstrSize);
839 Instr instr_ori = instr_at(pos + 3 * kInstrSize);
840 imm32 = GetLuiOriImmediate(instr_lui, instr_ori);
841 if (imm32 == kEndOfJumpChain) {
842 // EndOfChain sentinel is returned directly, not relative to pc or pos.
843 return kEndOfChain;
844 }
845 return pos + Assembler::kLongBranchPCOffset + imm32;
846 } else {
847 DCHECK(IsLui(instr));
848 if (IsNal(instr_at(pos + kInstrSize))) {
849 int32_t imm32;
850 Instr instr_lui = instr_at(pos + 0 * kInstrSize);
851 Instr instr_ori = instr_at(pos + 2 * kInstrSize);
852 imm32 = GetLuiOriImmediate(instr_lui, instr_ori);
853 if (imm32 == kEndOfJumpChain) {
854 // EndOfChain sentinel is returned directly, not relative to pc or pos.
855 return kEndOfChain;
856 }
857 return pos + Assembler::kLongBranchPCOffset + imm32;
858 } else {
859 Instr instr1 = instr_at(pos + 0 * kInstrSize);
860 Instr instr2 = instr_at(pos + 1 * kInstrSize);
861 DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
862 int32_t imm;
863 if (IsJicOrJialc(instr2)) {
864 imm = CreateTargetAddress(instr1, instr2);
865 } else {
866 imm = GetLuiOriImmediate(instr1, instr2);
867 }
868
869 if (imm == kEndOfJumpChain) {
870 // EndOfChain sentinel is returned directly, not relative to pc or pos.
871 return kEndOfChain;
872 } else {
873 uint32_t instr_address = reinterpret_cast<int32_t>(buffer_start_ + pos);
874 int32_t delta = instr_address - imm;
875 DCHECK(pos > delta);
876 return pos - delta;
877 }
878 }
879 }
880 }
881
SetBranchOffset(int32_t pos,int32_t target_pos,Instr instr)882 static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos,
883 Instr instr) {
884 int32_t bits = OffsetSizeInBits(instr);
885 int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset);
886 DCHECK_EQ(imm & 3, 0);
887 imm >>= 2;
888
889 const int32_t mask = (1 << bits) - 1;
890 instr &= ~mask;
891 DCHECK(is_intn(imm, bits));
892
893 return instr | (imm & mask);
894 }
895
target_at_put(int32_t pos,int32_t target_pos,bool is_internal)896 void Assembler::target_at_put(int32_t pos, int32_t target_pos,
897 bool is_internal) {
898 Instr instr = instr_at(pos);
899
900 if (is_internal) {
901 uint32_t imm = reinterpret_cast<uint32_t>(buffer_start_) + target_pos;
902 instr_at_put(pos, imm);
903 return;
904 }
905 if ((instr & ~kImm16Mask) == 0) {
906 DCHECK(target_pos == kEndOfChain || target_pos >= 0);
907 // Emitted label constant, not part of a branch.
908 // Make label relative to Code pointer of generated Code object.
909 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
910 return;
911 }
912
913 DCHECK(IsBranch(instr) || IsLui(instr) || IsMov(instr, t8, ra));
914 if (IsBranch(instr)) {
915 instr = SetBranchOffset(pos, target_pos, instr);
916 instr_at_put(pos, instr);
917 } else if (IsMov(instr, t8, ra)) {
918 Instr instr_lui = instr_at(pos + 2 * kInstrSize);
919 Instr instr_ori = instr_at(pos + 3 * kInstrSize);
920 DCHECK(IsLui(instr_lui));
921 DCHECK(IsOri(instr_ori));
922
923 int32_t imm_short = target_pos - (pos + Assembler::kBranchPCOffset);
924
925 if (is_int16(imm_short)) {
926 // Optimize by converting to regular branch with 16-bit
927 // offset
928 Instr instr_b = BEQ;
929 instr_b = SetBranchOffset(pos, target_pos, instr_b);
930
931 Instr instr_j = instr_at(pos + 5 * kInstrSize);
932 Instr instr_branch_delay;
933
934 if (IsJump(instr_j)) {
935 // Case when branch delay slot is protected.
936 instr_branch_delay = nopInstr;
937 } else {
938 // Case when branch delay slot is used.
939 instr_branch_delay = instr_at(pos + 7 * kInstrSize);
940 }
941 instr_at_put(pos + 0 * kInstrSize, instr_b);
942 instr_at_put(pos + 1 * kInstrSize, instr_branch_delay);
943 } else {
944 int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
945 DCHECK_EQ(imm & 3, 0);
946
947 instr_lui &= ~kImm16Mask;
948 instr_ori &= ~kImm16Mask;
949
950 PatchLuiOriImmediate(pos, imm, instr_lui, 2 * kInstrSize, instr_ori,
951 3 * kInstrSize);
952 }
953 } else {
954 DCHECK(IsLui(instr));
955 if (IsNal(instr_at(pos + kInstrSize))) {
956 Instr instr_lui = instr_at(pos + 0 * kInstrSize);
957 Instr instr_ori = instr_at(pos + 2 * kInstrSize);
958 DCHECK(IsLui(instr_lui));
959 DCHECK(IsOri(instr_ori));
960 int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
961 DCHECK_EQ(imm & 3, 0);
962 if (is_int16(imm + Assembler::kLongBranchPCOffset -
963 Assembler::kBranchPCOffset)) {
964 // Optimize by converting to regular branch and link with 16-bit
965 // offset.
966 Instr instr_b = REGIMM | BGEZAL; // Branch and link.
967 instr_b = SetBranchOffset(pos, target_pos, instr_b);
968 // Correct ra register to point to one instruction after jalr from
969 // TurboAssembler::BranchAndLinkLong.
970 Instr instr_a = ADDIU | ra.code() << kRsShift | ra.code() << kRtShift |
971 kOptimizedBranchAndLinkLongReturnOffset;
972
973 instr_at_put(pos, instr_b);
974 instr_at_put(pos + 1 * kInstrSize, instr_a);
975 } else {
976 instr_lui &= ~kImm16Mask;
977 instr_ori &= ~kImm16Mask;
978 PatchLuiOriImmediate(pos, imm, instr_lui, 0 * kInstrSize, instr_ori,
979 2 * kInstrSize);
980 }
981 } else {
982 Instr instr1 = instr_at(pos + 0 * kInstrSize);
983 Instr instr2 = instr_at(pos + 1 * kInstrSize);
984 DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
985 uint32_t imm = reinterpret_cast<uint32_t>(buffer_start_) + target_pos;
986 DCHECK_EQ(imm & 3, 0);
987 DCHECK(IsLui(instr1) && (IsJicOrJialc(instr2) || IsOri(instr2)));
988 instr1 &= ~kImm16Mask;
989 instr2 &= ~kImm16Mask;
990
991 if (IsJicOrJialc(instr2)) {
992 uint32_t lui_offset_u, jic_offset_u;
993 UnpackTargetAddressUnsigned(imm, &lui_offset_u, &jic_offset_u);
994 instr_at_put(pos + 0 * kInstrSize, instr1 | lui_offset_u);
995 instr_at_put(pos + 1 * kInstrSize, instr2 | jic_offset_u);
996 } else {
997 PatchLuiOriImmediate(pos, imm, instr1, 0 * kInstrSize, instr2,
998 1 * kInstrSize);
999 }
1000 }
1001 }
1002 }
1003
print(const Label * L)1004 void Assembler::print(const Label* L) {
1005 if (L->is_unused()) {
1006 PrintF("unused label\n");
1007 } else if (L->is_bound()) {
1008 PrintF("bound label to %d\n", L->pos());
1009 } else if (L->is_linked()) {
1010 Label l;
1011 l.link_to(L->pos());
1012 PrintF("unbound label");
1013 while (l.is_linked()) {
1014 PrintF("@ %d ", l.pos());
1015 Instr instr = instr_at(l.pos());
1016 if ((instr & ~kImm16Mask) == 0) {
1017 PrintF("value\n");
1018 } else {
1019 PrintF("%d\n", instr);
1020 }
1021 next(&l, is_internal_reference(&l));
1022 }
1023 } else {
1024 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
1025 }
1026 }
1027
bind_to(Label * L,int pos)1028 void Assembler::bind_to(Label* L, int pos) {
1029 DCHECK(0 <= pos && pos <= pc_offset()); // Must have valid binding position.
1030 int32_t trampoline_pos = kInvalidSlotPos;
1031 bool is_internal = false;
1032 if (L->is_linked() && !trampoline_emitted_) {
1033 unbound_labels_count_--;
1034 if (!is_internal_reference(L)) {
1035 next_buffer_check_ += kTrampolineSlotsSize;
1036 }
1037 }
1038
1039 while (L->is_linked()) {
1040 int32_t fixup_pos = L->pos();
1041 int32_t dist = pos - fixup_pos;
1042 is_internal = is_internal_reference(L);
1043 next(L, is_internal); // Call next before overwriting link with target at
1044 // fixup_pos.
1045 Instr instr = instr_at(fixup_pos);
1046 if (is_internal) {
1047 target_at_put(fixup_pos, pos, is_internal);
1048 } else {
1049 if (IsBranch(instr)) {
1050 int branch_offset = BranchOffset(instr);
1051 if (dist > branch_offset) {
1052 if (trampoline_pos == kInvalidSlotPos) {
1053 trampoline_pos = get_trampoline_entry(fixup_pos);
1054 CHECK_NE(trampoline_pos, kInvalidSlotPos);
1055 }
1056 CHECK((trampoline_pos - fixup_pos) <= branch_offset);
1057 target_at_put(fixup_pos, trampoline_pos, false);
1058 fixup_pos = trampoline_pos;
1059 }
1060 target_at_put(fixup_pos, pos, false);
1061 } else {
1062 target_at_put(fixup_pos, pos, false);
1063 }
1064 }
1065 }
1066 L->bind_to(pos);
1067
1068 // Keep track of the last bound label so we don't eliminate any instructions
1069 // before a bound label.
1070 if (pos > last_bound_pos_) last_bound_pos_ = pos;
1071 }
1072
bind(Label * L)1073 void Assembler::bind(Label* L) {
1074 DCHECK(!L->is_bound()); // Label can only be bound once.
1075 bind_to(L, pc_offset());
1076 }
1077
next(Label * L,bool is_internal)1078 void Assembler::next(Label* L, bool is_internal) {
1079 DCHECK(L->is_linked());
1080 int link = target_at(L->pos(), is_internal);
1081 if (link == kEndOfChain) {
1082 L->Unuse();
1083 } else {
1084 DCHECK_GE(link, 0);
1085 L->link_to(link);
1086 }
1087 }
1088
is_near(Label * L)1089 bool Assembler::is_near(Label* L) {
1090 DCHECK(L->is_bound());
1091 return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
1092 }
1093
is_near(Label * L,OffsetSize bits)1094 bool Assembler::is_near(Label* L, OffsetSize bits) {
1095 if (L == nullptr || !L->is_bound()) return true;
1096 return pc_offset() - L->pos() < (1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize;
1097 }
1098
is_near_branch(Label * L)1099 bool Assembler::is_near_branch(Label* L) {
1100 DCHECK(L->is_bound());
1101 return IsMipsArchVariant(kMips32r6) ? is_near_r6(L) : is_near_pre_r6(L);
1102 }
1103
BranchOffset(Instr instr)1104 int Assembler::BranchOffset(Instr instr) {
1105 // At pre-R6 and for other R6 branches the offset is 16 bits.
1106 int bits = OffsetSize::kOffset16;
1107
1108 if (IsMipsArchVariant(kMips32r6)) {
1109 uint32_t opcode = GetOpcodeField(instr);
1110 switch (opcode) {
1111 // Checks BC or BALC.
1112 case BC:
1113 case BALC:
1114 bits = OffsetSize::kOffset26;
1115 break;
1116
1117 // Checks BEQZC or BNEZC.
1118 case POP66:
1119 case POP76:
1120 if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21;
1121 break;
1122 default:
1123 break;
1124 }
1125 }
1126
1127 return (1 << (bits + 2 - 1)) - 1;
1128 }
1129
1130 // We have to use a temporary register for things that can be relocated even
1131 // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
1132 // space. There is no guarantee that the relocated location can be similarly
1133 // encoded.
MustUseReg(RelocInfo::Mode rmode)1134 bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
1135 return !RelocInfo::IsNoInfo(rmode);
1136 }
1137
GenInstrRegister(Opcode opcode,Register rs,Register rt,Register rd,uint16_t sa,SecondaryField func)1138 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1139 Register rd, uint16_t sa,
1140 SecondaryField func) {
1141 DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
1142 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1143 (rd.code() << kRdShift) | (sa << kSaShift) | func;
1144 emit(instr);
1145 }
1146
GenInstrRegister(Opcode opcode,Register rs,Register rt,uint16_t msb,uint16_t lsb,SecondaryField func)1147 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1148 uint16_t msb, uint16_t lsb,
1149 SecondaryField func) {
1150 DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
1151 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1152 (msb << kRdShift) | (lsb << kSaShift) | func;
1153 emit(instr);
1154 }
1155
GenInstrRegister(Opcode opcode,SecondaryField fmt,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1156 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt,
1157 FPURegister ft, FPURegister fs, FPURegister fd,
1158 SecondaryField func) {
1159 DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid());
1160 Instr instr = opcode | fmt | (ft.code() << kFtShift) |
1161 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1162 emit(instr);
1163 }
1164
GenInstrRegister(Opcode opcode,FPURegister fr,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1165 void Assembler::GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
1166 FPURegister fs, FPURegister fd,
1167 SecondaryField func) {
1168 DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid());
1169 Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift) |
1170 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1171 emit(instr);
1172 }
1173
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPURegister fs,FPURegister fd,SecondaryField func)1174 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1175 FPURegister fs, FPURegister fd,
1176 SecondaryField func) {
1177 DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid());
1178 Instr instr = opcode | fmt | (rt.code() << kRtShift) |
1179 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1180 emit(instr);
1181 }
1182
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPUControlRegister fs,SecondaryField func)1183 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1184 FPUControlRegister fs, SecondaryField func) {
1185 DCHECK(fs.is_valid() && rt.is_valid());
1186 Instr instr =
1187 opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
1188 emit(instr);
1189 }
1190
1191 // Instructions with immediate value.
1192 // Registers are in the order of the instruction encoding, from left to right.
