• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * QuickTime RPZA Video Encoder
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 /**
22  * @file rpzaenc.c
23  * QT RPZA Video Encoder by Todd Kirby <doubleshot@pacbell.net> and David Adler
24  */
25 
26 #include "libavutil/avassert.h"
27 #include "libavutil/common.h"
28 #include "libavutil/opt.h"
29 
30 #include "avcodec.h"
31 #include "codec_internal.h"
32 #include "encode.h"
33 #include "put_bits.h"
34 
35 typedef struct RpzaContext {
36     AVClass *avclass;
37 
38     int skip_frame_thresh;
39     int start_one_color_thresh;
40     int continue_one_color_thresh;
41     int sixteen_color_thresh;
42 
43     AVFrame *prev_frame;    // buffer for previous source frame
44     PutBitContext pb;       // buffer for encoded frame data.
45 
46     int frame_width;        // width in pixels of source frame
47     int frame_height;       // height in pixesl of source frame
48 
49     int first_frame;        // flag set to one when the first frame is being processed
50                             // so that comparisons with previous frame data in not attempted
51 } RpzaContext;
52 
53 typedef enum channel_offset {
54     RED = 2,
55     GREEN = 1,
56     BLUE = 0,
57 } channel_offset;
58 
59 typedef struct rgb {
60     uint8_t r;
61     uint8_t g;
62     uint8_t b;
63 } rgb;
64 
65 #define SQR(x) ((x) * (x))
66 
67 /* 15 bit components */
68 #define GET_CHAN(color, chan) (((color) >> ((chan) * 5) & 0x1F) * 8)
69 #define R(color) GET_CHAN(color, RED)
70 #define G(color) GET_CHAN(color, GREEN)
71 #define B(color) GET_CHAN(color, BLUE)
72 
73 typedef struct BlockInfo {
74     int row;
75     int col;
76     int block_width;
77     int block_height;
78     int image_width;
79     int image_height;
80     int block_index;
81     uint16_t start;
82     int rowstride;
83     int blocks_per_row;
84     int total_blocks;
85 } BlockInfo;
86 
get_colors(uint8_t * min,uint8_t * max,uint8_t color4[4][3])87 static void get_colors(uint8_t *min, uint8_t *max, uint8_t color4[4][3])
88 {
89     uint8_t step;
90 
91     color4[0][0] = min[0];
92     color4[0][1] = min[1];
93     color4[0][2] = min[2];
94 
95     color4[3][0] = max[0];
96     color4[3][1] = max[1];
97     color4[3][2] = max[2];
98 
99     // red components
100     step = (color4[3][0] - color4[0][0] + 1) / 3;
101     color4[1][0] = color4[0][0] + step;
102     color4[2][0] = color4[3][0] - step;
103 
104     // green components
105     step = (color4[3][1] - color4[0][1] + 1) / 3;
106     color4[1][1] = color4[0][1] + step;
107     color4[2][1] = color4[3][1] - step;
108 
109     // blue components
110     step = (color4[3][2] - color4[0][2] + 1) / 3;
111     color4[1][2] = color4[0][2] + step;
112     color4[2][2] = color4[3][2] - step;
113 }
114 
115 /* Fill BlockInfo struct with information about a 4x4 block of the image */
get_block_info(BlockInfo * bi,int block)116 static int get_block_info(BlockInfo *bi, int block)
117 {
118     bi->row = block / bi->blocks_per_row;
119     bi->col = block % bi->blocks_per_row;
120 
121     // test for right edge block
122     if (bi->col == bi->blocks_per_row - 1 && (bi->image_width % 4) != 0) {
123         bi->block_width = bi->image_width % 4;
124     } else {
125         bi->block_width = 4;
126     }
127 
128     // test for bottom edge block
129     if (bi->row == (bi->image_height / 4) && (bi->image_height % 4) != 0) {
