• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 1994-2006 Sun Microsystems Inc.
2 // All Rights Reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // - Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 //
11 // - Redistribution in binary form must reproduce the above copyright
12 // notice, this list of conditions and the following disclaimer in the
13 // documentation and/or other materials provided with the distribution.
14 //
15 // - Neither the name of Sun Microsystems or the names of contributors may
16 // be used to endorse or promote products derived from this software without
17 // specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
20 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
21 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
23 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
24 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
25 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
26 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
27 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
28 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
29 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 
31 // The original source code covered by the above license above has been
32 // modified significantly by Google Inc.
33 // Copyright 2012 the V8 project authors. All rights reserved.
34 
35 #include "src/codegen/mips64/assembler-mips64.h"
36 
37 #if V8_TARGET_ARCH_MIPS64
38 
39 #include "src/base/cpu.h"
40 #include "src/codegen/machine-type.h"
41 #include "src/codegen/mips64/assembler-mips64-inl.h"
42 #include "src/codegen/safepoint-table.h"
43 #include "src/codegen/string-constants.h"
44 #include "src/deoptimizer/deoptimizer.h"
45 #include "src/objects/heap-number-inl.h"
46 
47 namespace v8 {
48 namespace internal {
49 
50 // Get the CPU features enabled by the build. For cross compilation the
51 // preprocessor symbols CAN_USE_FPU_INSTRUCTIONS
52 // can be defined to enable FPU instructions when building the
53 // snapshot.
CpuFeaturesImpliedByCompiler()54 static unsigned CpuFeaturesImpliedByCompiler() {
55   unsigned answer = 0;
56 #ifdef CAN_USE_FPU_INSTRUCTIONS
57   answer |= 1u << FPU;
58 #endif  // def CAN_USE_FPU_INSTRUCTIONS
59 
60   // If the compiler is allowed to use FPU then we can use FPU too in our code
61   // generation even when generating snapshots.  This won't work for cross
62   // compilation.
63 #if defined(__mips__) && defined(__mips_hard_float) && __mips_hard_float != 0
64   answer |= 1u << FPU;
65 #endif
66 
67   return answer;
68 }
69 
SupportsWasmSimd128()70 bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(MIPS_SIMD); }
71 
ProbeImpl(bool cross_compile)72 void CpuFeatures::ProbeImpl(bool cross_compile) {
73   supported_ |= CpuFeaturesImpliedByCompiler();
74 
75   // Only use statically determined features for cross compile (snapshot).
76   if (cross_compile) return;
77 
78     // If the compiler is allowed to use fpu then we can use fpu too in our
79     // code generation.
80 #ifndef __mips__
81   // For the simulator build, use FPU.
82   supported_ |= 1u << FPU;
83 #if defined(_MIPS_ARCH_MIPS64R6) && defined(_MIPS_MSA)
84   supported_ |= 1u << MIPS_SIMD;
85 #endif
86 #else
87   // Probe for additional features at runtime.
88   base::CPU cpu;
89   if (cpu.has_fpu()) supported_ |= 1u << FPU;
90 #if defined(_MIPS_MSA)
91   supported_ |= 1u << MIPS_SIMD;
92 #else
93   if (cpu.has_msa()) supported_ |= 1u << MIPS_SIMD;
94 #endif
95 #endif
96 
97   // Set a static value on whether Simd is supported.
98   // This variable is only used for certain archs to query SupportWasmSimd128()
99   // at runtime in builtins using an extern ref. Other callers should use
100   // CpuFeatures::SupportWasmSimd128().
101   CpuFeatures::supports_wasm_simd_128_ = CpuFeatures::SupportsWasmSimd128();
102 }
103 
PrintTarget()104 void CpuFeatures::PrintTarget() {}
PrintFeatures()105 void CpuFeatures::PrintFeatures() {}
106 
ToNumber(Register reg)107 int ToNumber(Register reg) {
108   DCHECK(reg.is_valid());
109   const int kNumbers[] = {
110       0,   // zero_reg
111       1,   // at
112       2,   // v0
113       3,   // v1
114       4,   // a0
115       5,   // a1
116       6,   // a2
117       7,   // a3
118       8,   // a4
119       9,   // a5
120       10,  // a6
121       11,  // a7
122       12,  // t0
123       13,  // t1
124       14,  // t2
125       15,  // t3
126       16,  // s0
127       17,  // s1
128       18,  // s2
129       19,  // s3
130       20,  // s4
131       21,  // s5
132       22,  // s6
133       23,  // s7
134       24,  // t8
135       25,  // t9
136       26,  // k0
137       27,  // k1
138       28,  // gp
139       29,  // sp
140       30,  // fp
141       31,  // ra
142   };
143   return kNumbers[reg.code()];
144 }
145 
ToRegister(int num)146 Register ToRegister(int num) {
147   DCHECK(num >= 0 && num < kNumRegisters);
148   const Register kRegisters[] = {
149       zero_reg, at, v0, v1, a0, a1, a2, a3, a4, a5, a6, a7, t0, t1, t2, t3,
150       s0,       s1, s2, s3, s4, s5, s6, s7, t8, t9, k0, k1, gp, sp, fp, ra};
151   return kRegisters[num];
152 }
153 
154 // -----------------------------------------------------------------------------
155 // Implementation of RelocInfo.
156 
157 const int RelocInfo::kApplyMask =
158     RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
159     RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
160 
IsCodedSpecially()161 bool RelocInfo::IsCodedSpecially() {
162   // The deserializer needs to know whether a pointer is specially coded.  Being
163   // specially coded on MIPS means that it is a lui/ori instruction, and that is
164   // always the case inside code objects.
165   return true;
166 }
167 
IsInConstantPool()168 bool RelocInfo::IsInConstantPool() { return false; }
169 
wasm_call_tag() const170 uint32_t RelocInfo::wasm_call_tag() const {
171   DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL);
172   return static_cast<uint32_t>(
173       Assembler::target_address_at(pc_, constant_pool_));
174 }
175 
176 // -----------------------------------------------------------------------------
177 // Implementation of Operand and MemOperand.
178 // See assembler-mips-inl.h for inlined constructors.
179 
Operand(Handle<HeapObject> handle)180 Operand::Operand(Handle<HeapObject> handle)
181     : rm_(no_reg), rmode_(RelocInfo::FULL_EMBEDDED_OBJECT) {
182   value_.immediate = static_cast<intptr_t>(handle.address());
183 }
184 
EmbeddedNumber(double value)185 Operand Operand::EmbeddedNumber(double value) {
186   int32_t smi;
187   if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi));
188   Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
189   result.is_heap_object_request_ = true;
190   result.value_.heap_object_request = HeapObjectRequest(value);
191   return result;
192 }
193 
EmbeddedStringConstant(const StringConstantBase * str)194 Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) {
195   Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT);
196   result.is_heap_object_request_ = true;
197   result.value_.heap_object_request = HeapObjectRequest(str);
198   return result;
199 }
200 
MemOperand(Register rm,int32_t offset)201 MemOperand::MemOperand(Register rm, int32_t offset) : Operand(rm) {
202   offset_ = offset;
203 }
204 
MemOperand(Register rm,int32_t unit,int32_t multiplier,OffsetAddend offset_addend)205 MemOperand::MemOperand(Register rm, int32_t unit, int32_t multiplier,
206                        OffsetAddend offset_addend)
207     : Operand(rm) {
208   offset_ = unit * multiplier + offset_addend;
209 }
210 
AllocateAndInstallRequestedHeapObjects(Isolate * isolate)211 void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) {
212   DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty());
213   for (auto& request : heap_object_requests_) {
214     Handle<HeapObject> object;
215     switch (request.kind()) {
216       case HeapObjectRequest::kHeapNumber:
217         object = isolate->factory()->NewHeapNumber<AllocationType::kOld>(
218             request.heap_number());
219         break;
220       case HeapObjectRequest::kStringConstant:
221         const StringConstantBase* str = request.string();
222         CHECK_NOT_NULL(str);
223         object = str->AllocateStringConstant(isolate);
224         break;
225     }
226     Address pc = reinterpret_cast<Address>(buffer_start_) + request.offset();
227     set_target_value_at(pc, reinterpret_cast<uint64_t>(object.location()));
228   }
229 }
230 
231 // -----------------------------------------------------------------------------
232 // Specific instructions, constants, and masks.
233 
234 // daddiu(sp, sp, 8) aka Pop() operation or part of Pop(r)
235 // operations as post-increment of sp.
236 const Instr kPopInstruction = DADDIU | (sp.code() << kRsShift) |
237                               (sp.code() << kRtShift) |
238                               (kPointerSize & kImm16Mask);
239 // daddiu(sp, sp, -8) part of Push(r) operation as pre-decrement of sp.
240 const Instr kPushInstruction = DADDIU | (sp.code() << kRsShift) |
241                                (sp.code() << kRtShift) |
242                                (-kPointerSize & kImm16Mask);
243 // Sd(r, MemOperand(sp, 0))
244 const Instr kPushRegPattern = SD | (sp.code() << kRsShift) | (0 & kImm16Mask);
245 //  Ld(r, MemOperand(sp, 0))
246 const Instr kPopRegPattern = LD | (sp.code() << kRsShift) | (0 & kImm16Mask);
247 
248 const Instr kLwRegFpOffsetPattern =
249     LW | (fp.code() << kRsShift) | (0 & kImm16Mask);
250 
251 const Instr kSwRegFpOffsetPattern =
252     SW | (fp.code() << kRsShift) | (0 & kImm16Mask);
253 
254 const Instr kLwRegFpNegOffsetPattern =
255     LW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);
256 
257 const Instr kSwRegFpNegOffsetPattern =
258     SW | (fp.code() << kRsShift) | (kNegOffset & kImm16Mask);
259 // A mask for the Rt register for push, pop, lw, sw instructions.
260 const Instr kRtMask = kRtFieldMask;
261 const Instr kLwSwInstrTypeMask = 0xFFE00000;
262 const Instr kLwSwInstrArgumentMask = ~kLwSwInstrTypeMask;
263 const Instr kLwSwOffsetMask = kImm16Mask;
264 
Assembler(const AssemblerOptions & options,std::unique_ptr<AssemblerBuffer> buffer)265 Assembler::Assembler(const AssemblerOptions& options,
266                      std::unique_ptr<AssemblerBuffer> buffer)
267     : AssemblerBase(options, std::move(buffer)),
268       scratch_register_list_({at, s0}) {
269   if (CpuFeatures::IsSupported(MIPS_SIMD)) {
270     EnableCpuFeature(MIPS_SIMD);
271   }
272   reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_);
273 
274   last_trampoline_pool_end_ = 0;
275   no_trampoline_pool_before_ = 0;
276   trampoline_pool_blocked_nesting_ = 0;
277   // We leave space (16 * kTrampolineSlotsSize)
278   // for BlockTrampolinePoolScope buffer.
279   next_buffer_check_ = FLAG_force_long_branches
280                            ? kMaxInt
281                            : kMaxBranchOffset - kTrampolineSlotsSize * 16;
282   internal_trampoline_exception_ = false;
283   last_bound_pos_ = 0;
284 
285   trampoline_emitted_ = FLAG_force_long_branches;
286   unbound_labels_count_ = 0;
287   block_buffer_growth_ = false;
288 }
289 
GetCode(Isolate * isolate,CodeDesc * desc,SafepointTableBuilder * safepoint_table_builder,int handler_table_offset)290 void Assembler::GetCode(Isolate* isolate, CodeDesc* desc,
291                         SafepointTableBuilder* safepoint_table_builder,
292                         int handler_table_offset) {
293   // As a crutch to avoid having to add manual Align calls wherever we use a
294   // raw workflow to create Code objects (mostly in tests), add another Align
295   // call here. It does no harm - the end of the Code object is aligned to the
296   // (larger) kCodeAlignment anyways.
297   // TODO(jgruber): Consider moving responsibility for proper alignment to
298   // metadata table builders (safepoint, handler, constant pool, code
299   // comments).
300   DataAlign(Code::kMetadataAlignment);
301 
302   EmitForbiddenSlotInstruction();
303 
304   int code_comments_size = WriteCodeComments();
305 
306   DCHECK(pc_ <= reloc_info_writer.pos());  // No overlap.
307 
308   AllocateAndInstallRequestedHeapObjects(isolate);
309 
310   // Set up code descriptor.
311   // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to
312   // this point to make CodeDesc initialization less fiddly.
313 
314   static constexpr int kConstantPoolSize = 0;
315   const int instruction_size = pc_offset();
316   const int code_comments_offset = instruction_size - code_comments_size;
317   const int constant_pool_offset = code_comments_offset - kConstantPoolSize;
318   const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable)
319                                         ? constant_pool_offset
320                                         : handler_table_offset;
321   const int safepoint_table_offset =
322       (safepoint_table_builder == kNoSafepointTable)
323           ? handler_table_offset2
324           : safepoint_table_builder->safepoint_table_offset();
325   const int reloc_info_offset =
326       static_cast<int>(reloc_info_writer.pos() - buffer_->start());
327   CodeDesc::Initialize(desc, this, safepoint_table_offset,
328                        handler_table_offset2, constant_pool_offset,
329                        code_comments_offset, reloc_info_offset);
330 }
331 
Align(int m)332 void Assembler::Align(int m) {
333   DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m));
334   EmitForbiddenSlotInstruction();
335   while ((pc_offset() & (m - 1)) != 0) {
336     nop();
337   }
338 }
339 
CodeTargetAlign()340 void Assembler::CodeTargetAlign() {
341   // No advantage to aligning branch/call targets to more than
342   // single instruction, that I am aware of.
343   Align(4);
344 }
345 
GetRtReg(Instr instr)346 Register Assembler::GetRtReg(Instr instr) {
347   return Register::from_code((instr & kRtFieldMask) >> kRtShift);
348 }
349 
GetRsReg(Instr instr)350 Register Assembler::GetRsReg(Instr instr) {
351   return Register::from_code((instr & kRsFieldMask) >> kRsShift);
352 }
353 
GetRdReg(Instr instr)354 Register Assembler::GetRdReg(Instr instr) {
355   return Register::from_code((instr & kRdFieldMask) >> kRdShift);
356 }
357 
GetRt(Instr instr)358 uint32_t Assembler::GetRt(Instr instr) {
359   return (instr & kRtFieldMask) >> kRtShift;
360 }
361 
GetRtField(Instr instr)362 uint32_t Assembler::GetRtField(Instr instr) { return instr & kRtFieldMask; }
363 
GetRs(Instr instr)364 uint32_t Assembler::GetRs(Instr instr) {
365   return (instr & kRsFieldMask) >> kRsShift;
366 }
367 
GetRsField(Instr instr)368 uint32_t Assembler::GetRsField(Instr instr) { return instr & kRsFieldMask; }
369 
GetRd(Instr instr)370 uint32_t Assembler::GetRd(Instr instr) {
371   return (instr & kRdFieldMask) >> kRdShift;
372 }
373 
GetRdField(Instr instr)374 uint32_t Assembler::GetRdField(Instr instr) { return instr & kRdFieldMask; }
375 
GetSa(Instr instr)376 uint32_t Assembler::GetSa(Instr instr) {
377   return (instr & kSaFieldMask) >> kSaShift;
378 }
379 
GetSaField(Instr instr)380 uint32_t Assembler::GetSaField(Instr instr) { return instr & kSaFieldMask; }
381 
GetOpcodeField(Instr instr)382 uint32_t Assembler::GetOpcodeField(Instr instr) { return instr & kOpcodeMask; }
383 
GetFunction(Instr instr)384 uint32_t Assembler::GetFunction(Instr instr) {
385   return (instr & kFunctionFieldMask) >> kFunctionShift;
386 }
387 
GetFunctionField(Instr instr)388 uint32_t Assembler::GetFunctionField(Instr instr) {
389   return instr & kFunctionFieldMask;
390 }
391 
GetImmediate16(Instr instr)392 uint32_t Assembler::GetImmediate16(Instr instr) { return instr & kImm16Mask; }
393 
GetLabelConst(Instr instr)394 uint32_t Assembler::GetLabelConst(Instr instr) { return instr & ~kImm16Mask; }
395 
IsPop(Instr instr)396 bool Assembler::IsPop(Instr instr) {
397   return (instr & ~kRtMask) == kPopRegPattern;
398 }
399 
IsPush(Instr instr)400 bool Assembler::IsPush(Instr instr) {
401   return (instr & ~kRtMask) == kPushRegPattern;
402 }
403 
IsSwRegFpOffset(Instr instr)404 bool Assembler::IsSwRegFpOffset(Instr instr) {
405   return ((instr & kLwSwInstrTypeMask) == kSwRegFpOffsetPattern);
406 }
407 
IsLwRegFpOffset(Instr instr)408 bool Assembler::IsLwRegFpOffset(Instr instr) {
409   return ((instr & kLwSwInstrTypeMask) == kLwRegFpOffsetPattern);
410 }
411 
IsSwRegFpNegOffset(Instr instr)412 bool Assembler::IsSwRegFpNegOffset(Instr instr) {
413   return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
414           kSwRegFpNegOffsetPattern);
415 }
416 
IsLwRegFpNegOffset(Instr instr)417 bool Assembler::IsLwRegFpNegOffset(Instr instr) {
418   return ((instr & (kLwSwInstrTypeMask | kNegOffset)) ==
419           kLwRegFpNegOffsetPattern);
420 }
421 
422 // Labels refer to positions in the (to be) generated code.
423 // There are bound, linked, and unused labels.
424 //
425 // Bound labels refer to known positions in the already
426 // generated code. pos() is the position the label refers to.
427 //
428 // Linked labels refer to unknown positions in the code
429 // to be generated; pos() is the position of the last
430 // instruction using the label.
431 
432 // The link chain is terminated by a value in the instruction of -1,
433 // which is an otherwise illegal value (branch -1 is inf loop).
434 // The instruction 16-bit offset field addresses 32-bit words, but in
435 // code is conv to an 18-bit value addressing bytes, hence the -4 value.
436 
437 const int kEndOfChain = -4;
438 // Determines the end of the Jump chain (a subset of the label link chain).
439 const int kEndOfJumpChain = 0;
440 
IsMsaBranch(Instr instr)441 bool Assembler::IsMsaBranch(Instr instr) {
442   uint32_t opcode = GetOpcodeField(instr);
443   uint32_t rs_field = GetRsField(instr);
444   if (opcode == COP1) {
445     switch (rs_field) {
446       case BZ_V:
447       case BZ_B:
448       case BZ_H:
449       case BZ_W:
450       case BZ_D:
451       case BNZ_V:
452       case BNZ_B:
453       case BNZ_H:
454       case BNZ_W:
455       case BNZ_D:
456         return true;
457       default:
458         return false;
459     }
460   } else {
461     return false;
462   }
463 }
464 
IsBranch(Instr instr)465 bool Assembler::IsBranch(Instr instr) {
466   uint32_t opcode = GetOpcodeField(instr);
467   uint32_t rt_field = GetRtField(instr);
468   uint32_t rs_field = GetRsField(instr);
469   // Checks if the instruction is a branch.
470   bool isBranch =
471       opcode == BEQ || opcode == BNE || opcode == BLEZ || opcode == BGTZ ||
472       opcode == BEQL || opcode == BNEL || opcode == BLEZL || opcode == BGTZL ||
473       (opcode == REGIMM && (rt_field == BLTZ || rt_field == BGEZ ||
474                             rt_field == BLTZAL || rt_field == BGEZAL)) ||
475       (opcode == COP1 && rs_field == BC1) ||  // Coprocessor branch.
476       (opcode == COP1 && rs_field == BC1EQZ) ||
477       (opcode == COP1 && rs_field == BC1NEZ) || IsMsaBranch(instr);
478   if (!isBranch && kArchVariant == kMips64r6) {
479     // All the 3 variants of POP10 (BOVC, BEQC, BEQZALC) and
480     // POP30 (BNVC, BNEC, BNEZALC) are branch ops.
481     isBranch |= opcode == POP10 || opcode == POP30 || opcode == BC ||
482                 opcode == BALC ||
483                 (opcode == POP66 && rs_field != 0) ||  // BEQZC
484                 (opcode == POP76 && rs_field != 0);    // BNEZC
485   }
486   return isBranch;
487 }
488 
IsBc(Instr instr)489 bool Assembler::IsBc(Instr instr) {
490   uint32_t opcode = GetOpcodeField(instr);
491   // Checks if the instruction is a BC or BALC.
492   return opcode == BC || opcode == BALC;
493 }
494 
IsNal(Instr instr)495 bool Assembler::IsNal(Instr instr) {
496   uint32_t opcode = GetOpcodeField(instr);
497   uint32_t rt_field = GetRtField(instr);
498   uint32_t rs_field = GetRsField(instr);
499   return opcode == REGIMM && rt_field == BLTZAL && rs_field == 0;
500 }
501 
IsBzc(Instr instr)502 bool Assembler::IsBzc(Instr instr) {
503   uint32_t opcode = GetOpcodeField(instr);
504   // Checks if the instruction is BEQZC or BNEZC.
505   return (opcode == POP66 && GetRsField(instr) != 0) ||
506          (opcode == POP76 && GetRsField(instr) != 0);
507 }
508 
IsEmittedConstant(Instr instr)509 bool Assembler::IsEmittedConstant(Instr instr) {
510   uint32_t label_constant = GetLabelConst(instr);
511   return label_constant == 0;  // Emitted label const in reg-exp engine.
512 }
513 
IsBeq(Instr instr)514 bool Assembler::IsBeq(Instr instr) { return GetOpcodeField(instr) == BEQ; }
515 
IsBne(Instr instr)516 bool Assembler::IsBne(Instr instr) { return GetOpcodeField(instr) == BNE; }
517 
IsBeqzc(Instr instr)518 bool Assembler::IsBeqzc(Instr instr) {
519   uint32_t opcode = GetOpcodeField(instr);
520   return opcode == POP66 && GetRsField(instr) != 0;
521 }
522 
IsBnezc(Instr instr)523 bool Assembler::IsBnezc(Instr instr) {
524   uint32_t opcode = GetOpcodeField(instr);
525   return opcode == POP76 && GetRsField(instr) != 0;
526 }
527 
IsBeqc(Instr instr)528 bool Assembler::IsBeqc(Instr instr) {
529   uint32_t opcode = GetOpcodeField(instr);
530   uint32_t rs = GetRsField(instr);
531   uint32_t rt = GetRtField(instr);
532   return opcode == POP10 && rs != 0 && rs < rt;  // && rt != 0
533 }
534 
IsBnec(Instr instr)535 bool Assembler::IsBnec(Instr instr) {
536   uint32_t opcode = GetOpcodeField(instr);
537   uint32_t rs = GetRsField(instr);
538   uint32_t rt = GetRtField(instr);
539   return opcode == POP30 && rs != 0 && rs < rt;  // && rt != 0
540 }
541 
IsMov(Instr instr,Register rd,Register rs)542 bool Assembler::IsMov(Instr instr, Register rd, Register rs) {
543   uint32_t opcode = GetOpcodeField(instr);
544   uint32_t rd_field = GetRd(instr);
545   uint32_t rs_field = GetRs(instr);
546   uint32_t rt_field = GetRt(instr);
547   uint32_t rd_reg = static_cast<uint32_t>(rd.code());
548   uint32_t rs_reg = static_cast<uint32_t>(rs.code());
549   uint32_t function_field = GetFunctionField(instr);
550   // Checks if the instruction is a OR with zero_reg argument (aka MOV).
551   bool res = opcode == SPECIAL && function_field == OR && rd_field == rd_reg &&
552              rs_field == rs_reg && rt_field == 0;
553   return res;
554 }
555 
IsJump(Instr instr)556 bool Assembler::IsJump(Instr instr) {
557   uint32_t opcode = GetOpcodeField(instr);
558   uint32_t rt_field = GetRtField(instr);
559   uint32_t rd_field = GetRdField(instr);
560   uint32_t function_field = GetFunctionField(instr);
561   // Checks if the instruction is a jump.
562   return opcode == J || opcode == JAL ||
563          (opcode == SPECIAL && rt_field == 0 &&
564           ((function_field == JALR) ||
565            (rd_field == 0 && (function_field == JR))));
566 }
567 
IsJ(Instr instr)568 bool Assembler::IsJ(Instr instr) {
569   uint32_t opcode = GetOpcodeField(instr);
570   // Checks if the instruction is a jump.
