1 /*
2 * C11 <threads.h> emulation library
3 *
4 * (C) Copyright yohhoy 2012.
5 * Distributed under the Boost Software License, Version 1.0.
6 *
7 * Permission is hereby granted, free of charge, to any person or organization
8 * obtaining a copy of the software and accompanying documentation covered by
9 * this license (the "Software") to use, reproduce, display, distribute,
10 * execute, and transmit the Software, and to prepare [[derivative work]]s of the
11 * Software, and to permit third-parties to whom the Software is furnished to
12 * do so, all subject to the following:
13 *
14 * The copyright notices in the Software and this entire statement, including
15 * the above license grant, this restriction and the following disclaimer,
16 * must be included in all copies of the Software, in whole or in part, and
17 * all derivative works of the Software, unless such copies or derivative
18 * works are solely in the form of machine-executable object code generated by
19 * a source language processor.
20 *
21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23 * FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-INFRINGEMENT. IN NO EVENT
24 * SHALL THE COPYRIGHT HOLDERS OR ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE
25 * FOR ANY DAMAGES OR OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE,
26 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
27 * DEALINGS IN THE SOFTWARE.
28 */
29 #include <assert.h>
30 #include <limits.h>
31 #include <errno.h>
32 #include <process.h> // MSVCRT
33 #include <stdlib.h>
34
35 #include "c11/threads.h"
36
37 #ifndef WIN32_LEAN_AND_MEAN
38 #define WIN32_LEAN_AND_MEAN 1
39 #endif
40 #include <windows.h>
41
42 /*
43 Configuration macro:
44
45 EMULATED_THREADS_USE_NATIVE_CALL_ONCE
46 Use native WindowsAPI one-time initialization function.
47 (requires WinVista or later)
48 Otherwise emulate by mtx_trylock() + *busy loop* for WinXP.
49
50 EMULATED_THREADS_TSS_DTOR_SLOTNUM
51 Max registerable TSS dtor number.
52 */
53
54 #if _WIN32_WINNT >= 0x0600
55 // Prefer native WindowsAPI on newer environment.
56 #if !defined(__MINGW32__)
57 #define EMULATED_THREADS_USE_NATIVE_CALL_ONCE
58 #endif
59 #endif
60 #define EMULATED_THREADS_TSS_DTOR_SLOTNUM 64 // see TLS_MINIMUM_AVAILABLE
61
62 // check configuration
63 #if defined(EMULATED_THREADS_USE_NATIVE_CALL_ONCE) && (_WIN32_WINNT < 0x0600)
64 #error EMULATED_THREADS_USE_NATIVE_CALL_ONCE requires _WIN32_WINNT>=0x0600
65 #endif
66
67
68 static_assert(sizeof(cnd_t) == sizeof(CONDITION_VARIABLE), "The size of cnd_t must equal to CONDITION_VARIABLE");
69 static_assert(sizeof(thrd_t) == sizeof(HANDLE), "The size of thrd_t must equal to HANDLE");
70 static_assert(sizeof(tss_t) == sizeof(DWORD), "The size of tss_t must equal to DWORD");
71 static_assert(sizeof(mtx_t) == sizeof(CRITICAL_SECTION), "The size of mtx_t must equal to CRITICAL_SECTION");
72 static_assert(sizeof(once_flag) == sizeof(INIT_ONCE), "The size of once_flag must equal to INIT_ONCE");
73
74 /*
75 Implementation limits:
76 - Conditionally emulation for "Initialization functions"
77 (see EMULATED_THREADS_USE_NATIVE_CALL_ONCE macro)
78 - Emulated `mtx_timelock()' with mtx_trylock() + *busy loop*
79 */
80 static void impl_tss_dtor_invoke(void); // forward decl.