130         bi->block_height = bi->image_height % 4;
131     } else {
132         bi->block_height = 4;
133     }
134 
135     return block ? (bi->col * 4) + (bi->row * bi->rowstride * 4) : 0;
136 }
137 
rgb24_to_rgb555(uint8_t * rgb24)138 static uint16_t rgb24_to_rgb555(uint8_t *rgb24)
139 {
140     uint16_t rgb555 = 0;
141     uint32_t r, g, b;
142 
143     r = rgb24[0] >> 3;
144     g = rgb24[1] >> 3;
145     b = rgb24[2] >> 3;
146 
147     rgb555 |= (r << 10);
148     rgb555 |= (g << 5);
149     rgb555 |= (b << 0);
150 
151     return rgb555;
152 }
153 
154 /*
155  * Returns the total difference between two 24 bit color values
156  */
diff_colors(uint8_t * colorA,uint8_t * colorB)157 static int diff_colors(uint8_t *colorA, uint8_t *colorB)
158 {
159     int tot;
160 
161     tot  = SQR(colorA[0] - colorB[0]);
162     tot += SQR(colorA[1] - colorB[1]);
163     tot += SQR(colorA[2] - colorB[2]);
164 
165     return tot;
166 }
167 
168 /*
169  * Returns the maximum channel difference
170  */
max_component_diff(uint16_t * colorA,uint16_t * colorB)171 static int max_component_diff(uint16_t *colorA, uint16_t *colorB)
172 {
173     int diff, max = 0;
174 
175     diff = FFABS(R(colorA[0]) - R(colorB[0]));
176     if (diff > max) {
177         max = diff;
178     }
179     diff = FFABS(G(colorA[0]) - G(colorB[0]));
180     if (diff > max) {
181         max = diff;
182     }
183     diff = FFABS(B(colorA[0]) - B(colorB[0]));
184     if (diff > max) {
185         max = diff;
186     }
187     return max * 8;
188 }
189 
190 /*
191  * Find the channel that has the largest difference between minimum and maximum
192  * color values. Put the minimum value in min, maximum in max and the channel
193  * in chan.
194  */
get_max_component_diff(BlockInfo * bi,uint16_t * block_ptr,uint8_t * min,uint8_t * max,channel_offset * chan)195 static void get_max_component_diff(BlockInfo *bi, uint16_t *block_ptr,
196                                    uint8_t *min, uint8_t *max, channel_offset *chan)
197 {
198     int x, y;
199     uint8_t min_r, max_r, min_g, max_g, min_b, max_b;
200     uint8_t r, g, b;
201 
202     // fix warning about uninitialized vars
203     min_r = min_g = min_b = UINT8_MAX;
204     max_r = max_g = max_b = 0;
205 
206     // loop thru and compare pixels
207     for (y = 0; y < bi->block_height; y++) {
208         for (x = 0; x < bi->block_width; x++) {
209             // TODO:  optimize
210             min_r = FFMIN(R(block_ptr[x]), min_r);
211             min_g = FFMIN(G(block_ptr[x]), min_g);
212             min_b = FFMIN(B(block_ptr[x]), min_b);
213 
214             max_r = FFMAX(R(block_ptr[x]), max_r);
215             max_g = FFMAX(G(block_ptr[x]), max_g);
216             max_b = FFMAX(B(block_ptr[x]), max_b);
217         }
218         block_ptr += bi->rowstride;
219     }
220 
221     r = max_r - min_r;
222     g = max_g - min_g;
223     b = max_b - min_b;
224 
225     if (r > g && r > b) {
226         *max = max_r;
227         *min = min_r;
228         *chan = RED;
229     } else if (g > b && g >= r) {
230         *max = max_g;
231         *min = min_g;
232         *chan = GREEN;
233     } else {
234         *max = max_b;
235         *min = min_b;
236         *chan = BLUE;
237     }
238 }
239 
240 /*
241  * Compare two 4x4 blocks to determine if the total difference between the
242  * blocks is greater than the thresh parameter. Returns -1 if difference
243  * exceeds threshold or zero otherwise.