GenInstrImmediate(Opcode opcode,Register rs,Register rt,int32_t j,CompactBranchType is_compact_branch)1193 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt,
1194 int32_t j,
1195 CompactBranchType is_compact_branch) {
1196 DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
1197 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1198 (j & kImm16Mask);
1199 emit(instr, is_compact_branch);
1200 }
1201
GenInstrImmediate(Opcode opcode,Register base,Register rt,int32_t offset9,int bit6,SecondaryField func)1202 void Assembler::GenInstrImmediate(Opcode opcode, Register base, Register rt,
1203 int32_t offset9, int bit6,
1204 SecondaryField func) {
1205 DCHECK(base.is_valid() && rt.is_valid() && is_int9(offset9) &&
1206 is_uint1(bit6));
1207 Instr instr = opcode | (base.code() << kBaseShift) | (rt.code() << kRtShift) |
1208 ((offset9 << kImm9Shift) & kImm9Mask) | bit6 << kBit6Shift |
1209 func;
1210 emit(instr);
1211 }
1212
GenInstrImmediate(Opcode opcode,Register rs,SecondaryField SF,int32_t j,CompactBranchType is_compact_branch)1213 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF,
1214 int32_t j,
1215 CompactBranchType is_compact_branch) {
1216 DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j)));
1217 Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
1218 emit(instr, is_compact_branch);
1219 }
1220
GenInstrImmediate(Opcode opcode,Register rs,FPURegister ft,int32_t j,CompactBranchType is_compact_branch)1221 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft,
1222 int32_t j,
1223 CompactBranchType is_compact_branch) {
1224 DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
1225 Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
1226 (j & kImm16Mask);
1227 emit(instr, is_compact_branch);
1228 }
1229
GenInstrImmediate(Opcode opcode,Register rs,int32_t offset21,CompactBranchType is_compact_branch)1230 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21,
1231 CompactBranchType is_compact_branch) {
1232 DCHECK(rs.is_valid() && (is_int21(offset21)));
1233 Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1234 emit(instr, is_compact_branch);
1235 }
1236
GenInstrImmediate(Opcode opcode,Register rs,uint32_t offset21)1237 void Assembler::GenInstrImmediate(Opcode opcode, Register rs,
1238 uint32_t offset21) {
1239 DCHECK(rs.is_valid() && (is_uint21(offset21)));
1240 Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1241 emit(instr);
1242 }
1243
GenInstrImmediate(Opcode opcode,int32_t offset26,CompactBranchType is_compact_branch)1244 void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26,
1245 CompactBranchType is_compact_branch) {
1246 DCHECK(is_int26(offset26));
1247 Instr instr = opcode | (offset26 & kImm26Mask);
1248 emit(instr, is_compact_branch);
1249 }
1250
GenInstrJump(Opcode opcode,uint32_t address)1251 void Assembler::GenInstrJump(Opcode opcode, uint32_t address) {
1252 BlockTrampolinePoolScope block_trampoline_pool(this);
1253 DCHECK(is_uint26(address));
1254 Instr instr = opcode | address;
1255 emit(instr);
1256 BlockTrampolinePoolFor(1); // For associated delay slot.
1257 }
1258
1259 // MSA instructions
GenInstrMsaI8(SecondaryField operation,uint32_t imm8,MSARegister ws,MSARegister wd)1260 void Assembler::GenInstrMsaI8(SecondaryField operation, uint32_t imm8,
1261 MSARegister ws, MSARegister wd) {
1262 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1263 DCHECK(ws.is_valid() && wd.is_valid() && is_uint8(imm8));
1264 Instr instr = MSA | operation | ((imm8 & kImm8Mask) << kWtShift) |
1265 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1266 emit(instr);
1267 }
1268
GenInstrMsaI5(SecondaryField operation,SecondaryField df,int32_t imm5,MSARegister ws,MSARegister wd)1269 void Assembler::GenInstrMsaI5(SecondaryField operation, SecondaryField df,
1270 int32_t imm5, MSARegister ws, MSARegister wd) {
1271 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1272 DCHECK(ws.is_valid() && wd.is_valid());
1273 DCHECK((operation == MAXI_S) || (operation == MINI_S) ||
1274 (operation == CEQI) || (operation == CLTI_S) ||
1275 (operation == CLEI_S)
1276 ? is_int5(imm5)
1277 : is_uint5(imm5));
1278 Instr instr = MSA | operation | df | ((imm5 & kImm5Mask) << kWtShift) |
1279 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1280 emit(instr);
1281 }
1282
GenInstrMsaBit(SecondaryField operation,SecondaryField df,uint32_t m,MSARegister ws,MSARegister wd)1283 void Assembler::GenInstrMsaBit(SecondaryField operation, SecondaryField df,
1284 uint32_t m, MSARegister ws, MSARegister wd) {
1285 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1286 DCHECK(ws.is_valid() && wd.is_valid() && is_valid_msa_df_m(df, m));
1287 Instr instr = MSA | operation | df | (m << kWtShift) |
1288 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1289 emit(instr);
1290 }
1291
GenInstrMsaI10(SecondaryField operation,SecondaryField df,int32_t imm10,MSARegister wd)1292 void Assembler::GenInstrMsaI10(SecondaryField operation, SecondaryField df,
1293 int32_t imm10, MSARegister wd) {
1294 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1295 DCHECK(wd.is_valid() && is_int10(imm10));
1296 Instr instr = MSA | operation | df | ((imm10 & kImm10Mask) << kWsShift) |
1297 (wd.code() << kWdShift);
1298 emit(instr);
1299 }
1300
1301 template <typename RegType>
GenInstrMsa3R(SecondaryField operation,SecondaryField df,RegType t,MSARegister ws,MSARegister wd)1302 void Assembler::GenInstrMsa3R(SecondaryField operation, SecondaryField df,
1303 RegType t, MSARegister ws, MSARegister wd) {
1304 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1305 DCHECK(t.is_valid() && ws.is_valid() && wd.is_valid());
1306 Instr instr = MSA | operation | df | (t.code() << kWtShift) |
1307 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1308 emit(instr);
1309 }
1310
1311 template <typename DstType, typename SrcType>
GenInstrMsaElm(SecondaryField operation,SecondaryField df,uint32_t n,SrcType src,DstType dst)1312 void Assembler::GenInstrMsaElm(SecondaryField operation, SecondaryField df,
1313 uint32_t n, SrcType src, DstType dst) {
1314 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1315 DCHECK(src.is_valid() && dst.is_valid() && is_valid_msa_df_n(df, n));
1316 Instr instr = MSA | operation | df | (n << kWtShift) |
1317 (src.code() << kWsShift) | (dst.code() << kWdShift) |
1318 MSA_ELM_MINOR;
1319 emit(instr);
1320 }
1321
GenInstrMsa3RF(SecondaryField operation,uint32_t df,MSARegister wt,MSARegister ws,MSARegister wd)1322 void Assembler::GenInstrMsa3RF(SecondaryField operation, uint32_t df,
1323 MSARegister wt, MSARegister ws, MSARegister wd) {
1324 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1325 DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1326 DCHECK_LT(df, 2);
1327 Instr instr = MSA | operation | (df << 21) | (wt.code() << kWtShift) |
1328 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1329 emit(instr);
1330 }
1331
GenInstrMsaVec(SecondaryField operation,MSARegister wt,MSARegister ws,MSARegister wd)1332 void Assembler::GenInstrMsaVec(SecondaryField operation, MSARegister wt,
1333 MSARegister ws, MSARegister wd) {
1334 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1335 DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1336 Instr instr = MSA | operation | (wt.code() << kWtShift) |
1337 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1338 MSA_VEC_2R_2RF_MINOR;
1339 emit(instr);
1340 }
1341
GenInstrMsaMI10(SecondaryField operation,int32_t s10,Register rs,MSARegister wd)1342 void Assembler::GenInstrMsaMI10(SecondaryField operation, int32_t s10,
1343 Register rs, MSARegister wd) {
1344 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1345 DCHECK(rs.is_valid() && wd.is_valid() && is_int10(s10));
1346 Instr instr = MSA | operation | ((s10 & kImm10Mask) << kWtShift) |
1347 (rs.code() << kWsShift) | (wd.code() << kWdShift);
1348 emit(instr);
1349 }
1350
GenInstrMsa2R(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1351 void Assembler::GenInstrMsa2R(SecondaryField operation, SecondaryField df,
1352 MSARegister ws, MSARegister wd) {
1353 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1354 DCHECK(ws.is_valid() && wd.is_valid());
1355 Instr instr = MSA | MSA_2R_FORMAT | operation | df | (ws.code() << kWsShift) |
1356 (wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR;
1357 emit(instr);
1358 }
1359
GenInstrMsa2RF(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1360 void Assembler::GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
1361 MSARegister ws, MSARegister wd) {
1362 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1363 DCHECK(ws.is_valid() && wd.is_valid());
1364 Instr instr = MSA | MSA_2RF_FORMAT | operation | df |
1365 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1366 MSA_VEC_2R_2RF_MINOR;
1367 emit(instr);
1368 }
1369
GenInstrMsaBranch(SecondaryField operation,MSARegister wt,int32_t offset16)1370 void Assembler::GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
1371 int32_t offset16) {
1372 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
1373 DCHECK(wt.is_valid() && is_int16(offset16));
1374 BlockTrampolinePoolScope block_trampoline_pool(this);
1375 Instr instr =
1376 COP1 | operation | (wt.code() << kWtShift) | (offset16 & kImm16Mask);
1377 emit(instr);
1378 BlockTrampolinePoolFor(1); // For associated delay slot.
1379 }
1380
1381 // Returns the next free trampoline entry.
get_trampoline_entry(int32_t pos)1382 int32_t Assembler::get_trampoline_entry(int32_t pos) {
1383 int32_t trampoline_entry = kInvalidSlotPos;
1384
1385 if (!internal_trampoline_exception_) {
1386 if (trampoline_.start() > pos) {
1387 trampoline_entry = trampoline_.take_slot();
1388 }
1389
1390 if (kInvalidSlotPos == trampoline_entry) {
1391 internal_trampoline_exception_ = true;
1392 }
1393 }
1394 return trampoline_entry;
1395 }
1396
jump_address(Label * L)1397 uint32_t Assembler::jump_address(Label* L) {
1398 int32_t target_pos;
1399
1400 if (L->is_bound()) {
1401 target_pos = L->pos();
1402 } else {
1403 if (L->is_linked()) {
1404 target_pos = L->pos(); // L's link.
1405 L->link_to(pc_offset());
1406 } else {
1407 L->link_to(pc_offset());
1408 return kEndOfJumpChain;
1409 }
1410 }
1411
1412 uint32_t imm = reinterpret_cast<uint32_t>(buffer_start_) + target_pos;
1413 DCHECK_EQ(imm & 3, 0);
1414
1415 return imm;
1416 }
1417
branch_long_offset(Label * L)1418 uint32_t Assembler::branch_long_offset(Label* L) {
1419 int32_t target_pos;
1420
1421 if (L->is_bound()) {
1422 target_pos = L->pos();
1423 } else {
1424 if (L->is_linked()) {
1425 target_pos = L->pos(); // L's link.
1426 L->link_to(pc_offset());
1427 } else {
1428 L->link_to(pc_offset());
1429 return kEndOfJumpChain;
1430 }
1431 }
1432
1433 DCHECK(is_int32(static_cast<int64_t>(target_pos) -
1434 static_cast<int64_t>(pc_offset() + kLongBranchPCOffset)));
1435 int32_t offset = target_pos - (pc_offset() + kLongBranchPCOffset);
1436 DCHECK_EQ(offset & 3, 0);
1437
1438 return offset;
1439 }
1440
branch_offset_helper(Label * L,OffsetSize bits)1441 int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) {
1442 int32_t target_pos;
1443 int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1444
1445 if (L->is_bound()) {
1446 target_pos = L->pos();
1447 } else {
1448 if (L->is_linked()) {
1449 target_pos = L->pos();
1450 L->link_to(pc_offset() + pad);
1451 } else {
1452 L->link_to(pc_offset() + pad);
1453 if (!trampoline_emitted_) {
1454 unbound_labels_count_++;
1455 next_buffer_check_ -= kTrampolineSlotsSize;
1456 }
1457 return kEndOfChain;
1458 }
1459 }
1460
1461 int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad);
1462 DCHECK(is_intn(offset, bits + 2));
1463 DCHECK_EQ(offset & 3, 0);
1464
1465 return offset;
1466 }
1467
label_at_put(Label * L,int at_offset)1468 void Assembler::label_at_put(Label* L, int at_offset) {
1469 int target_pos;
1470 if (L->is_bound()) {
1471 target_pos = L->pos();
1472 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
1473 } else {
1474 if (L->is_linked()) {
1475 target_pos = L->pos(); // L's link.
1476 int32_t imm18 = target_pos - at_offset;
1477 DCHECK_EQ(imm18 & 3, 0);
1478 int32_t imm16 = imm18 >> 2;
1479 DCHECK(is_int16(imm16));
1480 instr_at_put(at_offset, (imm16 & kImm16Mask));
1481 } else {
1482 target_pos = kEndOfChain;
1483 instr_at_put(at_offset, 0);
1484 if (!trampoline_emitted_) {
1485 unbound_labels_count_++;
1486 next_buffer_check_ -= kTrampolineSlotsSize;
1487 }
1488 }
1489 L->link_to(at_offset);
1490 }
1491 }
1492
1493 //------- Branch and jump instructions --------
1494
b(int16_t offset)1495 void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); }
1496
bal(int16_t offset)1497 void Assembler::bal(int16_t offset) { bgezal(zero_reg, offset); }
1498
bc(int32_t offset)1499 void Assembler::bc(int32_t offset) {
1500 DCHECK(IsMipsArchVariant(kMips32r6));
1501 GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH);
1502 }
1503
balc(int32_t offset)1504 void Assembler::balc(int32_t offset) {
1505 DCHECK(IsMipsArchVariant(kMips32r6));
1506 GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH);
1507 }
1508
beq(Register rs,Register rt,int16_t offset)1509 void Assembler::beq(Register rs, Register rt, int16_t offset) {
1510 BlockTrampolinePoolScope block_trampoline_pool(this);
1511 GenInstrImmediate(BEQ, rs, rt, offset);
1512 BlockTrampolinePoolFor(1); // For associated delay slot.
1513 }
1514
bgez(Register rs,int16_t offset)1515 void Assembler::bgez(Register rs, int16_t offset) {
1516 BlockTrampolinePoolScope block_trampoline_pool(this);
1517 GenInstrImmediate(REGIMM, rs, BGEZ, offset);
1518 BlockTrampolinePoolFor(1); // For associated delay slot.
1519 }
1520
bgezc(Register rt,int16_t offset)1521 void Assembler::bgezc(Register rt, int16_t offset) {
1522 DCHECK(IsMipsArchVariant(kMips32r6));
1523 DCHECK(rt != zero_reg);
1524 GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1525 }
1526
bgeuc(Register rs,Register rt,int16_t offset)1527 void Assembler::bgeuc(Register rs, Register rt, int16_t offset) {
1528 DCHECK(IsMipsArchVariant(kMips32r6));
1529 DCHECK(rs != zero_reg);
1530 DCHECK(rt != zero_reg);
1531 DCHECK(rs.code() != rt.code());
1532 GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1533 }
1534
bgec(Register rs,Register rt,int16_t offset)1535 void Assembler::bgec(Register rs, Register rt, int16_t offset) {
1536 DCHECK(IsMipsArchVariant(kMips32r6));
1537 DCHECK(rs != zero_reg);
1538 DCHECK(rt != zero_reg);
1539 DCHECK(rs.code() != rt.code());
1540 GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1541 }
1542
bgezal(Register rs,int16_t offset)1543 void Assembler::bgezal(Register rs, int16_t offset) {
1544 DCHECK(!IsMipsArchVariant(kMips32r6) || rs == zero_reg);
1545 DCHECK(rs != ra);
1546 BlockTrampolinePoolScope block_trampoline_pool(this);
1547 GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
1548 BlockTrampolinePoolFor(1); // For associated delay slot.
1549 }
1550
bgtz(Register rs,int16_t offset)1551 void Assembler::bgtz(Register rs, int16_t offset) {
1552 BlockTrampolinePoolScope block_trampoline_pool(this);
1553 GenInstrImmediate(BGTZ, rs, zero_reg, offset);
1554 BlockTrampolinePoolFor(1); // For associated delay slot.
1555 }
1556
bgtzc(Register rt,int16_t offset)1557 void Assembler::bgtzc(Register rt, int16_t offset) {
1558 DCHECK(IsMipsArchVariant(kMips32r6));
1559 DCHECK(rt != zero_reg);
1560 GenInstrImmediate(BGTZL, zero_reg, rt, offset,
1561 CompactBranchType::COMPACT_BRANCH);
1562 }
1563
blez(Register rs,int16_t offset)1564 void Assembler::blez(Register rs, int16_t offset) {
1565 BlockTrampolinePoolScope block_trampoline_pool(this);
1566 GenInstrImmediate(BLEZ, rs, zero_reg, offset);
1567 BlockTrampolinePoolFor(1); // For associated delay slot.
1568 }
1569
blezc(Register rt,int16_t offset)1570 void Assembler::blezc(Register rt, int16_t offset) {
1571 DCHECK(IsMipsArchVariant(kMips32r6));
1572 DCHECK(rt != zero_reg);
1573 GenInstrImmediate(BLEZL, zero_reg, rt, offset,
1574 CompactBranchType::COMPACT_BRANCH);
1575 }
1576
bltzc(Register rt,int16_t offset)1577 void Assembler::bltzc(Register rt, int16_t offset) {
1578 DCHECK(IsMipsArchVariant(kMips32r6));
1579 DCHECK(rt != zero_reg);
1580 GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1581 }
1582
bltuc(Register rs,Register rt,int16_t offset)1583 void Assembler::bltuc(Register rs, Register rt, int16_t offset) {
1584 DCHECK(IsMipsArchVariant(kMips32r6));
1585 DCHECK(rs != zero_reg);
1586 DCHECK(rt != zero_reg);
1587 DCHECK(rs.code() != rt.code());
1588 GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1589 }
1590
bltc(Register rs,Register rt,int16_t offset)1591 void Assembler::bltc(Register rs, Register rt, int16_t offset) {
1592 DCHECK(IsMipsArchVariant(kMips32r6));
1593 DCHECK(rs != zero_reg);
1594 DCHECK(rt != zero_reg);
1595 DCHECK(rs.code() != rt.code());
1596 GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1597 }
1598
bltz(Register rs,int16_t offset)1599 void Assembler::bltz(Register rs, int16_t offset) {
