1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34
35 #include "src/codegen/mips64/assembler-mips64.h"
36
37 #if V8_TARGET_ARCH_MIPS64
38
39 #include "src/base/cpu.h"
40 #include "src/codegen/machine-type.h"
41 #include "src/codegen/mips64/assembler-mips64-inl.h"
42 #include "src/codegen/safepoint-table.h"
43 #include "src/codegen/string-constants.h"
44 #include "src/deoptimizer/deoptimizer.h"
45 #include "src/objects/heap-number-inl.h"
46
47 namespace v8 {
48 namespace internal {
49
50 // Get the CPU features enabled by the build. For cross compilation the
51 // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
52 // can be defined to enable FPU instructions when building the
53 // snapshot.
CpuFeaturesImpliedByCompiler()54 static unsigned CpuFeaturesImpliedByCompiler() {
55 unsigned answer = 0;
56 #ifdef CAN_USE_FPU_INSTRUCTIONS
57 answer |= 1u << FPU;
58 #endif // def CAN_USE_FPU_INSTRUCTIONS
59
60 // If the compiler is allowed to use FPU then we can use FPU too in our code
61 // generation even when generating snapshots. This won't work for cross
62 // compilation.
63 #if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0
64 answer |= 1u << FPU;
65 #endif
66
67 return answer;
68 }
69
SupportsWasmSimd128()70 bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); }
71
ProbeImpl(bool cross_compile)72 void CpuFeatures::ProbeImpl(bool cross_compile) {
73 supported_ |= CpuFeaturesImpliedByCompiler();
74
75 // Only use statically determined features for cross compile (snapshot).
76 if (cross_compile) return;
77
78 // If the compiler is allowed to use fpu then we can use fpu too in our
79 // code generation.
80 #ifndef __mips__
81 // For the simulator build, use FPU.
82 supported_ |= 1u << FPU;
83 #if defined(_MIPS_ARCH_MIPS64R6) && defined(_MIPS_MSA)
84 supported_ |= 1u << MIPS_SIMD;
85 #endif
86 #else
87 // Probe for additional features at runtime.
88 base::CPU cpu;
89 if (cpu.has_fpu()) supported_ |= 1u << FPU;
90 #if defined(_MIPS_MSA)
91 supported_ |= 1u << MIPS_SIMD;
92 #else
93 if (cpu.has_msa()) supported_ |= 1u << MIPS_SIMD;
94 #endif
95 #endif
96
97 // Set a static value on whether Simd is supported.
98 // This variable is only used for certain archs to query SupportWasmSimd128()
99 // at runtime in builtins using an extern ref. Other callers should use
100 // CpuFeatures::SupportWasmSimd128().
101 CpuFeatures::supports_wasm_simd_128_ = CpuFeatures::SupportsWasmSimd128();
102 }
103
PrintTarget()104 void CpuFeatures::PrintTarget() {}
PrintFeatures()105 void CpuFeatures::PrintFeatures() {}
106
ToNumber(Register reg)107 int ToNumber(Register reg) {
108 DCHECK(reg.is_valid());
109 const int kNumbers[] = {
110 0, // zero_reg
111 1, // at
112 2, // v0
113 3, // v1
114 4, // a0
115 5, // a1
116 6, // a2
117 7, // a3
118 8, // a4
119 9, // a5
120 10, // a6
121 11, // a7
122 12, // t0
123 13, // t1
124 14, // t2
125 15, // t3
126 16, // s0
127 17, // s1
128 18, // s2
129 19, // s3
130 20, // s4
131 21, // s5
132 22, // s6
133 23, // s7
134 24, // t8
135 25, // t9
136 26, // k0
137 27, // k1
138 28, // gp
139 29, // sp
140 30, // fp
141 31, // ra
142 };
143 return kNumbers[reg.code()];
144 }
145
ToRegister(int num)146 Register ToRegister(int num) {
147 DCHECK(num >= 0 && num < kNumRegisters);
148 const Register kRegisters[] = {
149 zero_reg, at, v0, v1, a0, a1, a2, a3, a4, a5, a6, a7, t0, t1, t2, t3,
150 s0, s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, fp, ra};
151 return kRegisters[num];
152 }
153
154 // -----------------------------------------------------------------------------
155 // Implementation of RelocInfo.
156
157 const int RelocInfo::kApplyMask =
158 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
159 RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
160
IsCodedSpecially()161 bool RelocInfo::IsCodedSpecially() {
162 // The deserializer needs to know whether a pointer is specially coded. Being
163 // specially coded on MIPS means that it is a lui/ori instruction, and that is
164 // always the case inside code objects.
165 return true;
166 }
167
IsInConstantPool()168 bool RelocInfo::IsInConstantPool() { return false; }
169
wasm_call_tag() const170 uint32_t RelocInfo::wasm_call_tag() const {
171 DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
172 return static_cast<uint32_t>(
173 Assembler::target_address_at(pc_, constant_pool_));
174 }
175
176 // -----------------------------------------------------------------------------
177 // Implementation of Operand and MemOperand.
178 // See assembler-mips-inl.h for inlined constructors.
179
Operand(Handle<HeapObject> handle)180 Operand::Operand(Handle<HeapObject> handle)
181 : rm_(no_reg), rmode_(RelocInfo::FULL_EMBEDDED_OBJECT) {
182 value_.immediate = static_cast<intptr_t>(handle.address());
183 }
184
EmbeddedNumber(double value)185 Operand Operand::EmbeddedNumber(double value) {
186 int32_t smi;
187 if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi));
188 Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
189 result.is_heap_object_request_ = true;
190 result.value_.heap_object_request = HeapObjectRequest(value);
191 return result;
192 }
193
EmbeddedStringConstant(const StringConstantBase * str)194 Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) {
195 Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
196 result.is_heap_object_request_ = true;
197 result.value_.heap_object_request = HeapObjectRequest(str);
198 return result;
199 }
200
MemOperand(Register rm,int32_t offset)201 MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
202 offset_ = offset;
203 }
204
MemOperand(Register rm,int32_t unit,int32_t multiplier,OffsetAddend offset_addend)205 MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
206 OffsetAddend offset_addend)
207 : Operand(rm) {
208 offset_ = unit * multiplier + offset_addend;
209 }
210
AllocateAndInstallRequestedHeapObjects(Isolate * isolate)211 void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
212 DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty());
213 for (auto& request : heap_object_requests_) {
214 Handle<HeapObject> object;
215 switch (request.kind()) {
216 case HeapObjectRequest::kHeapNumber:
217 object = isolate->factory()->NewHeapNumber<AllocationType::kOld>(
218 request.heap_number());
219 break;
220 case HeapObjectRequest::kStringConstant:
221 const StringConstantBase* str = request.string();
222 CHECK_NOT_NULL(str);
223 object = str->AllocateStringConstant(isolate);
224 break;
225 }
226 Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset();
227 set_target_value_at(pc, reinterpret_cast<uint64_t>(object.location()));
228 }
229 }
230
231 // -----------------------------------------------------------------------------
232 // Specific instructions, constants, and masks.
233
234 // daddiu(sp, sp, 8) aka Pop() operation or part of Pop(r)
235 // operations as post-increment of sp.
236 const Instr kPopInstruction = DADDIU | (sp.code() << kRsShift) |
237 (sp.code() << kRtShift) |
238 (kPointerSize & kImm16Mask);
239 // daddiu(sp, sp, -8) part of Push(r) operation as pre-decrement of sp.
240 const Instr kPushInstruction = DADDIU | (sp.code() << kRsShift) |
241 (sp.code() << kRtShift) |
242 (-kPointerSize & kImm16Mask);
243 // Sd(r, MemOperand(sp, 0))
244 const Instr kPushRegPattern = SD | (sp.code() << kRsShift) | (0 & kImm16Mask);
245 // Ld(r, MemOperand(sp, 0))
246 const Instr kPopRegPattern = LD | (sp.code() << kRsShift) | (0 & kImm16Mask);
247
248 const Instr kLwRegFpOffsetPattern =
249 LW | (fp.code() << kRsShift) | (0 & kImm16Mask);
250
251 const Instr kSwRegFpOffsetPattern =
252 SW | (fp.code() << kRsShift) | (0 & kImm16Mask);
253
254 const Instr kLwRegFpNegOffsetPattern =
255 LW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);
256
257 const Instr kSwRegFpNegOffsetPattern =
258 SW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);
259 // A mask for the Rt register for push, pop, lw, sw instructions.
260 const Instr kRtMask = kRtFieldMask;
261 const Instr kLwSwInstrTypeMask = 0xFFE00000;
262 const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask;
263 const Instr kLwSwOffsetMask = kImm16Mask;
264
Assembler(const AssemblerOptions & options,std::unique_ptr<AssemblerBuffer> buffer)265 Assembler::Assembler(const AssemblerOptions& options,
266 std::unique_ptr<AssemblerBuffer> buffer)
267 : AssemblerBase(options, std::move(buffer)),
268 scratch_register_list_({at, s0}) {
269 if (CpuFeatures::IsSupported(MIPS_SIMD)) {
270 EnableCpuFeature(MIPS_SIMD);
271 }
272 reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_);
273
274 last_trampoline_pool_end_ = 0;
275 no_trampoline_pool_before_ = 0;
276 trampoline_pool_blocked_nesting_ = 0;
277 // We leave space (16 * kTrampolineSlotsSize)
278 // for BlockTrampolinePoolScope buffer.
279 next_buffer_check_ = FLAG_force_long_branches
280 ? kMaxInt
281 : kMaxBranchOffset - kTrampolineSlotsSize * 16;
282 internal_trampoline_exception_ = false;
283 last_bound_pos_ = 0;
284
285 trampoline_emitted_ = FLAG_force_long_branches;
286 unbound_labels_count_ = 0;
287 block_buffer_growth_ = false;
288 }
289
GetCode(Isolate * isolate,CodeDesc * desc,SafepointTableBuilder * safepoint_table_builder,int handler_table_offset)290 void Assembler::GetCode(Isolate* isolate, CodeDesc* desc,
291 SafepointTableBuilder* safepoint_table_builder,
292 int handler_table_offset) {
293 // As a crutch to avoid having to add manual Align calls wherever we use a
294 // raw workflow to create Code objects (mostly in tests), add another Align
295 // call here. It does no harm - the end of the Code object is aligned to the
296 // (larger) kCodeAlignment anyways.
297 // TODO(jgruber): Consider moving responsibility for proper alignment to
298 // metadata table builders (safepoint, handler, constant pool, code
299 // comments).
300 DataAlign(Code::kMetadataAlignment);
301
302 EmitForbiddenSlotInstruction();
303
304 int code_comments_size = WriteCodeComments();
305
306 DCHECK(pc_ <= reloc_info_writer.pos()); // No overlap.
307
308 AllocateAndInstallRequestedHeapObjects(isolate);
309
310 // Set up code descriptor.
311 // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to
312 // this point to make CodeDesc initialization less fiddly.
313
314 static constexpr int kConstantPoolSize = 0;
315 const int instruction_size = pc_offset();
316 const int code_comments_offset = instruction_size - code_comments_size;
317 const int constant_pool_offset = code_comments_offset - kConstantPoolSize;
318 const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable)
319 ? constant_pool_offset
320 : handler_table_offset;
321 const int safepoint_table_offset =
322 (safepoint_table_builder == kNoSafepointTable)
323 ? handler_table_offset2
324 : safepoint_table_builder->safepoint_table_offset();
325 const int reloc_info_offset =
326 static_cast<int>(reloc_info_writer.pos() - buffer_->start());
327 CodeDesc::Initialize(desc, this, safepoint_table_offset,
328 handler_table_offset2, constant_pool_offset,
329 code_comments_offset, reloc_info_offset);
330 }
331
Align(int m)332 void Assembler::Align(int m) {
333 DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m));
334 EmitForbiddenSlotInstruction();
335 while ((pc_offset() & (m - 1)) != 0) {
336 nop();
337 }
338 }
339
CodeTargetAlign()340 void Assembler::CodeTargetAlign() {
341 // No advantage to aligning branch/call targets to more than
342 // single instruction, that I am aware of.
343 Align(4);
344 }
345
GetRtReg(Instr instr)346 Register Assembler::GetRtReg(Instr instr) {
347 return Register::from_code((instr & kRtFieldMask) >> kRtShift);
348 }
349
GetRsReg(Instr instr)350 Register Assembler::GetRsReg(Instr instr) {
351 return Register::from_code((instr & kRsFieldMask) >> kRsShift);
352 }
353
GetRdReg(Instr instr)354 Register Assembler::GetRdReg(Instr instr) {
355 return Register::from_code((instr & kRdFieldMask) >> kRdShift);
356 }
357
GetRt(Instr instr)358 uint32_t Assembler::GetRt(Instr instr) {
359 return (instr & kRtFieldMask) >> kRtShift;
360 }
361
GetRtField(Instr instr)362 uint32_t Assembler::GetRtField(Instr instr) { return instr & kRtFieldMask; }
363
GetRs(Instr instr)364 uint32_t Assembler::GetRs(Instr instr) {
365 return (instr & kRsFieldMask) >> kRsShift;
366 }
367
GetRsField(Instr instr)368 uint32_t Assembler::GetRsField(Instr instr) { return instr & kRsFieldMask; }
369
GetRd(Instr instr)370 uint32_t Assembler::GetRd(Instr instr) {
371 return (instr & kRdFieldMask) >> kRdShift;
372 }
373
GetRdField(Instr instr)374 uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; }
375
GetSa(Instr instr)376 uint32_t Assembler::GetSa(Instr instr) {
377 return (instr & kSaFieldMask) >> kSaShift;
378 }
379
GetSaField(Instr instr)380 uint32_t Assembler::GetSaField(Instr instr) { return instr & kSaFieldMask; }
381
GetOpcodeField(Instr instr)382 uint32_t Assembler::GetOpcodeField(Instr instr) { return instr & kOpcodeMask; }
383
GetFunction(Instr instr)384 uint32_t Assembler::GetFunction(Instr instr) {
385 return (instr & kFunctionFieldMask) >> kFunctionShift;
386 }
387
GetFunctionField(Instr instr)388 uint32_t Assembler::GetFunctionField(Instr instr) {
389 return instr & kFunctionFieldMask;
390 }
391
GetImmediate16(Instr instr)392 uint32_t Assembler::GetImmediate16(Instr instr) { return instr & kImm16Mask; }
393
GetLabelConst(Instr instr)394 uint32_t Assembler::GetLabelConst(Instr instr) { return instr & ~kImm16Mask; }
395
IsPop(Instr instr)396 bool Assembler::IsPop(Instr instr) {
397 return (instr & ~kRtMask) == kPopRegPattern;
398 }
399
IsPush(Instr instr)400 bool Assembler::IsPush(Instr instr) {
401 return (instr & ~kRtMask) == kPushRegPattern;
402 }
403
IsSwRegFpOffset(Instr instr)404 bool Assembler::IsSwRegFpOffset(Instr instr) {
405 return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
406 }
407
IsLwRegFpOffset(Instr instr)408 bool Assembler::IsLwRegFpOffset(Instr instr) {
409 return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
410 }
411
IsSwRegFpNegOffset(Instr instr)412 bool Assembler::IsSwRegFpNegOffset(Instr instr) {
413 return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
414 kSwRegFpNegOffsetPattern);
415 }
416
IsLwRegFpNegOffset(Instr instr)417 bool Assembler::IsLwRegFpNegOffset(Instr instr) {
418 return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
419 kLwRegFpNegOffsetPattern);
420 }
421
422 // Labels refer to positions in the (to be) generated code.
423 // There are bound, linked, and unused labels.
424 //
425 // Bound labels refer to known positions in the already
426 // generated code. pos() is the position the label refers to.
427 //
428 // Linked labels refer to unknown positions in the code
429 // to be generated; pos() is the position of the last
430 // instruction using the label.
431
432 // The link chain is terminated by a value in the instruction of -1,
433 // which is an otherwise illegal value (branch -1 is inf loop).
434 // The instruction 16-bit offset field addresses 32-bit words, but in
435 // code is conv to an 18-bit value addressing bytes, hence the -4 value.
436
437 const int kEndOfChain = -4;
438 // Determines the end of the Jump chain (a subset of the label link chain).
439 const int kEndOfJumpChain = 0;
440
IsMsaBranch(Instr instr)441 bool Assembler::IsMsaBranch(Instr instr) {
442 uint32_t opcode = GetOpcodeField(instr);
443 uint32_t rs_field = GetRsField(instr);
444 if (opcode == COP1) {
445 switch (rs_field) {
446 case BZ_V:
447 case BZ_B:
448 case BZ_H:
449 case BZ_W:
450 case BZ_D:
451 case BNZ_V:
452 case BNZ_B:
453 case BNZ_H:
454 case BNZ_W:
455 case BNZ_D:
456 return true;
457 default:
458 return false;
459 }
460 } else {
461 return false;
462 }
463 }
464
IsBranch(Instr instr)465 bool Assembler::IsBranch(Instr instr) {
466 uint32_t opcode = GetOpcodeField(instr);
467 uint32_t rt_field = GetRtField(instr);
468 uint32_t rs_field = GetRsField(instr);
469 // Checks if the instruction is a branch.
470 bool isBranch =
471 opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ ||
472 opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL ||
473 (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
474 rt_field == BLTZAL || rt_field == BGEZAL)) ||
475 (opcode == COP1 && rs_field == BC1) || // Coprocessor branch.
476 (opcode == COP1 && rs_field == BC1EQZ) ||
477 (opcode == COP1 && rs_field == BC1NEZ) || IsMsaBranch(instr);
478 if (!isBranch && kArchVariant == kMips64r6) {
479 // All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and
480 // POP30 (BNVC, BNEC, BNEZALC) are branch ops.
481 isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC ||
482 opcode == BALC ||
483 (opcode == POP66 && rs_field != 0) || // BEQZC
484 (opcode == POP76 && rs_field != 0); // BNEZC
485 }
486 return isBranch;
487 }
488
IsBc(Instr instr)489 bool Assembler::IsBc(Instr instr) {
490 uint32_t opcode = GetOpcodeField(instr);
491 // Checks if the instruction is a BC or BALC.
492 return opcode == BC || opcode == BALC;
493 }
494
IsNal(Instr instr)495 bool Assembler::IsNal(Instr instr) {
496 uint32_t opcode = GetOpcodeField(instr);
497 uint32_t rt_field = GetRtField(instr);
498 uint32_t rs_field = GetRsField(instr);
499 return opcode == REGIMM && rt_field == BLTZAL && rs_field == 0;
500 }
501
IsBzc(Instr instr)502 bool Assembler::IsBzc(Instr instr) {
503 uint32_t opcode = GetOpcodeField(instr);
504 // Checks if the instruction is BEQZC or BNEZC.
505 return (opcode == POP66 && GetRsField(instr) != 0) ||
506 (opcode == POP76 && GetRsField(instr) != 0);
507 }
508
IsEmittedConstant(Instr instr)509 bool Assembler::IsEmittedConstant(Instr instr) {
510 uint32_t label_constant = GetLabelConst(instr);
511 return label_constant == 0; // Emitted label const in reg-exp engine.
512 }
513
IsBeq(Instr instr)514 bool Assembler::IsBeq(Instr instr) { return GetOpcodeField(instr) == BEQ; }
515
IsBne(Instr instr)516 bool Assembler::IsBne(Instr instr) { return GetOpcodeField(instr) == BNE; }
517
IsBeqzc(Instr instr)518 bool Assembler::IsBeqzc(Instr instr) {
519 uint32_t opcode = GetOpcodeField(instr);
520 return opcode == POP66 && GetRsField(instr) != 0;
521 }
522
IsBnezc(Instr instr)523 bool Assembler::IsBnezc(Instr instr) {
524 uint32_t opcode = GetOpcodeField(instr);
525 return opcode == POP76 && GetRsField(instr) != 0;
526 }
527
IsBeqc(Instr instr)528 bool Assembler::IsBeqc(Instr instr) {
529 uint32_t opcode = GetOpcodeField(instr);
530 uint32_t rs = GetRsField(instr);
531 uint32_t rt = GetRtField(instr);
532 return opcode == POP10 && rs != 0 && rs < rt; // && rt != 0
533 }
534
IsBnec(Instr instr)535 bool Assembler::IsBnec(Instr instr) {
536 uint32_t opcode = GetOpcodeField(instr);
537 uint32_t rs = GetRsField(instr);
538 uint32_t rt = GetRtField(instr);
539 return opcode == POP30 && rs != 0 && rs < rt; // && rt != 0
540 }
541
IsMov(Instr instr,Register rd,Register rs)542 bool Assembler::IsMov(Instr instr, Register rd, Register rs) {
543 uint32_t opcode = GetOpcodeField(instr);
544 uint32_t rd_field = GetRd(instr);
545 uint32_t rs_field = GetRs(instr);
546 uint32_t rt_field = GetRt(instr);
547 uint32_t rd_reg = static_cast<uint32_t>(rd.code());
548 uint32_t rs_reg = static_cast<uint32_t>(rs.code());
549 uint32_t function_field = GetFunctionField(instr);
550 // Checks if the instruction is a OR with zero_reg argument (aka MOV).
551 bool res = opcode == SPECIAL && function_field == OR && rd_field == rd_reg &&
552 rs_field == rs_reg && rt_field == 0;
553 return res;
554 }
555
IsJump(Instr instr)556 bool Assembler::IsJump(Instr instr) {
557 uint32_t opcode = GetOpcodeField(instr);
558 uint32_t rt_field = GetRtField(instr);
559 uint32_t rd_field = GetRdField(instr);
560 uint32_t function_field = GetFunctionField(instr);
561 // Checks if the instruction is a jump.