244  */
compare_blocks(uint16_t * block1,uint16_t * block2,BlockInfo * bi,int thresh)245 static int compare_blocks(uint16_t *block1, uint16_t *block2, BlockInfo *bi, int thresh)
246 {
247     int x, y, diff = 0;
248     for (y = 0; y < bi->block_height; y++) {
249         for (x = 0; x < bi->block_width; x++) {
250             diff = max_component_diff(&block1[x], &block2[x]);
251             if (diff >= thresh) {
252                 return -1;
253             }
254         }
255         block1 += bi->rowstride;
256         block2 += bi->rowstride;
257     }
258     return 0;
259 }
260 
261 /*
262  * Determine the fit of one channel to another within a 4x4 block. This
263  * is used to determine the best palette choices for 4-color encoding.
264  */
leastsquares(uint16_t * block_ptr,BlockInfo * bi,channel_offset xchannel,channel_offset ychannel,double * slope,double * y_intercept,double * correlation_coef)265 static int leastsquares(uint16_t *block_ptr, BlockInfo *bi,
266                         channel_offset xchannel, channel_offset ychannel,
267                         double *slope, double *y_intercept, double *correlation_coef)
268 {
269     double sumx = 0, sumy = 0, sumx2 = 0, sumy2 = 0, sumxy = 0,
270            sumx_sq = 0, sumy_sq = 0, tmp, tmp2;
271     int i, j, count;
272     uint8_t x, y;
273 
274     count = bi->block_height * bi->block_width;
275 
276     if (count < 2)
277         return -1;
278 
279     for (i = 0; i < bi->block_height; i++) {
280         for (j = 0; j < bi->block_width; j++) {
281             x = GET_CHAN(block_ptr[j], xchannel);
282             y = GET_CHAN(block_ptr[j], ychannel);
283             sumx += x;
284             sumy += y;
285             sumx2 += x * x;
286             sumy2 += y * y;
287             sumxy += x * y;
288         }
289         block_ptr += bi->rowstride;
290     }
291 
292     sumx_sq = sumx * sumx;
293     tmp = (count * sumx2 - sumx_sq);
294 
295     // guard against div/0
296     if (tmp == 0)
297         return -2;
298 
299     sumy_sq = sumy * sumy;
300 
301     *slope = (sumx * sumy - sumxy) / tmp;
302     *y_intercept = (sumy - (*slope) * sumx) / count;
303 
304     tmp2 = count * sumy2 - sumy_sq;
305     if (tmp2 == 0) {
306         *correlation_coef = 0.0;
307     } else {
308         *correlation_coef = (count * sumxy - sumx * sumy) /
309             sqrt(tmp * tmp2);
310     }
311 
312     return 0; // success
313 }
314 
315 /*
316  * Determine the amount of error in the leastsquares fit.
317  */
calc_lsq_max_fit_error(uint16_t * block_ptr,BlockInfo * bi,int min,int max,int tmp_min,int tmp_max,channel_offset xchannel,channel_offset ychannel)318 static int calc_lsq_max_fit_error(uint16_t *block_ptr, BlockInfo *bi,
319                                   int min, int max, int tmp_min, int tmp_max,
320                                   channel_offset xchannel, channel_offset ychannel)
321 {
322     int i, j, x, y;
323     int err;
324     int max_err = 0;
325 
326     for (i = 0; i < bi->block_height; i++) {
327         for (j = 0; j < bi->block_width; j++) {
328             int x_inc, lin_y, lin_x;
329             x = GET_CHAN(block_ptr[j], xchannel);
330             y = GET_CHAN(block_ptr[j], ychannel);
331 
332             /* calculate x_inc as the 4-color index (0..3) */
333             x_inc = floor( (x - min) * 3.0 / (max - min) + 0.5);
334             x_inc = FFMAX(FFMIN(3, x_inc), 0);
335 
336             /* calculate lin_y corresponding to x_inc */
337             lin_y = (int)(tmp_min + (tmp_max - tmp_min) * x_inc / 3.0 + 0.5);
338 
339             err = FFABS(lin_y - y);
340             if (err > max_err)
341                 max_err = err;
342 
343             /* calculate lin_x corresponding to x_inc */
344             lin_x = (int)(min + (max - min) * x_inc / 3.0 + 0.5);