1600 BlockTrampolinePoolScope block_trampoline_pool(this);
1601 GenInstrImmediate(REGIMM, rs, BLTZ, offset);
1602 BlockTrampolinePoolFor(1); // For associated delay slot.
1603 }
1604
bltzal(Register rs,int16_t offset)1605 void Assembler::bltzal(Register rs, int16_t offset) {
1606 DCHECK(!IsMipsArchVariant(kMips32r6) || rs == zero_reg);
1607 DCHECK(rs != ra);
1608 BlockTrampolinePoolScope block_trampoline_pool(this);
1609 GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
1610 BlockTrampolinePoolFor(1); // For associated delay slot.
1611 }
1612
bne(Register rs,Register rt,int16_t offset)1613 void Assembler::bne(Register rs, Register rt, int16_t offset) {
1614 BlockTrampolinePoolScope block_trampoline_pool(this);
1615 GenInstrImmediate(BNE, rs, rt, offset);
1616 BlockTrampolinePoolFor(1); // For associated delay slot.
1617 }
1618
bovc(Register rs,Register rt,int16_t offset)1619 void Assembler::bovc(Register rs, Register rt, int16_t offset) {
1620 DCHECK(IsMipsArchVariant(kMips32r6));
1621 if (rs.code() >= rt.code()) {
1622 GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1623 } else {
1624 GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1625 }
1626 }
1627
bnvc(Register rs,Register rt,int16_t offset)1628 void Assembler::bnvc(Register rs, Register rt, int16_t offset) {
1629 DCHECK(IsMipsArchVariant(kMips32r6));
1630 if (rs.code() >= rt.code()) {
1631 GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1632 } else {
1633 GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1634 }
1635 }
1636
blezalc(Register rt,int16_t offset)1637 void Assembler::blezalc(Register rt, int16_t offset) {
1638 DCHECK(IsMipsArchVariant(kMips32r6));
1639 DCHECK(rt != zero_reg);
1640 DCHECK(rt != ra);
1641 GenInstrImmediate(BLEZ, zero_reg, rt, offset,
1642 CompactBranchType::COMPACT_BRANCH);
1643 }
1644
bgezalc(Register rt,int16_t offset)1645 void Assembler::bgezalc(Register rt, int16_t offset) {
1646 DCHECK(IsMipsArchVariant(kMips32r6));
1647 DCHECK(rt != zero_reg);
1648 DCHECK(rt != ra);
1649 GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1650 }
1651
bgezall(Register rs,int16_t offset)1652 void Assembler::bgezall(Register rs, int16_t offset) {
1653 DCHECK(!IsMipsArchVariant(kMips32r6));
1654 DCHECK(rs != zero_reg);
1655 DCHECK(rs != ra);
1656 BlockTrampolinePoolScope block_trampoline_pool(this);
1657 GenInstrImmediate(REGIMM, rs, BGEZALL, offset);
1658 BlockTrampolinePoolFor(1); // For associated delay slot.
1659 }
1660
bltzalc(Register rt,int16_t offset)1661 void Assembler::bltzalc(Register rt, int16_t offset) {
1662 DCHECK(IsMipsArchVariant(kMips32r6));
1663 DCHECK(rt != zero_reg);
1664 DCHECK(rt != ra);
1665 GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1666 }
1667
bgtzalc(Register rt,int16_t offset)1668 void Assembler::bgtzalc(Register rt, int16_t offset) {
1669 DCHECK(IsMipsArchVariant(kMips32r6));
1670 DCHECK(rt != zero_reg);
1671 DCHECK(rt != ra);
1672 GenInstrImmediate(BGTZ, zero_reg, rt, offset,
1673 CompactBranchType::COMPACT_BRANCH);
1674 }
1675
beqzalc(Register rt,int16_t offset)1676 void Assembler::beqzalc(Register rt, int16_t offset) {
1677 DCHECK(IsMipsArchVariant(kMips32r6));
1678 DCHECK(rt != zero_reg);
1679 DCHECK(rt != ra);
1680 GenInstrImmediate(ADDI, zero_reg, rt, offset,
1681 CompactBranchType::COMPACT_BRANCH);
1682 }
1683
bnezalc(Register rt,int16_t offset)1684 void Assembler::bnezalc(Register rt, int16_t offset) {
1685 DCHECK(IsMipsArchVariant(kMips32r6));
1686 DCHECK(rt != zero_reg);
1687 DCHECK(rt != ra);
1688 GenInstrImmediate(DADDI, zero_reg, rt, offset,
1689 CompactBranchType::COMPACT_BRANCH);
1690 }
1691
beqc(Register rs,Register rt,int16_t offset)1692 void Assembler::beqc(Register rs, Register rt, int16_t offset) {
1693 DCHECK(IsMipsArchVariant(kMips32r6));
1694 DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1695 if (rs.code() < rt.code()) {
1696 GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1697 } else {
1698 GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1699 }
1700 }
1701
beqzc(Register rs,int32_t offset)1702 void Assembler::beqzc(Register rs, int32_t offset) {
1703 DCHECK(IsMipsArchVariant(kMips32r6));
1704 DCHECK(rs != zero_reg);
1705 GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH);
1706 }
1707
bnec(Register rs,Register rt,int16_t offset)1708 void Assembler::bnec(Register rs, Register rt, int16_t offset) {
1709 DCHECK(IsMipsArchVariant(kMips32r6));
1710 DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1711 if (rs.code() < rt.code()) {
1712 GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1713 } else {
1714 GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1715 }
1716 }
1717
bnezc(Register rs,int32_t offset)1718 void Assembler::bnezc(Register rs, int32_t offset) {
1719 DCHECK(IsMipsArchVariant(kMips32r6));
1720 DCHECK(rs != zero_reg);
1721 GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH);
1722 }
1723
j(int32_t target)1724 void Assembler::j(int32_t target) {
1725 #if DEBUG
1726 // Get pc of delay slot.
1727 uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
1728 bool in_range = ((ipc ^ static_cast<uint32_t>(target)) >>
1729 (kImm26Bits + kImmFieldShift)) == 0;
1730 DCHECK(in_range && ((target & 3) == 0));
1731 #endif
1732 BlockTrampolinePoolScope block_trampoline_pool(this);
1733 GenInstrJump(J, (target >> 2) & kImm26Mask);
1734 BlockTrampolinePoolFor(1); // For associated delay slot.
1735 }
1736
jr(Register rs)1737 void Assembler::jr(Register rs) {
1738 if (!IsMipsArchVariant(kMips32r6)) {
1739 BlockTrampolinePoolScope block_trampoline_pool(this);
1740 GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
1741 BlockTrampolinePoolFor(1); // For associated delay slot.
1742 } else {
1743 jalr(rs, zero_reg);
1744 }
1745 }
1746
jal(int32_t target)1747 void Assembler::jal(int32_t target) {
1748 #ifdef DEBUG
1749 // Get pc of delay slot.
1750 uint32_t ipc = reinterpret_cast<uint32_t>(pc_ + 1 * kInstrSize);
1751 bool in_range = ((ipc ^ static_cast<uint32_t>(target)) >>
1752 (kImm26Bits + kImmFieldShift)) == 0;
1753 DCHECK(in_range && ((target & 3) == 0));
1754 #endif
1755 BlockTrampolinePoolScope block_trampoline_pool(this);
1756 GenInstrJump(JAL, (target >> 2) & kImm26Mask);
1757 BlockTrampolinePoolFor(1); // For associated delay slot.
1758 }
1759
jalr(Register rs,Register rd)1760 void Assembler::jalr(Register rs, Register rd) {
1761 DCHECK(rs.code() != rd.code());
1762 BlockTrampolinePoolScope block_trampoline_pool(this);
1763 GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
1764 BlockTrampolinePoolFor(1); // For associated delay slot.
1765 }
1766
jic(Register rt,int16_t offset)1767 void Assembler::jic(Register rt, int16_t offset) {
1768 DCHECK(IsMipsArchVariant(kMips32r6));
1769 GenInstrImmediate(POP66, zero_reg, rt, offset);
1770 }
1771
jialc(Register rt,int16_t offset)1772 void Assembler::jialc(Register rt, int16_t offset) {
1773 DCHECK(IsMipsArchVariant(kMips32r6));
1774 GenInstrImmediate(POP76, zero_reg, rt, offset);
1775 }
1776
1777 // -------Data-processing-instructions---------
1778
1779 // Arithmetic.
1780
addu(Register rd,Register rs,Register rt)1781 void Assembler::addu(Register rd, Register rs, Register rt) {
1782 GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
1783 }
1784
addiu(Register rd,Register rs,int32_t j)1785 void Assembler::addiu(Register rd, Register rs, int32_t j) {
1786 GenInstrImmediate(ADDIU, rs, rd, j);
1787 }
1788
subu(Register rd,Register rs,Register rt)1789 void Assembler::subu(Register rd, Register rs, Register rt) {
1790 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
1791 }
1792
mul(Register rd,Register rs,Register rt)1793 void Assembler::mul(Register rd, Register rs, Register rt) {
1794 if (!IsMipsArchVariant(kMips32r6)) {
1795 GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
1796 } else {
1797 GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH);
1798 }
1799 }
1800
mulu(Register rd,Register rs,Register rt)1801 void Assembler::mulu(Register rd, Register rs, Register rt) {
1802 DCHECK(IsMipsArchVariant(kMips32r6));
1803 GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U);
1804 }
1805
muh(Register rd,Register rs,Register rt)1806 void Assembler::muh(Register rd, Register rs, Register rt) {
1807 DCHECK(IsMipsArchVariant(kMips32r6));
1808 GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH);
1809 }
1810
muhu(Register rd,Register rs,Register rt)1811 void Assembler::muhu(Register rd, Register rs, Register rt) {
1812 DCHECK(IsMipsArchVariant(kMips32r6));
1813 GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U);
1814 }
1815
mod(Register rd,Register rs,Register rt)1816 void Assembler::mod(Register rd, Register rs, Register rt) {
1817 DCHECK(IsMipsArchVariant(kMips32r6));
1818 GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD);
1819 }
1820
modu(Register rd,Register rs,Register rt)1821 void Assembler::modu(Register rd, Register rs, Register rt) {
1822 DCHECK(IsMipsArchVariant(kMips32r6));
1823 GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U);
1824 }
1825
mult(Register rs,Register rt)1826 void Assembler::mult(Register rs, Register rt) {
1827 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
1828 }
1829
multu(Register rs,Register rt)1830 void Assembler::multu(Register rs, Register rt) {
1831 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
1832 }
1833
div(Register rs,Register rt)1834 void Assembler::div(Register rs, Register rt) {
1835 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
1836 }
1837
div(Register rd,Register rs,Register rt)1838 void Assembler::div(Register rd, Register rs, Register rt) {
1839 DCHECK(IsMipsArchVariant(kMips32r6));
1840 GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD);
1841 }
1842
divu(Register rs,Register rt)1843 void Assembler::divu(Register rs, Register rt) {
1844 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
1845 }
1846
divu(Register rd,Register rs,Register rt)1847 void Assembler::divu(Register rd, Register rs, Register rt) {
1848 DCHECK(IsMipsArchVariant(kMips32r6));
1849 GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U);
1850 }
1851
1852 // Logical.
1853
and_(Register rd,Register rs,Register rt)1854 void Assembler::and_(Register rd, Register rs, Register rt) {
1855 GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
1856 }
1857
andi(Register rt,Register rs,int32_t j)1858 void Assembler::andi(Register rt, Register rs, int32_t j) {
1859 DCHECK(is_uint16(j));
1860 GenInstrImmediate(ANDI, rs, rt, j);
1861 }
1862
or_(Register rd,Register rs,Register rt)1863 void Assembler::or_(Register rd, Register rs, Register rt) {
1864 GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
1865 }
1866
ori(Register rt,Register rs,int32_t j)1867 void Assembler::ori(Register rt, Register rs, int32_t j) {
1868 DCHECK(is_uint16(j));
1869 GenInstrImmediate(ORI, rs, rt, j);
1870 }
1871
xor_(Register rd,Register rs,Register rt)1872 void Assembler::xor_(Register rd, Register rs, Register rt) {
1873 GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
1874 }
1875
xori(Register rt,Register rs,int32_t j)1876 void Assembler::xori(Register rt, Register rs, int32_t j) {
1877 DCHECK(is_uint16(j));
1878 GenInstrImmediate(XORI, rs, rt, j);
1879 }
1880
nor(Register rd,Register rs,Register rt)1881 void Assembler::nor(Register rd, Register rs, Register rt) {
1882 GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
1883 }
1884
1885 // Shifts.
sll(Register rd,Register rt,uint16_t sa,bool coming_from_nop)1886 void Assembler::sll(Register rd, Register rt, uint16_t sa,
1887 bool coming_from_nop) {
1888 // Don't allow nop instructions in the form sll zero_reg, zero_reg to be
1889 // generated using the sll instruction. They must be generated using
1890 // nop(int/NopMarkerTypes).
1891 DCHECK(coming_from_nop || !(rd == zero_reg && rt == zero_reg));
1892 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL);
1893 }
1894
sllv(Register rd,Register rt,Register rs)1895 void Assembler::sllv(Register rd, Register rt, Register rs) {
1896 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
1897 }
1898
srl(Register rd,Register rt,uint16_t sa)1899 void Assembler::srl(Register rd, Register rt, uint16_t sa) {
1900 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL);
1901 }
1902
srlv(Register rd,Register rt,Register rs)1903 void Assembler::srlv(Register rd, Register rt, Register rs) {
1904 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
1905 }
1906
sra(Register rd,Register rt,uint16_t sa)1907 void Assembler::sra(Register rd, Register rt, uint16_t sa) {
1908 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA);
1909 }
1910
srav(Register rd,Register rt,Register rs)1911 void Assembler::srav(Register rd, Register rt, Register rs) {
1912 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
1913 }
1914
rotr(Register rd,Register rt,uint16_t sa)1915 void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
1916 // Should be called via MacroAssembler::Ror.
1917 DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1918 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
1919 Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1920 (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
1921 emit(instr);
1922 }
1923
rotrv(Register rd,Register rt,Register rs)1924 void Assembler::rotrv(Register rd, Register rt, Register rs) {
1925 // Should be called via MacroAssembler::Ror.
1926 DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1927 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
1928 Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1929 (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
1930 emit(instr);
1931 }
1932
lsa(Register rd,Register rt,Register rs,uint8_t sa)1933 void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) {
1934 DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1935 DCHECK_LE(sa, 3);
1936 DCHECK(IsMipsArchVariant(kMips32r6));
1937 Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
1938 rd.code() << kRdShift | sa << kSaShift | LSA;
1939 emit(instr);
1940 }
1941
1942 // ------------Memory-instructions-------------
1943
AdjustBaseAndOffset(MemOperand * src,OffsetAccessType access_type,int second_access_add_to_offset)1944 void Assembler::AdjustBaseAndOffset(MemOperand* src,
1945 OffsetAccessType access_type,
1946 int second_access_add_to_offset) {
1947 // This method is used to adjust the base register and offset pair
1948 // for a load/store when the offset doesn't fit into int16_t.
1949 // It is assumed that 'base + offset' is sufficiently aligned for memory
1950 // operands that are machine word in size or smaller. For doubleword-sized
1951 // operands it's assumed that 'base' is a multiple of 8, while 'offset'
1952 // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
1953 // and spilled variables on the stack accessed relative to the stack
1954 // pointer register).
1955 // We preserve the "alignment" of 'offset' by adjusting it by a multiple of 8.
1956
1957 bool doubleword_aligned = (src->offset() & (kDoubleSize - 1)) == 0;
1958 bool two_accesses = static_cast<bool>(access_type) || !doubleword_aligned;
1959 DCHECK_LE(second_access_add_to_offset, 7); // Must be <= 7.
1960
1961 // is_int16 must be passed a signed value, hence the static cast below.
1962 if (is_int16(src->offset()) &&
1963 (!two_accesses || is_int16(static_cast<int32_t>(
1964 src->offset() + second_access_add_to_offset)))) {
1965 // Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified
1966 // value) fits into int16_t.
1967 return;
1968 }
1969 UseScratchRegisterScope temps(this);
1970 Register scratch = temps.Acquire();
1971 DCHECK(src->rm() != scratch); // Must not overwrite the register 'base'
1972 // while loading 'offset'.
1973
1974 #ifdef DEBUG
1975 // Remember the "(mis)alignment" of 'offset', it will be checked at the end.
1976 uint32_t misalignment = src->offset() & (kDoubleSize - 1);
1977 #endif
1978
1979 // Do not load the whole 32-bit 'offset' if it can be represented as
1980 // a sum of two 16-bit signed offsets. This can save an instruction or two.
