• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * kernel/sched/debug.c
4  *
5  * Print the CFS rbtree and other debugging details
6  *
7  * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar
8  */
9 #include "sched.h"
10 
11 /*
12  * This allows printing both to /proc/sched_debug and
13  * to the console
14  */
15 #define SEQ_printf(m, x...)			\
16  do {						\
17 	if (m)					\
18 		seq_printf(m, x);		\
19 	else					\
20 		pr_cont(x);			\
21  } while (0)
22 
23 /*
24  * Ease the printing of nsec fields:
25  */
nsec_high(unsigned long long nsec)26 static long long nsec_high(unsigned long long nsec)
27 {
28 	if ((long long)nsec < 0) {
29 		nsec = -nsec;
30 		do_div(nsec, 1000000);
31 		return -nsec;
32 	}
33 	do_div(nsec, 1000000);
34 
35 	return nsec;
36 }
37 
nsec_low(unsigned long long nsec)38 static unsigned long nsec_low(unsigned long long nsec)
39 {
40 	if ((long long)nsec < 0)
41 		nsec = -nsec;
42 
43 	return do_div(nsec, 1000000);
44 }
45 
46 #define SPLIT_NS(x) nsec_high(x), nsec_low(x)
47 
48 #define SCHED_FEAT(name, enabled)	\
49 	#name ,
50 
51 static const char * const sched_feat_names[] = {
52 #include "features.h"
53 };
54 
55 #undef SCHED_FEAT
56 
sched_feat_show(struct seq_file * m,void * v)57 static int sched_feat_show(struct seq_file *m, void *v)
58 {
59 	int i;
60 
61 	for (i = 0; i < __SCHED_FEAT_NR; i++) {
62 		if (!(sysctl_sched_features & (1UL << i)))
63 			seq_puts(m, "NO_");
64 		seq_printf(m, "%s ", sched_feat_names[i]);
65 	}
66 	seq_puts(m, "\n");
67 
68 	return 0;
69 }
70 
71 #ifdef CONFIG_JUMP_LABEL
72 
73 #define jump_label_key__true  STATIC_KEY_INIT_TRUE
74 #define jump_label_key__false STATIC_KEY_INIT_FALSE
75 
76 #define SCHED_FEAT(name, enabled)	\
77 	jump_label_key__##enabled ,
78 
79 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
80 #include "features.h"
81 };
82 
83 #undef SCHED_FEAT
84 
sched_feat_disable(int i)85 static void sched_feat_disable(int i)
86 {
87 	static_key_disable_cpuslocked(&sched_feat_keys[i]);
88 }
89 
sched_feat_enable(int i)90 static void sched_feat_enable(int i)
91 {
92 	static_key_enable_cpuslocked(&sched_feat_keys[i]);
93 }
94 #else
sched_feat_disable(int i)95 static void sched_feat_disable(int i) { };
sched_feat_enable(int i)96 static void sched_feat_enable(int i) { };
97 #endif /* CONFIG_JUMP_LABEL */
98 
sched_feat_set(char * cmp)99 static int sched_feat_set(char *cmp)
100 {
101 	int i;
102 	int neg = 0;
103 
104 	if (strncmp(cmp, "NO_", 3) == 0) {
105 		neg = 1;
106 		cmp += 3;
107 	}
108 
109 	i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp);
110 	if (i < 0)
111 		return i;
112 
113 	if (neg) {
114 		sysctl_sched_features &= ~(1UL << i);
115 		sched_feat_disable(i);
116 	} else {
117 		sysctl_sched_features |= (1UL << i);
118 		sched_feat_enable(i);
119 	}
120 
121 	return 0;
122 }
123 
124 static ssize_t
sched_feat_write(struct file * filp,const char __user * ubuf,size_t cnt,loff_t * ppos)125 sched_feat_write(struct file *filp, const char __user *ubuf,
126 		size_t cnt, loff_t *ppos)
127 {
128 	char buf[64];
129 	char *cmp;
130 	int ret;
131 	struct inode *inode;
132 
133 	if (cnt > 63)
134 		cnt = 63;
135 
136 	if (copy_from_user(&buf, ubuf, cnt))
137 		return -EFAULT;
138 
139 	buf[cnt] = 0;
140 	cmp = strstrip(buf);
141 
142 	/* Ensure the static_key remains in a consistent state */
143 	inode = file_inode(filp);
144 	cpus_read_lock();
145 	inode_lock(inode);
146 	ret = sched_feat_set(cmp);
147 	inode_unlock(inode);
148 	cpus_read_unlock();
149 	if (ret < 0)
150 		return ret;
151 
152 	*ppos += cnt;
153 
154 	return cnt;
155 }
156 
sched_feat_open(struct inode * inode,struct file * filp)157 static int sched_feat_open(struct inode *inode, struct file *filp)
158 {
159 	return single_open(filp, sched_feat_show, NULL);
160 }
161 
162 static const struct file_operations sched_feat_fops = {
163 	.open		= sched_feat_open,
164 	.write		= sched_feat_write,
165 	.read		= seq_read,
166 	.llseek		= seq_lseek,
167 	.release	= single_release,
168 };
169 
170 __read_mostly bool sched_debug_enabled;
171 
sched_init_debug(void)172 static __init int sched_init_debug(void)