345 
346             err = FFABS(lin_x - x);
347             if (err > max_err)
348                 max_err += err;
349         }
350         block_ptr += bi->rowstride;
351     }
352 
353     return max_err;
354 }
355 
356 /*
357  * Find the closest match to a color within the 4-color palette
358  */
match_color(uint16_t * color,uint8_t colors[4][3])359 static int match_color(uint16_t *color, uint8_t colors[4][3])
360 {
361     int ret = 0;
362     int smallest_variance = INT_MAX;
363     uint8_t dithered_color[3];
364 
365     for (int channel = 0; channel < 3; channel++) {
366         dithered_color[channel] = GET_CHAN(color[0], channel);
367     }
368 
369     for (int palette_entry = 0; palette_entry < 4; palette_entry++) {
370         int variance = diff_colors(dithered_color, colors[palette_entry]);
371 
372         if (variance < smallest_variance) {
373             smallest_variance = variance;
374             ret = palette_entry;
375         }
376     }
377 
378     return ret;
379 }
380 
381 /*
382  * Encode a block using the 4-color opcode and palette. return number of
383  * blocks encoded (until we implement multi-block 4 color runs this will
384  * always be 1)
385  */
encode_four_color_block(uint8_t * min_color,uint8_t * max_color,PutBitContext * pb,uint16_t * block_ptr,BlockInfo * bi)386 static int encode_four_color_block(uint8_t *min_color, uint8_t *max_color,
387                                    PutBitContext *pb, uint16_t *block_ptr, BlockInfo *bi)
388 {
389     int x, y, idx;
390     uint8_t color4[4][3];
391     uint16_t rounded_max, rounded_min;
392 
393     // round min and max wider
394     rounded_min = rgb24_to_rgb555(min_color);
395     rounded_max = rgb24_to_rgb555(max_color);
396 
397     // put a and b colors
398     // encode 4 colors = first 16 bit color with MSB zeroed and...
399     put_bits(pb, 16, rounded_max & ~0x8000);
400     // ...second 16 bit color with MSB on.
401     put_bits(pb, 16, rounded_min | 0x8000);
402 
403     get_colors(min_color, max_color, color4);
404 
405     for (y = 0; y < 4; y++) {
406         for (x = 0; x < 4; x++) {
407             idx = match_color(&block_ptr[x], color4);
408             put_bits(pb, 2, idx);
409         }
410         block_ptr += bi->rowstride;
411     }
412     return 1; // num blocks encoded
413 }
414 
415 /*
416  * Copy a 4x4 block from the current frame buffer to the previous frame buffer.
417  */
update_block_in_prev_frame(const uint16_t * src_pixels,uint16_t * dest_pixels,const BlockInfo * bi,int block_counter)418 static void update_block_in_prev_frame(const uint16_t *src_pixels,
419                                        uint16_t *dest_pixels,
420                                        const BlockInfo *bi, int block_counter)
421 {
422     const int y_size = FFMIN(4, bi->image_height - bi->row * 4);
423 
424     for (int y = 0; y < y_size; y++) {
425         memcpy(dest_pixels, src_pixels, 8);
426         dest_pixels += bi->rowstride;
427         src_pixels += bi->rowstride;
428     }
429 }
430 
431 /*
432  * update statistics for the specified block. If first_block,
433  * it initializes the statistics.  Otherwise it updates the statistics IF THIS
434  * BLOCK IS SUITABLE TO CONTINUE A 1-COLOR RUN. That is, it checks whether
435  * the range of colors (since the routine was called first_block != 0) are
436  * all close enough intensities to be represented by a single color.
437 
438  * The routine returns 0 if this block is too different to be part of
439  * the same run of 1-color blocks. The routine returns 1 if this
440  * block can be part of the same 1-color block run.
441 
442  * If the routine returns 1, it also updates its arguments to include
443  * the statistics of this block. Otherwise, the stats are unchanged
444  * and don't include the current block.