81
82 struct impl_thrd_param {
83 thrd_start_t func;
84 void *arg;
85 };
86
impl_thrd_routine(void * p)87 static unsigned __stdcall impl_thrd_routine(void *p)
88 {
89 struct impl_thrd_param pack;
90 int code;
91 memcpy(&pack, p, sizeof(struct impl_thrd_param));
92 free(p);
93 code = pack.func(pack.arg);
94 impl_tss_dtor_invoke();
95 return (unsigned)code;
96 }
97
impl_timespec2msec(const struct timespec * ts)98 static time_t impl_timespec2msec(const struct timespec *ts)
99 {
100 return (ts->tv_sec * 1000U) + (ts->tv_nsec / 1000000L);
101 }
102
impl_abs2relmsec(const struct timespec * abs_time)103 static DWORD impl_abs2relmsec(const struct timespec *abs_time)
104 {
105 const time_t abs_ms = impl_timespec2msec(abs_time);
106 struct timespec now;
107 timespec_get(&now, TIME_UTC);
108 const time_t now_ms = impl_timespec2msec(&now);
109 const DWORD rel_ms = (abs_ms > now_ms) ? (DWORD)(abs_ms - now_ms) : 0;
110 return rel_ms;
111 }
112
113 #ifdef EMULATED_THREADS_USE_NATIVE_CALL_ONCE
114 struct impl_call_once_param { void (*func)(void); };
impl_call_once_callback(PINIT_ONCE InitOnce,PVOID Parameter,PVOID * Context)115 static BOOL CALLBACK impl_call_once_callback(PINIT_ONCE InitOnce, PVOID Parameter, PVOID *Context)
116 {
117 struct impl_call_once_param *param = (struct impl_call_once_param*)Parameter;
118 (param->func)();
119 ((void)InitOnce); ((void)Context); // suppress warning
120 return TRUE;
121 }
122 #endif // ifdef EMULATED_THREADS_USE_NATIVE_CALL_ONCE
123
124 static struct impl_tss_dtor_entry {
125 tss_t key;
126 tss_dtor_t dtor;
127 } impl_tss_dtor_tbl[EMULATED_THREADS_TSS_DTOR_SLOTNUM];
128
impl_tss_dtor_register(tss_t key,tss_dtor_t dtor)129 static int impl_tss_dtor_register(tss_t key, tss_dtor_t dtor)
130 {
131 int i;
132 for (i = 0; i < EMULATED_THREADS_TSS_DTOR_SLOTNUM; i++) {
133 if (!impl_tss_dtor_tbl[i].dtor)
134 break;
135 }
136 if (i == EMULATED_THREADS_TSS_DTOR_SLOTNUM)
137 return 1;
138 impl_tss_dtor_tbl[i].key = key;
139 impl_tss_dtor_tbl[i].dtor = dtor;
140 return 0;
141 }
142
impl_tss_dtor_invoke(void)143 static void impl_tss_dtor_invoke(void)
144 {
145 int i;
146 for (i = 0; i < EMULATED_THREADS_TSS_DTOR_SLOTNUM; i++) {
147 if (impl_tss_dtor_tbl[i].dtor) {
148 void* val = tss_get(impl_tss_dtor_tbl[i].key);
149 if (val)
150 (impl_tss_dtor_tbl[i].dtor)(val);
151 }
152 }
153 }
154
155
156 /*--------------- 7.25.2 Initialization functions ---------------*/
157 // 7.25.2.1
158 void
call_once(once_flag * flag,void (* func)(void))159 call_once(once_flag *flag, void (*func)(void))
160 {
161 assert(flag && func);
162 #ifdef EMULATED_THREADS_USE_NATIVE_CALL_ONCE
163 {
164 struct impl_call_once_param param;
165 param.func = func;
166 InitOnceExecuteOnce((PINIT_ONCE)flag, impl_call_once_callback, (PVOID)¶m, NULL);
167 }
168 #else
169 if (InterlockedCompareExchangePointer((PVOID volatile *)&flag->status, (PVOID)1, (PVOID)0) == 0) {
170 (func)();
171 InterlockedExchangePointer((PVOID volatile *)&flag->status, (PVOID)2);
172 } else {
173 while (flag->status == 1) {
174 // busy loop!
