• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*************************************************
2 *           PCRE2 DEMONSTRATION PROGRAM          *
3 *************************************************/
4 
5 /* This is a demonstration program to illustrate a straightforward way of
6 using the PCRE2 regular expression library from a C program. See the
7 pcre2sample documentation for a short discussion ("man pcre2sample" if you have
8 the PCRE2 man pages installed). PCRE2 is a revised API for the library, and is
9 incompatible with the original PCRE API.
10 
11 There are actually three libraries, each supporting a different code unit
12 width. This demonstration program uses the 8-bit library. The default is to
13 process each code unit as a separate character, but if the pattern begins with
14 "(*UTF)", both it and the subject are treated as UTF-8 strings, where
15 characters may occupy multiple code units.
16 
17 In Unix-like environments, if PCRE2 is installed in your standard system
18 libraries, you should be able to compile this program using this command:
19 
20 cc -Wall pcre2demo.c -lpcre2-8 -o pcre2demo
21 
22 If PCRE2 is not installed in a standard place, it is likely to be installed
23 with support for the pkg-config mechanism. If you have pkg-config, you can
24 compile this program using this command:
25 
26 cc -Wall pcre2demo.c `pkg-config --cflags --libs libpcre2-8` -o pcre2demo
27 
28 If you do not have pkg-config, you may have to use something like this:
29 
30 cc -Wall pcre2demo.c -I/usr/local/include -L/usr/local/lib \
31   -R/usr/local/lib -lpcre2-8 -o pcre2demo
32 
33 Replace "/usr/local/include" and "/usr/local/lib" with wherever the include and
34 library files for PCRE2 are installed on your system. Only some operating
35 systems (Solaris is one) use the -R option.
36 
37 Building under Windows:
38 
39 If you want to statically link this program against a non-dll .a file, you must
40 define PCRE2_STATIC before including pcre2.h, so in this environment, uncomment
41 the following line. */
42 
43 /* #define PCRE2_STATIC */
44 
45 /* The PCRE2_CODE_UNIT_WIDTH macro must be defined before including pcre2.h.
46 For a program that uses only one code unit width, setting it to 8, 16, or 32
47 makes it possible to use generic function names such as pcre2_compile(). Note
48 that just changing 8 to 16 (for example) is not sufficient to convert this
49 program to process 16-bit characters. Even in a fully 16-bit environment, where
50 string-handling functions such as strcmp() and printf() work with 16-bit
51 characters, the code for handling the table of named substrings will still need
52 to be modified. */
53 
54 #define PCRE2_CODE_UNIT_WIDTH 8
55 
56 #include <stdio.h>
57 #include <string.h>
58 #include <pcre2.h>
59 
60 
61 /**************************************************************************
62 * Here is the program. The API includes the concept of "contexts" for     *
63 * setting up unusual interface requirements for compiling and matching,   *
64 * such as custom memory managers and non-standard newline definitions.    *
65 * This program does not do any of this, so it makes no use of contexts,   *
66 * always passing NULL where a context could be given.                     *
67 **************************************************************************/
68 
main(int argc,char ** argv)69 int main(int argc, char **argv)
70 {
71 pcre2_code *re;
72 PCRE2_SPTR pattern;     /* PCRE2_SPTR is a pointer to unsigned code units of */
73 PCRE2_SPTR subject;     /* the appropriate width (in this case, 8 bits). */
74 PCRE2_SPTR name_table;
75 
76 int crlf_is_newline;
77 int errornumber;
78 int find_all;
79 int i;
80 int rc;
81 int utf8;
82 
83 uint32_t option_bits;
84 uint32_t namecount;
85 uint32_t name_entry_size;
86 uint32_t newline;
87 
88 PCRE2_SIZE erroroffset;
89 PCRE2_SIZE *ovector;
90 PCRE2_SIZE subject_length;
91 
92 pcre2_match_data *match_data;
93 
94 
95 /**************************************************************************
96 * First, sort out the command line. There is only one possible option at  *
97 * the moment, "-g" to request repeated matching to find all occurrences,  *
98 * like Perl's /g option. We set the variable find_all to a non-zero value *
99 * if the -g option is present.                                            *
100 **************************************************************************/
101 
102 find_all = 0;
103 for (i = 1; i < argc; i++)
104   {
105   if (strcmp(argv[i], "-g") == 0) find_all = 1;
106   else if (argv[i][0] == '-')