173 {
174 	debugfs_create_file("sched_features", 0644, NULL, NULL,
175 			&sched_feat_fops);
176 
177 	debugfs_create_bool("sched_debug", 0644, NULL,
178 			&sched_debug_enabled);
179 
180 	return 0;
181 }
182 late_initcall(sched_init_debug);
183 
184 #ifdef CONFIG_SMP
185 
186 #ifdef CONFIG_SYSCTL
187 
188 static struct ctl_table sd_ctl_dir[] = {
189 	{
190 		.procname	= "sched_domain",
191 		.mode		= 0555,
192 	},
193 	{}
194 };
195 
196 static struct ctl_table sd_ctl_root[] = {
197 	{
198 		.procname	= "kernel",
199 		.mode		= 0555,
200 		.child		= sd_ctl_dir,
201 	},
202 	{}
203 };
204 
sd_alloc_ctl_entry(int n)205 static struct ctl_table *sd_alloc_ctl_entry(int n)
206 {
207 	struct ctl_table *entry =
208 		kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
209 
210 	return entry;
211 }
212 
sd_free_ctl_entry(struct ctl_table ** tablep)213 static void sd_free_ctl_entry(struct ctl_table **tablep)
214 {
215 	struct ctl_table *entry;
216 
217 	/*
218 	 * In the intermediate directories, both the child directory and
219 	 * procname are dynamically allocated and could fail but the mode
220 	 * will always be set. In the lowest directory the names are
221 	 * static strings and all have proc handlers.
222 	 */
223 	for (entry = *tablep; entry->mode; entry++) {
224 		if (entry->child)
225 			sd_free_ctl_entry(&entry->child);
226 		if (entry->proc_handler == NULL)
227 			kfree(entry->procname);
228 	}
229 
230 	kfree(*tablep);
231 	*tablep = NULL;
232 }
233 
234 static void
set_table_entry(struct ctl_table * entry,const char * procname,void * data,int maxlen,umode_t mode,proc_handler * proc_handler)235 set_table_entry(struct ctl_table *entry,
236 		const char *procname, void *data, int maxlen,
237 		umode_t mode, proc_handler *proc_handler)
238 {
239 	entry->procname = procname;
240 	entry->data = data;
241 	entry->maxlen = maxlen;
242 	entry->mode = mode;
243 	entry->proc_handler = proc_handler;
244 }
245 
sd_ctl_doflags(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)246 static int sd_ctl_doflags(struct ctl_table *table, int write,
247 			  void *buffer, size_t *lenp, loff_t *ppos)
248 {
249 	unsigned long flags = *(unsigned long *)table->data;
250 	size_t data_size = 0;
251 	size_t len = 0;
252 	char *tmp, *buf;
253 	int idx;
254 
255 	if (write)
256 		return 0;
257 
258 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
259 		char *name = sd_flag_debug[idx].name;
260 
261 		/* Name plus whitespace */
262 		data_size += strlen(name) + 1;
263 	}
264 
265 	if (*ppos > data_size) {
266 		*lenp = 0;
267 		return 0;
268 	}
269 
270 	buf = kcalloc(data_size + 1, sizeof(*buf), GFP_KERNEL);
271 	if (!buf)
272 		return -ENOMEM;
273 
274 	for_each_set_bit(idx, &flags, __SD_FLAG_CNT) {
275 		char *name = sd_flag_debug[idx].name;
276 
277 		len += snprintf(buf + len, strlen(name) + 2, "%s ", name);
278 	}
279 
280 	tmp = buf + *ppos;
281 	len -= *ppos;
282 
283 	if (len > *lenp)
284 		len = *lenp;
285 	if (len)
286 		memcpy(buffer, tmp, len);
287 	if (len < *lenp) {
288 		((char *)buffer)[len] = '\n';
289 		len++;
290 	}
291 
292 	*lenp = len;
293 	*ppos += len;
294 
295 	kfree(buf);
296 
297 	return 0;
298 }
299 
300 static struct ctl_table *
sd_alloc_ctl_domain_table(struct sched_domain * sd)301 sd_alloc_ctl_domain_table(struct sched_domain *sd)
302 {
303 	struct ctl_table *table = sd_alloc_ctl_entry(9);
304 
305 	if (table == NULL)
306 		return NULL;
307 
308 	set_table_entry(&table[0], "min_interval",	  &sd->min_interval,	    sizeof(long), 0644, proc_doulongvec_minmax);
309 	set_table_entry(&table[1], "max_interval",	  &sd->max_interval,	    sizeof(long), 0644, proc_doulongvec_minmax);
310 	set_table_entry(&table[2], "busy_factor",	  &sd->busy_factor,	    sizeof(int),  0644, proc_dointvec_minmax);
311 	set_table_entry(&table[3], "imbalance_pct",	  &sd->imbalance_pct,	    sizeof(int),  0644, proc_dointvec_minmax);
312 	set_table_entry(&table[4], "cache_nice_tries",	  &sd->cache_nice_tries,    sizeof(int),  0644, proc_dointvec_minmax);
313 	set_table_entry(&table[5], "flags",		  &sd->flags,		    sizeof(int),  0444, sd_ctl_doflags);