1981 // To simplify matters, only do this for a symmetric range of offsets from
1982 // about -64KB to about +64KB, allowing further addition of 4 when accessing
1983 // 64-bit variables with two 32-bit accesses.
1984 constexpr int32_t kMinOffsetForSimpleAdjustment =
1985 0x7FF8; // Max int16_t that's a multiple of 8.
1986 constexpr int32_t kMaxOffsetForSimpleAdjustment =
1987 2 * kMinOffsetForSimpleAdjustment;
1988 if (0 <= src->offset() && src->offset() <= kMaxOffsetForSimpleAdjustment) {
1989 addiu(scratch, src->rm(), kMinOffsetForSimpleAdjustment);
1990 src->offset_ -= kMinOffsetForSimpleAdjustment;
1991 } else if (-kMaxOffsetForSimpleAdjustment <= src->offset() &&
1992 src->offset() < 0) {
1993 addiu(scratch, src->rm(), -kMinOffsetForSimpleAdjustment);
1994 src->offset_ += kMinOffsetForSimpleAdjustment;
1995 } else if (IsMipsArchVariant(kMips32r6)) {
1996 // On r6 take advantage of the aui instruction, e.g.:
1997 // aui at, base, offset_high
1998 // lw reg_lo, offset_low(at)
1999 // lw reg_hi, (offset_low+4)(at)
2000 // or when offset_low+4 overflows int16_t:
2001 // aui at, base, offset_high
2002 // addiu at, at, 8
2003 // lw reg_lo, (offset_low-8)(at)
2004 // lw reg_hi, (offset_low-4)(at)
2005 int16_t offset_high = static_cast<uint16_t>(src->offset() >> 16);
2006 int16_t offset_low = static_cast<uint16_t>(src->offset());
2007 offset_high += (offset_low < 0)
2008 ? 1
2009 : 0; // Account for offset sign extension in load/store.
2010 aui(scratch, src->rm(), static_cast<uint16_t>(offset_high));
2011 if (two_accesses && !is_int16(static_cast<int32_t>(
2012 offset_low + second_access_add_to_offset))) {
2013 // Avoid overflow in the 16-bit offset of the load/store instruction when
2014 // adding 4.
2015 addiu(scratch, scratch, kDoubleSize);
2016 offset_low -= kDoubleSize;
2017 }
2018 src->offset_ = offset_low;
2019 } else {
2020 // Do not load the whole 32-bit 'offset' if it can be represented as
2021 // a sum of three 16-bit signed offsets. This can save an instruction.
2022 // To simplify matters, only do this for a symmetric range of offsets from
2023 // about -96KB to about +96KB, allowing further addition of 4 when accessing
2024 // 64-bit variables with two 32-bit accesses.
2025 constexpr int32_t kMinOffsetForMediumAdjustment =
2026 2 * kMinOffsetForSimpleAdjustment;
2027 constexpr int32_t kMaxOffsetForMediumAdjustment =
2028 3 * kMinOffsetForSimpleAdjustment;
2029 if (0 <= src->offset() && src->offset() <= kMaxOffsetForMediumAdjustment) {
2030 addiu(scratch, src->rm(), kMinOffsetForMediumAdjustment / 2);
2031 addiu(scratch, scratch, kMinOffsetForMediumAdjustment / 2);
2032 src->offset_ -= kMinOffsetForMediumAdjustment;
2033 } else if (-kMaxOffsetForMediumAdjustment <= src->offset() &&
2034 src->offset() < 0) {
2035 addiu(scratch, src->rm(), -kMinOffsetForMediumAdjustment / 2);
2036 addiu(scratch, scratch, -kMinOffsetForMediumAdjustment / 2);
2037 src->offset_ += kMinOffsetForMediumAdjustment;
2038 } else {
2039 // Now that all shorter options have been exhausted, load the full 32-bit
2040 // offset.
2041 int32_t loaded_offset = RoundDown(src->offset(), kDoubleSize);
2042 lui(scratch, (loaded_offset >> kLuiShift) & kImm16Mask);
2043 ori(scratch, scratch, loaded_offset & kImm16Mask); // Load 32-bit offset.
2044 addu(scratch, scratch, src->rm());
2045 src->offset_ -= loaded_offset;
2046 }
2047 }
2048 src->rm_ = scratch;
2049
2050 DCHECK(is_int16(src->offset()));
2051 if (two_accesses) {
2052 DCHECK(is_int16(
2053 static_cast<int32_t>(src->offset() + second_access_add_to_offset)));
2054 }
2055 DCHECK(misalignment == (src->offset() & (kDoubleSize - 1)));
2056 }
2057
lb(Register rd,const MemOperand & rs)2058 void Assembler::lb(Register rd, const MemOperand& rs) {
2059 MemOperand source = rs;
2060 AdjustBaseAndOffset(&source);
2061 GenInstrImmediate(LB, source.rm(), rd, source.offset());
2062 }
2063
lbu(Register rd,const MemOperand & rs)2064 void Assembler::lbu(Register rd, const MemOperand& rs) {
2065 MemOperand source = rs;
2066 AdjustBaseAndOffset(&source);
2067 GenInstrImmediate(LBU, source.rm(), rd, source.offset());
2068 }
2069
lh(Register rd,const MemOperand & rs)2070 void Assembler::lh(Register rd, const MemOperand& rs) {
2071 MemOperand source = rs;
2072 AdjustBaseAndOffset(&source);
2073 GenInstrImmediate(LH, source.rm(), rd, source.offset());
2074 }
2075
lhu(Register rd,const MemOperand & rs)2076 void Assembler::lhu(Register rd, const MemOperand& rs) {
2077 MemOperand source = rs;
2078 AdjustBaseAndOffset(&source);
2079 GenInstrImmediate(LHU, source.rm(), rd, source.offset());
2080 }
2081
lw(Register rd,const MemOperand & rs)2082 void Assembler::lw(Register rd, const MemOperand& rs) {
2083 MemOperand source = rs;
2084 AdjustBaseAndOffset(&source);
2085 GenInstrImmediate(LW, source.rm(), rd, source.offset());
2086 }
2087
lwl(Register rd,const MemOperand & rs)2088 void Assembler::lwl(Register rd, const MemOperand& rs) {
2089 DCHECK(is_int16(rs.offset_));
2090 DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2091 IsMipsArchVariant(kMips32r2));
2092 GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
2093 }
2094
lwr(Register rd,const MemOperand & rs)2095 void Assembler::lwr(Register rd, const MemOperand& rs) {
2096 DCHECK(is_int16(rs.offset_));
2097 DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2098 IsMipsArchVariant(kMips32r2));
2099 GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
2100 }
2101
sb(Register rd,const MemOperand & rs)2102 void Assembler::sb(Register rd, const MemOperand& rs) {
2103 MemOperand source = rs;
2104 AdjustBaseAndOffset(&source);
2105 GenInstrImmediate(SB, source.rm(), rd, source.offset());
2106 }
2107
sh(Register rd,const MemOperand & rs)2108 void Assembler::sh(Register rd, const MemOperand& rs) {
2109 MemOperand source = rs;
2110 AdjustBaseAndOffset(&source);
2111 GenInstrImmediate(SH, source.rm(), rd, source.offset());
2112 }
2113
sw(Register rd,const MemOperand & rs)2114 void Assembler::sw(Register rd, const MemOperand& rs) {
2115 MemOperand source = rs;
2116 AdjustBaseAndOffset(&source);
2117 GenInstrImmediate(SW, source.rm(), rd, source.offset());
2118 }
2119
swl(Register rd,const MemOperand & rs)2120 void Assembler::swl(Register rd, const MemOperand& rs) {
2121 DCHECK(is_int16(rs.offset_));
2122 DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2123 IsMipsArchVariant(kMips32r2));
2124 GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
2125 }
2126
swr(Register rd,const MemOperand & rs)2127 void Assembler::swr(Register rd, const MemOperand& rs) {
2128 DCHECK(is_int16(rs.offset_));
2129 DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2130 IsMipsArchVariant(kMips32r2));
2131 GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
2132 }
2133
ll(Register rd,const MemOperand & rs)2134 void Assembler::ll(Register rd, const MemOperand& rs) {
2135 if (IsMipsArchVariant(kMips32r6)) {
2136 DCHECK(is_int9(rs.offset_));
2137 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LL_R6);
2138 } else {
2139 DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2140 IsMipsArchVariant(kMips32r2));
2141 DCHECK(is_int16(rs.offset_));
2142 GenInstrImmediate(LL, rs.rm(), rd, rs.offset_);
2143 }
2144 }
2145
sc(Register rd,const MemOperand & rs)2146 void Assembler::sc(Register rd, const MemOperand& rs) {
2147 if (IsMipsArchVariant(kMips32r6)) {
2148 DCHECK(is_int9(rs.offset_));
2149 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SC_R6);
2150 } else {
2151 DCHECK(IsMipsArchVariant(kLoongson) || IsMipsArchVariant(kMips32r1) ||
2152 IsMipsArchVariant(kMips32r2));
2153 GenInstrImmediate(SC, rs.rm(), rd, rs.offset_);
2154 }
2155 }
2156
llx(Register rd,const MemOperand & rs)2157 void Assembler::llx(Register rd, const MemOperand& rs) {
2158 DCHECK(IsMipsArchVariant(kMips32r6));
2159 DCHECK(is_int9(rs.offset_));
2160 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 1, LL_R6);
2161 }
2162
scx(Register rd,const MemOperand & rs)2163 void Assembler::scx(Register rd, const MemOperand& rs) {
2164 DCHECK(IsMipsArchVariant(kMips32r6));
2165 DCHECK(is_int9(rs.offset_));
2166 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 1, SC_R6);
2167 }
2168
lui(Register rd,int32_t j)2169 void Assembler::lui(Register rd, int32_t j) {
2170 DCHECK(is_uint16(j) || is_int16(j));
2171 GenInstrImmediate(LUI, zero_reg, rd, j);
2172 }
2173
aui(Register rt,Register rs,int32_t j)2174 void Assembler::aui(Register rt, Register rs, int32_t j) {
2175 // This instruction uses same opcode as 'lui'. The difference in encoding is
2176 // 'lui' has zero reg. for rs field.
2177 DCHECK(IsMipsArchVariant(kMips32r6));
2178 DCHECK(rs != zero_reg);
2179 DCHECK(is_uint16(j));
2180 GenInstrImmediate(LUI, rs, rt, j);
2181 }
2182
2183 // ---------PC-Relative instructions-----------
2184
addiupc(Register rs,int32_t imm19)2185 void Assembler::addiupc(Register rs, int32_t imm19) {
2186 DCHECK(IsMipsArchVariant(kMips32r6));
2187 DCHECK(rs.is_valid() && is_int19(imm19));
2188 uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask);
2189 GenInstrImmediate(PCREL, rs, imm21);
2190 }
2191
lwpc(Register rs,int32_t offset19)2192 void Assembler::lwpc(Register rs, int32_t offset19) {
2193 DCHECK(IsMipsArchVariant(kMips32r6));
2194 DCHECK(rs.is_valid() && is_int19(offset19));
2195 uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask);
2196 GenInstrImmediate(PCREL, rs, imm21);
2197 }
2198
auipc(Register rs,int16_t imm16)2199 void Assembler::auipc(Register rs, int16_t imm16) {
2200 DCHECK(IsMipsArchVariant(kMips32r6));
2201 DCHECK(rs.is_valid());
2202 uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask);
2203 GenInstrImmediate(PCREL, rs, imm21);
2204 }
2205
aluipc(Register rs,int16_t imm16)2206 void Assembler::aluipc(Register rs, int16_t imm16) {
2207 DCHECK(IsMipsArchVariant(kMips32r6));
2208 DCHECK(rs.is_valid());
2209 uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask);
2210 GenInstrImmediate(PCREL, rs, imm21);
2211 }
2212
2213 // -------------Misc-instructions--------------
2214
2215 // Break / Trap instructions.
break_(uint32_t code,bool break_as_stop)2216 void Assembler::break_(uint32_t code, bool break_as_stop) {
2217 DCHECK_EQ(code & ~0xFFFFF, 0);
2218 // We need to invalidate breaks that could be stops as well because the
2219 // simulator expects a char pointer after the stop instruction.
2220 // See constants-mips.h for explanation.
2221 DCHECK(
2222 (break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) ||
2223 (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode)));
2224 Instr break_instr = SPECIAL | BREAK | (code << 6);
2225 emit(break_instr);
2226 }
2227
stop(uint32_t code)2228 void Assembler::stop(uint32_t code) {
2229 DCHECK_GT(code, kMaxWatchpointCode);
2230 DCHECK_LE(code, kMaxStopCode);
2231 #if V8_HOST_ARCH_MIPS
2232 break_(0x54321);
2233 #else // V8_HOST_ARCH_MIPS
2234 break_(code, true);
2235 #endif
2236 }
2237
tge(Register rs,Register rt,uint16_t code)2238 void Assembler::tge(Register rs, Register rt, uint16_t code) {
2239 DCHECK(is_uint10(code));
2240 Instr instr =
2241 SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2242 emit(instr);
2243 }
2244
tgeu(Register rs,Register rt,uint16_t code)2245 void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
2246 DCHECK(is_uint10(code));
2247 Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift |
2248 code << 6;
2249 emit(instr);
2250 }
2251
tlt(Register rs,Register rt,uint16_t code)2252 void Assembler::tlt(Register rs, Register rt, uint16_t code) {
2253 DCHECK(is_uint10(code));
2254 Instr instr =
2255 SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2256 emit(instr);
2257 }
2258
tltu(Register rs,Register rt,uint16_t code)2259 void Assembler::tltu(Register rs, Register rt, uint16_t code) {
2260 DCHECK(is_uint10(code));
2261 Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift |
2262 code << 6;
2263 emit(instr);
2264 }
2265
teq(Register rs,Register rt,uint16_t code)2266 void Assembler::teq(Register rs, Register rt, uint16_t code) {
2267 DCHECK(is_uint10(code));
2268 Instr instr =
2269 SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2270 emit(instr);
2271 }
2272
tne(Register rs,Register rt,uint16_t code)2273 void Assembler::tne(Register rs, Register rt, uint16_t code) {
2274 DCHECK(is_uint10(code));
2275 Instr instr =
2276 SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2277 emit(instr);
2278 }
2279
sync()2280 void Assembler::sync() {
2281 Instr sync_instr = SPECIAL | SYNC;
2282 emit(sync_instr);
2283 }
2284
2285 // Move from HI/LO register.
2286
mfhi(Register rd)2287 void Assembler::mfhi(Register rd) {
2288 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
2289 }
2290
mflo(Register rd)2291 void Assembler::mflo(Register rd) {
2292 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
2293 }
2294
2295 // Set on less than instructions.
slt(Register rd,Register rs,Register rt)2296 void Assembler::slt(Register rd, Register rs, Register rt) {
2297 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
2298 }
2299
sltu(Register rd,Register rs,Register rt)2300 void Assembler::sltu(Register rd, Register rs, Register rt) {
2301 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
2302 }
2303
slti(Register rt,Register rs,int32_t j)2304 void Assembler::slti(Register rt, Register rs, int32_t j) {
2305 GenInstrImmediate(SLTI, rs, rt, j);
2306 }
2307
sltiu(Register rt,Register rs,int32_t j)2308 void Assembler::sltiu(Register rt, Register rs, int32_t j) {
2309 GenInstrImmediate(SLTIU, rs, rt, j);
2310 }
2311
2312 // Conditional move.
movz(Register rd,Register rs,Register rt)2313 void Assembler::movz(Register rd, Register rs, Register rt) {
2314 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
2315 }
2316
movn(Register rd,Register rs,Register rt)2317 void Assembler::movn(Register rd, Register rs, Register rt) {
2318 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
2319 }
2320
movt(Register rd,Register rs,uint16_t cc)2321 void Assembler::movt(Register rd, Register rs, uint16_t cc) {
2322 Register rt = Register::from_code((cc & 0x0007) << 2 | 1);
2323 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2324 }
2325
movf(Register rd,Register rs,uint16_t cc)2326 void Assembler::movf(Register rd, Register rs, uint16_t cc) {
2327 Register rt = Register::from_code((cc & 0x0007) << 2 | 0);
2328 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2329 }
2330
seleqz(Register rd,Register rs,Register rt)2331 void Assembler::seleqz(Register rd, Register rs, Register rt) {
2332 DCHECK(IsMipsArchVariant(kMips32r6));
2333 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S);
2334 }
2335
2336 // Bit twiddling.
clz(Register rd,Register rs)2337 void Assembler::clz(Register rd, Register rs) {
2338 if (!IsMipsArchVariant(kMips32r6)) {
2339 // Clz instr requires same GPR number in 'rd' and 'rt' fields.