175 thrd_yield();
176 }
177 }
178 #endif
179 }
180
181
182 /*------------- 7.25.3 Condition variable functions -------------*/
183 // 7.25.3.1
184 int
cnd_broadcast(cnd_t * cond)185 cnd_broadcast(cnd_t *cond)
186 {
187 assert(cond != NULL);
188 WakeAllConditionVariable((PCONDITION_VARIABLE)cond);
189 return thrd_success;
190 }
191
192 // 7.25.3.2
193 void
cnd_destroy(cnd_t * cond)194 cnd_destroy(cnd_t *cond)
195 {
196 (void)cond;
197 assert(cond != NULL);
198 // do nothing
199 }
200
201 // 7.25.3.3
202 int
cnd_init(cnd_t * cond)203 cnd_init(cnd_t *cond)
204 {
205 assert(cond != NULL);
206 InitializeConditionVariable((PCONDITION_VARIABLE)cond);
207 return thrd_success;
208 }
209
210 // 7.25.3.4
211 int
cnd_signal(cnd_t * cond)212 cnd_signal(cnd_t *cond)
213 {
214 assert(cond != NULL);
215 WakeConditionVariable((PCONDITION_VARIABLE)cond);
216 return thrd_success;
217 }
218
219 // 7.25.3.5
220 int
cnd_timedwait(cnd_t * cond,mtx_t * mtx,const struct timespec * abs_time)221 cnd_timedwait(cnd_t *cond, mtx_t *mtx, const struct timespec *abs_time)
222 {
223 assert(cond != NULL);
224 assert(mtx != NULL);
225 assert(abs_time != NULL);
226 const DWORD timeout = impl_abs2relmsec(abs_time);
227 if (SleepConditionVariableCS((PCONDITION_VARIABLE)cond, (PCRITICAL_SECTION)mtx, timeout))
228 return thrd_success;
229 return (GetLastError() == ERROR_TIMEOUT) ? thrd_timedout : thrd_error;
230 }
231
232 // 7.25.3.6
233 int
cnd_wait(cnd_t * cond,mtx_t * mtx)234 cnd_wait(cnd_t *cond, mtx_t *mtx)
235 {
236 assert(cond != NULL);
237 assert(mtx != NULL);
238 SleepConditionVariableCS((PCONDITION_VARIABLE)cond, (PCRITICAL_SECTION)mtx, INFINITE);
239 return thrd_success;
240 }
241
242
243 /*-------------------- 7.25.4 Mutex functions --------------------*/
244 // 7.25.4.1
245 void
mtx_destroy(mtx_t * mtx)246 mtx_destroy(mtx_t *mtx)
247 {
248 assert(mtx);
249 DeleteCriticalSection((PCRITICAL_SECTION)mtx);
250 }
251
252 // 7.25.4.2
253 int
mtx_init(mtx_t * mtx,int type)254 mtx_init(mtx_t *mtx, int type)
255 {
256 assert(mtx != NULL);
257 if (type != mtx_plain && type != mtx_timed && type != mtx_try
258 && type != (mtx_plain|mtx_recursive)
259 && type != (mtx_timed|mtx_recursive)
260 && type != (mtx_try|mtx_recursive))
261 return thrd_error;
262 InitializeCriticalSection((PCRITICAL_SECTION)mtx);
263 return thrd_success;
264 }
265
266 // 7.25.4.3
267 int
mtx_lock(mtx_t * mtx)268 mtx_lock(mtx_t *mtx)
269 {
270 assert(mtx != NULL);
271 EnterCriticalSection((PCRITICAL_SECTION)mtx);
272 return thrd_success;
273 }
274
275 // 7.25.4.4
276 int
mtx_timedlock(mtx_t * mtx,const struct timespec * ts)277 mtx_timedlock(mtx_t *mtx, const struct timespec *ts)
278 {
279 assert(mtx != NULL);
280 assert(ts != NULL);
281 while (mtx_trylock(mtx) != thrd_success) {
282 if (impl_abs2relmsec(ts) == 0)
283 return thrd_timedout;
284 // busy loop!
285 thrd_yield();
286 }
287 return thrd_success;
288 }
289
290 // 7.25.4.5
291 int
mtx_trylock(mtx_t * mtx)292 mtx_trylock(mtx_t *mtx)
293 {
294 assert(mtx != NULL);
295 return TryEnterCriticalSection((PCRITICAL_SECTION)mtx) ? thrd_success : thrd_busy;
296 }
297
298 // 7.25.4.6
299 int
mtx_unlock(mtx_t * mtx)300 mtx_unlock(mtx_t *mtx)
301 {
302 assert(mtx != NULL);
303 LeaveCriticalSection((PCRITICAL_SECTION)mtx);
304 return thrd_success;
305 }
306
307
308 /*------------------- 7.25.5 Thread functions -------------------*/
309 // 7.25.5.1
310 int
thrd_create(thrd_t * thr,thrd_start_t func,void * arg)311 thrd_create(thrd_t *thr, thrd_start_t func, void *arg)
312 {
313 struct impl_thrd_param *pack;
314 uintptr_t handle;
315 assert(thr != NULL);
316 pack = (struct impl_thrd_param *)malloc(sizeof(struct impl_thrd_param));
317 if (!pack) return thrd_nomem;
318 pack->func = func;
319 pack->arg = arg;
320 handle = _beginthreadex(NULL, 0, impl_thrd_routine, pack, 0, NULL);
321 if (handle == 0) {
322 free(pack);
323 if (errno == EAGAIN || errno == EACCES)
324 return thrd_nomem;
325 return thrd_error;
326 }
327 *thr = (thrd_t)handle;
328 return thrd_success;
329 }
330
331 #if 0
332 // 7.25.5.2
333 static inline thrd_t
334 thrd_current(void)
335 {
336 HANDLE hCurrentThread;
337 BOOL bRet;
338
339 /* GetCurrentThread() returns a pseudo-handle, which we need
340 * to pass to DuplicateHandle(). Only the resulting handle can be used
341 * from other threads.