562 return opcode == J || opcode == JAL ||
563 (opcode == SPECIAL && rt_field == 0 &&
564 ((function_field == JALR) ||
565 (rd_field == 0 && (function_field == JR))));
566 }
567
IsJ(Instr instr)568 bool Assembler::IsJ(Instr instr) {
569 uint32_t opcode = GetOpcodeField(instr);
570 // Checks if the instruction is a jump.
571 return opcode == J;
572 }
573
IsJal(Instr instr)574 bool Assembler::IsJal(Instr instr) { return GetOpcodeField(instr) == JAL; }
575
IsJr(Instr instr)576 bool Assembler::IsJr(Instr instr) {
577 return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR;
578 }
579
IsJalr(Instr instr)580 bool Assembler::IsJalr(Instr instr) {
581 return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JALR;
582 }
583
IsLui(Instr instr)584 bool Assembler::IsLui(Instr instr) {
585 uint32_t opcode = GetOpcodeField(instr);
586 // Checks if the instruction is a load upper immediate.
587 return opcode == LUI;
588 }
589
IsOri(Instr instr)590 bool Assembler::IsOri(Instr instr) {
591 uint32_t opcode = GetOpcodeField(instr);
592 // Checks if the instruction is a load upper immediate.
593 return opcode == ORI;
594 }
595
IsNop(Instr instr,unsigned int type)596 bool Assembler::IsNop(Instr instr, unsigned int type) {
597 // See Assembler::nop(type).
598 DCHECK_LT(type, 32);
599 uint32_t opcode = GetOpcodeField(instr);
600 uint32_t function = GetFunctionField(instr);
601 uint32_t rt = GetRt(instr);
602 uint32_t rd = GetRd(instr);
603 uint32_t sa = GetSa(instr);
604
605 // Traditional mips nop == sll(zero_reg, zero_reg, 0)
606 // When marking non-zero type, use sll(zero_reg, at, type)
607 // to avoid use of mips ssnop and ehb special encodings
608 // of the sll instruction.
609
610 Register nop_rt_reg = (type == 0) ? zero_reg : at;
611 bool ret = (opcode == SPECIAL && function == SLL &&
612 rd == static_cast<uint32_t>(ToNumber(zero_reg)) &&
613 rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) && sa == type);
614
615 return ret;
616 }
617
GetBranchOffset(Instr instr)618 int32_t Assembler::GetBranchOffset(Instr instr) {
619 DCHECK(IsBranch(instr));
620 return (static_cast<int16_t>(instr & kImm16Mask)) << 2;
621 }
622
IsLw(Instr instr)623 bool Assembler::IsLw(Instr instr) {
624 return (static_cast<uint32_t>(instr & kOpcodeMask) == LW);
625 }
626
GetLwOffset(Instr instr)627 int16_t Assembler::GetLwOffset(Instr instr) {
628 DCHECK(IsLw(instr));
629 return ((instr & kImm16Mask));
630 }
631
SetLwOffset(Instr instr,int16_t offset)632 Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
633 DCHECK(IsLw(instr));
634
635 // We actually create a new lw instruction based on the original one.
636 Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) |
637 (offset & kImm16Mask);
638
639 return temp_instr;
640 }
641
IsSw(Instr instr)642 bool Assembler::IsSw(Instr instr) {
643 return (static_cast<uint32_t>(instr & kOpcodeMask) == SW);
644 }
645
SetSwOffset(Instr instr,int16_t offset)646 Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
647 DCHECK(IsSw(instr));
648 return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
649 }
650
IsAddImmediate(Instr instr)651 bool Assembler::IsAddImmediate(Instr instr) {
652 return ((instr & kOpcodeMask) == ADDIU || (instr & kOpcodeMask) == DADDIU);
653 }
654
SetAddImmediateOffset(Instr instr,int16_t offset)655 Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
656 DCHECK(IsAddImmediate(instr));
657 return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
658 }
659
IsAndImmediate(Instr instr)660 bool Assembler::IsAndImmediate(Instr instr) {
661 return GetOpcodeField(instr) == ANDI;
662 }
663
OffsetSizeInBits(Instr instr)664 static Assembler::OffsetSize OffsetSizeInBits(Instr instr) {
665 if (kArchVariant == kMips64r6) {
666 if (Assembler::IsBc(instr)) {
667 return Assembler::OffsetSize::kOffset26;
668 } else if (Assembler::IsBzc(instr)) {
669 return Assembler::OffsetSize::kOffset21;
670 }
671 }
672 return Assembler::OffsetSize::kOffset16;
673 }
674
AddBranchOffset(int pos,Instr instr)675 static inline int32_t AddBranchOffset(int pos, Instr instr) {
676 int bits = OffsetSizeInBits(instr);
677 const int32_t mask = (1 << bits) - 1;
678 bits = 32 - bits;
679
680 // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
681 // the compiler uses arithmetic shifts for signed integers.
682 int32_t imm = ((instr & mask) << bits) >> (bits - 2);
683
684 if (imm == kEndOfChain) {
685 // EndOfChain sentinel is returned directly, not relative to pc or pos.
686 return kEndOfChain;
687 } else {
688 return pos + Assembler::kBranchPCOffset + imm;
689 }
690 }
691
target_at(int pos,bool is_internal)692 int Assembler::target_at(int pos, bool is_internal) {
693 if (is_internal) {
694 int64_t* p = reinterpret_cast<int64_t*>(buffer_start_ + pos);
695 int64_t address = *p;
696 if (address == kEndOfJumpChain) {
697 return kEndOfChain;
698 } else {
699 int64_t instr_address = reinterpret_cast<int64_t>(p);
700 DCHECK(instr_address - address < INT_MAX);
701 int delta = static_cast<int>(instr_address - address);
702 DCHECK(pos > delta);
703 return pos - delta;
704 }
705 }
706 Instr instr = instr_at(pos);
707 if ((instr & ~kImm16Mask) == 0) {
708 // Emitted label constant, not part of a branch.
709 if (instr == 0) {
710 return kEndOfChain;
711 } else {
712 int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
713 return (imm18 + pos);
714 }
715 }
716 // Check we have a branch or jump instruction.
717 DCHECK(IsBranch(instr) || IsJ(instr) || IsJal(instr) || IsLui(instr) ||
718 IsMov(instr, t8, ra));
719 // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
720 // the compiler uses arithmetic shifts for signed integers.
721 if (IsBranch(instr)) {
722 return AddBranchOffset(pos, instr);
723 } else if (IsMov(instr, t8, ra)) {
724 int32_t imm32;
725 Instr instr_lui = instr_at(pos + 2 * kInstrSize);
726 Instr instr_ori = instr_at(pos + 3 * kInstrSize);
727 DCHECK(IsLui(instr_lui));
728 DCHECK(IsOri(instr_ori));
729 imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
730 imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask));
731 if (imm32 == kEndOfJumpChain) {
732 // EndOfChain sentinel is returned directly, not relative to pc or pos.
733 return kEndOfChain;
734 }
735 return pos + Assembler::kLongBranchPCOffset + imm32;
736 } else if (IsLui(instr)) {
737 if (IsNal(instr_at(pos + kInstrSize))) {
738 int32_t imm32;
739 Instr instr_lui = instr_at(pos + 0 * kInstrSize);
740 Instr instr_ori = instr_at(pos + 2 * kInstrSize);
741 DCHECK(IsLui(instr_lui));
742 DCHECK(IsOri(instr_ori));
743 imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
744 imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask));
745 if (imm32 == kEndOfJumpChain) {
746 // EndOfChain sentinel is returned directly, not relative to pc or pos.
747 return kEndOfChain;
748 }
749 return pos + Assembler::kLongBranchPCOffset + imm32;
750 } else {
751 Instr instr_lui = instr_at(pos + 0 * kInstrSize);
752 Instr instr_ori = instr_at(pos + 1 * kInstrSize);
753 Instr instr_ori2 = instr_at(pos + 3 * kInstrSize);
754 DCHECK(IsOri(instr_ori));
755 DCHECK(IsOri(instr_ori2));
756
757 // TODO(plind) create named constants for shift values.
758 int64_t imm = static_cast<int64_t>(instr_lui & kImm16Mask) << 48;
759 imm |= static_cast<int64_t>(instr_ori & kImm16Mask) << 32;
760 imm |= static_cast<int64_t>(instr_ori2 & kImm16Mask) << 16;
761 // Sign extend address;
762 imm >>= 16;
763
764 if (imm == kEndOfJumpChain) {
765 // EndOfChain sentinel is returned directly, not relative to pc or pos.
766 return kEndOfChain;
767 } else {
768 uint64_t instr_address = reinterpret_cast<int64_t>(buffer_start_ + pos);
769 DCHECK(instr_address - imm < INT_MAX);
770 int delta = static_cast<int>(instr_address - imm);
771 DCHECK(pos > delta);
772 return pos - delta;
773 }
774 }
775 } else {
776 DCHECK(IsJ(instr) || IsJal(instr));
777 int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
778 if (imm28 == kEndOfJumpChain) {
779 // EndOfChain sentinel is returned directly, not relative to pc or pos.
780 return kEndOfChain;
781 } else {
782 // Sign extend 28-bit offset.
783 int32_t delta = static_cast<int32_t>((imm28 << 4) >> 4);
784 return pos + delta;
785 }
786 }
787 }
788
SetBranchOffset(int32_t pos,int32_t target_pos,Instr instr)789 static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos,
790 Instr instr) {
791 int32_t bits = OffsetSizeInBits(instr);
792 int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset);
793 DCHECK_EQ(imm & 3, 0);
794 imm >>= 2;
795
796 const int32_t mask = (1 << bits) - 1;
797 instr &= ~mask;
798 DCHECK(is_intn(imm, bits));
799
800 return instr | (imm & mask);
801 }
802
target_at_put(int pos,int target_pos,bool is_internal)803 void Assembler::target_at_put(int pos, int target_pos, bool is_internal) {
804 if (is_internal) {
805 uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
806 *reinterpret_cast<uint64_t*>(buffer_start_ + pos) = imm;
807 return;
808 }
809 Instr instr = instr_at(pos);
810 if ((instr & ~kImm16Mask) == 0) {
811 DCHECK(target_pos == kEndOfChain || target_pos >= 0);
812 // Emitted label constant, not part of a branch.
813 // Make label relative to Code pointer of generated Code object.
814 instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
815 return;
816 }
817
818 if (IsBranch(instr)) {
819 instr = SetBranchOffset(pos, target_pos, instr);
820 instr_at_put(pos, instr);
821 } else if (IsLui(instr)) {
822 if (IsNal(instr_at(pos + kInstrSize))) {
823 Instr instr_lui = instr_at(pos + 0 * kInstrSize);
824 Instr instr_ori = instr_at(pos + 2 * kInstrSize);
825 DCHECK(IsLui(instr_lui));
826 DCHECK(IsOri(instr_ori));
827 int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
828 DCHECK_EQ(imm & 3, 0);
829 if (is_int16(imm + Assembler::kLongBranchPCOffset -
830 Assembler::kBranchPCOffset)) {
831 // Optimize by converting to regular branch and link with 16-bit
832 // offset.
833 Instr instr_b = REGIMM | BGEZAL; // Branch and link.
834 instr_b = SetBranchOffset(pos, target_pos, instr_b);
835 // Correct ra register to point to one instruction after jalr from
836 // TurboAssembler::BranchAndLinkLong.
837 Instr instr_a = DADDIU | ra.code() << kRsShift | ra.code() << kRtShift |
838 kOptimizedBranchAndLinkLongReturnOffset;
839
840 instr_at_put(pos, instr_b);
841 instr_at_put(pos + 1 * kInstrSize, instr_a);
842 } else {
843 instr_lui &= ~kImm16Mask;
844 instr_ori &= ~kImm16Mask;
845
846 instr_at_put(pos + 0 * kInstrSize,
847 instr_lui | ((imm >> kLuiShift) & kImm16Mask));
848 instr_at_put(pos + 2 * kInstrSize, instr_ori | (imm & kImm16Mask));
849 }
850 } else {
851 Instr instr_lui = instr_at(pos + 0 * kInstrSize);
852 Instr instr_ori = instr_at(pos + 1 * kInstrSize);
853 Instr instr_ori2 = instr_at(pos + 3 * kInstrSize);
854 DCHECK(IsOri(instr_ori));
855 DCHECK(IsOri(instr_ori2));
856
857 uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
858 DCHECK_EQ(imm & 3, 0);
859
860 instr_lui &= ~kImm16Mask;
861 instr_ori &= ~kImm16Mask;
862 instr_ori2 &= ~kImm16Mask;
863
864 instr_at_put(pos + 0 * kInstrSize,
865 instr_lui | ((imm >> 32) & kImm16Mask));
866 instr_at_put(pos + 1 * kInstrSize,
867 instr_ori | ((imm >> 16) & kImm16Mask));
868 instr_at_put(pos + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask));
869 }
870 } else if (IsMov(instr, t8, ra)) {
871 Instr instr_lui = instr_at(pos + 2 * kInstrSize);
872 Instr instr_ori = instr_at(pos + 3 * kInstrSize);
873 DCHECK(IsLui(instr_lui));
874 DCHECK(IsOri(instr_ori));
875
876 int32_t imm_short = target_pos - (pos + Assembler::kBranchPCOffset);
877
878 if (is_int16(imm_short)) {
879 // Optimize by converting to regular branch with 16-bit
880 // offset
881 Instr instr_b = BEQ;
882 instr_b = SetBranchOffset(pos, target_pos, instr_b);
883
884 Instr instr_j = instr_at(pos + 5 * kInstrSize);
885 Instr instr_branch_delay;
886
887 if (IsJump(instr_j)) {
888 // Case when branch delay slot is protected.
889 instr_branch_delay = nopInstr;
890 } else {
891 // Case when branch delay slot is used.
892 instr_branch_delay = instr_at(pos + 7 * kInstrSize);
893 }
894 instr_at_put(pos, instr_b);
895 instr_at_put(pos + 1 * kInstrSize, instr_branch_delay);
896 } else {
897 int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
898 DCHECK_EQ(imm & 3, 0);
899
900 instr_lui &= ~kImm16Mask;
901 instr_ori &= ~kImm16Mask;
902
903 instr_at_put(pos + 2 * kInstrSize,
904 instr_lui | ((imm >> kLuiShift) & kImm16Mask));
905 instr_at_put(pos + 3 * kInstrSize, instr_ori | (imm & kImm16Mask));
906 }
907 } else if (IsJ(instr) || IsJal(instr)) {
908 int32_t imm28 = target_pos - pos;
909 DCHECK_EQ(imm28 & 3, 0);
910
911 uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
912 DCHECK(is_uint26(imm26));
913 // Place 26-bit signed offset with markings.
914 // When code is committed it will be resolved to j/jal.
915 int32_t mark = IsJ(instr) ? kJRawMark : kJalRawMark;
916 instr_at_put(pos, mark | (imm26 & kImm26Mask));
917 } else {
918 int32_t imm28 = target_pos - pos;
919 DCHECK_EQ(imm28 & 3, 0);
920
921 uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
922 DCHECK(is_uint26(imm26));
923 // Place raw 26-bit signed offset.
924 // When code is committed it will be resolved to j/jal.
925 instr &= ~kImm26Mask;
926 instr_at_put(pos, instr | (imm26 & kImm26Mask));
927 }
928 }
929
print(const Label * L)930 void Assembler::print(const Label* L) {
931 if (L->is_unused()) {
932 PrintF("unused label\n");
933 } else if (L->is_bound()) {
934 PrintF("bound label to %d\n", L->pos());
935 } else if (L->is_linked()) {
936 Label l;
937 l.link_to(L->pos());
938 PrintF("unbound label");
939 while (l.is_linked()) {
940 PrintF("@ %d ", l.pos());
941 Instr instr = instr_at(l.pos());
942 if ((instr & ~kImm16Mask) == 0) {
943 PrintF("value\n");
944 } else {
945 PrintF("%d\n", instr);
946 }
947 next(&l, is_internal_reference(&l));
948 }
949 } else {
950 PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
951 }
952 }
953
bind_to(Label * L,int pos)954 void Assembler::bind_to(Label* L, int pos) {
955 DCHECK(0 <= pos && pos <= pc_offset()); // Must have valid binding position.
956 int trampoline_pos = kInvalidSlotPos;
957 bool is_internal = false;
958 if (L->is_linked() && !trampoline_emitted_) {
959 unbound_labels_count_--;
960 if (!is_internal_reference(L)) {
961 next_buffer_check_ += kTrampolineSlotsSize;
962 }
963 }
964
965 while (L->is_linked()) {
966 int fixup_pos = L->pos();
967 int dist = pos - fixup_pos;
968 is_internal = is_internal_reference(L);
969 next(L, is_internal); // Call next before overwriting link with target at
970 // fixup_pos.
971 Instr instr = instr_at(fixup_pos);
972 if (is_internal) {
973 target_at_put(fixup_pos, pos, is_internal);
974 } else {
975 if (IsBranch(instr)) {
976 int branch_offset = BranchOffset(instr);
977 if (dist > branch_offset) {
978 if (trampoline_pos == kInvalidSlotPos) {
979 trampoline_pos = get_trampoline_entry(fixup_pos);
980 CHECK_NE(trampoline_pos, kInvalidSlotPos);
981 }
982 CHECK((trampoline_pos - fixup_pos) <= branch_offset);
983 target_at_put(fixup_pos, trampoline_pos, false);
984 fixup_pos = trampoline_pos;
985 }
986 target_at_put(fixup_pos, pos, false);
987 } else {
988 DCHECK(IsJ(instr) || IsJal(instr) || IsLui(instr) ||
989 IsEmittedConstant(instr) || IsMov(instr, t8, ra));
990 target_at_put(fixup_pos, pos, false);
991 }
992 }
993 }
994 L->bind_to(pos);
995
996 // Keep track of the last bound label so we don't eliminate any instructions
997 // before a bound label.
998 if (pos > last_bound_pos_) last_bound_pos_ = pos;
999 }
1000
bind(Label * L)1001 void Assembler::bind(Label* L) {
1002 DCHECK(!L->is_bound()); // Label can only be bound once.
1003 bind_to(L, pc_offset());
1004 }
1005
next(Label * L,bool is_internal)1006 void Assembler::next(Label* L, bool is_internal) {
1007 DCHECK(L->is_linked());
1008 int link = target_at(L->pos(), is_internal);
1009 if (link == kEndOfChain) {
1010 L->Unuse();
1011 } else {
1012 DCHECK_GE(link, 0);
1013 L->link_to(link);
1014 }
1015 }
1016
is_near(Label * L)1017 bool Assembler::is_near(Label* L) {
1018 DCHECK(L->is_bound());
1019 return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
1020 }
1021
is_near(Label * L,OffsetSize bits)1022 bool Assembler::is_near(Label* L, OffsetSize bits) {
1023 if (L == nullptr || !L->is_bound()) return true;
1024 return ((pc_offset() - L->pos()) <
1025 (1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize);
1026 }
1027
is_near_branch(Label * L)1028 bool Assembler::is_near_branch(Label* L) {
1029 DCHECK(L->is_bound());
1030 return kArchVariant == kMips64r6 ? is_near_r6(L) : is_near_pre_r6(L);
1031 }
1032
BranchOffset(Instr instr)1033 int Assembler::BranchOffset(Instr instr) {
1034 // At pre-R6 and for other R6 branches the offset is 16 bits.
1035 int bits = OffsetSize::kOffset16;
1036
1037 if (kArchVariant == kMips64r6) {
1038 uint32_t opcode = GetOpcodeField(instr);
1039 switch (opcode) {
1040 // Checks BC or BALC.
1041 case BC:
1042 case BALC:
1043 bits = OffsetSize::kOffset26;
1044 break;
1045
1046 // Checks BEQZC or BNEZC.
1047 case POP66:
1048 case POP76:
1049 if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21;
1050 break;
1051 default:
1052 break;
1053 }
1054 }
1055
1056 return (1 << (bits + 2 - 1)) - 1;
1057 }
1058
1059 // We have to use a temporary register for things that can be relocated even
1060 // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
1061 // space. There is no guarantee that the relocated location can be similarly
1062 // encoded.
MustUseReg(RelocInfo::Mode rmode)1063 bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
1064 return !RelocInfo::IsNoInfo(rmode);
1065 }
1066
GenInstrRegister(Opcode opcode,Register rs,Register rt,Register rd,uint16_t sa,SecondaryField func)1067 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1068 Register rd, uint16_t sa,
1069 SecondaryField func) {
1070 DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
1071 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1072 (rd.code() << kRdShift) | (sa << kSaShift) | func;
1073 emit(instr);
1074 }
1075
GenInstrRegister(Opcode opcode,Register rs,Register rt,uint16_t msb,uint16_t lsb,SecondaryField func)1076 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1077 uint16_t msb, uint16_t lsb,
1078 SecondaryField func) {
1079 DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
1080 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1081 (msb << kRdShift) | (lsb << kSaShift) | func;
1082 emit(instr);
1083 }
1084
GenInstrRegister(Opcode opcode,SecondaryField fmt,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1085 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt,
1086 FPURegister ft, FPURegister fs, FPURegister fd,
1087 SecondaryField func) {
1088 DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid());
1089 Instr instr = opcode | fmt | (ft.code() << kFtShift) |
1090 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1091 emit(instr);
1092 }
1093
GenInstrRegister(Opcode opcode,FPURegister fr,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1094 void Assembler::GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
1095 FPURegister fs, FPURegister fd,
1096 SecondaryField func) {
1097 DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid());
1098 Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift) |
1099 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1100 emit(instr);
1101 }
1102
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPURegister fs,FPURegister fd,SecondaryField func)1103 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1104 FPURegister fs, FPURegister fd,
1105 SecondaryField func) {
1106 DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid());
1107 Instr instr = opcode | fmt | (rt.code() << kRtShift) |
1108 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1109 emit(instr);
1110 }
1111
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPUControlRegister fs,SecondaryField func)1112 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1113 FPUControlRegister fs, SecondaryField func) {
1114 DCHECK(fs.is_valid() && rt.is_valid());
1115 Instr instr =
1116 opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
1117 emit(instr);
1118 }
1119
1120 // Instructions with immediate value.