2340 GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
2341 } else {
2342 GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6);
2343 }
2344 }
2345
ins_(Register rt,Register rs,uint16_t pos,uint16_t size)2346 void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2347 // Should be called via MacroAssembler::Ins.
2348 // Ins instr has 'rt' field as dest, and two uint5: msb, lsb.
2349 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2350 GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
2351 }
2352
ext_(Register rt,Register rs,uint16_t pos,uint16_t size)2353 void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2354 // Should be called via MacroAssembler::Ext.
2355 // Ext instr has 'rt' field as dest, and two uint5: msb, lsb.
2356 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2357 GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
2358 }
2359
bitswap(Register rd,Register rt)2360 void Assembler::bitswap(Register rd, Register rt) {
2361 DCHECK(IsMipsArchVariant(kMips32r6));
2362 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, BSHFL);
2363 }
2364
pref(int32_t hint,const MemOperand & rs)2365 void Assembler::pref(int32_t hint, const MemOperand& rs) {
2366 DCHECK(!IsMipsArchVariant(kLoongson));
2367 DCHECK(is_uint5(hint) && is_uint16(rs.offset_));
2368 Instr instr =
2369 PREF | (rs.rm().code() << kRsShift) | (hint << kRtShift) | (rs.offset_);
2370 emit(instr);
2371 }
2372
align(Register rd,Register rs,Register rt,uint8_t bp)2373 void Assembler::align(Register rd, Register rs, Register rt, uint8_t bp) {
2374 DCHECK(IsMipsArchVariant(kMips32r6));
2375 DCHECK(is_uint3(bp));
2376 uint16_t sa = (ALIGN << kBp2Bits) | bp;
2377 GenInstrRegister(SPECIAL3, rs, rt, rd, sa, BSHFL);
2378 }
2379
2380 // Byte swap.
wsbh(Register rd,Register rt)2381 void Assembler::wsbh(Register rd, Register rt) {
2382 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2383 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, WSBH, BSHFL);
2384 }
2385
seh(Register rd,Register rt)2386 void Assembler::seh(Register rd, Register rt) {
2387 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2388 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEH, BSHFL);
2389 }
2390
seb(Register rd,Register rt)2391 void Assembler::seb(Register rd, Register rt) {
2392 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2393 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEB, BSHFL);
2394 }
2395
2396 // --------Coprocessor-instructions----------------
2397
2398 // Load, store, move.
lwc1(FPURegister fd,const MemOperand & src)2399 void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
2400 MemOperand tmp = src;
2401 AdjustBaseAndOffset(&tmp);
2402 GenInstrImmediate(LWC1, tmp.rm(), fd, tmp.offset());
2403 }
2404
swc1(FPURegister fd,const MemOperand & src)2405 void Assembler::swc1(FPURegister fd, const MemOperand& src) {
2406 MemOperand tmp = src;
2407 AdjustBaseAndOffset(&tmp);
2408 GenInstrImmediate(SWC1, tmp.rm(), fd, tmp.offset());
2409 }
2410
mtc1(Register rt,FPURegister fs)2411 void Assembler::mtc1(Register rt, FPURegister fs) {
2412 GenInstrRegister(COP1, MTC1, rt, fs, f0);
2413 }
2414
mthc1(Register rt,FPURegister fs)2415 void Assembler::mthc1(Register rt, FPURegister fs) {
2416 GenInstrRegister(COP1, MTHC1, rt, fs, f0);
2417 }
2418
mfc1(Register rt,FPURegister fs)2419 void Assembler::mfc1(Register rt, FPURegister fs) {
2420 GenInstrRegister(COP1, MFC1, rt, fs, f0);
2421 }
2422
mfhc1(Register rt,FPURegister fs)2423 void Assembler::mfhc1(Register rt, FPURegister fs) {
2424 GenInstrRegister(COP1, MFHC1, rt, fs, f0);
2425 }
2426
ctc1(Register rt,FPUControlRegister fs)2427 void Assembler::ctc1(Register rt, FPUControlRegister fs) {
2428 GenInstrRegister(COP1, CTC1, rt, fs);
2429 }
2430
cfc1(Register rt,FPUControlRegister fs)2431 void Assembler::cfc1(Register rt, FPUControlRegister fs) {
2432 GenInstrRegister(COP1, CFC1, rt, fs);
2433 }
2434
movn_s(FPURegister fd,FPURegister fs,Register rt)2435 void Assembler::movn_s(FPURegister fd, FPURegister fs, Register rt) {
2436 DCHECK(!IsMipsArchVariant(kMips32r6));
2437 GenInstrRegister(COP1, S, rt, fs, fd, MOVN_C);
2438 }
2439
movn_d(FPURegister fd,FPURegister fs,Register rt)2440 void Assembler::movn_d(FPURegister fd, FPURegister fs, Register rt) {
2441 DCHECK(!IsMipsArchVariant(kMips32r6));
2442 GenInstrRegister(COP1, D, rt, fs, fd, MOVN_C);
2443 }
2444
sel(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2445 void Assembler::sel(SecondaryField fmt, FPURegister fd, FPURegister fs,
2446 FPURegister ft) {
2447 DCHECK(IsMipsArchVariant(kMips32r6));
2448 DCHECK((fmt == D) || (fmt == S));
2449
2450 GenInstrRegister(COP1, fmt, ft, fs, fd, SEL);
2451 }
2452
sel_s(FPURegister fd,FPURegister fs,FPURegister ft)2453 void Assembler::sel_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2454 sel(S, fd, fs, ft);
2455 }
2456
sel_d(FPURegister fd,FPURegister fs,FPURegister ft)2457 void Assembler::sel_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2458 sel(D, fd, fs, ft);
2459 }
2460
seleqz(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2461 void Assembler::seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
2462 FPURegister ft) {
2463 DCHECK(IsMipsArchVariant(kMips32r6));
2464 DCHECK((fmt == D) || (fmt == S));
2465 GenInstrRegister(COP1, fmt, ft, fs, fd, SELEQZ_C);
2466 }
2467
selnez(Register rd,Register rs,Register rt)2468 void Assembler::selnez(Register rd, Register rs, Register rt) {
2469 DCHECK(IsMipsArchVariant(kMips32r6));
2470 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S);
2471 }
2472
selnez(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2473 void Assembler::selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
2474 FPURegister ft) {
2475 DCHECK(IsMipsArchVariant(kMips32r6));
2476 DCHECK((fmt == D) || (fmt == S));
2477 GenInstrRegister(COP1, fmt, ft, fs, fd, SELNEZ_C);
2478 }
2479
seleqz_d(FPURegister fd,FPURegister fs,FPURegister ft)2480 void Assembler::seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2481 seleqz(D, fd, fs, ft);
2482 }
2483
seleqz_s(FPURegister fd,FPURegister fs,FPURegister ft)2484 void Assembler::seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2485 seleqz(S, fd, fs, ft);
2486 }
2487
selnez_d(FPURegister fd,FPURegister fs,FPURegister ft)2488 void Assembler::selnez_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2489 selnez(D, fd, fs, ft);
2490 }
2491
selnez_s(FPURegister fd,FPURegister fs,FPURegister ft)2492 void Assembler::selnez_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2493 selnez(S, fd, fs, ft);
2494 }
2495
movz_s(FPURegister fd,FPURegister fs,Register rt)2496 void Assembler::movz_s(FPURegister fd, FPURegister fs, Register rt) {
2497 DCHECK(!IsMipsArchVariant(kMips32r6));
2498 GenInstrRegister(COP1, S, rt, fs, fd, MOVZ_C);
2499 }
2500
movz_d(FPURegister fd,FPURegister fs,Register rt)2501 void Assembler::movz_d(FPURegister fd, FPURegister fs, Register rt) {
2502 DCHECK(!IsMipsArchVariant(kMips32r6));
2503 GenInstrRegister(COP1, D, rt, fs, fd, MOVZ_C);
2504 }
2505
movt_s(FPURegister fd,FPURegister fs,uint16_t cc)2506 void Assembler::movt_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2507 DCHECK(!IsMipsArchVariant(kMips32r6));
2508 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2509 GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2510 }
2511
movt_d(FPURegister fd,FPURegister fs,uint16_t cc)2512 void Assembler::movt_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2513 DCHECK(!IsMipsArchVariant(kMips32r6));
2514 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2515 GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2516 }
2517
movf_s(FPURegister fd,FPURegister fs,uint16_t cc)2518 void Assembler::movf_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2519 DCHECK(!IsMipsArchVariant(kMips32r6));
2520 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2521 GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2522 }
2523
movf_d(FPURegister fd,FPURegister fs,uint16_t cc)2524 void Assembler::movf_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2525 DCHECK(!IsMipsArchVariant(kMips32r6));
2526 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2527 GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2528 }
2529
2530 // Arithmetic.
2531
add_s(FPURegister fd,FPURegister fs,FPURegister ft)2532 void Assembler::add_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2533 GenInstrRegister(COP1, S, ft, fs, fd, ADD_S);
2534 }
2535
add_d(FPURegister fd,FPURegister fs,FPURegister ft)2536 void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2537 GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
2538 }
2539
sub_s(FPURegister fd,FPURegister fs,FPURegister ft)2540 void Assembler::sub_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2541 GenInstrRegister(COP1, S, ft, fs, fd, SUB_S);
2542 }
2543
sub_d(FPURegister fd,FPURegister fs,FPURegister ft)2544 void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2545 GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
2546 }
2547
mul_s(FPURegister fd,FPURegister fs,FPURegister ft)2548 void Assembler::mul_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2549 GenInstrRegister(COP1, S, ft, fs, fd, MUL_S);
2550 }
2551
mul_d(FPURegister fd,FPURegister fs,FPURegister ft)2552 void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2553 GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
2554 }
2555
madd_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2556 void Assembler::madd_s(FPURegister fd, FPURegister fr, FPURegister fs,
2557 FPURegister ft) {
2558 DCHECK(IsMipsArchVariant(kMips32r2));
2559 GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_S);
2560 }
2561
madd_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2562 void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
2563 FPURegister ft) {
2564 DCHECK(IsMipsArchVariant(kMips32r2));
2565 GenInstrRegister(COP1X, fr, ft, fs, fd, MADD_D);
2566 }
2567
msub_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2568 void Assembler::msub_s(FPURegister fd, FPURegister fr, FPURegister fs,
2569 FPURegister ft) {
2570 DCHECK(IsMipsArchVariant(kMips32r2));
2571 GenInstrRegister(COP1X, fr, ft, fs, fd, MSUB_S);
2572 }
2573
msub_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2574 void Assembler::msub_d(FPURegister fd, FPURegister fr, FPURegister fs,
2575 FPURegister ft) {
2576 DCHECK(IsMipsArchVariant(kMips32r2));
2577 GenInstrRegister(COP1X, fr, ft, fs, fd, MSUB_D);
2578 }
2579
maddf_s(FPURegister fd,FPURegister fs,FPURegister ft)2580 void Assembler::maddf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2581 DCHECK(IsMipsArchVariant(kMips32r6));
2582 GenInstrRegister(COP1, S, ft, fs, fd, MADDF_S);
2583 }
2584
maddf_d(FPURegister fd,FPURegister fs,FPURegister ft)2585 void Assembler::maddf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2586 DCHECK(IsMipsArchVariant(kMips32r6));
2587 GenInstrRegister(COP1, D, ft, fs, fd, MADDF_D);
2588 }
2589
msubf_s(FPURegister fd,FPURegister fs,FPURegister ft)2590 void Assembler::msubf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2591 DCHECK(IsMipsArchVariant(kMips32r6));
2592 GenInstrRegister(COP1, S, ft, fs, fd, MSUBF_S);
2593 }
2594
msubf_d(FPURegister fd,FPURegister fs,FPURegister ft)2595 void Assembler::msubf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2596 DCHECK(IsMipsArchVariant(kMips32r6));
2597 GenInstrRegister(COP1, D, ft, fs, fd, MSUBF_D);
2598 }
2599
div_s(FPURegister fd,FPURegister fs,FPURegister ft)2600 void Assembler::div_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2601 GenInstrRegister(COP1, S, ft, fs, fd, DIV_S);
2602 }
2603
div_d(FPURegister fd,FPURegister fs,FPURegister ft)2604 void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2605 GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
2606 }
2607
abs_s(FPURegister fd,FPURegister fs)2608 void Assembler::abs_s(FPURegister fd, FPURegister fs) {
2609 GenInstrRegister(COP1, S, f0, fs, fd, ABS_S);
2610 }
2611
abs_d(FPURegister fd,FPURegister fs)2612 void Assembler::abs_d(FPURegister fd, FPURegister fs) {
2613 GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
2614 }
2615
mov_d(FPURegister fd,FPURegister fs)2616 void Assembler::mov_d(FPURegister fd, FPURegister fs) {
2617 GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
2618 }
2619
mov_s(FPURegister fd,FPURegister fs)2620 void Assembler::mov_s(FPURegister fd, FPURegister fs) {
2621 GenInstrRegister(COP1, S, f0, fs, fd, MOV_S);
2622 }
2623
neg_s(FPURegister fd,FPURegister fs)2624 void Assembler::neg_s(FPURegister fd, FPURegister fs) {
2625 GenInstrRegister(COP1, S, f0, fs, fd, NEG_S);
2626 }
2627
neg_d(FPURegister fd,FPURegister fs)2628 void Assembler::neg_d(FPURegister fd, FPURegister fs) {
2629 GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
2630 }
2631
sqrt_s(FPURegister fd,FPURegister fs)2632 void Assembler::sqrt_s(FPURegister fd, FPURegister fs) {
2633 GenInstrRegister(COP1, S, f0, fs, fd, SQRT_S);
2634 }
2635
sqrt_d(FPURegister fd,FPURegister fs)2636 void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
2637 GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
2638 }
2639
rsqrt_s(FPURegister fd,FPURegister fs)2640 void Assembler::rsqrt_s(FPURegister fd, FPURegister fs) {
2641 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2642 GenInstrRegister(COP1, S, f0, fs, fd, RSQRT_S);
2643 }
2644
rsqrt_d(FPURegister fd,FPURegister fs)2645 void Assembler::rsqrt_d(FPURegister fd, FPURegister fs) {
2646 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2647 GenInstrRegister(COP1, D, f0, fs, fd, RSQRT_D);
2648 }
2649
recip_d(FPURegister fd,FPURegister fs)2650 void Assembler::recip_d(FPURegister fd, FPURegister fs) {
2651 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2652 GenInstrRegister(COP1, D, f0, fs, fd, RECIP_D);
2653 }
2654
recip_s(FPURegister fd,FPURegister fs)2655 void Assembler::recip_s(FPURegister fd, FPURegister fs) {
2656 DCHECK(IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6));
2657 GenInstrRegister(COP1, S, f0, fs, fd, RECIP_S);
2658 }
2659
2660 // Conversions.