107     {
108     printf("Unrecognised option %s\n", argv[i]);
109     return 1;
110     }
111   else break;
112   }
113 
114 /* After the options, we require exactly two arguments, which are the pattern,
115 and the subject string. */
116 
117 if (argc - i != 2)
118   {
119   printf("Exactly two arguments required: a regex and a subject string\n");
120   return 1;
121   }
122 
123 /* Pattern and subject are char arguments, so they can be straightforwardly
124 cast to PCRE2_SPTR because we are working in 8-bit code units. The subject
125 length is cast to PCRE2_SIZE for completeness, though PCRE2_SIZE is in fact
126 defined to be size_t. */
127 
128 pattern = (PCRE2_SPTR)argv[i];
129 subject = (PCRE2_SPTR)argv[i+1];
130 subject_length = (PCRE2_SIZE)strlen((char *)subject);
131 
132 
133 /*************************************************************************
134 * Now we are going to compile the regular expression pattern, and handle *
135 * any errors that are detected.                                          *
136 *************************************************************************/
137 
138 re = pcre2_compile(
139   pattern,               /* the pattern */
140   PCRE2_ZERO_TERMINATED, /* indicates pattern is zero-terminated */
141   0,                     /* default options */
142   &errornumber,          /* for error number */
143   &erroroffset,          /* for error offset */
144   NULL);                 /* use default compile context */
145 
146 /* Compilation failed: print the error message and exit. */
147 
148 if (re == NULL)
149   {
150   PCRE2_UCHAR buffer[256];
151   pcre2_get_error_message(errornumber, buffer, sizeof(buffer));
152   printf("PCRE2 compilation failed at offset %d: %s\n", (int)erroroffset,
153     buffer);
154   return 1;
155   }
156 
157 
158 /*************************************************************************
159 * If the compilation succeeded, we call PCRE2 again, in order to do a    *
160 * pattern match against the subject string. This does just ONE match. If *
161 * further matching is needed, it will be done below. Before running the  *
162 * match we must set up a match_data block for holding the result. Using  *
163 * pcre2_match_data_create_from_pattern() ensures that the block is       *
164 * exactly the right size for the number of capturing parentheses in the  *
165 * pattern. If you need to know the actual size of a match_data block as  *
166 * a number of bytes, you can find it like this:                          *
167 *                                                                        *
168 * PCRE2_SIZE match_data_size = pcre2_get_match_data_size(match_data);    *
169 *************************************************************************/
170 
171 match_data = pcre2_match_data_create_from_pattern(re, NULL);
172 
173 /* Now run the match. */
174 
175 rc = pcre2_match(
176   re,                   /* the compiled pattern */
177   subject,              /* the subject string */
178   subject_length,       /* the length of the subject */
179   0,                    /* start at offset 0 in the subject */
180   0,                    /* default options */
181   match_data,           /* block for storing the result */
182   NULL);                /* use default match context */
183 
184 /* Matching failed: handle error cases */
185 
186 if (rc < 0)
187   {
188   switch(rc)
189     {
190     case PCRE2_ERROR_NOMATCH: printf("No match\n"); break;
191     /*
192     Handle other special cases if you like
193     */
194     default: printf("Matching error %d\n", rc); break;
195     }
196   pcre2_match_data_free(match_data);   /* Release memory used for the match */
197   pcre2_code_free(re);                 /*   data and the compiled pattern. */
198   return 1;
199   }
200 
201 /* Match succeeded. Get a pointer to the output vector, where string offsets
202 are stored. */
203 
204 ovector = pcre2_get_ovector_pointer(match_data);
205 printf("Match succeeded at offset %d\n", (int)ovector[0]);
206 
207 
208 /*************************************************************************
209 * We have found the first match within the subject string. If the output *
210 * vector wasn't big enough, say so. Then output any substrings that were *
211 * captured.                                                              *
212 *************************************************************************/
213 
214 /* The output vector wasn't big enough. This should not happen, because we used
215 pcre2_match_data_create_from_pattern() above. */