571   return opcode == J;
572 }
573 
IsJal(Instr instr)574 bool Assembler::IsJal(Instr instr) { return GetOpcodeField(instr) == JAL; }
575 
IsJr(Instr instr)576 bool Assembler::IsJr(Instr instr) {
577   return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JR;
578 }
579 
IsJalr(Instr instr)580 bool Assembler::IsJalr(Instr instr) {
581   return GetOpcodeField(instr) == SPECIAL && GetFunctionField(instr) == JALR;
582 }
583 
IsLui(Instr instr)584 bool Assembler::IsLui(Instr instr) {
585   uint32_t opcode = GetOpcodeField(instr);
586   // Checks if the instruction is a load upper immediate.
587   return opcode == LUI;
588 }
589 
IsOri(Instr instr)590 bool Assembler::IsOri(Instr instr) {
591   uint32_t opcode = GetOpcodeField(instr);
592   // Checks if the instruction is a load upper immediate.
593   return opcode == ORI;
594 }
595 
IsNop(Instr instr,unsigned int type)596 bool Assembler::IsNop(Instr instr, unsigned int type) {
597   // See Assembler::nop(type).
598   DCHECK_LT(type, 32);
599   uint32_t opcode = GetOpcodeField(instr);
600   uint32_t function = GetFunctionField(instr);
601   uint32_t rt = GetRt(instr);
602   uint32_t rd = GetRd(instr);
603   uint32_t sa = GetSa(instr);
604 
605   // Traditional mips nop == sll(zero_reg, zero_reg, 0)
606   // When marking non-zero type, use sll(zero_reg, at, type)
607   // to avoid use of mips ssnop and ehb special encodings
608   // of the sll instruction.
609 
610   Register nop_rt_reg = (type == 0) ? zero_reg : at;
611   bool ret = (opcode == SPECIAL && function == SLL &&
612               rd == static_cast<uint32_t>(ToNumber(zero_reg)) &&
613               rt == static_cast<uint32_t>(ToNumber(nop_rt_reg)) && sa == type);
614 
615   return ret;
616 }
617 
GetBranchOffset(Instr instr)618 int32_t Assembler::GetBranchOffset(Instr instr) {
619   DCHECK(IsBranch(instr));
620   return (static_cast<int16_t>(instr & kImm16Mask)) << 2;
621 }
622 
IsLw(Instr instr)623 bool Assembler::IsLw(Instr instr) {
624   return (static_cast<uint32_t>(instr & kOpcodeMask) == LW);
625 }
626 
GetLwOffset(Instr instr)627 int16_t Assembler::GetLwOffset(Instr instr) {
628   DCHECK(IsLw(instr));
629   return ((instr & kImm16Mask));
630 }
631 
SetLwOffset(Instr instr,int16_t offset)632 Instr Assembler::SetLwOffset(Instr instr, int16_t offset) {
633   DCHECK(IsLw(instr));
634 
635   // We actually create a new lw instruction based on the original one.
636   Instr temp_instr = LW | (instr & kRsFieldMask) | (instr & kRtFieldMask) |
637                      (offset & kImm16Mask);
638 
639   return temp_instr;
640 }
641 
IsSw(Instr instr)642 bool Assembler::IsSw(Instr instr) {
643   return (static_cast<uint32_t>(instr & kOpcodeMask) == SW);
644 }
645 
SetSwOffset(Instr instr,int16_t offset)646 Instr Assembler::SetSwOffset(Instr instr, int16_t offset) {
647   DCHECK(IsSw(instr));
648   return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
649 }
650 
IsAddImmediate(Instr instr)651 bool Assembler::IsAddImmediate(Instr instr) {
652   return ((instr & kOpcodeMask) == ADDIU || (instr & kOpcodeMask) == DADDIU);
653 }
654 
SetAddImmediateOffset(Instr instr,int16_t offset)655 Instr Assembler::SetAddImmediateOffset(Instr instr, int16_t offset) {
656   DCHECK(IsAddImmediate(instr));
657   return ((instr & ~kImm16Mask) | (offset & kImm16Mask));
658 }
659 
IsAndImmediate(Instr instr)660 bool Assembler::IsAndImmediate(Instr instr) {
661   return GetOpcodeField(instr) == ANDI;
662 }
663 
OffsetSizeInBits(Instr instr)664 static Assembler::OffsetSize OffsetSizeInBits(Instr instr) {
665   if (kArchVariant == kMips64r6) {
666     if (Assembler::IsBc(instr)) {
667       return Assembler::OffsetSize::kOffset26;
668     } else if (Assembler::IsBzc(instr)) {
669       return Assembler::OffsetSize::kOffset21;
670     }
671   }
672   return Assembler::OffsetSize::kOffset16;
673 }
674 
AddBranchOffset(int pos,Instr instr)675 static inline int32_t AddBranchOffset(int pos, Instr instr) {
676   int bits = OffsetSizeInBits(instr);
677   const int32_t mask = (1 << bits) - 1;
678   bits = 32 - bits;
679 
680   // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
681   // the compiler uses arithmetic shifts for signed integers.
682   int32_t imm = ((instr & mask) << bits) >> (bits - 2);
683 
684   if (imm == kEndOfChain) {
685     // EndOfChain sentinel is returned directly, not relative to pc or pos.
686     return kEndOfChain;
687   } else {
688     return pos + Assembler::kBranchPCOffset + imm;
689   }
690 }
691 
target_at(int pos,bool is_internal)692 int Assembler::target_at(int pos, bool is_internal) {
693   if (is_internal) {
694     int64_t* p = reinterpret_cast<int64_t*>(buffer_start_ + pos);
695     int64_t address = *p;
696     if (address == kEndOfJumpChain) {
697       return kEndOfChain;
698     } else {
699       int64_t instr_address = reinterpret_cast<int64_t>(p);
700       DCHECK(instr_address - address < INT_MAX);
701       int delta = static_cast<int>(instr_address - address);
702       DCHECK(pos > delta);
703       return pos - delta;
704     }
705   }
706   Instr instr = instr_at(pos);
707   if ((instr & ~kImm16Mask) == 0) {
708     // Emitted label constant, not part of a branch.
709     if (instr == 0) {
710       return kEndOfChain;
711     } else {
712       int32_t imm18 = ((instr & static_cast<int32_t>(kImm16Mask)) << 16) >> 14;
713       return (imm18 + pos);
714     }
715   }
716   // Check we have a branch or jump instruction.
717   DCHECK(IsBranch(instr) || IsJ(instr) || IsJal(instr) || IsLui(instr) ||
718          IsMov(instr, t8, ra));
719   // Do NOT change this to <<2. We rely on arithmetic shifts here, assuming
720   // the compiler uses arithmetic shifts for signed integers.
721   if (IsBranch(instr)) {
722     return AddBranchOffset(pos, instr);
723   } else if (IsMov(instr, t8, ra)) {
724     int32_t imm32;
725     Instr instr_lui = instr_at(pos + 2 * kInstrSize);
726     Instr instr_ori = instr_at(pos + 3 * kInstrSize);
727     DCHECK(IsLui(instr_lui));
728     DCHECK(IsOri(instr_ori));
729     imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
730     imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask));
731     if (imm32 == kEndOfJumpChain) {
732       // EndOfChain sentinel is returned directly, not relative to pc or pos.
733       return kEndOfChain;
734     }
735     return pos + Assembler::kLongBranchPCOffset + imm32;
736   } else if (IsLui(instr)) {
737     if (IsNal(instr_at(pos + kInstrSize))) {
738       int32_t imm32;
739       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
740       Instr instr_ori = instr_at(pos + 2 * kInstrSize);
741       DCHECK(IsLui(instr_lui));
742       DCHECK(IsOri(instr_ori));
743       imm32 = (instr_lui & static_cast<int32_t>(kImm16Mask)) << kLuiShift;
744       imm32 |= (instr_ori & static_cast<int32_t>(kImm16Mask));
745       if (imm32 == kEndOfJumpChain) {
746         // EndOfChain sentinel is returned directly, not relative to pc or pos.
747         return kEndOfChain;
748       }
749       return pos + Assembler::kLongBranchPCOffset + imm32;
750     } else {
751       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
752       Instr instr_ori = instr_at(pos + 1 * kInstrSize);
753       Instr instr_ori2 = instr_at(pos + 3 * kInstrSize);
754       DCHECK(IsOri(instr_ori));
755       DCHECK(IsOri(instr_ori2));
756 
757       // TODO(plind) create named constants for shift values.
758       int64_t imm = static_cast<int64_t>(instr_lui & kImm16Mask) << 48;
759       imm |= static_cast<int64_t>(instr_ori & kImm16Mask) << 32;
760       imm |= static_cast<int64_t>(instr_ori2 & kImm16Mask) << 16;
761       // Sign extend address;
762       imm >>= 16;
763 
764       if (imm == kEndOfJumpChain) {
765         // EndOfChain sentinel is returned directly, not relative to pc or pos.
766         return kEndOfChain;
767       } else {
768         uint64_t instr_address = reinterpret_cast<int64_t>(buffer_start_ + pos);
769         DCHECK(instr_address - imm < INT_MAX);
770         int delta = static_cast<int>(instr_address - imm);
771         DCHECK(pos > delta);
772         return pos - delta;
773       }
774     }
775   } else {
776     DCHECK(IsJ(instr) || IsJal(instr));
777     int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
778     if (imm28 == kEndOfJumpChain) {
779       // EndOfChain sentinel is returned directly, not relative to pc or pos.
780       return kEndOfChain;
781     } else {
782       // Sign extend 28-bit offset.
783       int32_t delta = static_cast<int32_t>((imm28 << 4) >> 4);
784       return pos + delta;
785     }
786   }
787 }
788 
SetBranchOffset(int32_t pos,int32_t target_pos,Instr instr)789 static inline Instr SetBranchOffset(int32_t pos, int32_t target_pos,
790                                     Instr instr) {
791   int32_t bits = OffsetSizeInBits(instr);
792   int32_t imm = target_pos - (pos + Assembler::kBranchPCOffset);
793   DCHECK_EQ(imm & 3, 0);
794   imm >>= 2;
795 
796   const int32_t mask = (1 << bits) - 1;
797   instr &= ~mask;
798   DCHECK(is_intn(imm, bits));
799 
800   return instr | (imm & mask);
801 }
802 
target_at_put(int pos,int target_pos,bool is_internal)803 void Assembler::target_at_put(int pos, int target_pos, bool is_internal) {
804   if (is_internal) {
805     uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
806     *reinterpret_cast<uint64_t*>(buffer_start_ + pos) = imm;
807     return;
808   }
809   Instr instr = instr_at(pos);
810   if ((instr & ~kImm16Mask) == 0) {
811     DCHECK(target_pos == kEndOfChain || target_pos >= 0);
812     // Emitted label constant, not part of a branch.
813     // Make label relative to Code pointer of generated Code object.
814     instr_at_put(pos, target_pos + (Code::kHeaderSize - kHeapObjectTag));
815     return;
816   }
817 
818   if (IsBranch(instr)) {
819     instr = SetBranchOffset(pos, target_pos, instr);
820     instr_at_put(pos, instr);
821   } else if (IsLui(instr)) {
822     if (IsNal(instr_at(pos + kInstrSize))) {
823       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
824       Instr instr_ori = instr_at(pos + 2 * kInstrSize);
825       DCHECK(IsLui(instr_lui));
826       DCHECK(IsOri(instr_ori));
827       int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
828       DCHECK_EQ(imm & 3, 0);
829       if (is_int16(imm + Assembler::kLongBranchPCOffset -
830                    Assembler::kBranchPCOffset)) {
831         // Optimize by converting to regular branch and link with 16-bit
832         // offset.
833         Instr instr_b = REGIMM | BGEZAL;  // Branch and link.
834         instr_b = SetBranchOffset(pos, target_pos, instr_b);
835         // Correct ra register to point to one instruction after jalr from
836         // TurboAssembler::BranchAndLinkLong.
837         Instr instr_a = DADDIU | ra.code() << kRsShift | ra.code() << kRtShift |
838                         kOptimizedBranchAndLinkLongReturnOffset;
839 
840         instr_at_put(pos, instr_b);
841         instr_at_put(pos + 1 * kInstrSize, instr_a);
842       } else {
843         instr_lui &= ~kImm16Mask;
844         instr_ori &= ~kImm16Mask;
845 
846         instr_at_put(pos + 0 * kInstrSize,
847                      instr_lui | ((imm >> kLuiShift) & kImm16Mask));
848         instr_at_put(pos + 2 * kInstrSize, instr_ori | (imm & kImm16Mask));
849       }
850     } else {
851       Instr instr_lui = instr_at(pos + 0 * kInstrSize);
852       Instr instr_ori = instr_at(pos + 1 * kInstrSize);
853       Instr instr_ori2 = instr_at(pos + 3 * kInstrSize);
854       DCHECK(IsOri(instr_ori));
855       DCHECK(IsOri(instr_ori2));
856 
857       uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
858       DCHECK_EQ(imm & 3, 0);
859 
860       instr_lui &= ~kImm16Mask;
861       instr_ori &= ~kImm16Mask;
862       instr_ori2 &= ~kImm16Mask;
863 
864       instr_at_put(pos + 0 * kInstrSize,
865                    instr_lui | ((imm >> 32) & kImm16Mask));
866       instr_at_put(pos + 1 * kInstrSize,
867                    instr_ori | ((imm >> 16) & kImm16Mask));
868       instr_at_put(pos + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask));
869     }
870   } else if (IsMov(instr, t8, ra)) {
871     Instr instr_lui = instr_at(pos + 2 * kInstrSize);
872     Instr instr_ori = instr_at(pos + 3 * kInstrSize);
873     DCHECK(IsLui(instr_lui));
874     DCHECK(IsOri(instr_ori));
875 
876     int32_t imm_short = target_pos - (pos + Assembler::kBranchPCOffset);
877 
878     if (is_int16(imm_short)) {
879       // Optimize by converting to regular branch with 16-bit
880       // offset
881       Instr instr_b = BEQ;
882       instr_b = SetBranchOffset(pos, target_pos, instr_b);
883 
884       Instr instr_j = instr_at(pos + 5 * kInstrSize);
885       Instr instr_branch_delay;
886 
887       if (IsJump(instr_j)) {
888         // Case when branch delay slot is protected.
889         instr_branch_delay = nopInstr;
890       } else {
891         // Case when branch delay slot is used.
892         instr_branch_delay = instr_at(pos + 7 * kInstrSize);
893       }
894       instr_at_put(pos, instr_b);
895       instr_at_put(pos + 1 * kInstrSize, instr_branch_delay);
896     } else {
897       int32_t imm = target_pos - (pos + Assembler::kLongBranchPCOffset);
898       DCHECK_EQ(imm & 3, 0);
899 
900       instr_lui &= ~kImm16Mask;
901       instr_ori &= ~kImm16Mask;
902 
903       instr_at_put(pos + 2 * kInstrSize,
904                    instr_lui | ((imm >> kLuiShift) & kImm16Mask));
905       instr_at_put(pos + 3 * kInstrSize, instr_ori | (imm & kImm16Mask));
906     }
907   } else if (IsJ(instr) || IsJal(instr)) {
908     int32_t imm28 = target_pos - pos;
909     DCHECK_EQ(imm28 & 3, 0);
910 
911     uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
912     DCHECK(is_uint26(imm26));
913     // Place 26-bit signed offset with markings.
914     // When code is committed it will be resolved to j/jal.
915     int32_t mark = IsJ(instr) ? kJRawMark : kJalRawMark;
916     instr_at_put(pos, mark | (imm26 & kImm26Mask));
917   } else {
918     int32_t imm28 = target_pos - pos;
919     DCHECK_EQ(imm28 & 3, 0);
920 
921     uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
922     DCHECK(is_uint26(imm26));
923     // Place raw 26-bit signed offset.
924     // When code is committed it will be resolved to j/jal.
925     instr &= ~kImm26Mask;
926     instr_at_put(pos, instr | (imm26 & kImm26Mask));
927   }
928 }
929 
print(const Label * L)930 void Assembler::print(const Label* L) {
931   if (L->is_unused()) {
932     PrintF("unused label\n");
933   } else if (L->is_bound()) {
934     PrintF("bound label to %d\n", L->pos());
935   } else if (L->is_linked()) {
936     Label l;
937     l.link_to(L->pos());
938     PrintF("unbound label");
939     while (l.is_linked()) {
940       PrintF("@ %d ", l.pos());
941       Instr instr = instr_at(l.pos());
942       if ((instr & ~kImm16Mask) == 0) {
943         PrintF("value\n");
944       } else {
945         PrintF("%d\n", instr);
946       }
947       next(&l, is_internal_reference(&l));
948     }
949   } else {
950     PrintF("label in inconsistent state (pos = %d)\n", L->pos_);
951   }
952 }
953 
bind_to(Label * L,int pos)954 void Assembler::bind_to(Label* L, int pos) {
955   DCHECK(0 <= pos && pos <= pc_offset());  // Must have valid binding position.
956   int trampoline_pos = kInvalidSlotPos;
957   bool is_internal = false;
958   if (L->is_linked() && !trampoline_emitted_) {
959     unbound_labels_count_--;
960     if (!is_internal_reference(L)) {
961       next_buffer_check_ += kTrampolineSlotsSize;
962     }
963   }
964 
965   while (L->is_linked()) {
966     int fixup_pos = L->pos();
967     int dist = pos - fixup_pos;
968     is_internal = is_internal_reference(L);
969     next(L, is_internal);  // Call next before overwriting link with target at
970                            // fixup_pos.
971     Instr instr = instr_at(fixup_pos);
972     if (is_internal) {
973       target_at_put(fixup_pos, pos, is_internal);
974     } else {
975       if (IsBranch(instr)) {
976         int branch_offset = BranchOffset(instr);
977         if (dist > branch_offset) {
978           if (trampoline_pos == kInvalidSlotPos) {
979             trampoline_pos = get_trampoline_entry(fixup_pos);
980             CHECK_NE(trampoline_pos, kInvalidSlotPos);
981           }
982           CHECK((trampoline_pos - fixup_pos) <= branch_offset);
983           target_at_put(fixup_pos, trampoline_pos, false);
984           fixup_pos = trampoline_pos;
985         }
986         target_at_put(fixup_pos, pos, false);
987       } else {
988         DCHECK(IsJ(instr) || IsJal(instr) || IsLui(instr) ||
989                IsEmittedConstant(instr) || IsMov(instr, t8, ra));
990         target_at_put(fixup_pos, pos, false);
991       }
992     }
993   }
994   L->bind_to(pos);
995 
996   // Keep track of the last bound label so we don't eliminate any instructions
997   // before a bound label.
998   if (pos > last_bound_pos_) last_bound_pos_ = pos;
999 }
1000 
bind(Label * L)1001 void Assembler::bind(Label* L) {
1002   DCHECK(!L->is_bound());  // Label can only be bound once.
1003   bind_to(L, pc_offset());
1004 }
1005 
next(Label * L,bool is_internal)1006 void Assembler::next(Label* L, bool is_internal) {
1007   DCHECK(L->is_linked());
1008   int link = target_at(L->pos(), is_internal);
1009   if (link == kEndOfChain) {
1010     L->Unuse();
1011   } else {
1012     DCHECK_GE(link, 0);
1013     L->link_to(link);
1014   }
1015 }
1016 
is_near(Label * L)1017 bool Assembler::is_near(Label* L) {
1018   DCHECK(L->is_bound());
1019   return pc_offset() - L->pos() < kMaxBranchOffset - 4 * kInstrSize;
1020 }
1021 
is_near(Label * L,OffsetSize bits)1022 bool Assembler::is_near(Label* L, OffsetSize bits) {
1023   if (L == nullptr || !L->is_bound()) return true;
1024   return ((pc_offset() - L->pos()) <
1025           (1 << (bits + 2 - 1)) - 1 - 5 * kInstrSize);
1026 }
1027 
is_near_branch(Label * L)1028 bool Assembler::is_near_branch(Label* L) {
1029   DCHECK(L->is_bound());
1030   return kArchVariant == kMips64r6 ? is_near_r6(L) : is_near_pre_r6(L);
1031 }
1032 
BranchOffset(Instr instr)1033 int Assembler::BranchOffset(Instr instr) {
1034   // At pre-R6 and for other R6 branches the offset is 16 bits.
1035   int bits = OffsetSize::kOffset16;
1036 
1037   if (kArchVariant == kMips64r6) {
1038     uint32_t opcode = GetOpcodeField(instr);
1039     switch (opcode) {
1040       // Checks BC or BALC.
1041       case BC:
1042       case BALC:
1043         bits = OffsetSize::kOffset26;
1044         break;
1045 
1046       // Checks BEQZC or BNEZC.
1047       case POP66:
1048       case POP76:
1049         if (GetRsField(instr) != 0) bits = OffsetSize::kOffset21;
1050         break;
1051       default:
1052         break;
1053     }
1054   }
1055 
1056   return (1 << (bits + 2 - 1)) - 1;
1057 }
1058 
1059 // We have to use a temporary register for things that can be relocated even
1060 // if they can be encoded in the MIPS's 16 bits of immediate-offset instruction
1061 // space.  There is no guarantee that the relocated location can be similarly
1062 // encoded.
MustUseReg(RelocInfo::Mode rmode)1063 bool Assembler::MustUseReg(RelocInfo::Mode rmode) {
1064   return !RelocInfo::IsNoInfo(rmode);
1065 }
1066 
GenInstrRegister(Opcode opcode,Register rs,Register rt,Register rd,uint16_t sa,SecondaryField func)1067 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1068                                  Register rd, uint16_t sa,
1069                                  SecondaryField func) {
1070   DCHECK(rd.is_valid() && rs.is_valid() && rt.is_valid() && is_uint5(sa));
1071   Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1072                 (rd.code() << kRdShift) | (sa << kSaShift) | func;
1073   emit(instr);
1074 }
1075 
GenInstrRegister(Opcode opcode,Register rs,Register rt,uint16_t msb,uint16_t lsb,SecondaryField func)1076 void Assembler::GenInstrRegister(Opcode opcode, Register rs, Register rt,
1077                                  uint16_t msb, uint16_t lsb,
1078                                  SecondaryField func) {
1079   DCHECK(rs.is_valid() && rt.is_valid() && is_uint5(msb) && is_uint5(lsb));
1080   Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1081                 (msb << kRdShift) | (lsb << kSaShift) | func;
1082   emit(instr);
1083 }
1084 
GenInstrRegister(Opcode opcode,SecondaryField fmt,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1085 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt,
1086                                  FPURegister ft, FPURegister fs, FPURegister fd,
1087                                  SecondaryField func) {
1088   DCHECK(fd.is_valid() && fs.is_valid() && ft.is_valid());
1089   Instr instr = opcode | fmt | (ft.code() << kFtShift) |
1090                 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1091   emit(instr);
1092 }
1093 
GenInstrRegister(Opcode opcode,FPURegister fr,FPURegister ft,FPURegister fs,FPURegister fd,SecondaryField func)1094 void Assembler::GenInstrRegister(Opcode opcode, FPURegister fr, FPURegister ft,
1095                                  FPURegister fs, FPURegister fd,
1096                                  SecondaryField func) {
1097   DCHECK(fd.is_valid() && fr.is_valid() && fs.is_valid() && ft.is_valid());
1098   Instr instr = opcode | (fr.code() << kFrShift) | (ft.code() << kFtShift) |
1099                 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1100   emit(instr);
1101 }
1102 
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPURegister fs,FPURegister fd,SecondaryField func)1103 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1104                                  FPURegister fs, FPURegister fd,
1105                                  SecondaryField func) {
1106   DCHECK(fd.is_valid() && fs.is_valid() && rt.is_valid());
1107   Instr instr = opcode | fmt | (rt.code() << kRtShift) |
1108                 (fs.code() << kFsShift) | (fd.code() << kFdShift) | func;
1109   emit(instr);
1110 }
1111 
GenInstrRegister(Opcode opcode,SecondaryField fmt,Register rt,FPUControlRegister fs,SecondaryField func)1112 void Assembler::GenInstrRegister(Opcode opcode, SecondaryField fmt, Register rt,
1113                                  FPUControlRegister fs, SecondaryField func) {
1114   DCHECK(fs.is_valid() && rt.is_valid());
1115   Instr instr =
1116       opcode | fmt | (rt.code() << kRtShift) | (fs.code() << kFsShift) | func;
1117   emit(instr);
1118 }
1119 
1120 // Instructions with immediate value.
1121 // Registers are in the order of the instruction encoding, from left to right.