2661
cvt_w_s(FPURegister fd,FPURegister fs)2662 void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
2663 GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
2664 }
2665
cvt_w_d(FPURegister fd,FPURegister fs)2666 void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
2667 GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
2668 }
2669
trunc_w_s(FPURegister fd,FPURegister fs)2670 void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
2671 GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
2672 }
2673
trunc_w_d(FPURegister fd,FPURegister fs)2674 void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
2675 GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
2676 }
2677
round_w_s(FPURegister fd,FPURegister fs)2678 void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
2679 GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
2680 }
2681
round_w_d(FPURegister fd,FPURegister fs)2682 void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
2683 GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
2684 }
2685
floor_w_s(FPURegister fd,FPURegister fs)2686 void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
2687 GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
2688 }
2689
floor_w_d(FPURegister fd,FPURegister fs)2690 void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
2691 GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
2692 }
2693
ceil_w_s(FPURegister fd,FPURegister fs)2694 void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
2695 GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
2696 }
2697
ceil_w_d(FPURegister fd,FPURegister fs)2698 void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
2699 GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
2700 }
2701
rint_s(FPURegister fd,FPURegister fs)2702 void Assembler::rint_s(FPURegister fd, FPURegister fs) { rint(S, fd, fs); }
2703
rint(SecondaryField fmt,FPURegister fd,FPURegister fs)2704 void Assembler::rint(SecondaryField fmt, FPURegister fd, FPURegister fs) {
2705 DCHECK(IsMipsArchVariant(kMips32r6));
2706 DCHECK((fmt == D) || (fmt == S));
2707 GenInstrRegister(COP1, fmt, f0, fs, fd, RINT);
2708 }
2709
rint_d(FPURegister fd,FPURegister fs)2710 void Assembler::rint_d(FPURegister fd, FPURegister fs) { rint(D, fd, fs); }
2711
cvt_l_s(FPURegister fd,FPURegister fs)2712 void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
2713 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2714 IsFp64Mode());
2715 GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
2716 }
2717
cvt_l_d(FPURegister fd,FPURegister fs)2718 void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
2719 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2720 IsFp64Mode());
2721 GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
2722 }
2723
trunc_l_s(FPURegister fd,FPURegister fs)2724 void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
2725 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2726 IsFp64Mode());
2727 GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
2728 }
2729
trunc_l_d(FPURegister fd,FPURegister fs)2730 void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
2731 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2732 IsFp64Mode());
2733 GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
2734 }
2735
round_l_s(FPURegister fd,FPURegister fs)2736 void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
2737 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2738 IsFp64Mode());
2739 GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
2740 }
2741
round_l_d(FPURegister fd,FPURegister fs)2742 void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
2743 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2744 IsFp64Mode());
2745 GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
2746 }
2747
floor_l_s(FPURegister fd,FPURegister fs)2748 void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
2749 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2750 IsFp64Mode());
2751 GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
2752 }
2753
floor_l_d(FPURegister fd,FPURegister fs)2754 void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
2755 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2756 IsFp64Mode());
2757 GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
2758 }
2759
ceil_l_s(FPURegister fd,FPURegister fs)2760 void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
2761 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2762 IsFp64Mode());
2763 GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
2764 }
2765
ceil_l_d(FPURegister fd,FPURegister fs)2766 void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
2767 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2768 IsFp64Mode());
2769 GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
2770 }
2771
class_s(FPURegister fd,FPURegister fs)2772 void Assembler::class_s(FPURegister fd, FPURegister fs) {
2773 DCHECK(IsMipsArchVariant(kMips32r6));
2774 GenInstrRegister(COP1, S, f0, fs, fd, CLASS_S);
2775 }
2776
class_d(FPURegister fd,FPURegister fs)2777 void Assembler::class_d(FPURegister fd, FPURegister fs) {
2778 DCHECK(IsMipsArchVariant(kMips32r6));
2779 GenInstrRegister(COP1, D, f0, fs, fd, CLASS_D);
2780 }
2781
min(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2782 void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs,
2783 FPURegister ft) {
2784 DCHECK(IsMipsArchVariant(kMips32r6));
2785 DCHECK((fmt == D) || (fmt == S));
2786 GenInstrRegister(COP1, fmt, ft, fs, fd, MIN);
2787 }
2788
mina(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2789 void Assembler::mina(SecondaryField fmt, FPURegister fd, FPURegister fs,
2790 FPURegister ft) {
2791 DCHECK(IsMipsArchVariant(kMips32r6));
2792 DCHECK((fmt == D) || (fmt == S));
2793 GenInstrRegister(COP1, fmt, ft, fs, fd, MINA);
2794 }
2795
max(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2796 void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs,
2797 FPURegister ft) {
2798 DCHECK(IsMipsArchVariant(kMips32r6));
2799 DCHECK((fmt == D) || (fmt == S));
2800 GenInstrRegister(COP1, fmt, ft, fs, fd, MAX);
2801 }
2802
maxa(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2803 void Assembler::maxa(SecondaryField fmt, FPURegister fd, FPURegister fs,
2804 FPURegister ft) {
2805 DCHECK(IsMipsArchVariant(kMips32r6));
2806 DCHECK((fmt == D) || (fmt == S));
2807 GenInstrRegister(COP1, fmt, ft, fs, fd, MAXA);
2808 }
2809
min_s(FPURegister fd,FPURegister fs,FPURegister ft)2810 void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2811 min(S, fd, fs, ft);
2812 }
2813
min_d(FPURegister fd,FPURegister fs,FPURegister ft)2814 void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2815 min(D, fd, fs, ft);
2816 }
2817
max_s(FPURegister fd,FPURegister fs,FPURegister ft)2818 void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2819 max(S, fd, fs, ft);
2820 }
2821
max_d(FPURegister fd,FPURegister fs,FPURegister ft)2822 void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2823 max(D, fd, fs, ft);
2824 }
2825
mina_s(FPURegister fd,FPURegister fs,FPURegister ft)2826 void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2827 mina(S, fd, fs, ft);
2828 }
2829
mina_d(FPURegister fd,FPURegister fs,FPURegister ft)2830 void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2831 mina(D, fd, fs, ft);
2832 }
2833
maxa_s(FPURegister fd,FPURegister fs,FPURegister ft)2834 void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2835 maxa(S, fd, fs, ft);
2836 }
2837
maxa_d(FPURegister fd,FPURegister fs,FPURegister ft)2838 void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2839 maxa(D, fd, fs, ft);
2840 }
2841
cvt_s_w(FPURegister fd,FPURegister fs)2842 void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
2843 GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
2844 }
2845
cvt_s_l(FPURegister fd,FPURegister fs)2846 void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
2847 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2848 IsFp64Mode());
2849 GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
2850 }
2851
cvt_s_d(FPURegister fd,FPURegister fs)2852 void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
2853 GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
2854 }
2855
cvt_d_w(FPURegister fd,FPURegister fs)2856 void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
2857 GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
2858 }
2859
cvt_d_l(FPURegister fd,FPURegister fs)2860 void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
2861 DCHECK((IsMipsArchVariant(kMips32r2) || IsMipsArchVariant(kMips32r6)) &&
2862 IsFp64Mode());
2863 GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
2864 }
2865
cvt_d_s(FPURegister fd,FPURegister fs)2866 void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
2867 GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
2868 }
2869
2870 // Conditions for >= MIPSr6.
cmp(FPUCondition cond,SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2871 void Assembler::cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd,
2872 FPURegister fs, FPURegister ft) {
2873 DCHECK(IsMipsArchVariant(kMips32r6));
2874 DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
2875 Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift |
2876 fd.code() << kFdShift | (0 << 5) | cond;
2877 emit(instr);
2878 }
2879
cmp_s(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)2880 void Assembler::cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs,
2881 FPURegister ft) {
2882 cmp(cond, W, fd, fs, ft);
2883 }
2884
cmp_d(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)2885 void Assembler::cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs,
2886 FPURegister ft) {
2887 cmp(cond, L, fd, fs, ft);
2888 }
2889
bc1eqz(int16_t offset,FPURegister ft)2890 void Assembler::bc1eqz(int16_t offset, FPURegister ft) {
2891 DCHECK(IsMipsArchVariant(kMips32r6));
2892 BlockTrampolinePoolScope block_trampoline_pool(this);
2893 Instr instr = COP1 | BC1EQZ | ft.code() << kFtShift | (offset & kImm16Mask);
2894 emit(instr);
2895 BlockTrampolinePoolFor(1); // For associated delay slot.
2896 }
2897
bc1nez(int16_t offset,FPURegister ft)2898 void Assembler::bc1nez(int16_t offset, FPURegister ft) {
2899 DCHECK(IsMipsArchVariant(kMips32r6));
2900 BlockTrampolinePoolScope block_trampoline_pool(this);
2901 Instr instr = COP1 | BC1NEZ | ft.code() << kFtShift | (offset & kImm16Mask);
2902 emit(instr);
2903 BlockTrampolinePoolFor(1); // For associated delay slot.
2904 }
2905
2906 // Conditions for < MIPSr6.
c(FPUCondition cond,SecondaryField fmt,FPURegister fs,FPURegister ft,uint16_t cc)2907 void Assembler::c(FPUCondition cond, SecondaryField fmt, FPURegister fs,
2908 FPURegister ft, uint16_t cc) {
2909 DCHECK(is_uint3(cc));
2910 DCHECK(fmt == S || fmt == D);
2911 DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
2912 Instr instr = COP1 | fmt | ft.code() << 16 | fs.code() << kFsShift | cc << 8 |
2913 3 << 4 | cond;
2914 emit(instr);
2915 }
2916
c_s(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)2917 void Assembler::c_s(FPUCondition cond, FPURegister fs, FPURegister ft,
2918 uint16_t cc) {
2919 c(cond, S, fs, ft, cc);
2920 }
2921
c_d(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)2922 void Assembler::c_d(FPUCondition cond, FPURegister fs, FPURegister ft,
2923 uint16_t cc) {
2924 c(cond, D, fs, ft, cc);
2925 }
2926
fcmp(FPURegister src1,const double src2,FPUCondition cond)2927 void Assembler::fcmp(FPURegister src1, const double src2, FPUCondition cond) {
2928 DCHECK_EQ(src2, 0.0);
2929 mtc1(zero_reg, f14);
2930 cvt_d_w(f14, f14);
2931 c(cond, D, src1, f14, 0);
2932 }
2933
bc1f(int16_t offset,uint16_t cc)2934 void Assembler::bc1f(int16_t offset, uint16_t cc) {
2935 BlockTrampolinePoolScope block_trampoline_pool(this);
2936 DCHECK(is_uint3(cc));
2937 Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
2938 emit(instr);
2939 BlockTrampolinePoolFor(1); // For associated delay slot.
2940 }
2941
bc1t(int16_t offset,uint16_t cc)2942 void Assembler::bc1t(int16_t offset, uint16_t cc) {
2943 BlockTrampolinePoolScope block_trampoline_pool(this);
2944 DCHECK(is_uint3(cc));
2945 Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
2946 emit(instr);
2947 BlockTrampolinePoolFor(1); // For associated delay slot.
2948 }
2949
2950 // ---------- MSA instructions ------------
2951 #define MSA_BRANCH_LIST(V) \
2952 V(bz_v, BZ_V) \
2953 V(bz_b, BZ_B) \
2954 V(bz_h, BZ_H) \
2955 V(bz_w, BZ_W) \
2956 V(bz_d, BZ_D) \
2957 V(bnz_v, BNZ_V) \
2958 V(bnz_b, BNZ_B) \
2959 V(bnz_h, BNZ_H) \
2960 V(bnz_w, BNZ_W) \
2961 V(bnz_d, BNZ_D)
2962
2963 #define MSA_BRANCH(name, opcode) \
2964 void Assembler::name(MSARegister wt, int16_t offset) { \
2965 GenInstrMsaBranch(opcode, wt, offset); \
2966 }
2967
2968 MSA_BRANCH_LIST(MSA_BRANCH)
2969 #undef MSA_BRANCH
2970 #undef MSA_BRANCH_LIST
2971
2972 #define MSA_LD_ST_LIST(V) \
2973 V(ld_b, LD_B) \
2974 V(ld_h, LD_H) \
2975 V(ld_w, LD_W) \
2976 V(ld_d, LD_D) \
2977 V(st_b, ST_B) \
2978 V(st_h, ST_H) \
2979 V(st_w, ST_W) \
2980 V(st_d, ST_D)
2981
2982 #define MSA_LD_ST(name, opcode) \
2983 void Assembler::name(MSARegister wd, const MemOperand& rs) { \
2984 MemOperand source = rs; \
2985 AdjustBaseAndOffset(&source); \
2986 if (is_int10(source.offset())) { \
2987 GenInstrMsaMI10(opcode, source.offset(), source.rm(), wd); \
2988 } else { \
2989 UseScratchRegisterScope temps(this); \
2990 Register scratch = temps.Acquire(); \
2991 DCHECK(rs.rm() != scratch); \
2992 addiu(scratch, source.rm(), source.offset()); \
2993 GenInstrMsaMI10(opcode, 0, scratch, wd); \
2994 } \
2995 }
2996
MSA_LD_ST_LIST(MSA_LD_ST)2997 MSA_LD_ST_LIST(MSA_LD_ST)
2998 #undef MSA_LD_ST
2999 #undef MSA_LD_ST_LIST
3000
3001 #define MSA_I10_LIST(V) \
3002 V(ldi_b, I5_DF_b) \
3003 V(ldi_h, I5_DF_h) \
3004 V(ldi_w, I5_DF_w) \
3005 V(ldi_d, I5_DF_d)
3006
3007 #define MSA_I10(name, format) \
3008 void Assembler::name(MSARegister wd, int32_t imm10) { \
3009 GenInstrMsaI10(LDI, format, imm10, wd); \
3010 }
3011 MSA_I10_LIST(MSA_I10)
3012 #undef MSA_I10
3013 #undef MSA_I10_LIST
3014
3015 #define MSA_I5_LIST(V) \
3016 V(addvi, ADDVI) \
3017 V(subvi, SUBVI) \
3018 V(maxi_s, MAXI_S) \
3019 V(maxi_u, MAXI_U) \
3020 V(mini_s, MINI_S) \
3021 V(mini_u, MINI_U) \
3022 V(ceqi, CEQI) \
3023 V(clti_s, CLTI_S) \
3024 V(clti_u, CLTI_U) \
3025 V(clei_s, CLEI_S) \
3026 V(clei_u, CLEI_U)
3027
3028 #define MSA_I5_FORMAT(name, opcode, format) \
3029 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3030 uint32_t imm5) { \
3031 GenInstrMsaI5(opcode, I5_DF_##format, imm5, ws, wd); \
3032 }
3033