445  */
update_block_stats(RpzaContext * s,BlockInfo * bi,uint16_t * block,uint8_t min_color[3],uint8_t max_color[3],int * total_rgb,int * total_pixels,uint8_t avg_color[3],int first_block)446 static int update_block_stats(RpzaContext *s, BlockInfo *bi, uint16_t *block,
447                               uint8_t min_color[3], uint8_t max_color[3],
448                               int *total_rgb, int *total_pixels,
449                               uint8_t avg_color[3], int first_block)
450 {
451     int x, y;
452     int is_in_range;
453     int total_pixels_blk;
454     int threshold;
455 
456     uint8_t min_color_blk[3], max_color_blk[3];
457     int total_rgb_blk[3];
458     uint8_t avg_color_blk[3];
459 
460     if (first_block) {
461         min_color[0] = UINT8_MAX;
462         min_color[1] = UINT8_MAX;
463         min_color[2] = UINT8_MAX;
464         max_color[0] = 0;
465         max_color[1] = 0;
466         max_color[2] = 0;
467         total_rgb[0] = 0;
468         total_rgb[1] = 0;
469         total_rgb[2] = 0;
470         *total_pixels = 0;
471         threshold = s->start_one_color_thresh;
472     } else {
473         threshold = s->continue_one_color_thresh;
474     }
475 
476     /*
477        The *_blk variables will include the current block.
478        Initialize them based on the blocks so far.
479      */
480     min_color_blk[0] = min_color[0];
481     min_color_blk[1] = min_color[1];
482     min_color_blk[2] = min_color[2];
483     max_color_blk[0] = max_color[0];
484     max_color_blk[1] = max_color[1];
485     max_color_blk[2] = max_color[2];
486     total_rgb_blk[0] = total_rgb[0];
487     total_rgb_blk[1] = total_rgb[1];
488     total_rgb_blk[2] = total_rgb[2];
489     total_pixels_blk = *total_pixels + bi->block_height * bi->block_width;
490 
491     /*
492        Update stats for this block's pixels
493      */
494     for (y = 0; y < bi->block_height; y++) {
495         for (x = 0; x < bi->block_width; x++) {
496             total_rgb_blk[0] += R(block[x]);
497             total_rgb_blk[1] += G(block[x]);
498             total_rgb_blk[2] += B(block[x]);
499 
500             min_color_blk[0] = FFMIN(R(block[x]), min_color_blk[0]);
501             min_color_blk[1] = FFMIN(G(block[x]), min_color_blk[1]);
502             min_color_blk[2] = FFMIN(B(block[x]), min_color_blk[2]);
503 
504             max_color_blk[0] = FFMAX(R(block[x]), max_color_blk[0]);
505             max_color_blk[1] = FFMAX(G(block[x]), max_color_blk[1]);
506             max_color_blk[2] = FFMAX(B(block[x]), max_color_blk[2]);
507         }
508         block += bi->rowstride;
509     }
510 
511     /*
512        Calculate average color including current block.
513      */
514     avg_color_blk[0] = total_rgb_blk[0] / total_pixels_blk;
515     avg_color_blk[1] = total_rgb_blk[1] / total_pixels_blk;
516     avg_color_blk[2] = total_rgb_blk[2] / total_pixels_blk;
517 
518     /*
519        Are all the pixels within threshold of the average color?
520      */
521     is_in_range = (max_color_blk[0] - avg_color_blk[0] <= threshold &&
522                    max_color_blk[1] - avg_color_blk[1] <= threshold &&
523                    max_color_blk[2] - avg_color_blk[2] <= threshold &&
524                    avg_color_blk[0] - min_color_blk[0] <= threshold &&
525                    avg_color_blk[1] - min_color_blk[1] <= threshold &&
526                    avg_color_blk[2] - min_color_blk[2] <= threshold);