GenInstrImmediate(Opcode opcode,Register rs,Register rt,int32_t j,CompactBranchType is_compact_branch)1122 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, Register rt,
1123                                   int32_t j,
1124                                   CompactBranchType is_compact_branch) {
1125   DCHECK(rs.is_valid() && rt.is_valid() && (is_int16(j) || is_uint16(j)));
1126   Instr instr = opcode | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1127                 (j & kImm16Mask);
1128   emit(instr, is_compact_branch);
1129 }
1130 
GenInstrImmediate(Opcode opcode,Register base,Register rt,int32_t offset9,int bit6,SecondaryField func)1131 void Assembler::GenInstrImmediate(Opcode opcode, Register base, Register rt,
1132                                   int32_t offset9, int bit6,
1133                                   SecondaryField func) {
1134   DCHECK(base.is_valid() && rt.is_valid() && is_int9(offset9) &&
1135          is_uint1(bit6));
1136   Instr instr = opcode | (base.code() << kBaseShift) | (rt.code() << kRtShift) |
1137                 ((offset9 << kImm9Shift) & kImm9Mask) | bit6 << kBit6Shift |
1138                 func;
1139   emit(instr);
1140 }
1141 
GenInstrImmediate(Opcode opcode,Register rs,SecondaryField SF,int32_t j,CompactBranchType is_compact_branch)1142 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, SecondaryField SF,
1143                                   int32_t j,
1144                                   CompactBranchType is_compact_branch) {
1145   DCHECK(rs.is_valid() && (is_int16(j) || is_uint16(j)));
1146   Instr instr = opcode | (rs.code() << kRsShift) | SF | (j & kImm16Mask);
1147   emit(instr, is_compact_branch);
1148 }
1149 
GenInstrImmediate(Opcode opcode,Register rs,FPURegister ft,int32_t j,CompactBranchType is_compact_branch)1150 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, FPURegister ft,
1151                                   int32_t j,
1152                                   CompactBranchType is_compact_branch) {
1153   DCHECK(rs.is_valid() && ft.is_valid() && (is_int16(j) || is_uint16(j)));
1154   Instr instr = opcode | (rs.code() << kRsShift) | (ft.code() << kFtShift) |
1155                 (j & kImm16Mask);
1156   emit(instr, is_compact_branch);
1157 }
1158 
GenInstrImmediate(Opcode opcode,Register rs,int32_t offset21,CompactBranchType is_compact_branch)1159 void Assembler::GenInstrImmediate(Opcode opcode, Register rs, int32_t offset21,
1160                                   CompactBranchType is_compact_branch) {
1161   DCHECK(rs.is_valid() && (is_int21(offset21)));
1162   Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1163   emit(instr, is_compact_branch);
1164 }
1165 
GenInstrImmediate(Opcode opcode,Register rs,uint32_t offset21)1166 void Assembler::GenInstrImmediate(Opcode opcode, Register rs,
1167                                   uint32_t offset21) {
1168   DCHECK(rs.is_valid() && (is_uint21(offset21)));
1169   Instr instr = opcode | (rs.code() << kRsShift) | (offset21 & kImm21Mask);
1170   emit(instr);
1171 }
1172 
GenInstrImmediate(Opcode opcode,int32_t offset26,CompactBranchType is_compact_branch)1173 void Assembler::GenInstrImmediate(Opcode opcode, int32_t offset26,
1174                                   CompactBranchType is_compact_branch) {
1175   DCHECK(is_int26(offset26));
1176   Instr instr = opcode | (offset26 & kImm26Mask);
1177   emit(instr, is_compact_branch);
1178 }
1179 
GenInstrJump(Opcode opcode,uint32_t address)1180 void Assembler::GenInstrJump(Opcode opcode, uint32_t address) {
1181   BlockTrampolinePoolScope block_trampoline_pool(this);
1182   DCHECK(is_uint26(address));
1183   Instr instr = opcode | address;
1184   emit(instr);
1185   BlockTrampolinePoolFor(1);  // For associated delay slot.
1186 }
1187 
1188 // MSA instructions
GenInstrMsaI8(SecondaryField operation,uint32_t imm8,MSARegister ws,MSARegister wd)1189 void Assembler::GenInstrMsaI8(SecondaryField operation, uint32_t imm8,
1190                               MSARegister ws, MSARegister wd) {
1191   DCHECK(IsEnabled(MIPS_SIMD));
1192   DCHECK(ws.is_valid() && wd.is_valid() && is_uint8(imm8));
1193   Instr instr = MSA | operation | ((imm8 & kImm8Mask) << kWtShift) |
1194                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1195   emit(instr);
1196 }
1197 
GenInstrMsaI5(SecondaryField operation,SecondaryField df,int32_t imm5,MSARegister ws,MSARegister wd)1198 void Assembler::GenInstrMsaI5(SecondaryField operation, SecondaryField df,
1199                               int32_t imm5, MSARegister ws, MSARegister wd) {
1200   DCHECK(IsEnabled(MIPS_SIMD));
1201   DCHECK(ws.is_valid() && wd.is_valid());
1202   DCHECK((operation == MAXI_S) || (operation == MINI_S) ||
1203                  (operation == CEQI) || (operation == CLTI_S) ||
1204                  (operation == CLEI_S)
1205              ? is_int5(imm5)
1206              : is_uint5(imm5));
1207   Instr instr = MSA | operation | df | ((imm5 & kImm5Mask) << kWtShift) |
1208                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1209   emit(instr);
1210 }
1211 
GenInstrMsaBit(SecondaryField operation,SecondaryField df,uint32_t m,MSARegister ws,MSARegister wd)1212 void Assembler::GenInstrMsaBit(SecondaryField operation, SecondaryField df,
1213                                uint32_t m, MSARegister ws, MSARegister wd) {
1214   DCHECK(IsEnabled(MIPS_SIMD));
1215   DCHECK(ws.is_valid() && wd.is_valid() && is_valid_msa_df_m(df, m));
1216   Instr instr = MSA | operation | df | (m << kWtShift) |
1217                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1218   emit(instr);
1219 }
1220 
GenInstrMsaI10(SecondaryField operation,SecondaryField df,int32_t imm10,MSARegister wd)1221 void Assembler::GenInstrMsaI10(SecondaryField operation, SecondaryField df,
1222                                int32_t imm10, MSARegister wd) {
1223   DCHECK(IsEnabled(MIPS_SIMD));
1224   DCHECK(wd.is_valid() && is_int10(imm10));
1225   Instr instr = MSA | operation | df | ((imm10 & kImm10Mask) << kWsShift) |
1226                 (wd.code() << kWdShift);
1227   emit(instr);
1228 }
1229 
1230 template <typename RegType>
GenInstrMsa3R(SecondaryField operation,SecondaryField df,RegType t,MSARegister ws,MSARegister wd)1231 void Assembler::GenInstrMsa3R(SecondaryField operation, SecondaryField df,
1232                               RegType t, MSARegister ws, MSARegister wd) {
1233   DCHECK(IsEnabled(MIPS_SIMD));
1234   DCHECK(t.is_valid() && ws.is_valid() && wd.is_valid());
1235   Instr instr = MSA | operation | df | (t.code() << kWtShift) |
1236                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1237   emit(instr);
1238 }
1239 
1240 template <typename DstType, typename SrcType>
GenInstrMsaElm(SecondaryField operation,SecondaryField df,uint32_t n,SrcType src,DstType dst)1241 void Assembler::GenInstrMsaElm(SecondaryField operation, SecondaryField df,
1242                                uint32_t n, SrcType src, DstType dst) {
1243   DCHECK(IsEnabled(MIPS_SIMD));
1244   DCHECK(src.is_valid() && dst.is_valid() && is_valid_msa_df_n(df, n));
1245   Instr instr = MSA | operation | df | (n << kWtShift) |
1246                 (src.code() << kWsShift) | (dst.code() << kWdShift) |
1247                 MSA_ELM_MINOR;
1248   emit(instr);
1249 }
1250 
GenInstrMsa3RF(SecondaryField operation,uint32_t df,MSARegister wt,MSARegister ws,MSARegister wd)1251 void Assembler::GenInstrMsa3RF(SecondaryField operation, uint32_t df,
1252                                MSARegister wt, MSARegister ws, MSARegister wd) {
1253   DCHECK(IsEnabled(MIPS_SIMD));
1254   DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1255   DCHECK_LT(df, 2);
1256   Instr instr = MSA | operation | (df << 21) | (wt.code() << kWtShift) |
1257                 (ws.code() << kWsShift) | (wd.code() << kWdShift);
1258   emit(instr);
1259 }
1260 
GenInstrMsaVec(SecondaryField operation,MSARegister wt,MSARegister ws,MSARegister wd)1261 void Assembler::GenInstrMsaVec(SecondaryField operation, MSARegister wt,
1262                                MSARegister ws, MSARegister wd) {
1263   DCHECK(IsEnabled(MIPS_SIMD));
1264   DCHECK(wt.is_valid() && ws.is_valid() && wd.is_valid());
1265   Instr instr = MSA | operation | (wt.code() << kWtShift) |
1266                 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1267                 MSA_VEC_2R_2RF_MINOR;
1268   emit(instr);
1269 }
1270 
GenInstrMsaMI10(SecondaryField operation,int32_t s10,Register rs,MSARegister wd)1271 void Assembler::GenInstrMsaMI10(SecondaryField operation, int32_t s10,
1272                                 Register rs, MSARegister wd) {
1273   DCHECK(IsEnabled(MIPS_SIMD));
1274   DCHECK(rs.is_valid() && wd.is_valid() && is_int10(s10));
1275   Instr instr = MSA | operation | ((s10 & kImm10Mask) << kWtShift) |
1276                 (rs.code() << kWsShift) | (wd.code() << kWdShift);
1277   emit(instr);
1278 }
1279 
GenInstrMsa2R(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1280 void Assembler::GenInstrMsa2R(SecondaryField operation, SecondaryField df,
1281                               MSARegister ws, MSARegister wd) {
1282   DCHECK(IsEnabled(MIPS_SIMD));
1283   DCHECK(ws.is_valid() && wd.is_valid());
1284   Instr instr = MSA | MSA_2R_FORMAT | operation | df | (ws.code() << kWsShift) |
1285                 (wd.code() << kWdShift) | MSA_VEC_2R_2RF_MINOR;
1286   emit(instr);
1287 }
1288 
GenInstrMsa2RF(SecondaryField operation,SecondaryField df,MSARegister ws,MSARegister wd)1289 void Assembler::GenInstrMsa2RF(SecondaryField operation, SecondaryField df,
1290                                MSARegister ws, MSARegister wd) {
1291   DCHECK(IsEnabled(MIPS_SIMD));
1292   DCHECK(ws.is_valid() && wd.is_valid());
1293   Instr instr = MSA | MSA_2RF_FORMAT | operation | df |
1294                 (ws.code() << kWsShift) | (wd.code() << kWdShift) |
1295                 MSA_VEC_2R_2RF_MINOR;
1296   emit(instr);
1297 }
1298 
GenInstrMsaBranch(SecondaryField operation,MSARegister wt,int32_t offset16)1299 void Assembler::GenInstrMsaBranch(SecondaryField operation, MSARegister wt,
1300                                   int32_t offset16) {
1301   DCHECK(IsEnabled(MIPS_SIMD));
1302   DCHECK(wt.is_valid() && is_int16(offset16));
1303   BlockTrampolinePoolScope block_trampoline_pool(this);
1304   Instr instr =
1305       COP1 | operation | (wt.code() << kWtShift) | (offset16 & kImm16Mask);
1306   emit(instr);
1307   BlockTrampolinePoolFor(1);  // For associated delay slot.
1308 }
1309 
1310 // Returns the next free trampoline entry.
get_trampoline_entry(int32_t pos)1311 int32_t Assembler::get_trampoline_entry(int32_t pos) {
1312   int32_t trampoline_entry = kInvalidSlotPos;
1313   if (!internal_trampoline_exception_) {
1314     if (trampoline_.start() > pos) {
1315       trampoline_entry = trampoline_.take_slot();
1316     }
1317 
1318     if (kInvalidSlotPos == trampoline_entry) {
1319       internal_trampoline_exception_ = true;
1320     }
1321   }
1322   return trampoline_entry;
1323 }
1324 
jump_address(Label * L)1325 uint64_t Assembler::jump_address(Label* L) {
1326   int64_t target_pos;
1327   if (L->is_bound()) {
1328     target_pos = L->pos();
1329   } else {
1330     if (L->is_linked()) {
1331       target_pos = L->pos();  // L's link.
1332       L->link_to(pc_offset());
1333     } else {
1334       L->link_to(pc_offset());
1335       return kEndOfJumpChain;
1336     }
1337   }
1338   uint64_t imm = reinterpret_cast<uint64_t>(buffer_start_) + target_pos;
1339   DCHECK_EQ(imm & 3, 0);
1340 
1341   return imm;
1342 }
1343 
jump_offset(Label * L)1344 uint64_t Assembler::jump_offset(Label* L) {
1345   int64_t target_pos;
1346   int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1347 
1348   if (L->is_bound()) {
1349     target_pos = L->pos();
1350   } else {
1351     if (L->is_linked()) {
1352       target_pos = L->pos();  // L's link.
1353       L->link_to(pc_offset() + pad);
1354     } else {
1355       L->link_to(pc_offset() + pad);
1356       return kEndOfJumpChain;
1357     }
1358   }
1359   int64_t imm = target_pos - (pc_offset() + pad);
1360   DCHECK_EQ(imm & 3, 0);
1361 
1362   return static_cast<uint64_t>(imm);
1363 }
1364 
branch_long_offset(Label * L)1365 uint64_t Assembler::branch_long_offset(Label* L) {
1366   int64_t target_pos;
1367 
1368   if (L->is_bound()) {
1369     target_pos = L->pos();
1370   } else {
1371     if (L->is_linked()) {
1372       target_pos = L->pos();  // L's link.
1373       L->link_to(pc_offset());
1374     } else {
1375       L->link_to(pc_offset());
1376       return kEndOfJumpChain;
1377     }
1378   }
1379   int64_t offset = target_pos - (pc_offset() + kLongBranchPCOffset);
1380   DCHECK_EQ(offset & 3, 0);
1381 
1382   return static_cast<uint64_t>(offset);
1383 }
1384 
branch_offset_helper(Label * L,OffsetSize bits)1385 int32_t Assembler::branch_offset_helper(Label* L, OffsetSize bits) {
1386   int32_t target_pos;
1387   int32_t pad = IsPrevInstrCompactBranch() ? kInstrSize : 0;
1388 
1389   if (L->is_bound()) {
1390     target_pos = L->pos();
1391   } else {
1392     if (L->is_linked()) {
1393       target_pos = L->pos();
1394       L->link_to(pc_offset() + pad);
1395     } else {
1396       L->link_to(pc_offset() + pad);
1397       if (!trampoline_emitted_) {
1398         unbound_labels_count_++;
1399         next_buffer_check_ -= kTrampolineSlotsSize;
1400       }
1401       return kEndOfChain;
1402     }
1403   }
1404 
1405   int32_t offset = target_pos - (pc_offset() + kBranchPCOffset + pad);
1406   DCHECK(is_intn(offset, bits + 2));
1407   DCHECK_EQ(offset & 3, 0);
1408 
1409   return offset;
1410 }
1411 
label_at_put(Label * L,int at_offset)1412 void Assembler::label_at_put(Label* L, int at_offset) {
1413   int target_pos;
1414   if (L->is_bound()) {
1415     target_pos = L->pos();
1416     instr_at_put(at_offset, target_pos + (Code::kHeaderSize - kHeapObjectTag));
1417   } else {
1418     if (L->is_linked()) {
1419       target_pos = L->pos();  // L's link.
1420       int32_t imm18 = target_pos - at_offset;
1421       DCHECK_EQ(imm18 & 3, 0);
1422       int32_t imm16 = imm18 >> 2;
1423       DCHECK(is_int16(imm16));
1424       instr_at_put(at_offset, (imm16 & kImm16Mask));
1425     } else {
1426       target_pos = kEndOfChain;
1427       instr_at_put(at_offset, 0);
1428       if (!trampoline_emitted_) {
1429         unbound_labels_count_++;
1430         next_buffer_check_ -= kTrampolineSlotsSize;
1431       }
1432     }
1433     L->link_to(at_offset);
1434   }
1435 }
1436 
1437 //------- Branch and jump instructions --------
1438 
b(int16_t offset)1439 void Assembler::b(int16_t offset) { beq(zero_reg, zero_reg, offset); }
1440 
bal(int16_t offset)1441 void Assembler::bal(int16_t offset) { bgezal(zero_reg, offset); }
1442 
bc(int32_t offset)1443 void Assembler::bc(int32_t offset) {
1444   DCHECK_EQ(kArchVariant, kMips64r6);
1445   GenInstrImmediate(BC, offset, CompactBranchType::COMPACT_BRANCH);
1446 }
1447 
balc(int32_t offset)1448 void Assembler::balc(int32_t offset) {
1449   DCHECK_EQ(kArchVariant, kMips64r6);
1450   GenInstrImmediate(BALC, offset, CompactBranchType::COMPACT_BRANCH);
1451 }
1452 
beq(Register rs,Register rt,int16_t offset)1453 void Assembler::beq(Register rs, Register rt, int16_t offset) {
1454   BlockTrampolinePoolScope block_trampoline_pool(this);
1455   GenInstrImmediate(BEQ, rs, rt, offset);
1456   BlockTrampolinePoolFor(1);  // For associated delay slot.
1457 }
1458 
bgez(Register rs,int16_t offset)1459 void Assembler::bgez(Register rs, int16_t offset) {
1460   BlockTrampolinePoolScope block_trampoline_pool(this);
1461   GenInstrImmediate(REGIMM, rs, BGEZ, offset);
1462   BlockTrampolinePoolFor(1);  // For associated delay slot.
1463 }
1464 
bgezc(Register rt,int16_t offset)1465 void Assembler::bgezc(Register rt, int16_t offset) {
1466   DCHECK_EQ(kArchVariant, kMips64r6);
1467   DCHECK(rt != zero_reg);
1468   GenInstrImmediate(BLEZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1469 }
1470 
bgeuc(Register rs,Register rt,int16_t offset)1471 void Assembler::bgeuc(Register rs, Register rt, int16_t offset) {
1472   DCHECK_EQ(kArchVariant, kMips64r6);
1473   DCHECK(rs != zero_reg);
1474   DCHECK(rt != zero_reg);
1475   DCHECK(rs.code() != rt.code());
1476   GenInstrImmediate(BLEZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1477 }
1478 
bgec(Register rs,Register rt,int16_t offset)1479 void Assembler::bgec(Register rs, Register rt, int16_t offset) {
1480   DCHECK_EQ(kArchVariant, kMips64r6);
1481   DCHECK(rs != zero_reg);
1482   DCHECK(rt != zero_reg);
1483   DCHECK(rs.code() != rt.code());
1484   GenInstrImmediate(BLEZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1485 }
1486 
bgezal(Register rs,int16_t offset)1487 void Assembler::bgezal(Register rs, int16_t offset) {
1488   DCHECK(kArchVariant != kMips64r6 || rs == zero_reg);
1489   DCHECK(rs != ra);
1490   BlockTrampolinePoolScope block_trampoline_pool(this);
1491   GenInstrImmediate(REGIMM, rs, BGEZAL, offset);
1492   BlockTrampolinePoolFor(1);  // For associated delay slot.
1493 }
1494 
bgtz(Register rs,int16_t offset)1495 void Assembler::bgtz(Register rs, int16_t offset) {
1496   BlockTrampolinePoolScope block_trampoline_pool(this);
1497   GenInstrImmediate(BGTZ, rs, zero_reg, offset);
1498   BlockTrampolinePoolFor(1);  // For associated delay slot.
1499 }
1500 
bgtzc(Register rt,int16_t offset)1501 void Assembler::bgtzc(Register rt, int16_t offset) {
1502   DCHECK_EQ(kArchVariant, kMips64r6);
1503   DCHECK(rt != zero_reg);
1504   GenInstrImmediate(BGTZL, zero_reg, rt, offset,
1505                     CompactBranchType::COMPACT_BRANCH);
1506 }
1507 
blez(Register rs,int16_t offset)1508 void Assembler::blez(Register rs, int16_t offset) {
1509   BlockTrampolinePoolScope block_trampoline_pool(this);
1510   GenInstrImmediate(BLEZ, rs, zero_reg, offset);
1511   BlockTrampolinePoolFor(1);  // For associated delay slot.
1512 }
1513 
blezc(Register rt,int16_t offset)1514 void Assembler::blezc(Register rt, int16_t offset) {
1515   DCHECK_EQ(kArchVariant, kMips64r6);
1516   DCHECK(rt != zero_reg);
1517   GenInstrImmediate(BLEZL, zero_reg, rt, offset,
1518                     CompactBranchType::COMPACT_BRANCH);
1519 }
1520 
bltzc(Register rt,int16_t offset)1521 void Assembler::bltzc(Register rt, int16_t offset) {
1522   DCHECK_EQ(kArchVariant, kMips64r6);
1523   DCHECK(rt != zero_reg);
1524   GenInstrImmediate(BGTZL, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1525 }
1526 
bltuc(Register rs,Register rt,int16_t offset)1527 void Assembler::bltuc(Register rs, Register rt, int16_t offset) {
1528   DCHECK_EQ(kArchVariant, kMips64r6);
1529   DCHECK(rs != zero_reg);
1530   DCHECK(rt != zero_reg);
1531   DCHECK(rs.code() != rt.code());
1532   GenInstrImmediate(BGTZ, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1533 }
1534 
bltc(Register rs,Register rt,int16_t offset)1535 void Assembler::bltc(Register rs, Register rt, int16_t offset) {
1536   DCHECK_EQ(kArchVariant, kMips64r6);
1537   DCHECK(rs != zero_reg);
1538   DCHECK(rt != zero_reg);
1539   DCHECK(rs.code() != rt.code());
1540   GenInstrImmediate(BGTZL, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1541 }
1542 
bltz(Register rs,int16_t offset)1543 void Assembler::bltz(Register rs, int16_t offset) {
1544   BlockTrampolinePoolScope block_trampoline_pool(this);
1545   GenInstrImmediate(REGIMM, rs, BLTZ, offset);
1546   BlockTrampolinePoolFor(1);  // For associated delay slot.
1547 }
1548 
bltzal(Register rs,int16_t offset)1549 void Assembler::bltzal(Register rs, int16_t offset) {
1550   DCHECK(kArchVariant != kMips64r6 || rs == zero_reg);
1551   DCHECK(rs != ra);
1552   BlockTrampolinePoolScope block_trampoline_pool(this);
1553   GenInstrImmediate(REGIMM, rs, BLTZAL, offset);
1554   BlockTrampolinePoolFor(1);  // For associated delay slot.
1555 }
1556 
bne(Register rs,Register rt,int16_t offset)1557 void Assembler::bne(Register rs, Register rt, int16_t offset) {
1558   BlockTrampolinePoolScope block_trampoline_pool(this);
1559   GenInstrImmediate(BNE, rs, rt, offset);
1560   BlockTrampolinePoolFor(1);  // For associated delay slot.
1561 }
1562 
bovc(Register rs,Register rt,int16_t offset)1563 void Assembler::bovc(Register rs, Register rt, int16_t offset) {
1564   DCHECK_EQ(kArchVariant, kMips64r6);
1565   if (rs.code() >= rt.code()) {
1566     GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1567   } else {
1568     GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1569   }
1570 }
1571 
bnvc(Register rs,Register rt,int16_t offset)1572 void Assembler::bnvc(Register rs, Register rt, int16_t offset) {
1573   DCHECK_EQ(kArchVariant, kMips64r6);
1574   if (rs.code() >= rt.code()) {
1575     GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1576   } else {
1577     GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1578   }
1579 }
1580 
blezalc(Register rt,int16_t offset)1581 void Assembler::blezalc(Register rt, int16_t offset) {
1582   DCHECK_EQ(kArchVariant, kMips64r6);
1583   DCHECK(rt != zero_reg);
1584   DCHECK(rt != ra);
1585   GenInstrImmediate(BLEZ, zero_reg, rt, offset,
1586                     CompactBranchType::COMPACT_BRANCH);
1587 }
1588 
bgezalc(Register rt,int16_t offset)1589 void Assembler::bgezalc(Register rt, int16_t offset) {
1590   DCHECK_EQ(kArchVariant, kMips64r6);
1591   DCHECK(rt != zero_reg);
1592   DCHECK(rt != ra);
1593   GenInstrImmediate(BLEZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1594 }
1595 
bgezall(Register rs,int16_t offset)1596 void Assembler::bgezall(Register rs, int16_t offset) {