1121 // Registers are in the order of the instruction encoding, from left to right.
GenInstrImmediate(Opcode opcode,Register rs,Register rt,int32_t j,CompactBranchType is_compact_branch)1122 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt,
1123 int32_t j,
1124 CompactBranchType is_compact_branch) {
1125 DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
1126 Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1127 (j & kImm16Mask);
1128 emit(instr, is_compact_branch);
1129 }
1130
GenInstrImmediate(Opcode opcode,Register base,Register rt,int32_t offset9,int bit6,SecondaryField func)1131 void Assembler::GenInstrImmediate(Opcode opcode, Register base, Register rt,
1132 int32_t offset9, int bit6,
1133 SecondaryField func) {
1134 DCHECK(base.is_valid() && rt.is_valid() && is_int9(offset9) &&
1135 is_uint1(bit6));
1136 Instr instr = opcode | (base.code() << kBaseShift) | (rt.code() << kRtShift) |
1137 ((offset9 << kImm9Shift) & kImm9Mask) | bit6 << kBit6Shift |
1138 func;
1139 emit(instr);
1140 }
1141
GenInstrImmediate(Opcode opcode,Register rs,SecondaryField SF,int32_t j,CompactBranchType is_compact_branch)1142 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF,
1143 int32_t j,
1144 CompactBranchType is_compact_branch) {
1145 DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j)));
1146 Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
1147 emit(instr, is_compact_branch);
1148 }
1149
GenInstrImmediate(Opcode opcode,Register rs,FPURegister ft,int32_t j,CompactBranchType is_compact_branch)1150 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft,
1151 int32_t j,
1152 CompactBranchType is_compact_branch) {
1153 DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
1154 Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
1155 (j & kImm16Mask);
1156 emit(instr, is_compact_branch);
1157 }
1158
GenInstrImmediate(Opcode opcode,Register rs,int32_t offset21,CompactBranchType is_compact_branch)1159 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21,
1160 CompactBranchType is_compact_branch) {
1161 DCHECK(rs.is_valid() && (is_int21(offset21)));
1162 Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1163 emit(instr, is_compact_branch);
1164 }
1165
GenInstrImmediate(Opcode opcode,Register rs,uint32_t offset21)1166 void Assembler::GenInstrImmediate(Opcode opcode, Register rs,
1167 uint32_t offset21) {
1168 DCHECK(rs.is_valid() && (is_uint21(offset21)));
1169 Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1170 emit(instr);
1171 }
1172
GenInstrImmediate(Opcode opcode,int32_t offset26,CompactBranchType is_compact_branch)1173 void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26,
1174 CompactBranchType is_compact_branch) {
1175 DCHECK(is_int26(offset26));
1176 Instr instr = opcode | (offset26 & kImm26Mask);
1177 emit(instr, is_compact_branch);
1178 }
1179
GenInstrJump(Opcode opcode,uint32_t address)1180 void Assembler::GenInstrJump(Opcode opcode, uint32_t address) {
1181 BlockTrampolinePoolScope block_trampoline_pool(this);
1182 DCHECK(is_uint26(address));
1183 Instr instr = opcode | address;
1184 emit(instr);
1185 BlockTrampolinePoolFor(1); // For associated delay slot.
1186 }
1187
1188 // MSA instructions
GenInstrMsaI8(SecondaryField operation,uint32_t imm8,MSARegister ws,MSARegister wd)1189 void Assembler::GenInstrMsaI8(SecondaryField operation, uint32_t imm8,
1190 MSARegister ws, MSARegister wd) {
1191 DCHECK(IsEnabled(MIPS_SIMD));
1192 DCHECK(ws.is_valid() && wd.is_valid() && is_uint8(imm8));
1193 Instr instr = MSA | operation | ((imm8 & kImm8Mask) << kWtShift) |
1194 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1195 emit(instr);
1196 }
1197
GenInstrMsaI5(SecondaryField operation,SecondaryField df,int32_t imm5,MSARegister ws,MSARegister wd)1198 void Assembler::GenInstrMsaI5(SecondaryField operation, SecondaryField df,
1199 int32_t imm5, MSARegister ws, MSARegister wd) {
1200 DCHECK(IsEnabled(MIPS_SIMD));
1201 DCHECK(ws.is_valid() && wd.is_valid());
1202 DCHECK((operation == MAXI_S) || (operation == MINI_S) ||
1203 (operation == CEQI) || (operation == CLTI_S) ||
1204 (operation == CLEI_S)
1205 ? is_int5(imm5)
1206 : is_uint5(imm5));
1207 Instr instr = MSA | operation | df | ((imm5 & kImm5Mask) << kWtShift) |
1208 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1209 emit(instr);
1210 }
1211
GenInstrMsaBit(SecondaryField operation,SecondaryField df,uint32_t m,MSARegister ws,MSARegister wd)1212 void Assembler::GenInstrMsaBit(SecondaryField operation, SecondaryField df,
1213 uint32_t m, MSARegister ws, MSARegister wd) {
1214 DCHECK(IsEnabled(MIPS_SIMD));
1215 DCHECK(ws.is_valid() && wd.is_valid() && is_valid_msa_df_m(df, m));
1216 Instr instr = MSA | operation | df | (m << kWtShift) |
1217 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1218 emit(instr);
1219 }
1220
GenInstrMsaI10(SecondaryField operation,SecondaryField df,int32_t imm10,MSARegister wd)1221 void Assembler::GenInstrMsaI10(SecondaryField operation, SecondaryField df,
1222 int32_t imm10, MSARegister wd) {
1223 DCHECK(IsEnabled(MIPS_SIMD));
1224 DCHECK(wd.is_valid() && is_int10(imm10));
1225 Instr instr = MSA | operation | df | ((imm10 & kImm10Mask) << kWsShift) |
1226 (wd.code() << kWdShift);
1227 emit(instr);
1228 }
1229
1230 template <typename RegType>
GenInstrMsa3R(SecondaryField operation,SecondaryField df,RegType t,MSARegister ws,MSARegister wd)1231 void Assembler::GenInstrMsa3R(SecondaryField operation, SecondaryField df,
1232 RegType t, MSARegister ws, MSARegister wd) {
1233 DCHECK(IsEnabled(MIPS_SIMD));
1234 DCHECK(t.is_valid() && ws.is_valid() && wd.is_valid());
1235 Instr instr = MSA | operation | df | (t.code() << kWtShift) |
1236 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1237 emit(instr);
1238 }
1239
1240 template <typename DstType, typename SrcType>
GenInstrMsaElm(SecondaryField operation,SecondaryField df,uint32_t n,SrcType src,DstType dst)1241 void Assembler::GenInstrMsaElm(SecondaryField operation, SecondaryField df,
1242 uint32_t n, SrcType src, DstType dst) {
1243 DCHECK(IsEnabled(MIPS_SIMD));
1244 DCHECK(src.is_valid() && dst.is_valid() && is_valid_msa_df_n(df, n));
1245 Instr instr = MSA | operation | df | (n << kWtShift) |
1246 (src.code() << kWsShift) | (dst.code() << kWdShift) |
1247 MSA_ELM_MINOR;
1248 emit(instr);
1249 }
1250
GenInstrMsa3RF(SecondaryField operation,uint32_t df,MSARegister wt,MSARegister ws,MSARegister wd)1251 void Assembler::GenInstrMsa3RF(SecondaryField operation, uint32_t df,
1252 MSARegister wt, MSARegister ws, MSARegister wd) {
1253 DCHECK(IsEnabled(MIPS_SIMD));
1254 DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1255 DCHECK_LT(df, 2);
1256 Instr instr = MSA | operation | (df << 21) | (wt.code() << kWtShift) |
1257 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1258 emit(instr);
1259 }
1260
GenInstrMsaVec(SecondaryField operation,MSARegister wt,MSARegister ws,MSARegister wd)1261 void Assembler::GenInstrMsaVec(SecondaryField operation, MSARegister wt,
1262 MSARegister ws, MSARegister wd) {
1263 DCHECK(IsEnabled(MIPS_SIMD));
1264 DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1265 Instr instr = MSA | operation | (wt.code() << kWtShift) |
1266 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1267 MSA_VEC_2R_2RF_MINOR;
1268 emit(instr);
1269 }
1270
GenInstrMsaMI10(SecondaryField operation,int32_t s10,Register rs,MSARegister wd)1271 void Assembler::GenInstrMsaMI10(SecondaryField operation, int32_t s10,
1272 Register rs, MSARegister wd) {
1273 DCHECK(IsEnabled(MIPS_SIMD));
1274 DCHECK(rs.is_valid() && wd.is_valid() && is_int10(s10));
1275 Instr instr = MSA | operation | ((s10 & kImm10Mask) << kWtShift) |
1276 (rs.code() << kWsShift) | (wd.code() << kWdShift);
1277 emit(instr);
1278 }
1279
GenInstrMsa2R(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1280 void Assembler::GenInstrMsa2R(SecondaryField operation, SecondaryField df,
1281 MSARegister ws, MSARegister wd) {
1282 DCHECK(IsEnabled(MIPS_SIMD));
1283 DCHECK(ws.is_valid() && wd.is_valid());
1284 Instr instr = MSA | MSA_2R_FORMAT | operation | df | (ws.code() << kWsShift) |
1285 (wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR;
1286 emit(instr);
1287 }
1288
GenInstrMsa2RF(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1289 void Assembler::GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
1290 MSARegister ws, MSARegister wd) {
1291 DCHECK(IsEnabled(MIPS_SIMD));
1292 DCHECK(ws.is_valid() && wd.is_valid());
1293 Instr instr = MSA | MSA_2RF_FORMAT | operation | df |
1294 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1295 MSA_VEC_2R_2RF_MINOR;
1296 emit(instr);
1297 }
1298
GenInstrMsaBranch(SecondaryField operation,MSARegister wt,int32_t offset16)1299 void Assembler::GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
1300 int32_t offset16) {
1301 DCHECK(IsEnabled(MIPS_SIMD));
1302 DCHECK(wt.is_valid() && is_int16(offset16));
1303 BlockTrampolinePoolScope block_trampoline_pool(this);
1304 Instr instr =
1305 COP1 | operation | (wt.code() << kWtShift) | (offset16 & kImm16Mask);
1306 emit(instr);
1307 BlockTrampolinePoolFor(1); // For associated delay slot.
1308 }
1309
1310 // Returns the next free trampoline entry.
get_trampoline_entry(int32_t pos)1311 int32_t Assembler::get_trampoline_entry(int32_t pos) {
1312 int32_t trampoline_entry = kInvalidSlotPos;
1313 if (!internal_trampoline_exception_) {
1314 if (trampoline_.start() > pos) {
1315 trampoline_entry = trampoline_.take_slot();
1316 }
1317
1318 if (kInvalidSlotPos == trampoline_entry) {
1319 internal_trampoline_exception_ = true;
1320 }
1321 }
1322 return trampoline_entry;
1323 }
1324
jump_address(Label * L)1325 uint64_t Assembler::jump_address(Label* L) {
1326 int64_t target_pos;
1327 if (L->is_bound()) {
1328 target_pos = L->pos();
1329 } else {
1330 if (L->is_linked()) {
1331 target_pos = L->pos(); // L's link.
1332 L->link_to(pc_offset());
1333 } else {
1334 L->link_to(pc_offset());
1335 return kEndOfJumpChain;
1336 }
1337 }
1338 uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
1339 DCHECK_EQ(imm & 3, 0);
1340
1341 return imm;
1342 }
1343
jump_offset(Label * L)1344 uint64_t Assembler::jump_offset(Label* L) {
1345 int64_t target_pos;
1346 int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1347
1348 if (L->is_bound()) {
1349 target_pos = L->pos();
1350 } else {
1351 if (L->is_linked()) {
1352 target_pos = L->pos(); // L's link.
1353 L->link_to(pc_offset() + pad);
1354 } else {
1355 L->link_to(pc_offset() + pad);
1356 return kEndOfJumpChain;
1357 }
1358 }
1359 int64_t imm = target_pos - (pc_offset() + pad);
1360 DCHECK_EQ(imm & 3, 0);
1361
1362 return static_cast<uint64_t>(imm);
1363 }
1364
branch_long_offset(Label * L)1365 uint64_t Assembler::branch_long_offset(Label* L) {
1366 int64_t target_pos;
1367
1368 if (L->is_bound()) {
1369 target_pos = L->pos();
1370 } else {
1371 if (L->is_linked()) {
1372 target_pos = L->pos(); // L's link.
1373 L->link_to(pc_offset());
1374 } else {
1375 L->link_to(pc_offset());
1376 return kEndOfJumpChain;
1377 }
1378 }
1379 int64_t offset = target_pos - (pc_offset() + kLongBranchPCOffset);
1380 DCHECK_EQ(offset & 3, 0);
1381
1382 return static_cast<uint64_t>(offset);
1383 }
1384
branch_offset_helper(Label * L,OffsetSize bits)1385 int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) {
1386 int32_t target_pos;
1387 int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1388
1389 if (L->is_bound()) {
1390 target_pos = L->pos();
1391 } else {
1392 if (L->is_linked()) {
1393 target_pos = L->pos();
1394 L->link_to(pc_offset() + pad);
1395 } else {
1396 L->link_to(pc_offset() + pad);
1397 if (!trampoline_emitted_) {
1398 unbound_labels_count_++;
1399 next_buffer_check_ -= kTrampolineSlotsSize;
1400 }
1401 return kEndOfChain;
1402 }
1403 }
1404
1405 int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad);
1406 DCHECK(is_intn(offset, bits + 2));
1407 DCHECK_EQ(offset & 3, 0);
1408
1409 return offset;
1410 }
1411
label_at_put(Label * L,int at_offset)1412 void Assembler::label_at_put(Label* L, int at_offset) {
1413 int target_pos;
1414 if (L->is_bound()) {
1415 target_pos = L->pos();
1416 instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
1417 } else {
1418 if (L->is_linked()) {
1419 target_pos = L->pos(); // L's link.
1420 int32_t imm18 = target_pos - at_offset;
1421 DCHECK_EQ(imm18 & 3, 0);
1422 int32_t imm16 = imm18 >> 2;
1423 DCHECK(is_int16(imm16));
1424 instr_at_put(at_offset, (imm16 & kImm16Mask));
1425 } else {
1426 target_pos = kEndOfChain;
1427 instr_at_put(at_offset, 0);
1428 if (!trampoline_emitted_) {
1429 unbound_labels_count_++;
1430 next_buffer_check_ -= kTrampolineSlotsSize;
1431 }
1432 }
1433 L->link_to(at_offset);
1434 }
1435 }
1436
1437 //------- Branch and jump instructions --------
1438
b(int16_t offset)1439 void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); }
1440
bal(int16_t offset)1441 void Assembler::bal(int16_t offset) { bgezal(zero_reg, offset); }
1442
bc(int32_t offset)1443 void Assembler::bc(int32_t offset) {
1444 DCHECK_EQ(kArchVariant, kMips64r6);
1445 GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH);
1446 }
1447
balc(int32_t offset)1448 void Assembler::balc(int32_t offset) {
1449 DCHECK_EQ(kArchVariant, kMips64r6);
1450 GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH);
1451 }
1452
beq(Register rs,Register rt,int16_t offset)1453 void Assembler::beq(Register rs, Register rt, int16_t offset) {
1454 BlockTrampolinePoolScope block_trampoline_pool(this);
1455 GenInstrImmediate(BEQ, rs, rt, offset);
1456 BlockTrampolinePoolFor(1); // For associated delay slot.
1457 }
1458
bgez(Register rs,int16_t offset)1459 void Assembler::bgez(Register rs, int16_t offset) {
1460 BlockTrampolinePoolScope block_trampoline_pool(this);
1461 GenInstrImmediate(REGIMM, rs, BGEZ, offset);
1462 BlockTrampolinePoolFor(1); // For associated delay slot.
1463 }
1464
bgezc(Register rt,int16_t offset)1465 void Assembler::bgezc(Register rt, int16_t offset) {
1466 DCHECK_EQ(kArchVariant, kMips64r6);
1467 DCHECK(rt != zero_reg);
1468 GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1469 }
1470
bgeuc(Register rs,Register rt,int16_t offset)1471 void Assembler::bgeuc(Register rs, Register rt, int16_t offset) {
1472 DCHECK_EQ(kArchVariant, kMips64r6);
1473 DCHECK(rs != zero_reg);
1474 DCHECK(rt != zero_reg);
1475 DCHECK(rs.code() != rt.code());
1476 GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1477 }
1478
bgec(Register rs,Register rt,int16_t offset)1479 void Assembler::bgec(Register rs, Register rt, int16_t offset) {
1480 DCHECK_EQ(kArchVariant, kMips64r6);
1481 DCHECK(rs != zero_reg);
1482 DCHECK(rt != zero_reg);
1483 DCHECK(rs.code() != rt.code());
1484 GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1485 }
1486
bgezal(Register rs,int16_t offset)1487 void Assembler::bgezal(Register rs, int16_t offset) {
1488 DCHECK(kArchVariant != kMips64r6 || rs == zero_reg);
1489 DCHECK(rs != ra);
1490 BlockTrampolinePoolScope block_trampoline_pool(this);
1491 GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
1492 BlockTrampolinePoolFor(1); // For associated delay slot.
1493 }
1494
bgtz(Register rs,int16_t offset)1495 void Assembler::bgtz(Register rs, int16_t offset) {
1496 BlockTrampolinePoolScope block_trampoline_pool(this);
1497 GenInstrImmediate(BGTZ, rs, zero_reg, offset);
1498 BlockTrampolinePoolFor(1); // For associated delay slot.
1499 }
1500
bgtzc(Register rt,int16_t offset)1501 void Assembler::bgtzc(Register rt, int16_t offset) {
1502 DCHECK_EQ(kArchVariant, kMips64r6);
1503 DCHECK(rt != zero_reg);
1504 GenInstrImmediate(BGTZL, zero_reg, rt, offset,
1505 CompactBranchType::COMPACT_BRANCH);
1506 }
1507
blez(Register rs,int16_t offset)1508 void Assembler::blez(Register rs, int16_t offset) {
1509 BlockTrampolinePoolScope block_trampoline_pool(this);
1510 GenInstrImmediate(BLEZ, rs, zero_reg, offset);
1511 BlockTrampolinePoolFor(1); // For associated delay slot.
1512 }
1513
blezc(Register rt,int16_t offset)1514 void Assembler::blezc(Register rt, int16_t offset) {
1515 DCHECK_EQ(kArchVariant, kMips64r6);
1516 DCHECK(rt != zero_reg);
1517 GenInstrImmediate(BLEZL, zero_reg, rt, offset,
1518 CompactBranchType::COMPACT_BRANCH);
1519 }
1520
bltzc(Register rt,int16_t offset)1521 void Assembler::bltzc(Register rt, int16_t offset) {
1522 DCHECK_EQ(kArchVariant, kMips64r6);
1523 DCHECK(rt != zero_reg);
1524 GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1525 }
1526
bltuc(Register rs,Register rt,int16_t offset)1527 void Assembler::bltuc(Register rs, Register rt, int16_t offset) {
1528 DCHECK_EQ(kArchVariant, kMips64r6);
1529 DCHECK(rs != zero_reg);
1530 DCHECK(rt != zero_reg);
1531 DCHECK(rs.code() != rt.code());
1532 GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1533 }
1534
bltc(Register rs,Register rt,int16_t offset)1535 void Assembler::bltc(Register rs, Register rt, int16_t offset) {
1536 DCHECK_EQ(kArchVariant, kMips64r6);
1537 DCHECK(rs != zero_reg);
1538 DCHECK(rt != zero_reg);
1539 DCHECK(rs.code() != rt.code());
1540 GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1541 }
1542
bltz(Register rs,int16_t offset)1543 void Assembler::bltz(Register rs, int16_t offset) {
1544 BlockTrampolinePoolScope block_trampoline_pool(this);
1545 GenInstrImmediate(REGIMM, rs, BLTZ, offset);
1546 BlockTrampolinePoolFor(1); // For associated delay slot.
1547 }
1548
bltzal(Register rs,int16_t offset)1549 void Assembler::bltzal(Register rs, int16_t offset) {
1550 DCHECK(kArchVariant != kMips64r6 || rs == zero_reg);
1551 DCHECK(rs != ra);
1552 BlockTrampolinePoolScope block_trampoline_pool(this);
1553 GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
1554 BlockTrampolinePoolFor(1); // For associated delay slot.
1555 }
1556
bne(Register rs,Register rt,int16_t offset)1557 void Assembler::bne(Register rs, Register rt, int16_t offset) {