216 
217 if (rc == 0)
218   printf("ovector was not big enough for all the captured substrings\n");
219 
220 /* Since release 10.38 PCRE2 has locked out the use of \K in lookaround
221 assertions. However, there is an option to re-enable the old behaviour. If that
222 is set, it is possible to run patterns such as /(?=.\K)/ that use \K in an
223 assertion to set the start of a match later than its end. In this demonstration
224 program, we show how to detect this case, but it shouldn't arise because the
225 option is never set. */
226 
227 if (ovector[0] > ovector[1])
228   {
229   printf("\\K was used in an assertion to set the match start after its end.\n"
230     "From end to start the match was: %.*s\n", (int)(ovector[0] - ovector[1]),
231       (char *)(subject + ovector[1]));
232   printf("Run abandoned\n");
233   pcre2_match_data_free(match_data);
234   pcre2_code_free(re);
235   return 1;
236   }
237 
238 /* Show substrings stored in the output vector by number. Obviously, in a real
239 application you might want to do things other than print them. */
240 
241 for (i = 0; i < rc; i++)
242   {
243   PCRE2_SPTR substring_start = subject + ovector[2*i];
244   PCRE2_SIZE substring_length = ovector[2*i+1] - ovector[2*i];
245   printf("%2d: %.*s\n", i, (int)substring_length, (char *)substring_start);
246   }
247 
248 
249 /**************************************************************************
250 * That concludes the basic part of this demonstration program. We have    *
251 * compiled a pattern, and performed a single match. The code that follows *
252 * shows first how to access named substrings, and then how to code for    *
253 * repeated matches on the same subject.                                   *
254 **************************************************************************/
255 
256 /* See if there are any named substrings, and if so, show them by name. First
257 we have to extract the count of named parentheses from the pattern. */
258 
259 (void)pcre2_pattern_info(
260   re,                   /* the compiled pattern */
261   PCRE2_INFO_NAMECOUNT, /* get the number of named substrings */
262   &namecount);          /* where to put the answer */
263 
264 if (namecount == 0) printf("No named substrings\n"); else
265   {
266   PCRE2_SPTR tabptr;
267   printf("Named substrings\n");
268 
269   /* Before we can access the substrings, we must extract the table for
270   translating names to numbers, and the size of each entry in the table. */
271 
272   (void)pcre2_pattern_info(
273     re,                       /* the compiled pattern */
274     PCRE2_INFO_NAMETABLE,     /* address of the table */
275     &name_table);             /* where to put the answer */
276 
277   (void)pcre2_pattern_info(
278     re,                       /* the compiled pattern */
279     PCRE2_INFO_NAMEENTRYSIZE, /* size of each entry in the table */
280     &name_entry_size);        /* where to put the answer */
281 
282   /* Now we can scan the table and, for each entry, print the number, the name,
283   and the substring itself. In the 8-bit library the number is held in two
284   bytes, most significant first. */
285 
286   tabptr = name_table;
287   for (i = 0; i < namecount; i++)
288     {
289     int n = (tabptr[0] << 8) | tabptr[1];
290     printf("(%d) %*s: %.*s\n", n, name_entry_size - 3, tabptr + 2,
291       (int)(ovector[2*n+1] - ovector[2*n]), subject + ovector[2*n]);
292     tabptr += name_entry_size;
293     }
294   }
295 
296 
297 /*************************************************************************
298 * If the "-g" option was given on the command line, we want to continue  *
299 * to search for additional matches in the subject string, in a similar   *
300 * way to the /g option in Perl. This turns out to be trickier than you   *
301 * might think because of the possibility of matching an empty string.    *
302 * What happens is as follows:                                            *
303 *                                                                        *
304 * If the previous match was NOT for an empty string, we can just start   *
305 * the next match at the end of the previous one.                         *
306 *                                                                        *
307 * If the previous match WAS for an empty string, we can't do that, as it *
308 * would lead to an infinite loop. Instead, a call of pcre2_match() is    *
309 * made with the PCRE2_NOTEMPTY_ATSTART and PCRE2_ANCHORED flags set. The *
310 * first of these tells PCRE2 that an empty string at the start of the    *