527 
528     if (is_in_range) {
529         /*
530            Set the output variables to include this block.
531          */
532         min_color[0] = min_color_blk[0];
533         min_color[1] = min_color_blk[1];
534         min_color[2] = min_color_blk[2];
535         max_color[0] = max_color_blk[0];
536         max_color[1] = max_color_blk[1];
537         max_color[2] = max_color_blk[2];
538         total_rgb[0] = total_rgb_blk[0];
539         total_rgb[1] = total_rgb_blk[1];
540         total_rgb[2] = total_rgb_blk[2];
541         *total_pixels = total_pixels_blk;
542         avg_color[0] = avg_color_blk[0];
543         avg_color[1] = avg_color_blk[1];
544         avg_color[2] = avg_color_blk[2];
545     }
546 
547     return is_in_range;
548 }
549 
rpza_encode_stream(RpzaContext * s,const AVFrame * pict)550 static void rpza_encode_stream(RpzaContext *s, const AVFrame *pict)
551 {
552     BlockInfo bi;
553     int block_counter = 0;
554     int n_blocks;
555     int total_blocks;
556     int prev_block_offset;
557     int block_offset = 0;
558     uint8_t min = 0, max = 0;
559     channel_offset chan;
560     int i;
561     int tmp_min, tmp_max;
562     int total_rgb[3];
563     uint8_t avg_color[3];
564     int pixel_count;
565     uint8_t min_color[3], max_color[3];
566     double slope, y_intercept, correlation_coef;
567     uint16_t *src_pixels = (uint16_t *)pict->data[0];
568     uint16_t *prev_pixels = (uint16_t *)s->prev_frame->data[0];
569 
570     /* Number of 4x4 blocks in frame. */
571     total_blocks = ((s->frame_width + 3) / 4) * ((s->frame_height + 3) / 4);
572 
573     bi.image_width = s->frame_width;
574     bi.image_height = s->frame_height;
575     bi.rowstride = pict->linesize[0] / 2;
576 
577     bi.blocks_per_row = (s->frame_width + 3) / 4;
578 
579     while (block_counter < total_blocks) {
580         // SKIP CHECK
581         // make sure we have a valid previous frame and we're not writing
582         // a key frame
583         if (!s->first_frame) {
584             n_blocks = 0;
585             prev_block_offset = 0;
586 
587             while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
588 
589                 block_offset = get_block_info(&bi, block_counter + n_blocks);
590 
591                 // multi-block opcodes cannot span multiple rows.
592                 // If we're starting a new row, break out and write the opcode
593                 /* TODO: Should eventually use bi.row here to determine when a
594                    row break occurs, but that is currently breaking the
595                    quicktime player. This is probably due to a bug in the
596                    way I'm calculating the current row.
597                  */
598                 if (prev_block_offset && block_offset - prev_block_offset > 12) {
599                     break;
600                 }
601 
602                 prev_block_offset = block_offset;
603 
604                 if (compare_blocks(&prev_pixels[block_offset],
605                                    &src_pixels[block_offset], &bi, s->skip_frame_thresh) != 0) {
606                     // write out skipable blocks
607                     if (n_blocks) {
608 
609                         // write skip opcode
610                         put_bits(&s->pb, 8, 0x80 | (n_blocks - 1));
611                         block_counter += n_blocks;
612 
613                         goto post_skip;
614                     }
615                     break;
616                 }
617 
618                 /*
619                  * NOTE: we don't update skipped blocks in the previous frame buffer
620                  * since skipped needs always to be compared against the first skipped
621                  * block to avoid artifacts during gradual fade in/outs.
622                  */
623 
624                 // update_block_in_prev_frame(&src_pixels[block_offset],
625                 //   &prev_pixels[block_offset], &bi, block_counter + n_blocks);
626 
627                 n_blocks++;
628             }
629 
630             // we're either at the end of the frame or we've reached the maximum
631             // of 32 blocks in a run. Write out the run.
632             if (n_blocks) {
633                 // write skip opcode
634                 put_bits(&s->pb, 8, 0x80 | (n_blocks - 1));
635                 block_counter += n_blocks;
636 
637                 continue;
638             }
639 
640         } else {
641             block_offset = get_block_info(&bi, block_counter);
642         }
643 post_skip :
644 
645         // ONE COLOR CHECK
646         if (update_block_stats(s, &bi, &src_pixels[block_offset],
647                                min_color, max_color,
648                                total_rgb, &pixel_count, avg_color, 1)) {
649             prev_block_offset = block_offset;
650 
651             n_blocks = 1;
652 
653             /* update this block in the previous frame buffer */
654             update_block_in_prev_frame(&src_pixels[block_offset],
655                                        &prev_pixels[block_offset], &bi, block_counter + n_blocks);
656 
657             // check for subsequent blocks with the same color
658             while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
659                 block_offset = get_block_info(&bi, block_counter + n_blocks);
660 
661                 // multi-block opcodes cannot span multiple rows.