1558 BlockTrampolinePoolScope block_trampoline_pool(this);
1559 GenInstrImmediate(BNE, rs, rt, offset);
1560 BlockTrampolinePoolFor(1); // For associated delay slot.
1561 }
1562
bovc(Register rs,Register rt,int16_t offset)1563 void Assembler::bovc(Register rs, Register rt, int16_t offset) {
1564 DCHECK_EQ(kArchVariant, kMips64r6);
1565 if (rs.code() >= rt.code()) {
1566 GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1567 } else {
1568 GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1569 }
1570 }
1571
bnvc(Register rs,Register rt,int16_t offset)1572 void Assembler::bnvc(Register rs, Register rt, int16_t offset) {
1573 DCHECK_EQ(kArchVariant, kMips64r6);
1574 if (rs.code() >= rt.code()) {
1575 GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1576 } else {
1577 GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1578 }
1579 }
1580
blezalc(Register rt,int16_t offset)1581 void Assembler::blezalc(Register rt, int16_t offset) {
1582 DCHECK_EQ(kArchVariant, kMips64r6);
1583 DCHECK(rt != zero_reg);
1584 DCHECK(rt != ra);
1585 GenInstrImmediate(BLEZ, zero_reg, rt, offset,
1586 CompactBranchType::COMPACT_BRANCH);
1587 }
1588
bgezalc(Register rt,int16_t offset)1589 void Assembler::bgezalc(Register rt, int16_t offset) {
1590 DCHECK_EQ(kArchVariant, kMips64r6);
1591 DCHECK(rt != zero_reg);
1592 DCHECK(rt != ra);
1593 GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1594 }
1595
bgezall(Register rs,int16_t offset)1596 void Assembler::bgezall(Register rs, int16_t offset) {
1597 DCHECK_NE(kArchVariant, kMips64r6);
1598 DCHECK(rs != zero_reg);
1599 DCHECK(rs != ra);
1600 BlockTrampolinePoolScope block_trampoline_pool(this);
1601 GenInstrImmediate(REGIMM, rs, BGEZALL, offset);
1602 BlockTrampolinePoolFor(1); // For associated delay slot.
1603 }
1604
bltzalc(Register rt,int16_t offset)1605 void Assembler::bltzalc(Register rt, int16_t offset) {
1606 DCHECK_EQ(kArchVariant, kMips64r6);
1607 DCHECK(rt != zero_reg);
1608 DCHECK(rt != ra);
1609 GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1610 }
1611
bgtzalc(Register rt,int16_t offset)1612 void Assembler::bgtzalc(Register rt, int16_t offset) {
1613 DCHECK_EQ(kArchVariant, kMips64r6);
1614 DCHECK(rt != zero_reg);
1615 DCHECK(rt != ra);
1616 GenInstrImmediate(BGTZ, zero_reg, rt, offset,
1617 CompactBranchType::COMPACT_BRANCH);
1618 }
1619
beqzalc(Register rt,int16_t offset)1620 void Assembler::beqzalc(Register rt, int16_t offset) {
1621 DCHECK_EQ(kArchVariant, kMips64r6);
1622 DCHECK(rt != zero_reg);
1623 DCHECK(rt != ra);
1624 GenInstrImmediate(ADDI, zero_reg, rt, offset,
1625 CompactBranchType::COMPACT_BRANCH);
1626 }
1627
bnezalc(Register rt,int16_t offset)1628 void Assembler::bnezalc(Register rt, int16_t offset) {
1629 DCHECK_EQ(kArchVariant, kMips64r6);
1630 DCHECK(rt != zero_reg);
1631 DCHECK(rt != ra);
1632 GenInstrImmediate(DADDI, zero_reg, rt, offset,
1633 CompactBranchType::COMPACT_BRANCH);
1634 }
1635
beqc(Register rs,Register rt,int16_t offset)1636 void Assembler::beqc(Register rs, Register rt, int16_t offset) {
1637 DCHECK_EQ(kArchVariant, kMips64r6);
1638 DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1639 if (rs.code() < rt.code()) {
1640 GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1641 } else {
1642 GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1643 }
1644 }
1645
beqzc(Register rs,int32_t offset)1646 void Assembler::beqzc(Register rs, int32_t offset) {
1647 DCHECK_EQ(kArchVariant, kMips64r6);
1648 DCHECK(rs != zero_reg);
1649 GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH);
1650 }
1651
bnec(Register rs,Register rt,int16_t offset)1652 void Assembler::bnec(Register rs, Register rt, int16_t offset) {
1653 DCHECK_EQ(kArchVariant, kMips64r6);
1654 DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1655 if (rs.code() < rt.code()) {
1656 GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1657 } else {
1658 GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1659 }
1660 }
1661
bnezc(Register rs,int32_t offset)1662 void Assembler::bnezc(Register rs, int32_t offset) {
1663 DCHECK_EQ(kArchVariant, kMips64r6);
1664 DCHECK(rs != zero_reg);
1665 GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH);
1666 }
1667
j(int64_t target)1668 void Assembler::j(int64_t target) {
1669 // Deprecated. Use PC-relative jumps instead.
1670 UNREACHABLE();
1671 }
1672
j(Label * target)1673 void Assembler::j(Label* target) {
1674 // Deprecated. Use PC-relative jumps instead.
1675 UNREACHABLE();
1676 }
1677
jal(Label * target)1678 void Assembler::jal(Label* target) {
1679 // Deprecated. Use PC-relative jumps instead.
1680 UNREACHABLE();
1681 }
1682
jal(int64_t target)1683 void Assembler::jal(int64_t target) {
1684 // Deprecated. Use PC-relative jumps instead.
1685 UNREACHABLE();
1686 }
1687
jr(Register rs)1688 void Assembler::jr(Register rs) {
1689 if (kArchVariant != kMips64r6) {
1690 BlockTrampolinePoolScope block_trampoline_pool(this);
1691 GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
1692 BlockTrampolinePoolFor(1); // For associated delay slot.
1693 } else {
1694 jalr(rs, zero_reg);
1695 }
1696 }
1697
jalr(Register rs,Register rd)1698 void Assembler::jalr(Register rs, Register rd) {
1699 DCHECK(rs.code() != rd.code());
1700 BlockTrampolinePoolScope block_trampoline_pool(this);
1701 GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
1702 BlockTrampolinePoolFor(1); // For associated delay slot.
1703 }
1704
jic(Register rt,int16_t offset)1705 void Assembler::jic(Register rt, int16_t offset) {
1706 DCHECK_EQ(kArchVariant, kMips64r6);
1707 GenInstrImmediate(POP66, zero_reg, rt, offset);
1708 }
1709
jialc(Register rt,int16_t offset)1710 void Assembler::jialc(Register rt, int16_t offset) {
1711 DCHECK_EQ(kArchVariant, kMips64r6);
1712 GenInstrImmediate(POP76, zero_reg, rt, offset);
1713 }
1714
1715 // -------Data-processing-instructions---------
1716
1717 // Arithmetic.
1718
addu(Register rd,Register rs,Register rt)1719 void Assembler::addu(Register rd, Register rs, Register rt) {
1720 GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
1721 }
1722
addiu(Register rd,Register rs,int32_t j)1723 void Assembler::addiu(Register rd, Register rs, int32_t j) {
1724 GenInstrImmediate(ADDIU, rs, rd, j);
1725 }
1726
subu(Register rd,Register rs,Register rt)1727 void Assembler::subu(Register rd, Register rs, Register rt) {
1728 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
1729 }
1730
mul(Register rd,Register rs,Register rt)1731 void Assembler::mul(Register rd, Register rs, Register rt) {
1732 if (kArchVariant == kMips64r6) {
1733 GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH);
1734 } else {
1735 GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
1736 }
1737 }
1738
muh(Register rd,Register rs,Register rt)1739 void Assembler::muh(Register rd, Register rs, Register rt) {
1740 DCHECK_EQ(kArchVariant, kMips64r6);
1741 GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH);
1742 }
1743
mulu(Register rd,Register rs,Register rt)1744 void Assembler::mulu(Register rd, Register rs, Register rt) {
1745 DCHECK_EQ(kArchVariant, kMips64r6);
1746 GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U);
1747 }
1748
muhu(Register rd,Register rs,Register rt)1749 void Assembler::muhu(Register rd, Register rs, Register rt) {
1750 DCHECK_EQ(kArchVariant, kMips64r6);
1751 GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U);
1752 }
1753
dmul(Register rd,Register rs,Register rt)1754 void Assembler::dmul(Register rd, Register rs, Register rt) {
1755 DCHECK_EQ(kArchVariant, kMips64r6);
1756 GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH);
1757 }
1758
dmuh(Register rd,Register rs,Register rt)1759 void Assembler::dmuh(Register rd, Register rs, Register rt) {
1760 DCHECK_EQ(kArchVariant, kMips64r6);
1761 GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH);
1762 }
1763
dmulu(Register rd,Register rs,Register rt)1764 void Assembler::dmulu(Register rd, Register rs, Register rt) {
1765 DCHECK_EQ(kArchVariant, kMips64r6);
1766 GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH_U);
1767 }
1768
dmuhu(Register rd,Register rs,Register rt)1769 void Assembler::dmuhu(Register rd, Register rs, Register rt) {
1770 DCHECK_EQ(kArchVariant, kMips64r6);
1771 GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH_U);
1772 }
1773
mult(Register rs,Register rt)1774 void Assembler::mult(Register rs, Register rt) {
1775 DCHECK_NE(kArchVariant, kMips64r6);
1776 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
1777 }
1778
multu(Register rs,Register rt)1779 void Assembler::multu(Register rs, Register rt) {
1780 DCHECK_NE(kArchVariant, kMips64r6);
1781 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
1782 }
1783
daddiu(Register rd,Register rs,int32_t j)1784 void Assembler::daddiu(Register rd, Register rs, int32_t j) {
1785 GenInstrImmediate(DADDIU, rs, rd, j);
1786 }
1787
div(Register rs,Register rt)1788 void Assembler::div(Register rs, Register rt) {
1789 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
1790 }
1791
div(Register rd,Register rs,Register rt)1792 void Assembler::div(Register rd, Register rs, Register rt) {
1793 DCHECK_EQ(kArchVariant, kMips64r6);
1794 GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD);
1795 }
1796
mod(Register rd,Register rs,Register rt)1797 void Assembler::mod(Register rd, Register rs, Register rt) {
1798 DCHECK_EQ(kArchVariant, kMips64r6);
1799 GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD);
1800 }
1801
divu(Register rs,Register rt)1802 void Assembler::divu(Register rs, Register rt) {
1803 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
1804 }
1805
divu(Register rd,Register rs,Register rt)1806 void Assembler::divu(Register rd, Register rs, Register rt) {
1807 DCHECK_EQ(kArchVariant, kMips64r6);
1808 GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U);
1809 }
1810
modu(Register rd,Register rs,Register rt)1811 void Assembler::modu(Register rd, Register rs, Register rt) {
1812 DCHECK_EQ(kArchVariant, kMips64r6);
1813 GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U);
1814 }
1815
daddu(Register rd,Register rs,Register rt)1816 void Assembler::daddu(Register rd, Register rs, Register rt) {
1817 GenInstrRegister(SPECIAL, rs, rt, rd, 0, DADDU);
1818 }
1819
dsubu(Register rd,Register rs,Register rt)1820 void Assembler::dsubu(Register rd, Register rs, Register rt) {
1821 GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSUBU);
1822 }
1823
dmult(Register rs,Register rt)1824 void Assembler::dmult(Register rs, Register rt) {
1825 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULT);
1826 }
1827
dmultu(Register rs,Register rt)1828 void Assembler::dmultu(Register rs, Register rt) {
1829 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULTU);
1830 }
1831
ddiv(Register rs,Register rt)1832 void Assembler::ddiv(Register rs, Register rt) {
1833 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIV);
1834 }
1835
ddiv(Register rd,Register rs,Register rt)1836 void Assembler::ddiv(Register rd, Register rs, Register rt) {
1837 DCHECK_EQ(kArchVariant, kMips64r6);
1838 GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD);
1839 }
1840
dmod(Register rd,Register rs,Register rt)1841 void Assembler::dmod(Register rd, Register rs, Register rt) {
1842 DCHECK_EQ(kArchVariant, kMips64r6);
1843 GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD);
1844 }
1845
ddivu(Register rs,Register rt)1846 void Assembler::ddivu(Register rs, Register rt) {
1847 GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIVU);
1848 }
1849
ddivu(Register rd,Register rs,Register rt)1850 void Assembler::ddivu(Register rd, Register rs, Register rt) {
1851 DCHECK_EQ(kArchVariant, kMips64r6);
1852 GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD_U);
1853 }
1854
dmodu(Register rd,Register rs,Register rt)1855 void Assembler::dmodu(Register rd, Register rs, Register rt) {
1856 DCHECK_EQ(kArchVariant, kMips64r6);
1857 GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD_U);
1858 }
1859
1860 // Logical.
1861
and_(Register rd,Register rs,Register rt)1862 void Assembler::and_(Register rd, Register rs, Register rt) {
1863 GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
1864 }
1865
andi(Register rt,Register rs,int32_t j)1866 void Assembler::andi(Register rt, Register rs, int32_t j) {
1867 DCHECK(is_uint16(j));
1868 GenInstrImmediate(ANDI, rs, rt, j);
1869 }
1870
or_(Register rd,Register rs,Register rt)1871 void Assembler::or_(Register rd, Register rs, Register rt) {
1872 GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
1873 }
1874
ori(Register rt,Register rs,int32_t j)1875 void Assembler::ori(Register rt, Register rs, int32_t j) {
1876 DCHECK(is_uint16(j));
1877 GenInstrImmediate(ORI, rs, rt, j);
1878 }
1879
xor_(Register rd,Register rs,Register rt)1880 void Assembler::xor_(Register rd, Register rs, Register rt) {
1881 GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
1882 }
1883
xori(Register rt,Register rs,int32_t j)1884 void Assembler::xori(Register rt, Register rs, int32_t j) {
1885 DCHECK(is_uint16(j));
1886 GenInstrImmediate(XORI, rs, rt, j);
1887 }
1888
nor(Register rd,Register rs,Register rt)1889 void Assembler::nor(Register rd, Register rs, Register rt) {
1890 GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
1891 }
1892
1893 // Shifts.
sll(Register rd,Register rt,uint16_t sa,bool coming_from_nop)1894 void Assembler::sll(Register rd, Register rt, uint16_t sa,
1895 bool coming_from_nop) {
1896 // Don't allow nop instructions in the form sll zero_reg, zero_reg to be
1897 // generated using the sll instruction. They must be generated using
1898 // nop(int/NopMarkerTypes).
1899 DCHECK(coming_from_nop || (rd != zero_reg && rt != zero_reg));
1900 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL);
1901 }
1902
sllv(Register rd,Register rt,Register rs)1903 void Assembler::sllv(Register rd, Register rt, Register rs) {
1904 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
1905 }
1906
srl(Register rd,Register rt,uint16_t sa)1907 void Assembler::srl(Register rd, Register rt, uint16_t sa) {
1908 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL);
1909 }
1910
srlv(Register rd,Register rt,Register rs)1911 void Assembler::srlv(Register rd, Register rt, Register rs) {
1912 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
1913 }
1914
sra(Register rd,Register rt,uint16_t sa)1915 void Assembler::sra(Register rd, Register rt, uint16_t sa) {
1916 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA);
1917 }
1918
srav(Register rd,Register rt,Register rs)1919 void Assembler::srav(Register rd, Register rt, Register rs) {
1920 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
1921 }
1922
rotr(Register rd,Register rt,uint16_t sa)1923 void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
1924 // Should be called via MacroAssembler::Ror.
1925 DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1926 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
1927 Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1928 (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
1929 emit(instr);
1930 }
1931
rotrv(Register rd,Register rt,Register rs)1932 void Assembler::rotrv(Register rd, Register rt, Register rs) {
1933 // Should be called via MacroAssembler::Ror.
1934 DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1935 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
1936 Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1937 (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
1938 emit(instr);
1939 }
1940
dsll(Register rd,Register rt,uint16_t sa)1941 void Assembler::dsll(Register rd, Register rt, uint16_t sa) {
1942 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL);
1943 }
1944
dsllv(Register rd,Register rt,Register rs)1945 void Assembler::dsllv(Register rd, Register rt, Register rs) {
1946 GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSLLV);
1947 }
1948
dsrl(Register rd,Register rt,uint16_t sa)1949 void Assembler::dsrl(Register rd, Register rt, uint16_t sa) {
1950 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL);
1951 }
1952
dsrlv(Register rd,Register rt,Register rs)1953 void Assembler::dsrlv(Register rd, Register rt, Register rs) {
1954 GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRLV);
1955 }
1956
drotr(Register rd,Register rt,uint16_t sa)1957 void Assembler::drotr(Register rd, Register rt, uint16_t sa) {
1958 DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1959 Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1960 (rd.code() << kRdShift) | (sa << kSaShift) | DSRL;
1961 emit(instr);
1962 }
1963
drotr32(Register rd,Register rt,uint16_t sa)1964 void Assembler::drotr32(Register rd, Register rt, uint16_t sa) {
1965 DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1966 Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1967 (rd.code() << kRdShift) | (sa << kSaShift) | DSRL32;
1968 emit(instr);
1969 }
1970
drotrv(Register rd,Register rt,Register rs)1971 void Assembler::drotrv(Register rd, Register rt, Register rs) {
1972 DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1973 Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1974 (rd.code() << kRdShift) | (1 << kSaShift) | DSRLV;
1975 emit(instr);
1976 }
1977
dsra(Register rd,Register rt,uint16_t sa)1978 void Assembler::dsra(Register rd, Register rt, uint16_t sa) {
1979 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA);
1980 }
1981
dsrav(Register rd,Register rt,Register rs)1982 void Assembler::dsrav(Register rd, Register rt, Register rs) {
1983 GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRAV);
1984 }
1985
dsll32(Register rd,Register rt,uint16_t sa)1986 void Assembler::dsll32(Register rd, Register rt, uint16_t sa) {
1987 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL32);
1988 }
1989
dsrl32(Register rd,Register rt,uint16_t sa)1990 void Assembler::dsrl32(Register rd, Register rt, uint16_t sa) {
1991 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL32);
1992 }
1993
dsra32(Register rd,Register rt,uint16_t sa)1994 void Assembler::dsra32(Register rd, Register rt, uint16_t sa) {
1995 GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA32);
1996 }
1997
lsa(Register rd,Register rt,Register rs,uint8_t sa)1998 void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) {
1999 DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
2000 DCHECK_LE(sa, 3);
2001 DCHECK_EQ(kArchVariant, kMips64r6);
2002 Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
2003 rd.code() << kRdShift | sa << kSaShift | LSA;
2004 emit(instr);
2005 }
2006
dlsa(Register rd,Register rt,Register rs,uint8_t sa)2007 void Assembler::dlsa(Register rd, Register rt, Register rs, uint8_t sa) {
2008 DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
2009 DCHECK_LE(sa, 3);
2010 DCHECK_EQ(kArchVariant, kMips64r6);
2011 Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
2012 rd.code() << kRdShift | sa << kSaShift | DLSA;
2013 emit(instr);
2014 }
2015
2016 // ------------Memory-instructions-------------
2017
AdjustBaseAndOffset(MemOperand * src,OffsetAccessType access_type,int second_access_add_to_offset)2018 void Assembler::AdjustBaseAndOffset(MemOperand* src,
2019 OffsetAccessType access_type,
2020 int second_access_add_to_offset) {
2021 // This method is used to adjust the base register and offset pair
2022 // for a load/store when the offset doesn't fit into int16_t.
2023 // It is assumed that 'base + offset' is sufficiently aligned for memory
2024 // operands that are machine word in size or smaller. For doubleword-sized
2025 // operands it's assumed that 'base' is a multiple of 8, while 'offset'
2026 // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
2027 // and spilled variables on the stack accessed relative to the stack
2028 // pointer register).
2029 // We preserve the "alignment" of 'offset' by adjusting it by a multiple of 8.
2030
2031 bool doubleword_aligned = (src->offset() & (kDoubleSize - 1)) == 0;
2032 bool two_accesses = static_cast<bool>(access_type) || !doubleword_aligned;
2033 DCHECK_LE(second_access_add_to_offset, 7); // Must be <= 7.
2034
2035 // is_int16 must be passed a signed value, hence the static cast below.
2036 if (is_int16(src->offset()) &&
2037 (!two_accesses || is_int16(static_cast<int32_t>(
2038 src->offset() + second_access_add_to_offset)))) {
2039 // Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified
2040 // value) fits into int16_t.
2041 return;
2042 }
2043
2044 DCHECK(src->rm() !=
2045 at); // Must not overwrite the register 'base' while loading 'offset'.
2046
2047 #ifdef DEBUG
2048 // Remember the "(mis)alignment" of 'offset', it will be checked at the end.
2049 uint32_t misalignment = src->offset() & (kDoubleSize - 1);
2050 #endif
2051
2052 // Do not load the whole 32-bit 'offset' if it can be represented as
2053 // a sum of two 16-bit signed offsets. This can save an instruction or two.
2054 // To simplify matters, only do this for a symmetric range of offsets from
2055 // about -64KB to about +64KB, allowing further addition of 4 when accessing
2056 // 64-bit variables with two 32-bit accesses.
2057 constexpr int32_t kMinOffsetForSimpleAdjustment =
2058 0x7FF8; // Max int16_t that's a multiple of 8.
2059 constexpr int32_t kMaxOffsetForSimpleAdjustment =
2060 2 * kMinOffsetForSimpleAdjustment;
2061
2062 UseScratchRegisterScope temps(this);
2063 Register scratch = temps.Acquire();
2064 if (0 <= src->offset() && src->offset() <= kMaxOffsetForSimpleAdjustment) {
2065 daddiu(scratch, src->rm(), kMinOffsetForSimpleAdjustment);
2066 src->offset_ -= kMinOffsetForSimpleAdjustment;
2067 } else if (-kMaxOffsetForSimpleAdjustment <= src->offset() &&
2068 src->offset() < 0) {
2069 daddiu(scratch, src->rm(), -kMinOffsetForSimpleAdjustment);
2070 src->offset_ += kMinOffsetForSimpleAdjustment;
2071 } else if (kArchVariant == kMips64r6) {
2072 // On r6 take advantage of the daui instruction, e.g.:
2073 // daui at, base, offset_high
2074 // [dahi at, 1] // When `offset` is close to +2GB.
2075 // lw reg_lo, offset_low(at)
2076 // [lw reg_hi, (offset_low+4)(at)] // If misaligned 64-bit load.