1597   DCHECK_NE(kArchVariant, kMips64r6);
1598   DCHECK(rs != zero_reg);
1599   DCHECK(rs != ra);
1600   BlockTrampolinePoolScope block_trampoline_pool(this);
1601   GenInstrImmediate(REGIMM, rs, BGEZALL, offset);
1602   BlockTrampolinePoolFor(1);  // For associated delay slot.
1603 }
1604 
bltzalc(Register rt,int16_t offset)1605 void Assembler::bltzalc(Register rt, int16_t offset) {
1606   DCHECK_EQ(kArchVariant, kMips64r6);
1607   DCHECK(rt != zero_reg);
1608   DCHECK(rt != ra);
1609   GenInstrImmediate(BGTZ, rt, rt, offset, CompactBranchType::COMPACT_BRANCH);
1610 }
1611 
bgtzalc(Register rt,int16_t offset)1612 void Assembler::bgtzalc(Register rt, int16_t offset) {
1613   DCHECK_EQ(kArchVariant, kMips64r6);
1614   DCHECK(rt != zero_reg);
1615   DCHECK(rt != ra);
1616   GenInstrImmediate(BGTZ, zero_reg, rt, offset,
1617                     CompactBranchType::COMPACT_BRANCH);
1618 }
1619 
beqzalc(Register rt,int16_t offset)1620 void Assembler::beqzalc(Register rt, int16_t offset) {
1621   DCHECK_EQ(kArchVariant, kMips64r6);
1622   DCHECK(rt != zero_reg);
1623   DCHECK(rt != ra);
1624   GenInstrImmediate(ADDI, zero_reg, rt, offset,
1625                     CompactBranchType::COMPACT_BRANCH);
1626 }
1627 
bnezalc(Register rt,int16_t offset)1628 void Assembler::bnezalc(Register rt, int16_t offset) {
1629   DCHECK_EQ(kArchVariant, kMips64r6);
1630   DCHECK(rt != zero_reg);
1631   DCHECK(rt != ra);
1632   GenInstrImmediate(DADDI, zero_reg, rt, offset,
1633                     CompactBranchType::COMPACT_BRANCH);
1634 }
1635 
beqc(Register rs,Register rt,int16_t offset)1636 void Assembler::beqc(Register rs, Register rt, int16_t offset) {
1637   DCHECK_EQ(kArchVariant, kMips64r6);
1638   DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1639   if (rs.code() < rt.code()) {
1640     GenInstrImmediate(ADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1641   } else {
1642     GenInstrImmediate(ADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1643   }
1644 }
1645 
beqzc(Register rs,int32_t offset)1646 void Assembler::beqzc(Register rs, int32_t offset) {
1647   DCHECK_EQ(kArchVariant, kMips64r6);
1648   DCHECK(rs != zero_reg);
1649   GenInstrImmediate(POP66, rs, offset, CompactBranchType::COMPACT_BRANCH);
1650 }
1651 
bnec(Register rs,Register rt,int16_t offset)1652 void Assembler::bnec(Register rs, Register rt, int16_t offset) {
1653   DCHECK_EQ(kArchVariant, kMips64r6);
1654   DCHECK(rs.code() != rt.code() && rs.code() != 0 && rt.code() != 0);
1655   if (rs.code() < rt.code()) {
1656     GenInstrImmediate(DADDI, rs, rt, offset, CompactBranchType::COMPACT_BRANCH);
1657   } else {
1658     GenInstrImmediate(DADDI, rt, rs, offset, CompactBranchType::COMPACT_BRANCH);
1659   }
1660 }
1661 
bnezc(Register rs,int32_t offset)1662 void Assembler::bnezc(Register rs, int32_t offset) {
1663   DCHECK_EQ(kArchVariant, kMips64r6);
1664   DCHECK(rs != zero_reg);
1665   GenInstrImmediate(POP76, rs, offset, CompactBranchType::COMPACT_BRANCH);
1666 }
1667 
j(int64_t target)1668 void Assembler::j(int64_t target) {
1669   // Deprecated. Use PC-relative jumps instead.
1670   UNREACHABLE();
1671 }
1672 
j(Label * target)1673 void Assembler::j(Label* target) {
1674   // Deprecated. Use PC-relative jumps instead.
1675   UNREACHABLE();
1676 }
1677 
jal(Label * target)1678 void Assembler::jal(Label* target) {
1679   // Deprecated. Use PC-relative jumps instead.
1680   UNREACHABLE();
1681 }
1682 
jal(int64_t target)1683 void Assembler::jal(int64_t target) {
1684   // Deprecated. Use PC-relative jumps instead.
1685   UNREACHABLE();
1686 }
1687 
jr(Register rs)1688 void Assembler::jr(Register rs) {
1689   if (kArchVariant != kMips64r6) {
1690     BlockTrampolinePoolScope block_trampoline_pool(this);
1691     GenInstrRegister(SPECIAL, rs, zero_reg, zero_reg, 0, JR);
1692     BlockTrampolinePoolFor(1);  // For associated delay slot.
1693   } else {
1694     jalr(rs, zero_reg);
1695   }
1696 }
1697 
jalr(Register rs,Register rd)1698 void Assembler::jalr(Register rs, Register rd) {
1699   DCHECK(rs.code() != rd.code());
1700   BlockTrampolinePoolScope block_trampoline_pool(this);
1701   GenInstrRegister(SPECIAL, rs, zero_reg, rd, 0, JALR);
1702   BlockTrampolinePoolFor(1);  // For associated delay slot.
1703 }
1704 
jic(Register rt,int16_t offset)1705 void Assembler::jic(Register rt, int16_t offset) {
1706   DCHECK_EQ(kArchVariant, kMips64r6);
1707   GenInstrImmediate(POP66, zero_reg, rt, offset);
1708 }
1709 
jialc(Register rt,int16_t offset)1710 void Assembler::jialc(Register rt, int16_t offset) {
1711   DCHECK_EQ(kArchVariant, kMips64r6);
1712   GenInstrImmediate(POP76, zero_reg, rt, offset);
1713 }
1714 
1715 // -------Data-processing-instructions---------
1716 
1717 // Arithmetic.
1718 
addu(Register rd,Register rs,Register rt)1719 void Assembler::addu(Register rd, Register rs, Register rt) {
1720   GenInstrRegister(SPECIAL, rs, rt, rd, 0, ADDU);
1721 }
1722 
addiu(Register rd,Register rs,int32_t j)1723 void Assembler::addiu(Register rd, Register rs, int32_t j) {
1724   GenInstrImmediate(ADDIU, rs, rd, j);
1725 }
1726 
subu(Register rd,Register rs,Register rt)1727 void Assembler::subu(Register rd, Register rs, Register rt) {
1728   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SUBU);
1729 }
1730 
mul(Register rd,Register rs,Register rt)1731 void Assembler::mul(Register rd, Register rs, Register rt) {
1732   if (kArchVariant == kMips64r6) {
1733     GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH);
1734   } else {
1735     GenInstrRegister(SPECIAL2, rs, rt, rd, 0, MUL);
1736   }
1737 }
1738 
muh(Register rd,Register rs,Register rt)1739 void Assembler::muh(Register rd, Register rs, Register rt) {
1740   DCHECK_EQ(kArchVariant, kMips64r6);
1741   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH);
1742 }
1743 
mulu(Register rd,Register rs,Register rt)1744 void Assembler::mulu(Register rd, Register rs, Register rt) {
1745   DCHECK_EQ(kArchVariant, kMips64r6);
1746   GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, MUL_MUH_U);
1747 }
1748 
muhu(Register rd,Register rs,Register rt)1749 void Assembler::muhu(Register rd, Register rs, Register rt) {
1750   DCHECK_EQ(kArchVariant, kMips64r6);
1751   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, MUL_MUH_U);
1752 }
1753 
dmul(Register rd,Register rs,Register rt)1754 void Assembler::dmul(Register rd, Register rs, Register rt) {
1755   DCHECK_EQ(kArchVariant, kMips64r6);
1756   GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH);
1757 }
1758 
dmuh(Register rd,Register rs,Register rt)1759 void Assembler::dmuh(Register rd, Register rs, Register rt) {
1760   DCHECK_EQ(kArchVariant, kMips64r6);
1761   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH);
1762 }
1763 
dmulu(Register rd,Register rs,Register rt)1764 void Assembler::dmulu(Register rd, Register rs, Register rt) {
1765   DCHECK_EQ(kArchVariant, kMips64r6);
1766   GenInstrRegister(SPECIAL, rs, rt, rd, MUL_OP, D_MUL_MUH_U);
1767 }
1768 
dmuhu(Register rd,Register rs,Register rt)1769 void Assembler::dmuhu(Register rd, Register rs, Register rt) {
1770   DCHECK_EQ(kArchVariant, kMips64r6);
1771   GenInstrRegister(SPECIAL, rs, rt, rd, MUH_OP, D_MUL_MUH_U);
1772 }
1773 
mult(Register rs,Register rt)1774 void Assembler::mult(Register rs, Register rt) {
1775   DCHECK_NE(kArchVariant, kMips64r6);
1776   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULT);
1777 }
1778 
multu(Register rs,Register rt)1779 void Assembler::multu(Register rs, Register rt) {
1780   DCHECK_NE(kArchVariant, kMips64r6);
1781   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, MULTU);
1782 }
1783 
daddiu(Register rd,Register rs,int32_t j)1784 void Assembler::daddiu(Register rd, Register rs, int32_t j) {
1785   GenInstrImmediate(DADDIU, rs, rd, j);
1786 }
1787 
div(Register rs,Register rt)1788 void Assembler::div(Register rs, Register rt) {
1789   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIV);
1790 }
1791 
div(Register rd,Register rs,Register rt)1792 void Assembler::div(Register rd, Register rs, Register rt) {
1793   DCHECK_EQ(kArchVariant, kMips64r6);
1794   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD);
1795 }
1796 
mod(Register rd,Register rs,Register rt)1797 void Assembler::mod(Register rd, Register rs, Register rt) {
1798   DCHECK_EQ(kArchVariant, kMips64r6);
1799   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD);
1800 }
1801 
divu(Register rs,Register rt)1802 void Assembler::divu(Register rs, Register rt) {
1803   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DIVU);
1804 }
1805 
divu(Register rd,Register rs,Register rt)1806 void Assembler::divu(Register rd, Register rs, Register rt) {
1807   DCHECK_EQ(kArchVariant, kMips64r6);
1808   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, DIV_MOD_U);
1809 }
1810 
modu(Register rd,Register rs,Register rt)1811 void Assembler::modu(Register rd, Register rs, Register rt) {
1812   DCHECK_EQ(kArchVariant, kMips64r6);
1813   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, DIV_MOD_U);
1814 }
1815 
daddu(Register rd,Register rs,Register rt)1816 void Assembler::daddu(Register rd, Register rs, Register rt) {
1817   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DADDU);
1818 }
1819 
dsubu(Register rd,Register rs,Register rt)1820 void Assembler::dsubu(Register rd, Register rs, Register rt) {
1821   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSUBU);
1822 }
1823 
dmult(Register rs,Register rt)1824 void Assembler::dmult(Register rs, Register rt) {
1825   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULT);
1826 }
1827 
dmultu(Register rs,Register rt)1828 void Assembler::dmultu(Register rs, Register rt) {
1829   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DMULTU);
1830 }
1831 
ddiv(Register rs,Register rt)1832 void Assembler::ddiv(Register rs, Register rt) {
1833   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIV);
1834 }
1835 
ddiv(Register rd,Register rs,Register rt)1836 void Assembler::ddiv(Register rd, Register rs, Register rt) {
1837   DCHECK_EQ(kArchVariant, kMips64r6);
1838   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD);
1839 }
1840 
dmod(Register rd,Register rs,Register rt)1841 void Assembler::dmod(Register rd, Register rs, Register rt) {
1842   DCHECK_EQ(kArchVariant, kMips64r6);
1843   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD);
1844 }
1845 
ddivu(Register rs,Register rt)1846 void Assembler::ddivu(Register rs, Register rt) {
1847   GenInstrRegister(SPECIAL, rs, rt, zero_reg, 0, DDIVU);
1848 }
1849 
ddivu(Register rd,Register rs,Register rt)1850 void Assembler::ddivu(Register rd, Register rs, Register rt) {
1851   DCHECK_EQ(kArchVariant, kMips64r6);
1852   GenInstrRegister(SPECIAL, rs, rt, rd, DIV_OP, D_DIV_MOD_U);
1853 }
1854 
dmodu(Register rd,Register rs,Register rt)1855 void Assembler::dmodu(Register rd, Register rs, Register rt) {
1856   DCHECK_EQ(kArchVariant, kMips64r6);
1857   GenInstrRegister(SPECIAL, rs, rt, rd, MOD_OP, D_DIV_MOD_U);
1858 }
1859 
1860 // Logical.
1861 
and_(Register rd,Register rs,Register rt)1862 void Assembler::and_(Register rd, Register rs, Register rt) {
1863   GenInstrRegister(SPECIAL, rs, rt, rd, 0, AND);
1864 }
1865 
andi(Register rt,Register rs,int32_t j)1866 void Assembler::andi(Register rt, Register rs, int32_t j) {
1867   DCHECK(is_uint16(j));
1868   GenInstrImmediate(ANDI, rs, rt, j);
1869 }
1870 
or_(Register rd,Register rs,Register rt)1871 void Assembler::or_(Register rd, Register rs, Register rt) {
1872   GenInstrRegister(SPECIAL, rs, rt, rd, 0, OR);
1873 }
1874 
ori(Register rt,Register rs,int32_t j)1875 void Assembler::ori(Register rt, Register rs, int32_t j) {
1876   DCHECK(is_uint16(j));
1877   GenInstrImmediate(ORI, rs, rt, j);
1878 }
1879 
xor_(Register rd,Register rs,Register rt)1880 void Assembler::xor_(Register rd, Register rs, Register rt) {
1881   GenInstrRegister(SPECIAL, rs, rt, rd, 0, XOR);
1882 }
1883 
xori(Register rt,Register rs,int32_t j)1884 void Assembler::xori(Register rt, Register rs, int32_t j) {
1885   DCHECK(is_uint16(j));
1886   GenInstrImmediate(XORI, rs, rt, j);
1887 }
1888 
nor(Register rd,Register rs,Register rt)1889 void Assembler::nor(Register rd, Register rs, Register rt) {
1890   GenInstrRegister(SPECIAL, rs, rt, rd, 0, NOR);
1891 }
1892 
1893 // Shifts.
sll(Register rd,Register rt,uint16_t sa,bool coming_from_nop)1894 void Assembler::sll(Register rd, Register rt, uint16_t sa,
1895                     bool coming_from_nop) {
1896   // Don't allow nop instructions in the form sll zero_reg, zero_reg to be
1897   // generated using the sll instruction. They must be generated using
1898   // nop(int/NopMarkerTypes).
1899   DCHECK(coming_from_nop || (rd != zero_reg && rt != zero_reg));
1900   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SLL);
1901 }
1902 
sllv(Register rd,Register rt,Register rs)1903 void Assembler::sllv(Register rd, Register rt, Register rs) {
1904   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLLV);
1905 }
1906 
srl(Register rd,Register rt,uint16_t sa)1907 void Assembler::srl(Register rd, Register rt, uint16_t sa) {
1908   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRL);
1909 }
1910 
srlv(Register rd,Register rt,Register rs)1911 void Assembler::srlv(Register rd, Register rt, Register rs) {
1912   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRLV);
1913 }
1914 
sra(Register rd,Register rt,uint16_t sa)1915 void Assembler::sra(Register rd, Register rt, uint16_t sa) {
1916   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, SRA);
1917 }
1918 
srav(Register rd,Register rt,Register rs)1919 void Assembler::srav(Register rd, Register rt, Register rs) {
1920   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SRAV);
1921 }
1922 
rotr(Register rd,Register rt,uint16_t sa)1923 void Assembler::rotr(Register rd, Register rt, uint16_t sa) {
1924   // Should be called via MacroAssembler::Ror.
1925   DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1926   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
1927   Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1928                 (rd.code() << kRdShift) | (sa << kSaShift) | SRL;
1929   emit(instr);
1930 }
1931 
rotrv(Register rd,Register rt,Register rs)1932 void Assembler::rotrv(Register rd, Register rt, Register rs) {
1933   // Should be called via MacroAssembler::Ror.
1934   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1935   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
1936   Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1937                 (rd.code() << kRdShift) | (1 << kSaShift) | SRLV;
1938   emit(instr);
1939 }
1940 
dsll(Register rd,Register rt,uint16_t sa)1941 void Assembler::dsll(Register rd, Register rt, uint16_t sa) {
1942   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL);
1943 }
1944 
dsllv(Register rd,Register rt,Register rs)1945 void Assembler::dsllv(Register rd, Register rt, Register rs) {
1946   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSLLV);
1947 }
1948 
dsrl(Register rd,Register rt,uint16_t sa)1949 void Assembler::dsrl(Register rd, Register rt, uint16_t sa) {
1950   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL);
1951 }
1952 
dsrlv(Register rd,Register rt,Register rs)1953 void Assembler::dsrlv(Register rd, Register rt, Register rs) {
1954   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRLV);
1955 }
1956 
drotr(Register rd,Register rt,uint16_t sa)1957 void Assembler::drotr(Register rd, Register rt, uint16_t sa) {
1958   DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1959   Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1960                 (rd.code() << kRdShift) | (sa << kSaShift) | DSRL;
1961   emit(instr);
1962 }
1963 
drotr32(Register rd,Register rt,uint16_t sa)1964 void Assembler::drotr32(Register rd, Register rt, uint16_t sa) {
1965   DCHECK(rd.is_valid() && rt.is_valid() && is_uint5(sa));
1966   Instr instr = SPECIAL | (1 << kRsShift) | (rt.code() << kRtShift) |
1967                 (rd.code() << kRdShift) | (sa << kSaShift) | DSRL32;
1968   emit(instr);
1969 }
1970 
drotrv(Register rd,Register rt,Register rs)1971 void Assembler::drotrv(Register rd, Register rt, Register rs) {
1972   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
1973   Instr instr = SPECIAL | (rs.code() << kRsShift) | (rt.code() << kRtShift) |
1974                 (rd.code() << kRdShift) | (1 << kSaShift) | DSRLV;
1975   emit(instr);
1976 }
1977 
dsra(Register rd,Register rt,uint16_t sa)1978 void Assembler::dsra(Register rd, Register rt, uint16_t sa) {
1979   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA);
1980 }
1981 
dsrav(Register rd,Register rt,Register rs)1982 void Assembler::dsrav(Register rd, Register rt, Register rs) {
1983   GenInstrRegister(SPECIAL, rs, rt, rd, 0, DSRAV);
1984 }
1985 
dsll32(Register rd,Register rt,uint16_t sa)1986 void Assembler::dsll32(Register rd, Register rt, uint16_t sa) {
1987   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSLL32);
1988 }
1989 
dsrl32(Register rd,Register rt,uint16_t sa)1990 void Assembler::dsrl32(Register rd, Register rt, uint16_t sa) {
1991   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRL32);
1992 }
1993 
dsra32(Register rd,Register rt,uint16_t sa)1994 void Assembler::dsra32(Register rd, Register rt, uint16_t sa) {
1995   GenInstrRegister(SPECIAL, zero_reg, rt, rd, sa & 0x1F, DSRA32);
1996 }
1997 
lsa(Register rd,Register rt,Register rs,uint8_t sa)1998 void Assembler::lsa(Register rd, Register rt, Register rs, uint8_t sa) {
1999   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
2000   DCHECK_LE(sa, 3);
2001   DCHECK_EQ(kArchVariant, kMips64r6);
2002   Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
2003                 rd.code() << kRdShift | sa << kSaShift | LSA;
2004   emit(instr);
2005 }
2006 
dlsa(Register rd,Register rt,Register rs,uint8_t sa)2007 void Assembler::dlsa(Register rd, Register rt, Register rs, uint8_t sa) {
2008   DCHECK(rd.is_valid() && rt.is_valid() && rs.is_valid());
2009   DCHECK_LE(sa, 3);
2010   DCHECK_EQ(kArchVariant, kMips64r6);
2011   Instr instr = SPECIAL | rs.code() << kRsShift | rt.code() << kRtShift |
2012                 rd.code() << kRdShift | sa << kSaShift | DLSA;
2013   emit(instr);
2014 }
2015 
2016 // ------------Memory-instructions-------------
2017 
AdjustBaseAndOffset(MemOperand * src,OffsetAccessType access_type,int second_access_add_to_offset)2018 void Assembler::AdjustBaseAndOffset(MemOperand* src,
2019                                     OffsetAccessType access_type,
2020                                     int second_access_add_to_offset) {
2021   // This method is used to adjust the base register and offset pair
2022   // for a load/store when the offset doesn't fit into int16_t.
2023   // It is assumed that 'base + offset' is sufficiently aligned for memory
2024   // operands that are machine word in size or smaller. For doubleword-sized
2025   // operands it's assumed that 'base' is a multiple of 8, while 'offset'
2026   // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments
2027   // and spilled variables on the stack accessed relative to the stack
2028   // pointer register).
2029   // We preserve the "alignment" of 'offset' by adjusting it by a multiple of 8.
2030 
2031   bool doubleword_aligned = (src->offset() & (kDoubleSize - 1)) == 0;
2032   bool two_accesses = static_cast<bool>(access_type) || !doubleword_aligned;
2033   DCHECK_LE(second_access_add_to_offset, 7);  // Must be <= 7.
2034 
2035   // is_int16 must be passed a signed value, hence the static cast below.
2036   if (is_int16(src->offset()) &&
2037       (!two_accesses || is_int16(static_cast<int32_t>(
2038                             src->offset() + second_access_add_to_offset)))) {
2039     // Nothing to do: 'offset' (and, if needed, 'offset + 4', or other specified
2040     // value) fits into int16_t.
2041     return;
2042   }
2043 
2044   DCHECK(src->rm() !=
2045          at);  // Must not overwrite the register 'base' while loading 'offset'.
2046 
2047 #ifdef DEBUG
2048   // Remember the "(mis)alignment" of 'offset', it will be checked at the end.
2049   uint32_t misalignment = src->offset() & (kDoubleSize - 1);
2050 #endif
2051 
2052   // Do not load the whole 32-bit 'offset' if it can be represented as
2053   // a sum of two 16-bit signed offsets. This can save an instruction or two.
2054   // To simplify matters, only do this for a symmetric range of offsets from
2055   // about -64KB to about +64KB, allowing further addition of 4 when accessing
2056   // 64-bit variables with two 32-bit accesses.
2057   constexpr int32_t kMinOffsetForSimpleAdjustment =
2058       0x7FF8;  // Max int16_t that's a multiple of 8.
2059   constexpr int32_t kMaxOffsetForSimpleAdjustment =
2060       2 * kMinOffsetForSimpleAdjustment;
2061 
2062   UseScratchRegisterScope temps(this);
2063   Register scratch = temps.Acquire();
2064   if (0 <= src->offset() && src->offset() <= kMaxOffsetForSimpleAdjustment) {
2065     daddiu(scratch, src->rm(), kMinOffsetForSimpleAdjustment);
2066     src->offset_ -= kMinOffsetForSimpleAdjustment;
2067   } else if (-kMaxOffsetForSimpleAdjustment <= src->offset() &&
2068              src->offset() < 0) {
2069     daddiu(scratch, src->rm(), -kMinOffsetForSimpleAdjustment);
2070     src->offset_ += kMinOffsetForSimpleAdjustment;
2071   } else if (kArchVariant == kMips64r6) {
2072     // On r6 take advantage of the daui instruction, e.g.:
2073     //    daui   at, base, offset_high
2074     //   [dahi   at, 1]                       // When `offset` is close to +2GB.
2075     //    lw     reg_lo, offset_low(at)
2076     //   [lw     reg_hi, (offset_low+4)(at)]  // If misaligned 64-bit load.
2077     // or when offset_low+4 overflows int16_t:
2078     //    daui   at, base, offset_high
2079     //    daddiu at, at, 8
2080     //    lw     reg_lo, (offset_low-8)(at)
2081     //    lw     reg_hi, (offset_low-4)(at)
2082     int16_t offset_low = static_cast<uint16_t>(src->offset());
2083     int32_t offset_low32 = offset_low;
2084     int16_t offset_high = static_cast<uint16_t>(src->offset() >> 16);
2085     bool increment_hi16 = offset_low < 0;
2086     bool overflow_hi16 = false;
2087 
2088     if (increment_hi16) {
2089       offset_high++;
2090       overflow_hi16 = (offset_high == -32768);
2091     }
2092     daui(scratch, src->rm(), static_cast<uint16_t>(offset_high));
2093 
2094     if (overflow_hi16) {
2095       dahi(scratch, 1);
2096     }
2097 
2098     if (two_accesses && !is_int16(static_cast<int32_t>(
2099                             offset_low32 + second_access_add_to_offset))) {
2100       // Avoid overflow in the 16-bit offset of the load/store instruction when
2101       // adding 4.