662                 // If we've hit end of a row, break out and write the opcode
663                 if (block_offset - prev_block_offset > 12) {
664                     break;
665                 }
666 
667                 if (!update_block_stats(s, &bi, &src_pixels[block_offset],
668                                         min_color, max_color,
669                                         total_rgb, &pixel_count, avg_color, 0)) {
670                     break;
671                 }
672 
673                 prev_block_offset = block_offset;
674 
675                 /* update this block in the previous frame buffer */
676                 update_block_in_prev_frame(&src_pixels[block_offset],
677                                            &prev_pixels[block_offset], &bi, block_counter + n_blocks);
678 
679                 n_blocks++;
680             }
681 
682             // write one color opcode.
683             put_bits(&s->pb, 8, 0xa0 | (n_blocks - 1));
684             // write color to encode.
685             put_bits(&s->pb, 16, rgb24_to_rgb555(avg_color));
686             // skip past the blocks we've just encoded.
687             block_counter += n_blocks;
688         } else { // FOUR COLOR CHECK
689             int err = 0;
690 
691             // get max component diff for block
692             get_max_component_diff(&bi, &src_pixels[block_offset], &min, &max, &chan);
693 
694             min_color[0] = 0;
695             max_color[0] = 0;
696             min_color[1] = 0;
697             max_color[1] = 0;
698             min_color[2] = 0;
699             max_color[2] = 0;
700 
701             // run least squares against other two components
702             for (i = 0; i < 3; i++) {
703                 if (i == chan) {
704                     min_color[i] = min;
705                     max_color[i] = max;
706                     continue;
707                 }
708 
709                 slope = y_intercept = correlation_coef = 0;
710 
711                 if (leastsquares(&src_pixels[block_offset], &bi, chan, i,
712                                  &slope, &y_intercept, &correlation_coef)) {
713                     min_color[i] = GET_CHAN(src_pixels[block_offset], i);
714                     max_color[i] = GET_CHAN(src_pixels[block_offset], i);
715                 } else {
716                     tmp_min = (int)(0.5 + min * slope + y_intercept);
717                     tmp_max = (int)(0.5 + max * slope + y_intercept);
718 
719                     av_assert0(tmp_min <= tmp_max);
720                     // clamp min and max color values
721                     tmp_min = av_clip_uint8(tmp_min);
722                     tmp_max = av_clip_uint8(tmp_max);
723 
724                     err = FFMAX(calc_lsq_max_fit_error(&src_pixels[block_offset], &bi,
725                                                        min, max, tmp_min, tmp_max, chan, i), err);
726 
727                     min_color[i] = tmp_min;
728                     max_color[i] = tmp_max;
729                 }
730             }
731 
732             if (err > s->sixteen_color_thresh) { // DO SIXTEEN COLOR BLOCK
733                 uint16_t *row_ptr;
734                 int y_size, rgb555;
735 
736                 block_offset = get_block_info(&bi, block_counter);
737 
738                 row_ptr = &src_pixels[block_offset];
739                 y_size = FFMIN(4, bi.image_height - bi.row * 4);
740 
741                 for (int y = 0; y < y_size; y++) {
742                     for (int x = 0; x < 4; x++) {
743                         rgb555 = row_ptr[x] & ~0x8000;
744 
745                         put_bits(&s->pb, 16, rgb555);
746                     }
747                     row_ptr += bi.rowstride;
748                 }
749 
750                 for (int y = y_size; y < 4; y++) {
751                     for (int x = 0; x < 4; x++)
752                         put_bits(&s->pb, 16, 0);
753                 }
754 
755                 block_counter++;
756             } else { // FOUR COLOR BLOCK