2077 // or when offset_low+4 overflows int16_t:
2078 // daui at, base, offset_high
2079 // daddiu at, at, 8
2080 // lw reg_lo, (offset_low-8)(at)
2081 // lw reg_hi, (offset_low-4)(at)
2082 int16_t offset_low = static_cast<uint16_t>(src->offset());
2083 int32_t offset_low32 = offset_low;
2084 int16_t offset_high = static_cast<uint16_t>(src->offset() >> 16);
2085 bool increment_hi16 = offset_low < 0;
2086 bool overflow_hi16 = false;
2087
2088 if (increment_hi16) {
2089 offset_high++;
2090 overflow_hi16 = (offset_high == -32768);
2091 }
2092 daui(scratch, src->rm(), static_cast<uint16_t>(offset_high));
2093
2094 if (overflow_hi16) {
2095 dahi(scratch, 1);
2096 }
2097
2098 if (two_accesses && !is_int16(static_cast<int32_t>(
2099 offset_low32 + second_access_add_to_offset))) {
2100 // Avoid overflow in the 16-bit offset of the load/store instruction when
2101 // adding 4.
2102 daddiu(scratch, scratch, kDoubleSize);
2103 offset_low32 -= kDoubleSize;
2104 }
2105
2106 src->offset_ = offset_low32;
2107 } else {
2108 // Do not load the whole 32-bit 'offset' if it can be represented as
2109 // a sum of three 16-bit signed offsets. This can save an instruction.
2110 // To simplify matters, only do this for a symmetric range of offsets from
2111 // about -96KB to about +96KB, allowing further addition of 4 when accessing
2112 // 64-bit variables with two 32-bit accesses.
2113 constexpr int32_t kMinOffsetForMediumAdjustment =
2114 2 * kMinOffsetForSimpleAdjustment;
2115 constexpr int32_t kMaxOffsetForMediumAdjustment =
2116 3 * kMinOffsetForSimpleAdjustment;
2117 if (0 <= src->offset() && src->offset() <= kMaxOffsetForMediumAdjustment) {
2118 daddiu(scratch, src->rm(), kMinOffsetForMediumAdjustment / 2);
2119 daddiu(scratch, scratch, kMinOffsetForMediumAdjustment / 2);
2120 src->offset_ -= kMinOffsetForMediumAdjustment;
2121 } else if (-kMaxOffsetForMediumAdjustment <= src->offset() &&
2122 src->offset() < 0) {
2123 daddiu(scratch, src->rm(), -kMinOffsetForMediumAdjustment / 2);
2124 daddiu(scratch, scratch, -kMinOffsetForMediumAdjustment / 2);
2125 src->offset_ += kMinOffsetForMediumAdjustment;
2126 } else {
2127 // Now that all shorter options have been exhausted, load the full 32-bit
2128 // offset.
2129 int32_t loaded_offset = RoundDown(src->offset(), kDoubleSize);
2130 lui(scratch, (loaded_offset >> kLuiShift) & kImm16Mask);
2131 ori(scratch, scratch, loaded_offset & kImm16Mask); // Load 32-bit offset.
2132 daddu(scratch, scratch, src->rm());
2133 src->offset_ -= loaded_offset;
2134 }
2135 }
2136 src->rm_ = scratch;
2137
2138 DCHECK(is_int16(src->offset()));
2139 if (two_accesses) {
2140 DCHECK(is_int16(
2141 static_cast<int32_t>(src->offset() + second_access_add_to_offset)));
2142 }
2143 DCHECK(misalignment == (src->offset() & (kDoubleSize - 1)));
2144 }
2145
lb(Register rd,const MemOperand & rs)2146 void Assembler::lb(Register rd, const MemOperand& rs) {
2147 GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
2148 }
2149
lbu(Register rd,const MemOperand & rs)2150 void Assembler::lbu(Register rd, const MemOperand& rs) {
2151 GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
2152 }
2153
lh(Register rd,const MemOperand & rs)2154 void Assembler::lh(Register rd, const MemOperand& rs) {
2155 GenInstrImmediate(LH, rs.rm(), rd, rs.offset_);
2156 }
2157
lhu(Register rd,const MemOperand & rs)2158 void Assembler::lhu(Register rd, const MemOperand& rs) {
2159 GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_);
2160 }
2161
lw(Register rd,const MemOperand & rs)2162 void Assembler::lw(Register rd, const MemOperand& rs) {
2163 GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
2164 }
2165
lwu(Register rd,const MemOperand & rs)2166 void Assembler::lwu(Register rd, const MemOperand& rs) {
2167 GenInstrImmediate(LWU, rs.rm(), rd, rs.offset_);
2168 }
2169
lwl(Register rd,const MemOperand & rs)2170 void Assembler::lwl(Register rd, const MemOperand& rs) {
2171 DCHECK(is_int16(rs.offset_));
2172 DCHECK_EQ(kArchVariant, kMips64r2);
2173 GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
2174 }
2175
lwr(Register rd,const MemOperand & rs)2176 void Assembler::lwr(Register rd, const MemOperand& rs) {
2177 DCHECK(is_int16(rs.offset_));
2178 DCHECK_EQ(kArchVariant, kMips64r2);
2179 GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
2180 }
2181
sb(Register rd,const MemOperand & rs)2182 void Assembler::sb(Register rd, const MemOperand& rs) {
2183 GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
2184 }
2185
sh(Register rd,const MemOperand & rs)2186 void Assembler::sh(Register rd, const MemOperand& rs) {
2187 GenInstrImmediate(SH, rs.rm(), rd, rs.offset_);
2188 }
2189
sw(Register rd,const MemOperand & rs)2190 void Assembler::sw(Register rd, const MemOperand& rs) {
2191 GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
2192 }
2193
swl(Register rd,const MemOperand & rs)2194 void Assembler::swl(Register rd, const MemOperand& rs) {
2195 DCHECK(is_int16(rs.offset_));
2196 DCHECK_EQ(kArchVariant, kMips64r2);
2197 GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
2198 }
2199
swr(Register rd,const MemOperand & rs)2200 void Assembler::swr(Register rd, const MemOperand& rs) {
2201 DCHECK(is_int16(rs.offset_));
2202 DCHECK_EQ(kArchVariant, kMips64r2);
2203 GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
2204 }
2205
ll(Register rd,const MemOperand & rs)2206 void Assembler::ll(Register rd, const MemOperand& rs) {
2207 if (kArchVariant == kMips64r6) {
2208 DCHECK(is_int9(rs.offset_));
2209 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LL_R6);
2210 } else {
2211 DCHECK_EQ(kArchVariant, kMips64r2);
2212 DCHECK(is_int16(rs.offset_));
2213 GenInstrImmediate(LL, rs.rm(), rd, rs.offset_);
2214 }
2215 }
2216
lld(Register rd,const MemOperand & rs)2217 void Assembler::lld(Register rd, const MemOperand& rs) {
2218 if (kArchVariant == kMips64r6) {
2219 DCHECK(is_int9(rs.offset_));
2220 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LLD_R6);
2221 } else {
2222 DCHECK_EQ(kArchVariant, kMips64r2);
2223 DCHECK(is_int16(rs.offset_));
2224 GenInstrImmediate(LLD, rs.rm(), rd, rs.offset_);
2225 }
2226 }
2227
sc(Register rd,const MemOperand & rs)2228 void Assembler::sc(Register rd, const MemOperand& rs) {
2229 if (kArchVariant == kMips64r6) {
2230 DCHECK(is_int9(rs.offset_));
2231 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SC_R6);
2232 } else {
2233 DCHECK_EQ(kArchVariant, kMips64r2);
2234 GenInstrImmediate(SC, rs.rm(), rd, rs.offset_);
2235 }
2236 }
2237
scd(Register rd,const MemOperand & rs)2238 void Assembler::scd(Register rd, const MemOperand& rs) {
2239 if (kArchVariant == kMips64r6) {
2240 DCHECK(is_int9(rs.offset_));
2241 GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SCD_R6);
2242 } else {
2243 DCHECK_EQ(kArchVariant, kMips64r2);
2244 GenInstrImmediate(SCD, rs.rm(), rd, rs.offset_);
2245 }
2246 }
2247
lui(Register rd,int32_t j)2248 void Assembler::lui(Register rd, int32_t j) {
2249 DCHECK(is_uint16(j) || is_int16(j));
2250 GenInstrImmediate(LUI, zero_reg, rd, j);
2251 }
2252
aui(Register rt,Register rs,int32_t j)2253 void Assembler::aui(Register rt, Register rs, int32_t j) {
2254 // This instruction uses same opcode as 'lui'. The difference in encoding is
2255 // 'lui' has zero reg. for rs field.
2256 DCHECK(is_uint16(j));
2257 GenInstrImmediate(LUI, rs, rt, j);
2258 }
2259
daui(Register rt,Register rs,int32_t j)2260 void Assembler::daui(Register rt, Register rs, int32_t j) {
2261 DCHECK(is_uint16(j));
2262 DCHECK(rs != zero_reg);
2263 GenInstrImmediate(DAUI, rs, rt, j);
2264 }
2265
dahi(Register rs,int32_t j)2266 void Assembler::dahi(Register rs, int32_t j) {
2267 DCHECK(is_uint16(j));
2268 GenInstrImmediate(REGIMM, rs, DAHI, j);
2269 }
2270
dati(Register rs,int32_t j)2271 void Assembler::dati(Register rs, int32_t j) {
2272 DCHECK(is_uint16(j));
2273 GenInstrImmediate(REGIMM, rs, DATI, j);
2274 }
2275
ldl(Register rd,const MemOperand & rs)2276 void Assembler::ldl(Register rd, const MemOperand& rs) {
2277 DCHECK(is_int16(rs.offset_));
2278 DCHECK_EQ(kArchVariant, kMips64r2);
2279 GenInstrImmediate(LDL, rs.rm(), rd, rs.offset_);
2280 }
2281
ldr(Register rd,const MemOperand & rs)2282 void Assembler::ldr(Register rd, const MemOperand& rs) {
2283 DCHECK(is_int16(rs.offset_));
2284 DCHECK_EQ(kArchVariant, kMips64r2);
2285 GenInstrImmediate(LDR, rs.rm(), rd, rs.offset_);
2286 }
2287
sdl(Register rd,const MemOperand & rs)2288 void Assembler::sdl(Register rd, const MemOperand& rs) {
2289 DCHECK(is_int16(rs.offset_));
2290 DCHECK_EQ(kArchVariant, kMips64r2);
2291 GenInstrImmediate(SDL, rs.rm(), rd, rs.offset_);
2292 }
2293
sdr(Register rd,const MemOperand & rs)2294 void Assembler::sdr(Register rd, const MemOperand& rs) {
2295 DCHECK(is_int16(rs.offset_));
2296 DCHECK_EQ(kArchVariant, kMips64r2);
2297 GenInstrImmediate(SDR, rs.rm(), rd, rs.offset_);
2298 }
2299
ld(Register rd,const MemOperand & rs)2300 void Assembler::ld(Register rd, const MemOperand& rs) {
2301 GenInstrImmediate(LD, rs.rm(), rd, rs.offset_);
2302 }
2303
sd(Register rd,const MemOperand & rs)2304 void Assembler::sd(Register rd, const MemOperand& rs) {
2305 GenInstrImmediate(SD, rs.rm(), rd, rs.offset_);
2306 }
2307
2308 // ---------PC-Relative instructions-----------
2309
addiupc(Register rs,int32_t imm19)2310 void Assembler::addiupc(Register rs, int32_t imm19) {
2311 DCHECK_EQ(kArchVariant, kMips64r6);
2312 DCHECK(rs.is_valid() && is_int19(imm19));
2313 uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask);
2314 GenInstrImmediate(PCREL, rs, imm21);
2315 }
2316
lwpc(Register rs,int32_t offset19)2317 void Assembler::lwpc(Register rs, int32_t offset19) {
2318 DCHECK_EQ(kArchVariant, kMips64r6);
2319 DCHECK(rs.is_valid() && is_int19(offset19));
2320 uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask);
2321 GenInstrImmediate(PCREL, rs, imm21);
2322 }
2323
lwupc(Register rs,int32_t offset19)2324 void Assembler::lwupc(Register rs, int32_t offset19) {
2325 DCHECK_EQ(kArchVariant, kMips64r6);
2326 DCHECK(rs.is_valid() && is_int19(offset19));
2327 uint32_t imm21 = LWUPC << kImm19Bits | (offset19 & kImm19Mask);
2328 GenInstrImmediate(PCREL, rs, imm21);
2329 }
2330
ldpc(Register rs,int32_t offset18)2331 void Assembler::ldpc(Register rs, int32_t offset18) {
2332 DCHECK_EQ(kArchVariant, kMips64r6);
2333 DCHECK(rs.is_valid() && is_int18(offset18));
2334 uint32_t imm21 = LDPC << kImm18Bits | (offset18 & kImm18Mask);
2335 GenInstrImmediate(PCREL, rs, imm21);
2336 }
2337
auipc(Register rs,int16_t imm16)2338 void Assembler::auipc(Register rs, int16_t imm16) {
2339 DCHECK_EQ(kArchVariant, kMips64r6);
2340 DCHECK(rs.is_valid());
2341 uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask);
2342 GenInstrImmediate(PCREL, rs, imm21);
2343 }
2344
aluipc(Register rs,int16_t imm16)2345 void Assembler::aluipc(Register rs, int16_t imm16) {
2346 DCHECK_EQ(kArchVariant, kMips64r6);
2347 DCHECK(rs.is_valid());
2348 uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask);
2349 GenInstrImmediate(PCREL, rs, imm21);
2350 }
2351
2352 // -------------Misc-instructions--------------
2353
2354 // Break / Trap instructions.
break_(uint32_t code,bool break_as_stop)2355 void Assembler::break_(uint32_t code, bool break_as_stop) {
2356 DCHECK_EQ(code & ~0xFFFFF, 0);
2357 // We need to invalidate breaks that could be stops as well because the
2358 // simulator expects a char pointer after the stop instruction.
2359 // See constants-mips.h for explanation.
2360 DCHECK(
2361 (break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) ||
2362 (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode)));
2363 Instr break_instr = SPECIAL | BREAK | (code << 6);
2364 emit(break_instr);
2365 }
2366
stop(uint32_t code)2367 void Assembler::stop(uint32_t code) {
2368 DCHECK_GT(code, kMaxWatchpointCode);
2369 DCHECK_LE(code, kMaxStopCode);
2370 #if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
2371 break_(0x54321);
2372 #else // V8_HOST_ARCH_MIPS
2373 break_(code, true);
2374 #endif
2375 }
2376
tge(Register rs,Register rt,uint16_t code)2377 void Assembler::tge(Register rs, Register rt, uint16_t code) {
2378 DCHECK(is_uint10(code));
2379 Instr instr =
2380 SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2381 emit(instr);
2382 }
2383
tgeu(Register rs,Register rt,uint16_t code)2384 void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
2385 DCHECK(is_uint10(code));
2386 Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift |
2387 code << 6;
2388 emit(instr);
2389 }
2390
tlt(Register rs,Register rt,uint16_t code)2391 void Assembler::tlt(Register rs, Register rt, uint16_t code) {
2392 DCHECK(is_uint10(code));
2393 Instr instr =
2394 SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2395 emit(instr);
2396 }
2397
tltu(Register rs,Register rt,uint16_t code)2398 void Assembler::tltu(Register rs, Register rt, uint16_t code) {
2399 DCHECK(is_uint10(code));
2400 Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift |
2401 code << 6;
2402 emit(instr);
2403 }
2404
teq(Register rs,Register rt,uint16_t code)2405 void Assembler::teq(Register rs, Register rt, uint16_t code) {
2406 DCHECK(is_uint10(code));
2407 Instr instr =
2408 SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2409 emit(instr);
2410 }
2411
tne(Register rs,Register rt,uint16_t code)2412 void Assembler::tne(Register rs, Register rt, uint16_t code) {
2413 DCHECK(is_uint10(code));
2414 Instr instr =
2415 SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2416 emit(instr);
2417 }
2418
sync()2419 void Assembler::sync() {
2420 Instr sync_instr = SPECIAL | SYNC;
2421 emit(sync_instr);
2422 }
2423
2424 // Move from HI/LO register.
2425
mfhi(Register rd)2426 void Assembler::mfhi(Register rd) {
2427 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
2428 }
2429
mflo(Register rd)2430 void Assembler::mflo(Register rd) {
2431 GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
2432 }
2433
2434 // Set on less than instructions.
slt(Register rd,Register rs,Register rt)2435 void Assembler::slt(Register rd, Register rs, Register rt) {
2436 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
2437 }
2438
sltu(Register rd,Register rs,Register rt)2439 void Assembler::sltu(Register rd, Register rs, Register rt) {
2440 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
2441 }
2442
slti(Register rt,Register rs,int32_t j)2443 void Assembler::slti(Register rt, Register rs, int32_t j) {
2444 GenInstrImmediate(SLTI, rs, rt, j);
2445 }
2446
sltiu(Register rt,Register rs,int32_t j)2447 void Assembler::sltiu(Register rt, Register rs, int32_t j) {
2448 GenInstrImmediate(SLTIU, rs, rt, j);
2449 }
2450
2451 // Conditional move.
movz(Register rd,Register rs,Register rt)2452 void Assembler::movz(Register rd, Register rs, Register rt) {
2453 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
2454 }
2455
movn(Register rd,Register rs,Register rt)2456 void Assembler::movn(Register rd, Register rs, Register rt) {
2457 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
2458 }
2459
movt(Register rd,Register rs,uint16_t cc)2460 void Assembler::movt(Register rd, Register rs, uint16_t cc) {
2461 Register rt = Register::from_code((cc & 0x0007) << 2 | 1);
2462 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2463 }
2464
movf(Register rd,Register rs,uint16_t cc)2465 void Assembler::movf(Register rd, Register rs, uint16_t cc) {
2466 Register rt = Register::from_code((cc & 0x0007) << 2 | 0);
2467 GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2468 }
2469
min_s(FPURegister fd,FPURegister fs,FPURegister ft)2470 void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2471 min(S, fd, fs, ft);
2472 }
2473
min_d(FPURegister fd,FPURegister fs,FPURegister ft)2474 void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2475 min(D, fd, fs, ft);
2476 }
2477
max_s(FPURegister fd,FPURegister fs,FPURegister ft)2478 void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2479 max(S, fd, fs, ft);
2480 }
2481
max_d(FPURegister fd,FPURegister fs,FPURegister ft)2482 void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2483 max(D, fd, fs, ft);
2484 }
2485
mina_s(FPURegister fd,FPURegister fs,FPURegister ft)2486 void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2487 mina(S, fd, fs, ft);
2488 }
2489
mina_d(FPURegister fd,FPURegister fs,FPURegister ft)2490 void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2491 mina(D, fd, fs, ft);
2492 }
2493
maxa_s(FPURegister fd,FPURegister fs,FPURegister ft)2494 void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2495 maxa(S, fd, fs, ft);
2496 }
2497
maxa_d(FPURegister fd,FPURegister fs,FPURegister ft)2498 void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2499 maxa(D, fd, fs, ft);
2500 }
2501
max(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2502 void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs,
2503 FPURegister ft) {
2504 DCHECK_EQ(kArchVariant, kMips64r6);
2505 DCHECK((fmt == D) || (fmt == S));
2506 GenInstrRegister(COP1, fmt, ft, fs, fd, MAX);
2507 }
2508
min(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2509 void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs,
2510 FPURegister ft) {
2511 DCHECK_EQ(kArchVariant, kMips64r6);
2512 DCHECK((fmt == D) || (fmt == S));
2513 GenInstrRegister(COP1, fmt, ft, fs, fd, MIN);
2514 }
2515
2516 // GPR.
seleqz(Register rd,Register rs,Register rt)2517 void Assembler::seleqz(Register rd, Register rs, Register rt) {
2518 DCHECK_EQ(kArchVariant, kMips64r6);
2519 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S);
2520 }
2521
2522 // GPR.
selnez(Register rd,Register rs,Register rt)2523 void Assembler::selnez(Register rd, Register rs, Register rt) {
2524 DCHECK_EQ(kArchVariant, kMips64r6);
2525 GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S);
2526 }
2527
2528 // Bit twiddling.
clz(Register rd,Register rs)2529 void Assembler::clz(Register rd, Register rs) {
2530 if (kArchVariant != kMips64r6) {
2531 // clz instr requires same GPR number in 'rd' and 'rt' fields.
2532 GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
2533 } else {
2534 GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6);
2535 }
2536 }
2537
dclz(Register rd,Register rs)2538 void Assembler::dclz(Register rd, Register rs) {
2539 if (kArchVariant != kMips64r6) {
2540 // dclz instr requires same GPR number in 'rd' and 'rt' fields.
2541 GenInstrRegister(SPECIAL2, rs, rd, rd, 0, DCLZ);
2542 } else {
2543 GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, DCLZ_R6);
2544 }
2545 }
2546
ins_(Register rt,Register rs,uint16_t pos,uint16_t size)2547 void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2548 // Should be called via MacroAssembler::Ins.
2549 // ins instr has 'rt' field as dest, and two uint5: msb, lsb.
2550 DCHECK((kArchVariant == kMips64r2) || (kArchVariant == kMips64r6));
2551 GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
2552 }
2553
dins_(Register rt,Register rs,uint16_t pos,uint16_t size)2554 void Assembler::dins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2555 // Should be called via MacroAssembler::Dins.
2556 // dins instr has 'rt' field as dest, and two uint5: msb, lsb.
2557 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2558 GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, DINS);
2559 }
2560
dinsm_(Register rt,Register rs,uint16_t pos,uint16_t size)2561 void Assembler::dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2562 // Should be called via MacroAssembler::Dins.
2563 // dinsm instr has 'rt' field as dest, and two uint5: msbminus32, lsb.