311 * subject is not a valid match; other possibilities must be tried. The   *
312 * second flag restricts PCRE2 to one match attempt at the initial string *
313 * position. If this match succeeds, an alternative to the empty string   *
314 * match has been found, and we can print it and proceed round the loop,  *
315 * advancing by the length of whatever was found. If this match does not  *
316 * succeed, we still stay in the loop, advancing by just one character.   *
317 * In UTF-8 mode, which can be set by (*UTF) in the pattern, this may be  *
318 * more than one byte.                                                    *
319 *                                                                        *
320 * However, there is a complication concerned with newlines. When the     *
321 * newline convention is such that CRLF is a valid newline, we must       *
322 * advance by two characters rather than one. The newline convention can  *
323 * be set in the regex by (*CR), etc.; if not, we must find the default.  *
324 *************************************************************************/
325 
326 if (!find_all)     /* Check for -g */
327   {
328   pcre2_match_data_free(match_data);  /* Release the memory that was used */
329   pcre2_code_free(re);                /* for the match data and the pattern. */
330   return 0;                           /* Exit the program. */
331   }
332 
333 /* Before running the loop, check for UTF-8 and whether CRLF is a valid newline
334 sequence. First, find the options with which the regex was compiled and extract
335 the UTF state. */
336 
337 (void)pcre2_pattern_info(re, PCRE2_INFO_ALLOPTIONS, &option_bits);
338 utf8 = (option_bits & PCRE2_UTF) != 0;
339 
340 /* Now find the newline convention and see whether CRLF is a valid newline
341 sequence. */
342 
343 (void)pcre2_pattern_info(re, PCRE2_INFO_NEWLINE, &newline);
344 crlf_is_newline = newline == PCRE2_NEWLINE_ANY ||
345                   newline == PCRE2_NEWLINE_CRLF ||
346                   newline == PCRE2_NEWLINE_ANYCRLF;
347 
348 /* Loop for second and subsequent matches */
349 
350 for (;;)
351   {
352   uint32_t options = 0;                   /* Normally no options */
353   PCRE2_SIZE start_offset = ovector[1];   /* Start at end of previous match */
354 
355   /* If the previous match was for an empty string, we are finished if we are
356   at the end of the subject. Otherwise, arrange to run another match at the
357   same point to see if a non-empty match can be found. */
358 
359   if (ovector[0] == ovector[1])
360     {
361     if (ovector[0] == subject_length) break;
362     options = PCRE2_NOTEMPTY_ATSTART | PCRE2_ANCHORED;
363     }
364 
365   /* If the previous match was not an empty string, there is one tricky case to
366   consider. If a pattern contains \K within a lookbehind assertion at the
367   start, the end of the matched string can be at the offset where the match
368   started. Without special action, this leads to a loop that keeps on matching
369   the same substring. We must detect this case and arrange to move the start on
370   by one character. The pcre2_get_startchar() function returns the starting
371   offset that was passed to pcre2_match(). */
372 
373   else
374     {
375     PCRE2_SIZE startchar = pcre2_get_startchar(match_data);
376     if (start_offset <= startchar)
377       {
378       if (startchar >= subject_length) break;   /* Reached end of subject.   */
379       start_offset = startchar + 1;             /* Advance by one character. */
380       if (utf8)                                 /* If UTF-8, it may be more  */
381         {                                       /*   than one code unit.     */
382         for (; start_offset < subject_length; start_offset++)
383           if ((subject[start_offset] & 0xc0) != 0x80) break;
384         }
385       }
386     }
387 
388   /* Run the next matching operation */
389 
390   rc = pcre2_match(
391     re,                   /* the compiled pattern */
392     subject,              /* the subject string */
393     subject_length,       /* the length of the subject */
394     start_offset,         /* starting offset in the subject */
395     options,              /* options */
396     match_data,           /* block for storing the result */
397     NULL);                /* use default match context */
398 
399   /* This time, a result of NOMATCH isn't an error. If the value in "options"
400   is zero, it just means we have found all possible matches, so the loop ends.