757                 block_counter += encode_four_color_block(min_color, max_color,
758                                                          &s->pb, &src_pixels[block_offset], &bi);
759             }
760 
761             /* update this block in the previous frame buffer */
762             update_block_in_prev_frame(&src_pixels[block_offset],
763                                        &prev_pixels[block_offset], &bi, block_counter);
764         }
765     }
766 }
767 
rpza_encode_init(AVCodecContext * avctx)768 static int rpza_encode_init(AVCodecContext *avctx)
769 {
770     RpzaContext *s = avctx->priv_data;
771 
772     s->frame_width = avctx->width;
773     s->frame_height = avctx->height;
774 
775     s->prev_frame = av_frame_alloc();
776     if (!s->prev_frame)
777         return AVERROR(ENOMEM);
778 
779     return 0;
780 }
781 
rpza_encode_frame(AVCodecContext * avctx,AVPacket * pkt,const AVFrame * frame,int * got_packet)782 static int rpza_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
783                                 const AVFrame *frame, int *got_packet)
784 {
785     RpzaContext *s = avctx->priv_data;
786     const AVFrame *pict = frame;
787     uint8_t *buf;
788     int ret = ff_alloc_packet(avctx, pkt, 6LL * avctx->height * avctx->width);
789 
790     if (ret < 0)
791         return ret;
792 
793     init_put_bits(&s->pb, pkt->data, pkt->size);
794 
795     // skip 4 byte header, write it later once the size of the chunk is known
796     put_bits32(&s->pb, 0x00);
797 
798     if (!s->prev_frame->data[0]) {
799         s->first_frame = 1;
800         s->prev_frame->format = pict->format;
801         s->prev_frame->width = pict->width;
802         s->prev_frame->height = pict->height;
803         ret = av_frame_get_buffer(s->prev_frame, 0);
804         if (ret < 0)
805             return ret;
806     } else {
807         s->first_frame = 0;
808     }
809 
810     rpza_encode_stream(s, pict);
811 
812     flush_put_bits(&s->pb);
813 
814     av_shrink_packet(pkt, put_bytes_output(&s->pb));
815     buf = pkt->data;
816 
817     // write header opcode
818     buf[0] = 0xe1; // chunk opcode
819 
820     // write chunk length
821     AV_WB24(buf + 1, pkt->size);
822 
823     *got_packet = 1;
824 
825     return 0;
826 }
827 
rpza_encode_end(AVCodecContext * avctx)828 static int rpza_encode_end(AVCodecContext *avctx)
829 {
830     RpzaContext *s = (RpzaContext *)avctx->priv_data;
831 
832     av_frame_free(&s->prev_frame);
833 
834     return 0;
835 }
836 
837 #define OFFSET(x) offsetof(RpzaContext, x)
838 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
839 static const AVOption options[] = {
840     { "skip_frame_thresh", NULL, OFFSET(skip_frame_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
841     { "start_one_color_thresh", NULL, OFFSET(start_one_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
842     { "continue_one_color_thresh", NULL, OFFSET(continue_one_color_thresh), AV_OPT_TYPE_INT, {.i64=0}, 0, 24, VE},
843     { "sixteen_color_thresh", NULL, OFFSET(sixteen_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
844     { NULL },
845 };
846 
847 static const AVClass rpza_class = {
848     .class_name = "rpza",
849     .item_name  = av_default_item_name,
850     .option     = options,
851     .version    = LIBAVUTIL_VERSION_INT,
852 };
853 
854 const FFCodec ff_rpza_encoder = {
855     .p.name         = "rpza",
856     .p.long_name    = NULL_IF_CONFIG_SMALL("QuickTime video (RPZA)"),
857     .p.type         = AVMEDIA_TYPE_VIDEO,
858     .p.id           = AV_CODEC_ID_RPZA,
859     .priv_data_size = sizeof(RpzaContext),
860     .p.priv_class   = &rpza_class,
861     .init           = rpza_encode_init,
862     FF_CODEC_ENCODE_CB(rpza_encode_frame),
863     .close          = rpza_encode_end,
864     .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE,
865     .p.pix_fmts     = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB555,
866                                                      AV_PIX_FMT_NONE},
867 };
868