2564 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2565 GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos, DINSM);
2566 }
2567
dinsu_(Register rt,Register rs,uint16_t pos,uint16_t size)2568 void Assembler::dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2569 // Should be called via MacroAssembler::Dins.
2570 // dinsu instr has 'rt' field as dest, and two uint5: msbminus32, lsbminus32.
2571 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2572 GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos - 32, DINSU);
2573 }
2574
ext_(Register rt,Register rs,uint16_t pos,uint16_t size)2575 void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2576 // Should be called via MacroAssembler::Ext.
2577 // ext instr has 'rt' field as dest, and two uint5: msbd, lsb.
2578 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2579 GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
2580 }
2581
dext_(Register rt,Register rs,uint16_t pos,uint16_t size)2582 void Assembler::dext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2583 // Should be called via MacroAssembler::Dext.
2584 // dext instr has 'rt' field as dest, and two uint5: msbd, lsb.
2585 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2586 GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, DEXT);
2587 }
2588
dextm_(Register rt,Register rs,uint16_t pos,uint16_t size)2589 void Assembler::dextm_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2590 // Should be called via MacroAssembler::Dextm.
2591 // dextm instr has 'rt' field as dest, and two uint5: msbdminus32, lsb.
2592 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2593 GenInstrRegister(SPECIAL3, rs, rt, size - 1 - 32, pos, DEXTM);
2594 }
2595
dextu_(Register rt,Register rs,uint16_t pos,uint16_t size)2596 void Assembler::dextu_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2597 // Should be called via MacroAssembler::Dextu.
2598 // dextu instr has 'rt' field as dest, and two uint5: msbd, lsbminus32.
2599 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2600 GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos - 32, DEXTU);
2601 }
2602
bitswap(Register rd,Register rt)2603 void Assembler::bitswap(Register rd, Register rt) {
2604 DCHECK_EQ(kArchVariant, kMips64r6);
2605 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, BSHFL);
2606 }
2607
dbitswap(Register rd,Register rt)2608 void Assembler::dbitswap(Register rd, Register rt) {
2609 DCHECK_EQ(kArchVariant, kMips64r6);
2610 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, DBSHFL);
2611 }
2612
pref(int32_t hint,const MemOperand & rs)2613 void Assembler::pref(int32_t hint, const MemOperand& rs) {
2614 DCHECK(is_uint5(hint) && is_uint16(rs.offset_));
2615 Instr instr =
2616 PREF | (rs.rm().code() << kRsShift) | (hint << kRtShift) | (rs.offset_);
2617 emit(instr);
2618 }
2619
align(Register rd,Register rs,Register rt,uint8_t bp)2620 void Assembler::align(Register rd, Register rs, Register rt, uint8_t bp) {
2621 DCHECK_EQ(kArchVariant, kMips64r6);
2622 DCHECK(is_uint3(bp));
2623 uint16_t sa = (ALIGN << kBp2Bits) | bp;
2624 GenInstrRegister(SPECIAL3, rs, rt, rd, sa, BSHFL);
2625 }
2626
dalign(Register rd,Register rs,Register rt,uint8_t bp)2627 void Assembler::dalign(Register rd, Register rs, Register rt, uint8_t bp) {
2628 DCHECK_EQ(kArchVariant, kMips64r6);
2629 DCHECK(is_uint3(bp));
2630 uint16_t sa = (DALIGN << kBp3Bits) | bp;
2631 GenInstrRegister(SPECIAL3, rs, rt, rd, sa, DBSHFL);
2632 }
2633
wsbh(Register rd,Register rt)2634 void Assembler::wsbh(Register rd, Register rt) {
2635 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2636 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, WSBH, BSHFL);
2637 }
2638
dsbh(Register rd,Register rt)2639 void Assembler::dsbh(Register rd, Register rt) {
2640 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2641 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, DSBH, DBSHFL);
2642 }
2643
dshd(Register rd,Register rt)2644 void Assembler::dshd(Register rd, Register rt) {
2645 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2646 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, DSHD, DBSHFL);
2647 }
2648
seh(Register rd,Register rt)2649 void Assembler::seh(Register rd, Register rt) {
2650 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2651 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEH, BSHFL);
2652 }
2653
seb(Register rd,Register rt)2654 void Assembler::seb(Register rd, Register rt) {
2655 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2656 GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEB, BSHFL);
2657 }
2658
2659 // --------Coprocessor-instructions----------------
2660
2661 // Load, store, move.
lwc1(FPURegister fd,const MemOperand & src)2662 void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
2663 GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
2664 }
2665
ldc1(FPURegister fd,const MemOperand & src)2666 void Assembler::ldc1(FPURegister fd, const MemOperand& src) {
2667 GenInstrImmediate(LDC1, src.rm(), fd, src.offset_);
2668 }
2669
swc1(FPURegister fs,const MemOperand & src)2670 void Assembler::swc1(FPURegister fs, const MemOperand& src) {
2671 GenInstrImmediate(SWC1, src.rm(), fs, src.offset_);
2672 }
2673
sdc1(FPURegister fs,const MemOperand & src)2674 void Assembler::sdc1(FPURegister fs, const MemOperand& src) {
2675 GenInstrImmediate(SDC1, src.rm(), fs, src.offset_);
2676 }
2677
mtc1(Register rt,FPURegister fs)2678 void Assembler::mtc1(Register rt, FPURegister fs) {
2679 GenInstrRegister(COP1, MTC1, rt, fs, f0);
2680 }
2681
mthc1(Register rt,FPURegister fs)2682 void Assembler::mthc1(Register rt, FPURegister fs) {
2683 GenInstrRegister(COP1, MTHC1, rt, fs, f0);
2684 }
2685
dmtc1(Register rt,FPURegister fs)2686 void Assembler::dmtc1(Register rt, FPURegister fs) {
2687 GenInstrRegister(COP1, DMTC1, rt, fs, f0);
2688 }
2689
mfc1(Register rt,FPURegister fs)2690 void Assembler::mfc1(Register rt, FPURegister fs) {
2691 GenInstrRegister(COP1, MFC1, rt, fs, f0);
2692 }
2693
mfhc1(Register rt,FPURegister fs)2694 void Assembler::mfhc1(Register rt, FPURegister fs) {
2695 GenInstrRegister(COP1, MFHC1, rt, fs, f0);
2696 }
2697
dmfc1(Register rt,FPURegister fs)2698 void Assembler::dmfc1(Register rt, FPURegister fs) {
2699 GenInstrRegister(COP1, DMFC1, rt, fs, f0);
2700 }
2701
ctc1(Register rt,FPUControlRegister fs)2702 void Assembler::ctc1(Register rt, FPUControlRegister fs) {
2703 GenInstrRegister(COP1, CTC1, rt, fs);
2704 }
2705
cfc1(Register rt,FPUControlRegister fs)2706 void Assembler::cfc1(Register rt, FPUControlRegister fs) {
2707 GenInstrRegister(COP1, CFC1, rt, fs);
2708 }
2709
sel(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2710 void Assembler::sel(SecondaryField fmt, FPURegister fd, FPURegister fs,
2711 FPURegister ft) {
2712 DCHECK_EQ(kArchVariant, kMips64r6);
2713 DCHECK((fmt == D) || (fmt == S));
2714
2715 GenInstrRegister(COP1, fmt, ft, fs, fd, SEL);
2716 }
2717
sel_s(FPURegister fd,FPURegister fs,FPURegister ft)2718 void Assembler::sel_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2719 sel(S, fd, fs, ft);
2720 }
2721
sel_d(FPURegister fd,FPURegister fs,FPURegister ft)2722 void Assembler::sel_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2723 sel(D, fd, fs, ft);
2724 }
2725
2726 // FPR.
seleqz(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2727 void Assembler::seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
2728 FPURegister ft) {
2729 DCHECK((fmt == D) || (fmt == S));
2730 GenInstrRegister(COP1, fmt, ft, fs, fd, SELEQZ_C);
2731 }
2732
seleqz_d(FPURegister fd,FPURegister fs,FPURegister ft)2733 void Assembler::seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2734 seleqz(D, fd, fs, ft);
2735 }
2736
seleqz_s(FPURegister fd,FPURegister fs,FPURegister ft)2737 void Assembler::seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2738 seleqz(S, fd, fs, ft);
2739 }
2740
selnez_d(FPURegister fd,FPURegister fs,FPURegister ft)2741 void Assembler::selnez_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2742 selnez(D, fd, fs, ft);
2743 }
2744
selnez_s(FPURegister fd,FPURegister fs,FPURegister ft)2745 void Assembler::selnez_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2746 selnez(S, fd, fs, ft);
2747 }
2748
movz_s(FPURegister fd,FPURegister fs,Register rt)2749 void Assembler::movz_s(FPURegister fd, FPURegister fs, Register rt) {
2750 DCHECK_EQ(kArchVariant, kMips64r2);
2751 GenInstrRegister(COP1, S, rt, fs, fd, MOVZ_C);
2752 }
2753
movz_d(FPURegister fd,FPURegister fs,Register rt)2754 void Assembler::movz_d(FPURegister fd, FPURegister fs, Register rt) {
2755 DCHECK_EQ(kArchVariant, kMips64r2);
2756 GenInstrRegister(COP1, D, rt, fs, fd, MOVZ_C);
2757 }
2758
movt_s(FPURegister fd,FPURegister fs,uint16_t cc)2759 void Assembler::movt_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2760 DCHECK_EQ(kArchVariant, kMips64r2);
2761 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2762 GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2763 }
2764
movt_d(FPURegister fd,FPURegister fs,uint16_t cc)2765 void Assembler::movt_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2766 DCHECK_EQ(kArchVariant, kMips64r2);
2767 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2768 GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2769 }
2770
movf_s(FPURegister fd,FPURegister fs,uint16_t cc)2771 void Assembler::movf_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2772 DCHECK_EQ(kArchVariant, kMips64r2);
2773 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2774 GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2775 }
2776
movf_d(FPURegister fd,FPURegister fs,uint16_t cc)2777 void Assembler::movf_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2778 DCHECK_EQ(kArchVariant, kMips64r2);
2779 FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2780 GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2781 }
2782
movn_s(FPURegister fd,FPURegister fs,Register rt)2783 void Assembler::movn_s(FPURegister fd, FPURegister fs, Register rt) {
2784 DCHECK_EQ(kArchVariant, kMips64r2);
2785 GenInstrRegister(COP1, S, rt, fs, fd, MOVN_C);
2786 }
2787
movn_d(FPURegister fd,FPURegister fs,Register rt)2788 void Assembler::movn_d(FPURegister fd, FPURegister fs, Register rt) {
2789 DCHECK_EQ(kArchVariant, kMips64r2);
2790 GenInstrRegister(COP1, D, rt, fs, fd, MOVN_C);
2791 }
2792
2793 // FPR.
selnez(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2794 void Assembler::selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
2795 FPURegister ft) {
2796 DCHECK_EQ(kArchVariant, kMips64r6);
2797 DCHECK((fmt == D) || (fmt == S));
2798 GenInstrRegister(COP1, fmt, ft, fs, fd, SELNEZ_C);
2799 }
2800
2801 // Arithmetic.
2802
add_s(FPURegister fd,FPURegister fs,FPURegister ft)2803 void Assembler::add_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2804 GenInstrRegister(COP1, S, ft, fs, fd, ADD_D);
2805 }
2806
add_d(FPURegister fd,FPURegister fs,FPURegister ft)2807 void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2808 GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
2809 }
2810
sub_s(FPURegister fd,FPURegister fs,FPURegister ft)2811 void Assembler::sub_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2812 GenInstrRegister(COP1, S, ft, fs, fd, SUB_D);
2813 }
2814
sub_d(FPURegister fd,FPURegister fs,FPURegister ft)2815 void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2816 GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
2817 }
2818
mul_s(FPURegister fd,FPURegister fs,FPURegister ft)2819 void Assembler::mul_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2820 GenInstrRegister(COP1, S, ft, fs, fd, MUL_D);
2821 }
2822
mul_d(FPURegister fd,FPURegister fs,FPURegister ft)2823 void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2824 GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
2825 }
2826
madd_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2827 void Assembler::madd_s(FPURegister fd, FPURegister fr, FPURegister fs,
2828 FPURegister ft) {
2829 // On Loongson 3A (MIPS64R2), MADD.S instruction is actually fused MADD.S and
2830 // this causes failure in some of the tests. Since this optimization is rarely
2831 // used, and not used at all on MIPS64R6, this isntruction is removed.
2832 UNREACHABLE();
2833 }
2834
madd_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2835 void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
2836 FPURegister ft) {
2837 // On Loongson 3A (MIPS64R2), MADD.D instruction is actually fused MADD.D and
2838 // this causes failure in some of the tests. Since this optimization is rarely
2839 // used, and not used at all on MIPS64R6, this isntruction is removed.
2840 UNREACHABLE();
2841 }
2842
msub_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2843 void Assembler::msub_s(FPURegister fd, FPURegister fr, FPURegister fs,
2844 FPURegister ft) {
2845 // See explanation for instruction madd_s.
2846 UNREACHABLE();
2847 }
2848
msub_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2849 void Assembler::msub_d(FPURegister fd, FPURegister fr, FPURegister fs,
2850 FPURegister ft) {
2851 // See explanation for instruction madd_d.
2852 UNREACHABLE();
2853 }
2854
maddf_s(FPURegister fd,FPURegister fs,FPURegister ft)2855 void Assembler::maddf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2856 DCHECK_EQ(kArchVariant, kMips64r6);
2857 GenInstrRegister(COP1, S, ft, fs, fd, MADDF_S);
2858 }
2859
maddf_d(FPURegister fd,FPURegister fs,FPURegister ft)2860 void Assembler::maddf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2861 DCHECK_EQ(kArchVariant, kMips64r6);
2862 GenInstrRegister(COP1, D, ft, fs, fd, MADDF_D);
2863 }
2864
msubf_s(FPURegister fd,FPURegister fs,FPURegister ft)2865 void Assembler::msubf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2866 DCHECK_EQ(kArchVariant, kMips64r6);
2867 GenInstrRegister(COP1, S, ft, fs, fd, MSUBF_S);
2868 }
2869
msubf_d(FPURegister fd,FPURegister fs,FPURegister ft)2870 void Assembler::msubf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2871 DCHECK_EQ(kArchVariant, kMips64r6);
2872 GenInstrRegister(COP1, D, ft, fs, fd, MSUBF_D);
2873 }
2874
div_s(FPURegister fd,FPURegister fs,FPURegister ft)2875 void Assembler::div_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2876 GenInstrRegister(COP1, S, ft, fs, fd, DIV_D);
2877 }
2878
div_d(FPURegister fd,FPURegister fs,FPURegister ft)2879 void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2880 GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
2881 }
2882
abs_s(FPURegister fd,FPURegister fs)2883 void Assembler::abs_s(FPURegister fd, FPURegister fs) {
2884 GenInstrRegister(COP1, S, f0, fs, fd, ABS_D);
2885 }
2886
abs_d(FPURegister fd,FPURegister fs)2887 void Assembler::abs_d(FPURegister fd, FPURegister fs) {
2888 GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
2889 }
2890
mov_d(FPURegister fd,FPURegister fs)2891 void Assembler::mov_d(FPURegister fd, FPURegister fs) {
2892 GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
2893 }
2894
mov_s(FPURegister fd,FPURegister fs)2895 void Assembler::mov_s(FPURegister fd, FPURegister fs) {
2896 GenInstrRegister(COP1, S, f0, fs, fd, MOV_S);
2897 }
2898
neg_s(FPURegister fd,FPURegister fs)2899 void Assembler::neg_s(FPURegister fd, FPURegister fs) {
2900 GenInstrRegister(COP1, S, f0, fs, fd, NEG_D);
2901 }
2902
neg_d(FPURegister fd,FPURegister fs)2903 void Assembler::neg_d(FPURegister fd, FPURegister fs) {
2904 GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
2905 }
2906
sqrt_s(FPURegister fd,FPURegister fs)2907 void Assembler::sqrt_s(FPURegister fd, FPURegister fs) {
2908 GenInstrRegister(COP1, S, f0, fs, fd, SQRT_D);
2909 }
2910
sqrt_d(FPURegister fd,FPURegister fs)2911 void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
2912 GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
2913 }
2914
rsqrt_s(FPURegister fd,FPURegister fs)2915 void Assembler::rsqrt_s(FPURegister fd, FPURegister fs) {
2916 GenInstrRegister(COP1, S, f0, fs, fd, RSQRT_S);
2917 }
2918
rsqrt_d(FPURegister fd,FPURegister fs)2919 void Assembler::rsqrt_d(FPURegister fd, FPURegister fs) {
2920 GenInstrRegister(COP1, D, f0, fs, fd, RSQRT_D);
2921 }
2922
recip_d(FPURegister fd,FPURegister fs)2923 void Assembler::recip_d(FPURegister fd, FPURegister fs) {
2924 GenInstrRegister(COP1, D, f0, fs, fd, RECIP_D);
2925 }
2926
recip_s(FPURegister fd,FPURegister fs)2927 void Assembler::recip_s(FPURegister fd, FPURegister fs) {
2928 GenInstrRegister(COP1, S, f0, fs, fd, RECIP_S);
2929 }
2930
2931 // Conversions.
cvt_w_s(FPURegister fd,FPURegister fs)2932 void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
2933 GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
2934 }
2935
cvt_w_d(FPURegister fd,FPURegister fs)2936 void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
2937 GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
2938 }
2939
trunc_w_s(FPURegister fd,FPURegister fs)2940 void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
2941 GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
2942 }
2943
trunc_w_d(FPURegister fd,FPURegister fs)2944 void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
2945 GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
2946 }
2947
round_w_s(FPURegister fd,FPURegister fs)2948 void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
2949 GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
2950 }
2951
round_w_d(FPURegister fd,FPURegister fs)2952 void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
2953 GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
2954 }
2955
floor_w_s(FPURegister fd,FPURegister fs)2956 void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
2957 GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
2958 }
2959
floor_w_d(FPURegister fd,FPURegister fs)2960 void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
2961 GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
2962 }
2963
ceil_w_s(FPURegister fd,FPURegister fs)2964 void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
2965 GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
2966 }
2967
ceil_w_d(FPURegister fd,FPURegister fs)2968 void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
2969 GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
2970 }
2971
rint_s(FPURegister fd,FPURegister fs)2972 void Assembler::rint_s(FPURegister fd, FPURegister fs) { rint(S, fd, fs); }
2973
rint_d(FPURegister fd,FPURegister fs)2974 void Assembler::rint_d(FPURegister fd, FPURegister fs) { rint(D, fd, fs); }
2975
rint(SecondaryField fmt,FPURegister fd,FPURegister fs)2976 void Assembler::rint(SecondaryField fmt, FPURegister fd, FPURegister fs) {
2977 DCHECK_EQ(kArchVariant, kMips64r6);
2978 GenInstrRegister(COP1, fmt, f0, fs, fd, RINT);
2979 }
2980
cvt_l_s(FPURegister fd,FPURegister fs)2981 void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
2982 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2983 GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
2984 }
2985
cvt_l_d(FPURegister fd,FPURegister fs)2986 void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
2987 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2988 GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
2989 }
2990
trunc_l_s(FPURegister fd,FPURegister fs)2991 void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
2992 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2993 GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
2994 }
2995
trunc_l_d(FPURegister fd,FPURegister fs)2996 void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
2997 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2998 GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
2999 }
3000
round_l_s(FPURegister fd,FPURegister fs)3001 void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
3002 GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
3003 }
3004
round_l_d(FPURegister fd,FPURegister fs)3005 void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
3006 GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
3007 }
3008
floor_l_s(FPURegister fd,FPURegister fs)3009 void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
3010 GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
3011 }
3012
floor_l_d(FPURegister fd,FPURegister fs)3013 void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
3014 GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
3015 }
3016
ceil_l_s(FPURegister fd,FPURegister fs)3017 void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
3018 GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
3019 }
3020
ceil_l_d(FPURegister fd,FPURegister fs)3021 void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
3022 GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
3023 }
3024
class_s(FPURegister fd,FPURegister fs)3025 void Assembler::class_s(FPURegister fd, FPURegister fs) {
3026 DCHECK_EQ(kArchVariant, kMips64r6);
3027 GenInstrRegister(COP1, S, f0, fs, fd, CLASS_S);
3028 }
3029
class_d(FPURegister fd,FPURegister fs)3030 void Assembler::class_d(FPURegister fd, FPURegister fs) {
3031 DCHECK_EQ(kArchVariant, kMips64r6);
3032 GenInstrRegister(COP1, D, f0, fs, fd, CLASS_D);
3033 }
3034
mina(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3035 void Assembler::mina(SecondaryField fmt, FPURegister fd, FPURegister fs,
3036 FPURegister ft) {
3037 DCHECK_EQ(kArchVariant, kMips64r6);
3038 DCHECK((fmt == D) || (fmt == S));
3039 GenInstrRegister(COP1, fmt, ft, fs, fd, MINA);
3040 }
3041
maxa(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3042 void Assembler::maxa(SecondaryField fmt, FPURegister fd, FPURegister fs,
3043 FPURegister ft) {
3044 DCHECK_EQ(kArchVariant, kMips64r6);
3045 DCHECK((fmt == D) || (fmt == S));
3046 GenInstrRegister(COP1, fmt, ft, fs, fd, MAXA);
3047 }
3048
cvt_s_w(FPURegister fd,FPURegister fs)3049 void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
3050 GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
3051 }
3052
cvt_s_l(FPURegister fd,FPURegister fs)3053 void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
3054 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
3055 GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
3056 }
3057
cvt_s_d(FPURegister fd,FPURegister fs)3058 void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
3059 GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
3060 }
3061
cvt_d_w(FPURegister fd,FPURegister fs)3062 void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
3063 GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
3064 }
3065
cvt_d_l(FPURegister fd,FPURegister fs)3066 void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
3067 DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
3068 GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
3069 }
3070
cvt_d_s(FPURegister fd,FPURegister fs)3071 void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
3072 GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
3073 }
3074
3075 // Conditions for >= MIPSr6.