3034 #define MSA_I5(name, opcode) \
3035 MSA_I5_FORMAT(name, opcode, b) \
3036 MSA_I5_FORMAT(name, opcode, h) \
3037 MSA_I5_FORMAT(name, opcode, w) \
3038 MSA_I5_FORMAT(name, opcode, d)
3039
3040 MSA_I5_LIST(MSA_I5)
3041 #undef MSA_I5
3042 #undef MSA_I5_FORMAT
3043 #undef MSA_I5_LIST
3044
3045 #define MSA_I8_LIST(V) \
3046 V(andi_b, ANDI_B) \
3047 V(ori_b, ORI_B) \
3048 V(nori_b, NORI_B) \
3049 V(xori_b, XORI_B) \
3050 V(bmnzi_b, BMNZI_B) \
3051 V(bmzi_b, BMZI_B) \
3052 V(bseli_b, BSELI_B) \
3053 V(shf_b, SHF_B) \
3054 V(shf_h, SHF_H) \
3055 V(shf_w, SHF_W)
3056
3057 #define MSA_I8(name, opcode) \
3058 void Assembler::name(MSARegister wd, MSARegister ws, uint32_t imm8) { \
3059 GenInstrMsaI8(opcode, imm8, ws, wd); \
3060 }
3061
3062 MSA_I8_LIST(MSA_I8)
3063 #undef MSA_I8
3064 #undef MSA_I8_LIST
3065
3066 #define MSA_VEC_LIST(V) \
3067 V(and_v, AND_V) \
3068 V(or_v, OR_V) \
3069 V(nor_v, NOR_V) \
3070 V(xor_v, XOR_V) \
3071 V(bmnz_v, BMNZ_V) \
3072 V(bmz_v, BMZ_V) \
3073 V(bsel_v, BSEL_V)
3074
3075 #define MSA_VEC(name, opcode) \
3076 void Assembler::name(MSARegister wd, MSARegister ws, MSARegister wt) { \
3077 GenInstrMsaVec(opcode, wt, ws, wd); \
3078 }
3079
3080 MSA_VEC_LIST(MSA_VEC)
3081 #undef MSA_VEC
3082 #undef MSA_VEC_LIST
3083
3084 #define MSA_2R_LIST(V) \
3085 V(pcnt, PCNT) \
3086 V(nloc, NLOC) \
3087 V(nlzc, NLZC)
3088
3089 #define MSA_2R_FORMAT(name, opcode, format) \
3090 void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3091 GenInstrMsa2R(opcode, MSA_2R_DF_##format, ws, wd); \
3092 }
3093
3094 #define MSA_2R(name, opcode) \
3095 MSA_2R_FORMAT(name, opcode, b) \
3096 MSA_2R_FORMAT(name, opcode, h) \
3097 MSA_2R_FORMAT(name, opcode, w) \
3098 MSA_2R_FORMAT(name, opcode, d)
3099
3100 MSA_2R_LIST(MSA_2R)
3101 #undef MSA_2R
3102 #undef MSA_2R_FORMAT
3103 #undef MSA_2R_LIST
3104
3105 #define MSA_FILL(format) \
3106 void Assembler::fill_##format(MSARegister wd, Register rs) { \
3107 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD)); \
3108 DCHECK(rs.is_valid() && wd.is_valid()); \
3109 Instr instr = MSA | MSA_2R_FORMAT | FILL | MSA_2R_DF_##format | \
3110 (rs.code() << kWsShift) | (wd.code() << kWdShift) | \
3111 MSA_VEC_2R_2RF_MINOR; \
3112 emit(instr); \
3113 }
3114
3115 MSA_FILL(b)
3116 MSA_FILL(h)
3117 MSA_FILL(w)
3118 #undef MSA_FILL
3119
3120 #define MSA_2RF_LIST(V) \
3121 V(fclass, FCLASS) \
3122 V(ftrunc_s, FTRUNC_S) \
3123 V(ftrunc_u, FTRUNC_U) \
3124 V(fsqrt, FSQRT) \
3125 V(frsqrt, FRSQRT) \
3126 V(frcp, FRCP) \
3127 V(frint, FRINT) \
3128 V(flog2, FLOG2) \
3129 V(fexupl, FEXUPL) \
3130 V(fexupr, FEXUPR) \
3131 V(ffql, FFQL) \
3132 V(ffqr, FFQR) \
3133 V(ftint_s, FTINT_S) \
3134 V(ftint_u, FTINT_U) \
3135 V(ffint_s, FFINT_S) \
3136 V(ffint_u, FFINT_U)
3137
3138 #define MSA_2RF_FORMAT(name, opcode, format) \
3139 void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3140 GenInstrMsa2RF(opcode, MSA_2RF_DF_##format, ws, wd); \
3141 }
3142
3143 #define MSA_2RF(name, opcode) \
3144 MSA_2RF_FORMAT(name, opcode, w) \
3145 MSA_2RF_FORMAT(name, opcode, d)
3146
3147 MSA_2RF_LIST(MSA_2RF)
3148 #undef MSA_2RF
3149 #undef MSA_2RF_FORMAT
3150 #undef MSA_2RF_LIST
3151
3152 #define MSA_3R_LIST(V) \
3153 V(sll, SLL_MSA) \
3154 V(sra, SRA_MSA) \
3155 V(srl, SRL_MSA) \
3156 V(bclr, BCLR) \
3157 V(bset, BSET) \
3158 V(bneg, BNEG) \
3159 V(binsl, BINSL) \
3160 V(binsr, BINSR) \
3161 V(addv, ADDV) \
3162 V(subv, SUBV) \
3163 V(max_s, MAX_S) \
3164 V(max_u, MAX_U) \
3165 V(min_s, MIN_S) \
3166 V(min_u, MIN_U) \
3167 V(max_a, MAX_A) \
3168 V(min_a, MIN_A) \
3169 V(ceq, CEQ) \
3170 V(clt_s, CLT_S) \
3171 V(clt_u, CLT_U) \
3172 V(cle_s, CLE_S) \
3173 V(cle_u, CLE_U) \
3174 V(add_a, ADD_A) \
3175 V(adds_a, ADDS_A) \
3176 V(adds_s, ADDS_S) \
3177 V(adds_u, ADDS_U) \
3178 V(ave_s, AVE_S) \
3179 V(ave_u, AVE_U) \
3180 V(aver_s, AVER_S) \
3181 V(aver_u, AVER_U) \
3182 V(subs_s, SUBS_S) \
3183 V(subs_u, SUBS_U) \
3184 V(subsus_u, SUBSUS_U) \
3185 V(subsuu_s, SUBSUU_S) \
3186 V(asub_s, ASUB_S) \
3187 V(asub_u, ASUB_U) \
3188 V(mulv, MULV) \
3189 V(maddv, MADDV) \
3190 V(msubv, MSUBV) \
3191 V(div_s, DIV_S_MSA) \
3192 V(div_u, DIV_U) \
3193 V(mod_s, MOD_S) \
3194 V(mod_u, MOD_U) \
3195 V(dotp_s, DOTP_S) \
3196 V(dotp_u, DOTP_U) \
3197 V(dpadd_s, DPADD_S) \
3198 V(dpadd_u, DPADD_U) \
3199 V(dpsub_s, DPSUB_S) \
3200 V(dpsub_u, DPSUB_U) \
3201 V(pckev, PCKEV) \
3202 V(pckod, PCKOD) \
3203 V(ilvl, ILVL) \
3204 V(ilvr, ILVR) \
3205 V(ilvev, ILVEV) \
3206 V(ilvod, ILVOD) \
3207 V(vshf, VSHF) \
3208 V(srar, SRAR) \
3209 V(srlr, SRLR) \
3210 V(hadd_s, HADD_S) \
3211 V(hadd_u, HADD_U) \
3212 V(hsub_s, HSUB_S) \
3213 V(hsub_u, HSUB_U)
3214
3215 #define MSA_3R_FORMAT(name, opcode, format) \
3216 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3217 MSARegister wt) { \
3218 GenInstrMsa3R<MSARegister>(opcode, MSA_3R_DF_##format, wt, ws, wd); \
3219 }
3220
3221 #define MSA_3R_FORMAT_SLD_SPLAT(name, opcode, format) \
3222 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3223 Register rt) { \
3224 GenInstrMsa3R<Register>(opcode, MSA_3R_DF_##format, rt, ws, wd); \
3225 }
3226
3227 #define MSA_3R(name, opcode) \
3228 MSA_3R_FORMAT(name, opcode, b) \
3229 MSA_3R_FORMAT(name, opcode, h) \
3230 MSA_3R_FORMAT(name, opcode, w) \
3231 MSA_3R_FORMAT(name, opcode, d)
3232
3233 #define MSA_3R_SLD_SPLAT(name, opcode) \
3234 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, b) \
3235 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, h) \
3236 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, w) \
3237 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, d)
3238
3239 MSA_3R_LIST(MSA_3R)
3240 MSA_3R_SLD_SPLAT(sld, SLD)
3241 MSA_3R_SLD_SPLAT(splat, SPLAT)
3242
3243 #undef MSA_3R
3244 #undef MSA_3R_FORMAT
3245 #undef MSA_3R_FORMAT_SLD_SPLAT
3246 #undef MSA_3R_SLD_SPLAT
3247 #undef MSA_3R_LIST
3248
3249 #define MSA_3RF_LIST1(V) \
3250 V(fcaf, FCAF) \
3251 V(fcun, FCUN) \
3252 V(fceq, FCEQ) \
3253 V(fcueq, FCUEQ) \
3254 V(fclt, FCLT) \
3255 V(fcult, FCULT) \
3256 V(fcle, FCLE) \
3257 V(fcule, FCULE) \
3258 V(fsaf, FSAF) \
3259 V(fsun, FSUN) \
3260 V(fseq, FSEQ) \
3261 V(fsueq, FSUEQ) \
3262 V(fslt, FSLT) \
3263 V(fsult, FSULT) \
3264 V(fsle, FSLE) \
3265 V(fsule, FSULE) \
3266 V(fadd, FADD) \
3267 V(fsub, FSUB) \
3268 V(fmul, FMUL) \
3269 V(fdiv, FDIV) \
3270 V(fmadd, FMADD) \
3271 V(fmsub, FMSUB) \
3272 V(fexp2, FEXP2) \
3273 V(fmin, FMIN) \
3274 V(fmin_a, FMIN_A) \
3275 V(fmax, FMAX) \
3276 V(fmax_a, FMAX_A) \
3277 V(fcor, FCOR) \
3278 V(fcune, FCUNE) \
3279 V(fcne, FCNE) \
3280 V(fsor, FSOR) \
3281 V(fsune, FSUNE) \
3282 V(fsne, FSNE)
3283
3284 #define MSA_3RF_LIST2(V) \
3285 V(fexdo, FEXDO) \
3286 V(ftq, FTQ) \
3287 V(mul_q, MUL_Q) \
3288 V(madd_q, MADD_Q) \
3289 V(msub_q, MSUB_Q) \
3290 V(mulr_q, MULR_Q) \
3291 V(maddr_q, MADDR_Q) \
3292 V(msubr_q, MSUBR_Q)
3293
3294 #define MSA_3RF_FORMAT(name, opcode, df, df_c) \
3295 void Assembler::name##_##df(MSARegister wd, MSARegister ws, \
3296 MSARegister wt) { \
3297 GenInstrMsa3RF(opcode, df_c, wt, ws, wd); \
3298 }
3299
3300 #define MSA_3RF_1(name, opcode) \
3301 MSA_3RF_FORMAT(name, opcode, w, 0) \
3302 MSA_3RF_FORMAT(name, opcode, d, 1)
3303
3304 #define MSA_3RF_2(name, opcode) \
3305 MSA_3RF_FORMAT(name, opcode, h, 0) \
3306 MSA_3RF_FORMAT(name, opcode, w, 1)
3307
3308 MSA_3RF_LIST1(MSA_3RF_1)
3309 MSA_3RF_LIST2(MSA_3RF_2)
3310 #undef MSA_3RF_1
3311 #undef MSA_3RF_2
3312 #undef MSA_3RF_FORMAT
3313 #undef MSA_3RF_LIST1
3314 #undef MSA_3RF_LIST2
3315
3316 void Assembler::sldi_b(MSARegister wd, MSARegister ws, uint32_t n) {
3317 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_B, n, ws, wd);
3318 }
3319
sldi_h(MSARegister wd,MSARegister ws,uint32_t n)3320 void Assembler::sldi_h(MSARegister wd, MSARegister ws, uint32_t n) {
3321 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_H, n, ws, wd);
3322 }
3323
sldi_w(MSARegister wd,MSARegister ws,uint32_t n)3324 void Assembler::sldi_w(MSARegister wd, MSARegister ws, uint32_t n) {
3325 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_W, n, ws, wd);
3326 }
3327
sldi_d(MSARegister wd,MSARegister ws,uint32_t n)3328 void Assembler::sldi_d(MSARegister wd, MSARegister ws, uint32_t n) {
3329 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_D, n, ws, wd);
3330 }
3331
splati_b(MSARegister wd,MSARegister ws,uint32_t n)3332 void Assembler::splati_b(MSARegister wd, MSARegister ws, uint32_t n) {
3333 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_B, n, ws, wd);
3334 }
3335
splati_h(MSARegister wd,MSARegister ws,uint32_t n)3336 void Assembler::splati_h(MSARegister wd, MSARegister ws, uint32_t n) {
3337 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_H, n, ws, wd);
3338 }
3339
splati_w(MSARegister wd,MSARegister ws,uint32_t n)3340 void Assembler::splati_w(MSARegister wd, MSARegister ws, uint32_t n) {
3341 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_W, n, ws, wd);
3342 }
3343
splati_d(MSARegister wd,MSARegister ws,uint32_t n)3344 void Assembler::splati_d(MSARegister wd, MSARegister ws, uint32_t n) {
3345 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_D, n, ws, wd);
3346 }
3347
copy_s_b(Register rd,MSARegister ws,uint32_t n)3348 void Assembler::copy_s_b(Register rd, MSARegister ws, uint32_t n) {
3349 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_B, n, ws, rd);
3350 }
3351
copy_s_h(Register rd,MSARegister ws,uint32_t n)3352 void Assembler::copy_s_h(Register rd, MSARegister ws, uint32_t n) {
3353 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_H, n, ws, rd);
3354 }
3355
copy_s_w(Register rd,MSARegister ws,uint32_t n)3356 void Assembler::copy_s_w(Register rd, MSARegister ws, uint32_t n) {
3357 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_W, n, ws, rd);
3358 }
3359
copy_u_b(Register rd,MSARegister ws,uint32_t n)3360 void Assembler::copy_u_b(Register rd, MSARegister ws, uint32_t n) {
3361 GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_B, n, ws, rd);
3362 }
3363
copy_u_h(Register rd,MSARegister ws,uint32_t n)3364 void Assembler::copy_u_h(Register rd, MSARegister ws, uint32_t n) {
3365 GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_H, n, ws, rd);
3366 }
3367
copy_u_w(Register rd,MSARegister ws,uint32_t n)3368 void Assembler::copy_u_w(Register rd, MSARegister ws, uint32_t n) {
3369 GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_W, n, ws, rd);
3370 }
3371
insert_b(MSARegister wd,uint32_t n,Register rs)3372 void Assembler::insert_b(MSARegister wd, uint32_t n, Register rs) {
3373 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_B, n, rs, wd);
3374 }
3375
insert_h(MSARegister wd,uint32_t n,Register rs)3376 void Assembler::insert_h(MSARegister wd, uint32_t n, Register rs) {
3377 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_H, n, rs, wd);
3378 }
3379
insert_w(MSARegister wd,uint32_t n,Register rs)3380 void Assembler::insert_w(MSARegister wd, uint32_t n, Register rs) {
3381 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_W, n, rs, wd);
3382 }
3383
insve_b(MSARegister wd,uint32_t n,MSARegister ws)3384 void Assembler::insve_b(MSARegister wd, uint32_t n, MSARegister ws) {
3385 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_B, n, ws, wd);
3386 }
3387
insve_h(MSARegister wd,uint32_t n,MSARegister ws)3388 void Assembler::insve_h(MSARegister wd, uint32_t n, MSARegister ws) {
3389 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_H, n, ws, wd);
3390 }
3391
insve_w(MSARegister wd,uint32_t n,MSARegister ws)3392 void Assembler::insve_w(MSARegister wd, uint32_t n, MSARegister ws) {
3393 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_W, n, ws, wd);
3394 }
3395
insve_d(MSARegister wd,uint32_t n,MSARegister ws)3396 void Assembler::insve_d(MSARegister wd, uint32_t n, MSARegister ws) {
3397 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_D, n, ws, wd);
3398 }
3399
move_v(MSARegister wd,MSARegister ws)3400 void Assembler::move_v(MSARegister wd, MSARegister ws) {
3401 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
3402 DCHECK(ws.is_valid() && wd.is_valid());
3403 Instr instr = MSA | MOVE_V | (ws.code() << kWsShift) |
3404 (wd.code() << kWdShift) | MSA_ELM_MINOR;
3405 emit(instr);
3406 }
3407
ctcmsa(MSAControlRegister cd,Register rs)3408 void Assembler::ctcmsa(MSAControlRegister cd, Register rs) {
3409 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
3410 DCHECK(cd.is_valid() && rs.is_valid());
3411 Instr instr = MSA | CTCMSA | (rs.code() << kWsShift) |
3412 (cd.code() << kWdShift) | MSA_ELM_MINOR;
3413 emit(instr);
3414 }
3415
cfcmsa(Register rd,MSAControlRegister cs)3416 void Assembler::cfcmsa(Register rd, MSAControlRegister cs) {
3417 DCHECK(IsMipsArchVariant(kMips32r6) && IsEnabled(MIPS_SIMD));
3418 DCHECK(rd.is_valid() && cs.is_valid());
3419 Instr instr = MSA | CFCMSA | (cs.code() << kWsShift) |
3420 (rd.code() << kWdShift) | MSA_ELM_MINOR;
3421 emit(instr);
3422 }
3423
3424 #define MSA_BIT_LIST(V) \
3425 V(slli, SLLI) \
3426 V(srai, SRAI) \
3427 V(srli, SRLI) \
3428 V(bclri, BCLRI) \
3429 V(bseti, BSETI) \
3430 V(bnegi, BNEGI) \
3431 V(binsli, BINSLI) \
3432 V(binsri, BINSRI) \
3433 V(sat_s, SAT_S) \
3434 V(sat_u, SAT_U) \
3435 V(srari, SRARI) \
3436 V(srlri, SRLRI)
3437
3438 #define MSA_BIT_FORMAT(name, opcode, format) \
3439 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3440 uint32_t m) { \
3441 GenInstrMsaBit(opcode, BIT_DF_##format, m, ws, wd); \
3442 }
3443
3444 #define MSA_BIT(name, opcode) \
3445 MSA_BIT_FORMAT(name, opcode, b) \
3446 MSA_BIT_FORMAT(name, opcode, h) \
3447 MSA_BIT_FORMAT(name, opcode, w) \
3448 MSA_BIT_FORMAT(name, opcode, d)
3449
MSA_BIT_LIST(MSA_BIT)3450 MSA_BIT_LIST(MSA_BIT)
3451 #undef MSA_BIT
3452 #undef MSA_BIT_FORMAT
3453 #undef MSA_BIT_LIST
3454
3455 int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
3456 intptr_t pc_delta) {
3457 Instr instr = instr_at(pc);
3458
3459 if (RelocInfo::IsInternalReference(rmode)) {
3460 int32_t* p = reinterpret_cast<int32_t*>(pc);
3461 if (*p == 0) {
3462 return 0; // Number of instructions patched.
3463 }
3464 *p += pc_delta;
3465 return 1; // Number of instructions patched.
3466 } else {
3467 DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode));
3468 if (IsLui(instr)) {
3469 Instr instr1 = instr_at(pc + 0 * kInstrSize);
3470 Instr instr2 = instr_at(pc + 1 * kInstrSize);
3471 DCHECK(IsOri(instr2) || IsJicOrJialc(instr2));
3472 int32_t imm;
3473 if (IsJicOrJialc(instr2)) {
3474 imm = CreateTargetAddress(instr1, instr2);
3475 } else {
3476 imm = GetLuiOriImmediate(instr1, instr2);
3477 }
3478
3479 if (imm == kEndOfJumpChain) {
3480 return 0; // Number of instructions patched.