314 	set_table_entry(&table[6], "max_newidle_lb_cost", &sd->max_newidle_lb_cost, sizeof(long), 0644, proc_doulongvec_minmax);
315 	set_table_entry(&table[7], "name",		  sd->name,	       CORENAME_MAX_SIZE, 0444, proc_dostring);
316 	/* &table[8] is terminator */
317 
318 	return table;
319 }
320 
sd_alloc_ctl_cpu_table(int cpu)321 static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
322 {
323 	struct ctl_table *entry, *table;
324 	struct sched_domain *sd;
325 	int domain_num = 0, i;
326 	char buf[32];
327 
328 	for_each_domain(cpu, sd)
329 		domain_num++;
330 	entry = table = sd_alloc_ctl_entry(domain_num + 1);
331 	if (table == NULL)
332 		return NULL;
333 
334 	i = 0;
335 	for_each_domain(cpu, sd) {
336 		snprintf(buf, 32, "domain%d", i);
337 		entry->procname = kstrdup(buf, GFP_KERNEL);
338 		entry->mode = 0555;
339 		entry->child = sd_alloc_ctl_domain_table(sd);
340 		entry++;
341 		i++;
342 	}
343 	return table;
344 }
345 
346 static cpumask_var_t		sd_sysctl_cpus;
347 static struct ctl_table_header	*sd_sysctl_header;
348 
register_sched_domain_sysctl(void)349 void register_sched_domain_sysctl(void)
350 {
351 	static struct ctl_table *cpu_entries;
352 	static struct ctl_table **cpu_idx;
353 	static bool init_done = false;
354 	char buf[32];
355 	int i;
356 
357 	if (!cpu_entries) {
358 		cpu_entries = sd_alloc_ctl_entry(num_possible_cpus() + 1);
359 		if (!cpu_entries)
360 			return;
361 
362 		WARN_ON(sd_ctl_dir[0].child);
363 		sd_ctl_dir[0].child = cpu_entries;
364 	}
365 
366 	if (!cpu_idx) {
367 		struct ctl_table *e = cpu_entries;
368 
369 		cpu_idx = kcalloc(nr_cpu_ids, sizeof(struct ctl_table*), GFP_KERNEL);
370 		if (!cpu_idx)
371 			return;
372 
373 		/* deal with sparse possible map */
374 		for_each_possible_cpu(i) {
375 			cpu_idx[i] = e;
376 			e++;
377 		}
378 	}
379 
380 	if (!cpumask_available(sd_sysctl_cpus)) {
381 		if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL))
382 			return;
383 	}
384 
385 	if (!init_done) {
386 		init_done = true;
387 		/* init to possible to not have holes in @cpu_entries */
388 		cpumask_copy(sd_sysctl_cpus, cpu_possible_mask);
389 	}
390 
391 	for_each_cpu(i, sd_sysctl_cpus) {
392 		struct ctl_table *e = cpu_idx[i];
393 
394 		if (e->child)
395 			sd_free_ctl_entry(&e->child);
396 
397 		if (!e->procname) {
398 			snprintf(buf, 32, "cpu%d", i);
399 			e->procname = kstrdup(buf, GFP_KERNEL);
400 		}
401 		e->mode = 0555;
402 		e->child = sd_alloc_ctl_cpu_table(i);
403 
404 		__cpumask_clear_cpu(i, sd_sysctl_cpus);
405 	}
406 
407 	WARN_ON(sd_sysctl_header);
408 	sd_sysctl_header = register_sysctl_table(sd_ctl_root);
409 }
410 
dirty_sched_domain_sysctl(int cpu)411 void dirty_sched_domain_sysctl(int cpu)
412 {
413 	if (cpumask_available(sd_sysctl_cpus))
414 		__cpumask_set_cpu(cpu, sd_sysctl_cpus);
415 }
416 
417 /* may be called multiple times per register */
unregister_sched_domain_sysctl(void)418 void unregister_sched_domain_sysctl(void)
419 {
420 	unregister_sysctl_table(sd_sysctl_header);
421 	sd_sysctl_header = NULL;
422 }
423 #endif /* CONFIG_SYSCTL */
424 #endif /* CONFIG_SMP */
425 
426 #ifdef CONFIG_FAIR_GROUP_SCHED
print_cfs_group_stats(struct seq_file * m,int cpu,struct task_group * tg)427 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg)
428 {
429 	struct sched_entity *se = tg->se[cpu];
430 
431 #define P(F)		SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)F)
432 #define P_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld\n",	#F, (long long)schedstat_val(F))
433 #define PN(F)		SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F))
434 #define PN_SCHEDSTAT(F)	SEQ_printf(m, "  .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F)))
435 
436 	if (!se)
437 		return;
438 
439 	PN(se->exec_start);
440 	PN(se->vruntime);
441 	PN(se->sum_exec_runtime);
442 
443 	if (schedstat_enabled()) {
444 		PN_SCHEDSTAT(se->statistics.wait_start);
445 		PN_SCHEDSTAT(se->statistics.sleep_start);
446 		PN_SCHEDSTAT(se->statistics.block_start);
447 		PN_SCHEDSTAT(se->statistics.sleep_max);
448 		PN_SCHEDSTAT(se->statistics.block_max);
449 		PN_SCHEDSTAT(se->statistics.exec_max);