2102       daddiu(scratch, scratch, kDoubleSize);
2103       offset_low32 -= kDoubleSize;
2104     }
2105 
2106     src->offset_ = offset_low32;
2107   } else {
2108     // Do not load the whole 32-bit 'offset' if it can be represented as
2109     // a sum of three 16-bit signed offsets. This can save an instruction.
2110     // To simplify matters, only do this for a symmetric range of offsets from
2111     // about -96KB to about +96KB, allowing further addition of 4 when accessing
2112     // 64-bit variables with two 32-bit accesses.
2113     constexpr int32_t kMinOffsetForMediumAdjustment =
2114         2 * kMinOffsetForSimpleAdjustment;
2115     constexpr int32_t kMaxOffsetForMediumAdjustment =
2116         3 * kMinOffsetForSimpleAdjustment;
2117     if (0 <= src->offset() && src->offset() <= kMaxOffsetForMediumAdjustment) {
2118       daddiu(scratch, src->rm(), kMinOffsetForMediumAdjustment / 2);
2119       daddiu(scratch, scratch, kMinOffsetForMediumAdjustment / 2);
2120       src->offset_ -= kMinOffsetForMediumAdjustment;
2121     } else if (-kMaxOffsetForMediumAdjustment <= src->offset() &&
2122                src->offset() < 0) {
2123       daddiu(scratch, src->rm(), -kMinOffsetForMediumAdjustment / 2);
2124       daddiu(scratch, scratch, -kMinOffsetForMediumAdjustment / 2);
2125       src->offset_ += kMinOffsetForMediumAdjustment;
2126     } else {
2127       // Now that all shorter options have been exhausted, load the full 32-bit
2128       // offset.
2129       int32_t loaded_offset = RoundDown(src->offset(), kDoubleSize);
2130       lui(scratch, (loaded_offset >> kLuiShift) & kImm16Mask);
2131       ori(scratch, scratch, loaded_offset & kImm16Mask);  // Load 32-bit offset.
2132       daddu(scratch, scratch, src->rm());
2133       src->offset_ -= loaded_offset;
2134     }
2135   }
2136   src->rm_ = scratch;
2137 
2138   DCHECK(is_int16(src->offset()));
2139   if (two_accesses) {
2140     DCHECK(is_int16(
2141         static_cast<int32_t>(src->offset() + second_access_add_to_offset)));
2142   }
2143   DCHECK(misalignment == (src->offset() & (kDoubleSize - 1)));
2144 }
2145 
lb(Register rd,const MemOperand & rs)2146 void Assembler::lb(Register rd, const MemOperand& rs) {
2147   GenInstrImmediate(LB, rs.rm(), rd, rs.offset_);
2148 }
2149 
lbu(Register rd,const MemOperand & rs)2150 void Assembler::lbu(Register rd, const MemOperand& rs) {
2151   GenInstrImmediate(LBU, rs.rm(), rd, rs.offset_);
2152 }
2153 
lh(Register rd,const MemOperand & rs)2154 void Assembler::lh(Register rd, const MemOperand& rs) {
2155   GenInstrImmediate(LH, rs.rm(), rd, rs.offset_);
2156 }
2157 
lhu(Register rd,const MemOperand & rs)2158 void Assembler::lhu(Register rd, const MemOperand& rs) {
2159   GenInstrImmediate(LHU, rs.rm(), rd, rs.offset_);
2160 }
2161 
lw(Register rd,const MemOperand & rs)2162 void Assembler::lw(Register rd, const MemOperand& rs) {
2163   GenInstrImmediate(LW, rs.rm(), rd, rs.offset_);
2164 }
2165 
lwu(Register rd,const MemOperand & rs)2166 void Assembler::lwu(Register rd, const MemOperand& rs) {
2167   GenInstrImmediate(LWU, rs.rm(), rd, rs.offset_);
2168 }
2169 
lwl(Register rd,const MemOperand & rs)2170 void Assembler::lwl(Register rd, const MemOperand& rs) {
2171   DCHECK(is_int16(rs.offset_));
2172   DCHECK_EQ(kArchVariant, kMips64r2);
2173   GenInstrImmediate(LWL, rs.rm(), rd, rs.offset_);
2174 }
2175 
lwr(Register rd,const MemOperand & rs)2176 void Assembler::lwr(Register rd, const MemOperand& rs) {
2177   DCHECK(is_int16(rs.offset_));
2178   DCHECK_EQ(kArchVariant, kMips64r2);
2179   GenInstrImmediate(LWR, rs.rm(), rd, rs.offset_);
2180 }
2181 
sb(Register rd,const MemOperand & rs)2182 void Assembler::sb(Register rd, const MemOperand& rs) {
2183   GenInstrImmediate(SB, rs.rm(), rd, rs.offset_);
2184 }
2185 
sh(Register rd,const MemOperand & rs)2186 void Assembler::sh(Register rd, const MemOperand& rs) {
2187   GenInstrImmediate(SH, rs.rm(), rd, rs.offset_);
2188 }
2189 
sw(Register rd,const MemOperand & rs)2190 void Assembler::sw(Register rd, const MemOperand& rs) {
2191   GenInstrImmediate(SW, rs.rm(), rd, rs.offset_);
2192 }
2193 
swl(Register rd,const MemOperand & rs)2194 void Assembler::swl(Register rd, const MemOperand& rs) {
2195   DCHECK(is_int16(rs.offset_));
2196   DCHECK_EQ(kArchVariant, kMips64r2);
2197   GenInstrImmediate(SWL, rs.rm(), rd, rs.offset_);
2198 }
2199 
swr(Register rd,const MemOperand & rs)2200 void Assembler::swr(Register rd, const MemOperand& rs) {
2201   DCHECK(is_int16(rs.offset_));
2202   DCHECK_EQ(kArchVariant, kMips64r2);
2203   GenInstrImmediate(SWR, rs.rm(), rd, rs.offset_);
2204 }
2205 
ll(Register rd,const MemOperand & rs)2206 void Assembler::ll(Register rd, const MemOperand& rs) {
2207   if (kArchVariant == kMips64r6) {
2208     DCHECK(is_int9(rs.offset_));
2209     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LL_R6);
2210   } else {
2211     DCHECK_EQ(kArchVariant, kMips64r2);
2212     DCHECK(is_int16(rs.offset_));
2213     GenInstrImmediate(LL, rs.rm(), rd, rs.offset_);
2214   }
2215 }
2216 
lld(Register rd,const MemOperand & rs)2217 void Assembler::lld(Register rd, const MemOperand& rs) {
2218   if (kArchVariant == kMips64r6) {
2219     DCHECK(is_int9(rs.offset_));
2220     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, LLD_R6);
2221   } else {
2222     DCHECK_EQ(kArchVariant, kMips64r2);
2223     DCHECK(is_int16(rs.offset_));
2224     GenInstrImmediate(LLD, rs.rm(), rd, rs.offset_);
2225   }
2226 }
2227 
sc(Register rd,const MemOperand & rs)2228 void Assembler::sc(Register rd, const MemOperand& rs) {
2229   if (kArchVariant == kMips64r6) {
2230     DCHECK(is_int9(rs.offset_));
2231     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SC_R6);
2232   } else {
2233     DCHECK_EQ(kArchVariant, kMips64r2);
2234     GenInstrImmediate(SC, rs.rm(), rd, rs.offset_);
2235   }
2236 }
2237 
scd(Register rd,const MemOperand & rs)2238 void Assembler::scd(Register rd, const MemOperand& rs) {
2239   if (kArchVariant == kMips64r6) {
2240     DCHECK(is_int9(rs.offset_));
2241     GenInstrImmediate(SPECIAL3, rs.rm(), rd, rs.offset_, 0, SCD_R6);
2242   } else {
2243     DCHECK_EQ(kArchVariant, kMips64r2);
2244     GenInstrImmediate(SCD, rs.rm(), rd, rs.offset_);
2245   }
2246 }
2247 
lui(Register rd,int32_t j)2248 void Assembler::lui(Register rd, int32_t j) {
2249   DCHECK(is_uint16(j) || is_int16(j));
2250   GenInstrImmediate(LUI, zero_reg, rd, j);
2251 }
2252 
aui(Register rt,Register rs,int32_t j)2253 void Assembler::aui(Register rt, Register rs, int32_t j) {
2254   // This instruction uses same opcode as 'lui'. The difference in encoding is
2255   // 'lui' has zero reg. for rs field.
2256   DCHECK(is_uint16(j));
2257   GenInstrImmediate(LUI, rs, rt, j);
2258 }
2259 
daui(Register rt,Register rs,int32_t j)2260 void Assembler::daui(Register rt, Register rs, int32_t j) {
2261   DCHECK(is_uint16(j));
2262   DCHECK(rs != zero_reg);
2263   GenInstrImmediate(DAUI, rs, rt, j);
2264 }
2265 
dahi(Register rs,int32_t j)2266 void Assembler::dahi(Register rs, int32_t j) {
2267   DCHECK(is_uint16(j));
2268   GenInstrImmediate(REGIMM, rs, DAHI, j);
2269 }
2270 
dati(Register rs,int32_t j)2271 void Assembler::dati(Register rs, int32_t j) {
2272   DCHECK(is_uint16(j));
2273   GenInstrImmediate(REGIMM, rs, DATI, j);
2274 }
2275 
ldl(Register rd,const MemOperand & rs)2276 void Assembler::ldl(Register rd, const MemOperand& rs) {
2277   DCHECK(is_int16(rs.offset_));
2278   DCHECK_EQ(kArchVariant, kMips64r2);
2279   GenInstrImmediate(LDL, rs.rm(), rd, rs.offset_);
2280 }
2281 
ldr(Register rd,const MemOperand & rs)2282 void Assembler::ldr(Register rd, const MemOperand& rs) {
2283   DCHECK(is_int16(rs.offset_));
2284   DCHECK_EQ(kArchVariant, kMips64r2);
2285   GenInstrImmediate(LDR, rs.rm(), rd, rs.offset_);
2286 }
2287 
sdl(Register rd,const MemOperand & rs)2288 void Assembler::sdl(Register rd, const MemOperand& rs) {
2289   DCHECK(is_int16(rs.offset_));
2290   DCHECK_EQ(kArchVariant, kMips64r2);
2291   GenInstrImmediate(SDL, rs.rm(), rd, rs.offset_);
2292 }
2293 
sdr(Register rd,const MemOperand & rs)2294 void Assembler::sdr(Register rd, const MemOperand& rs) {
2295   DCHECK(is_int16(rs.offset_));
2296   DCHECK_EQ(kArchVariant, kMips64r2);
2297   GenInstrImmediate(SDR, rs.rm(), rd, rs.offset_);
2298 }
2299 
ld(Register rd,const MemOperand & rs)2300 void Assembler::ld(Register rd, const MemOperand& rs) {
2301   GenInstrImmediate(LD, rs.rm(), rd, rs.offset_);
2302 }
2303 
sd(Register rd,const MemOperand & rs)2304 void Assembler::sd(Register rd, const MemOperand& rs) {
2305   GenInstrImmediate(SD, rs.rm(), rd, rs.offset_);
2306 }
2307 
2308 // ---------PC-Relative instructions-----------
2309 
addiupc(Register rs,int32_t imm19)2310 void Assembler::addiupc(Register rs, int32_t imm19) {
2311   DCHECK_EQ(kArchVariant, kMips64r6);
2312   DCHECK(rs.is_valid() && is_int19(imm19));
2313   uint32_t imm21 = ADDIUPC << kImm19Bits | (imm19 & kImm19Mask);
2314   GenInstrImmediate(PCREL, rs, imm21);
2315 }
2316 
lwpc(Register rs,int32_t offset19)2317 void Assembler::lwpc(Register rs, int32_t offset19) {
2318   DCHECK_EQ(kArchVariant, kMips64r6);
2319   DCHECK(rs.is_valid() && is_int19(offset19));
2320   uint32_t imm21 = LWPC << kImm19Bits | (offset19 & kImm19Mask);
2321   GenInstrImmediate(PCREL, rs, imm21);
2322 }
2323 
lwupc(Register rs,int32_t offset19)2324 void Assembler::lwupc(Register rs, int32_t offset19) {
2325   DCHECK_EQ(kArchVariant, kMips64r6);
2326   DCHECK(rs.is_valid() && is_int19(offset19));
2327   uint32_t imm21 = LWUPC << kImm19Bits | (offset19 & kImm19Mask);
2328   GenInstrImmediate(PCREL, rs, imm21);
2329 }
2330 
ldpc(Register rs,int32_t offset18)2331 void Assembler::ldpc(Register rs, int32_t offset18) {
2332   DCHECK_EQ(kArchVariant, kMips64r6);
2333   DCHECK(rs.is_valid() && is_int18(offset18));
2334   uint32_t imm21 = LDPC << kImm18Bits | (offset18 & kImm18Mask);
2335   GenInstrImmediate(PCREL, rs, imm21);
2336 }
2337 
auipc(Register rs,int16_t imm16)2338 void Assembler::auipc(Register rs, int16_t imm16) {
2339   DCHECK_EQ(kArchVariant, kMips64r6);
2340   DCHECK(rs.is_valid());
2341   uint32_t imm21 = AUIPC << kImm16Bits | (imm16 & kImm16Mask);
2342   GenInstrImmediate(PCREL, rs, imm21);
2343 }
2344 
aluipc(Register rs,int16_t imm16)2345 void Assembler::aluipc(Register rs, int16_t imm16) {
2346   DCHECK_EQ(kArchVariant, kMips64r6);
2347   DCHECK(rs.is_valid());
2348   uint32_t imm21 = ALUIPC << kImm16Bits | (imm16 & kImm16Mask);
2349   GenInstrImmediate(PCREL, rs, imm21);
2350 }
2351 
2352 // -------------Misc-instructions--------------
2353 
2354 // Break / Trap instructions.
break_(uint32_t code,bool break_as_stop)2355 void Assembler::break_(uint32_t code, bool break_as_stop) {
2356   DCHECK_EQ(code & ~0xFFFFF, 0);
2357   // We need to invalidate breaks that could be stops as well because the
2358   // simulator expects a char pointer after the stop instruction.
2359   // See constants-mips.h for explanation.
2360   DCHECK(
2361       (break_as_stop && code <= kMaxStopCode && code > kMaxWatchpointCode) ||
2362       (!break_as_stop && (code > kMaxStopCode || code <= kMaxWatchpointCode)));
2363   Instr break_instr = SPECIAL | BREAK | (code << 6);
2364   emit(break_instr);
2365 }
2366 
stop(uint32_t code)2367 void Assembler::stop(uint32_t code) {
2368   DCHECK_GT(code, kMaxWatchpointCode);
2369   DCHECK_LE(code, kMaxStopCode);
2370 #if defined(V8_HOST_ARCH_MIPS) || defined(V8_HOST_ARCH_MIPS64)
2371   break_(0x54321);
2372 #else  // V8_HOST_ARCH_MIPS
2373   break_(code, true);
2374 #endif
2375 }
2376 
tge(Register rs,Register rt,uint16_t code)2377 void Assembler::tge(Register rs, Register rt, uint16_t code) {
2378   DCHECK(is_uint10(code));
2379   Instr instr =
2380       SPECIAL | TGE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2381   emit(instr);
2382 }
2383 
tgeu(Register rs,Register rt,uint16_t code)2384 void Assembler::tgeu(Register rs, Register rt, uint16_t code) {
2385   DCHECK(is_uint10(code));
2386   Instr instr = SPECIAL | TGEU | rs.code() << kRsShift | rt.code() << kRtShift |
2387                 code << 6;
2388   emit(instr);
2389 }
2390 
tlt(Register rs,Register rt,uint16_t code)2391 void Assembler::tlt(Register rs, Register rt, uint16_t code) {
2392   DCHECK(is_uint10(code));
2393   Instr instr =
2394       SPECIAL | TLT | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2395   emit(instr);
2396 }
2397 
tltu(Register rs,Register rt,uint16_t code)2398 void Assembler::tltu(Register rs, Register rt, uint16_t code) {
2399   DCHECK(is_uint10(code));
2400   Instr instr = SPECIAL | TLTU | rs.code() << kRsShift | rt.code() << kRtShift |
2401                 code << 6;
2402   emit(instr);
2403 }
2404 
teq(Register rs,Register rt,uint16_t code)2405 void Assembler::teq(Register rs, Register rt, uint16_t code) {
2406   DCHECK(is_uint10(code));
2407   Instr instr =
2408       SPECIAL | TEQ | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2409   emit(instr);
2410 }
2411 
tne(Register rs,Register rt,uint16_t code)2412 void Assembler::tne(Register rs, Register rt, uint16_t code) {
2413   DCHECK(is_uint10(code));
2414   Instr instr =
2415       SPECIAL | TNE | rs.code() << kRsShift | rt.code() << kRtShift | code << 6;
2416   emit(instr);
2417 }
2418 
sync()2419 void Assembler::sync() {
2420   Instr sync_instr = SPECIAL | SYNC;
2421   emit(sync_instr);
2422 }
2423 
2424 // Move from HI/LO register.
2425 
mfhi(Register rd)2426 void Assembler::mfhi(Register rd) {
2427   GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFHI);
2428 }
2429 
mflo(Register rd)2430 void Assembler::mflo(Register rd) {
2431   GenInstrRegister(SPECIAL, zero_reg, zero_reg, rd, 0, MFLO);
2432 }
2433 
2434 // Set on less than instructions.
slt(Register rd,Register rs,Register rt)2435 void Assembler::slt(Register rd, Register rs, Register rt) {
2436   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLT);
2437 }
2438 
sltu(Register rd,Register rs,Register rt)2439 void Assembler::sltu(Register rd, Register rs, Register rt) {
2440   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SLTU);
2441 }
2442 
slti(Register rt,Register rs,int32_t j)2443 void Assembler::slti(Register rt, Register rs, int32_t j) {
2444   GenInstrImmediate(SLTI, rs, rt, j);
2445 }
2446 
sltiu(Register rt,Register rs,int32_t j)2447 void Assembler::sltiu(Register rt, Register rs, int32_t j) {
2448   GenInstrImmediate(SLTIU, rs, rt, j);
2449 }
2450 
2451 // Conditional move.
movz(Register rd,Register rs,Register rt)2452 void Assembler::movz(Register rd, Register rs, Register rt) {
2453   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVZ);
2454 }
2455 
movn(Register rd,Register rs,Register rt)2456 void Assembler::movn(Register rd, Register rs, Register rt) {
2457   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVN);
2458 }
2459 
movt(Register rd,Register rs,uint16_t cc)2460 void Assembler::movt(Register rd, Register rs, uint16_t cc) {
2461   Register rt = Register::from_code((cc & 0x0007) << 2 | 1);
2462   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2463 }
2464 
movf(Register rd,Register rs,uint16_t cc)2465 void Assembler::movf(Register rd, Register rs, uint16_t cc) {
2466   Register rt = Register::from_code((cc & 0x0007) << 2 | 0);
2467   GenInstrRegister(SPECIAL, rs, rt, rd, 0, MOVCI);
2468 }
2469 
min_s(FPURegister fd,FPURegister fs,FPURegister ft)2470 void Assembler::min_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2471   min(S, fd, fs, ft);
2472 }
2473 
min_d(FPURegister fd,FPURegister fs,FPURegister ft)2474 void Assembler::min_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2475   min(D, fd, fs, ft);
2476 }
2477 
max_s(FPURegister fd,FPURegister fs,FPURegister ft)2478 void Assembler::max_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2479   max(S, fd, fs, ft);
2480 }
2481 
max_d(FPURegister fd,FPURegister fs,FPURegister ft)2482 void Assembler::max_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2483   max(D, fd, fs, ft);
2484 }
2485 
mina_s(FPURegister fd,FPURegister fs,FPURegister ft)2486 void Assembler::mina_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2487   mina(S, fd, fs, ft);
2488 }
2489 
mina_d(FPURegister fd,FPURegister fs,FPURegister ft)2490 void Assembler::mina_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2491   mina(D, fd, fs, ft);
2492 }
2493 
maxa_s(FPURegister fd,FPURegister fs,FPURegister ft)2494 void Assembler::maxa_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2495   maxa(S, fd, fs, ft);
2496 }
2497 
maxa_d(FPURegister fd,FPURegister fs,FPURegister ft)2498 void Assembler::maxa_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2499   maxa(D, fd, fs, ft);
2500 }
2501 
max(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2502 void Assembler::max(SecondaryField fmt, FPURegister fd, FPURegister fs,
2503                     FPURegister ft) {
2504   DCHECK_EQ(kArchVariant, kMips64r6);
2505   DCHECK((fmt == D) || (fmt == S));
2506   GenInstrRegister(COP1, fmt, ft, fs, fd, MAX);
2507 }
2508 
min(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2509 void Assembler::min(SecondaryField fmt, FPURegister fd, FPURegister fs,
2510                     FPURegister ft) {
2511   DCHECK_EQ(kArchVariant, kMips64r6);
2512   DCHECK((fmt == D) || (fmt == S));
2513   GenInstrRegister(COP1, fmt, ft, fs, fd, MIN);
2514 }
2515 
2516 // GPR.
seleqz(Register rd,Register rs,Register rt)2517 void Assembler::seleqz(Register rd, Register rs, Register rt) {
2518   DCHECK_EQ(kArchVariant, kMips64r6);
2519   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELEQZ_S);
2520 }
2521 
2522 // GPR.
selnez(Register rd,Register rs,Register rt)2523 void Assembler::selnez(Register rd, Register rs, Register rt) {
2524   DCHECK_EQ(kArchVariant, kMips64r6);
2525   GenInstrRegister(SPECIAL, rs, rt, rd, 0, SELNEZ_S);
2526 }
2527 
2528 // Bit twiddling.
clz(Register rd,Register rs)2529 void Assembler::clz(Register rd, Register rs) {
2530   if (kArchVariant != kMips64r6) {
2531     // clz instr requires same GPR number in 'rd' and 'rt' fields.
2532     GenInstrRegister(SPECIAL2, rs, rd, rd, 0, CLZ);
2533   } else {
2534     GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, CLZ_R6);
2535   }
2536 }
2537 
dclz(Register rd,Register rs)2538 void Assembler::dclz(Register rd, Register rs) {
2539   if (kArchVariant != kMips64r6) {
2540     // dclz instr requires same GPR number in 'rd' and 'rt' fields.
2541     GenInstrRegister(SPECIAL2, rs, rd, rd, 0, DCLZ);
2542   } else {
2543     GenInstrRegister(SPECIAL, rs, zero_reg, rd, 1, DCLZ_R6);
2544   }
2545 }
2546 
ins_(Register rt,Register rs,uint16_t pos,uint16_t size)2547 void Assembler::ins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2548   // Should be called via MacroAssembler::Ins.
2549   // ins instr has 'rt' field as dest, and two uint5: msb, lsb.
2550   DCHECK((kArchVariant == kMips64r2) || (kArchVariant == kMips64r6));
2551   GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, INS);
2552 }
2553 
dins_(Register rt,Register rs,uint16_t pos,uint16_t size)2554 void Assembler::dins_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2555   // Should be called via MacroAssembler::Dins.
2556   // dins instr has 'rt' field as dest, and two uint5: msb, lsb.
2557   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2558   GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1, pos, DINS);
2559 }
2560 
dinsm_(Register rt,Register rs,uint16_t pos,uint16_t size)2561 void Assembler::dinsm_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2562   // Should be called via MacroAssembler::Dins.
2563   // dinsm instr has 'rt' field as dest, and two uint5: msbminus32, lsb.
2564   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2565   GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos, DINSM);
2566 }
2567 
dinsu_(Register rt,Register rs,uint16_t pos,uint16_t size)2568 void Assembler::dinsu_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2569   // Should be called via MacroAssembler::Dins.
2570   // dinsu instr has 'rt' field as dest, and two uint5: msbminus32, lsbminus32.
2571   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2572   GenInstrRegister(SPECIAL3, rs, rt, pos + size - 1 - 32, pos - 32, DINSU);
2573 }
2574 
ext_(Register rt,Register rs,uint16_t pos,uint16_t size)2575 void Assembler::ext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2576   // Should be called via MacroAssembler::Ext.
2577   // ext instr has 'rt' field as dest, and two uint5: msbd, lsb.
2578   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2579   GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, EXT);
2580 }
2581 
dext_(Register rt,Register rs,uint16_t pos,uint16_t size)2582 void Assembler::dext_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2583   // Should be called via MacroAssembler::Dext.