342 *
343 * Note that neither handle can be compared to the one by thread_create.
344 * Only the thread IDs - as returned by GetThreadId() and GetCurrentThreadId()
345 * can be compared directly.
346 *
347 * Other potential solutions would be:
348 * - define thrd_t as a thread Ids, but this would mean we'd need to OpenThread for many operations
349 * - use malloc'ed memory for thrd_t. This would imply using TLS for current thread.
350 *
351 * Neither is particularly nice.
352 *
353 * Life would be much easier if C11 threads had different abstractions for
354 * threads and thread IDs, just like C++11 threads does...
355 */
356
357 bRet = DuplicateHandle(GetCurrentProcess(), // source process (pseudo) handle
358 GetCurrentThread(), // source (pseudo) handle
359 GetCurrentProcess(), // target process
360 &hCurrentThread, // target handle
361 0,
362 FALSE,
363 DUPLICATE_SAME_ACCESS);
364 assert(bRet);
365 if (!bRet) {
366 hCurrentThread = GetCurrentThread();
367 }
368 return hCurrentThread;
369 }
370 #endif
371
372 // 7.25.5.3
373 int
thrd_detach(thrd_t thr)374 thrd_detach(thrd_t thr)
375 {
376 CloseHandle(thr);
377 return thrd_success;
378 }
379
380 // 7.25.5.4
381 int
thrd_equal(thrd_t thr0,thrd_t thr1)382 thrd_equal(thrd_t thr0, thrd_t thr1)
383 {
384 return GetThreadId(thr0) == GetThreadId(thr1);
385 }
386
387 // 7.25.5.5
388 _Noreturn
389 void
thrd_exit(int res)390 thrd_exit(int res)
391 {
392 impl_tss_dtor_invoke();
393 _endthreadex((unsigned)res);
394 }
395
396 // 7.25.5.6
397 int
thrd_join(thrd_t thr,int * res)398 thrd_join(thrd_t thr, int *res)
399 {
400 DWORD w, code;
401 w = WaitForSingleObject(thr, INFINITE);
402 if (w != WAIT_OBJECT_0)
403 return thrd_error;
404 if (res) {
405 if (!GetExitCodeThread(thr, &code)) {
406 CloseHandle(thr);
407 return thrd_error;
408 }
409 *res = (int)code;
410 }
411 CloseHandle(thr);
412 return thrd_success;
413 }
414
415 // 7.25.5.7
416 int
thrd_sleep(const struct timespec * time_point,struct timespec * remaining)417 thrd_sleep(const struct timespec *time_point, struct timespec *remaining)
418 {
419 (void)remaining;
420 assert(time_point);
421 assert(!remaining); /* not implemented */
422 Sleep((DWORD)impl_timespec2msec(time_point));
423 return 0;
424 }
425
426 // 7.25.5.8
427 void
thrd_yield(void)428 thrd_yield(void)
429 {
430 SwitchToThread();
431 }
432
433
434 /*----------- 7.25.6 Thread-specific storage functions -----------*/
435 // 7.25.6.1
436 int
tss_create(tss_t * key,tss_dtor_t dtor)437 tss_create(tss_t *key, tss_dtor_t dtor)
438 {
439 assert(key != NULL);
440 *key = TlsAlloc();
441 if (dtor) {
442 if (impl_tss_dtor_register(*key, dtor)) {
443 TlsFree(*key);
444 return thrd_error;
445 }
446 }
447 return (*key != 0xFFFFFFFF) ? thrd_success : thrd_error;
448 }
449
450 // 7.25.6.2
451 void
tss_delete(tss_t key)452 tss_delete(tss_t key)
453 {
454 TlsFree(key);
455 }
456
457 // 7.25.6.3
458 void *
tss_get(tss_t key)459 tss_get(tss_t key)
460 {
461 return TlsGetValue(key);
462 }
463
464 // 7.25.6.4
465 int
tss_set(tss_t key,void * val)466 tss_set(tss_t key, void *val)
467 {
468 return TlsSetValue(key, val) ? thrd_success : thrd_error;
469 }
470