450 		PN_SCHEDSTAT(se->statistics.slice_max);
451 		PN_SCHEDSTAT(se->statistics.wait_max);
452 		PN_SCHEDSTAT(se->statistics.wait_sum);
453 		P_SCHEDSTAT(se->statistics.wait_count);
454 	}
455 
456 	P(se->load.weight);
457 #ifdef CONFIG_SMP
458 	P(se->avg.load_avg);
459 	P(se->avg.util_avg);
460 	P(se->avg.runnable_avg);
461 #endif
462 
463 #undef PN_SCHEDSTAT
464 #undef PN
465 #undef P_SCHEDSTAT
466 #undef P
467 }
468 #endif
469 
470 #ifdef CONFIG_CGROUP_SCHED
471 static DEFINE_SPINLOCK(sched_debug_lock);
472 static char group_path[PATH_MAX];
473 
task_group_path(struct task_group * tg,char * path,int plen)474 static void task_group_path(struct task_group *tg, char *path, int plen)
475 {
476 	if (autogroup_path(tg, path, plen))
477 		return;
478 
479 	cgroup_path(tg->css.cgroup, path, plen);
480 }
481 
482 /*
483  * Only 1 SEQ_printf_task_group_path() caller can use the full length
484  * group_path[] for cgroup path. Other simultaneous callers will have
485  * to use a shorter stack buffer. A "..." suffix is appended at the end
486  * of the stack buffer so that it will show up in case the output length
487  * matches the given buffer size to indicate possible path name truncation.
488  */
489 #define SEQ_printf_task_group_path(m, tg, fmt...)			\
490 {									\
491 	if (spin_trylock(&sched_debug_lock)) {				\
492 		task_group_path(tg, group_path, sizeof(group_path));	\
493 		SEQ_printf(m, fmt, group_path);				\
494 		spin_unlock(&sched_debug_lock);				\
495 	} else {							\
496 		char buf[128];						\
497 		char *bufend = buf + sizeof(buf) - 3;			\
498 		task_group_path(tg, buf, bufend - buf);			\
499 		strcpy(bufend - 1, "...");				\
500 		SEQ_printf(m, fmt, buf);				\
501 	}								\
502 }
503 #endif
504 
505 static void
print_task(struct seq_file * m,struct rq * rq,struct task_struct * p)506 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p)
507 {
508 	if (rq->curr == p)
509 		SEQ_printf(m, ">R");
510 	else
511 		SEQ_printf(m, " %c", task_state_to_char(p));
512 
513 	SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ",
514 		p->comm, task_pid_nr(p),
515 		SPLIT_NS(p->se.vruntime),
516 		(long long)(p->nvcsw + p->nivcsw),
517 		p->prio);
518 
519 	SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld",
520 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)),
521 		SPLIT_NS(p->se.sum_exec_runtime),
522 		SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime)));
523 
524 #ifdef CONFIG_NUMA_BALANCING
525 	SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p));
526 #endif
527 #ifdef CONFIG_CGROUP_SCHED
528 	SEQ_printf_task_group_path(m, task_group(p), " %s")
529 #endif
530 
531 	SEQ_printf(m, "\n");
532 }
533 
print_rq(struct seq_file * m,struct rq * rq,int rq_cpu)534 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu)
535 {
536 	struct task_struct *g, *p;
537 
538 	SEQ_printf(m, "\n");
539 	SEQ_printf(m, "runnable tasks:\n");
540 	SEQ_printf(m, " S            task   PID         tree-key  switches  prio"
541 		   "     wait-time             sum-exec        sum-sleep\n");
542 	SEQ_printf(m, "-------------------------------------------------------"
543 		   "------------------------------------------------------\n");
544 
545 	rcu_read_lock();
546 	for_each_process_thread(g, p) {
547 		if (task_cpu(p) != rq_cpu)
548 			continue;
549 
550 		print_task(m, rq, p);
551 	}
552 	rcu_read_unlock();
553 }
554 
print_cfs_rq(struct seq_file * m,int cpu,struct cfs_rq * cfs_rq)555 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq)
556 {
557 	s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1,
558 		spread, rq0_min_vruntime, spread0;
559 	struct rq *rq = cpu_rq(cpu);
560 	struct sched_entity *last;
561 	unsigned long flags;
562 
563 #ifdef CONFIG_FAIR_GROUP_SCHED
564 	SEQ_printf(m, "\n");
565 	SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu);
566 #else
567 	SEQ_printf(m, "\n");
568 	SEQ_printf(m, "cfs_rq[%d]:\n", cpu);
569 #endif
570 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "exec_clock",
571 			SPLIT_NS(cfs_rq->exec_clock));
572 
573 	raw_spin_lock_irqsave(&rq->lock, flags);