2584   // dext instr has 'rt' field as dest, and two uint5: msbd, lsb.
2585   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2586   GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos, DEXT);
2587 }
2588 
dextm_(Register rt,Register rs,uint16_t pos,uint16_t size)2589 void Assembler::dextm_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2590   // Should be called via MacroAssembler::Dextm.
2591   // dextm instr has 'rt' field as dest, and two uint5: msbdminus32, lsb.
2592   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2593   GenInstrRegister(SPECIAL3, rs, rt, size - 1 - 32, pos, DEXTM);
2594 }
2595 
dextu_(Register rt,Register rs,uint16_t pos,uint16_t size)2596 void Assembler::dextu_(Register rt, Register rs, uint16_t pos, uint16_t size) {
2597   // Should be called via MacroAssembler::Dextu.
2598   // dextu instr has 'rt' field as dest, and two uint5: msbd, lsbminus32.
2599   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2600   GenInstrRegister(SPECIAL3, rs, rt, size - 1, pos - 32, DEXTU);
2601 }
2602 
bitswap(Register rd,Register rt)2603 void Assembler::bitswap(Register rd, Register rt) {
2604   DCHECK_EQ(kArchVariant, kMips64r6);
2605   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, BSHFL);
2606 }
2607 
dbitswap(Register rd,Register rt)2608 void Assembler::dbitswap(Register rd, Register rt) {
2609   DCHECK_EQ(kArchVariant, kMips64r6);
2610   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, 0, DBSHFL);
2611 }
2612 
pref(int32_t hint,const MemOperand & rs)2613 void Assembler::pref(int32_t hint, const MemOperand& rs) {
2614   DCHECK(is_uint5(hint) && is_uint16(rs.offset_));
2615   Instr instr =
2616       PREF | (rs.rm().code() << kRsShift) | (hint << kRtShift) | (rs.offset_);
2617   emit(instr);
2618 }
2619 
align(Register rd,Register rs,Register rt,uint8_t bp)2620 void Assembler::align(Register rd, Register rs, Register rt, uint8_t bp) {
2621   DCHECK_EQ(kArchVariant, kMips64r6);
2622   DCHECK(is_uint3(bp));
2623   uint16_t sa = (ALIGN << kBp2Bits) | bp;
2624   GenInstrRegister(SPECIAL3, rs, rt, rd, sa, BSHFL);
2625 }
2626 
dalign(Register rd,Register rs,Register rt,uint8_t bp)2627 void Assembler::dalign(Register rd, Register rs, Register rt, uint8_t bp) {
2628   DCHECK_EQ(kArchVariant, kMips64r6);
2629   DCHECK(is_uint3(bp));
2630   uint16_t sa = (DALIGN << kBp3Bits) | bp;
2631   GenInstrRegister(SPECIAL3, rs, rt, rd, sa, DBSHFL);
2632 }
2633 
wsbh(Register rd,Register rt)2634 void Assembler::wsbh(Register rd, Register rt) {
2635   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2636   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, WSBH, BSHFL);
2637 }
2638 
dsbh(Register rd,Register rt)2639 void Assembler::dsbh(Register rd, Register rt) {
2640   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2641   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, DSBH, DBSHFL);
2642 }
2643 
dshd(Register rd,Register rt)2644 void Assembler::dshd(Register rd, Register rt) {
2645   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2646   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, DSHD, DBSHFL);
2647 }
2648 
seh(Register rd,Register rt)2649 void Assembler::seh(Register rd, Register rt) {
2650   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2651   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEH, BSHFL);
2652 }
2653 
seb(Register rd,Register rt)2654 void Assembler::seb(Register rd, Register rt) {
2655   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2656   GenInstrRegister(SPECIAL3, zero_reg, rt, rd, SEB, BSHFL);
2657 }
2658 
2659 // --------Coprocessor-instructions----------------
2660 
2661 // Load, store, move.
lwc1(FPURegister fd,const MemOperand & src)2662 void Assembler::lwc1(FPURegister fd, const MemOperand& src) {
2663   GenInstrImmediate(LWC1, src.rm(), fd, src.offset_);
2664 }
2665 
ldc1(FPURegister fd,const MemOperand & src)2666 void Assembler::ldc1(FPURegister fd, const MemOperand& src) {
2667   GenInstrImmediate(LDC1, src.rm(), fd, src.offset_);
2668 }
2669 
swc1(FPURegister fs,const MemOperand & src)2670 void Assembler::swc1(FPURegister fs, const MemOperand& src) {
2671   GenInstrImmediate(SWC1, src.rm(), fs, src.offset_);
2672 }
2673 
sdc1(FPURegister fs,const MemOperand & src)2674 void Assembler::sdc1(FPURegister fs, const MemOperand& src) {
2675   GenInstrImmediate(SDC1, src.rm(), fs, src.offset_);
2676 }
2677 
mtc1(Register rt,FPURegister fs)2678 void Assembler::mtc1(Register rt, FPURegister fs) {
2679   GenInstrRegister(COP1, MTC1, rt, fs, f0);
2680 }
2681 
mthc1(Register rt,FPURegister fs)2682 void Assembler::mthc1(Register rt, FPURegister fs) {
2683   GenInstrRegister(COP1, MTHC1, rt, fs, f0);
2684 }
2685 
dmtc1(Register rt,FPURegister fs)2686 void Assembler::dmtc1(Register rt, FPURegister fs) {
2687   GenInstrRegister(COP1, DMTC1, rt, fs, f0);
2688 }
2689 
mfc1(Register rt,FPURegister fs)2690 void Assembler::mfc1(Register rt, FPURegister fs) {
2691   GenInstrRegister(COP1, MFC1, rt, fs, f0);
2692 }
2693 
mfhc1(Register rt,FPURegister fs)2694 void Assembler::mfhc1(Register rt, FPURegister fs) {
2695   GenInstrRegister(COP1, MFHC1, rt, fs, f0);
2696 }
2697 
dmfc1(Register rt,FPURegister fs)2698 void Assembler::dmfc1(Register rt, FPURegister fs) {
2699   GenInstrRegister(COP1, DMFC1, rt, fs, f0);
2700 }
2701 
ctc1(Register rt,FPUControlRegister fs)2702 void Assembler::ctc1(Register rt, FPUControlRegister fs) {
2703   GenInstrRegister(COP1, CTC1, rt, fs);
2704 }
2705 
cfc1(Register rt,FPUControlRegister fs)2706 void Assembler::cfc1(Register rt, FPUControlRegister fs) {
2707   GenInstrRegister(COP1, CFC1, rt, fs);
2708 }
2709 
sel(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2710 void Assembler::sel(SecondaryField fmt, FPURegister fd, FPURegister fs,
2711                     FPURegister ft) {
2712   DCHECK_EQ(kArchVariant, kMips64r6);
2713   DCHECK((fmt == D) || (fmt == S));
2714 
2715   GenInstrRegister(COP1, fmt, ft, fs, fd, SEL);
2716 }
2717 
sel_s(FPURegister fd,FPURegister fs,FPURegister ft)2718 void Assembler::sel_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2719   sel(S, fd, fs, ft);
2720 }
2721 
sel_d(FPURegister fd,FPURegister fs,FPURegister ft)2722 void Assembler::sel_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2723   sel(D, fd, fs, ft);
2724 }
2725 
2726 // FPR.
seleqz(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2727 void Assembler::seleqz(SecondaryField fmt, FPURegister fd, FPURegister fs,
2728                        FPURegister ft) {
2729   DCHECK((fmt == D) || (fmt == S));
2730   GenInstrRegister(COP1, fmt, ft, fs, fd, SELEQZ_C);
2731 }
2732 
seleqz_d(FPURegister fd,FPURegister fs,FPURegister ft)2733 void Assembler::seleqz_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2734   seleqz(D, fd, fs, ft);
2735 }
2736 
seleqz_s(FPURegister fd,FPURegister fs,FPURegister ft)2737 void Assembler::seleqz_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2738   seleqz(S, fd, fs, ft);
2739 }
2740 
selnez_d(FPURegister fd,FPURegister fs,FPURegister ft)2741 void Assembler::selnez_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2742   selnez(D, fd, fs, ft);
2743 }
2744 
selnez_s(FPURegister fd,FPURegister fs,FPURegister ft)2745 void Assembler::selnez_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2746   selnez(S, fd, fs, ft);
2747 }
2748 
movz_s(FPURegister fd,FPURegister fs,Register rt)2749 void Assembler::movz_s(FPURegister fd, FPURegister fs, Register rt) {
2750   DCHECK_EQ(kArchVariant, kMips64r2);
2751   GenInstrRegister(COP1, S, rt, fs, fd, MOVZ_C);
2752 }
2753 
movz_d(FPURegister fd,FPURegister fs,Register rt)2754 void Assembler::movz_d(FPURegister fd, FPURegister fs, Register rt) {
2755   DCHECK_EQ(kArchVariant, kMips64r2);
2756   GenInstrRegister(COP1, D, rt, fs, fd, MOVZ_C);
2757 }
2758 
movt_s(FPURegister fd,FPURegister fs,uint16_t cc)2759 void Assembler::movt_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2760   DCHECK_EQ(kArchVariant, kMips64r2);
2761   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2762   GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2763 }
2764 
movt_d(FPURegister fd,FPURegister fs,uint16_t cc)2765 void Assembler::movt_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2766   DCHECK_EQ(kArchVariant, kMips64r2);
2767   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 1);
2768   GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2769 }
2770 
movf_s(FPURegister fd,FPURegister fs,uint16_t cc)2771 void Assembler::movf_s(FPURegister fd, FPURegister fs, uint16_t cc) {
2772   DCHECK_EQ(kArchVariant, kMips64r2);
2773   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2774   GenInstrRegister(COP1, S, ft, fs, fd, MOVF);
2775 }
2776 
movf_d(FPURegister fd,FPURegister fs,uint16_t cc)2777 void Assembler::movf_d(FPURegister fd, FPURegister fs, uint16_t cc) {
2778   DCHECK_EQ(kArchVariant, kMips64r2);
2779   FPURegister ft = FPURegister::from_code((cc & 0x0007) << 2 | 0);
2780   GenInstrRegister(COP1, D, ft, fs, fd, MOVF);
2781 }
2782 
movn_s(FPURegister fd,FPURegister fs,Register rt)2783 void Assembler::movn_s(FPURegister fd, FPURegister fs, Register rt) {
2784   DCHECK_EQ(kArchVariant, kMips64r2);
2785   GenInstrRegister(COP1, S, rt, fs, fd, MOVN_C);
2786 }
2787 
movn_d(FPURegister fd,FPURegister fs,Register rt)2788 void Assembler::movn_d(FPURegister fd, FPURegister fs, Register rt) {
2789   DCHECK_EQ(kArchVariant, kMips64r2);
2790   GenInstrRegister(COP1, D, rt, fs, fd, MOVN_C);
2791 }
2792 
2793 // FPR.
selnez(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)2794 void Assembler::selnez(SecondaryField fmt, FPURegister fd, FPURegister fs,
2795                        FPURegister ft) {
2796   DCHECK_EQ(kArchVariant, kMips64r6);
2797   DCHECK((fmt == D) || (fmt == S));
2798   GenInstrRegister(COP1, fmt, ft, fs, fd, SELNEZ_C);
2799 }
2800 
2801 // Arithmetic.
2802 
add_s(FPURegister fd,FPURegister fs,FPURegister ft)2803 void Assembler::add_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2804   GenInstrRegister(COP1, S, ft, fs, fd, ADD_D);
2805 }
2806 
add_d(FPURegister fd,FPURegister fs,FPURegister ft)2807 void Assembler::add_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2808   GenInstrRegister(COP1, D, ft, fs, fd, ADD_D);
2809 }
2810 
sub_s(FPURegister fd,FPURegister fs,FPURegister ft)2811 void Assembler::sub_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2812   GenInstrRegister(COP1, S, ft, fs, fd, SUB_D);
2813 }
2814 
sub_d(FPURegister fd,FPURegister fs,FPURegister ft)2815 void Assembler::sub_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2816   GenInstrRegister(COP1, D, ft, fs, fd, SUB_D);
2817 }
2818 
mul_s(FPURegister fd,FPURegister fs,FPURegister ft)2819 void Assembler::mul_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2820   GenInstrRegister(COP1, S, ft, fs, fd, MUL_D);
2821 }
2822 
mul_d(FPURegister fd,FPURegister fs,FPURegister ft)2823 void Assembler::mul_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2824   GenInstrRegister(COP1, D, ft, fs, fd, MUL_D);
2825 }
2826 
madd_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2827 void Assembler::madd_s(FPURegister fd, FPURegister fr, FPURegister fs,
2828                        FPURegister ft) {
2829   // On Loongson 3A (MIPS64R2), MADD.S instruction is actually fused MADD.S and
2830   // this causes failure in some of the tests. Since this optimization is rarely
2831   // used, and not used at all on MIPS64R6, this isntruction is removed.
2832   UNREACHABLE();
2833 }
2834 
madd_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2835 void Assembler::madd_d(FPURegister fd, FPURegister fr, FPURegister fs,
2836                        FPURegister ft) {
2837   // On Loongson 3A (MIPS64R2), MADD.D instruction is actually fused MADD.D and
2838   // this causes failure in some of the tests. Since this optimization is rarely
2839   // used, and not used at all on MIPS64R6, this isntruction is removed.
2840   UNREACHABLE();
2841 }
2842 
msub_s(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2843 void Assembler::msub_s(FPURegister fd, FPURegister fr, FPURegister fs,
2844                        FPURegister ft) {
2845   // See explanation for instruction madd_s.
2846   UNREACHABLE();
2847 }
2848 
msub_d(FPURegister fd,FPURegister fr,FPURegister fs,FPURegister ft)2849 void Assembler::msub_d(FPURegister fd, FPURegister fr, FPURegister fs,
2850                        FPURegister ft) {
2851   // See explanation for instruction madd_d.
2852   UNREACHABLE();
2853 }
2854 
maddf_s(FPURegister fd,FPURegister fs,FPURegister ft)2855 void Assembler::maddf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2856   DCHECK_EQ(kArchVariant, kMips64r6);
2857   GenInstrRegister(COP1, S, ft, fs, fd, MADDF_S);
2858 }
2859 
maddf_d(FPURegister fd,FPURegister fs,FPURegister ft)2860 void Assembler::maddf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2861   DCHECK_EQ(kArchVariant, kMips64r6);
2862   GenInstrRegister(COP1, D, ft, fs, fd, MADDF_D);
2863 }
2864 
msubf_s(FPURegister fd,FPURegister fs,FPURegister ft)2865 void Assembler::msubf_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2866   DCHECK_EQ(kArchVariant, kMips64r6);
2867   GenInstrRegister(COP1, S, ft, fs, fd, MSUBF_S);
2868 }
2869 
msubf_d(FPURegister fd,FPURegister fs,FPURegister ft)2870 void Assembler::msubf_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2871   DCHECK_EQ(kArchVariant, kMips64r6);
2872   GenInstrRegister(COP1, D, ft, fs, fd, MSUBF_D);
2873 }
2874 
div_s(FPURegister fd,FPURegister fs,FPURegister ft)2875 void Assembler::div_s(FPURegister fd, FPURegister fs, FPURegister ft) {
2876   GenInstrRegister(COP1, S, ft, fs, fd, DIV_D);
2877 }
2878 
div_d(FPURegister fd,FPURegister fs,FPURegister ft)2879 void Assembler::div_d(FPURegister fd, FPURegister fs, FPURegister ft) {
2880   GenInstrRegister(COP1, D, ft, fs, fd, DIV_D);
2881 }
2882 
abs_s(FPURegister fd,FPURegister fs)2883 void Assembler::abs_s(FPURegister fd, FPURegister fs) {
2884   GenInstrRegister(COP1, S, f0, fs, fd, ABS_D);
2885 }
2886 
abs_d(FPURegister fd,FPURegister fs)2887 void Assembler::abs_d(FPURegister fd, FPURegister fs) {
2888   GenInstrRegister(COP1, D, f0, fs, fd, ABS_D);
2889 }
2890 
mov_d(FPURegister fd,FPURegister fs)2891 void Assembler::mov_d(FPURegister fd, FPURegister fs) {
2892   GenInstrRegister(COP1, D, f0, fs, fd, MOV_D);
2893 }
2894 
mov_s(FPURegister fd,FPURegister fs)2895 void Assembler::mov_s(FPURegister fd, FPURegister fs) {
2896   GenInstrRegister(COP1, S, f0, fs, fd, MOV_S);
2897 }
2898 
neg_s(FPURegister fd,FPURegister fs)2899 void Assembler::neg_s(FPURegister fd, FPURegister fs) {
2900   GenInstrRegister(COP1, S, f0, fs, fd, NEG_D);
2901 }
2902 
neg_d(FPURegister fd,FPURegister fs)2903 void Assembler::neg_d(FPURegister fd, FPURegister fs) {
2904   GenInstrRegister(COP1, D, f0, fs, fd, NEG_D);
2905 }
2906 
sqrt_s(FPURegister fd,FPURegister fs)2907 void Assembler::sqrt_s(FPURegister fd, FPURegister fs) {
2908   GenInstrRegister(COP1, S, f0, fs, fd, SQRT_D);
2909 }
2910 
sqrt_d(FPURegister fd,FPURegister fs)2911 void Assembler::sqrt_d(FPURegister fd, FPURegister fs) {
2912   GenInstrRegister(COP1, D, f0, fs, fd, SQRT_D);
2913 }
2914 
rsqrt_s(FPURegister fd,FPURegister fs)2915 void Assembler::rsqrt_s(FPURegister fd, FPURegister fs) {
2916   GenInstrRegister(COP1, S, f0, fs, fd, RSQRT_S);
2917 }
2918 
rsqrt_d(FPURegister fd,FPURegister fs)2919 void Assembler::rsqrt_d(FPURegister fd, FPURegister fs) {
2920   GenInstrRegister(COP1, D, f0, fs, fd, RSQRT_D);
2921 }
2922 
recip_d(FPURegister fd,FPURegister fs)2923 void Assembler::recip_d(FPURegister fd, FPURegister fs) {
2924   GenInstrRegister(COP1, D, f0, fs, fd, RECIP_D);
2925 }
2926 
recip_s(FPURegister fd,FPURegister fs)2927 void Assembler::recip_s(FPURegister fd, FPURegister fs) {
2928   GenInstrRegister(COP1, S, f0, fs, fd, RECIP_S);
2929 }
2930 
2931 // Conversions.
cvt_w_s(FPURegister fd,FPURegister fs)2932 void Assembler::cvt_w_s(FPURegister fd, FPURegister fs) {
2933   GenInstrRegister(COP1, S, f0, fs, fd, CVT_W_S);
2934 }
2935 
cvt_w_d(FPURegister fd,FPURegister fs)2936 void Assembler::cvt_w_d(FPURegister fd, FPURegister fs) {
2937   GenInstrRegister(COP1, D, f0, fs, fd, CVT_W_D);
2938 }
2939 
trunc_w_s(FPURegister fd,FPURegister fs)2940 void Assembler::trunc_w_s(FPURegister fd, FPURegister fs) {
2941   GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_W_S);
2942 }
2943 
trunc_w_d(FPURegister fd,FPURegister fs)2944 void Assembler::trunc_w_d(FPURegister fd, FPURegister fs) {
2945   GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_W_D);
2946 }
2947 
round_w_s(FPURegister fd,FPURegister fs)2948 void Assembler::round_w_s(FPURegister fd, FPURegister fs) {
2949   GenInstrRegister(COP1, S, f0, fs, fd, ROUND_W_S);
2950 }
2951 
round_w_d(FPURegister fd,FPURegister fs)2952 void Assembler::round_w_d(FPURegister fd, FPURegister fs) {
2953   GenInstrRegister(COP1, D, f0, fs, fd, ROUND_W_D);
2954 }
2955 
floor_w_s(FPURegister fd,FPURegister fs)2956 void Assembler::floor_w_s(FPURegister fd, FPURegister fs) {
2957   GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_W_S);
2958 }
2959 
floor_w_d(FPURegister fd,FPURegister fs)2960 void Assembler::floor_w_d(FPURegister fd, FPURegister fs) {
2961   GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_W_D);
2962 }
2963 
ceil_w_s(FPURegister fd,FPURegister fs)2964 void Assembler::ceil_w_s(FPURegister fd, FPURegister fs) {
2965   GenInstrRegister(COP1, S, f0, fs, fd, CEIL_W_S);
2966 }
2967 
ceil_w_d(FPURegister fd,FPURegister fs)2968 void Assembler::ceil_w_d(FPURegister fd, FPURegister fs) {
2969   GenInstrRegister(COP1, D, f0, fs, fd, CEIL_W_D);
2970 }
2971 
rint_s(FPURegister fd,FPURegister fs)2972 void Assembler::rint_s(FPURegister fd, FPURegister fs) { rint(S, fd, fs); }
2973 
rint_d(FPURegister fd,FPURegister fs)2974 void Assembler::rint_d(FPURegister fd, FPURegister fs) { rint(D, fd, fs); }
2975 
rint(SecondaryField fmt,FPURegister fd,FPURegister fs)2976 void Assembler::rint(SecondaryField fmt, FPURegister fd, FPURegister fs) {
2977   DCHECK_EQ(kArchVariant, kMips64r6);
2978   GenInstrRegister(COP1, fmt, f0, fs, fd, RINT);
2979 }
2980 
cvt_l_s(FPURegister fd,FPURegister fs)2981 void Assembler::cvt_l_s(FPURegister fd, FPURegister fs) {
2982   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2983   GenInstrRegister(COP1, S, f0, fs, fd, CVT_L_S);
2984 }
2985 
cvt_l_d(FPURegister fd,FPURegister fs)2986 void Assembler::cvt_l_d(FPURegister fd, FPURegister fs) {
2987   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2988   GenInstrRegister(COP1, D, f0, fs, fd, CVT_L_D);
2989 }
2990 
trunc_l_s(FPURegister fd,FPURegister fs)2991 void Assembler::trunc_l_s(FPURegister fd, FPURegister fs) {
2992   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2993   GenInstrRegister(COP1, S, f0, fs, fd, TRUNC_L_S);
2994 }
2995 
trunc_l_d(FPURegister fd,FPURegister fs)2996 void Assembler::trunc_l_d(FPURegister fd, FPURegister fs) {
2997   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
2998   GenInstrRegister(COP1, D, f0, fs, fd, TRUNC_L_D);
2999 }
3000 
round_l_s(FPURegister fd,FPURegister fs)3001 void Assembler::round_l_s(FPURegister fd, FPURegister fs) {
3002   GenInstrRegister(COP1, S, f0, fs, fd, ROUND_L_S);
3003 }
3004 
round_l_d(FPURegister fd,FPURegister fs)3005 void Assembler::round_l_d(FPURegister fd, FPURegister fs) {
3006   GenInstrRegister(COP1, D, f0, fs, fd, ROUND_L_D);
3007 }
3008 
floor_l_s(FPURegister fd,FPURegister fs)3009 void Assembler::floor_l_s(FPURegister fd, FPURegister fs) {
3010   GenInstrRegister(COP1, S, f0, fs, fd, FLOOR_L_S);
3011 }
3012 
floor_l_d(FPURegister fd,FPURegister fs)3013 void Assembler::floor_l_d(FPURegister fd, FPURegister fs) {
3014   GenInstrRegister(COP1, D, f0, fs, fd, FLOOR_L_D);
3015 }
3016 
ceil_l_s(FPURegister fd,FPURegister fs)3017 void Assembler::ceil_l_s(FPURegister fd, FPURegister fs) {
3018   GenInstrRegister(COP1, S, f0, fs, fd, CEIL_L_S);
3019 }
3020 
ceil_l_d(FPURegister fd,FPURegister fs)3021 void Assembler::ceil_l_d(FPURegister fd, FPURegister fs) {
3022   GenInstrRegister(COP1, D, f0, fs, fd, CEIL_L_D);
3023 }
3024 
class_s(FPURegister fd,FPURegister fs)3025 void Assembler::class_s(FPURegister fd, FPURegister fs) {
3026   DCHECK_EQ(kArchVariant, kMips64r6);
3027   GenInstrRegister(COP1, S, f0, fs, fd, CLASS_S);
3028 }
3029 
class_d(FPURegister fd,FPURegister fs)3030 void Assembler::class_d(FPURegister fd, FPURegister fs) {
3031   DCHECK_EQ(kArchVariant, kMips64r6);
3032   GenInstrRegister(COP1, D, f0, fs, fd, CLASS_D);
3033 }
3034 
mina(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3035 void Assembler::mina(SecondaryField fmt, FPURegister fd, FPURegister fs,
3036                      FPURegister ft) {
3037   DCHECK_EQ(kArchVariant, kMips64r6);
3038   DCHECK((fmt == D) || (fmt == S));
3039   GenInstrRegister(COP1, fmt, ft, fs, fd, MINA);
3040 }
3041 
maxa(SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3042 void Assembler::maxa(SecondaryField fmt, FPURegister fd, FPURegister fs,
3043                      FPURegister ft) {
3044   DCHECK_EQ(kArchVariant, kMips64r6);
3045   DCHECK((fmt == D) || (fmt == S));
3046   GenInstrRegister(COP1, fmt, ft, fs, fd, MAXA);
3047 }
3048 
cvt_s_w(FPURegister fd,FPURegister fs)3049 void Assembler::cvt_s_w(FPURegister fd, FPURegister fs) {
3050   GenInstrRegister(COP1, W, f0, fs, fd, CVT_S_W);
3051 }
3052 
cvt_s_l(FPURegister fd,FPURegister fs)3053 void Assembler::cvt_s_l(FPURegister fd, FPURegister fs) {
3054   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
3055   GenInstrRegister(COP1, L, f0, fs, fd, CVT_S_L);
3056 }
3057 
cvt_s_d(FPURegister fd,FPURegister fs)3058 void Assembler::cvt_s_d(FPURegister fd, FPURegister fs) {
3059   GenInstrRegister(COP1, D, f0, fs, fd, CVT_S_D);
3060 }
3061 
cvt_d_w(FPURegister fd,FPURegister fs)3062 void Assembler::cvt_d_w(FPURegister fd, FPURegister fs) {
3063   GenInstrRegister(COP1, W, f0, fs, fd, CVT_D_W);
3064 }
3065 
cvt_d_l(FPURegister fd,FPURegister fs)3066 void Assembler::cvt_d_l(FPURegister fd, FPURegister fs) {
3067   DCHECK(kArchVariant == kMips64r2 || kArchVariant == kMips64r6);
3068   GenInstrRegister(COP1, L, f0, fs, fd, CVT_D_L);
3069 }
3070 
cvt_d_s(FPURegister fd,FPURegister fs)3071 void Assembler::cvt_d_s(FPURegister fd, FPURegister fs) {
3072   GenInstrRegister(COP1, S, f0, fs, fd, CVT_D_S);
3073 }
3074 
3075 // Conditions for >= MIPSr6.