3481 }
3482 imm += pc_delta;
3483 DCHECK_EQ(imm & 3, 0);
3484 instr1 &= ~kImm16Mask;
3485 instr2 &= ~kImm16Mask;
3486
3487 if (IsJicOrJialc(instr2)) {
3488 uint32_t lui_offset_u, jic_offset_u;
3489 Assembler::UnpackTargetAddressUnsigned(imm,
3490 &lui_offset_u, &jic_offset_u);
3491 instr_at_put(pc + 0 * kInstrSize, instr1 | lui_offset_u);
3492 instr_at_put(pc + 1 * kInstrSize, instr2 | jic_offset_u);
3493 } else {
3494 PatchLuiOriImmediate(pc, imm, instr1, 0 * kInstrSize, instr2,
3495 1 * kInstrSize);
3496 }
3497 return 2; // Number of instructions patched.
3498 } else {
3499 UNREACHABLE();
3500 }
3501 }
3502 }
3503
RelocateRelativeReference(RelocInfo::Mode rmode,Address pc,intptr_t pc_delta)3504 void Assembler::RelocateRelativeReference(RelocInfo::Mode rmode, Address pc,
3505 intptr_t pc_delta) {
3506 Instr instr = instr_at(pc);
3507
3508 DCHECK(RelocInfo::IsRelativeCodeTarget(rmode));
3509 if (IsLui(instr)) {
3510 Instr instr1 = instr_at(pc + 0 * kInstrSize);
3511 Instr instr2 = instr_at(pc + 1 * kInstrSize);
3512 Instr instr3 = instr_at(pc + 2 * kInstrSize);
3513 int32_t imm;
3514 Address ori_offset;
3515 if (IsNal(instr2)) {
3516 instr2 = instr3;
3517 ori_offset = 2 * kInstrSize;
3518 } else {
3519 ori_offset = 1 * kInstrSize;
3520 }
3521 DCHECK(IsOri(instr2));
3522 imm = GetLuiOriImmediate(instr1, instr2);
3523 instr1 &= ~kImm16Mask;
3524 instr2 &= ~kImm16Mask;
3525
3526 if (imm == kEndOfJumpChain) {
3527 return;
3528 }
3529 imm -= pc_delta;
3530 DCHECK_EQ(imm & 3, 0);
3531 PatchLuiOriImmediate(pc, imm, instr1, 0 * kInstrSize, instr2, ori_offset);
3532 return;
3533 } else {
3534 UNREACHABLE();
3535 }
3536 }
3537
GrowBuffer()3538 void Assembler::GrowBuffer() {
3539 // Compute new buffer size.
3540 int old_size = buffer_->size();
3541 int new_size = std::min(2 * old_size, old_size + 1 * MB);
3542
3543 // Some internal data structures overflow for very large buffers,
3544 // they must ensure that kMaximalBufferSize is not too large.
3545 if (new_size > kMaximalBufferSize) {
3546 V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer");
3547 }
3548
3549 // Set up new buffer.
3550 std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size);
3551 DCHECK_EQ(new_size, new_buffer->size());
3552 byte* new_start = new_buffer->start();
3553
3554 // Copy the data.
3555 int pc_delta = new_start - buffer_start_;
3556 int rc_delta = (new_start + new_size) - (buffer_start_ + old_size);
3557 size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos();
3558 MemMove(new_start, buffer_start_, pc_offset());
3559 MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
3560 reloc_size);
3561
3562 // Switch buffers.
3563 buffer_ = std::move(new_buffer);
3564 buffer_start_ = new_start;
3565 pc_ += pc_delta;
3566 pc_for_safepoint_ += pc_delta;
3567 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
3568 reloc_info_writer.last_pc() + pc_delta);
3569
3570 // Relocate runtime entries.
3571 base::Vector<byte> instructions{buffer_start_,
3572 static_cast<size_t>(pc_offset())};
3573 base::Vector<const byte> reloc_info{reloc_info_writer.pos(), reloc_size};
3574 for (RelocIterator it(instructions, reloc_info, 0); !it.done(); it.next()) {
3575 RelocInfo::Mode rmode = it.rinfo()->rmode();
3576 if (rmode == RelocInfo::INTERNAL_REFERENCE_ENCODED ||
3577 rmode == RelocInfo::INTERNAL_REFERENCE) {
3578 RelocateInternalReference(rmode, it.rinfo()->pc(), pc_delta);
3579 }
3580 }
3581
3582 DCHECK(!overflow());
3583 }
3584
db(uint8_t data)3585 void Assembler::db(uint8_t data) {
3586 CheckForEmitInForbiddenSlot();
3587 *reinterpret_cast<uint8_t*>(pc_) = data;
3588 pc_ += sizeof(uint8_t);
3589 }
3590
dd(uint32_t data,RelocInfo::Mode rmode)3591 void Assembler::dd(uint32_t data, RelocInfo::Mode rmode) {
3592 CheckForEmitInForbiddenSlot();
3593 if (!RelocInfo::IsNoInfo(rmode)) {
3594 DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) ||
3595 RelocInfo::IsLiteralConstant(rmode));
3596 RecordRelocInfo(rmode);
3597 }
3598 *reinterpret_cast<uint32_t*>(pc_) = data;
3599 pc_ += sizeof(uint32_t);
3600 }
3601
dq(uint64_t data,RelocInfo::Mode rmode)3602 void Assembler::dq(uint64_t data, RelocInfo::Mode rmode) {
3603 CheckForEmitInForbiddenSlot();
3604 if (!RelocInfo::IsNoInfo(rmode)) {
3605 DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) ||
3606 RelocInfo::IsLiteralConstant(rmode));
3607 RecordRelocInfo(rmode);
3608 }
3609 *reinterpret_cast<uint64_t*>(pc_) = data;
3610 pc_ += sizeof(uint64_t);
3611 }
3612
dd(Label * label)3613 void Assembler::dd(Label* label) {
3614 uint32_t data;
3615 CheckForEmitInForbiddenSlot();
3616 if (label->is_bound()) {
3617 data = reinterpret_cast<uint32_t>(buffer_start_ + label->pos());
3618 } else {
3619 data = jump_address(label);
3620 unbound_labels_count_++;
3621 internal_reference_positions_.insert(label->pos());
3622 }
3623 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3624 EmitHelper(data);
3625 }
3626
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3627 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3628 if (!ShouldRecordRelocInfo(rmode)) return;
3629 // We do not try to reuse pool constants.
3630 RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, Code());
3631 DCHECK_GE(buffer_space(), kMaxRelocSize); // Too late to grow buffer here.
3632 reloc_info_writer.Write(&rinfo);
3633 }
3634
BlockTrampolinePoolFor(int instructions)3635 void Assembler::BlockTrampolinePoolFor(int instructions) {
3636 CheckTrampolinePoolQuick(instructions);
3637 BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
3638 }
3639
CheckTrampolinePool()3640 void Assembler::CheckTrampolinePool() {
3641 // Some small sequences of instructions must not be broken up by the
3642 // insertion of a trampoline pool; such sequences are protected by setting
3643 // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
3644 // which are both checked here. Also, recursive calls to CheckTrampolinePool
3645 // are blocked by trampoline_pool_blocked_nesting_.
3646 if ((trampoline_pool_blocked_nesting_ > 0) ||
3647 (pc_offset() < no_trampoline_pool_before_)) {
3648 // Emission is currently blocked; make sure we try again as soon as
3649 // possible.
3650 if (trampoline_pool_blocked_nesting_ > 0) {
3651 next_buffer_check_ = pc_offset() + kInstrSize;
3652 } else {
3653 next_buffer_check_ = no_trampoline_pool_before_;
3654 }
3655 return;
3656 }
3657
3658 DCHECK(!trampoline_emitted_);
3659 DCHECK_GE(unbound_labels_count_, 0);
3660 if (unbound_labels_count_ > 0) {
3661 // First we emit jump (2 instructions), then we emit trampoline pool.
3662 {
3663 BlockTrampolinePoolScope block_trampoline_pool(this);
3664 Label after_pool;
3665 if (IsMipsArchVariant(kMips32r6)) {
3666 bc(&after_pool);
3667 } else {
3668 b(&after_pool);
3669 }
3670 nop();
3671
3672 int pool_start = pc_offset();
3673 for (int i = 0; i < unbound_labels_count_; i++) {
3674 {
3675 if (IsMipsArchVariant(kMips32r6)) {
3676 bc(&after_pool);
3677 nop();
3678 } else {
3679 GenPCRelativeJump(t8, t9, 0, RelocInfo::NO_INFO,
3680 BranchDelaySlot::PROTECT);
3681 }
3682 }
3683 }
3684 // If unbound_labels_count_ is big enough, label after_pool will
3685 // need a trampoline too, so we must create the trampoline before
3686 // the bind operation to make sure function 'bind' can get this
3687 // information.
3688 trampoline_ = Trampoline(pool_start, unbound_labels_count_);
3689 bind(&after_pool);
3690
3691 trampoline_emitted_ = true;
3692 // As we are only going to emit trampoline once, we need to prevent any
3693 // further emission.
3694 next_buffer_check_ = kMaxInt;
3695 }
3696 } else {
3697 // Number of branches to unbound label at this point is zero, so we can
3698 // move next buffer check to maximum.
3699 next_buffer_check_ =
3700 pc_offset() + kMaxBranchOffset - kTrampolineSlotsSize * 16;
3701 }
3702 return;
3703 }
3704
target_address_at(Address pc)3705 Address Assembler::target_address_at(Address pc) {
3706 Instr instr1 = instr_at(pc);
3707 Instr instr2 = instr_at(pc + kInstrSize);
3708 Instr instr3 = instr_at(pc + 2 * kInstrSize);
3709 // Interpret 2 instructions generated by li (lui/ori) or optimized pairs
3710 // lui/jic, aui/jic or lui/jialc.
3711 if (IsLui(instr1)) {
3712 if (IsOri(instr2)) {
3713 Address target_address;
3714 // Assemble the 32 bit value.
3715 target_address = GetLuiOriImmediate(instr1, instr2);
3716 if (IsAddu(instr3, t9, ra, t9)) {
3717 target_address += pc + kRelativeJumpForBuiltinsOffset;
3718 }
3719 return target_address;
3720 } else if (IsJicOrJialc(instr2)) {
3721 // Assemble the 32 bit value.
3722 return static_cast<Address>(CreateTargetAddress(instr1, instr2));
3723 } else if (IsNal(instr2)) {
3724 DCHECK(IsOri(instr3));
3725 Address target_address;
3726 target_address = GetLuiOriImmediate(instr1, instr3);
3727 return target_address + pc + kRelativeCallForBuiltinsOffset;
3728 }
3729 }
3730
3731 // We should never get here, force a bad address if we do.
3732 UNREACHABLE();
3733 }
3734
3735 // On Mips, a target address is stored in a lui/ori instruction pair, each
3736 // of which load 16 bits of the 32-bit address to a register.
3737 // Patching the address must replace both instr, and flush the i-cache.
3738 // On r6, target address is stored in a lui/jic pair, and both instr have to be
3739 // patched.
set_target_value_at(Address pc,uint32_t target,ICacheFlushMode icache_flush_mode)3740 void Assembler::set_target_value_at(Address pc, uint32_t target,
3741 ICacheFlushMode icache_flush_mode) {
3742 Instr instr1 = instr_at(pc);
3743 Instr instr2 = instr_at(pc + kInstrSize);
3744
3745 #ifdef DEBUG
3746 // Check we have the result from a li macro-instruction, using instr pair.
3747 DCHECK(IsLui(instr1) &&
3748 (IsOri(instr2) || IsJicOrJialc(instr2) || IsNal(instr2)));
3749 #endif
3750
3751 if (IsJicOrJialc(instr2)) {
3752 // Must use 2 instructions to insure patchable code => use lui and jic
3753 uint32_t lui_offset, jic_offset;
3754 Assembler::UnpackTargetAddressUnsigned(target, &lui_offset, &jic_offset);
3755
3756 instr1 &= ~kImm16Mask;
3757 instr2 &= ~kImm16Mask;
3758
3759 instr1 |= lui_offset;
3760 instr2 |= jic_offset;
3761
3762 instr_at_put(pc, instr1);
3763 instr_at_put(pc + kInstrSize, instr2);
3764 } else {
3765 Instr instr3 = instr_at(pc + 2 * kInstrSize);
3766 // If we are using relative calls/jumps for builtins.
3767 if (IsNal(instr2)) {
3768 target -= pc + kRelativeCallForBuiltinsOffset;
3769 }
3770 if (IsAddu(instr3, t9, ra, t9)) {
3771 target -= pc + kRelativeJumpForBuiltinsOffset;
3772 }
3773 // Must use 2 instructions to insure patchable code => just use lui and ori.
3774 // lui rt, upper-16.
3775 // ori rt rt, lower-16.
3776 if (IsNal(instr2)) {
3777 instr1 &= ~kImm16Mask;
3778 instr3 &= ~kImm16Mask;
3779 PatchLuiOriImmediate(pc, target, instr1, 0 * kInstrSize, instr3,
3780 2 * kInstrSize);
3781 } else {
3782 instr1 &= ~kImm16Mask;
3783 instr2 &= ~kImm16Mask;
3784 PatchLuiOriImmediate(pc, target, instr1, 0 * kInstrSize, instr2,
3785 1 * kInstrSize);
3786 }
3787 }
3788
3789 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
3790 FlushInstructionCache(pc, 2 * sizeof(int32_t));
3791 }
3792 }
3793
GenPCRelativeJump(Register tf,Register ts,int32_t imm32,RelocInfo::Mode rmode,BranchDelaySlot bdslot)3794 void Assembler::GenPCRelativeJump(Register tf, Register ts, int32_t imm32,
3795 RelocInfo::Mode rmode,
3796 BranchDelaySlot bdslot) {
3797 // Order of these instructions is relied upon when patching them
3798 // or when changing imm32 that lui/ori pair loads.
3799 or_(tf, ra, zero_reg);
3800 nal(); // Relative place of nal instruction determines kLongBranchPCOffset.
3801 if (!RelocInfo::IsNoInfo(rmode)) {
3802 RecordRelocInfo(rmode);
3803 }
3804 lui(ts, (imm32 & kHiMask) >> kLuiShift);
3805 ori(ts, ts, (imm32 & kImm16Mask));
3806 addu(ts, ra, ts);
3807 if (bdslot == USE_DELAY_SLOT) {
3808 or_(ra, tf, zero_reg);
3809 }
3810 jr(ts);
3811 if (bdslot == PROTECT) {
3812 or_(ra, tf, zero_reg);
3813 }
3814 }
3815
GenPCRelativeJumpAndLink(Register t,int32_t imm32,RelocInfo::Mode rmode,BranchDelaySlot bdslot)3816 void Assembler::GenPCRelativeJumpAndLink(Register t, int32_t imm32,
3817 RelocInfo::Mode rmode,
3818 BranchDelaySlot bdslot) {
3819 if (!RelocInfo::IsNoInfo(rmode)) {
3820 RecordRelocInfo(rmode);
3821 }
3822 // Order of these instructions is relied upon when patching them
3823 // or when changing imm32 that lui/ori pair loads.
3824 lui(t, (imm32 & kHiMask) >> kLuiShift);
3825 nal(); // Relative place of nal instruction determines kLongBranchPCOffset.
3826 ori(t, t, (imm32 & kImm16Mask));
3827 addu(t, ra, t);
3828 jalr(t);
3829 if (bdslot == PROTECT) nop();
3830 set_pc_for_safepoint();
3831 }
3832
UseScratchRegisterScope(Assembler * assembler)3833 UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler)
3834 : available_(assembler->GetScratchRegisterList()),
3835 old_available_(*available_) {}
3836
~UseScratchRegisterScope()3837 UseScratchRegisterScope::~UseScratchRegisterScope() {
3838 *available_ = old_available_;
3839 }
3840
Acquire()3841 Register UseScratchRegisterScope::Acquire() {
3842 DCHECK_NOT_NULL(available_);
3843 return available_->PopFirst();
3844 }
3845
hasAvailable() const3846 bool UseScratchRegisterScope::hasAvailable() const {
3847 return !available_->is_empty();
3848 }
3849
3850 } // namespace internal
3851 } // namespace v8
3852
3853 #endif // V8_TARGET_ARCH_MIPS
3854