574 	if (rb_first_cached(&cfs_rq->tasks_timeline))
575 		MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime;
576 	last = __pick_last_entity(cfs_rq);
577 	if (last)
578 		max_vruntime = last->vruntime;
579 	min_vruntime = cfs_rq->min_vruntime;
580 	rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime;
581 	raw_spin_unlock_irqrestore(&rq->lock, flags);
582 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "MIN_vruntime",
583 			SPLIT_NS(MIN_vruntime));
584 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "min_vruntime",
585 			SPLIT_NS(min_vruntime));
586 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "max_vruntime",
587 			SPLIT_NS(max_vruntime));
588 	spread = max_vruntime - MIN_vruntime;
589 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread",
590 			SPLIT_NS(spread));
591 	spread0 = min_vruntime - rq0_min_vruntime;
592 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", "spread0",
593 			SPLIT_NS(spread0));
594 	SEQ_printf(m, "  .%-30s: %d\n", "nr_spread_over",
595 			cfs_rq->nr_spread_over);
596 	SEQ_printf(m, "  .%-30s: %d\n", "nr_running", cfs_rq->nr_running);
597 	SEQ_printf(m, "  .%-30s: %ld\n", "load", cfs_rq->load.weight);
598 #ifdef CONFIG_SMP
599 	SEQ_printf(m, "  .%-30s: %lu\n", "load_avg",
600 			cfs_rq->avg.load_avg);
601 	SEQ_printf(m, "  .%-30s: %lu\n", "runnable_avg",
602 			cfs_rq->avg.runnable_avg);
603 	SEQ_printf(m, "  .%-30s: %lu\n", "util_avg",
604 			cfs_rq->avg.util_avg);
605 	SEQ_printf(m, "  .%-30s: %u\n", "util_est_enqueued",
606 			cfs_rq->avg.util_est.enqueued);
607 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.load_avg",
608 			cfs_rq->removed.load_avg);
609 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.util_avg",
610 			cfs_rq->removed.util_avg);
611 	SEQ_printf(m, "  .%-30s: %ld\n", "removed.runnable_avg",
612 			cfs_rq->removed.runnable_avg);
613 #ifdef CONFIG_FAIR_GROUP_SCHED
614 	SEQ_printf(m, "  .%-30s: %lu\n", "tg_load_avg_contrib",
615 			cfs_rq->tg_load_avg_contrib);
616 	SEQ_printf(m, "  .%-30s: %ld\n", "tg_load_avg",
617 			atomic_long_read(&cfs_rq->tg->load_avg));
618 #endif
619 #endif
620 #ifdef CONFIG_CFS_BANDWIDTH
621 	SEQ_printf(m, "  .%-30s: %d\n", "throttled",
622 			cfs_rq->throttled);
623 	SEQ_printf(m, "  .%-30s: %d\n", "throttle_count",
624 			cfs_rq->throttle_count);
625 #endif
626 
627 #ifdef CONFIG_FAIR_GROUP_SCHED
628 	print_cfs_group_stats(m, cpu, cfs_rq->tg);
629 #endif
630 }
631 
print_rt_rq(struct seq_file * m,int cpu,struct rt_rq * rt_rq)632 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq)
633 {
634 #ifdef CONFIG_RT_GROUP_SCHED
635 	SEQ_printf(m, "\n");
636 	SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu);
637 #else
638 	SEQ_printf(m, "\n");
639 	SEQ_printf(m, "rt_rq[%d]:\n", cpu);
640 #endif
641 
642 #define P(x) \
643 	SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rt_rq->x))
644 #define PU(x) \
645 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x))
646 #define PN(x) \
647 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x))
648 
649 	PU(rt_nr_running);
650 #ifdef CONFIG_SMP
651 	PU(rt_nr_migratory);
652 #endif
653 	P(rt_throttled);
654 	PN(rt_time);
655 	PN(rt_runtime);
656 
657 #undef PN
658 #undef PU
659 #undef P
660 }
661 
print_dl_rq(struct seq_file * m,int cpu,struct dl_rq * dl_rq)662 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq)
663 {
664 	struct dl_bw *dl_bw;
665 
666 	SEQ_printf(m, "\n");
667 	SEQ_printf(m, "dl_rq[%d]:\n", cpu);
668 
669 #define PU(x) \
670 	SEQ_printf(m, "  .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x))
671 
672 	PU(dl_nr_running);
673 #ifdef CONFIG_SMP
674 	PU(dl_nr_migratory);
675 	dl_bw = &cpu_rq(cpu)->rd->dl_bw;
676 #else
677 	dl_bw = &dl_rq->dl_bw;
678 #endif
679 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw);
680 	SEQ_printf(m, "  .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw);
681 
682 #undef PU
683 }
684 
print_cpu(struct seq_file * m,int cpu)685 static void print_cpu(struct seq_file *m, int cpu)
686 {
687 	struct rq *rq = cpu_rq(cpu);
688 
689 #ifdef CONFIG_X86
690 	{
691 		unsigned int freq = cpu_khz ? : 1;
692 