cmp(FPUCondition cond,SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3076 void Assembler::cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd,
3077 FPURegister fs, FPURegister ft) {
3078 DCHECK_EQ(kArchVariant, kMips64r6);
3079 DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
3080 Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift |
3081 fd.code() << kFdShift | (0 << 5) | cond;
3082 emit(instr);
3083 }
3084
cmp_s(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)3085 void Assembler::cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs,
3086 FPURegister ft) {
3087 cmp(cond, W, fd, fs, ft);
3088 }
3089
cmp_d(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)3090 void Assembler::cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs,
3091 FPURegister ft) {
3092 cmp(cond, L, fd, fs, ft);
3093 }
3094
bc1eqz(int16_t offset,FPURegister ft)3095 void Assembler::bc1eqz(int16_t offset, FPURegister ft) {
3096 DCHECK_EQ(kArchVariant, kMips64r6);
3097 BlockTrampolinePoolScope block_trampoline_pool(this);
3098 Instr instr = COP1 | BC1EQZ | ft.code() << kFtShift | (offset & kImm16Mask);
3099 emit(instr);
3100 BlockTrampolinePoolFor(1); // For associated delay slot.
3101 }
3102
bc1nez(int16_t offset,FPURegister ft)3103 void Assembler::bc1nez(int16_t offset, FPURegister ft) {
3104 DCHECK_EQ(kArchVariant, kMips64r6);
3105 BlockTrampolinePoolScope block_trampoline_pool(this);
3106 Instr instr = COP1 | BC1NEZ | ft.code() << kFtShift | (offset & kImm16Mask);
3107 emit(instr);
3108 BlockTrampolinePoolFor(1); // For associated delay slot.
3109 }
3110
3111 // Conditions for < MIPSr6.
c(FPUCondition cond,SecondaryField fmt,FPURegister fs,FPURegister ft,uint16_t cc)3112 void Assembler::c(FPUCondition cond, SecondaryField fmt, FPURegister fs,
3113 FPURegister ft, uint16_t cc) {
3114 DCHECK_NE(kArchVariant, kMips64r6);
3115 DCHECK(is_uint3(cc));
3116 DCHECK(fmt == S || fmt == D);
3117 DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
3118 Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift |
3119 cc << 8 | 3 << 4 | cond;
3120 emit(instr);
3121 }
3122
c_s(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)3123 void Assembler::c_s(FPUCondition cond, FPURegister fs, FPURegister ft,
3124 uint16_t cc) {
3125 c(cond, S, fs, ft, cc);
3126 }
3127
c_d(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)3128 void Assembler::c_d(FPUCondition cond, FPURegister fs, FPURegister ft,
3129 uint16_t cc) {
3130 c(cond, D, fs, ft, cc);
3131 }
3132
fcmp(FPURegister src1,const double src2,FPUCondition cond)3133 void Assembler::fcmp(FPURegister src1, const double src2, FPUCondition cond) {
3134 DCHECK_EQ(src2, 0.0);
3135 mtc1(zero_reg, f14);
3136 cvt_d_w(f14, f14);
3137 c(cond, D, src1, f14, 0);
3138 }
3139
bc1f(int16_t offset,uint16_t cc)3140 void Assembler::bc1f(int16_t offset, uint16_t cc) {
3141 BlockTrampolinePoolScope block_trampoline_pool(this);
3142 DCHECK(is_uint3(cc));
3143 Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
3144 emit(instr);
3145 BlockTrampolinePoolFor(1); // For associated delay slot.
3146 }
3147
bc1t(int16_t offset,uint16_t cc)3148 void Assembler::bc1t(int16_t offset, uint16_t cc) {
3149 BlockTrampolinePoolScope block_trampoline_pool(this);
3150 DCHECK(is_uint3(cc));
3151 Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
3152 emit(instr);
3153 BlockTrampolinePoolFor(1); // For associated delay slot.
3154 }
3155
3156 // ---------- MSA instructions ------------
3157 #define MSA_BRANCH_LIST(V) \
3158 V(bz_v, BZ_V) \
3159 V(bz_b, BZ_B) \
3160 V(bz_h, BZ_H) \
3161 V(bz_w, BZ_W) \
3162 V(bz_d, BZ_D) \
3163 V(bnz_v, BNZ_V) \
3164 V(bnz_b, BNZ_B) \
3165 V(bnz_h, BNZ_H) \
3166 V(bnz_w, BNZ_W) \
3167 V(bnz_d, BNZ_D)
3168
3169 #define MSA_BRANCH(name, opcode) \
3170 void Assembler::name(MSARegister wt, int16_t offset) { \
3171 GenInstrMsaBranch(opcode, wt, offset); \
3172 }
3173
3174 MSA_BRANCH_LIST(MSA_BRANCH)
3175 #undef MSA_BRANCH
3176 #undef MSA_BRANCH_LIST
3177
3178 #define MSA_LD_ST_LIST(V) \
3179 V(ld_b, LD_B, 1) \
3180 V(ld_h, LD_H, 2) \
3181 V(ld_w, LD_W, 4) \
3182 V(ld_d, LD_D, 8) \
3183 V(st_b, ST_B, 1) \
3184 V(st_h, ST_H, 2) \
3185 V(st_w, ST_W, 4) \
3186 V(st_d, ST_D, 8)
3187
3188 #define MSA_LD_ST(name, opcode, b) \
3189 void Assembler::name(MSARegister wd, const MemOperand& rs) { \
3190 MemOperand source = rs; \
3191 AdjustBaseAndOffset(&source); \
3192 if (is_int10(source.offset())) { \
3193 DCHECK_EQ(source.offset() % b, 0); \
3194 GenInstrMsaMI10(opcode, source.offset() / b, source.rm(), wd); \
3195 } else { \
3196 UseScratchRegisterScope temps(this); \
3197 Register scratch = temps.Acquire(); \
3198 DCHECK_NE(rs.rm(), scratch); \
3199 daddiu(scratch, source.rm(), source.offset()); \
3200 GenInstrMsaMI10(opcode, 0, scratch, wd); \
3201 } \
3202 }
3203
MSA_LD_ST_LIST(MSA_LD_ST)3204 MSA_LD_ST_LIST(MSA_LD_ST)
3205 #undef MSA_LD_ST
3206 #undef MSA_LD_ST_LIST
3207
3208 #define MSA_I10_LIST(V) \
3209 V(ldi_b, I5_DF_b) \
3210 V(ldi_h, I5_DF_h) \
3211 V(ldi_w, I5_DF_w) \
3212 V(ldi_d, I5_DF_d)
3213
3214 #define MSA_I10(name, format) \
3215 void Assembler::name(MSARegister wd, int32_t imm10) { \
3216 GenInstrMsaI10(LDI, format, imm10, wd); \
3217 }
3218 MSA_I10_LIST(MSA_I10)
3219 #undef MSA_I10
3220 #undef MSA_I10_LIST
3221
3222 #define MSA_I5_LIST(V) \
3223 V(addvi, ADDVI) \
3224 V(subvi, SUBVI) \
3225 V(maxi_s, MAXI_S) \
3226 V(maxi_u, MAXI_U) \
3227 V(mini_s, MINI_S) \
3228 V(mini_u, MINI_U) \
3229 V(ceqi, CEQI) \
3230 V(clti_s, CLTI_S) \
3231 V(clti_u, CLTI_U) \
3232 V(clei_s, CLEI_S) \
3233 V(clei_u, CLEI_U)
3234
3235 #define MSA_I5_FORMAT(name, opcode, format) \
3236 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3237 uint32_t imm5) { \
3238 GenInstrMsaI5(opcode, I5_DF_##format, imm5, ws, wd); \
3239 }
3240
3241 #define MSA_I5(name, opcode) \
3242 MSA_I5_FORMAT(name, opcode, b) \
3243 MSA_I5_FORMAT(name, opcode, h) \
3244 MSA_I5_FORMAT(name, opcode, w) \
3245 MSA_I5_FORMAT(name, opcode, d)
3246
3247 MSA_I5_LIST(MSA_I5)
3248 #undef MSA_I5
3249 #undef MSA_I5_FORMAT
3250 #undef MSA_I5_LIST
3251
3252 #define MSA_I8_LIST(V) \
3253 V(andi_b, ANDI_B) \
3254 V(ori_b, ORI_B) \
3255 V(nori_b, NORI_B) \
3256 V(xori_b, XORI_B) \
3257 V(bmnzi_b, BMNZI_B) \
3258 V(bmzi_b, BMZI_B) \
3259 V(bseli_b, BSELI_B) \
3260 V(shf_b, SHF_B) \
3261 V(shf_h, SHF_H) \
3262 V(shf_w, SHF_W)
3263
3264 #define MSA_I8(name, opcode) \
3265 void Assembler::name(MSARegister wd, MSARegister ws, uint32_t imm8) { \
3266 GenInstrMsaI8(opcode, imm8, ws, wd); \
3267 }
3268
3269 MSA_I8_LIST(MSA_I8)
3270 #undef MSA_I8
3271 #undef MSA_I8_LIST
3272
3273 #define MSA_VEC_LIST(V) \
3274 V(and_v, AND_V) \
3275 V(or_v, OR_V) \
3276 V(nor_v, NOR_V) \
3277 V(xor_v, XOR_V) \
3278 V(bmnz_v, BMNZ_V) \
3279 V(bmz_v, BMZ_V) \
3280 V(bsel_v, BSEL_V)
3281
3282 #define MSA_VEC(name, opcode) \
3283 void Assembler::name(MSARegister wd, MSARegister ws, MSARegister wt) { \
3284 GenInstrMsaVec(opcode, wt, ws, wd); \
3285 }
3286
3287 MSA_VEC_LIST(MSA_VEC)
3288 #undef MSA_VEC
3289 #undef MSA_VEC_LIST
3290
3291 #define MSA_2R_LIST(V) \
3292 V(pcnt, PCNT) \
3293 V(nloc, NLOC) \
3294 V(nlzc, NLZC)
3295
3296 #define MSA_2R_FORMAT(name, opcode, format) \
3297 void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3298 GenInstrMsa2R(opcode, MSA_2R_DF_##format, ws, wd); \
3299 }
3300
3301 #define MSA_2R(name, opcode) \
3302 MSA_2R_FORMAT(name, opcode, b) \
3303 MSA_2R_FORMAT(name, opcode, h) \
3304 MSA_2R_FORMAT(name, opcode, w) \
3305 MSA_2R_FORMAT(name, opcode, d)
3306
3307 MSA_2R_LIST(MSA_2R)
3308 #undef MSA_2R
3309 #undef MSA_2R_FORMAT
3310 #undef MSA_2R_LIST
3311
3312 #define MSA_FILL(format) \
3313 void Assembler::fill_##format(MSARegister wd, Register rs) { \
3314 DCHECK(IsEnabled(MIPS_SIMD)); \
3315 DCHECK(rs.is_valid() && wd.is_valid()); \
3316 Instr instr = MSA | MSA_2R_FORMAT | FILL | MSA_2R_DF_##format | \
3317 (rs.code() << kWsShift) | (wd.code() << kWdShift) | \
3318 MSA_VEC_2R_2RF_MINOR; \
3319 emit(instr); \
3320 }
3321
3322 MSA_FILL(b)
3323 MSA_FILL(h)
3324 MSA_FILL(w)
3325 MSA_FILL(d)
3326 #undef MSA_FILL
3327
3328 #define MSA_2RF_LIST(V) \
3329 V(fclass, FCLASS) \
3330 V(ftrunc_s, FTRUNC_S) \
3331 V(ftrunc_u, FTRUNC_U) \
3332 V(fsqrt, FSQRT) \
3333 V(frsqrt, FRSQRT) \
3334 V(frcp, FRCP) \
3335 V(frint, FRINT) \
3336 V(flog2, FLOG2) \
3337 V(fexupl, FEXUPL) \
3338 V(fexupr, FEXUPR) \
3339 V(ffql, FFQL) \
3340 V(ffqr, FFQR) \
3341 V(ftint_s, FTINT_S) \
3342 V(ftint_u, FTINT_U) \
3343 V(ffint_s, FFINT_S) \
3344 V(ffint_u, FFINT_U)
3345
3346 #define MSA_2RF_FORMAT(name, opcode, format) \
3347 void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3348 GenInstrMsa2RF(opcode, MSA_2RF_DF_##format, ws, wd); \
3349 }
3350
3351 #define MSA_2RF(name, opcode) \
3352 MSA_2RF_FORMAT(name, opcode, w) \
3353 MSA_2RF_FORMAT(name, opcode, d)
3354
3355 MSA_2RF_LIST(MSA_2RF)
3356 #undef MSA_2RF
3357 #undef MSA_2RF_FORMAT
3358 #undef MSA_2RF_LIST
3359
3360 #define MSA_3R_LIST(V) \
3361 V(sll, SLL_MSA) \
3362 V(sra, SRA_MSA) \
3363 V(srl, SRL_MSA) \
3364 V(bclr, BCLR) \
3365 V(bset, BSET) \
3366 V(bneg, BNEG) \
3367 V(binsl, BINSL) \
3368 V(binsr, BINSR) \
3369 V(addv, ADDV) \
3370 V(subv, SUBV) \
3371 V(max_s, MAX_S) \
3372 V(max_u, MAX_U) \
3373 V(min_s, MIN_S) \
3374 V(min_u, MIN_U) \
3375 V(max_a, MAX_A) \
3376 V(min_a, MIN_A) \
3377 V(ceq, CEQ) \
3378 V(clt_s, CLT_S) \
3379 V(clt_u, CLT_U) \
3380 V(cle_s, CLE_S) \
3381 V(cle_u, CLE_U) \
3382 V(add_a, ADD_A) \
3383 V(adds_a, ADDS_A) \
3384 V(adds_s, ADDS_S) \
3385 V(adds_u, ADDS_U) \
3386 V(ave_s, AVE_S) \
3387 V(ave_u, AVE_U) \
3388 V(aver_s, AVER_S) \
3389 V(aver_u, AVER_U) \
3390 V(subs_s, SUBS_S) \
3391 V(subs_u, SUBS_U) \
3392 V(subsus_u, SUBSUS_U) \
3393 V(subsuu_s, SUBSUU_S) \
3394 V(asub_s, ASUB_S) \
3395 V(asub_u, ASUB_U) \
3396 V(mulv, MULV) \
3397 V(maddv, MADDV) \
3398 V(msubv, MSUBV) \
3399 V(div_s, DIV_S_MSA) \
3400 V(div_u, DIV_U) \
3401 V(mod_s, MOD_S) \
3402 V(mod_u, MOD_U) \
3403 V(dotp_s, DOTP_S) \
3404 V(dotp_u, DOTP_U) \
3405 V(dpadd_s, DPADD_S) \
3406 V(dpadd_u, DPADD_U) \
3407 V(dpsub_s, DPSUB_S) \
3408 V(dpsub_u, DPSUB_U) \
3409 V(pckev, PCKEV) \
3410 V(pckod, PCKOD) \
3411 V(ilvl, ILVL) \
3412 V(ilvr, ILVR) \
3413 V(ilvev, ILVEV) \
3414 V(ilvod, ILVOD) \
3415 V(vshf, VSHF) \
3416 V(srar, SRAR) \
3417 V(srlr, SRLR) \
3418 V(hadd_s, HADD_S) \
3419 V(hadd_u, HADD_U) \
3420 V(hsub_s, HSUB_S) \
3421 V(hsub_u, HSUB_U)
3422
3423 #define MSA_3R_FORMAT(name, opcode, format) \
3424 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3425 MSARegister wt) { \
3426 GenInstrMsa3R<MSARegister>(opcode, MSA_3R_DF_##format, wt, ws, wd); \
3427 }
3428
3429 #define MSA_3R_FORMAT_SLD_SPLAT(name, opcode, format) \
3430 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3431 Register rt) { \
3432 GenInstrMsa3R<Register>(opcode, MSA_3R_DF_##format, rt, ws, wd); \
3433 }
3434
3435 #define MSA_3R(name, opcode) \
3436 MSA_3R_FORMAT(name, opcode, b) \
3437 MSA_3R_FORMAT(name, opcode, h) \
3438 MSA_3R_FORMAT(name, opcode, w) \
3439 MSA_3R_FORMAT(name, opcode, d)
3440
3441 #define MSA_3R_SLD_SPLAT(name, opcode) \
3442 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, b) \
3443 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, h) \
3444 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, w) \
3445 MSA_3R_FORMAT_SLD_SPLAT(name, opcode, d)
3446
3447 MSA_3R_LIST(MSA_3R)
3448 MSA_3R_SLD_SPLAT(sld, SLD)
3449 MSA_3R_SLD_SPLAT(splat, SPLAT)
3450
3451 #undef MSA_3R
3452 #undef MSA_3R_FORMAT
3453 #undef MSA_3R_FORMAT_SLD_SPLAT
3454 #undef MSA_3R_SLD_SPLAT
3455 #undef MSA_3R_LIST
3456
3457 #define MSA_3RF_LIST1(V) \
3458 V(fcaf, FCAF) \
3459 V(fcun, FCUN) \
3460 V(fceq, FCEQ) \
3461 V(fcueq, FCUEQ) \
3462 V(fclt, FCLT) \
3463 V(fcult, FCULT) \
3464 V(fcle, FCLE) \
3465 V(fcule, FCULE) \
3466 V(fsaf, FSAF) \
3467 V(fsun, FSUN) \
3468 V(fseq, FSEQ) \
3469 V(fsueq, FSUEQ) \
3470 V(fslt, FSLT) \
3471 V(fsult, FSULT) \
3472 V(fsle, FSLE) \
3473 V(fsule, FSULE) \
3474 V(fadd, FADD) \
3475 V(fsub, FSUB) \
3476 V(fmul, FMUL) \
3477 V(fdiv, FDIV) \
3478 V(fmadd, FMADD) \
3479 V(fmsub, FMSUB) \
3480 V(fexp2, FEXP2) \
3481 V(fmin, FMIN) \
3482 V(fmin_a, FMIN_A) \
3483 V(fmax, FMAX) \
3484 V(fmax_a, FMAX_A) \
3485 V(fcor, FCOR) \
3486 V(fcune, FCUNE) \
3487 V(fcne, FCNE) \
3488 V(fsor, FSOR) \
3489 V(fsune, FSUNE) \
3490 V(fsne, FSNE)
3491
3492 #define MSA_3RF_LIST2(V) \
3493 V(fexdo, FEXDO) \
3494 V(ftq, FTQ) \
3495 V(mul_q, MUL_Q) \
3496 V(madd_q, MADD_Q) \
3497 V(msub_q, MSUB_Q) \
3498 V(mulr_q, MULR_Q) \
3499 V(maddr_q, MADDR_Q) \
3500 V(msubr_q, MSUBR_Q)
3501
3502 #define MSA_3RF_FORMAT(name, opcode, df, df_c) \
3503 void Assembler::name##_##df(MSARegister wd, MSARegister ws, \
3504 MSARegister wt) { \
3505 GenInstrMsa3RF(opcode, df_c, wt, ws, wd); \
3506 }
3507
3508 #define MSA_3RF_1(name, opcode) \
3509 MSA_3RF_FORMAT(name, opcode, w, 0) \
3510 MSA_3RF_FORMAT(name, opcode, d, 1)
3511
3512 #define MSA_3RF_2(name, opcode) \
3513 MSA_3RF_FORMAT(name, opcode, h, 0) \
3514 MSA_3RF_FORMAT(name, opcode, w, 1)
3515
3516 MSA_3RF_LIST1(MSA_3RF_1)
3517 MSA_3RF_LIST2(MSA_3RF_2)
3518 #undef MSA_3RF_1
3519 #undef MSA_3RF_2
3520 #undef MSA_3RF_FORMAT
3521 #undef MSA_3RF_LIST1
3522 #undef MSA_3RF_LIST2
3523
3524 void Assembler::sldi_b(MSARegister wd, MSARegister ws, uint32_t n) {
3525 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_B, n, ws, wd);
3526 }
3527
sldi_h(MSARegister wd,MSARegister ws,uint32_t n)3528 void Assembler::sldi_h(MSARegister wd, MSARegister ws, uint32_t n) {
3529 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_H, n, ws, wd);
3530 }
3531
sldi_w(MSARegister wd,MSARegister ws,uint32_t n)3532 void Assembler::sldi_w(MSARegister wd, MSARegister ws, uint32_t n) {
3533 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_W, n, ws, wd);
3534 }
3535
sldi_d(MSARegister wd,MSARegister ws,uint32_t n)3536 void Assembler::sldi_d(MSARegister wd, MSARegister ws, uint32_t n) {
3537 GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_D, n, ws, wd);
3538 }
3539
splati_b(MSARegister wd,MSARegister ws,uint32_t n)3540 void Assembler::splati_b(MSARegister wd, MSARegister ws, uint32_t n) {
3541 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_B, n, ws, wd);
3542 }
3543
splati_h(MSARegister wd,MSARegister ws,uint32_t n)3544 void Assembler::splati_h(MSARegister wd, MSARegister ws, uint32_t n) {
3545 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_H, n, ws, wd);
3546 }
3547
splati_w(MSARegister wd,MSARegister ws,uint32_t n)3548 void Assembler::splati_w(MSARegister wd, MSARegister ws, uint32_t n) {
3549 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_W, n, ws, wd);
3550 }
3551
splati_d(MSARegister wd,MSARegister ws,uint32_t n)3552 void Assembler::splati_d(MSARegister wd, MSARegister ws, uint32_t n) {
3553 GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_D, n, ws, wd);
3554 }
3555
copy_s_b(Register rd,MSARegister ws,uint32_t n)3556 void Assembler::copy_s_b(Register rd, MSARegister ws, uint32_t n) {
3557 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_B, n, ws, rd);
3558 }
3559
copy_s_h(Register rd,MSARegister ws,uint32_t n)3560 void Assembler::copy_s_h(Register rd, MSARegister ws, uint32_t n) {
3561 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_H, n, ws, rd);
3562 }
3563
copy_s_w(Register rd,MSARegister ws,uint32_t n)3564 void Assembler::copy_s_w(Register rd, MSARegister ws, uint32_t n) {
3565 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_W, n, ws, rd);
3566 }
3567
copy_s_d(Register rd,MSARegister ws,uint32_t n)3568 void Assembler::copy_s_d(Register rd, MSARegister ws, uint32_t n) {
3569 GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_D, n, ws, rd);
3570 }
3571
copy_u_b(Register rd,MSARegister ws,uint32_t n)3572 void Assembler::copy_u_b(Register rd, MSARegister ws, uint32_t n) {
3573 GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_B, n, ws, rd);
3574 }
3575
copy_u_h(Register rd,MSARegister ws,uint32_t n)3576 void Assembler::copy_u_h(Register rd, MSARegister ws, uint32_t n) {
3577 GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_H, n, ws, rd);
3578 }
3579
copy_u_w(Register rd,MSARegister ws,uint32_t n)3580 void Assembler::copy_u_w(Register rd, MSARegister ws, uint32_t n) {
3581 GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_W, n, ws, rd);
3582 }
3583
insert_b(MSARegister wd,uint32_t n,Register rs)3584 void Assembler::insert_b(MSARegister wd, uint32_t n, Register rs) {
3585 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_B, n, rs, wd);
3586 }
3587
insert_h(MSARegister wd,uint32_t n,Register rs)3588 void Assembler::insert_h(MSARegister wd, uint32_t n, Register rs) {
3589 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_H, n, rs, wd);
3590 }
3591
insert_w(MSARegister wd,uint32_t n,Register rs)3592 void Assembler::insert_w(MSARegister wd, uint32_t n, Register rs) {
3593 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_W, n, rs, wd);
3594 }
3595
insert_d(MSARegister wd,uint32_t n,Register rs)3596 void Assembler::insert_d(MSARegister wd, uint32_t n, Register rs) {
3597 GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_D, n, rs, wd);
3598 }
3599
insve_b(MSARegister wd,uint32_t n,MSARegister ws)3600 void Assembler::insve_b(MSARegister wd, uint32_t n, MSARegister ws) {
3601 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_B, n, ws, wd);
3602 }
3603
insve_h(MSARegister wd,uint32_t n,MSARegister ws)3604 void Assembler::insve_h(MSARegister wd, uint32_t n, MSARegister ws) {
3605 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_H, n, ws, wd);
3606 }
3607
insve_w(MSARegister wd,uint32_t n,MSARegister ws)3608 void Assembler::insve_w(MSARegister wd, uint32_t n, MSARegister ws) {
3609 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_W, n, ws, wd);
3610 }
3611
insve_d(MSARegister wd,uint32_t n,MSARegister ws)3612 void Assembler::insve_d(MSARegister wd, uint32_t n, MSARegister ws) {
3613 GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_D, n, ws, wd);
3614 }
3615
move_v(MSARegister wd,MSARegister ws)3616 void Assembler::move_v(MSARegister wd, MSARegister ws) {
3617 DCHECK(IsEnabled(MIPS_SIMD));
3618 DCHECK(ws.is_valid() && wd.is_valid());
3619 Instr instr = MSA | MOVE_V | (ws.code() << kWsShift) |
3620 (wd.code() << kWdShift) | MSA_ELM_MINOR;
3621 emit(instr);
3622 }
3623
ctcmsa(MSAControlRegister cd,Register rs)3624 void Assembler::ctcmsa(MSAControlRegister cd, Register rs) {
3625 DCHECK(IsEnabled(MIPS_SIMD));
3626 DCHECK(cd.is_valid() && rs.is_valid());
3627 Instr instr = MSA | CTCMSA | (rs.code() << kWsShift) |
3628 (cd.code() << kWdShift) | MSA_ELM_MINOR;
3629 emit(instr);
3630 }
3631
cfcmsa(Register rd,MSAControlRegister cs)3632 void Assembler::cfcmsa(Register rd, MSAControlRegister cs) {
3633 DCHECK(IsEnabled(MIPS_SIMD));
3634 DCHECK(rd.is_valid() && cs.is_valid());
3635 Instr instr = MSA | CFCMSA | (cs.code() << kWsShift) |
3636 (rd.code() << kWdShift) | MSA_ELM_MINOR;
3637 emit(instr);
3638 }
3639
3640 #define MSA_BIT_LIST(V) \
3641 V(slli, SLLI) \
3642 V(srai, SRAI) \
3643 V(srli, SRLI) \
3644 V(bclri, BCLRI) \
3645 V(bseti, BSETI) \
3646 V(bnegi, BNEGI) \
3647 V(binsli, BINSLI) \
3648 V(binsri, BINSRI) \
3649 V(sat_s, SAT_S) \
3650 V(sat_u, SAT_U) \
3651 V(srari, SRARI) \
3652 V(srlri, SRLRI)
3653
3654 #define MSA_BIT_FORMAT(name, opcode, format) \
3655 void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3656 uint32_t m) { \
3657 GenInstrMsaBit(opcode, BIT_DF_##format, m, ws, wd); \
3658 }
3659
3660 #define MSA_BIT(name, opcode) \
3661 MSA_BIT_FORMAT(name, opcode, b) \
3662 MSA_BIT_FORMAT(name, opcode, h) \
3663 MSA_BIT_FORMAT(name, opcode, w) \
3664 MSA_BIT_FORMAT(name, opcode, d)
3665
MSA_BIT_LIST(MSA_BIT)3666 MSA_BIT_LIST(MSA_BIT)
3667 #undef MSA_BIT
3668 #undef MSA_BIT_FORMAT
3669 #undef MSA_BIT_LIST
3670
3671 int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
3672 intptr_t pc_delta) {
3673 if (RelocInfo::IsInternalReference(rmode)) {
3674 int64_t* p = reinterpret_cast<int64_t*>(pc);
3675 if (*p == kEndOfJumpChain) {
3676 return 0; // Number of instructions patched.
