• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* aec.h
2  *
3  * Copyright (C) DFS Deutsche Flugsicherung (2004, 2005).
4  * All Rights Reserved.
5  * Author: Andre Adrian
6  *
7  * Acoustic Echo Cancellation Leaky NLMS-pw algorithm
8  *
9  * Version 0.3 filter created with www.dsptutor.freeuk.com
10  * Version 0.3.1 Allow change of stability parameter delta
11  * Version 0.4 Leaky Normalized LMS - pre whitening algorithm
12  */
13 
14 #ifndef _AEC_H                  /* include only once */
15 
16 #ifdef HAVE_CONFIG_H
17 #include <config.h>
18 #endif
19 
20 #include <pulse/gccmacro.h>
21 #include <pulse/xmalloc.h>
22 
23 #include <pulsecore/macro.h>
24 
25 #define WIDEB 2
26 
27 // use double if your CPU does software-emulation of float
28 #define REAL float
29 
30 /* dB Values */
31 #define M0dB 1.0f
32 #define M3dB 0.71f
33 #define M6dB 0.50f
34 #define M9dB 0.35f
35 #define M12dB 0.25f
36 #define M18dB 0.125f
37 #define M24dB 0.063f
38 
39 /* dB values for 16bit PCM */
40 /* MxdB_PCM = 32767 * 10 ^(x / 20) */
41 #define M10dB_PCM 10362.0f
42 #define M20dB_PCM 3277.0f
43 #define M25dB_PCM 1843.0f
44 #define M30dB_PCM 1026.0f
45 #define M35dB_PCM 583.0f
46 #define M40dB_PCM 328.0f
47 #define M45dB_PCM 184.0f
48 #define M50dB_PCM 104.0f
49 #define M55dB_PCM 58.0f
50 #define M60dB_PCM 33.0f
51 #define M65dB_PCM 18.0f
52 #define M70dB_PCM 10.0f
53 #define M75dB_PCM 6.0f
54 #define M80dB_PCM 3.0f
55 #define M85dB_PCM 2.0f
56 #define M90dB_PCM 1.0f
57 
58 #define MAXPCM 32767.0f
59 
60 /* Design constants (Change to fine tune the algorithms */
61 
62 /* The following values are for hardware AEC and studio quality
63  * microphone */
64 
65 /* NLMS filter length in taps (samples). A longer filter length gives
66  * better Echo Cancellation, but maybe slower convergence speed and
67  * needs more CPU power (Order of NLMS is linear) */
68 #define NLMS_LEN  (100*WIDEB*8)
69 
70 /* Vector w visualization length in taps (samples).
71  * Must match argv value for wdisplay.tcl */
72 #define DUMP_LEN  (40*WIDEB*8)
73 
74 /* minimum energy in xf. Range: M70dB_PCM to M50dB_PCM. Should be equal
75  * to microphone ambient Noise level */
76 #define NoiseFloor M55dB_PCM
77 
78 /* Leaky hangover in taps.
79  */
80 #define Thold (60 * WIDEB * 8)
81 
82 // Adrian soft decision DTD
83 // left point. X is ratio, Y is stepsize
84 #define STEPX1 1.0
85 #define STEPY1 1.0
86 // right point. STEPX2=2.0 is good double talk, 3.0 is good single talk.