401   Otherwise, it means we have failed to find a non-empty-string match at a
402   point where there was a previous empty-string match. In this case, we do what
403   Perl does: advance the matching position by one character, and continue. We
404   do this by setting the "end of previous match" offset, because that is picked
405   up at the top of the loop as the point at which to start again.
406 
407   There are two complications: (a) When CRLF is a valid newline sequence, and
408   the current position is just before it, advance by an extra byte. (b)
409   Otherwise we must ensure that we skip an entire UTF character if we are in
410   UTF mode. */
411 
412   if (rc == PCRE2_ERROR_NOMATCH)
413     {
414     if (options == 0) break;                    /* All matches found */
415     ovector[1] = start_offset + 1;              /* Advance one code unit */
416     if (crlf_is_newline &&                      /* If CRLF is a newline & */
417         start_offset < subject_length - 1 &&    /* we are at CRLF, */
418         subject[start_offset] == '\r' &&
419         subject[start_offset + 1] == '\n')
420       ovector[1] += 1;                          /* Advance by one more. */
421     else if (utf8)                              /* Otherwise, ensure we */
422       {                                         /* advance a whole UTF-8 */
423       while (ovector[1] < subject_length)       /* character. */
424         {
425         if ((subject[ovector[1]] & 0xc0) != 0x80) break;
426         ovector[1] += 1;
427         }
428       }
429     continue;    /* Go round the loop again */
430     }
431 
432   /* Other matching errors are not recoverable. */
433 
434   if (rc < 0)
435     {
436     printf("Matching error %d\n", rc);
437     pcre2_match_data_free(match_data);
438     pcre2_code_free(re);
439     return 1;
440     }
441 
442   /* Match succeeded */
443 
444   printf("\nMatch succeeded again at offset %d\n", (int)ovector[0]);
445 
446   /* The match succeeded, but the output vector wasn't big enough. This
447   should not happen. */
448 
449   if (rc == 0)
450     printf("ovector was not big enough for all the captured substrings\n");
451 
452   /* We must guard against patterns such as /(?=.\K)/ that use \K in an
453   assertion to set the start of a match later than its end. In this
454   demonstration program, we just detect this case and give up. */
455 
456   if (ovector[0] > ovector[1])
457     {
458     printf("\\K was used in an assertion to set the match start after its end.\n"
459       "From end to start the match was: %.*s\n", (int)(ovector[0] - ovector[1]),
460         (char *)(subject + ovector[1]));
461     printf("Run abandoned\n");
462     pcre2_match_data_free(match_data);
463     pcre2_code_free(re);
464     return 1;
465     }
466 
467   /* As before, show substrings stored in the output vector by number, and then
468   also any named substrings. */
469 
470   for (i = 0; i < rc; i++)
471     {
472     PCRE2_SPTR substring_start = subject + ovector[2*i];
473     size_t substring_length = ovector[2*i+1] - ovector[2*i];
474     printf("%2d: %.*s\n", i, (int)substring_length, (char *)substring_start);
475     }
476 
477   if (namecount == 0) printf("No named substrings\n"); else
478     {
479     PCRE2_SPTR tabptr = name_table;
480     printf("Named substrings\n");
481     for (i = 0; i < namecount; i++)
482       {
483       int n = (tabptr[0] << 8) | tabptr[1];
484       printf("(%d) %*s: %.*s\n", n, name_entry_size - 3, tabptr + 2,
485         (int)(ovector[2*n+1] - ovector[2*n]), subject + ovector[2*n]);
486       tabptr += name_entry_size;
487       }
488     }
489   }      /* End of loop to find second and subsequent matches */
490 
491 printf("\n");
492 pcre2_match_data_free(match_data);
493 pcre2_code_free(re);
494 return 0;
495 }
496 
497 /* End of pcre2demo.c */
498