cmp(FPUCondition cond,SecondaryField fmt,FPURegister fd,FPURegister fs,FPURegister ft)3076 void Assembler::cmp(FPUCondition cond, SecondaryField fmt, FPURegister fd,
3077                     FPURegister fs, FPURegister ft) {
3078   DCHECK_EQ(kArchVariant, kMips64r6);
3079   DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
3080   Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift |
3081                 fd.code() << kFdShift | (0 << 5) | cond;
3082   emit(instr);
3083 }
3084 
cmp_s(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)3085 void Assembler::cmp_s(FPUCondition cond, FPURegister fd, FPURegister fs,
3086                       FPURegister ft) {
3087   cmp(cond, W, fd, fs, ft);
3088 }
3089 
cmp_d(FPUCondition cond,FPURegister fd,FPURegister fs,FPURegister ft)3090 void Assembler::cmp_d(FPUCondition cond, FPURegister fd, FPURegister fs,
3091                       FPURegister ft) {
3092   cmp(cond, L, fd, fs, ft);
3093 }
3094 
bc1eqz(int16_t offset,FPURegister ft)3095 void Assembler::bc1eqz(int16_t offset, FPURegister ft) {
3096   DCHECK_EQ(kArchVariant, kMips64r6);
3097   BlockTrampolinePoolScope block_trampoline_pool(this);
3098   Instr instr = COP1 | BC1EQZ | ft.code() << kFtShift | (offset & kImm16Mask);
3099   emit(instr);
3100   BlockTrampolinePoolFor(1);  // For associated delay slot.
3101 }
3102 
bc1nez(int16_t offset,FPURegister ft)3103 void Assembler::bc1nez(int16_t offset, FPURegister ft) {
3104   DCHECK_EQ(kArchVariant, kMips64r6);
3105   BlockTrampolinePoolScope block_trampoline_pool(this);
3106   Instr instr = COP1 | BC1NEZ | ft.code() << kFtShift | (offset & kImm16Mask);
3107   emit(instr);
3108   BlockTrampolinePoolFor(1);  // For associated delay slot.
3109 }
3110 
3111 // Conditions for < MIPSr6.
c(FPUCondition cond,SecondaryField fmt,FPURegister fs,FPURegister ft,uint16_t cc)3112 void Assembler::c(FPUCondition cond, SecondaryField fmt, FPURegister fs,
3113                   FPURegister ft, uint16_t cc) {
3114   DCHECK_NE(kArchVariant, kMips64r6);
3115   DCHECK(is_uint3(cc));
3116   DCHECK(fmt == S || fmt == D);
3117   DCHECK_EQ(fmt & ~(31 << kRsShift), 0);
3118   Instr instr = COP1 | fmt | ft.code() << kFtShift | fs.code() << kFsShift |
3119                 cc << 8 | 3 << 4 | cond;
3120   emit(instr);
3121 }
3122 
c_s(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)3123 void Assembler::c_s(FPUCondition cond, FPURegister fs, FPURegister ft,
3124                     uint16_t cc) {
3125   c(cond, S, fs, ft, cc);
3126 }
3127 
c_d(FPUCondition cond,FPURegister fs,FPURegister ft,uint16_t cc)3128 void Assembler::c_d(FPUCondition cond, FPURegister fs, FPURegister ft,
3129                     uint16_t cc) {
3130   c(cond, D, fs, ft, cc);
3131 }
3132 
fcmp(FPURegister src1,const double src2,FPUCondition cond)3133 void Assembler::fcmp(FPURegister src1, const double src2, FPUCondition cond) {
3134   DCHECK_EQ(src2, 0.0);
3135   mtc1(zero_reg, f14);
3136   cvt_d_w(f14, f14);
3137   c(cond, D, src1, f14, 0);
3138 }
3139 
bc1f(int16_t offset,uint16_t cc)3140 void Assembler::bc1f(int16_t offset, uint16_t cc) {
3141   BlockTrampolinePoolScope block_trampoline_pool(this);
3142   DCHECK(is_uint3(cc));
3143   Instr instr = COP1 | BC1 | cc << 18 | 0 << 16 | (offset & kImm16Mask);
3144   emit(instr);
3145   BlockTrampolinePoolFor(1);  // For associated delay slot.
3146 }
3147 
bc1t(int16_t offset,uint16_t cc)3148 void Assembler::bc1t(int16_t offset, uint16_t cc) {
3149   BlockTrampolinePoolScope block_trampoline_pool(this);
3150   DCHECK(is_uint3(cc));
3151   Instr instr = COP1 | BC1 | cc << 18 | 1 << 16 | (offset & kImm16Mask);
3152   emit(instr);
3153   BlockTrampolinePoolFor(1);  // For associated delay slot.
3154 }
3155 
3156 // ---------- MSA instructions ------------
3157 #define MSA_BRANCH_LIST(V) \
3158   V(bz_v, BZ_V)            \
3159   V(bz_b, BZ_B)            \
3160   V(bz_h, BZ_H)            \
3161   V(bz_w, BZ_W)            \
3162   V(bz_d, BZ_D)            \
3163   V(bnz_v, BNZ_V)          \
3164   V(bnz_b, BNZ_B)          \
3165   V(bnz_h, BNZ_H)          \
3166   V(bnz_w, BNZ_W)          \
3167   V(bnz_d, BNZ_D)
3168 
3169 #define MSA_BRANCH(name, opcode)                         \
3170   void Assembler::name(MSARegister wt, int16_t offset) { \
3171     GenInstrMsaBranch(opcode, wt, offset);               \
3172   }
3173 
3174 MSA_BRANCH_LIST(MSA_BRANCH)
3175 #undef MSA_BRANCH
3176 #undef MSA_BRANCH_LIST
3177 
3178 #define MSA_LD_ST_LIST(V) \
3179   V(ld_b, LD_B, 1)        \
3180   V(ld_h, LD_H, 2)        \
3181   V(ld_w, LD_W, 4)        \
3182   V(ld_d, LD_D, 8)        \
3183   V(st_b, ST_B, 1)        \
3184   V(st_h, ST_H, 2)        \
3185   V(st_w, ST_W, 4)        \
3186   V(st_d, ST_D, 8)
3187 
3188 #define MSA_LD_ST(name, opcode, b)                                   \
3189   void Assembler::name(MSARegister wd, const MemOperand& rs) {       \
3190     MemOperand source = rs;                                          \
3191     AdjustBaseAndOffset(&source);                                    \
3192     if (is_int10(source.offset())) {                                 \
3193       DCHECK_EQ(source.offset() % b, 0);                             \
3194       GenInstrMsaMI10(opcode, source.offset() / b, source.rm(), wd); \
3195     } else {                                                         \
3196       UseScratchRegisterScope temps(this);                           \
3197       Register scratch = temps.Acquire();                            \
3198       DCHECK_NE(rs.rm(), scratch);                                   \
3199       daddiu(scratch, source.rm(), source.offset());                 \
3200       GenInstrMsaMI10(opcode, 0, scratch, wd);                       \
3201     }                                                                \
3202   }
3203 
MSA_LD_ST_LIST(MSA_LD_ST)3204 MSA_LD_ST_LIST(MSA_LD_ST)
3205 #undef MSA_LD_ST
3206 #undef MSA_LD_ST_LIST
3207 
3208 #define MSA_I10_LIST(V) \
3209   V(ldi_b, I5_DF_b)     \
3210   V(ldi_h, I5_DF_h)     \
3211   V(ldi_w, I5_DF_w)     \
3212   V(ldi_d, I5_DF_d)
3213 
3214 #define MSA_I10(name, format)                           \
3215   void Assembler::name(MSARegister wd, int32_t imm10) { \
3216     GenInstrMsaI10(LDI, format, imm10, wd);             \
3217   }
3218 MSA_I10_LIST(MSA_I10)
3219 #undef MSA_I10
3220 #undef MSA_I10_LIST
3221 
3222 #define MSA_I5_LIST(V) \
3223   V(addvi, ADDVI)      \
3224   V(subvi, SUBVI)      \
3225   V(maxi_s, MAXI_S)    \
3226   V(maxi_u, MAXI_U)    \
3227   V(mini_s, MINI_S)    \
3228   V(mini_u, MINI_U)    \
3229   V(ceqi, CEQI)        \
3230   V(clti_s, CLTI_S)    \
3231   V(clti_u, CLTI_U)    \
3232   V(clei_s, CLEI_S)    \
3233   V(clei_u, CLEI_U)
3234 
3235 #define MSA_I5_FORMAT(name, opcode, format)                       \
3236   void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3237                                   uint32_t imm5) {                \
3238     GenInstrMsaI5(opcode, I5_DF_##format, imm5, ws, wd);          \
3239   }
3240 
3241 #define MSA_I5(name, opcode)     \
3242   MSA_I5_FORMAT(name, opcode, b) \
3243   MSA_I5_FORMAT(name, opcode, h) \
3244   MSA_I5_FORMAT(name, opcode, w) \
3245   MSA_I5_FORMAT(name, opcode, d)
3246 
3247 MSA_I5_LIST(MSA_I5)
3248 #undef MSA_I5
3249 #undef MSA_I5_FORMAT
3250 #undef MSA_I5_LIST
3251 
3252 #define MSA_I8_LIST(V) \
3253   V(andi_b, ANDI_B)    \
3254   V(ori_b, ORI_B)      \
3255   V(nori_b, NORI_B)    \
3256   V(xori_b, XORI_B)    \
3257   V(bmnzi_b, BMNZI_B)  \
3258   V(bmzi_b, BMZI_B)    \
3259   V(bseli_b, BSELI_B)  \
3260   V(shf_b, SHF_B)      \
3261   V(shf_h, SHF_H)      \
3262   V(shf_w, SHF_W)
3263 
3264 #define MSA_I8(name, opcode)                                            \
3265   void Assembler::name(MSARegister wd, MSARegister ws, uint32_t imm8) { \
3266     GenInstrMsaI8(opcode, imm8, ws, wd);                                \
3267   }
3268 
3269 MSA_I8_LIST(MSA_I8)
3270 #undef MSA_I8
3271 #undef MSA_I8_LIST
3272 
3273 #define MSA_VEC_LIST(V) \
3274   V(and_v, AND_V)       \
3275   V(or_v, OR_V)         \
3276   V(nor_v, NOR_V)       \
3277   V(xor_v, XOR_V)       \
3278   V(bmnz_v, BMNZ_V)     \
3279   V(bmz_v, BMZ_V)       \
3280   V(bsel_v, BSEL_V)
3281 
3282 #define MSA_VEC(name, opcode)                                            \
3283   void Assembler::name(MSARegister wd, MSARegister ws, MSARegister wt) { \
3284     GenInstrMsaVec(opcode, wt, ws, wd);                                  \
3285   }
3286 
3287 MSA_VEC_LIST(MSA_VEC)
3288 #undef MSA_VEC
3289 #undef MSA_VEC_LIST
3290 
3291 #define MSA_2R_LIST(V) \
3292   V(pcnt, PCNT)        \
3293   V(nloc, NLOC)        \
3294   V(nlzc, NLZC)
3295 
3296 #define MSA_2R_FORMAT(name, opcode, format)                         \
3297   void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3298     GenInstrMsa2R(opcode, MSA_2R_DF_##format, ws, wd);              \
3299   }
3300 
3301 #define MSA_2R(name, opcode)     \
3302   MSA_2R_FORMAT(name, opcode, b) \
3303   MSA_2R_FORMAT(name, opcode, h) \
3304   MSA_2R_FORMAT(name, opcode, w) \
3305   MSA_2R_FORMAT(name, opcode, d)
3306 
3307 MSA_2R_LIST(MSA_2R)
3308 #undef MSA_2R
3309 #undef MSA_2R_FORMAT
3310 #undef MSA_2R_LIST
3311 
3312 #define MSA_FILL(format)                                              \
3313   void Assembler::fill_##format(MSARegister wd, Register rs) {        \
3314     DCHECK(IsEnabled(MIPS_SIMD));                                     \
3315     DCHECK(rs.is_valid() && wd.is_valid());                           \
3316     Instr instr = MSA | MSA_2R_FORMAT | FILL | MSA_2R_DF_##format |   \
3317                   (rs.code() << kWsShift) | (wd.code() << kWdShift) | \
3318                   MSA_VEC_2R_2RF_MINOR;                               \
3319     emit(instr);                                                      \
3320   }
3321 
3322 MSA_FILL(b)
3323 MSA_FILL(h)
3324 MSA_FILL(w)
3325 MSA_FILL(d)
3326 #undef MSA_FILL
3327 
3328 #define MSA_2RF_LIST(V) \
3329   V(fclass, FCLASS)     \
3330   V(ftrunc_s, FTRUNC_S) \
3331   V(ftrunc_u, FTRUNC_U) \
3332   V(fsqrt, FSQRT)       \
3333   V(frsqrt, FRSQRT)     \
3334   V(frcp, FRCP)         \
3335   V(frint, FRINT)       \
3336   V(flog2, FLOG2)       \
3337   V(fexupl, FEXUPL)     \
3338   V(fexupr, FEXUPR)     \
3339   V(ffql, FFQL)         \
3340   V(ffqr, FFQR)         \
3341   V(ftint_s, FTINT_S)   \
3342   V(ftint_u, FTINT_U)   \
3343   V(ffint_s, FFINT_S)   \
3344   V(ffint_u, FFINT_U)
3345 
3346 #define MSA_2RF_FORMAT(name, opcode, format)                        \
3347   void Assembler::name##_##format(MSARegister wd, MSARegister ws) { \
3348     GenInstrMsa2RF(opcode, MSA_2RF_DF_##format, ws, wd);            \
3349   }
3350 
3351 #define MSA_2RF(name, opcode)     \
3352   MSA_2RF_FORMAT(name, opcode, w) \
3353   MSA_2RF_FORMAT(name, opcode, d)
3354 
3355 MSA_2RF_LIST(MSA_2RF)
3356 #undef MSA_2RF
3357 #undef MSA_2RF_FORMAT
3358 #undef MSA_2RF_LIST
3359 
3360 #define MSA_3R_LIST(V)  \
3361   V(sll, SLL_MSA)       \
3362   V(sra, SRA_MSA)       \
3363   V(srl, SRL_MSA)       \
3364   V(bclr, BCLR)         \
3365   V(bset, BSET)         \
3366   V(bneg, BNEG)         \
3367   V(binsl, BINSL)       \
3368   V(binsr, BINSR)       \
3369   V(addv, ADDV)         \
3370   V(subv, SUBV)         \
3371   V(max_s, MAX_S)       \
3372   V(max_u, MAX_U)       \
3373   V(min_s, MIN_S)       \
3374   V(min_u, MIN_U)       \
3375   V(max_a, MAX_A)       \
3376   V(min_a, MIN_A)       \
3377   V(ceq, CEQ)           \
3378   V(clt_s, CLT_S)       \
3379   V(clt_u, CLT_U)       \
3380   V(cle_s, CLE_S)       \
3381   V(cle_u, CLE_U)       \
3382   V(add_a, ADD_A)       \
3383   V(adds_a, ADDS_A)     \
3384   V(adds_s, ADDS_S)     \
3385   V(adds_u, ADDS_U)     \
3386   V(ave_s, AVE_S)       \
3387   V(ave_u, AVE_U)       \
3388   V(aver_s, AVER_S)     \
3389   V(aver_u, AVER_U)     \
3390   V(subs_s, SUBS_S)     \
3391   V(subs_u, SUBS_U)     \
3392   V(subsus_u, SUBSUS_U) \
3393   V(subsuu_s, SUBSUU_S) \
3394   V(asub_s, ASUB_S)     \
3395   V(asub_u, ASUB_U)     \
3396   V(mulv, MULV)         \
3397   V(maddv, MADDV)       \
3398   V(msubv, MSUBV)       \
3399   V(div_s, DIV_S_MSA)   \
3400   V(div_u, DIV_U)       \
3401   V(mod_s, MOD_S)       \
3402   V(mod_u, MOD_U)       \
3403   V(dotp_s, DOTP_S)     \
3404   V(dotp_u, DOTP_U)     \
3405   V(dpadd_s, DPADD_S)   \
3406   V(dpadd_u, DPADD_U)   \
3407   V(dpsub_s, DPSUB_S)   \
3408   V(dpsub_u, DPSUB_U)   \
3409   V(pckev, PCKEV)       \
3410   V(pckod, PCKOD)       \
3411   V(ilvl, ILVL)         \
3412   V(ilvr, ILVR)         \
3413   V(ilvev, ILVEV)       \
3414   V(ilvod, ILVOD)       \
3415   V(vshf, VSHF)         \
3416   V(srar, SRAR)         \
3417   V(srlr, SRLR)         \
3418   V(hadd_s, HADD_S)     \
3419   V(hadd_u, HADD_U)     \
3420   V(hsub_s, HSUB_S)     \
3421   V(hsub_u, HSUB_U)
3422 
3423 #define MSA_3R_FORMAT(name, opcode, format)                             \
3424   void Assembler::name##_##format(MSARegister wd, MSARegister ws,       \
3425                                   MSARegister wt) {                     \
3426     GenInstrMsa3R<MSARegister>(opcode, MSA_3R_DF_##format, wt, ws, wd); \
3427   }
3428 
3429 #define MSA_3R_FORMAT_SLD_SPLAT(name, opcode, format)                \
3430   void Assembler::name##_##format(MSARegister wd, MSARegister ws,    \
3431                                   Register rt) {                     \
3432     GenInstrMsa3R<Register>(opcode, MSA_3R_DF_##format, rt, ws, wd); \
3433   }
3434 
3435 #define MSA_3R(name, opcode)     \
3436   MSA_3R_FORMAT(name, opcode, b) \
3437   MSA_3R_FORMAT(name, opcode, h) \
3438   MSA_3R_FORMAT(name, opcode, w) \
3439   MSA_3R_FORMAT(name, opcode, d)
3440 
3441 #define MSA_3R_SLD_SPLAT(name, opcode)     \
3442   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, b) \
3443   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, h) \
3444   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, w) \
3445   MSA_3R_FORMAT_SLD_SPLAT(name, opcode, d)
3446 
3447 MSA_3R_LIST(MSA_3R)
3448 MSA_3R_SLD_SPLAT(sld, SLD)
3449 MSA_3R_SLD_SPLAT(splat, SPLAT)
3450 
3451 #undef MSA_3R
3452 #undef MSA_3R_FORMAT
3453 #undef MSA_3R_FORMAT_SLD_SPLAT
3454 #undef MSA_3R_SLD_SPLAT
3455 #undef MSA_3R_LIST
3456 
3457 #define MSA_3RF_LIST1(V) \
3458   V(fcaf, FCAF)          \
3459   V(fcun, FCUN)          \
3460   V(fceq, FCEQ)          \
3461   V(fcueq, FCUEQ)        \
3462   V(fclt, FCLT)          \
3463   V(fcult, FCULT)        \
3464   V(fcle, FCLE)          \
3465   V(fcule, FCULE)        \
3466   V(fsaf, FSAF)          \
3467   V(fsun, FSUN)          \
3468   V(fseq, FSEQ)          \
3469   V(fsueq, FSUEQ)        \
3470   V(fslt, FSLT)          \
3471   V(fsult, FSULT)        \
3472   V(fsle, FSLE)          \
3473   V(fsule, FSULE)        \
3474   V(fadd, FADD)          \
3475   V(fsub, FSUB)          \
3476   V(fmul, FMUL)          \
3477   V(fdiv, FDIV)          \
3478   V(fmadd, FMADD)        \
3479   V(fmsub, FMSUB)        \
3480   V(fexp2, FEXP2)        \
3481   V(fmin, FMIN)          \
3482   V(fmin_a, FMIN_A)      \
3483   V(fmax, FMAX)          \
3484   V(fmax_a, FMAX_A)      \
3485   V(fcor, FCOR)          \
3486   V(fcune, FCUNE)        \
3487   V(fcne, FCNE)          \
3488   V(fsor, FSOR)          \
3489   V(fsune, FSUNE)        \
3490   V(fsne, FSNE)
3491 
3492 #define MSA_3RF_LIST2(V) \
3493   V(fexdo, FEXDO)        \
3494   V(ftq, FTQ)            \
3495   V(mul_q, MUL_Q)        \
3496   V(madd_q, MADD_Q)      \
3497   V(msub_q, MSUB_Q)      \
3498   V(mulr_q, MULR_Q)      \
3499   V(maddr_q, MADDR_Q)    \
3500   V(msubr_q, MSUBR_Q)
3501 
3502 #define MSA_3RF_FORMAT(name, opcode, df, df_c)                \
3503   void Assembler::name##_##df(MSARegister wd, MSARegister ws, \
3504                               MSARegister wt) {               \
3505     GenInstrMsa3RF(opcode, df_c, wt, ws, wd);                 \
3506   }
3507 
3508 #define MSA_3RF_1(name, opcode)      \
3509   MSA_3RF_FORMAT(name, opcode, w, 0) \
3510   MSA_3RF_FORMAT(name, opcode, d, 1)
3511 
3512 #define MSA_3RF_2(name, opcode)      \
3513   MSA_3RF_FORMAT(name, opcode, h, 0) \
3514   MSA_3RF_FORMAT(name, opcode, w, 1)
3515 
3516 MSA_3RF_LIST1(MSA_3RF_1)
3517 MSA_3RF_LIST2(MSA_3RF_2)
3518 #undef MSA_3RF_1
3519 #undef MSA_3RF_2
3520 #undef MSA_3RF_FORMAT
3521 #undef MSA_3RF_LIST1
3522 #undef MSA_3RF_LIST2
3523 
3524 void Assembler::sldi_b(MSARegister wd, MSARegister ws, uint32_t n) {
3525   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_B, n, ws, wd);
3526 }
3527 
sldi_h(MSARegister wd,MSARegister ws,uint32_t n)3528 void Assembler::sldi_h(MSARegister wd, MSARegister ws, uint32_t n) {
3529   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_H, n, ws, wd);
3530 }
3531 
sldi_w(MSARegister wd,MSARegister ws,uint32_t n)3532 void Assembler::sldi_w(MSARegister wd, MSARegister ws, uint32_t n) {
3533   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_W, n, ws, wd);
3534 }
3535 
sldi_d(MSARegister wd,MSARegister ws,uint32_t n)3536 void Assembler::sldi_d(MSARegister wd, MSARegister ws, uint32_t n) {
3537   GenInstrMsaElm<MSARegister, MSARegister>(SLDI, ELM_DF_D, n, ws, wd);
3538 }
3539 
splati_b(MSARegister wd,MSARegister ws,uint32_t n)3540 void Assembler::splati_b(MSARegister wd, MSARegister ws, uint32_t n) {
3541   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_B, n, ws, wd);
3542 }
3543 
splati_h(MSARegister wd,MSARegister ws,uint32_t n)3544 void Assembler::splati_h(MSARegister wd, MSARegister ws, uint32_t n) {
3545   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_H, n, ws, wd);
3546 }
3547 
splati_w(MSARegister wd,MSARegister ws,uint32_t n)3548 void Assembler::splati_w(MSARegister wd, MSARegister ws, uint32_t n) {
3549   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_W, n, ws, wd);
3550 }
3551 
splati_d(MSARegister wd,MSARegister ws,uint32_t n)3552 void Assembler::splati_d(MSARegister wd, MSARegister ws, uint32_t n) {
3553   GenInstrMsaElm<MSARegister, MSARegister>(SPLATI, ELM_DF_D, n, ws, wd);
3554 }
3555 
copy_s_b(Register rd,MSARegister ws,uint32_t n)3556 void Assembler::copy_s_b(Register rd, MSARegister ws, uint32_t n) {
3557   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_B, n, ws, rd);
3558 }
3559 
copy_s_h(Register rd,MSARegister ws,uint32_t n)3560 void Assembler::copy_s_h(Register rd, MSARegister ws, uint32_t n) {
3561   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_H, n, ws, rd);
3562 }
3563 
copy_s_w(Register rd,MSARegister ws,uint32_t n)3564 void Assembler::copy_s_w(Register rd, MSARegister ws, uint32_t n) {
3565   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_W, n, ws, rd);
3566 }
3567 
copy_s_d(Register rd,MSARegister ws,uint32_t n)3568 void Assembler::copy_s_d(Register rd, MSARegister ws, uint32_t n) {
3569   GenInstrMsaElm<Register, MSARegister>(COPY_S, ELM_DF_D, n, ws, rd);
3570 }
3571 
copy_u_b(Register rd,MSARegister ws,uint32_t n)3572 void Assembler::copy_u_b(Register rd, MSARegister ws, uint32_t n) {
3573   GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_B, n, ws, rd);
3574 }
3575 