87 #define STEPX2 2.5
88 #define STEPY2 0
89 #define ALPHAFAST (1.0f / 100.0f)
90 #define ALPHASLOW (1.0f / 20000.0f)
91 
92 
93 
94 /* Ageing multiplier for LMS memory vector w */
95 #define Leaky 0.9999f
96 
97 /* Double Talk Detector Speaker/Microphone Threshold. Range <=1
98  * Large value (M0dB) is good for Single-Talk Echo cancellation,
99  * small value (M12dB) is good for Double-Talk AEC */
100 #define GeigelThreshold M6dB
101 
102 /* for Non Linear Processor. Range >0 to 1. Large value (M0dB) is good
103  * for Double-Talk, small value (M12dB) is good for Single-Talk */
104 #define NLPAttenuation M12dB
105 
106 /* Below this line there are no more design constants */
107 
108 typedef struct IIR_HP IIR_HP;
109 
110 /* Exponential Smoothing or IIR Infinite Impulse Response Filter */
111 struct IIR_HP {
112   REAL x;
113 };
114 
IIR_HP_init(void)115 static  IIR_HP* IIR_HP_init(void) {
116     IIR_HP *i = pa_xnew(IIR_HP, 1);
117     i->x = 0.0f;
118     return i;
119   }
120 
IIR_HP_highpass(IIR_HP * i,REAL in)121 static  REAL IIR_HP_highpass(IIR_HP *i, REAL in) {
122     const REAL a0 = 0.01f;      /* controls Transfer Frequency */
123     /* Highpass = Signal - Lowpass. Lowpass = Exponential Smoothing */
124     i->x += a0 * (in - i->x);
125     return in - i->x;
126   }
127 
128 typedef struct FIR_HP_300Hz FIR_HP_300Hz;
129 
130 #if WIDEB==1
131 /* 17 taps FIR Finite Impulse Response filter
132  * Coefficients calculated with
133  * www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html
134  */
135 class FIR_HP_300Hz {
136   REAL z[18];
137 
138 public:
FIR_HP_300Hz()139    FIR_HP_300Hz() {
140     memset(this, 0, sizeof(FIR_HP_300Hz));
141   }
142 
highpass(REAL in)143   REAL highpass(REAL in) {
144     const REAL a[18] = {
145     // Kaiser Window FIR Filter, Filter type: High pass
146     // Passband: 300.0 - 4000.0 Hz, Order: 16
147     // Transition band: 75.0 Hz, Stopband attenuation: 10.0 dB
148     -0.034870606, -0.039650206, -0.044063766, -0.04800318,
149     -0.051370874, -0.054082647, -0.056070227, -0.057283327,
150     0.8214126, -0.057283327, -0.056070227, -0.054082647,
151     -0.051370874, -0.04800318, -0.044063766, -0.039650206,
152     -0.034870606, 0.0
153     };
154     memmove(z + 1, z, 17 * sizeof(REAL));
155     z[0] = in;
156     REAL sum0 = 0.0, sum1 = 0.0;
157     int j;
158 
159     for (j = 0; j < 18; j += 2) {
160       // optimize: partial loop unrolling
161       sum0 += a[j] * z[j];
162       sum1 += a[j + 1] * z[j + 1];
163     }
164     return sum0 + sum1;
165   }
166 };
167 
168 #else
169 
170 /* 35 taps FIR Finite Impulse Response filter
171  * Passband 150Hz to 4kHz for 8kHz sample rate, 300Hz to 8kHz for 16kHz
172  * sample rate.