3677 }
3678 *p += pc_delta;
3679 return 2; // Number of instructions patched.
3680 }
3681 Instr instr = instr_at(pc);
3682 DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode));
3683 if (IsLui(instr)) {
3684 Instr instr_lui = instr_at(pc + 0 * kInstrSize);
3685 Instr instr_ori = instr_at(pc + 1 * kInstrSize);
3686 Instr instr_ori2 = instr_at(pc + 3 * kInstrSize);
3687 DCHECK(IsOri(instr_ori));
3688 DCHECK(IsOri(instr_ori2));
3689 // TODO(plind): symbolic names for the shifts.
3690 int64_t imm = (instr_lui & static_cast<int64_t>(kImm16Mask)) << 48;
3691 imm |= (instr_ori & static_cast<int64_t>(kImm16Mask)) << 32;
3692 imm |= (instr_ori2 & static_cast<int64_t>(kImm16Mask)) << 16;
3693 // Sign extend address.
3694 imm >>= 16;
3695
3696 if (imm == kEndOfJumpChain) {
3697 return 0; // Number of instructions patched.
3698 }
3699 imm += pc_delta;
3700 DCHECK_EQ(imm & 3, 0);
3701
3702 instr_lui &= ~kImm16Mask;
3703 instr_ori &= ~kImm16Mask;
3704 instr_ori2 &= ~kImm16Mask;
3705
3706 instr_at_put(pc + 0 * kInstrSize, instr_lui | ((imm >> 32) & kImm16Mask));
3707 instr_at_put(pc + 1 * kInstrSize, instr_ori | (imm >> 16 & kImm16Mask));
3708 instr_at_put(pc + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask));
3709 return 4; // Number of instructions patched.
3710 } else if (IsJ(instr) || IsJal(instr)) {
3711 // Regular j/jal relocation.
3712 uint32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
3713 imm28 += pc_delta;
3714 imm28 &= kImm28Mask;
3715 instr &= ~kImm26Mask;
3716 DCHECK_EQ(imm28 & 3, 0);
3717 uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
3718 instr_at_put(pc, instr | (imm26 & kImm26Mask));
3719 return 1; // Number of instructions patched.
3720 } else {
3721 DCHECK(((instr & kJumpRawMask) == kJRawMark) ||
3722 ((instr & kJumpRawMask) == kJalRawMark));
3723 // Unbox raw offset and emit j/jal.
3724 int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
3725 // Sign extend 28-bit offset to 32-bit.
3726 imm28 = (imm28 << 4) >> 4;
3727 uint64_t target =
3728 static_cast<int64_t>(imm28) + reinterpret_cast<uint64_t>(pc);
3729 target &= kImm28Mask;
3730 DCHECK_EQ(imm28 & 3, 0);
3731 uint32_t imm26 = static_cast<uint32_t>(target >> 2);
3732 // Check markings whether to emit j or jal.
3733 uint32_t unbox = (instr & kJRawMark) ? J : JAL;
3734 instr_at_put(pc, unbox | (imm26 & kImm26Mask));
3735 return 1; // Number of instructions patched.
3736 }
3737 }
3738
GrowBuffer()3739 void Assembler::GrowBuffer() {
3740 // Compute new buffer size.
3741 int old_size = buffer_->size();
3742 int new_size = std::min(2 * old_size, old_size + 1 * MB);
3743
3744 // Some internal data structures overflow for very large buffers,
3745 // they must ensure that kMaximalBufferSize is not too large.
3746 if (new_size > kMaximalBufferSize) {
3747 V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer");
3748 }
3749
3750 // Set up new buffer.
3751 std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size);
3752 DCHECK_EQ(new_size, new_buffer->size());
3753 byte* new_start = new_buffer->start();
3754
3755 // Copy the data.
3756 intptr_t pc_delta = new_start - buffer_start_;
3757 intptr_t rc_delta = (new_start + new_size) - (buffer_start_ + old_size);
3758 size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos();
3759 MemMove(new_start, buffer_start_, pc_offset());
3760 MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
3761 reloc_size);
3762
3763 // Switch buffers.
3764 buffer_ = std::move(new_buffer);
3765 buffer_start_ = new_start;
3766 pc_ += pc_delta;
3767 pc_for_safepoint_ += pc_delta;
3768 reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
3769 reloc_info_writer.last_pc() + pc_delta);
3770
3771 // Relocate runtime entries.
3772 base::Vector<byte> instructions{buffer_start_,
3773 static_cast<size_t>(pc_offset())};
3774 base::Vector<const byte> reloc_info{reloc_info_writer.pos(), reloc_size};
3775 for (RelocIterator it(instructions, reloc_info, 0); !it.done(); it.next()) {
3776 RelocInfo::Mode rmode = it.rinfo()->rmode();
3777 if (rmode == RelocInfo::INTERNAL_REFERENCE) {
3778 RelocateInternalReference(rmode, it.rinfo()->pc(), pc_delta);
3779 }
3780 }
3781
3782 DCHECK(!overflow());
3783 }
3784
db(uint8_t data)3785 void Assembler::db(uint8_t data) {
3786 CheckForEmitInForbiddenSlot();
3787 *reinterpret_cast<uint8_t*>(pc_) = data;
3788 pc_ += sizeof(uint8_t);
3789 }
3790
dd(uint32_t data,RelocInfo::Mode rmode)3791 void Assembler::dd(uint32_t data, RelocInfo::Mode rmode) {
3792 CheckForEmitInForbiddenSlot();
3793 if (!RelocInfo::IsNoInfo(rmode)) {
3794 DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) ||
3795 RelocInfo::IsLiteralConstant(rmode));
3796 RecordRelocInfo(rmode);
3797 }
3798 *reinterpret_cast<uint32_t*>(pc_) = data;
3799 pc_ += sizeof(uint32_t);
3800 }
3801
dq(uint64_t data,RelocInfo::Mode rmode)3802 void Assembler::dq(uint64_t data, RelocInfo::Mode rmode) {
3803 CheckForEmitInForbiddenSlot();
3804 if (!RelocInfo::IsNoInfo(rmode)) {
3805 DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) ||
3806 RelocInfo::IsLiteralConstant(rmode));
3807 RecordRelocInfo(rmode);
3808 }
3809 *reinterpret_cast<uint64_t*>(pc_) = data;
3810 pc_ += sizeof(uint64_t);
3811 }
3812
dd(Label * label)3813 void Assembler::dd(Label* label) {
3814 uint64_t data;
3815 CheckForEmitInForbiddenSlot();
3816 if (label->is_bound()) {
3817 data = reinterpret_cast<uint64_t>(buffer_start_ + label->pos());
3818 } else {
3819 data = jump_address(label);
3820 unbound_labels_count_++;
3821 internal_reference_positions_.insert(label->pos());
3822 }
3823 RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3824 EmitHelper(data);
3825 }
3826
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3827 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3828 if (!ShouldRecordRelocInfo(rmode)) return;
3829 // We do not try to reuse pool constants.
3830 RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, Code());
3831 DCHECK_GE(buffer_space(), kMaxRelocSize); // Too late to grow buffer here.
3832 reloc_info_writer.Write(&rinfo);
3833 }
3834
BlockTrampolinePoolFor(int instructions)3835 void Assembler::BlockTrampolinePoolFor(int instructions) {
3836 CheckTrampolinePoolQuick(instructions);
3837 BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
3838 }
3839
CheckTrampolinePool()3840 void Assembler::CheckTrampolinePool() {
3841 // Some small sequences of instructions must not be broken up by the
3842 // insertion of a trampoline pool; such sequences are protected by setting
3843 // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
3844 // which are both checked here. Also, recursive calls to CheckTrampolinePool
3845 // are blocked by trampoline_pool_blocked_nesting_.
3846 if ((trampoline_pool_blocked_nesting_ > 0) ||
3847 (pc_offset() < no_trampoline_pool_before_)) {
3848 // Emission is currently blocked; make sure we try again as soon as
3849 // possible.
3850 if (trampoline_pool_blocked_nesting_ > 0) {
3851 next_buffer_check_ = pc_offset() + kInstrSize;
3852 } else {
3853 next_buffer_check_ = no_trampoline_pool_before_;
3854 }
3855 return;
3856 }
3857
3858 DCHECK(!trampoline_emitted_);
3859 DCHECK_GE(unbound_labels_count_, 0);
3860 if (unbound_labels_count_ > 0) {
3861 // First we emit jump (2 instructions), then we emit trampoline pool.
3862 {
3863 BlockTrampolinePoolScope block_trampoline_pool(this);
3864 Label after_pool;
3865 if (kArchVariant == kMips64r6) {
3866 bc(&after_pool);
3867 } else {
3868 b(&after_pool);
3869 }
3870 nop();
3871
3872 int pool_start = pc_offset();
3873 for (int i = 0; i < unbound_labels_count_; i++) {
3874 {
3875 if (kArchVariant == kMips64r6) {
3876 bc(&after_pool);
3877 nop();
3878 } else {
3879 or_(t8, ra, zero_reg);
3880 nal(); // Read PC into ra register.
3881 lui(t9, 0); // Branch delay slot.
3882 ori(t9, t9, 0);
3883 daddu(t9, ra, t9);
3884 or_(ra, t8, zero_reg);
3885 // Instruction jr will take or_ from the next trampoline.
3886 // in its branch delay slot. This is the expected behavior
3887 // in order to decrease size of trampoline pool.
3888 jr(t9);
3889 }
3890 }
3891 }
3892 nop();
3893 // If unbound_labels_count_ is big enough, label after_pool will
3894 // need a trampoline too, so we must create the trampoline before
3895 // the bind operation to make sure function 'bind' can get this
3896 // information.
3897 trampoline_ = Trampoline(pool_start, unbound_labels_count_);
3898 bind(&after_pool);
3899
3900 trampoline_emitted_ = true;
3901 // As we are only going to emit trampoline once, we need to prevent any
3902 // further emission.
3903 next_buffer_check_ = kMaxInt;
3904 }
3905 } else {
3906 // Number of branches to unbound label at this point is zero, so we can
3907 // move next buffer check to maximum.
3908 next_buffer_check_ =
3909 pc_offset() + kMaxBranchOffset - kTrampolineSlotsSize * 16;
3910 }
3911 return;
3912 }
3913
target_address_at(Address pc)3914 Address Assembler::target_address_at(Address pc) {
3915 Instr instr0 = instr_at(pc);
3916 Instr instr1 = instr_at(pc + 1 * kInstrSize);
3917 Instr instr3 = instr_at(pc + 3 * kInstrSize);
3918
3919 // Interpret 4 instructions for address generated by li: See listing in
3920 // Assembler::set_target_address_at() just below.
3921 if ((GetOpcodeField(instr0) == LUI) && (GetOpcodeField(instr1) == ORI) &&
3922 (GetOpcodeField(instr3) == ORI)) {
3923 // Assemble the 48 bit value.
3924 int64_t addr =
3925 static_cast<int64_t>(((uint64_t)(GetImmediate16(instr0)) << 32) |
3926 ((uint64_t)(GetImmediate16(instr1)) << 16) |
3927 ((uint64_t)(GetImmediate16(instr3))));
3928
3929 // Sign extend to get canonical address.
3930 addr = (addr << 16) >> 16;
3931 return static_cast<Address>(addr);
3932 }
3933 // We should never get here, force a bad address if we do.
3934 UNREACHABLE();
3935 }
3936
3937 // On Mips64, a target address is stored in a 4-instruction sequence:
3938 // 0: lui(rd, (j.imm64_ >> 32) & kImm16Mask);
3939 // 1: ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
3940 // 2: dsll(rd, rd, 16);
3941 // 3: ori(rd, rd, j.imm32_ & kImm16Mask);
3942 //
3943 // Patching the address must replace all the lui & ori instructions,
3944 // and flush the i-cache.
3945 //
3946 // There is an optimization below, which emits a nop when the address
3947 // fits in just 16 bits. This is unlikely to help, and should be benchmarked,
3948 // and possibly removed.
set_target_value_at(Address pc,uint64_t target,ICacheFlushMode icache_flush_mode)3949 void Assembler::set_target_value_at(Address pc, uint64_t target,
3950 ICacheFlushMode icache_flush_mode) {
3951 // There is an optimization where only 4 instructions are used to load address
3952 // in code on MIP64 because only 48-bits of address is effectively used.
3953 // It relies on fact the upper [63:48] bits are not used for virtual address
3954 // translation and they have to be set according to value of bit 47 in order
3955 // get canonical address.
3956 Instr instr1 = instr_at(pc + kInstrSize);
3957 uint32_t rt_code = GetRt(instr1);
3958 uint32_t* p = reinterpret_cast<uint32_t*>(pc);
3959
3960 #ifdef DEBUG
3961 // Check we have the result from a li macro-instruction.
3962 Instr instr0 = instr_at(pc);
3963 Instr instr3 = instr_at(pc + kInstrSize * 3);
3964 DCHECK((GetOpcodeField(instr0) == LUI && GetOpcodeField(instr1) == ORI &&
3965 GetOpcodeField(instr3) == ORI));
3966 #endif
3967
3968 // Must use 4 instructions to insure patchable code.
3969 // lui rt, upper-16.
3970 // ori rt, rt, lower-16.
3971 // dsll rt, rt, 16.
3972 // ori rt rt, lower-16.
3973 *p = LUI | (rt_code << kRtShift) | ((target >> 32) & kImm16Mask);
3974 *(p + 1) = ORI | (rt_code << kRtShift) | (rt_code << kRsShift) |
3975 ((target >> 16) & kImm16Mask);
3976 *(p + 3) = ORI | (rt_code << kRsShift) | (rt_code << kRtShift) |
3977 (target & kImm16Mask);
3978
3979 if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
3980 FlushInstructionCache(pc, 4 * kInstrSize);
3981 }
3982 }
3983
UseScratchRegisterScope(Assembler * assembler)3984 UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler)
3985 : available_(assembler->GetScratchRegisterList()),
3986 old_available_(*available_) {}
3987
~UseScratchRegisterScope()3988 UseScratchRegisterScope::~UseScratchRegisterScope() {
3989 *available_ = old_available_;
3990 }
3991
Acquire()3992 Register UseScratchRegisterScope::Acquire() {
3993 DCHECK_NOT_NULL(available_);
3994 return available_->PopFirst();
3995 }
3996
hasAvailable() const3997 bool UseScratchRegisterScope::hasAvailable() const {
3998 return !available_->is_empty();
3999 }
4000
LoadStoreLaneParams(MachineRepresentation rep,uint8_t laneidx)4001 LoadStoreLaneParams::LoadStoreLaneParams(MachineRepresentation rep,
4002 uint8_t laneidx) {
4003 switch (rep) {
4004 case MachineRepresentation::kWord8:
4005 *this = LoadStoreLaneParams(laneidx, MSA_B, 16);
4006 break;
4007 case MachineRepresentation::kWord16:
4008 *this = LoadStoreLaneParams(laneidx, MSA_H, 8);
4009 break;
4010 case MachineRepresentation::kWord32:
4011 *this = LoadStoreLaneParams(laneidx, MSA_W, 4);
4012 break;
4013 case MachineRepresentation::kWord64:
4014 *this = LoadStoreLaneParams(laneidx, MSA_D, 2);
4015 break;
4016 default:
4017 UNREACHABLE();
4018 }
4019 }
4020
4021 } // namespace internal
4022 } // namespace v8
4023
4024 #endif // V8_TARGET_ARCH_MIPS64
4025