copy_u_h(Register rd,MSARegister ws,uint32_t n)3576 void Assembler::copy_u_h(Register rd, MSARegister ws, uint32_t n) {
3577   GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_H, n, ws, rd);
3578 }
3579 
copy_u_w(Register rd,MSARegister ws,uint32_t n)3580 void Assembler::copy_u_w(Register rd, MSARegister ws, uint32_t n) {
3581   GenInstrMsaElm<Register, MSARegister>(COPY_U, ELM_DF_W, n, ws, rd);
3582 }
3583 
insert_b(MSARegister wd,uint32_t n,Register rs)3584 void Assembler::insert_b(MSARegister wd, uint32_t n, Register rs) {
3585   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_B, n, rs, wd);
3586 }
3587 
insert_h(MSARegister wd,uint32_t n,Register rs)3588 void Assembler::insert_h(MSARegister wd, uint32_t n, Register rs) {
3589   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_H, n, rs, wd);
3590 }
3591 
insert_w(MSARegister wd,uint32_t n,Register rs)3592 void Assembler::insert_w(MSARegister wd, uint32_t n, Register rs) {
3593   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_W, n, rs, wd);
3594 }
3595 
insert_d(MSARegister wd,uint32_t n,Register rs)3596 void Assembler::insert_d(MSARegister wd, uint32_t n, Register rs) {
3597   GenInstrMsaElm<MSARegister, Register>(INSERT, ELM_DF_D, n, rs, wd);
3598 }
3599 
insve_b(MSARegister wd,uint32_t n,MSARegister ws)3600 void Assembler::insve_b(MSARegister wd, uint32_t n, MSARegister ws) {
3601   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_B, n, ws, wd);
3602 }
3603 
insve_h(MSARegister wd,uint32_t n,MSARegister ws)3604 void Assembler::insve_h(MSARegister wd, uint32_t n, MSARegister ws) {
3605   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_H, n, ws, wd);
3606 }
3607 
insve_w(MSARegister wd,uint32_t n,MSARegister ws)3608 void Assembler::insve_w(MSARegister wd, uint32_t n, MSARegister ws) {
3609   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_W, n, ws, wd);
3610 }
3611 
insve_d(MSARegister wd,uint32_t n,MSARegister ws)3612 void Assembler::insve_d(MSARegister wd, uint32_t n, MSARegister ws) {
3613   GenInstrMsaElm<MSARegister, MSARegister>(INSVE, ELM_DF_D, n, ws, wd);
3614 }
3615 
move_v(MSARegister wd,MSARegister ws)3616 void Assembler::move_v(MSARegister wd, MSARegister ws) {
3617   DCHECK(IsEnabled(MIPS_SIMD));
3618   DCHECK(ws.is_valid() && wd.is_valid());
3619   Instr instr = MSA | MOVE_V | (ws.code() << kWsShift) |
3620                 (wd.code() << kWdShift) | MSA_ELM_MINOR;
3621   emit(instr);
3622 }
3623 
ctcmsa(MSAControlRegister cd,Register rs)3624 void Assembler::ctcmsa(MSAControlRegister cd, Register rs) {
3625   DCHECK(IsEnabled(MIPS_SIMD));
3626   DCHECK(cd.is_valid() && rs.is_valid());
3627   Instr instr = MSA | CTCMSA | (rs.code() << kWsShift) |
3628                 (cd.code() << kWdShift) | MSA_ELM_MINOR;
3629   emit(instr);
3630 }
3631 
cfcmsa(Register rd,MSAControlRegister cs)3632 void Assembler::cfcmsa(Register rd, MSAControlRegister cs) {
3633   DCHECK(IsEnabled(MIPS_SIMD));
3634   DCHECK(rd.is_valid() && cs.is_valid());
3635   Instr instr = MSA | CFCMSA | (cs.code() << kWsShift) |
3636                 (rd.code() << kWdShift) | MSA_ELM_MINOR;
3637   emit(instr);
3638 }
3639 
3640 #define MSA_BIT_LIST(V) \
3641   V(slli, SLLI)         \
3642   V(srai, SRAI)         \
3643   V(srli, SRLI)         \
3644   V(bclri, BCLRI)       \
3645   V(bseti, BSETI)       \
3646   V(bnegi, BNEGI)       \
3647   V(binsli, BINSLI)     \
3648   V(binsri, BINSRI)     \
3649   V(sat_s, SAT_S)       \
3650   V(sat_u, SAT_U)       \
3651   V(srari, SRARI)       \
3652   V(srlri, SRLRI)
3653 
3654 #define MSA_BIT_FORMAT(name, opcode, format)                      \
3655   void Assembler::name##_##format(MSARegister wd, MSARegister ws, \
3656                                   uint32_t m) {                   \
3657     GenInstrMsaBit(opcode, BIT_DF_##format, m, ws, wd);           \
3658   }
3659 
3660 #define MSA_BIT(name, opcode)     \
3661   MSA_BIT_FORMAT(name, opcode, b) \
3662   MSA_BIT_FORMAT(name, opcode, h) \
3663   MSA_BIT_FORMAT(name, opcode, w) \
3664   MSA_BIT_FORMAT(name, opcode, d)
3665 
MSA_BIT_LIST(MSA_BIT)3666 MSA_BIT_LIST(MSA_BIT)
3667 #undef MSA_BIT
3668 #undef MSA_BIT_FORMAT
3669 #undef MSA_BIT_LIST
3670 
3671 int Assembler::RelocateInternalReference(RelocInfo::Mode rmode, Address pc,
3672                                          intptr_t pc_delta) {
3673   if (RelocInfo::IsInternalReference(rmode)) {
3674     int64_t* p = reinterpret_cast<int64_t*>(pc);
3675     if (*p == kEndOfJumpChain) {
3676       return 0;  // Number of instructions patched.
3677     }
3678     *p += pc_delta;
3679     return 2;  // Number of instructions patched.
3680   }
3681   Instr instr = instr_at(pc);
3682   DCHECK(RelocInfo::IsInternalReferenceEncoded(rmode));
3683   if (IsLui(instr)) {
3684     Instr instr_lui = instr_at(pc + 0 * kInstrSize);
3685     Instr instr_ori = instr_at(pc + 1 * kInstrSize);
3686     Instr instr_ori2 = instr_at(pc + 3 * kInstrSize);
3687     DCHECK(IsOri(instr_ori));
3688     DCHECK(IsOri(instr_ori2));
3689     // TODO(plind): symbolic names for the shifts.
3690     int64_t imm = (instr_lui & static_cast<int64_t>(kImm16Mask)) << 48;
3691     imm |= (instr_ori & static_cast<int64_t>(kImm16Mask)) << 32;
3692     imm |= (instr_ori2 & static_cast<int64_t>(kImm16Mask)) << 16;
3693     // Sign extend address.
3694     imm >>= 16;
3695 
3696     if (imm == kEndOfJumpChain) {
3697       return 0;  // Number of instructions patched.
3698     }
3699     imm += pc_delta;
3700     DCHECK_EQ(imm & 3, 0);
3701 
3702     instr_lui &= ~kImm16Mask;
3703     instr_ori &= ~kImm16Mask;
3704     instr_ori2 &= ~kImm16Mask;
3705 
3706     instr_at_put(pc + 0 * kInstrSize, instr_lui | ((imm >> 32) & kImm16Mask));
3707     instr_at_put(pc + 1 * kInstrSize, instr_ori | (imm >> 16 & kImm16Mask));
3708     instr_at_put(pc + 3 * kInstrSize, instr_ori2 | (imm & kImm16Mask));
3709     return 4;  // Number of instructions patched.
3710   } else if (IsJ(instr) || IsJal(instr)) {
3711     // Regular j/jal relocation.
3712     uint32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
3713     imm28 += pc_delta;
3714     imm28 &= kImm28Mask;
3715     instr &= ~kImm26Mask;
3716     DCHECK_EQ(imm28 & 3, 0);
3717     uint32_t imm26 = static_cast<uint32_t>(imm28 >> 2);
3718     instr_at_put(pc, instr | (imm26 & kImm26Mask));
3719     return 1;  // Number of instructions patched.
3720   } else {
3721     DCHECK(((instr & kJumpRawMask) == kJRawMark) ||
3722            ((instr & kJumpRawMask) == kJalRawMark));
3723     // Unbox raw offset and emit j/jal.
3724     int32_t imm28 = (instr & static_cast<int32_t>(kImm26Mask)) << 2;
3725     // Sign extend 28-bit offset to 32-bit.
3726     imm28 = (imm28 << 4) >> 4;
3727     uint64_t target =
3728         static_cast<int64_t>(imm28) + reinterpret_cast<uint64_t>(pc);
3729     target &= kImm28Mask;
3730     DCHECK_EQ(imm28 & 3, 0);
3731     uint32_t imm26 = static_cast<uint32_t>(target >> 2);
3732     // Check markings whether to emit j or jal.
3733     uint32_t unbox = (instr & kJRawMark) ? J : JAL;
3734     instr_at_put(pc, unbox | (imm26 & kImm26Mask));
3735     return 1;  // Number of instructions patched.
3736   }
3737 }
3738 
GrowBuffer()3739 void Assembler::GrowBuffer() {
3740   // Compute new buffer size.
3741   int old_size = buffer_->size();
3742   int new_size = std::min(2 * old_size, old_size + 1 * MB);
3743 
3744   // Some internal data structures overflow for very large buffers,
3745   // they must ensure that kMaximalBufferSize is not too large.
3746   if (new_size > kMaximalBufferSize) {
3747     V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer");
3748   }
3749 
3750   // Set up new buffer.
3751   std::unique_ptr<AssemblerBuffer> new_buffer = buffer_->Grow(new_size);
3752   DCHECK_EQ(new_size, new_buffer->size());
3753   byte* new_start = new_buffer->start();
3754 
3755   // Copy the data.
3756   intptr_t pc_delta = new_start - buffer_start_;
3757   intptr_t rc_delta = (new_start + new_size) - (buffer_start_ + old_size);
3758   size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos();
3759   MemMove(new_start, buffer_start_, pc_offset());
3760   MemMove(reloc_info_writer.pos() + rc_delta, reloc_info_writer.pos(),
3761           reloc_size);
3762 
3763   // Switch buffers.
3764   buffer_ = std::move(new_buffer);
3765   buffer_start_ = new_start;
3766   pc_ += pc_delta;
3767   pc_for_safepoint_ += pc_delta;
3768   reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta,
3769                                reloc_info_writer.last_pc() + pc_delta);
3770 
3771   // Relocate runtime entries.
3772   base::Vector<byte> instructions{buffer_start_,
3773                                   static_cast<size_t>(pc_offset())};
3774   base::Vector<const byte> reloc_info{reloc_info_writer.pos(), reloc_size};
3775   for (RelocIterator it(instructions, reloc_info, 0); !it.done(); it.next()) {
3776     RelocInfo::Mode rmode = it.rinfo()->rmode();
3777     if (rmode == RelocInfo::INTERNAL_REFERENCE) {
3778       RelocateInternalReference(rmode, it.rinfo()->pc(), pc_delta);
3779     }
3780   }
3781 
3782   DCHECK(!overflow());
3783 }
3784 
db(uint8_t data)3785 void Assembler::db(uint8_t data) {
3786   CheckForEmitInForbiddenSlot();
3787   *reinterpret_cast<uint8_t*>(pc_) = data;
3788   pc_ += sizeof(uint8_t);
3789 }
3790 
dd(uint32_t data,RelocInfo::Mode rmode)3791 void Assembler::dd(uint32_t data, RelocInfo::Mode rmode) {
3792   CheckForEmitInForbiddenSlot();
3793   if (!RelocInfo::IsNoInfo(rmode)) {
3794     DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) ||
3795            RelocInfo::IsLiteralConstant(rmode));
3796     RecordRelocInfo(rmode);
3797   }
3798   *reinterpret_cast<uint32_t*>(pc_) = data;
3799   pc_ += sizeof(uint32_t);
3800 }
3801 
dq(uint64_t data,RelocInfo::Mode rmode)3802 void Assembler::dq(uint64_t data, RelocInfo::Mode rmode) {
3803   CheckForEmitInForbiddenSlot();
3804   if (!RelocInfo::IsNoInfo(rmode)) {
3805     DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) ||
3806            RelocInfo::IsLiteralConstant(rmode));
3807     RecordRelocInfo(rmode);
3808   }
3809   *reinterpret_cast<uint64_t*>(pc_) = data;
3810   pc_ += sizeof(uint64_t);
3811 }
3812 
dd(Label * label)3813 void Assembler::dd(Label* label) {
3814   uint64_t data;
3815   CheckForEmitInForbiddenSlot();
3816   if (label->is_bound()) {
3817     data = reinterpret_cast<uint64_t>(buffer_start_ + label->pos());
3818   } else {
3819     data = jump_address(label);
3820     unbound_labels_count_++;
3821     internal_reference_positions_.insert(label->pos());
3822   }
3823   RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
3824   EmitHelper(data);
3825 }
3826 
RecordRelocInfo(RelocInfo::Mode rmode,intptr_t data)3827 void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) {
3828   if (!ShouldRecordRelocInfo(rmode)) return;
3829   // We do not try to reuse pool constants.
3830   RelocInfo rinfo(reinterpret_cast<Address>(pc_), rmode, data, Code());
3831   DCHECK_GE(buffer_space(), kMaxRelocSize);  // Too late to grow buffer here.
3832   reloc_info_writer.Write(&rinfo);
3833 }
3834 
BlockTrampolinePoolFor(int instructions)3835 void Assembler::BlockTrampolinePoolFor(int instructions) {
3836   CheckTrampolinePoolQuick(instructions);
3837   BlockTrampolinePoolBefore(pc_offset() + instructions * kInstrSize);
3838 }
3839 
CheckTrampolinePool()3840 void Assembler::CheckTrampolinePool() {
3841   // Some small sequences of instructions must not be broken up by the
3842   // insertion of a trampoline pool; such sequences are protected by setting
3843   // either trampoline_pool_blocked_nesting_ or no_trampoline_pool_before_,
3844   // which are both checked here. Also, recursive calls to CheckTrampolinePool
3845   // are blocked by trampoline_pool_blocked_nesting_.
3846   if ((trampoline_pool_blocked_nesting_ > 0) ||
3847       (pc_offset() < no_trampoline_pool_before_)) {
3848     // Emission is currently blocked; make sure we try again as soon as
3849     // possible.
3850     if (trampoline_pool_blocked_nesting_ > 0) {
3851       next_buffer_check_ = pc_offset() + kInstrSize;
3852     } else {
3853       next_buffer_check_ = no_trampoline_pool_before_;
3854     }
3855     return;
3856   }
3857 
3858   DCHECK(!trampoline_emitted_);
3859   DCHECK_GE(unbound_labels_count_, 0);
3860   if (unbound_labels_count_ > 0) {
3861     // First we emit jump (2 instructions), then we emit trampoline pool.
3862     {
3863       BlockTrampolinePoolScope block_trampoline_pool(this);
3864       Label after_pool;
3865       if (kArchVariant == kMips64r6) {
3866         bc(&after_pool);
3867       } else {
3868         b(&after_pool);
3869       }
3870       nop();
3871 
3872       int pool_start = pc_offset();
3873       for (int i = 0; i < unbound_labels_count_; i++) {
3874         {
3875           if (kArchVariant == kMips64r6) {
3876             bc(&after_pool);
3877             nop();
3878           } else {
3879             or_(t8, ra, zero_reg);
3880             nal();       // Read PC into ra register.
3881             lui(t9, 0);  // Branch delay slot.
3882             ori(t9, t9, 0);
3883             daddu(t9, ra, t9);
3884             or_(ra, t8, zero_reg);
3885             // Instruction jr will take or_ from the next trampoline.
3886             // in its branch delay slot. This is the expected behavior
3887             // in order to decrease size of trampoline pool.
3888             jr(t9);
3889           }
3890         }
3891       }
3892       nop();
3893       // If unbound_labels_count_ is big enough, label after_pool will
3894       // need a trampoline too, so we must create the trampoline before
3895       // the bind operation to make sure function 'bind' can get this
3896       // information.
3897       trampoline_ = Trampoline(pool_start, unbound_labels_count_);
3898       bind(&after_pool);
3899 
3900       trampoline_emitted_ = true;
3901       // As we are only going to emit trampoline once, we need to prevent any
3902       // further emission.
3903       next_buffer_check_ = kMaxInt;
3904     }
3905   } else {
3906     // Number of branches to unbound label at this point is zero, so we can
3907     // move next buffer check to maximum.
3908     next_buffer_check_ =
3909         pc_offset() + kMaxBranchOffset - kTrampolineSlotsSize * 16;
3910   }
3911   return;
3912 }
3913 
target_address_at(Address pc)3914 Address Assembler::target_address_at(Address pc) {
3915   Instr instr0 = instr_at(pc);
3916   Instr instr1 = instr_at(pc + 1 * kInstrSize);
3917   Instr instr3 = instr_at(pc + 3 * kInstrSize);
3918 
3919   // Interpret 4 instructions for address generated by li: See listing in
3920   // Assembler::set_target_address_at() just below.
3921   if ((GetOpcodeField(instr0) == LUI) && (GetOpcodeField(instr1) == ORI) &&
3922       (GetOpcodeField(instr3) == ORI)) {
3923     // Assemble the 48 bit value.
3924     int64_t addr =
3925         static_cast<int64_t>(((uint64_t)(GetImmediate16(instr0)) << 32) |
3926                              ((uint64_t)(GetImmediate16(instr1)) << 16) |
3927                              ((uint64_t)(GetImmediate16(instr3))));
3928 
3929     // Sign extend to get canonical address.
3930     addr = (addr << 16) >> 16;
3931     return static_cast<Address>(addr);
3932   }
3933   // We should never get here, force a bad address if we do.
3934   UNREACHABLE();
3935 }
3936 
3937 // On Mips64, a target address is stored in a 4-instruction sequence:
3938 //    0: lui(rd, (j.imm64_ >> 32) & kImm16Mask);
3939 //    1: ori(rd, rd, (j.imm64_ >> 16) & kImm16Mask);
3940 //    2: dsll(rd, rd, 16);
3941 //    3: ori(rd, rd, j.imm32_ & kImm16Mask);
3942 //
3943 // Patching the address must replace all the lui & ori instructions,
3944 // and flush the i-cache.
3945 //
3946 // There is an optimization below, which emits a nop when the address
3947 // fits in just 16 bits. This is unlikely to help, and should be benchmarked,
3948 // and possibly removed.
set_target_value_at(Address pc,uint64_t target,ICacheFlushMode icache_flush_mode)3949 void Assembler::set_target_value_at(Address pc, uint64_t target,
3950                                     ICacheFlushMode icache_flush_mode) {
3951   // There is an optimization where only 4 instructions are used to load address
3952   // in code on MIP64 because only 48-bits of address is effectively used.
3953   // It relies on fact the upper [63:48] bits are not used for virtual address
3954   // translation and they have to be set according to value of bit 47 in order
3955   // get canonical address.
3956   Instr instr1 = instr_at(pc + kInstrSize);
3957   uint32_t rt_code = GetRt(instr1);
3958   uint32_t* p = reinterpret_cast<uint32_t*>(pc);
3959 
3960 #ifdef DEBUG
3961   // Check we have the result from a li macro-instruction.
3962   Instr instr0 = instr_at(pc);
3963   Instr instr3 = instr_at(pc + kInstrSize * 3);
3964   DCHECK((GetOpcodeField(instr0) == LUI && GetOpcodeField(instr1) == ORI &&
3965           GetOpcodeField(instr3) == ORI));
3966 #endif
3967 
3968   // Must use 4 instructions to insure patchable code.
3969   // lui rt, upper-16.
3970   // ori rt, rt, lower-16.
3971   // dsll rt, rt, 16.
3972   // ori rt rt, lower-16.
3973   *p = LUI | (rt_code << kRtShift) | ((target >> 32) & kImm16Mask);
3974   *(p + 1) = ORI | (rt_code << kRtShift) | (rt_code << kRsShift) |
3975              ((target >> 16) & kImm16Mask);
3976   *(p + 3) = ORI | (rt_code << kRsShift) | (rt_code << kRtShift) |
3977              (target & kImm16Mask);
3978 
3979   if (icache_flush_mode != SKIP_ICACHE_FLUSH) {
3980     FlushInstructionCache(pc, 4 * kInstrSize);
3981   }
3982 }
3983 
UseScratchRegisterScope(Assembler * assembler)3984 UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler)
3985     : available_(assembler->GetScratchRegisterList()),
3986       old_available_(*available_) {}
3987 
~UseScratchRegisterScope()3988 UseScratchRegisterScope::~UseScratchRegisterScope() {
3989   *available_ = old_available_;
3990 }
3991 
Acquire()3992 Register UseScratchRegisterScope::Acquire() {
3993   DCHECK_NOT_NULL(available_);
3994   return available_->PopFirst();
3995 }
3996 
hasAvailable() const3997 bool UseScratchRegisterScope::hasAvailable() const {
3998   return !available_->is_empty();
3999 }
4000 
LoadStoreLaneParams(MachineRepresentation rep,uint8_t laneidx)4001 LoadStoreLaneParams::LoadStoreLaneParams(MachineRepresentation rep,
4002                                          uint8_t laneidx) {
4003   switch (rep) {
4004     case MachineRepresentation::kWord8:
4005       *this = LoadStoreLaneParams(laneidx, MSA_B, 16);
4006       break;
4007     case MachineRepresentation::kWord16:
4008       *this = LoadStoreLaneParams(laneidx, MSA_H, 8);
4009       break;
4010     case MachineRepresentation::kWord32:
4011       *this = LoadStoreLaneParams(laneidx, MSA_W, 4);
4012       break;
4013     case MachineRepresentation::kWord64:
4014       *this = LoadStoreLaneParams(laneidx, MSA_D, 2);
4015       break;
4016     default:
4017       UNREACHABLE();
4018   }
4019 }
4020 
4021 }  // namespace internal
4022 }  // namespace v8
4023 
4024 #endif  // V8_TARGET_ARCH_MIPS64
4025