173  * Coefficients calculated with
174  * www.dsptutor.freeuk.com/KaiserFilterDesign/KaiserFilterDesign.html
175  */
176 struct FIR_HP_300Hz {
177   REAL z[36];
178 };
179 
FIR_HP_300Hz_init(void)180 static  FIR_HP_300Hz* FIR_HP_300Hz_init(void) {
181     FIR_HP_300Hz *ret = pa_xnew(FIR_HP_300Hz, 1);
182     memset(ret, 0, sizeof(FIR_HP_300Hz));
183     return ret;
184   }
185 
FIR_HP_300Hz_highpass(FIR_HP_300Hz * f,REAL in)186 static  REAL FIR_HP_300Hz_highpass(FIR_HP_300Hz *f, REAL in) {
187     REAL sum0 = 0.0, sum1 = 0.0;
188     int j;
189     const REAL a[36] = {
190       // Kaiser Window FIR Filter, Filter type: High pass
191       // Passband: 150.0 - 4000.0 Hz, Order: 34
192       // Transition band: 34.0 Hz, Stopband attenuation: 10.0 dB
193       -0.016165324, -0.017454365, -0.01871232, -0.019931411,
194       -0.021104068, -0.022222936, -0.02328091, -0.024271343,
195       -0.025187887, -0.02602462, -0.026776174, -0.027437767,
196       -0.028004972, -0.028474221, -0.028842418, -0.029107114,
197       -0.02926664, 0.8524841, -0.02926664, -0.029107114,
198       -0.028842418, -0.028474221, -0.028004972, -0.027437767,
199       -0.026776174, -0.02602462, -0.025187887, -0.024271343,
200       -0.02328091, -0.022222936, -0.021104068, -0.019931411,
201       -0.01871232, -0.017454365, -0.016165324, 0.0
202     };
203     memmove(f->z + 1, f->z, 35 * sizeof(REAL));
204     f->z[0] = in;
205 
206     for (j = 0; j < 36; j += 2) {
207       // optimize: partial loop unrolling
208       sum0 += a[j] * f->z[j];
209       sum1 += a[j + 1] * f->z[j + 1];
210     }
211     return sum0 + sum1;
212   }
213 #endif
214 
215 typedef struct IIR1 IIR1;
216 
217 /* Recursive single pole IIR Infinite Impulse response High-pass filter
218  *
219  * Reference: The Scientist and Engineer's Guide to Digital Processing
220  *
221  * 	output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1]
222  *
223  *      X  = exp(-2.0 * pi * Fc)
224  *      A0 = (1 + X) / 2
225  *      A1 = -(1 + X) / 2
226  *      B1 = X
227  *      Fc = cutoff freq / sample rate
228  */
229 struct IIR1 {
230   REAL in0, out0;
231   REAL a0, a1, b1;
232 };
233 
234 #if 0
235   IIR1() {
236     memset(this, 0, sizeof(IIR1));
237   }
238 #endif
239 
IIR1_init(REAL Fc)240 static  IIR1* IIR1_init(REAL Fc) {
241     IIR1 *i = pa_xnew(IIR1, 1);
242     i->b1 = expf(-2.0f * M_PI * Fc);
243     i->a0 = (1.0f + i->b1) / 2.0f;
244     i->a1 = -(i->a0);
245     i->in0 = 0.0f;
246     i->out0 = 0.0f;
247     return i;
248   }
249 
IIR1_highpass(IIR1 * i,REAL in)250 static  REAL IIR1_highpass(IIR1 *i, REAL in) {
251     REAL out = i->a0 * in + i->a1 * i->in0 + i->b1 * i->out0;
252     i->in0 = in;
253     i->out0 = out;
254     return out;
255   }
256 
257 
258 #if 0
259 /* Recursive two pole IIR Infinite Impulse Response filter
260  * Coefficients calculated with
261  * http://www.dsptutor.freeuk.com/IIRFilterDesign/IIRFiltDes102.html
262  */
263 class IIR2 {
264   REAL x[2], y[2];
265 
266 public:
267    IIR2() {
268     memset(this, 0, sizeof(IIR2));
269   }
270 
271   REAL highpass(REAL in) {
272     // Butterworth IIR filter, Filter type: HP
273     // Passband: 2000 - 4000.0 Hz, Order: 2
274     const REAL a[] = { 0.29289323f, -0.58578646f, 0.29289323f };
275     const REAL b[] = { 1.3007072E-16f, 0.17157288f };
276     REAL out =
277       a[0] * in + a[1] * x[0] + a[2] * x[1] - b[0] * y[0] - b[1] * y[1];
278 
279     x[1] = x[0];
280     x[0] = in;
281     y[1] = y[0];
282     y[0] = out;
283     return out;
284   }
285 };
286 #endif
287 
288 
289 // Extension in taps to reduce mem copies
290 #define NLMS_EXT  (10*8)
291 
292 // block size in taps to optimize DTD calculation
293 #define DTD_LEN   16
294 
295 typedef struct AEC AEC;
296 
297 struct AEC {
298   // Time domain Filters
299   IIR_HP *acMic, *acSpk;        // DC-level remove Highpass)
300   FIR_HP_300Hz *cutoff;         // 150Hz cut-off Highpass
301   REAL gain;                    // Mic signal amplify
302   IIR1 *Fx, *Fe;                // pre-whitening Highpass for x, e
303 
304   // Adrian soft decision DTD (Double Talk Detector)
305   REAL dfast, xfast;
306   REAL dslow, xslow;
307 
308   // NLMS-pw
309   REAL x[NLMS_LEN + NLMS_EXT];  // tap delayed loudspeaker signal
310   REAL xf[NLMS_LEN + NLMS_EXT]; // pre-whitening tap delayed signal
311   REAL w_arr[NLMS_LEN + (16 / sizeof(REAL))]; // tap weights
312   REAL *w;                      // this will be a 16-byte aligned pointer into w_arr
313   int j;                        // optimize: less memory copies
314   double dotp_xf_xf;            // double to avoid loss of precision
315   float delta;                  // noise floor to stabilize NLMS
316 
317   // AES
318   float aes_y2;                 // not in use!
