• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright 2015 Google Inc.
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "include/core/SkPoint3.h"
9 
10 // Returns the square of the Euclidian distance to (x,y,z).
get_length_squared(float x,float y,float z)11 static inline float get_length_squared(float x, float y, float z) {
12     return x * x + y * y + z * z;
13 }
14 
15 // Calculates the square of the Euclidian distance to (x,y,z) and stores it in
16 // *lengthSquared.  Returns true if the distance is judged to be "nearly zero".
17 //
18 // This logic is encapsulated in a helper method to make it explicit that we
19 // always perform this check in the same manner, to avoid inconsistencies
20 // (see http://code.google.com/p/skia/issues/detail?id=560 ).
is_length_nearly_zero(float x,float y,float z,float * lengthSquared)21 static inline bool is_length_nearly_zero(float x, float y, float z, float *lengthSquared) {
22     *lengthSquared = get_length_squared(x, y, z);
23     return *lengthSquared <= (SK_ScalarNearlyZero * SK_ScalarNearlyZero);
24 }
25 
dump(std::string & desc,int depth) const26 void SkPoint3::dump(std::string& desc, int depth) const {
27     std::string split(depth, '\t');
28     desc += split + "\n SkPoint3:{ \n";
29     desc += split + "\t fX: " + std::to_string(fX) + "\n";
30     desc += split + "\t fY: " + std::to_string(fY) + "\n";
31     desc += split + "\t fZ: " + std::to_string(fZ) + "\n";
32     desc += split + "}\n";
33 }
34 
Length(SkScalar x,SkScalar y,SkScalar z)35 SkScalar SkPoint3::Length(SkScalar x, SkScalar y, SkScalar z) {
36     float magSq = get_length_squared(x, y, z);
37     if (SkScalarIsFinite(magSq)) {
38         return sk_float_sqrt(magSq);
39     } else {
40         double xx = x;
41         double yy = y;
42         double zz = z;
43         return (float)sqrt(xx * xx + yy * yy + zz * zz);
44     }
45 }
46 
47 /*
48  *  We have to worry about 2 tricky conditions:
49  *  1. underflow of magSq (compared against nearlyzero^2)
50  *  2. overflow of magSq (compared w/ isfinite)
51  *
52  *  If we underflow, we return false. If we overflow, we compute again using
53  *  doubles, which is much slower (3x in a desktop test) but will not overflow.
54  */
normalize()55 bool SkPoint3::normalize() {
56     float magSq;
57     if (is_length_nearly_zero(fX, fY, fZ, &magSq)) {
58         this->set(0, 0, 0);
59         return false;
60     }
61     // sqrtf does not provide enough precision; since sqrt takes a double,
62     // there's no additional penalty to storing invScale in a double
63     double invScale;
64     if (sk_float_isfinite(magSq)) {
65         invScale = magSq;
66     } else {
67         // our magSq step overflowed to infinity, so use doubles instead.
68         // much slower, but needed when x, y or z is very large, otherwise we
69         // divide by inf. and return (0,0,0) vector.
70         double xx = fX;
71         double yy = fY;
72         double zz = fZ;
73         invScale = xx * xx + yy * yy + zz * zz;
74     }
75     // using a float instead of a double for scale loses too much precision
76     double scale = 1 / sqrt(invScale);
77     fX *= scale;
78     fY *= scale;
79     fZ *= scale;
80     if (!sk_float_isfinite(fX) || !sk_float_isfinite(fY) || !sk_float_isfinite(fZ)) {
81         this->set(0, 0, 0);
82         return false;
83     }
84     return true;
85 }
86