693 		SEQ_printf(m, "cpu#%d, %u.%03u MHz\n",
694 			   cpu, freq / 1000, (freq % 1000));
695 	}
696 #else
697 	SEQ_printf(m, "cpu#%d\n", cpu);
698 #endif
699 
700 #define P(x)								\
701 do {									\
702 	if (sizeof(rq->x) == 4)						\
703 		SEQ_printf(m, "  .%-30s: %ld\n", #x, (long)(rq->x));	\
704 	else								\
705 		SEQ_printf(m, "  .%-30s: %Ld\n", #x, (long long)(rq->x));\
706 } while (0)
707 
708 #define PN(x) \
709 	SEQ_printf(m, "  .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x))
710 
711 	P(nr_running);
712 	P(nr_switches);
713 	P(nr_uninterruptible);
714 	PN(next_balance);
715 	SEQ_printf(m, "  .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr)));
716 	PN(clock);
717 	PN(clock_task);
718 #ifdef CONFIG_SCHED_WALT
719 	P(cluster->load_scale_factor);
720 	P(cluster->capacity);
721 	P(cluster->max_possible_capacity);
722 	P(cluster->efficiency);
723 	P(cluster->cur_freq);
724 	P(cluster->max_freq);
725 	P(cluster->exec_scale_factor);
726 	SEQ_printf(m, "  .%-30s: %llu\n", "walt_stats.cumulative_runnable_avg",
727 			rq->walt_stats.cumulative_runnable_avg_scaled);
728 #endif
729 #undef P
730 #undef PN
731 
732 #ifdef CONFIG_SMP
733 #define P64(n) SEQ_printf(m, "  .%-30s: %Ld\n", #n, rq->n);
734 	P64(avg_idle);
735 	P64(max_idle_balance_cost);
736 #undef P64
737 #endif
738 
739 #define P(n) SEQ_printf(m, "  .%-30s: %d\n", #n, schedstat_val(rq->n));
740 	if (schedstat_enabled()) {
741 		P(yld_count);
742 		P(sched_count);
743 		P(sched_goidle);
744 		P(ttwu_count);
745 		P(ttwu_local);
746 	}
747 #undef P
748 
749 	print_cfs_stats(m, cpu);
750 	print_rt_stats(m, cpu);
751 	print_dl_stats(m, cpu);
752 
753 	print_rq(m, rq, cpu);
754 	SEQ_printf(m, "\n");
755 }
756 
757 static const char *sched_tunable_scaling_names[] = {
758 	"none",
759 	"logarithmic",
760 	"linear"
761 };
762 
sched_debug_header(struct seq_file * m)763 static void sched_debug_header(struct seq_file *m)
764 {
765 	u64 ktime, sched_clk, cpu_clk;
766 	unsigned long flags;
767 
768 	local_irq_save(flags);
769 	ktime = ktime_to_ns(ktime_get());
770 	sched_clk = sched_clock();
771 	cpu_clk = local_clock();
772 	local_irq_restore(flags);
773 
774 	SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n",
775 		init_utsname()->release,
776 		(int)strcspn(init_utsname()->version, " "),
777 		init_utsname()->version);
778 
779 #define P(x) \
780 	SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x))
781 #define PN(x) \
782 	SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
783 	PN(ktime);
784 	PN(sched_clk);
785 	PN(cpu_clk);
786 	P(jiffies);
787 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
788 	P(sched_clock_stable());
789 #endif
790 #undef PN
791 #undef P
792 
793 	SEQ_printf(m, "\n");
794 	SEQ_printf(m, "sysctl_sched\n");
795 
796 #define P(x) \
797 	SEQ_printf(m, "  .%-40s: %Ld\n", #x, (long long)(x))
798 #define PN(x) \
799 	SEQ_printf(m, "  .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x))
800 	PN(sysctl_sched_latency);
801 	PN(sysctl_sched_min_granularity);
802 	PN(sysctl_sched_wakeup_granularity);
803 	P(sysctl_sched_child_runs_first);
804 	P(sysctl_sched_features);
805 #ifdef CONFIG_SCHED_WALT
806 	P(sched_init_task_load_windows);
807 	P(min_capacity);
808 	P(max_capacity);
809 	P(sched_ravg_window);
810 #endif
811 #undef PN
812 #undef P
813 
814 	SEQ_printf(m, "  .%-40s: %d (%s)\n",
815 		"sysctl_sched_tunable_scaling",
816 		sysctl_sched_tunable_scaling,
817 		sched_tunable_scaling_names[sysctl_sched_tunable_scaling]);
818 	SEQ_printf(m, "\n");
819 }
820 
sched_debug_show(struct seq_file * m,void * v)821 static int sched_debug_show(struct seq_file *m, void *v)
822 {
823 	int cpu = (unsigned long)(v - 2);
824 
825 	if (cpu != -1)
826 		print_cpu(m, cpu);
827 	else
828 		sched_debug_header(m);
829 
830 	return 0;
831 }
832 
sysrq_sched_debug_show(void)833 void sysrq_sched_debug_show(void)
834 {
835 	int cpu;
836 
837 	sched_debug_header(NULL);
838 	for_each_online_cpu(cpu) {
839 		/*
840 		 * Need to reset softlockup watchdogs on all CPUs, because
841 		 * another CPU might be blocked waiting for us to process
842 		 * an IPI or stop_machine.