319 
320   // w vector visualization
321   REAL ws[DUMP_LEN];            // tap weights sums
322   int fdwdisplay;               // TCP file descriptor
323   int dumpcnt;                  // wdisplay output counter
324 
325   // variables are public for visualization
326   int hangover;
327   float stepsize;
328 
329   // vfuncs that are picked based on processor features available
330   REAL (*dotp) (REAL[], REAL[]);
331 };
332 
333 /* Double-Talk Detector
334  *
335  * in d: microphone sample (PCM as REALing point value)
336  * in x: loudspeaker sample (PCM as REALing point value)
337  * return: from 0 for doubletalk to 1.0 for single talk
338  */
339 static  float AEC_dtd(AEC *a, REAL d, REAL x);
340 
341 static  void AEC_leaky(AEC *a);
342 
343 /* Normalized Least Mean Square Algorithm pre-whitening (NLMS-pw)
344  * The LMS algorithm was developed by Bernard Widrow
345  * book: Haykin, Adaptive Filter Theory, 4. edition, Prentice Hall, 2002
346  *
347  * in d: microphone sample (16bit PCM value)
348  * in x_: loudspeaker sample (16bit PCM value)
349  * in stepsize: NLMS adaptation variable
350  * return: echo cancelled microphone sample
351  */
352 static  REAL AEC_nlms_pw(AEC *a, REAL d, REAL x_, float stepsize);
353 
354 AEC* AEC_init(int RATE, int have_vector);
355 void AEC_done(AEC *a);
356 
357 /* Acoustic Echo Cancellation and Suppression of one sample
358  * in   d:  microphone signal with echo
359  * in   x:  loudspeaker signal
360  * return:  echo cancelled microphone signal
361  */
362   int AEC_doAEC(AEC *a, int d_, int x_);
363 
AEC_getambient(AEC * a)364 PA_GCC_UNUSED static  float AEC_getambient(AEC *a) {
365     return a->dfast;
366   }
AEC_setambient(AEC * a,float Min_xf)367 static  void AEC_setambient(AEC *a, float Min_xf) {
368     a->dotp_xf_xf -= a->delta;  // subtract old delta
369     a->delta = (NLMS_LEN-1) * Min_xf * Min_xf;
370     a->dotp_xf_xf += a->delta;  // add new delta
371   }
AEC_setgain(AEC * a,float gain_)372 PA_GCC_UNUSED static  void AEC_setgain(AEC *a, float gain_) {
373     a->gain = gain_;
374   }
375 #if 0
376   void AEC_openwdisplay(AEC *a);
377 #endif
AEC_setaes(AEC * a,float aes_y2_)378 PA_GCC_UNUSED static  void AEC_setaes(AEC *a, float aes_y2_) {
379     a->aes_y2 = aes_y2_;
380   }
381 
382 #define _AEC_H
383 #endif
384