Searched refs:r_1 (Results 1 – 4 of 4) sorted by relevance
/third_party/skia/site/docs/dev/design/conical/ |
D | _index.md | 37 Let two circles be $C_0, r_0$ and $C_1, r_1$ where $C$ is the center and $r$ is 41 $r_t = (1-t) \cdot r_0 + t \cdot r_1 > 0$ (note that radius $r_t$ has to be 48 2. $r_0 = r_1$ so the gradient is a single strip with bandwidth $2 r_0 = 2 r_1$. 54 \neq r_1$. 56 As $r_0 \neq r_1$, we can find a focal point 58 interpolated radius $r_f = (1-f) \cdot r_0 + f \cdot r_1 = 0$. Solving the 59 latter equation gets us $f = r_0 / (r_0 - r_1)$. 61 As $C_0 \neq C_1$, focal point $C_f$ is different from $C_1$ unless $r_1 = 0$. 62 If $r_1 = 0$, we can swap $C_0, r_0$ with $C_1, r_1$, compute swapped gradient 63 $t_s$ as if $r_1 \neq 0$, and finally set $t = 1 - t_s$. The only catch here is [all …]
|
/third_party/skia/third_party/externals/oboe/apps/fxlab/app/src/main/cpp/effects/utils/ |
D | WhiteNoise.h | 24 static float r_0, r_1 = 0; in operator() local 26 r_0 = r_1; in operator() 27 r_1 = (static_cast <float> (rand()) / static_cast <float> (RAND_MAX)) * 2 - 1; in operator() 29 float ret = r_0 + counter * (r_1 - r_0) / kScale; in operator()
|
/third_party/node/deps/v8/src/bigint/ |
D | mul-toom.cc | 96 RWDigits r_1(t + 2 * r_len, r_len); in Toom3Main() local 126 Multiply(r_1, p_1, q_1); in Toom3Main() 164 bool R3_sign = SubtractSigned(R3, r_m2, r_m2_sign, r_1, false); in Toom3Main() 167 RWDigits R1 = r_1; in Toom3Main() 168 bool R1_sign = SubtractSigned(R1, r_1, false, r_m1, r_m1_sign); in Toom3Main()
|
/third_party/mesa3d/src/compiler/nir/ |
D | nir_lower_double_ops.c | 282 nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, g_1), g_1, src); in lower_sqrt_rsq() local 283 res = nir_ffma(b, h_1, r_1, g_1); in lower_sqrt_rsq() 286 nir_ssa_def *r_1 = nir_ffma(b, nir_fneg(b, y_1), nir_fmul(b, h_1, src), in lower_sqrt_rsq() local 288 res = nir_ffma(b, y_1, r_1, y_1); in lower_sqrt_rsq()
|