843 		 */
844 		touch_nmi_watchdog();
845 		touch_all_softlockup_watchdogs();
846 		print_cpu(NULL, cpu);
847 	}
848 }
849 
850 /*
851  * This itererator needs some explanation.
852  * It returns 1 for the header position.
853  * This means 2 is CPU 0.
854  * In a hotplugged system some CPUs, including CPU 0, may be missing so we have
855  * to use cpumask_* to iterate over the CPUs.
856  */
sched_debug_start(struct seq_file * file,loff_t * offset)857 static void *sched_debug_start(struct seq_file *file, loff_t *offset)
858 {
859 	unsigned long n = *offset;
860 
861 	if (n == 0)
862 		return (void *) 1;
863 
864 	n--;
865 
866 	if (n > 0)
867 		n = cpumask_next(n - 1, cpu_online_mask);
868 	else
869 		n = cpumask_first(cpu_online_mask);
870 
871 	*offset = n + 1;
872 
873 	if (n < nr_cpu_ids)
874 		return (void *)(unsigned long)(n + 2);
875 
876 	return NULL;
877 }
878 
sched_debug_next(struct seq_file * file,void * data,loff_t * offset)879 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset)
880 {
881 	(*offset)++;
882 	return sched_debug_start(file, offset);
883 }
884 
sched_debug_stop(struct seq_file * file,void * data)885 static void sched_debug_stop(struct seq_file *file, void *data)
886 {
887 }
888 
889 static const struct seq_operations sched_debug_sops = {
890 	.start		= sched_debug_start,
891 	.next		= sched_debug_next,
892 	.stop		= sched_debug_stop,
893 	.show		= sched_debug_show,
894 };
895 
init_sched_debug_procfs(void)896 static int __init init_sched_debug_procfs(void)
897 {
898 	if (!proc_create_seq("sched_debug", 0444, NULL, &sched_debug_sops))
899 		return -ENOMEM;
900 	return 0;
901 }
902 
903 __initcall(init_sched_debug_procfs);
904 
905 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F))
906 #define __P(F) __PS(#F, F)
907 #define   P(F) __PS(#F, p->F)
908 #define   PM(F, M) __PS(#F, p->F & (M))
909 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F)))
910 #define __PN(F) __PSN(#F, F)
911 #define   PN(F) __PSN(#F, p->F)
912 
913 
914 #ifdef CONFIG_NUMA_BALANCING
print_numa_stats(struct seq_file * m,int node,unsigned long tsf,unsigned long tpf,unsigned long gsf,unsigned long gpf)915 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf,
916 		unsigned long tpf, unsigned long gsf, unsigned long gpf)
917 {
918 	SEQ_printf(m, "numa_faults node=%d ", node);
919 	SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf);
920 	SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf);
921 }
922 #endif
923 
924 
sched_show_numa(struct task_struct * p,struct seq_file * m)925 static void sched_show_numa(struct task_struct *p, struct seq_file *m)
926 {
927 #ifdef CONFIG_NUMA_BALANCING
928 	if (p->mm)
929 		P(mm->numa_scan_seq);
930 
931 	P(numa_pages_migrated);
932 	P(numa_preferred_nid);
933 	P(total_numa_faults);
934 	SEQ_printf(m, "current_node=%d, numa_group_id=%d\n",
935 			task_node(p), task_numa_group_id(p));
936 	show_numa_stats(p, m);
937 #endif
938 }
939 
proc_sched_show_task(struct task_struct * p,struct pid_namespace * ns,struct seq_file * m)940 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns,
941 						  struct seq_file *m)
942 {
943 	unsigned long nr_switches;
944 
945 	SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns),
946 						get_nr_threads(p));
947 	SEQ_printf(m,
948 		"---------------------------------------------------------"
949 		"----------\n");
950 
951 #define P_SCHEDSTAT(F)  __PS(#F, schedstat_val(p->F))
952 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F))
953 
954 	PN(se.exec_start);
955 	PN(se.vruntime);
956 	PN(se.sum_exec_runtime);
957 
958 	nr_switches = p->nvcsw + p->nivcsw;
959 
960 	P(se.nr_migrations);
961 
962 	if (schedstat_enabled()) {
963 		u64 avg_atom, avg_per_cpu;
964 
965 		PN_SCHEDSTAT(se.statistics.sum_sleep_runtime);
966 		PN_SCHEDSTAT(se.statistics.wait_start);
967 		PN_SCHEDSTAT(se.statistics.sleep_start);
968 		PN_SCHEDSTAT(se.statistics.block_start);
969 		PN_SCHEDSTAT(se.statistics.sleep_max);
970 		PN_SCHEDSTAT(se.statistics.block_max);
971 		PN_SCHEDSTAT(se.statistics.exec_max);
972 		PN_SCHEDSTAT(se.statistics.slice_max);
973 		PN_SCHEDSTAT(se.statistics.wait_max);
974 		PN_SCHEDSTAT(se.statistics.wait_sum);
975 		P_SCHEDSTAT(se.statistics.wait_count);
976 		PN_SCHEDSTAT(se.statistics.iowait_sum);
977 		P_SCHEDSTAT(se.statistics.iowait_count);
978 		P_SCHEDSTAT(se.statistics.nr_migrations_cold);
979 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine);
980 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_running);
981 		P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot);
982 		P_SCHEDSTAT(se.statistics.nr_forced_migrations);
983 		P_SCHEDSTAT(se.statistics.nr_wakeups);
984 		P_SCHEDSTAT(se.statistics.nr_wakeups_sync);
985 		P_SCHEDSTAT(se.statistics.nr_wakeups_migrate);
986 		P_SCHEDSTAT(se.statistics.nr_wakeups_local);
987 		P_SCHEDSTAT(se.statistics.nr_wakeups_remote);
988 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine);
989 		P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts);
990 		P_SCHEDSTAT(se.statistics.nr_wakeups_passive);
991 		P_SCHEDSTAT(se.statistics.nr_wakeups_idle);
992 
993 #ifdef CONFIG_SCHED_WALT
994 		P(ravg.demand);
995 #endif
996 
997 		avg_atom = p->se.sum_exec_runtime;
998 		if (nr_switches)
999 			avg_atom = div64_ul(avg_atom, nr_switches);
1000 		else
1001 			avg_atom = -1LL;
1002 
1003 		avg_per_cpu = p->se.sum_exec_runtime;
1004 		if (p->se.nr_migrations) {
1005 			avg_per_cpu = div64_u64(avg_per_cpu,
1006 						p->se.nr_migrations);
1007 		} else {
1008 			avg_per_cpu = -1LL;
1009 		}
1010 
1011 		__PN(avg_atom);
1012 		__PN(avg_per_cpu);
1013 	}
1014 
1015 	__P(nr_switches);
1016 	__PS("nr_voluntary_switches", p->nvcsw);
1017 	__PS("nr_involuntary_switches", p->nivcsw);
1018 
1019 	P(se.load.weight);
1020 #ifdef CONFIG_SMP
1021 	P(se.avg.load_sum);
1022 	P(se.avg.runnable_sum);
1023 	P(se.avg.util_sum);
1024 	P(se.avg.load_avg);
1025 	P(se.avg.runnable_avg);
1026 	P(se.avg.util_avg);
1027 	P(se.avg.last_update_time);
1028 	P(se.avg.util_est.ewma);
1029 	PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED);
1030 #endif
1031 #ifdef CONFIG_UCLAMP_TASK
1032 	__PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value);
1033 	__PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value);
1034 	__PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN));
1035 	__PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX));
1036 #endif
1037 	P(policy);
1038 	P(prio);
1039 #ifdef CONFIG_SCHED_LATENCY_NICE
1040 	P(latency_prio);
1041 #endif
1042 	if (task_has_dl_policy(p)) {
1043 		P(dl.runtime);
1044 		P(dl.deadline);
1045 	}
1046 #undef PN_SCHEDSTAT
1047 #undef P_SCHEDSTAT
1048 
1049 	{
1050 		unsigned int this_cpu = raw_smp_processor_id();
1051 		u64 t0, t1;
1052 
1053 		t0 = cpu_clock(this_cpu);
1054 		t1 = cpu_clock(this_cpu);
1055 		__PS("clock-delta", t1-t0);
1056 	}
1057 
1058 	sched_show_numa(p, m);
1059 }
1060 
proc_sched_set_task(struct task_struct * p)1061 void proc_sched_set_task(struct task_struct *p)
1062 {
1063 #ifdef CONFIG_SCHEDSTATS
1064 	memset(&p->se.statistics, 0, sizeof(p->se.statistics));
1065 #endif
1066 }
1067